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ABSTRACT OF THE DISSERTATION 

Cerebral Amyloid Angiopathy and Transition Metals in Alzheimer’s Disease 
 

by 

Matthew Schrag 

Doctor of Philosophy, Graduate Program in Biochemistry 
Loma Linda University, December 2010 

Dr. Wolff M. Kirsch, Chairperson 
 

Alterations in brain metals homeostasis and particularly brain iron overload have 

been postulated to play a role in Alzheimer’s disease, contributing to oxidative stress and 

neuronal injury; however, the source of this iron is not clear and may be due to metabolic 

derangement(s), failed iron clearance mechanisms or exogenous deposition such as 

through bleeding.  This series of studies was designed to evaluate the extent of metals 

dyshomeostasis in the Alzheimer’s disease brain and specifically whether microvascular 

bleeding is a major contributor to Alzheimer’s disease-related iron overload.  Cerebral 

amyloid angiopathy (CAA) is a vascular manifestation of Alzheimer’s disease present to 

some degree in up to 95% of Alzheimer’s disease patients.  This vasculopathy results in 

vascular inflammation and fragility which produces clinically detectable bleeding (by 

susceptibility weighted MR imaging) in many Alzheimer’s disease patients.  We 

analyzed brain iron levels by gold-standard atomic absorption spectrometry in brain 

tissue from patients with severe CAA, in those with Alzheimer’s disease without 

significant vascular involvement and in aged control tissue.  We also observed iron, zinc 

and copper in these tissues histologically by novel techniques to qualitatively assess their 

association with vascular and perivascular abnormalities.   Increased iron in the subset of 

Alzheimer’s disease patients with CAA is accompanied by increased levels of heme 
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degradation enzymes, heme oxygenase and biliverdin reductase.  Finally, because the 

mechanism(s) underlying vascular fragility in CAA is unknown, we evaluated the role of 

terminal complement on cerebrovascular elements in the setting of CAA.  This may 

provide mechanistic clues to how the structural stability of arterioles is undermined in 

this microangiopathy.  If iron overload is a feature of CAA rather than a more general 

feature of Alzheimer’s disease, it is possible that chelation therapies will be more 

effective for the subset of Alzheimer’s patients with severe vasculopathy.  This 

information combined with an effective clinical test for CAA has the potential to refine 

therapeutic strategies. 

 



 

1 

 

 

 

CHAPTER ONE 

INTRODUCTION 

 

The Clinical Problem of Alzheimer’s Disease 

Alzheimer’s disease (AD) was described more than 100 years ago by a 43 year 

old neuropathologist named Dr. Alois Alzheimer who recognized the two key 

neuropathological markers of this neurodegenerative disease.  He described extracellular 

plaques of a material we now know to be aggregates of a protein peptide called beta-

amyloid.  He also described an intraneuronal pathology he termed “tangles” which 

appeared as intense silver-staining of the axons of certain neurons (Zilka and Novak 

2006).  This pathology is now understood to result from the hyperphosphorylation of a 

cytoskeleton-associated protein called tau which is normally responsible for stabilizing 

the microtubules associated with normal neuronal axons.  Upon hyperphosphorylation, 

this molecule can no longer function normally and aggregates within neurons, becoming 

visible as a neurofibrillary tangle.  This is associated with destabilization of the axon and 

the loss of synaptic connections.  These pathologies present in the context of severe 

neuronal loss through apoptosis and cortical atrophy leading to the clinical manifestations 

of the disease.   

Patients affected by Alzheimer’s disease typically present with mild memory 

impairments in or after the seventh decade of life although about 5% of cases are 
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hereditary (usually with autosomal dominant inheritance) and cause clinical dementia as 

early as the fourth or fifth decade of life (and occasionally even earlier).  The earliest 

phase of the disease falls in a clinical category termed mild cognitive impairment (MCI) 

which also affects many individuals with normal age-related memory loss.  Patients given 

the diagnosis of MCI may progress to outright dementia (at a typical rate of 17% per 

year) or remain cognitively stable (Landau 2010).  About two-thirds of those who 

progress to dementia will ultimately be diagnosed as having Alzheimer’s disease.  This 

disease affects approximately 14% of adults in the United States over the age of 65 and 

up to 40% of octogenarians.  The disease initially presents with isolated memory loss, but 

the cognitive impairment worsens with time to include word-finding difficulty (or 

anomia), visual-spacial dysfunction and ultimately loss of executive function (Samanta 

2006).  AD is currently believed to be the seventh most common cause of death in the 

United States (Alzheimer’s Association 2010).  The most common mechanism of death 

in patients affected by Alzheimer’s disease is pneumonia precipitated by aspiration 

because of the loss of gag reflexes and cognitive protection of the airway (Kahlia 2003).  

Average survival after diagnosis is reported to range from 3.1 to 7.6 years (Molsa 1995, 

Aguerro-Torres 1999, Helmer 2001, Wolfson 2001, Brookmeyer 2002, Ganguli 2005, 

Helzner 2008).   

A number of therapeutic options are available, but none has been shown to 

reverse or even slow cognitive dysfunction.  Acetylcholinesterase inhibitors have been 

developed based on the observation that the nucleus basalis of Meynert is severely 

affected by Alzheimer’s pathology, leading to a reduction in acetylcholine levels (Cuello 

2010).  These drugs are reasonably well-tolerated and produce a brief improvement in 
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non-cognitive symptoms of Alzheimer’s disease such as performance of activities of 

daily living.  N-methyl d-aspartate (NMDA)-receptor antagonists have been used based 

on evidence of glutamate-mediated neurotoxicity in AD brain.  This therapy is of 

comparable effectiveness with acetylcholinesterase inhibitors (Areosa 2005).  In many 

cases, the most significant medical therapy is treatment for depression.  Depression is a 

major risk factor for AD, more than doubling the risk in an individual over age 60 

(Devandan 1996).  In fact, it may be reasonable to see depression in some cases as an 

early sign of cognitive dysfunction.  As with other therapies for AD, anti-depressants 

have not been shown to alter cognitive function as measured by standard tests, but have 

shown efficacy for improvements in behavioral disturbances, performance of activities of 

daily living and reducing caretaker distress (Lyketsos 2003). 

 

The Research Problem 

 AD as a research priority is of obvious importance -- this is a disease process that 

ranks among the most prolific killers in the United States.  A clear understanding of the 

etiology and molecular mechanism(s) underlying AD, after over one-hundred years of 

intense study, remains elusive.  At present a conclusive diagnosis can only be obtained at 

autopsy or through brain biopsy, which means the vast majority of dementia patients are 

not diagnosed until death (Alzheimer’s Association 2010).  These features of the disease 

have complicated research efforts.  An enormous number of hypotheses have been 

presented to explain the etiology and progression of this disorder over the last half-

century.  A number have fallen by the wayside, like the now-rejected hypothesis that 

toxicity from aluminum exposure leads to the disease.   
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 Currently, the leading hypothesis in the field of Alzheimer’s disease research is 

the amyloid hypothesis which in its simplest form argues that beta-amyloid deposition is 

the initiating event in the progression of Alzheimer’s neurodegeneration and that the 

other features of the disease descend from this initial abnormality (Hardy and Higgins 

1992).  This basic mechanism is nearly indisputably accurate for a number of variants of 

Alzheimer’s disease, including the presenilin mutations, mutations in the APP gene and 

trisomy 21 (Down’s syndrome) which all result in overproduction of beta-amyloid 

peptide.  The mechanism is also supported by evidence that beta-amyloid applied to 

cultures of neurons or tissue cultures of brain results in hyperphosphorylation of tau and 

apoptotic death of neurons – both key additional features of Alzheimer’s disease (Forloni 

1993, Schrag 2008).  Other data seems to contradict this hypothesis including evidence 

that plaques and tangles are not consistently distributed together in AD brain and 

vaccination against the beta-amyloid peptide, while successfully clearing plaques from 

the brain, was not able to consistently reverse or slow the progression of cognitive 

decline (Holmes 2008). 

The tau hypothesis argues that abnormal phosphorylation of tau is the central 

pathology of Alzheimer’s disease and is based on the observation that decline in 

cognitive function correlates far more with the extent of tau pathology than it does with 

beta-amyloid pathology.  It is not clear whether hyperphosphorylation is due to 

overactivity of specific kinases (such as GSK3-beta) or deficient levels or function of key 

phosphatases (like tau protein phosphatase), but hyperphosphorylation results in 

destabilization of microtubules and loss of typical neuronal morphology (Honson and 

Kuret 2008).   
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Other hypotheses have suggested chronic hypoperfusion, abnormal microglial 

activation or other inflammatory mechanisms, altered calcium homeostasis, oxidative 

stress mechanisms etc to explain the pathologic changes associate with AD. 

Increasing attention has been paid to the role of redox active transition metals as 

potential early players in AD pathogenesis.  Free iron, in particular, with its ability to 

participate in Fenton chemistry, is thought to occupy a central role in initiating oxidative 

injury culminating in neuron loss (Castellani 2004).  Additionally iron, zinc and copper 

are concentrated within beta-amyloid plaques, a pathological hallmark of AD (Lovell 

1998).  These observations have prompted intense study of central nervous system iron 

chelators in animal models with some degree of success, although preliminary clinical 

trials have had mixed results (Crapper-McLaughlin 1992, Squitti 2002, Lannfeldt 2006).   

The notion that iron accumulates in the brain as an early feature of AD has both 

therapeutic and diagnostic implications.  If true, recent advances in MRI techniques, 

including iron-sensitive gradient echo-T2* (GRE-T2*) and susceptibility weighted 

imaging sequences (SWI), should be able to detect the increased tissue iron (Haacke 

2005).  This methodology may provide a clinically useful biomarker of AD and a 

mechanism for monitoring the efficacy of iron-modulating therapies.  More immediately, 

the technique enables in vivo evaluation of the iron-accumulation hypothesis in human 

beings and a correlation of iron accumulation to the clinical progression of dementia.   

 

Previous Work 

A post-mortem analysis of brain tissue from various lobar regions was performed 

by atomic absorption spectrometry (Magaki 2007).  Samples were obtained from 
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cognitively normal elderly brain, early Alzheimer’s disease, and severe Alzheimer’s 

disease brain from both frontal lobe and hippocampus.  Copper, and non-heme, loosely 

bound and total iron were measured.  Total and non-heme iron levels were not 

significantly altered in the AD cases, while loosely bound iron (isolated from 

mitochondria) was increased and copper was decreased.  These findings were at odds 

with the widely held belief that iron is markedly increased in AD – various review 

articles report AD brain iron to be increased by two to five fold (Avramovich-Tirosh 

2008, Bush and Tanzi 2008, Molina-Holgado 2007, Huang 2004).   

Our group also designed and executed a longitudinal, prospective clinical trial to 

evaluate radiologically the correlation of two distinct markers of brain iron with the 

progression of dementia using SWI (Kirsch 2009).  Regional parenchymal iron 

concentration may be semi-quantitatively estimated in vivo using this technique because 

iron produces a loss of signal intensity.  Additionally, punctate sources of high-iron 

concentration produced characteristic small, round hypointensities in some images.  

These hypointensities were thought to represent brain microbleeds, and in the setting of 

dementia are distributed with a posterior lobar predilection characteristic of CAA.  CAA 

is comorbid with AD in as many as 95% of AD cases (Jellinger 2007).  In this condition 

the β-amyloid peptide is deposited along the cerebral and meningeal vasculature in the 

walls of small and medium-sized arterioles.  Vascular wall infiltration with these proteins 

appears to be associated with a structural instability of arterioles accounting for brain 

microbleed (BMB) and associated MR signal voids.  In vivo evidence of CAA was 

limited until the introduction of GRE-T2
* weighted MR imaging, which remains the 

clinical standard for detection of BMB which often result from CAA (Atlas 1988).   
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Though recent reviews of the BMB literature have attempted to codify the interpretation 

of these findings, the inconsistency of data sets, the lack of pathological confirmation and 

the need for better designed prospective studies to determine their clinical significance 

has been emphasized (Cordonnier 2006, 2007, Viswanathan 2006). Detection of BMB is 

improved by new, high-resolution, 3D GRE-T2* and SWI.  SWI is an advance in T2* 

weighted brain MR imaging that enhances contrast from local susceptibility tissue 

variations (Haacke 2004, 2005).  At 1.5T, the SWI sequence was found to be four fold 

more sensitive for detection of traumatic BMB than conventional GRE-T2
* and recent 

data in MCI subjects indicates again at least a four fold increase in BMB recognition by 

SWI compared to conventional GRE-T2
* imaging (Haacke 2007, Tong 2003, 2004).  To 

date, punctate signal voids have been observed in a number of diseases – by far the most 

common are hypertension and CAA.  Those associated with hypertensive vasculopathy 

tend to be localized to basal ganglia, internal capsule, brain stem, and cerebellum, 

whereas those associated with CAA are generally smaller with a posterior lobar 

predilection (Rosand 2005 and Walker 2004).  

Of the fifty patients enrolled in this study with mild cognitive impairment (MCI - 

the earliest clinically detectable stage of cognitive loss), 23 remained cognitively stable 

throughout the follow-up period while 27 progressed to dementia.  Of the brain-regions 

of interest, only the left putamen demonstrated a significant loss of signal intensity in the 

cohort that progressed to dementia compared to both the stable MCI population and the 

normal control cases.  Two or more BMB were observed in ten patients in the study.  Of 

these ten, nine progressed to dementia while one remained stable at MCI.  All nine who 

progressed to dementia had a progressive increase in the number of hypointensities, while 
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the one stable case did not have an increasing number.  These findings indicate that CAA 

and microbleeds represent clinically important pathologies and are detectable in 

approximately one-third of dementia patients prior to the onset of cognitive loss.   

One final study formed the background for this body of work.  Longitudinal 

serum samples were collected from the patients described in the previous study.  

Proteomic analysis of peptides carried on albumin in the serum identified certain peptide 

breakdown products of heme degradation enzymes that were markedly elevated in MCI 

patients who would ultimately progress to dementia compared to those who remained 

stable.  In particular, the ratio of biliverdin reductase B-related peptides to heme 

oxygenase 1-related peptides was markedly increased in the group that progressed to 

dementia.  These findings may represent a valuable early biomarker of Alzheimer’s 

disease, but they may also indicate abnormal activation of the heme degradation system 

in AD. 

The findings from these studies provoke an important question: Could the absence 

of iron-overload in these cases indicate that iron dysregulation and overload is not 

inherently a feature of Alzheimer’s disease, but rather of a comorbidity like CAA which 

produces microbleeding?  Previous post-mortem tissue analyses of Alzheimer’s disease 

brains in our laboratory failed to demonstrate an increase in either total iron concentration 

(in any studied region) or non-heme (chelatable) iron (Magaki 2007).  Additionally, no 

dysregulation of iron regulatory proteins 1 or 2 could be demonstrated in our studies and 

no clear metabolic derangement has been consistently reported in the literature (Magaki 

2007).  However, heme-degradation pathway enzymes are reported to be increased in 

both AD brain and in peripheral serum samples from dementia patients (Premkumar 
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1995, Mueller 2010).  CAA could potentially explain this pattern of findings and account 

for the source of pathological iron reported in numerous qualitative studies.  While a 

wide spectrum of CAA severity is present in AD, at autopsy more than 95% of AD 

patients are found to have some degree of CAA pathology.  Bleeding below the threshold 

of detection for our current MRI techniques has been reported and demonstrated to be 

associated with amyloid plaque formation (Cullen 2005).  However, in our study, one-

third of the dementia cases had detectable hypointensities thought to be CAA-related 

bleeding.  AD accounts for about two-thirds of all dementia cases, meaning 

microbleeding may be a major disease mechanism in as many as half of all AD cases 

(Hendrie 1998).   

 

Hypothesis and Aims of Current Studies 

We proposed to clarify the degree to which iron is dysregulated in AD and to 

identify the source of abnormal iron.  Several studies utilizing very different 

methodologies were required to answer these questions.  We conducted a meta-analytic 

review of available literature to determine whether iron is actually increased in AD and to 

better understand how the belief that AD is a disease of iron-overload developed.  

Effective meta-analysis requires objective inclusion and exclusion criteria, so all studies 

encountered were included in the analysis unless there was an objective reason to exclude 

them.  In particular, results reported from fixed tissue appeared to differ from results 

obtained from never-fixed specimens.  We felt it was necessary to specifically confirm 

the effect of tissue fixation before excluding studies on fixed tissue from the analysis.  

Additionally, we extensively searched available literature, including studies in foreign 
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languages and studies which were not PubMed indexed.  After confirming by meta-

analysis that iron was not increased in quality-controlled studies of AD brain, we 

analyzed the citation patterns in key literature to better understand how the belief to the 

contrary developed.   

Subsequently, we evaluated whether microvascular bleeding secondary to CAA 

accounts for the increased iron reported by some investigators in AD cases.  This was 

accomplished by correlating brain iron levels and heme degradation pathway enzyme 

levels to the degree of CAA in post-mortem cases.  If the hypothesis is true, non-heme 

iron measurements should increase in CAA-affected tissue and be associated with 

increases in heme-degradation pathway enzymes indicative of tissue exposure to blood.  

If iron overload is a feature of CAA rather than a more-general feature of AD, it is 

possible that chelation therapies will be more-effective for a subset of Alzheimer’s 

patients with severe vasculopathy.  Finally, because iron-overload appeared to be due 

primarily to microbleeding, we assessed whether hypointense foci in susceptibility 

weighted images accurately identified microhemorrhages in CAA tissue and observed the 

pathology present in these locations to better understand the mechanism of vascular 

degeneration associated with CAA.   

The findings of these studies indicate that iron is not globally dysregulated in 

Alzheimer’s disease, despite the dogmatic belief to the contrary in the field.  When iron 

overload is present in a subset of AD brains, it correlates with microbleeding and CAA, 

and not with the presence of parenchymal hallmarks of AD.  Microbleeding events can be 

detected by susceptibility weighted images in vivo which is a reasonable imaging 

biomarker of severe CAA.  Finally, the mechanism associated with vascular degeneration 
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in CAA appears to be associated with the deposition of pro-oxidative copper and iron in 

the arteriolar walls and prominent late-complement activation – pathologies which may 

be directly associated with beta-amyloid deposition.   
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Abstract 
 
 Reports that iron, zinc and copper homeostasis are in aberrant homeostasis are 

common for various neurodegenerative diseases, particularly for Huntington’s disease, 

Parkinson’s disease and Alzheimer’s disease.  Manipulating the levels of these elements 

in the brain through the application of chelators has been and continues to be tested 

therapeutically in clinical trials with mixed results.  Much of the data indicating that these 

metals are abnormally concentrated in Alzheimer’s disease and Parkinson’s disease brain 

tissue was generated through the analysis of post-mortem human tissue which was 

archived in formalin.  In this study, we evaluate the effect of formalin fixation of brain on 

the levels of three important transition metals (iron, copper and zinc) by atomic 

absorption spectroscopy.  Paired brain specimens were obtained at autopsy for each case; 

one was conserved by formalin archival (averaging four years), the other was rapidly 
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frozen.  Both white and grey matter samples were analyzed and the concentrations of iron 

and zinc were found to decrease with fixation.  Iron was reduced by 40% (p<0.01), and 

zinc by 77% (p<0.0001); copper concentrations increased by 37% (p<0.05) by the paired 

T-test.  The increase in copper is likely due to contamination from trace copper in the 

formalin.  These results indicate that transition metal data obtained from fixed tissue may 

be heavily distorted and care should be taken in interpreting this data. 

 

Introduction 

The measurement of trace metals in human tissue has revealed numerous insights 

into both normal physiology and disease.  Brain iron concentration increases with age, 

reaching a plateau at about age 55 (Hallgren and Sourander 1958).  Disturbances in the 

levels of various metals including iron in the brain are reported to be associated with 

many neurodegenerative disorders, including Huntington’s disease, amyotrophic lateral 

sclerosis, Alzheimer’s disease (AD) and Parkinson’s disease (PD).  In these diseases, iron 

is known to accumulate in the deep grey matter and iron accumulation in the neocortex 

has been suggested to contribute to the cognitive dysfunction associated with some of 

these diseases.  Abnormal accumulation of iron in the AD brain could account for 

increased oxidative injury which is an early finding in Alzheimer’s disease and increases 

in brain iron have in fact been reported early in this condition mirroring the oxidative 

changes (Smith 2010, Nunomura 2001), although several additional studies have failed to 

detect any abnormal changes in brain iron in AD compared to age-matched controls at 

various stages of the disease (Hallgren and Sourander 1960, Ward and Mason 1987, 

Magaki 2007).  Additionally, beta-amyloid peptides which aggregate to form senile 
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plaques in Alzheimer’s and Parkinson’s diseases, avidly bind to iron, zinc and copper.  

When these metals are bound, the toxicity of beta-amyloid is reported to markedly 

increase (Rottkamp 2001).  Pharmacologically manipulating the levels and/or distribution 

of these metals in the brain is becoming a clinical reality for Alzheimer’s disease and 

Parkinson’s disease through the use of chelators and metallophores – several of which are 

in clinical trials (Crapper McLachlan 1991, Squitti 2003, Lannfelt 2008).  Initial results 

have been mixed; modest improvement in secondary measures like the performance of 

activities of daily living has been reported, but no agent has yet produced an 

improvement in cognition. 

Reports that iron, zinc and possibly copper are abnormally concentrated in 

neocortical brain in Alzheimer’s and that all three metals are deposited in beta-amyloid 

plaques were primarily generated from analysis of post-mortem, fixed tissue through 

histochemical and radioanalytical techniques (such as particle induced X-ray emission 

tomography) (Goodman 1953, Lovell 1998).  The reliability of this data set requires that 

formalin archival of tissue does not disturb the levels of these transition metals.  We 

noted that previous reports of iron concentrations from both normal and diseased brains 

which utilized fixed specimens appear to report substantially lower concentrations than 

studies which use never-fixed specimens analyzed with equivalent techniques (Lovell 

1998, Diebel 1996).  To evaluate whether this observation represents an artifact 

introduced through the fixation technique, we have evaluated paired brain samples taken 

from the temporal lobe of Alzheimer’s disease patients to determine whether samples 

stored in formalin have equivalent levels of three key transition metals – iron, copper and 

zinc.  
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Materials and Methods 

 Post mortem tissue was donated from the Alzheimer’s Disease Research Center 

Brain Bank at the University of California, Los Angeles.  All patients and/or their 

surrogates had consented to tissue donation prior to autopsy.  The research protocol was 

approved by the Institutional Review Board of Loma Linda University Medical Center 

(approval #54174).  Both frozen and formalin-archived tissue was collected from the 

middle temporal gyrus of four severe Alzheimer’s disease brains.  Tissue samples were 

isolated with a diamond blade scalpel and titanium and/or nylon forceps (to avoid 

contamination) and collected as 30-60 mg specimens of isolated grey or white matter.  

From fixed tissue, the surface of tissue blocks was dissected away to remove any tissue 

which might have been exposed to iron-containing instruments through the autopsy 

procedure. 

 Tissue was ashed for analysis by standard techniques.  Briefly, brain tissue was 

immersed in concentrated nitric acid (300 microliters) overnight, then incubated in a 

water bath at 80 degrees Celsius for 20 minutes.  The resulting solution was allowed to 

cool to room temperature and hydrogen peroxide (300 microliters, 10M solution) was 

added to dissolve lipid components.  After thirty minutes incubation at room temperature, 

the sample was heated to 70 degrees Celsius in the water bath for 15 minutes.  The 

resultant solution was allowed to cool for 10 minutes, then vortexed thoroughly and 

stored until analysis. 

 Atomic absorption spectrums were measured with a Varian SpectrAA 220Z 

atomic absorption spectrometer and processed with SpectrAA software v.4.1.  Standard 

iron and copper curves were produced from 25, 50, 75 and 100 parts per billion solutions 
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of standard iron or copper in nitric acid (Arcos Organics, New Jersey).  Standard curve 

for zinc was produced from 250, 500, 750 and 1000 parts per billion solutions of standard 

zinc in nitric acid (Solutions Plus Inc, Missouri).  The spectrometer was zeroed to a 

maximum of 0.005 mean absorbance.  For total iron measurements samples were diluted 

1:40, for zinc measurements samples were diluted 1:10 and for copper samples were 

diluted 1:20.  Standard furnace settings recommended by Varian were used for the 

analysis.  All sample values were the mean of six measurements.  Concentrations are 

calculated to reflect the concentration of the metal in micrograms per gram of native 

tissue (wet weight).  Significance was determined by the two-tailed, paired Student’s T 

test, with α = 0.05. 

 

Results 

 Two samples were analyzed from each of four brains which were severely 

affected by Alzheimer’s disease (Braak and Braak stage VI) (Braak and Braak 1997).  

One frozen and one formalin-fixed temporal lobe specimen were obtained from each case 

for comparison; the mean duration of archival was four years (range 3-6).  Each specimen 

was divided into grey and white matter which were analyzed separately.  Six 

measurements were collected for each sample and the mean of the values was reported in 

Figure 1.  The mean percent relative standard deviations (%RSD) over these repeated 

measures were 0.8% for iron, 12.5% for zinc and 1.8% for copper.  The %RSD for zinc 

was wider because the concentration in fixed specimens approached the threshold of 

detection for this element (%RSD fixed = 20.8, %RSD frozen = 4.1%). 
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Figure 1: Effect of long-term formalin archival on transition metal levels in paired 
Alzheimer’s disease brain samples 
Iron levels were found to decrease by about 43% upon fixation in formalin (p=0.008), 
zinc levels were shown to decrease with fixation by about 75% (p<0.0001) and copper 
increased by 37% (p=0.03).  All of these effects appeared to be independent of whether 
the tissue is collected from grey matter or white matter.  Lines between specimens 
indicate they were taken from the same brain. 
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Iron levels in the fixed tissue were significantly lower than in the frozen 

specimens (p=0.008 by paired T-test).  Seven of the eight specimens examined were 

found to have decreased iron after fixation, while one remained essentially unchanged.  

On average, iron concentration was 43% lower in the fixed tissue (mean difference 26.2 

µg/g tissue, 95% CI 9.1-43.3 µg/g tissue) and both grey and white matter were affected 

equally.  Brain zinc levels were also found to be notably decreased after fixation 

(p<0.0001).  This change also affected both grey and white matter and resulted in a mean 

decrease in zinc of 19.8 µg/g tissue (95% CI 13.9-25.8 µg/g tissue).  Brain copper was 

found to be increased in the fixed specimens (p=0.03).  This finding was unexpected – 

seven out of eight specimens contained higher levels of copper than their frozen 

counterparts and the mean increase in copper was 1.65 µg/g tissue (95% CI 0.21-3.09 

µg/g). 

 

Discussion 

 Previous studies have shown that formalin fixation affects the levels of transition 

metals in various organs, although it has frequently been argued that most transition 

metals in the brain are not affected by fixation.  This was primarily determined either by 

analysis after a brief fixation period or by indirect means such as determining the 

concentration of trace elements in the formalin in which the organ was stored for 

comparison to clean formalin (Andrasi 1990, Bush 1995, Gallein 2008).  This approach 

evaluates transition metal leaching and is obviously sensitive to dilutional variation, 

evaporation and contamination from other sources.  Additionally, because transition 

metal concentrations in most tissues vary considerably between individuals, a non-paired 
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analysis may mask the effect of formalin.  The most sensitive approach is to obtain paired 

samples from each case, one of which is stored by freezing, the other by formalin 

archival for several years.   

The findings of this study demonstrate that formalin archival of brain samples 

affects the concentration of several transition metals.  Both iron and zinc were found be 

significantly depleted after archival in formalin.  Copper, however, was found to increase 

with formalin fixation.  This increase in copper may be due to contamination of formalin 

with copper.  While copper levels in formalin are reported to be approximately 2% the 

level found in brain (0.1 ppm vs 5 ppm) (Andrasi 1990, Gellein 2007), the Alzheimer’s 

disease brain is depleted of copper and over-expresses copper binding proteins such as 

ceruloplasmin which may increase the tissue’s copper binding capacity and could in 

theory explain the accumulation of copper in the tissue with fixation (Loeffler 1996).  

Reports from the literature also indicate that copper levels dramatically increase in AD 

brain with fixation, although this was not noted in control tissue which would support this 

hypothesis (see Table 1). 

 The effect of fixation on brain iron has not been previously well-documented, 

although we noted that studies which analyzed fixed brain reported different levels of 

metals than those analyzing never-fixed brain.  Iron levels detected using a micro-PIXE 

(particle induced x-ray emission) analysis of formalin fixed Alzheimer’s disease 

amygdala were 38.8 µg / g wet tissue while other studies from the same laboratory using 

quantitative analyses of never-fixed, Alzheimer’s disease amygdala found a mean iron 

concentration of 65.5 µg / g wet tissue (Lovell 1998, Samudralwar 1995, Deibel 1996, 

Cornett 1998, Thompson 1988).  These studies showed that fixed tissue from the same  
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Table 1: Effect of short-term fixation on transition metal concentrations in the 
amygdala reported in the literature 

Study and 
method 

[Iron] 
control 

[Iron] AD [Zinc] 
control 

[Zinc] AD [Copper] 
control 

[Copper] 
AD 

Fixed tissue 
Lovell 1998 - micro-
PIXE, 24hr formalin 
exposure 
 

18.9 +/- 5.3 
N = 5 

38.8 +/- 9.4 
N = 9 

22.6 +/- 2.8 
N = 5 

51.4 +/- 11.0 
N = 9 

4.4 +/- 1.5 
N = 5 

19.3 +/- 6.3 
N = 9 

Never-fixed 
tissue 

49.2 +/- 3.3 
N = 56 

65.5 +/- 3.8 
N = 101 

14.5 +/- 0.5 
N = 69 

18.2 +/- 0.7 
N = 119 

4.1 +/- 0.3 
N = 11 

2.7 +/- 0.3 
N = 10 

 
Thompson 1988 - 
INAA 

48.9 +/- 3.0 60.6 +/- 4.9 14.1 +/- 0.5 17.0 +/- 0.8 - - 

Samudralwar 1995 - 
INAA 

50.8 +/- 3.7 70.8 +/- 4.0 16.7 +/- 0.5 21.4 +/- 0.5 - - 

Deibel 1996 - INAA 48.6 +/- 2.2 70.8 +/- 6.4 15.2 +/- 0.6 19.8 +/- 1.0 4.1 +/- 0.3 2.7 +/- 0.3 
Cornett 1998 - INAA 49.0 +/- 4.0 64.0 +/- 3.0 13.6 +/- 0.5 17.6 +/- 0.6 - - 
Rulon 2000 - AA - - 15.7 +/- 0.5 16.6 +/- 1.0 - - 

Percent change 
(Two-tailed T test) 

-61 % 
p<0.0001 

-41 % 
p<0.0001

+56 % 
p<0.0001

+182 % 
p<0.0001

+7.3 % 
p=0.52 

+615 % 
p<0.0001

All six studies listed were published from the same laboratory at the University of Kentucky.  One study analyzed fixed tissue; the 
others analyzed never-fixed tissue – all used quantitative analytical methods.  The never-fixed results are pooled in the second row and 
listed individually below.  Measurements represent microgram metal per gram tissue, wet weight (results from Deibel 1996 were 
converted from dry weight measurements to wet weight).  Errors listed are standard deviation.  AD = Alzheimer’s disease, PIXE = 
particle induced x-ray emission, INAA = instrumental neutron activation analysis, AA = atomic absorption.  “Percent change” 
indicates the difference between measurements of “Never-fixed” and “Fixed” tissue samples. 
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brain region contained 41% less iron than comparable never-fixed tissue, which is 

strikingly consistent with the 43% reduction we found in the paired samples in this study.  

Additionally, iron concentration in control tissue was found to decrease by even more 

(never-fixed 49.2 micrograms/gram versus fixed 18.9 micrograms/g – a 61% reduction, 

p<0.0001).  The effects on copper levels in these studies were more severe in AD brain 

than what we report here.  While fixed and frozen amygdala tissue from control brain was 

not significantly affected (4.1 vs 4.4 micrograms/gram, p=0.52), AD tissue was reported 

to contain 2.7 micrograms copper/gram in never-fixed tissue and 19.3 micrograms/gram 

in fixed tissue – a 615% increase (Lovell 1998, Deibel 1996).  Finally, zinc levels were 

also found to be altered between the studies, although they did not match the results of 

our study.  Fixation increased zinc levels by 54% in control tissue and by 179% in AD 

tissue (Lovell 1998, Thompson 1988, Samudralwar 1995, Deibel 1996, Cornett 1998, 

Rulon 2000).  Our results found that zinc was depleted by 75% in temporal lobe tissue 

from AD patients.  The discrepancy in these results may indicate that effects of fixation 

differ between brain regions, or with the length of fixation.  Additionally, we noted a 

wide variance in the effect of fixation on tissue concentrations of all three metals, which 

makes it difficult to simply calculate a correction for fixation.  Regardless, formalin 

fixation (even briefly) appears to destabilize the concentration of multiple metal species 

and may affect normal and diseased brain differently.  It is therefore necessary to 

cautiously interpret transition metal data derived from fixed tissue and future studies 

should be limited to fresh or frozen specimens. 

 Altered homeostasis of iron, zinc and/or copper has been suggested to be involved 

in many neurodegenerative diseases; however, reports of metals concentration in these 
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tissues have been remarkably disparate in their conclusions.  Before seriously considering 

the use of chelators or other compounds to manipulate the homeostasis of these essential 

biometals, it will be necessary to determine whether and to what degree they are truly 

dysregulated.  This requires a critical evaluation of the available data.  Because a 

significant portion of that data was generated from fixed tissue, it may be necessary to re-

examine the fundamental assumptions about the role of metals in various 

neurodegenerative diseases.  
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Abstract 

Dysfunctional homeostasis of transition metals is believed to play a role in the 

pathogenesis of Alzheimer’s disease (AD).  Brain copper, zinc, and particularly iron 

overload are widely accepted features of AD which have led to the hypothesis that 

oxidative stress generated from aberrant homeostasis of these transition metals might be a 

pathogenic mechanism behind AD.  This meta-analysis compiled and critically assessed 

available quantitative data on brain iron, zinc and copper levels in AD patients compared 

to aged controls.  The results were heterogeneous as a result of a series of heavily cited 

articles from one laboratory that reported large increases in iron in AD neocortex.  Seven 

laboratories failed to reproduce these findings (p=0.76) – the pooled effect size reported 

by these studies was -0.05.  Zinc was not increased in the neocortex.  Copper was 

significantly depleted in AD (p=0.0003).  In light of these findings, it will be important to 
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re-evaluate the hypothesis that transition metal overload accounts for oxidative injury 

noted in AD.   

 

Introduction 

The distribution and homeostasis of transition metals in Alzheimer’s disease (AD) 

brain and their potential role in the etiology of neurodegeneration has been debated for 

six decades or more.  Goodman presented one of the earliest arguments for a role of iron 

in AD in 1953 with a detailed pathological/histological description of a series of post-

mortem AD cases.  He reported increased Prussian/Turnbull’s blue reactivity indicating 

abnormally high levels of tissue iron in a few of these patients.  From these findings, he 

hypothesized that a defect in iron management may underlie late-onset cognitive loss in 

these cases.  Hallgren and Sourander in 1958 and 1960 published the first quantitative 

analyses of brain iron in Alzheimer’s disease patients using colorimetric techniques.  This 

failed to demonstrate a significant increase in tissue levels of non-heme iron in AD brain.  

However, like Goodman, they noted that many of the specimens showed increased 

reactivity to histological iron stains.  In the intervening decades, brain iron overload 

gradually became widely accepted as a feature of AD (Gerlach 1994, Benzi 1995, Smith 

1997, Schipper 1999, Cuajungco 2000).  Additionally, the observation that iron, zinc and 

copper were concentrated in beta-amyloid plaques led to the hypothesis that oxidative 

stress generated from aberrant homeostasis of these transition metals and pathologic 

metal-protein interactions might be mechanisms behind the aggregation and toxicity of 

senile plaques, ultimately leading to (or contributing to) the neurodegeneration associated 

with AD (Lovell 1998, Smith 1997, Markesbery 1999).  In vitro studies demonstrated 
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that iron, zinc and copper at near-physiologic conditions each bind beta-amyloid and are 

capable of precipitating it into aggregates (Bush 1994).  The discovery that chelating 

these metals from plaques reduced plaque toxicity and increased amyloid solubility in 

vitro further supported the metals hypothesis and became a basis for the therapeutic use 

of chelators in neurodegenerative conditions (Schubert 1995, Cherny 1999, Rottkamp 

2001).  Interest in manipulating brain levels of transition metals has risen, resulting in the 

development of many pharmacologic chelators and a number of clinical trials (Crapper 

McLachlan 1991, Lannfelt 2008, Liu 2010, Squitti 2002). 

In the year 2000, one of the most-cited review articles on the subject of metals in 

AD declared that “a consensus has emerged in the literature that copper, zinc and iron are 

elevated in the AD-affected neocortex” (Bush 2000).  The purpose of this study is to 

evaluate if that consensus is accurate.  The issue remains that most available data on brain 

transition metal concentrations is qualitative, and quantitative studies have generally 

lacked adequate power to determine whether changes are significant.  Additionally, 

several of the most prominently cited papers in the field have studied tissue that has been 

fixed, which has been shown to compromise the integrity of the data (Lovell 1998, 

Jellinger 1990, Schrag 2010).  This has made it increasingly important to compile and 

critically assess available quantitative data on brain iron, zinc and copper levels in AD 

patients compared to aged controls. 
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Methods 

Literature Search 

Literature search was conducted by the first author.  Appropriate articles were 

assembled by systematic queries of NCBI (PubMed), ISI Web of Science, OVID and 

GoogleScholar databases on the 8th of January 2010.  Additionally, we reviewed the 

citation lists from each article retrieved for the meta-analysis and from relevant review 

articles.  The indexes of certain journals were manually reviewed, including Journal of 

Radioanalytical and Nuclear Chemistry, Trace Elements in Medicine, Trace Elements 

and Electrolytes, and Microelement.  Articles published in any year up to the date of 

search and in any language were included, as long as they were indexed in the databases 

described.  Quantitative analytical techniques were included in the analysis; semi-

quantitative approaches were excluded.  Acceptable quantitative techniques included 

atomic absorption spectroscopy, inductively coupled plasma mass spectrometry or atomic 

emission spectroscopy, particle-induced x-ray emission, neutron activation analysis and 

colorimetric assays normalized to tissue weight.  These methods have been shown to 

consistently produce equivalent results (Jervis 1985, Zhang 1997, Stedman 1997).  

Search terms therefore included a technique keyword (such as “neutron activation”) and 

“Alzheimer’s disease.”  General search of high-yield keyword combinations, such as 

“iron,” “Alzheimer’s” and “human brain” were also conducted.  Abstracts were reviewed 

to collect only reports which compared human Alzheimer’s disease brain to aged control 

brain for total iron, zinc and/or copper levels in any brain region.  Finally, when possible 

we contacted an author from each study to request access to any unpublished data and to 

clarify methodological details.  We were made aware of two unpublished datasets; these 
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could not be recovered for inclusion in this meta-analysis, but were described as finding 

no significant differences between groups. 

 

Exclusion Criteria 

Exclusion criteria were non-quantitative analysis (including normalizing element 

concentration to protein concentration), tissue fixation (for any duration of time), the 

absence of neuropathological diagnosis and inappropriate control tissue (all cases were 

required to be over age 55).  Iron has been shown to increase in the brain with age in 

neurologically normal subjects; however, it reaches a relatively steady state by about age 

55, which is why this was chosen as a cut-off (Hallgren and Sourander 1958, Markesbery 

1984).  Neuropathologic diagnosis was considered necessary because the clinical 

diagnosis of AD is only about 61-84% specific for AD (Gay 2008, Brunnstrom 2009).  

Tissue fixation has been shown to alter, sometimes dramatically, the concentrations of 

brain metals, either through leaching (iron is reduced on average by 40% in formalin 

fixed brain, zinc by as much as 75%), or by concentrating elements through tissue 

dehydration or by deposition of metal contaminants which may be present in formalin 

(particularly for copper) (Schrag 2010).  Finally, normalization of metal levels to protein 

concentration was considered unreliable because one study found that much lower 

concentrations of protein were isolated from AD tissue compared to normal brain 

(Loeffler 1995).  
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Data Analysis 

The studies which were included reported metals concentrations as either 

micromolar concentration or micrograms of metal per milligram of tissue.  Tissue 

samples were either dessicated or native (referred to as dry weight or wet weight) -- wet 

weight was chosen as the standard measure for this study because it is the physiologically 

relevant mass.  Because dry weight to wet weight conversion ratios have been extensively 

published for essentially all brain regions in both Alzheimer’s disease and control brain, 

all dry weight measures were converted to wet weight measures.  This conversion 

affected only two studies and the conversion ratios are included in supp. Table 4 (Andrasi 

2000, Deibel 1998).  Data from individual studies were collected as means, standard 

deviations, and numbers of brains in each group.  Effect size was calculated by Hedge’s g 

(with a small N bias correction) in a random effects model.  Results were presented by 

brain region as weighted mean concentrations, and effect sizes.  Studies were weighted in 

the analysis by inverse variance.  Heterogeneity was assessed by Q-test with alpha = 

0.05.  The metal levels reported for the neocortex were nearly equivalent region-to-

region, which enabled analysis of these regions jointly as well as individually.  The 

pooled neocortical dataset included frontal lobe, temporal lobe, parietal lobe and 

hippocampal measurements.  Normalcy of distribution was assessed with Lilliefors test 

for the pooled neocortical data (Lilleifors 1967).  Figures were constructed using an 

Excel-based software add-on, MIX 1.7 (Bax 2007).     
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Results 

Thirty-two studies were identified in the primary screen; twenty studies remained 

after the application of objective exclusion criteria.  All studies evaluated for inclusion in 

the meta-analysis were reported in the annotated references with explanations of the 

rationale for inclusion or exclusion.  In general, clinical data and demographic 

information were limited to age, sex and neuropathological diagnosis at death; comorbid 

diseases were generally not described.  For this reason, evaluation of potential 

confounders was limited.  Additionally, only one of the studies reported the use of 

blinding in any part of the study (Ward and Mason 1987).  The neuropathologic 

diagnoses in all cases were limited to parenchymal Alzheimer’s disease pathology -- 

vascular amyloid deposition and Lewy body pathologies were not described.   

The main statistical measure we chose to describe the effect of AD on brain iron 

was Hedge’s G, hereafter called simply “effect size.”  This statistical tool describes the 

difference between two groups (here the metal concentration in control brain vs. AD 

brain) as a proportion of the pooled standard deviation of the two groups.  An effect size 

of 1 indicates the experimental group is one standard deviation higher than the control 

group.  Because of the methodological differences and heterogeneity between the studies, 

a random effects model was chosen for the analysis.  For datasets which were not 

significantly heterogenous, the random effects model yielded equivalent results to the 

fixed effects model and analysis in a fixed effects model would not alter the conclusions 

of the study. 

When neocortical brain regions were analyzed together, the effect of Alzheimer’s 

disease on brain iron approached significance (Fig 1; effect size = 0.23, 95%CI -0.07-
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0.53, p=0.13).  However, this analysis was complicated by significant heterogeneity.  

Heterogeneity in the iron dataset appeared to derive primarily from data published by the 

University of Kentucky (U of K) (Fig 2).  When hippocampus, frontal, temporal and 

parietal lobes were merged to produce a cumulative dataset for analysis of neocortical 

iron, the heterogeneity between the U of K studies (4 studies) and all others (11 studies 

from 7 independent laboratories) became most evident, Q=26.0 (p=0.017) – the 

combined effect size reported by U of K studies alone was 0.67 (95%CI 0.35-1.00, 

p<0.0001) while the combined effect size reported by all other studies was -0.05 (95%CI 

-0.34-0.25, p=0.76); the latter we feel is the most-accurate estimate of the true effect of 

AD on neocortical iron (Fig. 2).  With the exclusion of U of K studies, heterogeneity was 

reduced to non-significant levels as assessed by the Q test and no evidence of non-normal 

distribution was present by the Lilliefors test.   

Region by region analysis (after the exclusion of the outlier data source) revealed 

significantly increased brain iron in Alzheimer’s disease only in the putamen (supp. 

Table 1).  Putamen iron levels were increased by 21.4% (effect size 1.14, 95% CI 0.50-

1.78).  While only one study apart from those from the U of K measured iron levels in the 

amygdala (and it had a very small number of samples), the increase in iron concentration 

reported by the U of K was higher than that reported by the independent study.  

Additional studies will be needed to determine the true effect size in the amygdala.  The 

effect size for each neocortical region was non-significant (effect size hippocampus -

0.32, 95%CI -0.76-0.11; frontal lobe -0.02, 95%CI -0.41-0.37; temporal lobe 0.56 95%CI 

-0.22-1.34; parietal lobe 0.35 95%CI -0.26-0.96). 
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There was insufficient data to adequately analyze the effect size of Alzheimer’s 

disease on zinc for deep grey matter regions, although results seemed to parallel the 

changes in iron (strongest increases were reported for the putamen, globus pallidus and 

caudate nucleus).  For neocortical regions, heterogeneity was found in the reports of zinc 

concentration although the heterogeneity was independent of the laboratory of origin (Fig 

1).  There was significant change in zinc concentration in the neocortex only in the 

parietal lobe (effect size hippocampus -0.08, 95%CI -1.00-0.85; frontal lobe 0.35, 95%CI 

-0.24-0.94; temporal lobe 0.47, 95%CI -0.13-1.07; parietal lobe 0.50, 95%CI 0.06-0.94).   
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Figure 2: Meta-data of studies reporting the effect of Alzheimer’s disease on 
neocortical iron, zinc and copper concentrations  
Data from hippocampus, frontal, temporal and parietal lobes were combined to assess 
neocortical metal levels.  Studies from the University of Kentucky (U of K) are indicated 
by red parentheses for iron data.  The mean effect size indicated by red vertical lines 
includes data reported by U of K.  The black vertical line indicates the meta-effect size 
for iron when this data source is excluded.  There is no significant increase in neocortical 
iron in Alzheimer’s brain: effect size = -0.05, 95%CI -0.34-0.25; n= 206 control, 251 
AD.  There is a trend toward an increase in neocortical zinc, although the dataset is 
significantly heterogenous: effect size = 0.26, 95% CI -0.22-0.75; n= 166 control, 118 
AD.  Copper levels are significantly depleted in Alzheimer’s disease: effect size = -0.59, 
95% CI -0.87- -0.31; n= 123 controls, 115 AD.   
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Figure 3: Laboratory of origin and not analytical technique appears to be the source 
of heterogeneity in measurements of neocortical iron in Alzheimer’s disease. 
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Several individual studies indicated an increase in zinc concentration in each 

neocortical lobe (supp Table 2). 

Copper levels were depleted in the AD group in most regions (supp. Table 3) and 

cumulatively neocortical copper was significantly reduced in AD (Fig.1; effect size -0.55, 

95%CI -0.85- -0.25, p=0.0003).  An additional study (conducted by the U of K) which 

was heavily cited and was excluded for tissue fixation, reported a dramatic increase in 

copper concentration (>400%) in AD amygdala compared to controls (Lovell 1998).  

However, a second report from the same laboratory reported copper was depleted in the 

amygdala with an effect size of -1.42, 95%CI -2.40- -0.44.  The effect of Alzheimer’s 

disease on hippocampal copper was -0.54, 95%CI -0.91- -0.16 and reported effect sizes 

for other neocortical regions ranged from -0.39 to -2.78. 

 

Discussion 

The data from this meta-analysis indicate that there is a wide-spread 

misconception in the scientific literature regarding the levels of several transition metals 

in AD brain.   For iron levels, this misconception arose from the contributions of one 

laboratory which were remarkably dissimilar to other published reports and were heavily 

cited.  Despite the fact that the U of K studies reported findings which were not 

reproduced by seven other laboratories, it was necessary to consider whether these 

discrepant reports could reflect the true effect size.  However, we found no obvious 

quality measures between the studies which would account for the discrepancy.  While 

brain iron concentration increases with aging and differences could therefore be 

attributed differences in age between control and AD groups, this was well-controlled in 
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study selection and control patients were over 55 years of age (Hallgren and Sourander 

1958).  The possibility that different analytical techniques could contribute to 

heterogeneous findings was also considered; however, the techniques employed in these 

studies have been shown to produce compatible results and five additional studies which 

did not originate at U of K also utilized INAA-based measurements (the technique 

employed in the U of K studies) without detecting significant changes (Andrasi 2000, 

Panayi 2001, 2002, Rulon 2000, Thompson 1988).  This suggests the artifact was not 

dependent on the analytical technique employed (Fig 2).  Moreover, no differences in the 

methodology of tissue preparation between these studies would be expected to produce 

the discrepant results observed here.  While we were not been able to precisely identify 

the source of the artifact in this dataset, we felt confident in drawing conclusions from the 

non-U of K studies.  We therefore concluded that Alzheimer’s disease did not alter 

neocortical iron levels and there was no evidence for a global dysregulation in brain iron 

in Alzheimer’s disease as has frequently been suggested.  Iron was modestly elevated in 

the AD putamen over controls, but no other brain region appeared to be affected.  The 

increases in tissue iron in the deep grey matter may be a significant component of 

Alzheimer’s disease pathology, but they certainly do not account for the neocortical 

dysfunction observed in this disease.  Moreover, AD is commonly comorbid with some 

degree of Lewy body disease which is strongly associated with increases in basal ganglia 

iron -- the findings in the putamen may be more reflective of this disease process 

(Hamilton 2000, Dexter 1991).   Gradient echo T2* (GRE-T2*) and susceptibility 

weighted imaging (SWI) are iron-sensitive sequences that have been used to follow brain 

iron levels in AD patients (Chavan 2009, Kirsch 2009).  Several large studies of this 



 
 
 

45 

technology have been conducted to evaluate the usefulness of following brain iron levels 

as a biomarker of AD.  In these studies the putamen was the only region consistently 

found to contain increased levels of iron in AD (Kirsch 2009, Zhu 2009, Ding 2009). 

This is remarkably consistent with the results of this meta-analysis and validates the 

utility of this technology for noninvasively estimating tissue iron levels.  However, 

increases in putamen iron are not specific to AD and therefore may not be particularly 

helpful in establishing a diagnosis.   

Zinc levels reported in the neocortex were heterogeneous even after the exclusion 

of the University of Kentucky data.  No significant increases were found for any region, 

although individual studies reported increases in the frontal and temporal cortex and the 

hippocampus.  The heterogeneity of these results may be due to differences in tissue 

sampling.   

Among the most important observations of this study is the prominent depletion 

of copper in AD.  Insufficient data is currently available to enable a detailed regional 

assessment of alterations in copper levels in AD, but the available evidence suggests that 

copper is generally depleted in AD (although copper is noted to increase in the putamen 

by one study).  There are widely discrepant results from U of K studies on the amygdala, 

one indicating decreased copper in AD (effect size -4.32, 95%CI -6.00- -2.63), one 

(excluded for tissue fixation) indicating more than four fold increased copper levels.  The 

latter study is the most cited study on the subject of copper in AD and is the source for 

numerous articles reporting that copper levels are (several fold) increased in AD – several 

of which argue strongly in favor of clinical trials of metal chelation (Religa 2006, 

Cuajungco 2000, Rottkamp 2001, Bush 2000, Filiz 2008).  It is important to clarify that 
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copper is not increased in AD brain.  A clinical trial of D-penicillamine, a copper 

chelator, was unable to produce any clinical improvement in the treated cohort (in fact 

patients trended toward worse outcomes) and patients experienced numerous toxicities 

resulting in one death and the early suspension of the trial (Squitti 2002).   

Focal alterations in metals distribution have been suggested by several studies to 

be associated with the primary pathologies of AD.  All three metals evaluated here are 

reported to accumulate within senile plaques, although other studies call into question the 

consistency of this observation.  One study found 30% of plaques had no detectable iron 

in them while a few of the largest plaques had high concentrations of magnetite.  Because 

of the inhomogeneous distribution of metals in the brain, there is little doubt that 

sampling method is an important variable. 

Based upon these cumulative findings and because of the disproportionate impact 

of outlier data on the literature, we feel it will be important to re-evaluate brain metals-

overload hypotheses particularly when considering additional clinical trials of metal 

chelating/modulating therapies.  It is fundamentally important that the application of 

metal-targeted pharmacology restores not only normal metal levels, but also normal 

transition metal physiology.  For these reasons, we argue that further cautious study is 

necessary before exposing a large, vulnerable clinical population to potentially toxic 

chelating agents.   
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Abstract 

Cerebral amyloid angiopathy (CAA) is a vascular lesion associated with 

Alzheimer’s disease (AD), is present in as many as 95% of AD patients and produces 

MRI-detectable microbleeds in many of these patients.  It is possible that CAA-related 

microbleeding is a source of pathological iron in the AD brain.  Because the homeostasis 

of copper, iron and zinc are so intimately linked, we determined whether CAA 

contributes to changes in the brain levels of these metals.  We obtained brain tissue at 

autopsy from the temporal lobes of AD patients with severe CAA to compare to AD 

patients without evidence of vascular amyloid.  Patients with severe CAA had 

significantly higher non-heme iron levels.  Histological analysis demonstrated that iron 

was deposited in the walls of large CAA-affected vessels.  Zinc levels were significantly 
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elevated in grey matter in both the CAA and non-CAA AD tissue, but no vascular 

staining was noted in CAA cases.  Copper levels were decreased in both CAA and non-

CAA AD tissues and copper was found to be prominently deposited on the vasculature in 

CAA.  Together, these findings demonstrate that CAA is a significant variable affecting 

transition metals in AD.   

 

Introduction 

There is considerable interest in understanding transition metal homeostasis in the 

brain, particularly in Alzheimer’s disease (AD) research.  The AD neocortex is frequently 

stated to contain increased iron levels at the tissue level. Numerous review articles have 

suggested that AD brain contains two to five fold more iron than control tissue 

(Avramovich-Tirosh 2008, Bush and Tanzi 2008, Molina-Holgado 2007, Huang 2004).  

Remarkably, most quantitative measurements of brain iron failed to show any increase in 

neocortical iron in AD (Andrasi 2000, Corrigan 1991, Griffiths and Crossman 1993, 

Hallgren and Sourander 1960, Magaki 2007, Panayi 2001, Plantin 1987, Religa 2006, 

Stedman and Spyrou 1997, Ward and Mason 1987).   

Never-the-less, increases in iron levels in the deep grey matter structures of the 

brain in patients with AD have been clearly demonstrated and other disturbances in iron 

levels and distribution may be more easily detected in qualitative studies (Andrasi 2000, 

Corrigan 1991, Griffiths and Crossman 1993).  However, despite extensive investigation, 

the source of this abnormal iron remains a matter of debate; it may represent a metabolic 

derangement, abnormal deposition or clearance or perhaps some other explanation.   
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Cerebral amyloid angiopathy (CAA) is a vascular manifestation of AD which is 

present in as many as 95% of AD patients and can produce MRI-detectable microbleeds 

even in patients with only mild cognitive impairment (Jellinger 2010, Kirsch 2007, 

Schrag 2010).  Vascular amyloid deposition results in loss of vascular smooth muscle 

cells (particularly in arterioles), and thickening of the vessel wall with congophilic 

material.  These changes result in fragility of the microvascular system, although the 

exact mechanism which undermines its stability is not known (Vinters 1987, Vinters 

1996).  Several studies have demonstrated that iron-rich deposits staining positive for 

beta-amyloid are preferentially distributed near vascular elements, which may suggest 

that microbleeding could be a catalyst for the formation of AD-like pathologic lesions 

(Goodman 1953, Cullen 2005, 2006).  Because of the near-ubiquitous presence of CAA 

in the context of AD, it is possible that CAA-related microbleeding is a source (perhaps 

the major source) of pathological iron in AD brain.  In this study we assessed this 

hypothesis by determining the levels of various metals by both analytical and qualitative 

techniques in groups of cases with severe AD and either severe or negligible CAA. 

 

Materials and Methods 

Tissue Selection 

Post mortem tissue was obtained from the Alzheimer’s Disease Research Center 

Brain Bank at the University of California, Los Angeles.  All patients and/or their 

surrogates had consented to participate in research protocols prior to tissue donation.  The 

research was approved by the Institutional Review Board of Loma Linda University 

Medical Center (approval #54174).  Both frozen tissue specimens and fixed tissues were 
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available for study.  Neuropathologic examination at the time of autopsy included Braak 

and Braak staging of AD and Vonsattel grading of CAA pathology (Vinters and 

Vonsattel 2000, Braak and Braak 1991, Greenberg 1997).  Vonsattel staging describes 

the severity of CAA as follows: stage 1- β-amyloid deposition limited to the basement 

membrane of arterioles and primarily involving leptomeningeal vessels; stage 2- β-

amyloid deposited between vascular smooth muscle cells and pathology extends to 

penetrating arterioles and stage 3- β-amyloid largely replaces vascular smooth muscle in 

arterioles.  Microaneurysms and microhemorrhages often occur with Vonsattel stage 3 

CAA.   

Frozen tissue was isolated from the superior or middle temporal lobe gyrus for 

three groups of patients; six samples were obtained for an aged neurological control 

group, along with eight AD samples without evidence of significant CAA (Vonsattel 

grades 0-1) and eight AD samples with severe CAA (grade 3).  Patient demographics are 

listed in Table 6.   

 

Atomic Absorption Spectrometry 

Metals measurements were conducted as previously described (Schrag 2010).  

Blocks of grey matter and white matter weighing between 30-60mg were cut from the 

donated specimens.  For total iron, copper and zinc determination, tissue was prepared by 

nitric acid ashing.  Brain tissue was covered in concentrated nitric acid (300µL) 

overnight, then incubated in a water bath at 80°C for 20 minutes.  The solution was 

allowed to cool to room temperature for 10 minutes.  Hydrogen peroxide (300 µL of 10M 

solution) was then added to dissolve the lipid components and allowed to incubate at 
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room temperature for 30 minutes.  The mixture was then incubated at 70°C in the water 

bath for 15 minutes.  The resulting solution was allowed to cool to room temperature for 

ten minutes, thoroughly vortexed, then frozen until needed. 

For non-heme iron extraction, 260µL of 500µM EDTA was added to brain 

regions which were then homogenized.  One hundred microliters of trichloroacetic acid 

(20% solution in 500µM EDTA) was added and thoroughly vortexed before incubating at 

90°C for 30 minutes.  Finally, 700µL of the EDTA solution was added and thoroughly 

vortexed.  The resulting suspension was centrifuged at 13,000 g for 10 minutes and the 

supernatant was collected as the non-heme iron sample. 

Atomic absorption spectra were measured with a Varian SpectrAA 220Z atomic 

absorption spectrometer and processed with SpectrAA software v.4.1 (Varian Inc., 

California).  Standard iron and copper curves were produced from 25, 50, 75 and 100 

parts per billion solutions of standard iron or copper in nitric acid (Arcos Organics, New 

Jersey).  Standard curve for zinc was produced from 250, 500, 750 and 1000 parts per 

billion solutions of standard zinc in nitric acid (Solutions Plus Inc, Missouri).  The 

spectrometer was zeroed to a maximum of 0.005 mean absorbance.  For total iron 

measurements samples were diluted 1:40, for non-heme iron samples were diluted 1:20, 

for zinc measurements samples were diluted 1:10 and for copper samples were diluted 

1:20.  All sample values presented in Table 7 are the mean of six measurements.   

 

Histology 

Frozen sections were prepared for four of the patients from each group for 

histology.  Histological slides were prepared on a Leica cryostat with either 14 or 20 
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micrometer thick sections of brain tissue containing both an intact portion of the cortical 

ribbon and adjacent white matter.  Iron staining was accomplished with modified 

Prussian Blue and Turnbull’s blue methods on the 20 micrometer thick sections.  

Prolonged incubation times were employed to increase the sensitivity of the techniques 

(Smith 1997 and Cullen 2005, 2006).  Ideal incubation times for aged brain to balance 

signal to background-noise ratio were optimized to 48 hours.  Frozen sections were 

allowed to dry at room temperature for ten minutes and then briefly fixed for 10 minutes 

in absolute methanol.  While staining of never-fixed tissue is preferred to limit the 

possibility of leaching metals from the tissue, unfixed brain tissue was not stable 

throughout the long staining procedure.  Methanol-fixation has been shown in a study 

using hepatocytes to preserve iron levels far better than formalin-containing fixatives 

(Okon 1998).  Staining solutions for each probe were prepared as 5% potassium 

ferrocyanide (for Prussian Blue labeling of ferric iron) or 5% potassium ferricyanide (for 

Turnbull’s blue labeling of ferrous iron) dissolved in an aqueous solution with 10% 

hydrochloric acid.  After 24 hours’ exposure, the staining solution was replaced with 

fresh solution for a further 24 hours.  The sections were then washed in distilled 

deionized water, dehydrated through 100% ethanol, cleared in xylene and mounted in a 

resinous medium (Permount, Fisher Scientific).  The slides were imaged on a Leica 

DM50 light microscope (Leica Microsystems, Illinois), at least five fields containing 

arterioles and five of capillaries were captured from each slide.   

 Zinc was visualized using a fluorescein-conjugated probe, ZP4, as follows.  

Frozen, 14 micron sections were allowed to dry at room temperature for 10 minutes and 

were then placed in PBS for 30 minutes.  A 2 micromolar solution of the zinc probe in 
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PBS was prepared and gently pipetted over the section.  After a ten minute incubation, 

the sections were washed three times in PBS for 10 minutes each.  Care was taken to 

minimize agitation to prevent damage to the unfixed tissue section.  A thin paraffin 

spacer was placed on the slide and the section was coverslipped with aqueous mounting 

medium containing DAPI.  The slide was then immediately imaged on an Olympus 

confocal microscope (Olympus America Inc., Pennsylvania). 

 Copper was imaged using a turn-on probe with a boron-dipyrromethene 

(BODIPY) fluorophore, copper sensor 1 (CS1).  The fluorescent yield from this probe 

has been reported to increase 10 fold upon binding to monovalent copper (Miller 2006, 

Zeng 2006, Domaille 2008).  Sections were allowed to dry for ten minutes, permeabilized 

in Triton-X in PBS for ten minutes and finally washed gently in PBS for ten additional 

minutes.  A 2 micromolar solution of the CS1 probe was prepared and pipetted over the 

section.  After ten minutes, the excess probe was tapped off the slide which was then 

mounted with a thin paraffin spacer in aqueous mounting medium containing DAPI 

(Vector Labs, California).  For colocalization of vascular copper deposits with beta-

amyloid, we added a ten-minute incubation of the section in 1% Thioflavin-S solution 

followed by thorough washing to the procedure prior to the CS1 incubation. 

 

Electrophoresis 

 Protein levels of heme degradation enzymes were determined by denaturing SDS-

PAGE and western blot.  Briefly, tissue samples were isolated containing roughly equal 

proportions of white and grey matter from the temporal lobe.  The tissue was 

homogenized in an ice cold sucrose buffer containing a protease inhibitor cocktail.  The 
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tissue was disrupted with seven strokes with a fitted Teflon pestle in a glass 

homogenization tube.  Crude nuclear debris was cleared from the suspension by 

centrifugation at 1000g for 15 minutes.  Total protein concentration was determined in 

the supernatant by the Bradford assay (Pierce Laboratories, Illinois).  Samples were 

prepared for electrophoresis by adding 25% v/v loading buffer (Invitrogen, California) 

and 10% v/v beta-mercaptoethanol and heating at 95°C for ten minutes.  Fifteen 

micrograms of total protein were loaded into each lane of a 10% polyacrylamide gel and 

electrophoresed at 100V in a MiniProtean Tetra System (BioRad Laboratories, 

California).  The proteins were then transferred to a nitrocellulose membrane at 30V for 

four hours.  The resulting blot was blocked in an albumin-based blocking buffer 

(Invitrogen) and probed with either mouse monoclonal beta-actin (1:1000), rabbit 

monoclonal heme oxygenase 1 (HO-1) (1:100), mouse monoclonal HO-2 (1:500), mouse 

monoclonal biliverdin reductase A (BLVD R A) (1:200) or mouse monoclonal BLVD R 

B (1:200) antibodies (all from Abcam, Cambridge, Massachusetts).  After an overnight 

incubation at 4°C, the blots were thoroughly washed with TBS buffer containing 0.05% 

Tween-20 and a fluorescently labeled goat anti-mouse or rabbit secondary (IRDye, Licor) 

was applied.  After a two-hour incubation the blots were washed again and visualized on 

an Odyssey Infrared Imaging System (Licor Biosciences, Nebraska).  Optical density was 

determined using Odyssey 2.0 software and data were collected as the relative intensity 

of the band of interest compared to the corresponding loading control band. 

 Clear native acrylamide electrophoresis was conducted to validate staining from 

the CS1 copper probe.  Non-denaturing conditions were required to ensure proteins 

retained any bound copper (Finney 2010).  The homogenate was prepared as previously 
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described except EDTA was omitted from the protease inhibitor cocktail to prevent metal 

chelation.  To 500 microliters of homogenate, 120 microliters of 20% digitonin was 

added to solubilize the membrane components.  Crude nuclear debris was then removed 

by centrifugation at 1000g.  Finally, 20 microliters of 50% glycerol and 0.1% Ponceau-S 

dye were added to the sample.  Fifty micrograms of total protein were loaded into a 

gradient 4-13% acrylamide gel (prepared without SDS) and run on ice at 250V overnight.  

Running buffer consisted of 50 mM Tris, and 7.5 mM imidazole; 0.05 % deoxycholate 

and 0.05% Triton-X-100 were added to the cathode buffer.   

 The gel was probed with 2mM CS1 solution for ten minutes and copper-positive 

bands were detected by red fluorescence.  Confirmation that fluorescent bands were in 

fact copper-positive was determined by incubating the gel with 1% bathocuproine sulfate 

(BCS), a copper chelator, for 48 hours and observing the reduction in fluorescence.  

Additionally, fluorescent bands were cut from the gel and analyzed for copper content as 

follows.  The band of interest was carefully weighed and incubated with 600 microliters 

concentrated nitric acid for 2 hours.  It was then heated to 80°C in a water bath for ten 

minutes.  The resulting sample was then analyzed by atomic absorption spectrometry as 

previously described. 

 All measurements are reported as mean +/- standard deviation.  Significance was 

assessed by the Students T test (two-tailed) with alpha of p=0.05. 
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TABLE 6: Patient demographics and neuropathologic findings 
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TABLE 7: Temporal lobe metal concentrations 

Data presented as µg metal/g wet tissue +/- standard deviation 
*p<0.05, **p<0.01 compared to control 
Ψp<0.05 compared to Alzheimer’s disease w/o significant cerebral amyloid angiopathy 
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Results 

 Twenty-two brain samples were obtained from the temporal lobes of elderly 

humans at autopsy.  Cases included in the study were carefully chosen based upon their 

neuropathologic findings.  A group of cases with AD was assessed for the severity of 

vascular β-amyloid deposition.  Eight cases demonstrating severe cerebral amyloid 

angiopathy were included in one group, eight with minimal to no cerebral amyloid 

angiopathy were included in another – all patients in both of these groups demonstrated 

severe parenchymal AD pathology.  Additionally, six cases with no evident 

neuropathologic abnormalities and matching age distribution were included as controls 

(Table 6).  This study design was chosen to delineate pathologic changes associated with 

vascular degeneration from the effects of parenchymal Alzheimer’s pathology.  The 

tissue was selected from the middle and superior temporal gyri, a region significant to 

AD, and was preserved by flash freezing over liquid nitrogen at the time of autopsy; the 

sample was never exposed to fixative.   

 The level of metals in the tissue was determined by atomic absorption 

spectrometry (Table 7).  Total iron was measured because the majority of other measures 

of brain iron in AD reported in the literature have been performed by measuring total 

iron.  However, because substantial blood remains trapped within the vasculature in this 

post-mortem tissue, measurement of non-heme (chelatable) iron was considered a more-

reliable measure of tissue iron content.  Total iron was found to be significantly increased 

in the group with CAA, compared to the AD group without CAA, in white matter 

measurements (p=0.036).  Iron levels in the AD group without CAA were non-

significantly lower than those in the control group.  No significant differences were noted 
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in the grey matter measurements between the groups.  Non-heme iron measurements 

confirmed the significant increase in white matter iron in the CAA group compared to the 

AD-only group (p=0.032) and the CAA group trended strongly toward an increase 

compared to normal controls as well (p=0.097).  There was no difference in non-heme 

iron levels in the white matter between the AD-only group and the controls.  In the grey 

matter, iron was again significantly increased in the group with CAA compared to the 

control group (p=0.020) while the AD-only group was not significantly different from the 

controls.  In the absence of vascular pathology, no alteration in brain iron content could 

be detected in AD brain compared to normal aged control brain.   

 Histologically, Prussian blue and Turnbull’s blue staining were used to determine 

the distribution of ferrous and ferric iron in these specimens.  Turnbull’s blue 

preferentially reacts with divalent iron and brightly stained the walls of arterioles in the 

CAA group while this staining was absent from specimens from both of the other groups 

(Fig. 4).  Prussian blue staining of ferric iron was not prominent and did not stain the 

vasculature in any group except in areas of obvious hemorrhage (not shown).  Little 

staining of amyloid plaques was noted, although demonstration of iron in amyloid 

plaques is typically accomplished with DAB-enhancement of iron stains, which was not 

done here.   

 To reinforce the hypothesis that iron deposition in AD is a result of 

microbleeding, we observed the levels of heme degradation enzymes (Fig. 5).  The 

expression of several of these enzymes is inducible in the presence of extravascular heme 

and would therefore be expected to be elevated in the context of ongoing microbleeding.  

Two isoforms of heme oxygenase are responsible for catalyzing the degradation of heme 
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Figure 4: Iron is deposited on arterioles in cerebral amyloid angiopathic brain 
Turnbull’s blue stain of control, AD brain without CAA and AD brain with CAA 
demonstrates deposition of ferrous iron in the wall of an arteriole affected by CAA.   
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Figure 5: Heme degradation enzymes are induced in cerebral amyloid angiopathic 
brain but not in purely parenchymal Alzheimer’s disease brain  
Representative western blots for the major enzymes involved in heme degradation are 
shown at left above.  One isoform each of heme oxygenase (HO-1) and biliverdin 
reductase (BLVD R B) are substantially elevated in tissue with severe CAA compared to 
both normal control tissue and AD tissue without CAA.  There is no significant 
difference between AD without CAA and controls.  These results support the hypothesis 
that increased iron in AD is primarily a result of microbleeding. 
  



 
 
 

78 

into biliverdin, carbon monoxide and free iron. HO-1 is the major inducible form, and 

HO-2 is generally constitutively expressed.  HO-1 was significantly elevated in the group 

with CAA and was at comparable levels in both of the other groups.  HO-2 levels were 

not significantly different between groups.  As heme oxygenase is inducible by a variety 

of molecules, alterations in its expression are non-specific for microbleeding so we also 

studied the next enzymes in the heme degradation pathway, biliverdin reductases A and 

B.  We found that while biliverdin reductase A levels were unchanged between groups, 

biliverdin reductase B levels were significantly increased in the CAA group over both the 

control and AD-only group, indeed more than three fold over the AD-only group.  These 

findings strongly support the hypothesis that the increases in iron in the CAA group are 

the result of ongoing microvascular bleeding. 

 Zinc levels were also measured by atomic absorption spectrometry.  No 

significant differences were noted among the groups in zinc measurements from the 

white matter.  Both CAA and AD-only groups had significantly more zinc in the grey 

matter than the control group (p=0.0035 and p=0.019 respectively).  Changes in zinc 

levels appear restricted to the grey matter.  Histological analysis of zinc distribution with 

fluorescent probe ZP4 mirrored the findings of the atomic absorption with a moderate 

increase in staining of zinc in grey matter from the AD groups.  No prominent labeling of 

the vasculature was noted in any of the groups (Fig. 6).   

 Copper measurements by atomic absorption spectrometry demonstrated 

significant abnormalities.  Both CAA and AD-only group had significantly lower levels 

of copper in the white matter than the controls (p=0.023 and p=0.031 respectively).  

Changes in the grey matter were even more dramatic with both the CAA and AD-only 
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Figure 6: Increased non-synaptic zinc levels in grey matter in Alzheimer’s disease 
Non-synaptic zinc was visualized using the green fluorescent ZP4 probe.  Zinc is 
concentrated in the grey matter of both AD groups compared to normal control.  Non-
synaptic zinc is primarily distributed in a perinuclear pattern as shown in the inset of the 
image on the right.  Zinc deposition on the vasculature was not prominent in any group. 
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group again having less copper than the controls (p=0.011 and p=0.0069 respectively).  

To qualitatively assess the distribution of copper we used a recently developed copper 

probe, copper sensor 1 or CS1 (Miller 2006, Zeng 2006, Domaille 2008).  This probe is a 

BODIPY-conjugated turn-on probe whose fluorescent yield is reported to increase by ten 

fold upon binding to monovalent copper.  Notably, the probe is selective for monovalent 

copper only; no appreciable signal was reported by divalent copper.  Because this probe 

had not been previously used in histological applications, we performed a number of 

control experiments to ensure that the fluorescent signal generated from this probe 

represented true copper binding (Fig. 7).  We assessed the ability of the probe to detect 

protein-bound copper since virtually all copper in the brain is bound.  To accomplish this, 

we electrophoresed brain protein homogenates under non-denaturing conditions (and 

without Coomassie dye which interferes with the fluorescent signal) and probed the 

resulting gel with CS1.  Several bands were cut from the gel and analyzed by atomic 

absorption spectrometry and those that were fluorescent contained considerably more 

copper that those that were not.  Forty-eight hour incubation of the gel with 1% BCS, a 

copper chelator, obliterated the fluorescent signal.  Finally, we ran purified 

ceruloplasmin, a protein which selectively binds divalent copper, to veridy selective 

monovalent copper detection by the probe.  No fluorescent signal was detected 

corresponding to the ceruloplasmin band on Coomanssie stain, although a considerable 

concentration of copper was detected by AA.  When the probe was applied to brain 

tissue, BCS copper chelation of the tissue section obliterated any red-fluorescent signal.  

CS1 staining of tissue sections revealed discrete peri-nuclear puncta of intense red 

fluorescence in all three groups.  This pattern of staining is consistent with the pattern of 
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Figure 7: Copper is concentrated in vascular elements in CAA 
Images A and B show control brain cortex stained with CS1 probe (red) and DAPI.  
Image B was stained after the tissue was incubated in BCS, a selective copper chelator.  
BCS incubation reduces fluorescence from the CS1 probe, confirming that the bulk of the 
red signal is from copper binding.  Image C shows a portion of a native protein 
electrophoresis of a brain homogenate.  A band binding the CS1 probe was located.  An 
adjacent protein band (determined by Coomassie staining) along with the positive band 
were analyzed by atomic absorption spectroscopy.  The concentration of copper in the 
positive band was more than double that in the negative band.  Additionally, purified 
ceruloplasmin (Cp in image C) which is known to bind divalent copper did not fluoresce 
upon CS1 incubation, confirming the valence selectivity of the probe.  Images D, E and F 
show CS1 and DAPI staining of control, AD only and AD with CAA brain respectively.  
Monovalent copper is prominently deposited on vessels in the CAA case.  Images G, H, I 
and J, K, L show thioflavin staining of beta-amyloid (G and J) overlaid on CS1 stain for 
copper (H and K) in CAA-affected brain.  Copper appears to strongly colocalize with 
thioflavin staining of beta-amyloid (green) in a CAA vessel, but only weakly in beta-
amyloid plaque. 
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staining of key copper-binding proteins reported in other studies.  Importantly, in the 

CAA group remarkable staining of the vasculature was observed in the grey matter.  Both 

capillaries and arterioles were stained and the copper staining was noted to colocalize 

with the fluorescence from the thioflavin-S stain for beta-amyloid. 

For historical interest, we also measured aluminum in these tissues – no 

significance difference between the groups was detected, but variance in aluminum levels 

was high for all groups. 

 

Discussion 

The metabolism of iron in the brain and how it changes with aging and AD has 

been studied in depth.  Total iron levels increase throughout the brain with age under 

normal conditions, particularly in the putamen, reaching a relatively steady concentration 

by about the sixth decade of life (Hallgren and Sourander 1958, Markesbery 1984).  

Elevated levels of tissue metals can cause neuronal injury through a number of 

mechanisms.  Both iron and copper are redox active metals, capable of generating free-

radicals as they cycle between valence states.  Oxidative injury in the form of lipid 

peroxidation, protein crosslinking and DNA damage have been reported as early 

pathologic findings in the process of Alzheimer’s neurodegeneration -- injuries which 

result from uncontrolled reactive oxygen species whose formation could be catalyzed by 

abnormal free iron (Markesbery 1999 and Smith 2007).  Additionally, the β-amyloid 

plaques characteristic of AD have been described as a sort of “metals sink” because 

copper, zinc and in particular iron are thought to be concentrated at their cores (Goodman 

1953, Lovell 1997).  While many, perhaps even most, β-amyloid plaques in human brain 
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contain no more iron than normal brain tissue (in fact, one study found 30% had no 

detectable iron whatever), some plaques (particularly larger ones) have been shown to 

contain high concentrations of a reactive iron oxide, magnetite (Dhenain 2002, 

Collingwood 2008).  Iron-binding appears to increase the toxicity of β-amyloid -- when 

amyloid is incubated with a strong metal chelator prior to its application to neurons in 

vitro, its toxic effects are dramatically ameliorated (Rottkamp 2001).  For this reason, 

therapies to manipulate brain iron levels have been tested in human trials (Crapper 

McLachlan 1991, Lannfelt 2008).   

Pathologic accumulation of iron has been hypothesized to be a result of abnormal 

expression patterns of iron regulatory proteins (IRPs), the master regulators of brain iron 

(Smith 1998).  The expression of IRPs is directly affected by tissue iron levels and alters 

the expression of numerous iron binding proteins, including storage molecules like 

ferritin, iron transport molecules like transferrin, transferrin-receptor and divalent metal 

transporter 1 and certain key proteins related to AD, including amyloid precursor protein.  

IRPs bind to iron-response elements in untranslated regions (UTRs) of the affected genes, 

upregulating gene expression if they bind in a 5’ UTR, downregulating expression when 

binding is in a 3’ UTR (Leipuviene 2007, Rogers 2008, Avramovich-Tirosh 2008).  This 

elaborate system intricately regulates the homeostasis of brain iron and appears to remain 

largely intact in the AD brain.  We previously showed that the level and pattern of 

expression of IRP1 and IRP2 are unchanged in AD brain compared to normal aged brain 

and while reports vary, the majority of evidence suggests ferritin, transferrin and 

transferrin-receptor levels are essentially unchanged (Magaki 2007, Connor 1992, Beard 

1993, Loeffler 1995).  Because the metabolic handling of iron appears to be essentially 
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intact in AD, we chose to assess whether abnormal deposition of iron through 

microbleeding may account for the qualitative increases reported by various 

investigators.  

The novel component of the design of this study is the stratification of AD cases 

by the degree of vascular amyloid pathology to determine whether the increased iron 

often reported in AD is associated with, or the result of, parenchymal or vascular 

pathology.  CAA pathology in AD exists as a spectrum ranging from nearly undetectable 

in some cases to the predominant neuropathologic abnormality in others (Greenberg 

1997).  For this reason, the stratification employed here is somewhat arbitrary; it is a 

useful distinction.   

The current study, in the context of previous work, leaves little doubt that iron 

deposition in AD may be linked to microvascular bleeding or leakage.  Iron levels were 

only increased in the CAA group and this increase was found to be associated with 

vascular accumulation of ferrous iron.  Moreover, the heme degradation enzymes HO-1 

and BLVDR B were significantly elevated in the CAA group over both the normal 

controls and the non-CAA AD cases.  Increases in heme oxygenase 1 in AD have been 

previously well-documented, but the finding of increased biliverdin reductase B is a new 

observation and quite interesting.  This reductase, in addition to its role in heme 

degradation, functions as both a dual specificity serine/threonine/tyrosine kinase and a 

leucine zipper-type transcription factor which promotes the expression of heme 

oxygenase 1 among other targets (Lerner-Marmarosh 2005, Florczyk 2008).  These 

features hint at a more prominent role for this molecule in the pathologies of AD than has 

previously been appreciated.  Curiously, in a recently published prospective study peptide 
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fragments from both heme oxygenase 1 and biliverdin reductase B were shown to be 

elevated in serum of subjects with mild cognitive impairment who subsequently 

progressed to late-onset dementia in comparison to subjects with equally severe mild 

cognitive impairment who remained cognitively stable (Mueller 2010).  We have now 

shown that both enzymes are directly involved in vascular AD pathology – that they are 

detectable in peripheral blood samples makes them potentially valuable as biomarkers of 

AD.  CAA-related microbleeding is additionally often detectable by susceptibility 

weighted MRI at early stages of cognitive impairment (Kirsch 2009, Schrag 2010).  Iron 

modulation has been considered as a potential therapy for AD, although initial clinical 

trials have not yet shown an improvement in cognitive performance (Crapper McLachlan 

1991, Lannfelt 2008).  Because these biomarkers are available, future clinical trials may 

be designed to treat a subset of patients with identifiable microbleeding rather than all 

patients presenting with cognitive decline.   

The significance of zinc levels in the neocortex of brain affected by AD has been 

debated for decades.  Several studies have shown an increase in zinc in AD neocortex 

(Cornett 1998, Corrigan 1993, Deibel 1996, Religa 2006, Ward and Mason 1987) while 

others have found no significant increase (Andrasi 2000, Panayi 2002) and one study 

found a decrease in zinc (Corrigan 1991).  Our result demonstrates that zinc is increased 

in AD only in grey matter.  Previous studies have examined tissue samples that included 

both grey and white matter together, so discrepancies may be due to differences in tissue 

sampling.  While a previous study convincingly showed that zinc was deposited on the 

vasculature in an animal model of CAA, our results suggest that alterations in zinc may 

not be strongly associated with vascular β-amyloid in human CAA (Friedlich 2004).   
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 Copper levels are generally reported to decrease in AD (Diebel 1996, Magaki 

2007).  One often-cited study reports an increase in copper, although this is likely 

artifactual due to tissue fixation, which has been shown to increase apparent tissue copper 

levels in AD (Lovell 1998, Schrag 2010).  Our results demonstrate a significant decrease 

in copper in both white and grey matter across both AD groups studied.  Monovalent 

copper was also noted to be deposited on vascular elements affected by CAA using a 

novel fluorescent probe.  Curiously, no staining of copper was noted in β-amyloid 

plaques in these studies which may mean that copper associated with plaques is primarily 

in the divalent form.  The perinuclear punctate staining pattern of monovalent copper was 

observed in specimens from all three groups of cases and likely represents an 

endoplasmic reticular and trans-golgi distribution (Yang 2005).  A similar pattern of 

staining has been observed for several key neuronal copper binding proteins including 

ATP7A, ATOX1, and Steap2 which are associated with these subcellular structures 

(Tokuda 2009, El Meskini 2007, Prohaska 2004).  The CS1 probe has enabled this initial 

histological analysis of monovalent copper in AD and will no doubt lead to future studies 

clarifying the neurobiology and neuropathology of brain copper.  

 For decades there has been substantial interest in the role of metals in AD and in 

manipulating the homeostasis of these metals as therapy -- this interest will likely 

continue.  However, clinical trials of chelators and chelator-like compounds have 

demonstrated substantial toxic effects and one has claimed the life of a patient-participant 

(Squitti 2002).  For this reason, more detail is needed in the analysis of the role of these 

metals and the associated metabolic pathways in disease to identify the best ways to 

intervene. 
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Abstract 

Neuroimaging with iron-sensitive MR sequences (gradient echo T2* (GRE-T2*) 

and susceptibility weighted imaging (SWI)) identifies small signal voids that are 

suspected brain microbleeds (BMB).  Though the clinical significance of these lesions 

remains uncertain, their distribution and prevalence correlates with cerebral amyloid 

angiopathy (CAA), hypertension, smoking, and cognitive deficits.  Investigation of the 

pathologies that produce signal voids is necessary to properly interpret these imaging 

findings.  We conducted a systematic correlation of SWI identified hypointensities to 

tissue pathology in post mortem brains with AD and varying degrees of CAA.  Autopsied 

brains from eight Alzheimer’s disease patients, six of which showed advanced CAA, 
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were imaged at 3T; foci corresponding to hypointensities were identified and studied 

histologically.  A variety of lesions was detected; the most common lesions were acute 

microhemorrhage, hemosiderin residua of old hemorrhages, and small lacunes ringed by 

hemosiderin.  In lesions where the bleeding vessel could be identified, ß-amyloid 

immunohistochemistry confirmed the presence of ß-amyloid in the vessel wall. 

Significant cellular apoptosis was noted in the perifocal region of recent bleeds along 

with heme oxygenase 1 activity and late complement activation.  Acutely extravasated 

blood and hemosiderin were noted to migrate through enlarged Virchow-Robin spaces 

propagating an inflammatory reaction along the local microvasculature – a mechanism 

that may contribute to the formation of lacunar infarcts.  Correlation of imaging findings 

to tissue pathology in our cases indicates that a variety of CAA related pathologies 

produce MR-identified signal voids and further supports the use of SWI as a biomarker 

for this disease. 

 

Introduction 

In vivo evidence of cerebral amyloid angiopathy (CAA) was limited until the 

introduction of gradient echo T2
* (GRE-T2

*) weighted magnetic resonance (MR) 

imaging, which remains the clinical standard for detection of brain microbleeds (BMB) 

which often result from CAA (Atlas 1988).   BMB are detected as focal signal intensity 

losses, presumably secondary to iron-containing hemosiderin residua of hemoglobin 

breakdown.  Though recent reviews of the BMB literature have attempted to codify the 

interpretation of these findings, the inconsistency of data sets, the lack of pathological 

confirmation and the need for better designed prospective studies to determine their 
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clinical significance has been emphasized (Viswanathan 2006, Cordonnier 2007a, 

2007b). Detection of BMB is improved by new, high-resolution, 3D GRE-T2* and 

susceptibility weighted imaging (SWI).  SWI is an advance in T2* weighted brain MR 

imaging that enhances contrast from local susceptibility tissue variations (Haacke 2004, 

2005).  At 1.5T, the SWI sequence was found to be four fold more sensitive for detection 

of traumatic BMB than conventional GRE-T2
* and recent data in MCI subjects indicates 

again at least a four fold increase in BMB recognition by SWI compared to conventional 

GRE-T2
* imaging (Tong 2003, 2004, Sehgal 2005, Haacke 2007).   

To date, punctate signal voids have been observed in a number of diseases – by 

far the most common are hypertension and CAA.  Those associated with hypertensive 

vasculopathy tend to be localized to basal ganglia, internal capsule, brain stem, and 

cerebellum, whereas those associated with CAA are generally smaller with a posterior 

lobar predilection (Walker 2004, Rosand 2005).  CAA is comorbid with Alzheimer’s 

disease (AD) in as many as 95% of AD cases (Jellinger 2007).  In this condition the β-

amyloid peptide is deposited along the cerebral and meningeal vasculature in the walls of 

small and medium-sized arterioles.  This peptide appears to induce a local inflammatory 

response ranging from subtle changes to, in extreme cases, a granulomatous angiitis with 

apoptotic death of vascular smooth muscle cells (Aliev 2002, Anders 1997).  Studies of 

CAA autopsy material have confirmed these findings and the presence of other (non-β-

amyloid) proteins such as cysteine protease inhibitor (cystatin) in CAA vessel walls 

(Anders 1997).  Vascular wall infiltration with these proteins appears to be associated 

with a structural instability of arterioles accounting for BMB and associated MR signal 
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voids; however, the biologic and molecular mechanisms for β-amyloid accumulation, 

inflammatory and oxidative responses, and vascular weakening are unclear at present.   

Recent evidence has shown that the presence of BMB predicts reduced global 

cognitive function and is a risk factor for progression of mild cognitive impairment to 

outright dementia (Yakishiji 2008, Kirsch 2009).  Additionally, one study noted a 

significant correlation between patients with at least one hypointensity in GRE-T2* 

imaging and those homozygous for the Apolipoprotein E ε4 gene, a well-known risk 

factor for Alzheimer’s disease (Sveinbjornsdottir 2008).  Remarkably, there have been 

very few verifications of the histopathology of radiologically identified BMB, and none 

utilizing the newer sensitive sequences (Cordonnier 2007a).  There are currently three 

reports in the published literature that describe the pathology of hypointensities in MR 

images; all three rely upon GRE-T2* imaging and most evaluate hypertensive patients. 

 A recent case report isolated eight microbleeds from a single, elderly hypertensive 

patient (Tatsumi 2008).  Tanaka and colleagues studied hypointensities in three relatively 

young autopsy cases, two involving hypertension and one a large mass in the brain 

indicating that hemosiderin granules were found corresponding to hypointensities, except 

in one case where a microaneurysm was found (1999).  The largest correlative study 

evaluated eleven cases, but was only able to correlate imaging findings to pathologic 

abnormalities in six.  The hypointensities in that study were associated with hematomas 

and/or hemosiderin granules.  However, only two of the cases had CAA and one of them 

was also hypertensive; neither of the patients was identified as having been clinically 

demented during life (Fazekas 1999).   
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More recently, SWI has been used to study trauma; in this venue, numerous 

papers have shown SWI to be particularly sensitive for detecting blood products (Tong 

2003, 2004).  Still, none of the many works in this area have correlated the imaging 

findings seen in trauma with histology.  Our study represents the first correlation of SWI 

focal hypointensities to tissue pathology in post mortem human CAA-affected brain. 

 

Materials and Methods 

Patient Characteristics 

Post-mortem tissue was obtained from the Alzheimer’s Disease Research Center 

Brain Bank at the University of California, Los Angeles (Harry V. Vinters).  All patients 

or their surrogates had consented to participate in research protocols prior to tissue 

donation.  The research protocol was approved by the Institutional Review Board of 

Loma Linda University Medical Center (approval #54174).  The average age of 

participants was 79.9 years with a standard deviation of 9.3 years; four were male, four 

female.  All patients had long clinical histories of dementia.  AD pathology was classified 

by Braak and Braak staging guidelines and CAA pathology was graded by Vonsattel’s 

criteria.  Briefly, grade 1 CAA involves ß-amyloid deposition primarily in a fine rim on 

the basement membrane.  Grade 2 disease extends to allocortical and cerebellar vessels 

and deposition of ß-amyloid among smooth muscle cells partially replacing the tunica 

media.  Grade 3 disease involves total replacement of arteriolar vascular smooth muscle 

(Greenberg 1997).  Autopsy findings confirmed Braak and Braak pathology at stage VI 

and Vonsattel pathology at grade 3 for four of the brains.  Two cases were found to have 

severe CAA pathology (grade 3) out of proportion to AD pathology.  These are included 
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as relatively “pure” cases of CAA.  Two had stage VI AD pathology, but negligible CAA 

– these were included as AD controls.  In addition to the eight demented cases, two 

neurologically normal, aged control brains were scanned along with the others and no 

hypointensities were detected in them.  One of the patients with severe CAA and AD died 

of an acute intracerebral hemorrhage; the affected lobe was excluded from analysis.  

None of the patients had a history of hypertension, traumatic brain injury or other causes 

of BMB.  Cases with Lewy bodies detected on pathologic examination were excluded.  

Patient demographics, clinical duration of dementia (when known) and the imaging 

findings are listed in Table 8.   

 

Tissue Preparation 

Three, 1cm coronal sections were obtained from each of eight human brains at 

autopsy; slices were taken through the frontal, temporo-parietal and occipital lobes.  

Because lesions frequently occur near the periphery of tissue specimens in CAA, they are 

easily obscured in post-mortem imaging by the artifact produced at the air-tissue 

interface.  To eliminate this interface and movement artifacts in imaging and to improve 

the ease of handling delicate tissue, the formalin fixed brain slices were embedded in 

blocks of 4% agarose gel.  Agarose is an aqueous suspension that effectively contrasts to 

the fixed tissue in MR images and eliminates the phase disturbance.  The encased tissue 

is well-preserved, and the gel block is easier to orient within the MR scanner and 

eliminates tissue movement, which was encountered when specimens were imaged in 

liquids.  Agarose did not penetrate the tissue and was neatly separated from the specimen 

after imaging was completed.  Air bubbles mimic the signal voids of focal iron, so care  
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TABLE 8: Patient demographics and locations of microbleeds on MR 
                                                                                                   Lesion locations                     
Case# 

age/sex 
Clinical severity 

of dementia 
B&B*/ 

Vonsattel grade
Cortical 

grey matter
Deep grey 

matter
White 
matter 

Cause of death  

1.  89/M 14 yrs / severe VI / 0 - - - Pneumonia 
2.  81/M Severe / slow 

progression 
VI / 0 - - - Pneumonia 

3.  61/M 2 yrs / rapid 
progression 

IV / 3+ 1 - 4 Complications of 
malnutrition 

4.  85/F Slow progression  V / 3+  - 1 4 Coronary artery 
disease 

5.  73/F Severe VI / 3 - - 3 Unknown 
6.  90/M Severe / slow 

progression 
 VI / 3 - 1 4 Emphysema/pne

umonia 
7.  74/F Severe / slow 

progression 
VI / 3 7 2 2 Massive 

intracerebral 
hemorrhage in 
the right 
frontal/parietal 
lobes 

8.  86/F 8 yrs / slow 
progression 

VI / 3 4 1 4 Pneumonia 

        

*B&B=Braak and Braak score 

 
 
 



 
 
 

102 

was taken to thoroughly remove any bubbles which might complicate interpretation of 

the MR scans. 

Imaging Parameters 

MR imaging was performed on a 3T scanner in the coronal plane (Siemens).  The 

following parameters were used: echo time, 20ms; repetition time, 30ms; flip angle, 15°; 

slice thickness, 2mm; matrix size 256mmx256mm; in plane resolution, 0.5mmx0.5mm.  

The images were reviewed by two experienced interpreters blinded to autopsy diagnoses 

and any conflicts were settled by the senior neuroradiologist at Loma Linda University 

Medical Center, Dr. Daniel Kido.  An explanation of hypointensity reporting criteria has 

been published previously and is comparable to other established protocols (Kirsch 2009, 

Cordonnier 2008).  Briefly, hypointensities were identified as regions 5.7 mm or less in 

diameter of relative signal void (Greenberg 2009).  Additionally, hypointensities were 

evaluated for continuity with blood vessels, and location within a sulcus.  If either were 

present, the hypointensity was interpreted as vascular in origin or an artifact from an air 

bubble and was not counted. 

 

Dissection and Histology 

The focal points of interest were located within the tissue block by orienting to 

tissue architecture and cutting at the depth estimated from the slice thickness of the MR 

images, thus enabling accurate dissection and consistent recovery of the lesion.  Thirteen, 

well-dissected microbleeds, 5 cortical and 8 at the grey-white junction with at least one 

specimen from each CAA case, were measured with precision calipers through the widest 

point to record their diameters for comparison to apparent size in the MR images.   
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For immunohistochemistry, markers were observed on adjacent sections for each 

of ten histological specimens -- representing two acute bleeds with intact erythrocytes, 

five old hematomas, two cavitary specimens and one bleed in the basal ganglia.  These 

specimens were embedded in paraffin in the usual fashion.  Serial sections were cut at a 

thickness of 8 μm through the region of interest and mounted on slides for hematoxylin 

and eosin staining, immunohistochemical and fluorescent studies.  The sections were 

deparaffinized in three exchanges of xylene, rehydrated through serial alcohol exchanges, 

and permeabilized in 0.01% TritonX in PBS.  Antigen retrieval was performed by heating 

sections in a microwave three times for three minutes each while submerged in a 0.01% 

citrate solution.  The sections were then treated with 1% hydrogen peroxide in PBS and 

incubated with a blocking solution of 1.5% normal serum (also in PBS).  Sections were 

then incubated with the primary antibody of choice in 4% normal serum overnight at 4°C.  

After washing with PBS, sections were incubated with the secondary antibody for two 

hours, washed in additional exchanges of PBS and treated with diaminobenzidine/ 

hydrogen peroxide (DAB) for ten minutes (Vector Laboratories).  They were then rinsed 

for 3 min in PBS, dehydrated through serial alcohols, cleared to xylene and coverslipped 

with mounting resin (Permount, Fisher).  Antibodies used were those against Aβ1-42 

(1:100, Abcam), CD68 (1:100, Dako), HO-1 (1:250, Biomol) and complement C6 (1:500, 

Quidel).   

For visualizing iron, sections were stained by the enhanced Prussian Blue method 

by immersing the sections in a mixture of equal parts of 20% hydrochloric acid and 10% 

potassium ferrocyanide solution for 20 min. All sections were washed in 3 changes of 

distilled water and incubated with DAB (Vector Laboratories).  They were counterstained 
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with hematoxylin for 5 min, rinsed twice in distilled water, and dehydrated through 95% 

and 100% alcohol. Slides were cleared in xylene, and mounted with resinous mounting 

medium.   

Fluorescent studies were performed on four microbleed specimens -- two acute 

bleeds and two old hematomas.  In order to more thoroughly characterize heme 

oxygenase 1 (HO-1) levels around lesions, we double labeled sections for HO-1 and 

MAP-2, a marker of neurons.  Sections (8 μm) cut through the lesion were deparaffinized 

in 3 changes of xylene and washed in PBS for 15 min.  They were then treated with 0.3% 

hydrogen peroxide in methanol for 30 min and incubated with a blocking solution of 2% 

normal goat serum in PBS. Subsequently, sections were incubated overnight at 4°C with 

mAb to HO-1 (1: 100, BioMol) followed with FITC-conjugated goat anti-mouse 

secondary antibody (1: 500) for 30 min at room temperature. After three 5 min rinses in 

PBS, sections were blocked with 5% normal mouse serum. After 2 h incubation with 

MAP-2 monoclonal antibody (1: 500, Abcam) sections were rinsed three times in PBS 

for 5 min each and incubated with Texas Red conjugated goat anti-mouse secondary 

antibody in PBS for 30 min temperature. Sections were then rinsed in PBS, coverslipped 

with Vectashield containing DAPI (Vector Laboratories) and observed under a confocal 

microscope (Olympus).  Apoptosis detection was performed using the terminal 

deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) technique 

(Vector Laboratories).  Five fields at a magnification of 100 × were captured adjacent to 

each lesion and compared to fields at least five diameters away from the lesion.  

Statistically significant differences were determined by the Student t-test.   



 
 
 

105 

Results 

Radiologic-histopathologic Correlation 

Thirty-eight lesions were detected in SWI images from our cases (Fig.8 and Table 

8).  The lesions ranged from 0.5 to 5 mm in diameter, and in ten lesions intact 

erythrocytes were found.  In sixteen specimens, old hematomas were found which 

contained dark brown cellular debris positive for Prussian Blue staining.  In seven of the 

specimens, small cavities were found at the site indicated by the MR image.  At three 

sites, no pathology was visible on gross inspection, but hemosiderin granules and 

hematoiden deposition were detected at microscopy.  At one site a dissection in the wall 

of a grossly distended vessel was discovered and blood within the vessel wall apparently 

produced the hypointensity on SWI.  One additional hypointensity was caused by a 

microaneurysm (Fig. 9).  The vast majority of lesions (79%) appeared near the cortical 

ribbon in two key distributions – just beneath the grey-white junction (eighteen lesions, 

recorded in Table 8 as white matter lesions) and in the superficial cortex where pial 

arterioles penetrate the grey matter (twelve lesions).  Representative examples of each are 

present in the adjacent lesions in Figure 8a-c.  Deep white matter lesions were rarely 

observed (three of the thirty-eight total specimens) and all had an atypical cavitary 

appearance. 
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Figure 8: Correlation of hypointensities and tissue pathology 
The stepwise isolation of two lesions is illustrated above.  In image A, a hypointensity in 
SWI is noted in the left temporal lobe (scale bar = 5mm).  The corresponding lesion is 
shown in image B.  This hematoma is typical of those located in grey matter, the blood 
does not diffuse into the tissue, but remains encapsulated within a pseudocapsule (scale 
bar =1mm).  A second lesion is present in this tissue block; the size of this lesion is 
overestimated by SWI, illustrating the “blooming effect” of this technology (arrowheads 
in a & b).  Another hypointesity located in the white matter of the left parietal lobe is 
indicated in image D (scale is equal to image A).  The corresponding lesion has been 
dissected in image E and is shown under a dissecting microscope in image F.  The final 
image shows a cavitary lesion trabeculated by vascular elements.  Further histologic 
workup of the lesion demonstrated hemosiderin granules within a gliotic capsule (see Fig. 
13). 
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Figure 9: MR hypointensities without grossly visible pathology 
The vast majority of hypointensities were associated with hemorrhages visible upon 
dissection; however a few required more extensive investigation.  Shown in image A is a 
well-healed lesion consisting of focal scarring with hemosiderin deposits stained by DAB 
enhanced Prussian Blue stain.  Hematoiden deposition is also noted in the lesion (white 
arrow).  Image B shows an arteriolar aneurysm (white arrows indicate the dome of the 
aneurysm; black arrow indicates the “parent” artery).  Image C shows a severely dilated 
vessel with a dissection in the endothelium and blood in the vessel wall (arrows point the 
ruptured endothelial layer). 
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Figure 10: The “blooming effect” of signal voids induced by hemosiderin-iron    
The theoretical equality of lesion size to MR hypointensity size is graphed in red.  The 
actual measurements are shown in the scatter plot and almost all the lesions are smaller 
than their associated MR finding.  The signal voids averaged 1.58+/-0.75 times the size 
of the associated lesion. 
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Figure 10 compares the size of lesions to their apparent size in SWI.  SWI 

consistently over-estimated the diameter of small lesions in what has previously been 

termed the “blooming effect;” hypointensities in this study were 1.57+/- 0.75 times the 

size of the corresponding lesion.  This discrepancy was most notable with smaller lesions 

where the hypointensity could appear more than three times the diameter of the actual 

lesion.    This effect is illustrated in images A and B of Figure 8 which show one lesion 

which appeared nearly accurately sized on SWI and another which was significantly 

magnified by the MR image.  This effect may make quantifying the volume of 

hemorrhage from these MR images unreliable for BMB on the order of the voxel size. 

 

CAA-Related Vascular Damage 

In several hemorrhages it was possible to determine which vessel ruptured.  In 

these cases specific observation of the underlying vascular pathology was possible.  We 

also examined the vasculature near sites of hemorrhage when examination of the ruptured 

vessel was not possible.  ß-amyloid immunostaining demonstrated that ß-amyloid 

deposition was present in the walls of involved vessels.  Hematoxylin and eosin staining 

revealed significant morphologic changes in vessels associated with hemorrhage and the 

surrounding arterioles.  The vessel walls were noted to be thickened, profoundly 

acellular, and lacking evidence of a musclaris layer.  The pathology primarily involved 

arterioles, capillaries were only sparsely affected.   

CD68 immunostaining revealed activated microglia or macrophages on nearly all 

of the larger parenchymal vessels in a cortical/subcortical distribution.  Little vascular 

staining was present in the deep grey matter.  Complement activation on vessels was 
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assessed with an antibody against complement component C6, the first component of the 

membrane attack complex (MAC) that stably inserts into the cell membrane.  Once C6 is 

bound to C5b in the cell membrane, the MAC is activated, inevitably leading to cell 

lysis.  The arterioles in CAA brain stained intensely against the C6 marker.  This staining 

was associated with evidence of medial intima degeneration – the characteristic target-

shaped vessel morphology associated with severe CAA.  Arterioles in the basal ganglia 

did not react with the C6 antibody.   

  

Evidence of Peri-Hematoma Inflammation 

Evidence for the presence of heme oxygenase 1, an inducible, pro-oxidative 

enzyme that catalyzes the degradation of heme into biliverdin, carbon monoxide and free 

iron, was noted around many hematomas in the form of hematoiden, a bright yellow 

pigment.   This pigment intensely stained the injured vessels in numerous lesions as 

illustrated in Figure 11.  Representative microbleeds were evaluated with 

immunohistochemical staining against HO-1.  Intense staining of the hematoma was 

noted in every case along with variable reactivity of the adjacent parenchyma.  More 

prominent staining of this adjacent tissue was noted near recent bleeds; however, some 

HO-1 activity was noted even around old bleeds without evidence of intact erythrocytes.  

With fluorescent staining against HO-1, numerous non-neuronal cells in the 

perihematomal region stained strongly positive for HO-1 around both old and recent 

hematomas.   No heme oxygenase activity was noted around the cavitary lesions.  CD68 

is a marker for cells of monocyte lineage and will stain microglia, macrophages and 

neutrophils.  While intense reactivity of this antibody was noted in the vessels associated 
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with each lesion, acute bleeds stained less intensely than old hematomas.  Old hematomas 

were stained throughout the lesions and in perivascular spaces in which hemosiderin was 

deposited.  Finally, TUNEL staining for apoptotic cells was undertaken on four of the 

lesions (images not shown).  Because formalin archived tissue was used in this study, 

significant auto-fluorescence was present in the sections.  To be considered apoptotic, a 

cell had to be both marked with the TUNEL probe and demonstrate a pyknotic or 

fragmented nucleus by DAPI staining.  The region immediately adjacent to the hematoma 

was noted to contain significantly more apoptotic cells than the background -- a nearly 

four-fold increase.  The apoptosis rate in the background tissue of severe CAA/AD 

patients was 0.93% (+/- .39%); 3.9% (+/- 1.6%) of the cells adjacent to the hematomas 

met criteria for apoptosis (p<0.01). 

 

Formation of Secondary Ischemia and White Matter Lesions 

Cavitary, lacune-like lesions were present in one of seven deep grey matter lesions 

(14%), and six of twenty-one white matter lesions (29%).  Three of these lesions occurred 

in deep white matter, three were in subcortical white matter.  These sites were ringed by 

scarred vascular elements and a gliotic capsule containing hemosiderin granules.  

Cavitary lesions in the deep white matter were larger (3-5mm in diameter) than the 

subcortical cavitary lesions (1-2mm).  Several additional lacunar infarcts and numerous 

microinfarcts were encountered in the tissue which did not appear on SWI as 

hypointensities.   
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Figure 11: Vascular damage associated with CAA and hemorrhage 
Images A shows the vessel associated with the lesion in Figure 7c.  The vessel wall is 
hypocellular, eosinophilic and is surrounded by prominent macrophages.  The arteriole is 
stained a brilliant yellow by the endogenous pigment hematoiden (a breakdown product 
of biliverdin indicating the presence of heme oxygenase activity).  Image B represents an 
immunohistochemical stain of the same vessel demonstrating the presence of ß-amyloid 
1-42 in the vessel wall.  Image C represents an immunohistochemical stain against CD68, 
a marker of macrophages and microglia, demonstrating intense microglial activation 
around vascular elements and macrophages in the vessel wall.  Image D shows 
immunohistochemistry for complement C6.  The microvessels in CAA stain strongly for 
C6 in the tunica media. 
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Figure 12:  The local tissue reaction 
Immunhistochemical staining highlights the local inflammatory response produced by a 
hematoma.  Image A is stained by DAB over an anti-HO1 primary antibody and 
illustrates intense HO-1 reactivity within a hematoma and extending into the surrounding 
parenchyma (H indicates hematoma).  Image B is a merged fluorescent study with 
MAP2/TexasRed staining in red to mark neurons, DAPI in blue to mark all cell nuclei 
and anti-HO1/FITC in green showing the presence of heme oxygenase 1; the hematoma 
is visible in the inferior portion of the photo as non-specific staining (again labeled H).  
Perinuclear HO-1 expression is noted in the peri-focal zone in non-neuronal cells.  Image 
C shows CD68 reactivity indicating a prominent microglial response around a vessel and 
hemosiderin deposition mainly in macrophages in the vessel wall.  H&E of an adjacent 
section of the identical vessel is shown in image D with perivascular heme-degradation 
products (arrows).  
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Figure 13: Perivascular hemosiderin deposition may contribute to subsequent 
ischemic changes.  Image A shows a hemorrhage around a degenerated arteriole with 
hematoiden deposition (yellow/orange material), significant local inflammation and 
hemosiderin both in the lesion and tracking in the perivascular space along the arteriole 
(white arrow).  Image B shows another vessel, ~500 microns distant from the lesion in 
image A, with extensive perivascular hemosiderin (arrow).  Hemosiderin was present 
around both capillaries and arterioles at a distance of more than twice the diameter of the 
lesion and was accompanied by inflammatory cells.  Image C shows another lesion that 
appeared as a hypointensity in SWI (the cavitary lesion shown in Fig. 8d,e,f) and on 
pathological examination proved to be a lacunar infarct.  Image D shows in detail the 
vessels indicated by the arrow in image C.  These vessels are also surrounded by 
numerous inflammatory cells and macrophages interspersed with hemosiderin granules 
(arrows). 
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In acute bleeds in the white matter, hemorrhage products were noted to seep into 

the surrounding tissue whereas hematomas discovered in grey matter were generally 

well-circumscribed lesions surrounding an injured vessel.  Blood was noted to propagate 

along perivascular spaces away from the hemorrhage, bathing the regional vessels in 

blood and blood degradation products.  These vessels were surrounded by small, 

basophilic immune cells and numerous macrophages/activated microglia (Fig. 13).  

Similar pathologic abnormalities were found around the larger vascular components 

entering sites of ischemic cavitary lesions.  No intact erythrocytes or evidence of acute 

blood was detected in or near any of the cavitary lesions.  However, granular hemosiderin 

deposits and hemosiderin-laden macrophages were noted in the gliotic capsule around the 

lesion, so the lesions were interpreted as old, healed hemorrhage sites.  Vessels were 

noted to cross nearly all of the cavitary lesions, but they appeared scarred, emerged from 

a fibrotic matrix and contained no residual blood suggesting a possible secondary 

ischemic pathology contributing to the appearance of the lesions.  (See Fig. 13) 

 

Discussion 

Post mortem MRI is valuable both as a research method and in clinical pathology 

(Nicholl 2007).  Several approaches to post-mortem MR imaging have been utilized, 

from scanning native, unfixed tissue to scanning fixed tissues bathed in liquid to 

embedding tissues in gels (Fazekas 1999, Schmierer 2007).  Embedding tissues improves 

control and quality of the images and protects and preserves the specimens (Pfefferbaum 

2004).  As neuroimaging techniques advance, it is important that imaging findings are 

carefully correlated to tissue pathology.  Post mortem imaging enables a definitive 
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approach to this process.  While fixation of the brain certainly alters its magnetic 

resonance properties, these changes have been well-studied and can be accommodated 

within standard imaging protocols (Carvlin 1989, Blamire 1999).  The architecture of the 

brains in our study remains clearly visualized with good signal-to-noise ratio at the 

current parameters.  Moreover, iron pools have been shown to be stably preserved in 

formalin-archived tissue, so it is unlikely that the lesions of interest in this study were 

compromised by the fixation process (Bush 1995).   

In this study, blood and/or hemosiderin was encountered corresponding to every 

signal void in susceptibility weighted images, but the size of the signal void did not 

reflect closely the size of the hemorrhage.  There is wide variation in BMB size, location, 

and presumed clinical significance.  Very small BMB with diameters of 50-200 μm are 

widespread in the AD brain, but BMB visible by 1.5T GRE-T2
* range from 3-10 mm in 

diameter in the MR image (Cullen 2005).  There is general agreement among radiologists 

that BMB are homogeneous round signal losses with diameters less than 5 mm, though 

some reports include lesions up to 10 mm in apparent diameter (Koenncke 2006).  A 

recent report determined that hemorrhages fall in a bimodal distribution between macro 

and microhemorrhages with the critical separating value being 5.7mm (Greenberg 2009).  

Those detectable by SWI at 3T in this study are as small as 1mm in apparent diameter on 

the scans, and 0.3-0.4 mm measured diameter in the tissue.  SWI consistently 

overestimated the size of bleeds in what has been termed a “blooming effect.”  In our 

specimens, the blooming effect magnified the smallest bleeds by as much as 300%.  

Because of this phenomenon, the apparent size of the lesion on MR is an unreliable 

estimate of the extent of tissue injury.   
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The underlying pathologic lesions we discovered correlating to hypointensities 

was quite varied.  The vessels associated with bleeding demonstrated pathologies 

classically associated with CAA including vessel wall thickening, ß-amyloid replacement 

of vascular smooth muscle, microaneurysms and, most frequently, frank hemorrhage.  ß-

amyloid has been shown in in vitro studies to be particularly toxic to vascular smooth 

muscle cells, which may explain the relative acellularity of the muscularis layer in the 

involved arterioles (Davis 1999).  Complement activation was also noted as a prominent 

part of the vascular pathology, and may be a mechanism of or contribute to amyloid 

toxicity in the vessel wall.  The presence of late complement component C6 surrounding 

diseased vessels and hemorrhages is a notable finding.  Numerous studies have examined 

the role of the complement system in Alzheimer’s disease; it has been established that 

Abeta binds to both C1q and C3 of the classical complement pathway, activating the 

early portion of the cascade (Yasojima 1999, Terai 1997).  However, the cascade is only 

activated through C3 in the tissue parenchyma; the lytic portion has not been noted to 

play a major role in the inflammation induced by beta-amyloid plaques (Cadmen 1997).  

However, we found that the lytic pathway is observed prominently in the vessel wall.  

Cultured human cerebrovascular cells have been shown to secrete all the components of 

the late complement cascade and C6 in particular is upregulated in the presence of β-

amyloid (Walker 2008).  The Alzheimer’s brain is primed for a complement reaction; 

with elevated parenchymal levels of activated early complement, the introduction of the 

terminal proteins through vascular injury and hemorrhage may trigger significant cellular 

loss.  The presence of activated MAC in this pathology may make this cascade of future 

therapeutic interest. 



 
 
 

124 

Several sites thought to be microvascular bleeding on SWI were found to be 

associated with cavitary lesions resembling small lacunar infarcts.  Iron deposits were 

found in the gliotic capsule around these lesions which presumably produced the signal 

void appreciated on SWI (Fig. 13c,d).  In a few cases, particularly larger lesions, a 

hyperintense halo was present around the hypointensity (Fig. 8).  A correlation between 

microbleeds and lacunar infarcts has been established by a number of imaging studies; in 

fact, one recent study found the presence of a lacunar infarct the strongest predictor of 

microbleeds in neurologically healthy adults, stronger than all traditional vascular risk 

factors (Igase 2009).  The cause of this phenomenon is not entirely clear from previous 

studies.  Central nervous system microvasculopathies are well-associated with lacunar 

infarcts, causing a disturbance in the penetrating arteries feeding white matter tracts, 

interrupting this important terminal blood supply (Fisher 1991).  Recently, the severity of 

CAA pathology was shown to correlate with the prevalence of microinfarcts in both grey 

and white matter (Soontornniyomkij 2009).  Several observations here may help clarify 

the pathological mechanism underlying these lesions and why they are so closely 

associated with microhemorrhages.  The tissue response to microhemorrhage is an 

intense inflammatory reaction.  We found that a rim of activated microglia forms around 

the hemorrhage, complement is activated and HO-1 is induced.  This ultimately results in 

significantly increased cell death including the loss of neurons about the lesions.  It has 

been well-described that extracellular fluids in the brain migrate along the vascular bed in 

a retrograde fashion through perivascular spaces and are reabsorbed at the level of the 

arterioles (Schley 2006).  These Virchow-Robin spaces are significantly dilated in CAA 

which could facilitate the movement of perivascular contents (Roher 2003).  As shown in 
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Figure 9, blood from hemorrhagic lesions propagates through the perivascular space 

predisposing to an inflammatory reaction along a significant portion of the local 

vasculature.  This pattern of spread also has been noted in MR studies looking at the 

symptomatic perforating artery adjacent to a lacunar infarct (Wardlaw 2001).  

Additionally, the toxic milieu is confined differently in white matter and grey matter.  

The Virchow-Robin spaces in grey matter are invested with two meningeal membranes, 

one basal lamina closely investing the vessel, one investing the glia limitans at the 

parenchymal surface.  In the white matter, the parenchymal membrane is absent, which 

seems to facilitate the migration of hemorrhagic blood products through the white matter, 

while it is generally confined to a hematoma in the grey (Pollock 1997).  This may result 

in a more aggressive inflammatory response in the white matter, increasing the 

probability of spasm or scarring of the vascular supply.  These features could 

conceptually account for the ischemic appearance of some lesions, particularly in the 

white matter.  We observed significant scarring in vessels surrounded by hemosiderin as 

they enter the lacune-like portion of BMB.   

This study is an important step in validating the interpretation of hypointensities 

in SWI as brain microbleeds.  A number of studies now argue in favor of the use of these 

signal hypointensities as a biomarker of CAA.  This may be justified, but we offer a few 

cautions.  First, while hypointensities in this study were associated with CAA pathologies 

(microbleeding, microaneurysm and endoluminal defect) there are rarely causes for 

hypointensities that are unrelated to this pathology, including microthrombi, 

calcifications and air emboli.  Additionally, while the distribution of lesions in CAA is 

characteristic, other disease processes can also produce microhemorrhages.  The presence 
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of hypointensities should be interpreted in light of the clinical setting and the presence of 

a single hypointensity in a normotensive patient who is cognitively normal may be of 

little clinical importance (Knudsen 2001).  However, the presence of multiple BMBs is 

rarely, if ever, benign and likely does represent microvascular bleeding.  Detectable 

bleeding in a distribution consistent with CAA likely indicates significant additional 

bleeding below the threshold currently detectable by clinical imaging studies (Cullen 

2005).   

BMB are clearly an important “lesion.”  Some studies indicate that over 95% of 

AD patients are found at autopsy to have some degree of CAA pathology (Greenberg 

1997).  Roughly one-third of patients with AD have MR detectable microbleeds, and 

patients whose cognitive loss is primarily associated with this sort of bleeding may 

respond to different sorts of treatment modalities.  These lesions have also been noted 

early in the process of cognitive loss and have a prognostic value for the progression of 

mild cognitive impairment to dementia.  When viewed as an ongoing, progressive 

process, it is not difficult to believe that CAA and microvascular bleeding play a 

significant role in the cognitive dysfunction ascribed to Alzheimer’s disease.  Ultimately, 

we continue to wait for effective therapeutic strategies for dementia to emerge, but this 

imaging technique offers in vivo diagnostic potential to a significant portion of 

Alzheimer’s patients and accurate diagnosis is a prelude to therapy. 
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CHAPTER 6  
 

CONTINUING STUDY: IS DYNACTIN INVOLVED IN DYSFUNCTION AXONAL 

TRANSPORT OF COPPER IN ALZHEIMER’S DISEASE? 

 
Matthew Schrag, Claudius Mueller, Matthew Zabel, Andrew Crofton, Christopher J. 
Chang, Wolff Kirsch 
 
 

Introduction 

 While copper levels in the human brain are considerably lower than either iron or 

zinc, copper may play a central role in numerous neurodegenerative diseases.  Alterations 

in copper metabolism can have numerous negative effects.  For instance, removing the 

copper cofactor from super-oxide dismutase reduces its activity, rendering tissues more 

sensitive to oxidative stress – a mechanism central to amyotrophic lateral sclerosis (ALS) 

pathogenesis (Museth 2009, Hayward 2002); protein disulfide isomerase which is critical 

for proper protein folding in the endoplasmic reticulum requires a copper cofactor 

(Narindrasorasak 2003); and genetic abnormalities of copper chaperones (Menkes and 

Wilson’s diseases) result in severe neurological dysfunction and early death (de Bie 

2007).  Copper is also bound by prion protein which is associated with Creutfeldt-Jakob 

disease, alpha-synuclein in Lewy bodies of Parkinsonian brain and by nearly every 

protein associated with Alzheimer’s disease pathology (Wu 2010, Wang 2010, Macreadie 

2008).  Beta-secretase requires a copper cofactor, amyloid precursor protein binds and 

effluxes copper from neurons, and beta-amyloid plaques contain high concentrations of 

copper in their cores (Dingwall 2007, Lovell 1997). 
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 Copper is also physiologically concentrated within synaptic vesicles and is 

released into the synaptic cleft in a burst with neurotransmitters.  Although we do not 

completely understand its effects, this copper burst appears to be functionally important, 

inducing alterations in N-methyl D-aspartate (NMDA) receptors and in long-term 

potentiation (Leiva 2003, Schlief 2006).  Because of our previous observation that copper 

in AD brain is depleted, we sought to determine whether copper in synaptic vesicles is 

also depleted in AD brain. 

 

Preliminary Findings 

From brain homogenate, an enriched fraction containing synaptic vesicles was 

isolated by ultracentrifugation as previously described and copper levels (normalized to 

protein concentration) were determined by graphite furnace atomic absorption 

spectroscopy also described previously (Ohsawa 1975, Schrag 2010).  Copper levels 

were increased in isolated vesicles 5,000 fold over total brain copper levels (30,000 µg 

copper/g synaptic protein, vs 6 µg copper/g total brain protein) (Squitti 2006).  Synaptic 

vesicles in cases with AD without significant CAA were found to be significantly 

depleted of copper compared to vesicles from controls and AD cases with severe CAA – 

n=4 in each group.  Histological stains of unfixed brain sections with coppersensor 3 

(CS3), a sensitive analogue of the CS1 probe used in previous studies, revealed a 

remarkable redistribution of copper in AD cases without CAA.  The pattern was 

essentially unchanged between controls and AD / CAA cases, but in AD without CAA an 

intense axonal staining pattern was present.  These findings may indicate that there is a 

defect in axonal transport or in incorporating copper into vesicles in these cases (Fig. 14).  
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Figure 14: Copper levels in enriched synaptic vesicle preparation are significantly 
reduced in AD cases without significant CAA involvement (upper panel).  CS3 staining 
of monovalent copper (lower panel) demonstrates accumulation of copper in the axons in 
brain from cases with AD pathology without significant CAA.  Copper in synaptic 
vesicles is primarily divalent and therefore not visible in the histological images.  These 
findings suggest there may be an abnormality in axonal trafficking of copper. 
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Next, we screened a proteomic database for serum protein changes occurring only 

in AD w/o CAA cases.  In particular we focused on proteins and protein fragments 

related to axonal transport.  Plasma was collected from four groups of patients – 

neurologic controls, patients with mild cognitive impairment, patients with AD without 

radiologic evidence microbleeding (AD only) and AD patients with multiple microbleeds 

(AD / CAA) – n=6 in each group.  Samples were analyzed with an orbitrap LC/MS/MS 

technique as previously described and more than 1500 proteins were identified in the 

plasma samples (Mueller 2010).  Dynactin sub-unit p62 was found to be significantly 

higher in plasma from AD patients without evidence of CAA (Fig. 15).  Additionally, we 

assessed the levels of dynactin in the post-mortem brain by western blot.  Dynactin was 

significantly reduced in the AD only group compared to both controls and AD/CAA, 

p=0.01. 

 

Future Directions 

The interaction between dynein and dynactin has previously been reported to 

decline with aging; moverover, reducing the expression of dynactin by siRNA in a cell 

culture system was found to increase both amyloid precursor protein (APP) levels and 

beta-cleavage of APP and also resulted in axonal accumulation of tau (Kimura 2007, 

2009).  Curiously, the p62 subunit of dynactin (the subunit found increased in plasma and 

decreased in brain from cases with AD without CAA) was found to binding ATP7b – a 

major copper chaperone (Lim 2006).  Dynactin is a conceptual link between copper 

trafficking and axonal transport mechanisms.  While the proteomic and post-mortem data 

support the hypothesis that lower p62 levels result in axonal trapping of copper and 
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Figure 15:  Plasma collected from neurologically normal patients was compared to 
plasma from those with mild cognitive impairment, AD without radiologic evidence of 
microbleeds and AD with multiple microbleeds (upper panel).  The p62 subunit of 
dynactin was found to be significantly elevated in the AD only group and was 
undetectable in all of the control cases.  Western blot analysis of p62 levels in the brain in 
comparable groups demonstrated the opposite pattern – p62 levels are significantly 
lowered in the AD only group compared to both controls and AD/CAA groups (lower 
panel). 
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reduced synaptic copper, these observations cannot establish a causal link between 

dynactin and copper trafficking.  To accomplish this, we will knock down p62 expression 

in a neuronal cell culture system and determine whether the previous findings of 

decreased synaptic and increased axonal copper can be reproduced.  If successful, these 

studies would establish the necessary causal link. 
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CHAPTER 7 
 

DISCUSSION AND CONCLUSIONS 
 
 

Several studies conducted by our group demonstrated that iron was not increased 

in Alzheimer’s disease brain by multiple modalities, contrary to a widely accepted belief 

in the field (Magaki 2007, Kirsch 2009).  Additionally, key iron regulatory proteins 

including IRPs were shown to be unchanged in Alzheimer’s disease and a systematic 

microchip analysis of the expression of iron metabolism-related genes failed to identify 

even a single gene altered by +/- 2 fold compared to age-matched normal brain (Magaki 

2007 and unpublished observations).  These findings are in stark contrast to most reports 

in the field which seem to indicate that iron levels and the associated homeostatic 

pathways are severely dysregulated in AD and forced us to re-evaluate the hypotheses 

behind our studies (Bush 2000, Rottkamp 2001). 

These observations led us to several important and fundamental questions.  First, 

because the notion that iron is increased in Alzheimer’s disease is entrenched and central 

to a major hypothesis regarding the etiology of the disease and multiple clinical trials, it 

was important to resolve whether or not iron is truly dysregulated in Alzheimer’s disease 

in a definitive way.  Second, if iron is not generally dysregulated, it is reasonable to ask if 

perhaps the notion that it is dysregulated developed from a subset of patients in whom 

brain iron is increased.  Therefore, identifying what subset of patients have altered metal 

levels and ultimately what mechanism(s) leads to alterations in transition metal handling 
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in the brains of Alzheimer’s disease patients is the second major objective of these 

studies.   

Through meta-analysis, we found that iron levels are not altered in Alzheimer’s 

disease.  We determined the tissue fixation depletes brain iron levels and this effect is 

greater in normal brain than in AD brain – this effect no doubt contributed in part to the 

misconception that brain iron is increased in AD as a substantial portion of that literature 

studied fixed tissues (Schrag 2010).  Additionally, we found that all studies which 

quantitatively demonstrated increased iron in brain from AD patients were conducted at 

the same laboratory (Lovell 1997, Deibel 1996, Thompson 1988, Ehmann 1986, 

Wenstrup 1992, Cornett 1995).  Seven independent laboratories found that iron was not 

increased in AD neocortex (Andrasi 2000, Corrigan 1991, Griffiths 1993, House 2007, 

Panayi 2002, Magaki 2007, Plantin 1987, Religa 2006, Stedman 1997, Ward and Mason 

1987).  Never-the-less, studies showing increased iron were cited more than 5 times as 

often as those showing no increase, and this effect was particularly strong among 

narrative review articles (ISI, Science Citation Index).   

To answer the second question, we stratified Alzheimer’s disease patients by the 

degree of vascular involvement in the neuropathology.  Patients with severe CAA were 

place in one group, those with only parenchymal features were grouped in another and 

age-matched controls were the third group.  When all AD patients were analyzed 

together, as expected no significant changes in iron levels were detected, but when CAA-

predominant cases were analyzed separately they were found to have significantly more 

iron than both controls and AD patients with only parenchymal pathology.  Additionally, 

heme degradation enzymes heme oxygenase 1 and biliverdin reductase B were increased 
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in the CAA group.  These observations argue that pathologic iron deposition is a result of 

microbleeding associated with CAA and may account for the numerous qualitative 

reports of increased iron in AD.   

We also felt it was necessary to identify potential mechanisms underlying the 

vascular fragility associated with CAA.  We determined that both ferrous iron and 

monovalent copper prominently deposited on arterioles affected by amyloid deposition – 

these are both highly reactive oxidative species prone to participation in Fenton reactions 

which could undermine the stability of the vessels.  Moreover, we identified foci of 

hypointensity in post-mortem MR imaging using susceptibility weight sequences of brain 

tissue from patients who were pathologically confirmed to suffer from severe CAA 

(Schrag 2010).  We confirmed that these hypointensities represented microhemorrhagic 

events and were then able to observe in detail the pathology that is associated with 

microvascular bleeding.  Consistent with previous observations, heme oxygenase-1 was 

found to be remarkably increased in the penumbral region about a microhemorrhage and 

cellular apoptosis was significantly increased in this region.  Extravasated blood products 

were found to propagate along the local vascular elements propagating an inflammatory 

response regionally that may damage the microvasculature.  One additional finding is 

particularly interesting, late complement component C6 (indicative of a lytic process) 

was heavily deposited on grey matter arterioles, although early complement (while 

present in parenchyma) could not be detected on vascular elements.  This finding led us 

to believe that complement may be involved in beta-amyloid clearance from the 

parenchyma.   
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Finally, in the course of these studies, we became aware of a defect in copper 

transport and metabolism.  In patients with severe parenchymal pathology without CAA, 

copper in synaptic vesicles was found to be significantly reduced compared to 

Alzheimer’s disease patients with vascular involvement.  Additionally, monovalent 

copper in this group of subjects was distributed differently – accumulation of copper in 

the axons and cell bodies was noted whereas monovalent copper was limited to a 

perinuclear distribution in both of the other cases.  This led us to review proteomic data 

generated from serum collected from patients with Alzheimer’s disease to attempt to 

identify evidence of abnormal protein fragments in peripheral blood that were associated 

with axonal transport.  A subunit of dynactin (dynein activating complex), p62, was 

found in serum of patients with Alzheimer’s disease without CAA.  It was undetectable 

in all control cases and was only detected in one CAA case.  We subsequently determined 

that p62 levels in brain are depleted in the AD-only group compared to both AD / CAA 

and control groups.  It will be necessary to demonstrate that alterations in dynactin levels 

and copper in synaptic vesicles are linked.  To evaluate this, we will determine whether 

silencing p62 expression in vitro in neuronal culture causes similar depletion of copper 

from synaptic vesicles and accumulation of copper in axon processes. 

Cumulatively, these studies have resolved a number of longstanding questions in 

the field of Alzheimer’s disease research.  Most significantly, we have shown that the 

notion that iron levels are increased in Alzheimer’s disease is a misconception – one that 

may have resulted in tens of millions of misdirected research dollars and has put patients 

at risk in clinical trials.  Additionally, we worked on developing two biomarkers, one an 

MRI based finding that previously lacked adequate pathological confirmation and one a 
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new biochemical marker in plasma of altered copper metabolism and axonal transport.  

Finally, we have begun to show that AD without CAA and AD with CAA are 

biochemically quite different, and perhaps should not be approached therapeutically in 

the same ways.  These findings have led to a new focus in our continuing work.  In 

particular, we are working on dissecting copper metabolism and its relationship to AD.  

Nearly all of the major protein players in AD have copper binding sites and significant 

abnormalities of copper handling have already been identified.  Clarifying the role of this 

metal in AD may reveal new targets for therapy.  And finally, we will continue to work 

toward understanding the mechanism of vascular weakening in CAA.  This work is 

promising because significant abnormalities in complement activation may treatable.  A 

novel inhibitor of late complement was recently approved for clinical use in paroxysmal 

nocturnal hemoglobinuria.  When we better understand the role of complement in the 

clearance of beta-amyloid from the brain and in the degeneration of the cerebral 

microvasculature, therapeutic application of this or other inhibitors of complement may 

be appropriate.   
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