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ABSTRACT OF THE DISSERTATION 

Dynamic Contrast-Enhanced MRI of Pancreatic Islet Transplants 

by 

Nathaniel K. Chan 

Doctor of Philosophy, Graduate Program in Biochemistry 
Loma Linda University, May 2011 

Dr. Eba Hathout, Chairperson 
 

Since its discovery in 1922, insulin has been the life-saving treatment for type 1 

diabetes mellitus.  As the disease is caused by the loss of insulin-producing pancreatic 

islets, transplantation of donor islets has the potential to not only supplement insulin 

replacement therapy but to cure type 1 diabetes.  However, long-term insulin 

independence (> 2 years post-transplant) remains a challenge partly due to low islet blood 

flow immediately following transplantation leading to hypoxic stress on islets.  The goal 

of our studies is to improve islet engraftment by monitoring and promoting the regrowth 

and maturation of new islet blood vessels in a clinically applicable manner.  The 

developed technique is based on intravascular injection of a FDA-approved contrast 

agent which leaks from and accumulates around permeable immature blood vessels.  

Rapidly acquired MRI scans following contrast administration can then show the location 

and extent of new vessel formations.  Our studies showed dynamic contrast-enhanced 

MRI to be successful in determining a timeline for islet revascularization as well as 

evaluating the effectiveness of a hyperbaric oxygen-based engraftment-enhancing 

therapy.  The results are an important step in advancing islet transplantation as a potential 

cure for type 1 diabetes. 



1 

 

CHAPTER ONE 

INTRODUCTION 

 

Type 1 Diabetes Mellitus 

Type 1 diabetes mellitus (T1DM) is characterized by the loss of insulin secreting 

pancreatic islets and resultant hyperglycemia.  The disease is fatal unless treated with 

exogenous insulin, which is currently the standard of care.  However, as Frederick Grant 

Banting, the Canadian surgeon credited with the co-discovery of insulin (Banting 1922) 

concluded in his Nobel lecture, “insulin is not a cure for diabetes; it is a treatment.”  True 

to this day, the lifetime costs of diabetes treatment are very high, and the global incidence 

of type 1 DM is rising (Aanstoot 2007). 

Both genetic and environmental factors seem to play a role in the development of 

type 1 diabetes.  It is thought that autoimmunity develops from macrophage scavenging 

of islet autoantigens and presentation by major histocompatibility complex (MHC) class 

II molecules, leading to the activation of helper T-cells, in turn activating B-cells to 

produce autoantibodies as well as activate killer cells and cytotoxic T-cells (Atkinson 

2011).  It follows that several alleles of the major histocompatibility complex, class II, 

DQ beta 1 (HLA-DQB1) gene have been found to be associated with an increased risk of 

developing type 1 diabetes (Redondo 2001).  This gene codes for one of two proteins that 

make up the antigen-presenting cell surface receptor DQ heterodimer, and is the most 

predictive gene identified so far.  However, less than 10% of genetically susceptible 

people progress to onset of disease.  Combined with the finding that pairwise 
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concordance for T1DM is less than 40% in identical twins (Kaprio 1992), this implies 

that additional environmental factors can act as triggers in predisposed individuals.  The 

initial islet inflammatory response to autoimmune attack results in subclinical insulitis, 

and exogenous factors seem to also play a role in determining the rate of islet mass 

destruction, resulting ultimately in clinical disease (Knip 2005).    

As understanding of immune modulation has grown, so has the hope of being able 

to interrupt the autoimmune process.  It has become increasingly clear that the balance 

between regulatory and effector T-cells is a main determinant of disease risk (Bour-

Jordan 2009, McClymont 2011), and that immune-modulatory therapies have the 

potential to be used in preventative and curative capacities (Bluestone 2010).  Advances 

in the ability to induce tolerance are particularly relevant to the future success of 

transplantation based therapies (Turka 2010, Ishiyama 2011). 

 

Islet Transplantation 

Restoring islet mass in type 1 diabetic patients with donor islet transplantation is 

one curative strategy based on the isolation and purification of only the insulin producing 

islets from the rest of the exocrine pancreas.  Isolated islets are then infused into the 

portal vein of the liver, where they lodge in the vascular bed of the liver lobes.  Paul Lacy 

is often credited as the father of islet transplantation, as he led the research efforts at 

Washington University which resulted in the first successful human islet transplantation 

in 1989 (Scharp 1990).  Use of the mechanical device known as a Ricordi chamber 

(Ricordi 1990) to automate part of the islet isolation procedure was instrumental in 

recovering a sufficiently large islet mass for achieving insulin independence (Tzakis 
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1990).  Despite these early efforts, consistent and sustained (>1 year) insulin 

independence was not achieved until recently in a small cohort of seven patients in 

Edmonton, Canada (Shapiro 2000).  Disappointingly, a subsequent multi-center 

international trial of the Edmonton protocol showed that the majority of islet recipients 

needed to resume the administration of insulin two years post-transplantation (Ryan 

2005).   

Native islets are highly vascularized structures that make up only a few percent of 

pancreatic tissue by mass, but receive about ten percent of pancreatic blood flow in 

keeping with their endocrine function.  Only recently has the dense vascular network of a 

pancreatic islet been directly, albeit invasively, visualized in vivo by real-time laser 

confocal microscopy (Nyman 2008).  Upon isolation, donor islets are removed from this 

rich vascular network.  This islet avascularity in the early post-transplant period poses a 

serious hypoxic threat (Miao 2006) and leads to a significant loss of transplanted islets.    

 

Magnetic Resonance Imaging 

To address this islet hypoxia, our goal is to improve islet engraftment by 

monitoring and promoting islet angiogenesis with an eye toward clinical applicability, 

which calls for non-invasive methods.   One way of non-invasively measuring in vivo 

vascularity and blood flow is with dynamic contrast-enhanced magnetic resonance 

imaging (DCE MRI).  Pioneering work on this imaging modality was done for the study 

of blood vessels in tumors (Knopp 2001, Padhani 2001, Yankeelov 2009).  The operating 

principle is based on the intravascular injection of a bright contrast agent which 

subsequently leaks from and accumulates around permeable immature or damaged blood 
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vessels (Jordan 2005).  The process and time course of contrast agent extravasation can 

then be imaged and quantified (Paldino 2009).  The spatial resolution and specificity of 

the technique are appealing in its potential application to measuring angiogenesis of 

transplanted islets. 

 

Specific Aims 

The objectives of the following studies are to first establish a methodology to 

non-invasively monitor islet graft angiogenesis with dynamic contrast-enhanced MRI, 

and then use the technique to evaluate the effectiveness of a pro-angiogenic strategy. 

 

Specific Aim 1 

The first aim is to monitor the angiogenesis of kidney subcapsular islet grafts using DCE 

MRI.  The feasibility of DCE MRI to detect angiogenesis will be established in a non-

diabetic subcapsular islet transplant model.  The subcapsular model is well established in 

animal studies, and the timeline of islet engraftment is well described.  In addition, the 

localized islet graft cluster is most amenable to the established method of visualizing and 

analyzing DCE MRI data on tumors. Following serial non-invasive imaging, islet grafts 

will be recovered and assessed histologically for new microvessel growth. 

 

Specific Aim 2 

The second aim is to monitor the angiogenesis of intraportal islet grafts in the liver using 

DCE MRI.  The DCE MRI method will be optimized to allow for imaging and analysis 

of intraportal islet grafts which are distributed throughout the liver lobes and undergo 
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respiratory motion.  Imaging results will be correlated with new vessel formation seen 

histologically.   

 

Specific Aim 3 

The third aim is to evaluate the effectiveness of a pro-angiogenic strategy following islet 

transplantation.  Islet hypoxia in the immediate post-transplant period negatively affects 

survival and islet graft mass.  Hyperbaric oxygen (HBO) therapy will be tested as a 

treatment to reduce this local hypoxia and improve engraftment.  DCE MRI of treated 

islet grafts will be performed and imaging data will be correlated with histological and 

functional metabolic studies. 
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Abstract 

 Vascularization of transplanted islets must be maintained to provide long-term 

graft function. In vivo assessment of new vessel formation in islet grafts has been poorly 

documented. The purpose of this study was to investigate whether neovascularization was 

detectable in vivo in a Feridex-labeled murine syngeneic subcapsular islet mass using 

DCE MRI over 180 days. Subcapsular transplants could be visualized at post-transplant 

days three, seven, 14, and 28 using T2-weighted MRI and at post-transplant day 180 by 

immunohistochemistry. Injection of the contrast agent gadolinium (Gd)-DTPA for DCE 

at three, seven, and 14 days showed increased signal in the transplant area consistent with 

new vessel formation. Areas under contrast enhancement curves suggested peak 

angiogenesis at 14 days. At 180 days, there was no observable change in signal intensity 

after contrast injection suggesting established vascularization or islet mass reduction. 

Immunohistochemistry confirmed MRI and DCE findings. These data suggest that islet 

angiogenesis occurs early after transplantation and is likely established after one month 

of transplantation. This study provides an in vivo time-line of neovascularization in 

subcapsular islet grafts. We anticipate that contrast extravasation captured by MRI may 

provide useful monitoring of graft angiogenesis if reproduced in a clinically relevant 

intraportal model. 
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Introduction 

Pancreatic islet transplantation is a promising therapy for patients with type 1 

diabetes (1, 2). However, long-term insulin independence is frequently not sustainable 

presumably because of hypoxic, inflammatory, and immune damage to islets (3). In a 

healthy pancreas, islets are in a nutrient-rich environment with highly oxygenated blood. 

After transplantation, islets are subject to hypoxia from initial avascularity (4, 5), and it is 

estimated that approximately 50–70% of islets are lost in the immediate post-

transplantation period (50–70%), along with functional impairment of the remaining 

surviving islets (3, 6, 7). A total of two to four pancreatic donors are sometimes required 

for a sufficiently functional islet transplant (1). Despite the above challenges, there is an 

obvious paucity of in vivo methods to monitor islet fate and in particular, new vessel 

formation in islet grafts.  

Several studies have shown that in vivo MRI of transplanted rodents can be used 

to localize islets labeled with SPIO under high resolution (8–10). It has also been recently 

demonstrated that MRI monitoring of SPIO-labeled islets can be applied clinically to 

intrahepatic islet transplantation in patients with type 1 diabetes (11).  

To chronicle islet graft neovascularization in vivo, we used contrast extravasation 

to characterize neovascularization. DCE MRI is an imaging modality that can be used to 

noninvasively measure key hemodynamic parameters such as blood flow, blood volume, 

interstitial volume and capillary permeability in real time. This method has been used 

clinically to assess tumor angiogenesis and the vascular effects of anticancer therapies 

(12–16).  
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 In a pilot short-term trial, we previously reported that DCE MRI can be 

used to evaluate neovascularization non-invasively in islets transplanted under the kidney 

capsule (10). We first described a macroscopic timeline for islet angiogenesis, then 

confirmed that iron labeling of islets allowed localization of islet grafts as hypointense 

regions on post-transplant days three and 14. In our previous study, DCE MRI revealed 

increased contrast enhancement on day 14 compared with day three suggesting temporal 

evolution of new vessel formation. Here, we detail the chronology of progression of 

vascularization hemodynamically by including earlier and later time points, and quantify 

the extent of MR-captured neovascularization to allow future functional correlation 

studies. In addition, we present concomitant immunohistochemical identification of iron-

labeled cells, islets, and new vessels.  

 

Materials and Methods 

Animals 

Adult female Balb/c mice weighing 25–30 g were purchased (Charles River, 

Wilmington, MA, USA) and housed under specific pathogen-free conditions with a 12-h 

light/dark cycle and had free access to food and water. All care and handling of animals 

was in accordance with institutional regulations. The Loma Linda University Institutional 

Animal Care Use Committee approved all experimental protocols. 

 

Islet Transplantation Studies 

Islets were isolated by collagenase digestion of the pancreas and separated from 

exocrine tissue by a discontinuous Ficoll density gradient centrifugation and then hand-
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picked (10). Iron labeling of islets was performed by overnight co-culture of freshly 

isolated islets in Feridex (Advanced Magnetics Inc., Cambridge, MA, USA) 

supplemented medium at 200 μg iron/mL as previously described (10). Five hundred 

syngeneic islets were transplanted under the kidney capsule of normal recipients as a 

single mass. Three animals were used to produce results at each time point. 

 

MRI 

MRI was performed at three, seven, 14, 28, and 180 days after transplantation. 

Imaging was undertaken to (i) identify the location of the islets on the kidney and (ii) use 

DCE imaging as  a surrogate marker for angiogenesis. All MRI data were collected on a 

Bruker Advance 11.7TMRI (8.9 cm bore) with a 3.0 cm (ID) volume radiofrequency coil 

(Bruker Biospin, Billerica, MA, USA). Mice were lightly anesthetized using isoflurane 

(3% induction and 1% maintenance). A tail vein catheter was inserted and fastened to the 

tail for infusion of gadolinium-DTPA [Gd-DTPA,-BMA, Gadodiamide, 0.1 mmol/kg 

body weight (0.2 mL/kg), Omniscan; Amersham Health, Princeton, NJ, USA] contrast. 

Body temperature was maintained at 35–37 ± 1 °C using a thermostat-controlled heated 

water cushion placed under the mouse. Respiration was monitored with a MR-compatible 

pressure transducer on a Biopac MP150 (Goleta, CA, USA) system. Scout images were 

obtained in the axial, sagittal, and coronal planes to accurately position slices.  

Three MR sequences were acquired: (i) A 10 echo T2 sequence composed of a 

TR/TE of 4697/10.2 ms, a 256 matrix, a 3 cm FOV, two averages for a total acquisition 

time of 40 min, (ii) The pre/post-contrast T1 was composed of a TR/TE of 837.1/10.2 ms, 

a 256 matrix, 3 cm FOV, and four averages for a total acquisition time of 14 min. The 
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standard T2 and T1 sequences collected 20 coronal slices that were 0.80 mm thick and 

interleaved by 0.80 mm, and (iii) the DCE sequence acquired one image slice through the 

kidney at the level of the islets using a TR/TE = 250/20 ms, 128 matrix, 3 cm FOV, one 

average for an acquisition time of 32 s/image and a total acquisition time of 32 min with 

60 images collected.  

The T2 and precontrast T1 images were visually evaluated to identify the location 

of the transplanted islets in each animal. The single DCE acquisition slice was then 

placed over the region of maximal volume of the transplanted islets. At each time point, 

three non-diabetic transplant recipients underwent DCE MRI to non-invasively quantify 

islet graft vascularization as evidenced by contrast enhancement. Contrast (Gd-DTPA 0.1 

mmol/kg) was delivered as a bolus injection via tail vein catheter two min after the start 

of the imaging sequence.  

 

DCE Analysis 

Temporal change of signal intensity was visualized and quantified using JIM 

software (Thorpe Waterville, UK). Three regions of interest, islet, muscle, and kidney 

were outlined on the DCE images based on T1 high-resolution images. Kinetic analysis 

used a bidirectional two-compartment model based on the equations of Tofts (17). All 

signal intensities were converted to [Gd] values by averaging precontrast R1 (1/T1), and 

assuming that  

R1 = R1pre + ρ [Gd], 

where ρ = 1 as we assumed that there was no difference between plasma relaxivity 

(relaxivity of the contrast agent in plasma) and interstitial relaxivity (relaxivity of the 
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contrast agent in the extra-vascular extracellular space) and R1pre is the average 

precontrast R1.  

In the standard Tofts model, the tissue [Gd], Ct (t) is related to the plasma [Gd], Cp (t) by:  

    dCKtC e
trans vtK

p
trans

t
)/)(()()(  

where ve is the extra-vascular extra-cellular space volume fraction. This model neglects 

any contribution to the signal intensity of the passing contrast in intact blood vessels 

within the tissue of interest. The AIF was defined from the abdominal aorta that was 

visible within the slice of interest. DCE MRI tissue Gd concentration curves extracted 

from JIM software were normalized for inter- and intra-animal comparisons. 

 

Histology and Immunohistochemistry 

After the last imaging time point, kidneys were removed and fixed in 10% 

formalin and embedded in paraffin. At the level of the transplanted islets, 5-lm sections 

were cut with serial sections processed for H&E and PB for iron particles within the 

transplanted islets. Briefly, sections were immersed in 10% potassium ferrocyanide 

(Fisher Scientific, Pittsburg, PA, USA) for five min, in PB solution containing 5% 

potassium ferrocyanide and 10% hydrochloric acid for 30 min and counterstained with 

nuclear fast red (Sigma- Aldrich, St Louis, MO, USA).  

Immunohistochemistry was performed to confirm the presence of insulin in the 

islets and vWF for newly formed blood vessels. Specifically, sections were 

deparaffininized in xylene and hydrated. To restore immunoreactivity of antigens for 

anti-vWF, the specimens were treated with Proteinase K (Dako, Carpinteria, CA, USA) 
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for two min. Endogenous peroxidase activitiy was blocked by treatment of 0.1% 

hydrogen peroxide for 30 min. Non-specific binding was blocked by treatment with 10% 

goat serum for 30 min. Specimens were incubated with either: guinea pig antiinsulin 

antibody (1:100; Dako) or rabbit anti-vWF (1:500; Abcam, Cambridge, MA, USA) for 90 

min at room temperature. Biotinylated anti-rabbit IgG antibody treatment for 30 min was 

followed by streptavidin-conjugated horseradish peroxidase treatment for 30 additional 

minutes (Vectastain Elite ABC kit; Vector Laboratories, Burlingame, CA, USA). Bound 

peroxidase was developed with 3–3¢-diaminobenzidine (brown; Dako) for vWF (Red; 

Dako) for insulin and counterstained with hematoxylin.  

 

Statistical Analysis  

Statistical evaluation of AUC from DCE curves was performed using sigmastat 

software (SPPS, Chicago, IL, USA) and differences among experimental groups were 

considered significant for p < 0.05. anova was performed with a Tukey post hoc test to 

evaluate significance at each time point. Data were expressed as the mean ± s.e.m.  

 

Results 

Islets transplanted under the kidney capsule were readily visualized in all animals 

in the immediate post-transplant period. The labeled islets underwent subsequent non-

invasive T2-weighted imaging at three, seven, 14, and 28 days post-transplantation. Iron-

labeled islets were visualized in each animal at each time point except day 180. Arrows in 

Fig. 1 indicate hypointense regions under the kidney capsule characteristic of iron-labeled 
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islets. By 180 days post-transplantation, no labeled islets could be seen by in vivo MRI in 

any of the animals.  

 

 

Figure 2.1.  Representative T2-weighted imaging of Feridex labeled islets under the 
kidney capsule at three, seven, 14, 28, and 180 days post-transplantation. Islets are visible 
as hypointensities (white arrow) at all early time points, but not at day 180 post-
transplantation. 
 
 
 

To detect transplanted islets, histological examination was performed on days 14, 

28, and 180 post-transplantation (Fig. 2). PB and insulin staining were confined to the 

subcapsular region of the kidney (site of the transplant). PB staining indicated the 

presence of iron-labeled islets at all time points. These iron-labeled islets were also seen 

as brown regions in the H&E sections. Insulin immunohistochemical analysis suggests a 

decrease in insulin staining at day 180 compared with days 14 and 28. A change in 

distribution of iron-positive cells is also noted over time. Iron positive cells appeared 

deeper within the renal parenchyma in the early time points, but were mostly in the 

external subcapsular margin by day 180. Staining for new vessels is shown in a separate 

figure.  
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Figure 2.2.  Representative immunohistochemistry of islet grafts. Kidneys with islet 
grafts were recovered on days 14, 28, and 180 post-transplantation, and consecutive 
sections were processed for H&E, PB for iron particles, and insulin for the presence of 
islets. PB reveals the iron-labeled islets in the subcapsular region of the kidney at days 
14, 28, and 180. Unstained iron can be seen in H&E sections as brown regions at all three 
time points. Strong insulin immunostaining (red) shows the presence of islets at days 14 
and 28 compared with weaker staining at day 180. Scale bar, 250 μm. 

 

 

The dynamics of contrast enhancement in the islet grafts can be seen in Fig. 3. 

Normalized maximal tissue concentration of contrast increased progressively from three 

to 14 days, and then decreased at 28 days (Fig. 3a). 
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Figure 2.3.  Temporal evolution of DCE MRI. (a) DCE imaging of subcapsular islet graft 
reveals peak enhancement at 14 days post-transplantation. (b) Area under the curve 
(AUC) analysis shows a progressive increase in overall enhancement over the total 
imaging time of 32 min (anova p = 0.03 with Tukey post hoc test, p = 0.02). Data were 
averaged from all animals at each time point, n = 3. 
 

 

Time to maximal relative gadolinium concentration was 5.47 ± 1.21, 6.29 ± 2.03, 

7.09 ± 0.81, and 6.26 ± 1.60 min at three, seven, 14, and 28 days, respectively. Time to 

peak was not significantly different between the different days, but contrast enhancement 

over time AUC analysis showed a clear trend towards a peak at day 14 relative to all 

other time points which was significant (anova p = 0.03, Fig. 3b). There was a significant 

difference in AUC between days three and 14, p = 0.02. AUC up to the peak 

concentration point showed the same trend to peak enhancement at day 14. There were 

no discernible islets on T2 MRI at day 180 to warrant further hemodynamic analysis.  

vWF, an endothelial marker of newly formed blood vessels, was used to follow 

the temporal evolution of new blood vessels in the islet graft region (Fig. 4) at the same 

time points selected for MRI. Post-transplant day three showed disorganized vWF 

immunostaining, which was better outlined at day seven and more abundant at day 14. 
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The vWF-stained vessels at day 28 appeared larger in size, suggesting a maturation 

process. No vWF immunostaining was observed at day 180.  

 

 

Figure 2.4.  Representative temporal vascularization of islet grafts. Kidneys with islet 
grafts were recovered on days 3, 7, 14, 28, and 180 post-transplantation, and 
immunohistochemistry of anti-vWF (brown; a marker of newly formed blood vessels) 
was performed. Day 3 shows disorganized staining of vWF. Day 7 shows some 
microvessels, which are more clearly delineated at day 14 (yellow arrows indicate 
vessels). Day 28 is similar to day 14 with apparently larger microvessels. Day 180 shows 
absence of vWF staining. [These sections were immediately adjacent to sections in Fig. 2. 
Hence the brown in day 180 indicates iron not vWF as can be seen in corresponding 
H&E section (Fig. 2)]. Scale bar, 250 μm.  
 

 

Discussion 

In the above study, we tested the applicability of DCE MRI for assessment of 

neovascularization in islet grafts. To our knowledge, this is the first study to employ the 

clinically applicable concept of contrast extravasation to the field of islet transplantation. 

Lack of long-term visualization of labeled islets by MRI in our study contrasts with data 

by others (8, 9) who transplanted up to 1000 islets under the kidney capsule. Therefore, 

MR visibility may be highly dependent on islet number, and the negative localization of 

islets at 180 days in our study may be related to the smaller (500) islet mass we used. In 

addition, islet loss or redistribution over time may have lead to the reduced T2 signal and 

lack of visualization by MRI.  
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Analysis of areas under contrast enhancement curves was only significant at day 

14. The trend portrayed by the curves is consistent with both our histological data, as well 

as reports by other groups (18–20). It is possible therefore that the use of more animals 

would result in significant differences at seven and 28 days. Use of heat-inactivated islets 

for transplantation could serve as a control for density and mass effects.  

It remains to be validated whether the use of a two-compartment model is optimal 

for the assessment of an islet graft, or whether a three compartment model needs to be 

developed. As contrast enhancement is assessed relative to aortic blood flow, 

normalization of data may be refined by testing the variability of the AIF between study 

subjects. To balance sensitivity and specificity of islet imaging, positron emission 

tomography may be needed in addition to MRI for adequate islet volume assessment.  

Our histological data show a change of distribution of iron-positive cells with 

time. This may reflect the lack of specificity of iron labeling or subsequent uptake of 

dead islets by macrophages. Such ‘‘false labeling’’ therefore can lead to overestimation 

of islet mass at the early post-transplant stage. Transplantation of an adequate islet mass 

under the kidney capsule may be visible on T2 MRI without iron labeling, a concept 

which would be more appealing in clinical practice. The apparent decrease in insulin-

positive cells with time is consistent with previously described post-transplant islet loss, 

which might have been more or less exaggerated if human islets were used in an 

immunodeficient model.  

Immunohistochemical staining results suggest that new vessel formation starts by 

post-transplant day three, peaks at day 14, and is complete after day 28. The use of vWF 

as a marker of new vessel formation has not been agreed on particularly in rodent models 
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where it has previously produced inconsistent results (20–22). It is also unclear whether 

endothelial markers for microvessels are different from macrovessels. At day 180, it is 

safe to assume that a mature network of blood vessels supplies the islets as they were 

clearly present at this late time point albeit drastically reduced in number. Thus, a marker 

for established rather than evolving blood vessels, e.g., alpha smooth muscle actin, might 

have confirmed and complemented the vascularization time-line shown above.  

The small recipient numbers and lack of microvascular density quantification 

make this more of a pilot trial which can greatly benefit from future in depth larger scale 

analysis. A natural extension of this study would be to use DCE MRI in assessment of 

islet neovascularization in a diabetic model correlating DCE data with islet function. The 

ultimate in vivo methodology for assessment of islet neovascularization, including 

mathematical models, will likely be very dependent on the transplant site, and the general 

progress of in vivo imaging modalities applicable to transplanted and native islets.  

The new knowledge contributed by the authors includes the non-invasive 

determination of a timeline of islet graft angiogenesis coupled with correlative histology.  

Our study offers what we believe to be a valid approach to addressing the dynamics of 

vascularization of islet grafts. Such hemodynamic monitoring, if applicable in an 

intraportal model, may be relevant to other cellular and organ transplants, and thus pave 

the way to strategies enhancing graft survival in clinical settings.  
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Abstract 

Fifteen thousand youths are diagnosed yearly with type 1 diabetes mellitus. 

Pancreatic islet transplantation has been shown clinically to provide short-term (~1 year) 

insulin independence. However, challenges associated with early vascularization of 

transplanted islet grafts and long-term islet survival remain. We utilized dynamic contrast 

enhanced magnetic resonance imaging (DCE MRI) to monitor neovascularization of 

islets transplanted into the right lobe of the liver in a syngeneic mouse model. The left 

lobe received no islets and served as a control. DCE data were analyzed for temporal 

dynamics of contrast (gadolinium) extravasation and the results were fit to a Tofts two-

compartment exchange model. We observed maximal right lobe enhancement at seven 

days post-transplantation. Histological examination up to 28 days was used to confirm 

imaging results. DCE-derived enhancement strongly correlated with 

immunohistochemical measures of neovascularization. To our knowledge these results 

are the first to demonstrate, using a FDA approved contrast agent, that DCE MRI can 

effectively and non-invasively monitor the progression of angiogenesis in intraportal islet 

grafts. 
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Introduction 

Type 1 diabetes mellitus is a costly and growing medical problem, particularly 

within the pediatric population where an estimated 15,000 youths are diagnosed with type 

1 diabetes annually.1 The current standard of care involves insulin administered by 

injection or pump, but exogenous insulin treatment cannot perfectly control blood 

glucose levels despite advances in continuous glucose monitoring. Cumulative lifetime 

exposure to hyperglycemic episodes can lead to complications such as retinopathy, 

nephropathy, cardiovascular disease and peripheral neuropathy.2,3 Islet cell 

transplantation has recently emerged as a promising therapeutic approach for providing 

long-term (>1 yr) insulin independence with the advent of the Edmonton Protocol.4 More 

recently, an international trial showed that insulin independence could be achieved in 

more than 50% of transplanted patients, and that 80% of these patients were insulin-

independent after one year.5  

Despite these promising results, insulin independence is usually not sustainable, 

with 85–90% of patients requiring insulin injections by 5 years.6 The failure of long-term 

insulin independence can be attributed to islet loss due to: (1) the immediate low rate of 

engraftment,7,8 (2) progressive immune rejection,9,10 (3) islet toxicity due to continued 

immunosuppressive drugs,11-13 (4) low rate of engraftment due to extreme changes in the 

local tissue environment caused by the transplantation,14 and (5) increased hypoxia from 

initial lack of islet vascularity.15,16 In a healthy pancreas, islets account for 1–2% of 

pancreatic mass but receive 5–10% of blood flow.17 After transplantation into the liver, 

islets are prone to hypoxia18 with an estimated 50–70% of islets being lost in the 

immediate post-transplantation period that can then lead to functional impairment of the 
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remaining islets.19-21 A tool to monitor the revascularization process is critical to 

advancing islet transplantation.  

While standard MRI approaches can be used to detect the presence and size of 

islet grafts, visualization of islet graft revascularization remains unexplored. New 

imaging modalities, such as dynamic contrast-enhanced (DCE) MRI, are optimized to 

examine physiological parameters such as blood flow and capillary permeability and 

could be utilized to determine new vessel formation in transplanted islets. DCE MRI was 

first developed to characterize tumor vascularization22,23 using rapid and repeated 

collection of images before, during, and after contrast administration, such as with 

gadolinium.24,25 The temporal dynamics of contrast arrival within the vasculature and 

consequent leakage into the extra-vascular space have been modeled (two compartments) 

by Tofts et al.26 The physiological parameters extracted using this model can be used to 

observe neovascularization at the transplant site.  

Previously, we described a timeline for neovascularization after subcapsular 

kidney islet transplantation and demonstrated the feasibility of using DCE MRI to detect 

and quantify changes in vascularization over 28 days.27,28 We have extended DCE MRI to 

monitor vascularization of intraportal islet transplants over 28 days post transplantation. 

Neovascularization was confirmed by immunohistochemical evaluation of transplanted 

islets and host liver tissue. 
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Results 

DCE MRI and Vascularization of Intraportal Islet Grafts 

MRI was used to monitor the progression of new vessel formation in the right 

liver lobe at post-operative day (POD) 3, 7, 14 and 28. High resolution T1-weighted 

imaging assisted in localization of the right (transplanted) and left (control) liver lobes 

(Fig. 3.1A), and was followed by placement of a single DCE slice at the same level. 

Rapidly acquired DCE images immediately before and after a single bolus injection of 

gadolinium (~0.04 cc) showed fast enhancement and slower wash out. Another high 

resolution T1 scan post-contrast indicated that equilibrium in enhancement was reached 

within 40 minutes after injection. The time course of right lobe enhancement in this 

subject at POD 14 showed that 4.3 minutes after contrast injection, a peak value of 2.2 

was reached (Fig. 3.1B). The average time to peak contrast enhancement within the right 

liver varied significantly only between POD 3 and POD 14 (p < 0.05).  

The average time to peak was 2.1 ± 0.2 mins at POD 3, 3.5 ± 0.2 mins at POD 7, 

3.8 ± 0.6 mins at POD 14, and 2.8 ± 0.5 mins at POD 28 (Fig. 3.2). However, the 

magnitude and duration of the enhancement was dependent on the POD time point. Area 

under the curve (AUC) analysis showed marked increases at POD 7 and POD 28 (Fig. 

3.2B) that trended towards significance (p < 0.09). The enhancement in the control lobes 

was not significantly different between POD periods, validating the use of the left liver 

lobe as a control. Similarly, no increased enhancement of muscle tissue was observed, 

validating consistent contrast injection dose and rate (data not shown). Comparing the 

maximum relative tissue concentration change between the right and left livers lobes 
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revealed a 30% increase at POD 7, followed by a small change of 8% at POD 14, and a 

resurgent increase to 26% at POD 28 (Fig. 3.2C).  

 

New Vessel Formation Using vWF Immunostaining 

Immunostaining for insulin verified the presence of insulin- containing islets at all 

time points (Fig. 3.3A–D). von Willebrand Factor (vWF) staining for new vessels (Fig. 

3.3E–H) showed scant staining at POD 3 (Fig. 3.3E) with a larger increase in small new 

vessels in close proximity to islets at POD 7 (Fig. 3.3F). At POD 14, vessel numbers 

were decreased (Fig. 3.3G). However, by POD 28, the number of vWF positive vessels 

again increased (Fig. 3.3H). High magnification reveals typical peri-islet microvessel 

morphology at all time points (Fig. 3.3I–L).  

 

Quantification of Islet Microvasculature 

Quantification of vWF stained peri-islet microvessels showed the extent and time 

course of islet angiogenesis (Fig. 3.4). An average of 1.6 new vessels per islet was found 

at POD 3, 3.0 at POD 7, 2.3 at POD14 and 3.2 at POD 28. The number of microvessels at 

POD 7 and POD 28 were significantly increased compared to POD 3 by more than 80% 

(p < 0.05). There was no significant increase in new vessels at POD 14 as compared to 

POD 3.  

Correlation of DCE MRI with Histological Vessel Quantification 

The correlation between microvessel number and DCE MRI AUC was plotted 

and a linear least squares regression revealed a strong correlation (r2 = 0.863, p < 0.001). 

The positive slope of the regression line indicates that increases in contrast enhancement 
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are highly and significantly correlated with increases in new peri-islet microvessels (Fig. 

3.5). 

 

 

 

     

Figure 3.1. MRI visualization of murine liver lobes. (A) Representative T1-weighted 
transverse images at POD 14 of the multiple liver lobes before and after contrast 
administration. The right lobe (RL) received 800 islet equivalents (IEQ). The medial lobe 
(ML) and left lobe (LL) received no islets and were used as internal controls. 
Enhancement of various tissues including the right liver lobe occurs rapidly within the 
first five minutes, and slowly washes out. Forty minutes post-contrast, high resolution T1 
shows equilibrated enhancement. (B) Average intensity of all pixels within the RL region 
of interest (ROI) over the duration of the DCE scan. The enhancement of the RL shows 
that the peak value of 2.2 occurs 4.3 minutes after contrast delivery.  
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Figure 3.2. Temporal evolution of DCE MRI and neovascularization. (A) Averaged DCE 
curves of right liver lobes bearing islet grafts show an increase in enhancement at POD 7 
and 28. (B) Area under the curve (AUC) analysis reflects the same general pattern of 
increased enhancement at POD 7 and 28, that was not observed in the untranplanted left 
liver lobes. There was a trend to significance (ANOVA, p = 0.09) for DCE increases in 
the right lobe but no significant temporal changes were found in the left liver. (C) The 
relative change in enhancement of right versus left lobes shows maximum enhancements 
at POD 7 and 28. (p = 0.09).  
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Figure 3.3. Histological assessment of islets and new vessel formation. (A–D) Islets were 
identified by insulin immunostaining. (E–H) Adjacent sections were immunostained for 
von Willebrand Factor (vWF) to identify newly formed blood vessels. Few peri-islet 
vessels stained positive for vWF at POD 3 but there were increased vessel numbers at 
POD 7 and 28. (Scale bar = 50 μm) (I–L) High magnification reveals typical microvessel 
morphology adjacent to the transplanted islets. (Scale bar = 10 μm).  
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Figure 3.4. Time course of microvessel number. Quantification of peri-
islet microvessels at each time point reveals significantly increased 
microvessel number at POD 7 and 28 compared to POD 3 (*p < 0.05).  
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Figure 3.5. Correlation of DCE MRI and neovascular density. The number of new peri-
islet microvessels plotted against AUC values derived from DCE MRI enhancement 
curves demonstrates a significant correlation coefficient of r2 = 0.863 (p < 0.001).  
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Discussion 

To our knowledge, this is the first demonstration of DCE MRI using the FDA 

approved contrast agent Gd-DTPA to establish a timeline of vascularization in intraportal 

islet transplants. Based on this study, the authors claim the following novel findings: (1) 

non-invasive DCE MRI suggests a peak of new vessel formation in intraportal islet grafts 

at post-operative day (POD) 7, (2) immunohistochemical analysis shows a significantly 

increased number of new peri-islet vessels at POD 7 and POD 28 versus POD 3, and (3) 

DCE MRI findings strongly correlate with histology/immunohistochemistry results.  

Peak enhancement at POD 7 is consistent with the increased rate of new vessel 

formation seen histologically by us as well as others.29 Of note, the lack of von 

Willebrand staining within the islets is presumably due to an already mature though 

disrupted intra-islet donor-derived vasculature.17 By POD 14, DCE-derived enhancement 

and new vessel numbers decreased, suggestive of a mature islet vasculature. This finding 

in our non-diabetic model is consistent with the timeline of revascularization described in 

a diabetic model.30 There was a secondary elevated enhancement in the right liver again 

at POD 28. Though it was not statistically significant, the increased enhancement appears 

to be related to the process of angiogenesis as histological assessment revealed a 

concordant increase in new vessel numbers. Previous subcapsular studies27,28 found that 

similar numbers of animals resulted in significant DCE changes reflective of 

angiogenesis while in the current study there was a clear trend towards increased DCE 

that did not reach significance. A potential explanation could be that the subcapsular 

transplants were confined to focal regions in contrast to the intraportal transplants that 
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where spread out throughout the entire liver, thus making the angiogenic process more 

diffuse.  

We considered whether islet death as opposed to angiogenesis was the cause of 

increased enhancement as islet number slowly wanes with time.10,31 A decreased islet 

mass due to necrosis and/or apoptosis at POD 28 might have caused an inflammatory 

response and resulted in increased vessel permeability, leading to the increased 

enhancement seen in the right lobe. However, in another study, histological staining of 

islet grafts for apoptosis (TUNEL), necrosis (H&E), and HIF-1α revealed essentially no 

positive stain at this late POD 28 time point 32. Whether the islet neovascularization 

process is different in non-diabetic mice, whether there is a paring back of islet 

vasculature in between the two phases of angiogenesis, or whether this reduction may be 

responsible for the late second phase are all yet to be determined.  

It is currently unclear as to the basis for the bi-phasic response (DCE and vessel 

number) after intraportal transplantation. Several potential reasons include: (1) use of a 

non-diabetic model, where hyperglycemia-associated stimuli may be missing, (2) 

secondary signaling from pro-angiogenic factors might be transiently blunted by hypoxia-

inducible factors at POD 14, and (3) accelerated but unsustained angiogenesis in 

intraportal transplantation (7 days earlier than subcapsular)27,28 may potentially lead to a 

secondary local hypoxic event that further stimulates angiogenesis. However, only future 

work evaluating the molecular angiogenic profiles at these time points will be able to 

definitively resolve this interesting finding.  

The use of untransplanted liver lobes as controls helped to avoid intersubject 

variability and was justified as the dynamics of enhancement did not vary significantly 
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over time. Any effects that may have been caused by the transient (~1 min) ischemia 

from clamping of the left portal vein branches during islet transplantation were not 

evident on DCE MRI at POD 3 and beyond. One potential limitation of infusing islets 

into only the right liver lobe was the possibility that initial portal thrombosis from islet 

clusters and/or macrophages would lower the blood flow through the right lobe and 

concomitantly increase flow to the other lobes.33 Such a differential in flow could have 

been manifest as decreased delivery of contrast agent to and decreased enhancement of 

the right lobe. Activation of the extrinsic coagulation pathways may have also been 

another source of right lobe specific thrombosis.34 However, by the earliest imaging time 

point at POD 3, no right lobe thromboses were evident as right lobe enhancement was 

statistically no different than the control lobe, thus validating the lobe-specific transplant 

model.  

Another advantage of this approach is its independence from islet labeling. The 

clinical utility of MRI in islet transplantation has recently been demonstrated,35 but 

visualization of islets required labeling with superparamagnetic iron oxide (SPIO). 

Micro-positron emission tomography (PET) is another imaging modality that has been 

used to track islet survival.36-38 However, neither PET nor MRI without contrast is able to 

resolve the details of vascular structures. MRI with an experimental long circulating 

contrast agent (PGC-GdDTPA-F) has been used to monitor the vascular changes around 

native pancreatic islets.39 In earlier studies we have established a timeline for islet 

revascularization in subcapsular kidney grafts.27,28  In an attempt to visualize intraportal 

islets in vivo, islets in this study were co-cultured with Feridex overnight before 

transplantation.  However, labeling efficiency without membrane permeabilization (eg 
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electroporation, polylysine) was seen to be poor and individual transplanted islets were 

difficult to detect with T2-weighted scans (data not shown).  Thus only the T1-weighted 

scans have been reported here.  The possible confounding effect of negative contrast 

labeled islets on positive intravascular contrast detection did not appear to be an issue due 

in part to the low labeling efficiency and the fact that the negative contrast effect of 

Feridex is strongest with T2-weighted scans.  The T1 effect of Feridex did not seem to be 

significant in this study because the enhancement of transplanted and untransplated lobes 

was equal at an early time point (POD3) (Fig. 3.2) before revascularization.  The 

concentration of Feridex in islets was very low relative to the gadolinium concentration 

in the whole liver lobe.   

In this study we have shown that MRI with a clinical positive contrast agent can 

be used to follow the vascularization of syngeneic murine islets transplanted into the 

liver.  Whole lobe analysis allows this technique to be independent of the ability to 

visualize individual islets in vivo.  These studies suggest that DCE MRI might eventually 

be applicable in humans and useful in evaluating therapeutic strategies for increasing the 

efficiency of engraftment in clinical islet transplantation. 

 

Material and Methods 

Animals 

Adult female Balb/c mice weighing 25–30 g were purchased (Charles River, 

Wilmington, MA) and housed under specific pathogen-free conditions with a 12-hr 

light/dark cycle and had free access to food and water. All care and handling of animals 
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was in accordance with Loma Linda University Institutional Animal Care Use Committee 

which approved all experimental protocols.  

 

Islet Transplantation 

Islets were isolated by collagenase digestion of the pancreas and separated from 

exocrine tissue by discontinuous Ficoll density gradient centrifugation and then hand-

picked as previously described.27 Iron labeling of islets was performed by overnight co-

culture of freshly isolated islets in Feridex (Advanced Magnetics Inc., Cambridge MA)-

supplemented medium at 200 μg iron/ml. Under general inhalation anesthesia (2% 

isoflurane), a midline incision was made in recipient mice, the bowel was moved out of 

the abdominal cavity to expose the portal vein at the level of hepatic hilar to ileocecal 

veins. The left portal vein was temporarily clamped, the ileocecal vein was punctured 

with a 25-gauge needle (Becton Dickinson, NJ, USA) and 800 syngeneic islet equivalents 

(IEQ = islets with a diameter of 150 μm) were slowly injected into the right liver lobe. 

The needle was pulled out with pressure from a cotton swab to stop bleeding. Animals 

were allowed to recover for 72 hours prior to the first imaging time point.  

 

Magnetic Resonance Imaging (MRI) 

MRI was performed at 3 (n = 6), 7 (n = 4), 14 (n = 5) and 28 (n = 4) days post 

transplantation (POD). Each mouse was imaged prior to and after-contrast injection using 

a T1-weighted sequence of the entire liver. DCE MRI was performed on a slice through 

which both right and left liver lobes were visible. All MRI data were collected on a 

Bruker Advance 11.7 T MRI (8.9 cm bore) with a 3.0 cm (ID) volume radiofrequency 
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coil (Bruker Biospin, Billerica MA). Mice were lightly anesthetized using isoflurane (3% 

induction, 1% maintenance). A tail vein catheter was inserted and fastened to the tail for 

infusion of gadolinium DTPA contrast (Gd-DTPA, -BMA, Gadodiamide, 0.8 mmol/kg, 

Omniscan, Amersham Health, Princeton NJ). Body temperature was maintained at 35–37 

± 1°C using a thermostat-controlled heated water cushion placed under the mouse while 

respiration was monitored with a MR-compatible pressure transducer on a Biopac MP150 

(Goleta CA).  

A high resolution pre/post-contrast T1 composed of a TR/ TE of 837/10 ms, a 

2562 matrix, 3 cm field of view (FOV), and 4 averages for a total acquisition time of 14 

minutes. Twenty coronal slices were collected with a 0.8 mm thickness and interleaved 

by 0.8 mm. These T1 images were visually evaluated to identify the liver lobes. A single 

DCE acquisition slice was then placed through a section of liver that included the 

transplanted right lobe. The DCE sequence acquired one image slice through the liver 

using a TR/TE = 250/6.4 ms, 1282 matrix, 3 cm FOV, one average for an acquisition time 

of 32 sec/image and a total acquisition time of 32 minutes with 60 images collected. 

 

MRI Analysis 

DCE analysis utilized the temporal dynamics of contrast enhancement that were 

quantified using JIM software (Thorpe Waterville, UK). Briefly, regions of interest 

(ROIs) (right liver, left liver and muscle) were identified on the DCE images based on T1 

images (Fig. 1). Kinetic analysis used a bidirectional two-compartment model based on 

the equations of Tofts et al.26 Briefly, contrast agent that is injected into the blood pool 

extravasates into different tissues with various permeabilities. This process can be 
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described by equations that model the dynamics of contrast agent exchange back and 

forth between the blood and tissue compartments. DCE MRI tissue gadolinium 

concentration curves extracted from JIM software were normalized for inter- and intra-

animal comparisons and then averaged and curve fit. Area under the curve (AUC) values 

were calculated by integrating the area using the trapezoidal method. 

 

Histology and Immunohistochemistry 

After imaging, the liver was recovered and placed in 10% formalin for 24 hrs and 

then the right lobe(s) was embedded in paraffin. The orientation of liver tissue blocks was 

kept consistent and five μm serial sections were taken at four different levels through the 

lobes at 400 μm intervals. Sections were deparaffininized in xylene and hydrated. 

Sections were stained with Hematoxylin and Eosin (H&E) and immunohistochemistry for 

insulin and von Willebrand Factor (anti-vWF) was performed to identify the presence of 

insulin in the islets and peri-islet neovasculature.40,41 To restore antigen 

immunoreactivity for anti-vWF, tissue was treated with Proteinase K (Dako, Carpinteria, 

CA) for 2 minutes followed by blockade of endogenous peroxidase activitiy by treatment 

of 0.1% hydrogen peroxide for 30 minutes. Nonspecific binding was blocked with 10% 

goat serum for 30 minutes. Specimens were incubated with either the guinea pig anti-

insulin antibody (1:100; Dako) or rabbit anti-vWF (1:500; Abcam, Cambridge, MA) for 

90 minutes at room temperature. Biotinylated anti-rabbit IgG antibody treatment for 30 

minutes was followed by streptavidin-conjugated horseradish peroxidase treatment for an 

additional 30 minutes (Vectastain Elite ABC kit; Vector Laboratories, Burlingame, CA). 

Bound peroxidase was developed with 3-3'-diaminobenzidine (DAB: brown; Dako) for 
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vWF or aminoethylcarbozole chromogen (AEC+:red; Dako) for insulin and 

counterstained with hematoxylin.  

 

Immunohistochemical Analysis 

Insulin-postive islets were identified in liver sections by brightfield microscopy, 

images were captured (Zeiss Axio Imager A1) and islet area was manually outlined 

(ImageJ, NIH). Islets larger than 1,800 μm2 underwent microvessel quantification on 

subsequent vWF stained sections (n = 14 at POD3, n = 28 at POD 7, n = 64 at POD14, n 

= 19 at POD28). New microvessels that stained positive for vWF were counted by a 

blinded observer at higher magnification (200– 400x). Inclusion criteria for islet-specific 

microvessels were: (1) localization, vessels were in contact with or within the islet and 

(2) morphology, vessels must be less than 40 μm along the longest axis.  

 

Statistical Analysis 

Statistical evaluation including repeated measures ANOVA (RM ANOVA) was 

performed using Sigmastat software (SPPS, Chicago IL) and differences among 

experimental groups were considered significant for p < 0.05. Pairwise comparisons were 

made using the Holm-Sidak method and post-hoc t-tests. Data were expressed as the 

mean ± standard error of the mean (SEM).  
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Abstract 

Objective: This study investigates the therapeutic potential of hyperbaric oxygen 

therapy (HBO) in reducing hypoxia and improving engraftment of intraportal islet 

transplants by promoting angiogenesis.  

Methods: Diabetic BALB/c mice were transplanted with 500 syngeneic islets 

intraportally and received six consecutive twice-daily HBO treatments (n = 9; 100% 

oxygen for 1 h at 2.5 atmospheres absolute) after transplantation. Dynamic contrast-

enhanced magnetic resonance imaging (DCE MRI) was used to assess new vessel 

formation at postoperative days (POD) 3, 7, and 14. Liver tissue was recovered at the 

same time points for correlative histology, including: hematoxylin and eosin, hypoxia-

inducible factor (HIF1α), Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-

biotin nick end labeling (TUNEL), vascular endothelial growth factor (VEGF), and von 

Willebrand Factor immunohistochemistry. 

Results: HBO therapy significantly reduced HIF-1α, TUNEL and VEGF 

expression in islets at POD 7. In the non-HBO transplants, liver enhancement on 

DCEMRI peaked at POD 7 consistent with less mature vasculature but this enhancement 

was suppressed at POD 7 in the HBO-treated group. The number of new peri-islet vessels 

at POD 7 was not significantly different between HBO and control groups. 

Conclusion: These results are consistent with a hyperbaric oxygen-mediated 

decrease in hypoxia that appeared to enhance vessel maturation in the critical days 

following intraportal islet transplantation. 
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Introduction 

Advances in islet transplantation depend upon prolongation of islet graft viability 

with a robust insulin response. Although intraportal islet transplantation has been the 

most successful route clinically (1–3), approximately 60% of islets are lost following 

intraportal infusion (4, 5). Therefore, non-invasive monitoring of transplanted islets is 

critical for understanding islet health and for deciding adjuvant therapeutic strategies. 

Recently, non-invasive examination of transplanted islets has been performed by 

a variety of methods including magnetic resonance imaging (MRI) (6, 7). In addition to 

structural imaging, we have reported the effectiveness of dynamic contrast-enhanced 

MRI (DCE MRI) for assessment of angiogenesis after renal subcapsular transplantation 

of islets (8, 9). We have also demonstrated that DCE MRI can reflect islet 

neovascularization after intraportal islet transplantation (10).  

A major reason contributing to early graft loss is islet hypoxia (11, 12). 

Transplanted islets are avascular at the time of transplantation and suffer from hypoxia 

until revascularization occurs at 1–2 wk after transplantation (8, 13). In a previous study, 

we found that hypoxia-inducible factor-1α (HIF- 1α) expression was increased in islets 

after renal subcapsular transplantation in association with β cell death and decreased 

insulin production (14), which was reversible when revascularization was established. Of 

note, these transient decrements in islet function could be mitigated by hyperbaric oxygen 

(HBO) treatment (14). HBO has been used therapeutically in various other clinical and 

experimental conditions, particularly those associated with increased hypoxia.  

In the present study, we focus on intraportal islet transplantation and the effect of 

HBO treatment in reducing islet hypoxia and apoptosis, improving islet graft function 
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and its effectiveness to enhance graft neovascularization. 

 

Materials and methods 

Animals 

BALB/c female mice (22–27 g, Charles River Laboratories. Inc., Boston, MA, 

USA) were used as both donors and recipients. The mice were housed under pathogen-

free conditions with a 12-h light cycle and free access to food and water. All animal care 

and treatment procedures were approved by the Institutional Animal Care Use 

Committee. 

 

Induction of Diabetes in Recipient Mice 

Streptozotocin (STZ, 200 mg/kg/mouse, Sigma- Aldrich, St Lois, MO, USA) was 

injected intraperitoneally and blood glucose levels were measured by Accu-Chek 

Advantage glucose monitors (Roche, Indianapolis, IN, USA). Diabetes was diagnosed 

when the blood glucose level was greater than 13.8 mmol/L. 

 

Islet Isolation 

Murine islets were isolated by collagenase (collagenase V, Sigma-Aldrich) 

digestion, separation by Ficoll (Sigma-Aldrich) discontinuous gradients and purification 

as previously described (15). 

 

Islet Function and Viability 

Islets for in vitro assays (n = 10 islets) were incubated for 2 h in RPMI 1640 

medium containing 3.3 mmol/L glucose (preincubation). Low glucose (3.3 mmol/L) 
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incubation for 30 min was then followed by high glucose (16.7 mmol/L) incubation for 

an additional 30 min. Supernatants were collected after each incubation and insulin 

content was extracted from the islets with acid ethanol. Insulin release and insulin content 

were measured using an insulin enzymelinked immunosorbent assay (ELISA) kit 

(Linco,MO, USA) and the stimulation index (SI) was calculated by dividing the insulin 

released in high glucose by insulin released in low glucose. The percentage of viable 

islets were examined by staining 50 islets with SYTO® green (Invitrogen, Carlsbad, CA, 

USA) and ethidium bromide (Sigma-Aldrich), calculating the viability ratio (viable islet 

cells/(viable islet cells + dead islet cells)× 100) of each islet using Image J (v1.37, 

National Institutes of Health, Bethesda, MD, USA) and calculating the average (16). 

 

Islet Transplantation and Hyperbaric Oxygen (HBO) Treatment 

Cultured syngeneic islets 500 islet equivalents, (IEQ = 150 μm) were transplanted 

via the portal vein into diabetic mice (17). IEQ’s were calculated by microscopically 

measuring islet size where we collected 133–200 μm sized islets but rejected islets 

greater than 267 μm in size (18). We considered 500 IEQ a marginal islet mass for 

restoring normoglycemia based on our previous results that showed only 20% of mice 

achieving normoglycemia with 500 IEQ whereas 75% of the mice with 800 IEQ reached 

normoglycemia (19). Islet transplanted mice were divided into two groups: (i) no HBO 

treatment (controls: n = 10), and (ii) HBO treatment (n = 9). HBO treatment with 100% 

oxygen for 1 h at 2.5 atmospheres absolute (ATA) was initiated immediately 

posttransplantation and then twice daily for a total of six exposures (0, 12, 24, 36, 48, and 

60 h). This HBO protocol was based on our previous study (14). Mice were placed in a 
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hyperbaric chamber (Model 1300B, Sechrist Industries In., Anaheim, CA, USA) with a 

compression rate of 5 psi/min (psi: pound-force per square inch, 1 ATA = 14.223 psi) and 

oxygen flow at a rate of 22 L/min. Accumulation of CO2 was prevented by calcium 

carbonate crystals. No complications because of HBO treatment were observed. 

 

MRI Acquisition 

MRI was conducted at postoperative days (POD) 3, 7, and 14 according to our 

previously published methods (8). Briefly, mice were lightly anesthetized using 

isoflurane and a tail vein catheter was inserted for infusion of gadolinium DTPA contrast 

[Gadodiamide hydrate (Gd-DTPA-BMA), 0.1 mmol/kg body weight, Omniscan, 

Amersham Health, Princeton, NJ, USA]. Body temperature was maintained at 36 ± 1◦C 

and respiration was monitored with an MR-compatible pressure transducer (Biopac 

MP150, Goleta, CA, USA). Imaging was performed on a Bruker Advance 11.7 T MRI 

(Bruker Biospin, Billerica, MA, USA) with a 3.0 cm internal diameter (ID) volume 

radiofrequency coil. The pre/postcontrast T1 was composed of a repetition time/echo 

time (TR/TE) of 832/10 ms, a 2562 matrix, 3-cm field of view (FOV), and two averages 

for a total acquisition time of 14 min. The standard T1 sequences collected 20 coronal 

slices that were 0.75-mm thick and interleaved by 0.75 mm. The DCE sequence was a 

rapid image acquisition that acquired one image slice through the right and left liver lobes 

with the following parameters: TR/TE = 250/6.4 ms, 1282 matrix, 3-cm FOV, one 

average for an acquisition time of 32 s/image and a total acquisition time of 32 min with 

60 images collected. The contrast agent was injected 2 min after the start of the DCE 

MRI. 
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MRI Analysis 

DCE analysis utilized the temporal dynamics of contrast enhancement that were 

quantified using jim software (Xinapse Systems, Thorpe Waterville, Northamptonshire, 

UK) as previously described (8). Briefly, regions of interest (20) (right liver, left liver, 

and muscle) were identified on the DCE images and kinetic analysis used a bi-directional 

two compartment model (time and area of enhancement) based on the equations of Tofts 

(21). DCE MRI tissue Gd concentration curves were extracted and normalized for inter- 

and intra-animal comparisons and then curve fit. Areas under the curve (AUC) values 

were calculated by integrating using the trapezoidal method using SigmaStat (Systat 

Software, Inc. Chicago, IL, USA). The AUC ratio at POD 7 and 14 vs. POD 3 [= (AUC 

at POD 7/AUC at POD 3) and (AUC at POD 14/AUC at POD 3)] were used to compare 

HBO and control groups. 

 

Histological Assessment 

Liver specimens were acquired from four, five, and six mice at POD 3, 7, and 14, 

respectively. The fixed livers were embedded in paraffin and cut in 5-μm thick sections. 

Specimens were stained for hematoxylin and eosin (H & E) for cellular changes, insulin 

immunohistochemistry to identify islets, HIF-1α to determine hypoxia, vascular 

endothelial growth factor (VEGF) and von Willebrand Factor (vWF) for newly formed 

blood vessels. For vWF staining, specimens were treated with Proteinase K (Dako, 

Carpiteria, CA, USA). Primary antibodies were guinea pig anti-insulin antibody (Dako) 

diluted with 1:100, goat anti-HIF-1α antibody (Santa Cruz Inc., Santa Cruz, CA, USA) 

diluted with 1:25, goat anti-VEGF antibody Santa Cruz Inc.) diluted with 1:50 and rabbit 
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anti-vWF (Abcam, Cambridge, MA, USA) diluted with 1:500. After incubating with 

biotinylated secondary Immunoglobulin G antibody (Vector Laboratories, Burlingame, 

CA, USA and Santa Cruz Inc.), a peroxidase substrate solution containing 3,3’- 

diaminobenzidine (DAB, brown for HIF-1α, Dako) or aminoethylcarbazol (AEC)+ (Red 

for insulin, Dako) was used for visualization and counterstained with hematoxylin (14). 

Apoptosis was detected by the Terminal deoxynucleotidyl transferase (TdT)-mediated 

dUTP-biotin nick end labeling (TUNEL) method using an in situ apoptosis detection kit 

(Promega, Madison, WI, USA). Sections were treated with proteinase K and incubated 

with TdT enzyme for 60 min at 37°C. After washing in PBS, the sections were further 

incubated with streptavidin horseradish peroxidase (HRP) solution and visualized with 

DAB (14).  

Islet cells and surrounding liver tissue were assessed for necrosis (defined as 

destruction of cell structure with granulation, H & E), apoptosis (TUNEL), and hypoxia 

(HIF-1α). Expression of VEGF in islet cells was also examined. Islet cell apoptosis was 

expressed as the percentage of TUNEL positive islets relative to total islets. The 

proportion of hypoxic islet cells was expressed as percentage of HIF-1α positive cells in 

an islet. Expression of VEGF in islet cells was indicated as percentage of VEGF positive 

cells in an islet. Necrotic islet cells, hypoxia, apoptosis, and necrosis of the surrounding 

liver tissue were microscopically scored as zero (absent) or one (present). Newly formed 

vessels around islets were calculated by counting vWF-positive lumens (brown) adjacent 

to the islets. The number of islets at POD 3, 7, and 14 were 67 (from 2 mice), 51 (from 3 

mice) and 33 (from 3 mice) in HBO group, respectively, and 50 (from 2 mice), 56 (from 

2 mice), and 75 (from 3 mice) in the control group at POD 3, 7, and 14. 
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Blood Glucose, Percentage and Day of Normoglycemia, Serum Insulin 
Levels and Glucose Tolerance Test (GTT) 

Blood glucose was measured at POD 0 (pretransplant) and POD1, 2, 3, 5, 7, 10, 

and 14. Serum insulin and glucose tolerance test (GTT) were measured at POD 7 and 14. 

Days to and percentage of normoglycemia were calculated using a blood glucose level of 

≤8.3 mmol/L as normoglycemia. Intraperitoneal GTT were performed at POD 7 and 14 

by overnight fasting for 10 h and then injecting mice with a 2.0 g/kg body weight of 

glucose solution followed by tail vein blood samples at 0, 15, 30, 60, 90, and 120 min 

after injection. Glucose level change was expressed as area under the curve (AUC: 

mmol/L X min). Serum insulin and C-peptide levels were not measured after glucose 

stimulation. 

Blood glucose levels were measured by Accu-Chek Advantage glucose monitors 

and serum insulin was measured with a rat/mouse insulin ELISA kit. 

 

Statistical analysis 

All the data were expressed as mean ± standard error of the mean. Analysis of 

variance was performed for statistical analysis. Significance was designated at p < 0.05. 

 

Results 

Islet Function 

In vitro function of isolated islets demonstrated excellent viability (91.4 ± 3.4 %: 

n = 5 isolations) with a mean SI of 11.4 ± 0.3 and mean insulin content of 26.3 ± 0.4 

ng/islet. 
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DCE MRI Findings 

A sample time sequence of images from a typical DCE scan illustrates the right 

(transplanted) and left (control) liver lobes (Fig. 4.1). Peak enhancement in the liver was 

seen 4 min after contrast injection, with a slow washout of contrast agent where all 

tissues showed some residual enhancement at the end of the 30-min scan. The time to 

peak enhancement was significantly earlier in the HBO group, especially at POD 14 

(HBO vs. Control: 4.7 ± 0.2 vs. 5.2 ± 0.2 min at POD 3 (p = 0.07), 4.8 ± 0.3 vs. 5.4 ± 0.7 

min at POD 7 (p = 0.22), 4.5 ± 0.1 vs. 5.5 ± 0.2 min at POD 14 (p = 0.002)). Normalized 

temporal enhancement curves between the HBO and control groups at POD 3, 7, and 14 

revealed no significant differences between the experimental groups at POD 3 and 14 

(Fig. 4.2A, C). However at POD 7, the DCE in the HBO animals was reduced compared 

to the control group (Fig. 4.2B). The DCE ratio at POD 7 compared to POD 3 was 

significantly (p = 0.03) decreased in the HBO group (Fig. 4.2D) consistent with 

decreased leakage of the contrast agent at POD 7. 

 

Evaluation of Vessels 

Some islets associated with vWF-positive staining were found to occlude the 

portal vein (Fig. 4.3A) but very few newly formed vessels (vWF positive) around islets 

were observed at POD 3. The number of vWF stained cells adjacent to islets increased 

significantly at POD 7 and 14 (Fig. 4.3B, C).  
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Figure 4.1. Dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) 
enhancement after intraportal liver islet transplantation. Liver DCE MRI in an islet 
transplanted mouse at POD 7 after HBO therapy demonstrates enhancement after 
gadolinium (Gd) injection. Liver images prior (0 min) and after (1, 2, 4, 20, and 30 min) 
Gd injection demonstrated peak enhancement at 4 min. The increased concentration of 
contrast agent in the intravascular space can be visualized by enhancement of the portal 
vein (arrows).  
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Figure 4.2. Quantification of dynamic contrast-enhanced magnetic resonance imaging. 
(A–C) Normalized DCE enhancement curves at POD 3 (A), 7 (B), and 14 (C). HBO 
inhibited the increase in contrast enhancement found in controls (no HBO) at POD 7. (D) 
The DCE ratio at POD 7 or 14 compared to POD 3 revealed a significant decrease in 
enhancement at POD 7 after HBO therapy. *p < 0.05. 
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Figure 4.3. Islets stained with von Willebrand Factor (vWF) for new vessel formation. At 
POD 3 islets (dotted line) were stained with vWF (indicated as arrow) but there were few 
newly formed vessels (A). At POD 3 vWF stained areas were considered as coagula. 
Vessel formation around islets (arrows) were more prominent at POD 7 (B) and 14 (C) 
(see expanded insets). Figures are from control mice. (D) Quantified vWF staining was 
significantly increased at POD 7 and 14 compared to POD 3 in both groups (*p < 0.0001 
in HBO group and **p < 0.0001 in control group, Dunnet test). Calibration bars = 100 
μm. 
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The average number of new vessels seen associated with islets were 0.5 ± 0.1 in the HBO 

and 0.2 ± 0.1 in the control group at POD 3 (Fig. 4.3D) which was significantly increased 

in both groups at POD 7 and 14 (p < 0.0001, Fig. 4.3B–D). There were no significant 

differences in the number of newly formed vessels between the HBO and control groups 

at any time point. 

 

Histological Findings on Islets and Liver Tissue 

Transplanted islets and surrounding liver tissue showed signs of severe hypoxia 

(HIF-1α positive), apoptosis (TUNEL positive) and necrosis at POD 3 that was 

significantly decreased by POD 7 in both groups (Fig. 4.4). POD 14 showed a return to 

normoxia in islets and liver tissue with no apoptosis or necrosis (Fig. 4.4). VEGF was 

also expressed prominently at POD 3 but was reduced at POD 7 and 14 (Fig. 4.4).  

At POD 3, the percentage of islet cells that stained positive for HIF-1α was 42.6 ± 

6.1% in HBO (n = 67 islets from two mice) and 53.2 ± 7.1% in control groups (n = 50 

islets from two mice). There was a significant decrement in islet hypoxia after HBO 

compared to the non-HBO control group at POD 7 (0.4 ± 0.2 vs. 2.1 ± 0.7%: p = 0.02, 

Figs 4.4 and 4.5A). There were also fewer apoptotic islet cells at POD 3 in the HBO 

group (43.3 ± 6.3%, n = 67 islets) compared to the control group (51.5 ± 7.0%, n = 50 

islets). The number of apoptotic islet cells was significantly lower at POD 7 in the HBO 

group (1.7 ± 0.7%, n = 51 islets) compared to 5.7 ± 1.5% in the control group (n = 56 

islets) (p = 0.01) (Figs 4.4 and 4.5B). VEGF was also prominently diminished in HBO 

group compared with the non-HBO group at POD 7 (0.01 ± 0.01 vs. 4.7 ± 1.9%: p = 
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0.01, Fig. 4.5C). Necrotic islets were observed at POD 3 but not at POD 7 and 14 (data 

not shown) but there was no significant difference between groups.  

 

 

Figure 4.4. Histological findings at POD 3, 7, and 14. Insulin staining revealed the 
location of the islets in liver tissues. Necrosis (H & E), hypoxia (HIF-1α) and apoptosis 
(TUNEL) of the islets and surrounding liver tissues were prominent at POD 3 but 
decreased after POD 7. Vascular endothelial growth factor (VEGF) was also prominent at 
POD 3 and decrement at POD7 and 14. Figures are from control mice. Arrows indicate 
apoptotic cells. Calibration bar = 100 μm.  
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Figure 4.5. Quantification of histological assessment at POD 7. (A) Hypoxic islet cells 
(HIF-1α positive staining) were significantly decreased in animals undergoing HBO 
therapy. (*p = 0.02). (B) Apoptotic islet cells (TUNEL positive) were also significantly 
decreased after transplantation of islets in mice that underwent HBO therapy. (*p = 0.01). 
(C) Vascular endothelial growth factor (VEGF) positive islet cells were prominently 
decreased in HBO group at POD 7 (*p = 0.01). Decreased HIF-1α may contribute to a 
decrease in VEGF expression. 
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Liver hypoxia assessed by HIF-1α staining was transiently elevated at POD 3 and was 

zero at POD 7 and 14 in both groups (p < 0.0001).  A similar pattern was observed for 

necrosis (H & E) where the HBO group had some TUNEL positive staining at POD 3 

that disappeared at POD 7 and 14, with no significant difference between HBO and 

control groups (data not shown). The proportion of apoptotic liver tissue in both groups 

was over 60% at POD 3 and returned to zero by POD7 (p < 0.0001).  

In summary, over half of the total islets and the surrounding liver tissue were 

apoptotic and necrotic at POD 3 but both dramatically decreased by POD 7 in the HBO-

treated animals compared to non-HBO controls. There was a significant improvement in 

HBO group at POD 7 in islet hypoxia and apoptosis and a related decrement in VEGF 

expression in the HBO group at POD 7. 

 

Blood Glucose, Serum Insulin, and GTT 

The serum insulin and GTT data were acquired from all mice included in this 

study. Serum insulin levels were significantly higher (Fig. 4.6A; p = 0.04) and GTT was 

significantly lower in HBO-treated mice at POD 7 (Fig. 4.6B; p = 0.04) after HBO 

treatment compared to controls. However, there were no significant differences in serum 

insulin and GTT at POD 14 (data not shown), and no significant differences in blood 

glucose levels between the two groups. Normoglycemia was achieved in 44.4% (4/9 

mice) of the HBO and 30% (3/10 mice) of the control group. Days to normoglycemia 

took an average of 5.3 ± 1.8 d in the HBO group and 6.3 ± 5.3 d in the control group (p = 

0.77).  
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Figure 4.6. HBO improves functional outcomes after intraportal islet transplant. (A) A 
significant increase in serum insulin levels was observed in HBO-treated animals at 
POD7. (*p = 0.04). (B) Glucose tolerance test (GTT) was also significantly improved 
after HBO therapy at POD 7. (*p = 0.04). The GTT insert illustrates a typical time course 
response. 
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Discussion 

HBO is a therapeutic option for clinical and experimental conditions associated 

with increased or acute hypoxia. The mechanisms underlying the therapeutic 

effectiveness of HBO appear to be related to a reduction in tissue hypoxia, decreased 

levels of cytokines (TNF-α or IL-1), reduction in the affinity of major histocompatibility 

complex (MHC) class I specific antibodies, and inhibition of apoptosis (22).  

This study on the therapeutic effectiveness of HBO after islet transplants in 

diabetic mice found: (i) a significant decrease in contrast enhancement within the liver of 

the HBO group, (ii) a significant decrease in islet hypoxia and apoptosis after HBO 

therapy compared to controls, (iii) a significant decrease in VEGF expression at POD 7, 

(iv) that serum insulin production was twofold higher in HBO-treated mice at POD 7, and 

5) improved glucose tolerance in HBO-treated mice at POD 7. A significant increase in 

neovascularization was seen in both HBO and non-HBO groups at POD 7 and 14, despite 

lack of significant difference between the two groups. In this study, HBO therapy 

decreased hypoxia and apoptosis and ultimately lead to improved islet function. There 

was no significant difference in histologically detected neovascularization between the 

HBO and control groups.  Our lab has previously shown the beneficial effects of HBO 

treatment on subcapsular islet grafts (14), but knowledge of the HBO effect on intraportal 

islets as described by the authors of this study is new. 

The study evaluated the therapeutic potential of HBO treatment after intraportal 

islet transplantation on neovascularization. We (8, 9) have previously shown that DCE 

MRI can provide an indirect measure of neovascularization in a variety of animal models. 

DCE MRI showed peak enhancement at POD7 in control animals, consistent with islet 
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angiogenesis (10, 23). However, this increased angiogenesis was not observed after HBO 

therapy at POD 7. Our histological data showed decreased HIF-1α and VEGF staining in 

the HBO group and no differences between HBO and control groups in the number of 

peri-islet vWF-positive vessels. These findings would suggest that HBO therapy results 

in a less permeable peri-islet neovasculature at POD 7 with no net change in the number 

of new vessels. More importantly, earlier new vessel maturation would result in 

decreased hypoxia and improved functional outcomes after islet transplant in diabetic 

mice (see below).  

One possible explanation is that a permeable neovasculature is a result of 

increased VEGF, in part because of upregulation of HIF-1α, as seen in our control 

animals (24–26). It is well known that HIF-1α upregulates VEGF under ischemic 

conditions and VEGF contributes to a leaky and destabilized vasculature (27, 28). 

However, previous reports have shown that HBO reduces VEGF production in a mouse 

ischemic hind limb model (29). Thus a potential mechanism underlying our results is that 

HBO-related HIF-1α reduction is followed by a strong reduction in VEGF expression. 

This cascade then leads to decreased permeability in newly formed vessels adjacent to 

transplanted islets which results in reduced enhancement of DCE at POD 7. In support of 

this proposed mechanism is a recent report which demonstrated that increased VEGF 

production delays vessel maturation (27). Thus, our data would suggest that decrements 

in hypoxia and subsequent decreases inVEGFaccelerate the development of mature 

vessels, which then results in decreased contrast extravasation (DCE MRI).  

HBO therapy led to a significant decrease in islet hypoxia and apoptosis at POD 7 

that lead to a significant increase in serum insulin production and improved glucose 
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tolerance. Thus, HBO effectively rescued a subset of transplanted islets from hypoxic 

injury and apoptosis and as a consequence improved their function. We noted that the 

effects of HBO therapy on intraportal islets in our current study did not appear to be as 

robust as those previously reported after renal subcapsular transplants (14). These 

differences could be related to the vascular (intraportal) route which is known to elicit an 

instant blood-mediated inflammatory reaction (IBMIR) (30). IBMIR is characterized by 

activation of platelets and complement when islets are exposed to fresh blood (30). Islet 

damage related to IBMIR can be detected within an hour (31), thus potentially leading to 

significant islet damage prior to or during the HBO procedure. Therefore, HBO 

effectiveness in protecting transplanted islets could be enhanced by the simultaneous 

treatment of IBMIR. Furthermore, recent reports suggest that embolization of the portal 

vein by the islets themselves could be a major cause of early islet graft loss (4, 18). In our 

experience (32), we detected near total obstruction of the portal vein with 90% of the 

surrounding liver tissue exhibiting hypoxia/apoptosis at early posttransplant time points. 

Islet damage caused by embolization is presumably related to local liver tissue ischemia 

(4). This local ischemia is also likely reduced in HBO-treated animals providing a healthy 

environment for the transplanted islets to generate new vasculature to support their 

survival and function. To reduce the influence of embolization, smaller islets and a larger 

animal model could also be used thereby improving the efficacy of HBO therapy. 

Moreover, longer courses of HBO treatment (for example, 7–14 d) might be more 

effective in promoting islet function. HBO therapy prior to transplantation should also be 

considered as this may induce endothelial progenitor stem cell differentiation into 

vascular endothelial cells, further preventing ischemia and improving glycemic control. 
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Actually, some studies revealed that HBO stimulates endothelial progenitor stem cells in 

animal models of ischemia (25, 33).  

In conclusion, our data support the potential effectiveness of HBO treatment 

following intraportal islet transplantation in maintaining a more receptive healthy liver 

environment and improving islet function. There is a possibility that intensive more 

prolonged HBO would further improve therapeutic outcome. Non-invasive imaging, such 

as DCE MRI can monitor neovascularization and may indicate enhanced vascular 

maturation after therapeutic interventions.  
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CHAPTER FIVE 

DISCUSSION 

 

In this series of studies, we were able to successfully meet our three specific aims 

with DCE MRI.  Specifically, DCE MRI non-invasively established a time course of islet 

angiogenesis in subcapsular and intraportal islet grafts consistent with previous reports, 

and assessed the effect of a pro-angiogenic hyperbaric oxygen therapy.  While these 

results are promising, there are limitations in the current imaging protocol that will need 

to be addressed before moving forward to pre-clinical large animal and clinical human 

trials. 

 

Limitations 

One limitation of the current DCE MRI protocol is that it is less sensitive to 

intraportal islet angiogenesis (Fig. 3.2) than subcapsular islet angiogenesis (Fig. 2.3).  

This is related in part to the dispersed nature of the intraportal islets, and the well 

perfused nature of the background liver parenchyma.  The conventional two-

compartment Tofts model used for DCE MRI analysis (Tofts 1991) takes into account 

permeability between only the intravascular and extracellular spaces.  This model is 

suitable for analysis of large aggregates of cells such as tumors and subcapsular islet 

grafts, but may be suboptimal for intraportal grafts as the unique hepatic vasculature is 

comprised of both arterial and portal blood supplies.  DCE MRI analysis of intraportal 

islet grafts using a dual-input one compartment model (Materne 2002, Baxter 2009) may 
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yield more reliable estimates of vascular permeability and thus vessel maturity.  Another 

liver-specific dual input five compartment DCE MRI has also been more recently 

described (Mescam 2009).  Another limitation of the Tofts model is that it may over- or 

under-estimate absolute capillary permeability depending on capillary diameter (Correia 

Carreira 2011).  For our purposes however, accurate absolute quantification is less of a 

concern than tracking relative changes in permeability over time. 

 All DCE MRI models require an arterial input function (AIF) that is the time 

course of contrast concentration in the intravascular space.  These values can be hard to 

measure accurately, especially when imaging the liver, which is susceptible to respiratory 

motion artifacts.  Additionally, there is an inherent tradeoff between minimizing partial 

volume effects of the aorta region of interest by increasing spatial resolution but at the 

expense of decreasing temporal resolution and potentially missing the peak of contrast 

enhancement.  One way to address this issue is to calculate an AIF based on the 

enhancement of a known and well-characterized reference tissue.  By assigning literature 

values for various properties of the reference tissue, a presumptive AIF can be calculated 

without having to measure it directly (Yankeelov 2005, Yankeelov 2006, Yankeelov 

2007, Yankeelov 2008).  Reference region modeling is also robust against poor temporal 

sampling resolution (Planey 2009).  Muscle is a good candidate reference tissue in future 

animal and human studies.   

It is important to note that the use of gadolinium based contrast agents is generally 

well tolerated and safe, but administration in individuals with kidney failure can result in 

nephrogenic systemic fibrosis (NSF), which involves fibrosis of the skin, joints, eyes, and 

in severe cases, internal organs.  As diabetic nephropathy is a common complication of 
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diabetes, confirming adequate renal function (glomerular filtration rate >60 ml/min) 

(Kanal 2007) before imaging will be necessary. 

 

Future Directions 

In addition to hyperbaric oxygen therapy, there are other pro-angiogenic strategies 

that are under active investigation.  One exciting avenue is the use of co-transplanted 

cells to stimulate angiogenesis.  Our laboratory was the first to co-transplant bone 

marrow cells with islets (Sakata 2010).  Preliminary images from those animals were 

unable to undergo DCE MRI analysis due to the confounding effect of negative contrast 

from the large number of bone marrow cells that were Feridex-labeled for histological 

assessment (unpublished data).  Subsequent studies by others have shown that 

mesenchymal stem cells (MSC) are the specific bone marrow-derived cell population 

responsible for the pro-angiogenic effect (Ito 2010).  MSC co-transplantation may be 

made even more effective by creating composite stem cell coated islets (Duprez 2011) 

that are particularly well suited to intraportal transplantation.  Since our intraportal DCE 

MRI protocol does not depend on islet labeling, we expect it to be sensitive to the 

potential angiogenic differences between such MSC coated and uncoated islets.  

Bioengineering approaches to shield cell surfaces from immune recognition (Nilsson 

2010) and cell surface modification with growth factors (Cabric 2010) are other 

promising pro-angiogenic strategies that are equally amenable to non-invasive imaging. 

More effective sites of transplantation are also being sought.  Transplantation into 

muscle has been shown in animal models (Christoffersson 2010) as well as humans 

(Rafael 2008).  Since intramuscular islets are closer to the surface of the body, they may 
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be very good candidates for contrast imaging, which can be done with high sensitivity 

surface coils.  If the islets are in the muscles of the arms or legs, there is even the 

possibility of making perfusion measurements by arterial spin labeling, which would 

obviate the need for exogenous contrast administration.  Other transplantation sites 

include some that offer potentially good MR signal such as the submandibular gland 

(Sandberg 2011) and small intestine (Kakabadze 2011) and some sites that have less 

signal such as bone marrow (Salazar-Banuelos 2008). 

The progress made in just the last decade of islet transplantation has been 

encouraging, but they have also exposed all the challenges that remain, and highlight the 

need for further research into realizing the promise of one day finding a cure for type 1 

diabetes.  
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