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Chronic Hypoxia Induces Epigenetic Modifications In The 
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 Heart disease remains the leading cause of death worldwide.   As a result of 

studies done by Barker and associates, our awareness of the significance of stress during 

gestation as a risk factor for heart diseases has expanded.  We now know that events in 

utero can significantly alter gene expression patterns in heart tissue leading to increase 

susceptibility to ischemia reperfusion injury in adulthood.   The focus of this project was 

to elucidate the role of chronic hypoxia in the programming of the cardioprotective gene, 

Protein Kinase C epsilon (PKCε) in fetal rat heart.  We used an animal, organ base, and 

cell culturing with the rat embryonic cell line H9c2 to determine the molecular events 

underpinning the heightened sensitivity to ischemia reperfusion injury of adult offspring 

exposed to chronic hypoxia in utero.  We determined that chronic hypoxia directly 

represses PKCε expression through increase methylation of CpG dinucleotides for two 

SP1 binding sites located at proximal region of the PKCε promoter. Previous studies 

using reporter gene assays concluded the region encompassing both SP1 binding sites 

played a significant role in the activity of PKCε promoter. Chromatin 

immunoprecipitation (ChIP) assays further verified the functional significance of 

methylation for both Sp1 sites in reducing SP1 protein binding.   In the presence of the 

DNA methylation inhibitor, 5-aza-2-deoxycytidine, binding of SP1 to PKCε promoter, 
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promoter methylation, and PKCε protein and mRNA were restored to control levels.  

Connecting epigenetics to chronic hypoxia in utero led us to further investigate the 

underlining mechanism of hypoxia-induced methylation of PKCε promoter.  The 

dominant pathway of cellular adaptation to hypoxic stress involves the stabilization of the 

Hypoxia-Inducible-Factor 1 alpha (HIF-1α).  We found blockade of nuclear accumulation 

of HIF-1α did not restore PKCε mRNA to control values.  Next, we found the ROS 

Scavengers N-acetylcysteine and 4-hydroxy Tempo protect against hypoxia-induced 

repression of PKCε gene activity, which linked oxidative stress to PKCε repression in 

fetal hearts.  This project has demonstrated that chronic hypoxia directly regulates PKCε 

gene expression through ROS mediated epigenetic repression of PKCε promoter, which 

leads to long term programming of the fetal heart. 
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CHAPTER 1 

BACKGROUND 

 
Introduction 

 According to the World Health Organization (WHO), cardiovascular disease, 

namely, ischemic heart disease and cerebral vascular disease are the leading cause of 

death worldwide (WHO, 2004). For many years, environmental, heredity and lifestyle 

factors were seen as major contributors to cardiovascular diseases.   While changes in 

adult dietary practices and lifestyles in recent years have contributed to the increase in 

incidence of coronary heart disease, it does not predict who will or will not develop 

cardiovascular disease.  Recent epidemiological studies have correlated an adverse 

intrauterine environment with an increase predisposition for developing cardiovascular-

related illnesses in adulthood. Most notably, published studies by Barker and colleagues 

showed that regions in England with higher infant mortality rates and low birthweight 

had the highest incidence of coronary heart disease decades later (Barker et al., 1986 & 

1989). Similarly, The Dutch Family Cohort study found that offspring of pregnant 

women exposed to the Dutch famine of 1944 had increased rates of cardiovascular 

disease (Roseboom, 2001). These studies led to what is known as the Fetal Origins 

hypothesis, which proposes that adaptations made by the fetus in response to 

undernutrition causes permanent changes in tissue structure and function. This 

programming in utero predisposes the fetus to cardiovascular disease later in life (Lucas, 

1991; Barker DJ 1990, 1994 & 1997).  In utero stress has been expanded to include 
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stressors such as prenatal exposure of hypoxia, nicotine, drug use, elevated steroid 

hormones, and high altitude (Zhang, 2005; Meyer, 2007; Seckl, 2008; Mao, 2010).  The 

focus of this study was to examine the initial molecular events that occur in response to 

chronic hypoxia in the developing heart that predispose offspring to increased 

susceptibility to ischemic reperfusion injury later in life. 

 

Hypoxia 

 Oxygen is an essential substrate for cell survival.  It acts as a final electron acceptor 

in the electron transport chain (ETC). In humans, oxygen tension varies from 100 mm Hg 

in alveolar arterioles to between 40 and 20 mm Hg in systemic tissues (Webster and 

Abela 2007). When oxygen is scarce, the ETC is compromised.  Since the ETC is 

coupled to oxidative phosphorylation, ATP (Adensosine Triphosphate) levels drop 

significantly creating energy disparities within the cell. Hypoxia ensues when the oxygen 

tension is lower than physiological levels and the demand for oxygen exceeds the supply 

available.  Hypoxia in non-reproductive tissues, as identified by direct measurement of 

pO2 values and/or significant induction of hypoxia-inducible genes, suggest oxygen 

tension between ~20 and ~7 mm Hg as physiological hypoxia [Gross et al. 1995; Raleigh 

et al. 1998; Fueck 2009). Researchers commonly use between 1% (~7 mm Hg) and 3% 

(~21 mm Hg) oxygen in cell culturing to mimic hypoxia (Ivanovic, 2009). For in vivo 

studies, animals are typically subjected to between 8% and 12% oxygen in order to 

significantly reduce arterial pO2 to comparable values (Lawrence et al. 2008; Reynolds et 

al. 1996; Mitchell and Van Kainen, 1992). By comparison, fetal arterial blood pO2 ranges 

from ~30 to ~20 mm Hg (Fisher, 2007), suggesting normal fetal oxygen is close to 
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physiological hypoxia in adult tissues.   This implies that fetal development exists in a 

state of relative hypoxia as compared to adult oxygen tension, and also that fetal tissues 

have a lower threshold to reach a state of oxygen insufficiency.  Interestingly, short bouts 

of hypoxia naturally occur during gestation when the uterine artery contracts or becomes 

compressed, which reduces the amount of oxygen delivered to the placenta.  

Additionally, since the placenta serves as the major interface between mother and fetus, 

its development and oxygen consumption also influences fetal oxygen supply. Changes in 

maternal pO2 and/or abnormal placental development or metabolism may reduce fetal 

arterial pO2 and result in fetal hypoxia (Jensen et al. 1999; Myatt, 2006). Under hypoxic 

conditions, the fetus compensates by altering fetal blood flow away from peripheral 

tissues to vital organs; shifting from aerobic to greater utilization of anaerobic energy 

pathways; and the induction of hypoxia-dependent genes necessary for survival in a low 

oxygen environment. 

 Cardiogenesis involves the formation of the embryonic heart. Once the heart is 

formed, it undergoes a stage of rapid growth and maturation during fetal development. 

The formation and subsequent maturation of the heart are tightly regulated processes in 

which oxygen tension plays a vital role.  Interestingly, the fetal heart is more resistant to 

hypoxia induced cell death than the adult heart due to its enhanced ability to increase 

glycolytic flux (Ascuitto and Ross-Ascuitto, 1996). There is increasing evidence 

suggesting that low oxygen tension in the fetus is essential for normal heart formation 

and maturation. The expressions of hypoxia-induced genes, such as hypoxia inducible 

factor 1 (HIF-1) and vascular endothelial growth factor (VEGF), correlate with 

angiogenesis, vasculogenesis and fetal heart remodeling [Compernolle et al. 2003; 
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Sugishita et al. 2004a).  Although physiologically “normal” hypoxia (lower oxygen 

tension in the fetus as compared with the adult) may be beneficial in normal heart 

development, pathophysiological hypoxia (lower than normal fetal oxygen tension) is 

associated with significant adverse effects that can lead to changes in structure, function, 

and gene expression in fetal hearts, which may persist throughout adulthood (See Figure 

1). The role of hypoxia in fetal heart will be discussed in more detail later. 

 Beyond fetal development, hypoxia has pathophysiological consequences in adults.  

For example, when arteriole blood flow is occluded from plaque accumulation, emboli, 

or vasospasms, the tissue supplied by that vessel become ischemic. Lower perfusion 

significantly reduces the amount of oxygen, glucose and other essential materials found 

in blood for that tissue (Reneman, 1998). Thus, extended periods of oxygen deprivation 

combined with inadequate nutrients may result in tissue death. Tumorigenesis is a further 

example of a pathophysiological situation where hypoxia plays a vital role.   Tumor 

formation is characterized by clonal expansion of abnormal cells.  Initially, the unabated 

proliferation outgrows nutrient supply provided by blood vessels, thus producing an 

environment lacking adequate oxygen.   Then a subset of the colony adapt to this 

environment by up regulating anaerobic pathways in order to sustain cellular functions 

and growth in a hypoxia environment.  Eventually the tumor mass recruits vascular 

supply through angiogenic mechanisms for long-term nourishment and growth (Papetti, 

2002).  Oxygen availability is vital for both physiological and pathophysiological 

processes. 
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Figure 1.  The effect of hypoxia on fetal heart development. 1. Insufficient exposure to 
“normal” hypoxia reduces the expression of key genes (i.e. HIF-α, VEGF) needed for heart 
and vessels formation.  2.  Adequate exposure to “normal” hypoxia ensures expression of 
hypoxia dependent genes needed for vasculogenesis, angiogenesis and fetal heart 
remodeling.  3.  Chronic exposure to moderate “abnormal” hypoxia can lead to 
programming of cardioprotective genes, which may decrease the ability of heart to adapt to 
stresses later in life.  4.  Exposure to more severe “abnormal” hypoxia can significantly 
affect fetal cardiomyocytes development, which can lead to cardiomyopathy. 



6 

Formation of the Myocardium 

Heart Chambers and Vessels 

In order to understand the role of hypoxia in normal fetal heart development it is 

necessary to highlight the key events in normal cardiogenesis.  Our understanding of the 

events that lead to the formation of a functional heart in vertebrates comes primarily from 

studies done in chicken and mouse models.  Although there exists differences between 

species, the major events are congruent. Arguably, the first significant event in 

myocardial formation involves the formation of the primitive heart tube (Sedmera et al., 

2000). Cardiac progenitor cells from the primary (later become left ventricle) and 

secondary (later become right ventricle, outflow and inflow tracts) heart fields 

differentiate into myocardial cells and fuse along the midline to form the heart tube 

(Fishman and Chien, 1997). It is during this event that peristalic contractions appear 

along the heart tube. Once initiated, the heterogeneity of the heart chambers to be formed 

becomes apparent with regions destined to become atrials and ventricles contracting at 

different rates.  Structurally, the primitive heart tube is composed of a myocardial 

covering that is one or two cells thick, an acellular cardiac jelly, and endocardium 

(Fishman and Chien, 1997). After the heart tube is formed it undergoes looping and sets 

the framework in which the chambers can develop.  After looping, changes (known as 

trabeculations) in what will become ventricles emerge within the lumen.  Trabeculations 

are fenestrated sheet-like protrusions into the lumen that initially serve to increase the 

surface to volume ratio, allowing growth of the myocardium prior to the establishment of 

the coronary circulation and the separation of blood flow before septation (Sedmera et al., 

2000). The heart then undergoes further remodeling with growth primarily from 

increased cellular proliferation and compaction of trabeculae. At the same time, the 
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coronary vasculature is established to meet the increasing demands brought about by the 

growing myocardium. Angioblasts form the primitive vascular plexus.  The vessels 

undergo extensive remodeling and patterning and mature into the coronary artery tree. 

Evidence suggests that hypoxia may be the initial signal mediating angioblast invasion of 

the embryonic heart and subsequent formation of the coronary vasculature (Wikenheiser 

et al., 2006; Nanka et al., 2006). The establishment of the coronary vessel network 

ensures adequate nutrients are delivered to the myocardium allowing sustained growth 

and maturation. 

The functional unit of the myocardium is the cardiomyocyte.  As previously 

mentioned, cardiomyocytes originate from cardiac progenitor cells in the primary and 

secondary heart fields.  They differ from adult cardiomyocytes in size, organization of 

myofibrils, and proliferation capacity. Fetal cardiomyocytes are smaller in diameter and 

are normally mononucleated, whereas adult heart cells tend to be larger and often display 

polyploidy (two or more nuclei per cell). Fetal cardiomyocytes have fewer and less 

organized myofibrils with poorly developed sarcoplasmic reticulum and the T Tubules 

systems as compared to the numerous and highly organized myofibrils found in adult 

cardiomyocytes (Hoerter and Vassort, 1982). At early stages of development, the fetal 

heart grows largely through rapid proliferation of cardiomyocytes (Jonker et al., 2007a). 

However, towards the end of gestation, cardiac cells become increasingly differentiated 

and therefore lose the ability to propagate. Immature heart cells lose the ability to 

proliferate during perinatal periods, with subsequent growth due primarily to enlargement 

of existing cardiac cells. In comparison, adult mammalian heart cells maintain a 

permanently differentiated disposition with little or no ability to self-reproduce (Rudolph, 
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2000). The change in the proliferation capacity in cardiomyocytes corresponds to the 

maturation of contractile machinery and the increase in population of poly-nucleated 

cells.  It is likely the highly ordered structure of mature cardiomyocytes, coupled with the 

continuous contraction necessary for cardiac output and poly-nucleated disposition, 

preclude self-propagation. In nature, there exists species capable of regenerating heart 

cells at an adult stage.  The adult newt and zebrafish are both capable of regenerating 

substantial portions of heart tissue (Oberpriller, 1974; Poss et al., 2002). In particular, the 

adult newt seems to possess the ability to dedifferentiate cardiac cells and proliferate to 

replace lost or damaged tissue (Bettencourt-Dias et al., 2003). Among other important 

factors, activation of p38 MAP kinase appears to play an important role in inhibiting 

cardiomyocyte growth. The expression of p38 MAPK expression is inversely correlated 

with cardiomyocyte proliferation, while inhibition of p38 isoforms promotes increased 

expression of genes vital for self-propagation (Engel et al., 2005). These findings imply 

that mammalian adult heart cells have the capacity to reproduce. Nonetheless, the factors 

that give the immature heart cell, adult newt and zebrafish the ability to reproduce may 

shed light that may promote the development of therapies that can assist in the recovery 

of heart tissue following a coronary event. 

 

Hemodynamic Stress 

Functionally, the embryonic heart at an early stage sets itself apart from most 

organs in that it is called upon to work almost from its inception.  As the vascular system 

forms, there is an increased stress placed on the fetal heart.  However, the plastic nature 

of the developing myocardium gives it the ability to adjust to hemodynamic load brought 

upon it by an enlarging peripheral vascular system. An increase in afterload, or elevation 
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in pressure required to eject blood to systemic tissues, requires compensatory growth of 

the myocardial wall.  Laplace’s law explains the relationship between wall thickness and 

increases in afterload.  It states that increases in intraluminal pressure will produce 

increased wall stress for a given radius. It is compensated by increased wall thickness or 

decrease internal radius.   This phenomenon is seen in individuals with pulmonary 

hypertension that increases the intraventricular end diastolic pressure resulting in 

thickening of the right heart wall.  In fetal sheep, Barbera et al. (2000) demonstrated that 

right ventricular wall thickness increases in response to pulmonary artery occlusion, 

which is an increase in systolic pressure load.  The findings from this study suggested 

that the increase in heart size was primarily due to hyperplasia of cardiomyocytes, 

although some growth could be attributed to hypertrophy.  Indeed, arterial hypertension 

in fetal sheep increases the weight of hearts, stimulates proliferation, size and 

binucleation of cardiomyocytes resulting in increased growth and accelerated maturation 

of the myocardium as a compensatory response to increased afterload (Jonker et al., 

2007b). Therefore, ventricular wall mass is influenced by the hemodynamic stress under 

which it develops.  

 

Hypoxia and the Developing Heart 

Methods for Determining Hypoxia In Utero 

 Hypoxia in vivo is a challenging phenomenon to study; yet, several techniques are 

used to either measure oxygen tension directly or indirectly in vivo.  The surgical 

implantation of O2 sensitive sensors is a method commonly used on larger animals, such 

as pregnant sheep, to measure fetal pO2 (Kamitomo et al. 1994). Additionally, the unique 

metabolic plasticity of the fetal heart allows it to rapidly increase glycolysis under 
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conditions of oxygen deprivation (Ascuitto and Ross-Ascuitto, 1996). The switch from 

aerobic to anaerobic respiration corresponds to increases in glycolytic intermediates, such 

as lactate, that have been used as an indicator of reduced mitochondrial oxidative activity 

in response to oxygen insufficiency (Breuer et al. 1968).  Beyond surgical implantation 

and metabolism, Chapman (1979) was the first to suggest the use of nitroimadazole 

compounds (e.g. EF5, pimonidazole) to study hypoxia.  In low oxygen conditions, 

nitroimadazole compounds are chemically reduced by nitroreductases, which permit 

covalent binding to intracellular proteins to form adducts (Evans et al. 2007, 2008). 

Nitroimadazole compounds have been used to study the effects of hypoxia in 

embryogenesis and tumorgenesis (Wikenheiser et al. 2006; Koch and Evans, 2003).  

 Tissue hypoxia alters gene expression patterns.  Hypoxia stabilizes HIF (1, 2 and 

3), a family of transcription factors that play a central role in cellular adaptation to 

insufficient oxygen.  The discovery of HIF sheds new light on the role of hypoxia in fetal 

heart maturation. HIF is comprised of a α and β subunit, of which the former is oxygen-

sensitive and affects HIF stability, and the latter is oxygen-insensitive. HIF is widely 

known to up-regulate numerous genes associated with external and internal cellular 

adaptation to hypoxia (Iyer et al. 1998; Semenza, 1998; Ward, 2008). A classic example 

of HIF associated gene transactivation is the induction of erythropoietin (EPO). Hypoxia 

promotes HIF-induced up-regulation of EPO (Jiang et al. 1996). EPO stimulates 

erythropoiesis, inhibits apoptosis, and mobilizes endothelial progenitors for vessel growth 

by binding to EPO receptors (Arcasoy, 2008; Marzo et al. 2008). HIF and HIF dependent 

gene expression have become important indicators of tissue hypoxia. Their use has 

increased our understanding of the role of reduced oxygen in cardiogenesis from a 
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standpoint of transcriptional changes. HIF regulation will be discussed in detail later in 

the introduction. 

 

Outflow Tract Remodeling 

 Recent studies in avian and mouse models suggest that hypoxia plays a critical 

role in the formation and development of the heart.  Many of these studies were centered 

on the remodeling of the embryonic outflow track (OFT) and coronary vessel formation.  

Embryonic OFT remodeling is necessary for the proper transition from single to dual 

circulation in mammalian and avian hearts (Fisher, 2007). Apoptosis of OFT 

cardiomyocytes is vital for proper remodeling of OFT (Watanabe et al. 2001; Barbosky et 

al. 2006).   Programmed cell death of OFT cardiomyocytes brings about the shortening 

and rotation needed for the aorta to join the left ventricle and pulmonary vessels to 

connect to the right ventricle.  At the height of cardiomyocyte apoptosis in the OFT, 

researchers have observed increases in EF5 (chemical marker of hypoxia) staining as well 

as increased nuclear accumulation of HIF-1; suggesting hypoxia via HIF-1 may be 

involved in OFT remodeling (Sugishita et al. 2004b; Barbosky et al. 2006). Druyan el al. 

(2007) demonstrated in chick fetal hearts the up-regulation of hypoxia-regulated genes, 

heme oxygenase, cardiac troponin T and hypoxia up-regulated protein 1 at specific 

developmental periods (E7 and E19).  Heme oxygenase facilitates the degradation of 

heme and protects against oxidative stress.  Cardiac troponin T is involved in calcium 

handling and contractions of the heart, and hypoxia up-regulated protein 1 protects 

against cell death during hypoxia. These finding suggests that as the heart develops under 

hypoxic conditions, cellular defense pathways are employed in order to sustain normal 

growth, while protecting against oxidative stress and apoptosis.  Ironically, 
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cardiomyocytes exhibit increased oxidative stress as a result of hypoxia (Duranteau et al. 

1998). Oxidative stress can cause cellular damage, which may lead to cell death. In 

subsequent experiments, EF5 staining revealed differential levels of oxygen in fetal 

hearts with areas of low oxygen correlating spatially and temporally with apoptosis-

induced myocardial remodeling (Sugishita et al. 2004a & 2004b; Lee et al. 2001). These 

findings were further substantiated by experiments that demonstrated intense EF5 

staining and cell death of OFT cardiomyocytes that were attenuated by hyperoxia 

resulting in OFT defects. Such defects included the abnormal formation of the right 

ventricles, which clearly associated oxygen regulation with proper myocardial formation 

(See Figure 1) (Barbosky et al. 2006). It appears the timing of the hypoxic insult is tightly 

regulated for proper heart remodeling. Low oxygen was reported in chick at stages 25-32 

and around day 13.5 of gestation in mice (Sugishita et al. 2004; Barbosky et al. 2006). 

Interestingly, the timing and duration of hypoxia plays an important role in the 

development of other tissues.  In the first trimesters, placenta tissues develop under low 

pO2 (<20mm Hg), which rises considerably in second trimester, (~60mm Hg) then 

declines (~40mm Hg) by the third trimester (Rodesch et al. 1992; Jaunaiux et al. 2001; 

Soothill et al. 1986). Accordingly, studies suggest the fluctuation in pO2 modulates 

trophoblast differentiation and invasion, affording concomitant growth of the placenta 

throughout gestation (Pringle et al. 2010). These findings indicate that hypoxia functions 

in several tissues to signal changes that promote normal development.  

 

Coronary Vessel Formation 

 In embryonic tissues, the formation of primary blood vessels from endothelial 

precursors called angioblasts is known as vasculogenesis. During vasculogenesis, 
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angioblasts combine and form the primary capillary plexus, which serves as the 

framework from which all subsequent vessel formation occurs.  After the establishment 

of the primary capillary plexus, subsequent budding and sprouting of new vessels from 

preexisting ones is known as angiogenesis.   Though proper vessel development and 

maturation involves input from multiple signals, VEGF signaling plays a vital role 

throughout vessel formation and growth. The binding of VEGF to receptor tyrosine 

kinases (e.g. KDR/Fik-1, Fit-1 in endothelial cells) initiates the expression of genes 

necessary for the recruitment, proliferation, and differentiation needed for vasculogenesis 

and angiogenesis (Covassin et al. 2006; Nasevicius et al. 2000; Martyn and Schulte-

Merker, 2004; Weinstein and Lawson, 2002). For a more thorough review of VEGF 

signaling, consider the following excellent reviews (Papetti and Herman, 2002; Josko et 

al. 2006; Roskoski, 2008; Yia-Herttuala et al. 2007). In cardiogenesis, VEGF is essential 

for vessel growth and the induction of VEGF correlated spatially with coronary vessel 

patterning (Tomanek et al. 1998, 1999 & 2003). In addition, cardiomyocyte-restricted 

knockout of Vegf impaired coronary vessel development, promoted myocardial 

thinning, depressed basal contractile function, and caused significant dysfunction of beta-

adrenergic stimulation (Giordano et al. 2001).  Also, mice deficient of receptor tyrosine 

kinase showed abnormal heart development, primarily ventricular septal defects 

(Takeuchi et al. 2000).  These findings suggest that VEGF-mediated vessel formation 

promotes adequate growth, remodeling and function of the myocardium.  

 Hypoxic stress increases vessel formation in fetal heart tissue, while hyperoxia 

delays vessel growth (Yue and Tomanek, 1999). Studies have confirmed that hypoxia is a 

major stimulus for vessel growth in fetal development and tumorgenesis (Yue and 
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Tomanek, 1999; Lainakis and Bamias, 2008; Hu et al. 2003). Hypoxia is known to 

stabilize HIF-1& 2, which preferentially up-regulates VEGF and its receptor (Hu et al. 

2003; Forsythe et al. 1996).  However, studies conducted by Kotch et al. (1999) showed 

that VEGF mRNA increased modestly (compared to controls in HIF-1α null mice), 

suggesting additional factors may regulate VEGF induction in fetal heart tissue.   For 

example, induction of VEGF in the absences of HIF-1α may be explained by the presence 

of HIF-2α (which is known to up-regulate VEGF and VEGF receptors), or by the 

increased stability of VEGF mRNA in hypoxic conditions.  Furthermore, other growth 

factors such as platelet-derived growth factor (PDGF) have been shown to induce VEGF 

expression (Edelberg et al. 1998), suggesting VEGF can be induced independent of HIF-

1 activity. However, other findings have linked hypoxic stimulus through HIF-1 

stabilization with significant induction of VEGF and VEGF receptor in cardiogenesis 

(Lee et al. 2001; Liu and Fisher, 2008). The central role of hypoxia-dependent genes 

during cardiogenesis suggests that oxygen regulation at the molecular level plays a major 

role in fetal heart formation.  

 

The Role of HIF in Cardiac Formation and Maturation 

Oxygen Regulation 

 The molecular signals underpinning hypoxia’s role in cardiac formation and 

development involves numerous genes. By far, the HIF family of genes is the most 

studied in cardiac development.  HIF is a heterodimeric transcription factor that plays a 

pivotal role in cellular sensing and response to low oxygen tension. HIF belongs to the 

basic helix-loop-helix (bHLH)/Per-ARNT-Sim (PAS) domain family of transcription 

factors and is composed of an oxygen-sensitive α subunit and constitutively expressed β 
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subunit (Semenza, 1998; Jiang et al. 1996a; Ward, 2008). It is known to regulate 

numerous functions during hypoxia such as energy metabolism, erythropoiesis, cell 

survival and death, vascularization, angiogenesis, and differentiation (Semenza et al. 

1999; Adelman et al. 2000; Cowden et al. 2005; Covello et al. 2006; Galanis et al. 2008).  

Although HIF stability and activity is influence by a wide range of physiological factors 

(i.e. Insulin like Growth Factor 1 & 2), the effect of oxygen is most understood.  Oxygen 

tension regulates HIF-1 expression via prolyl hydroxylase (PHDs) activity.  Under 

normoxic conditions, the HIF-1α subunit is recognized and hydoxylated at proline 

residues 402 and 564 by PHDs.  Hydroxylation allows recruitment and binding of the von 

Hippel-Lindau protein, an E3 ubiquitin protein ligase, which primes HIF-1α for 

subsequent proteasome degradation.  In addition, the transcriptional activity of HIF-1 is 

also regulated by hydroxylation.  Hydroxylation of arginine 803 by Factor inhibiting 

HIF-1 (FIH) prevents the association of HIF-1 and CREB-binding protein (CBP)/p300, 

precluding the transactivation of HIF-1 dependent genes (Mahon et al. 2001). When 

cellular oxygen levels fall, the activity of PHDs and FIH are reduced, allowing stability 

of the HIF-1α subunit. Interestingly, HIF-1 stability is inversely proportional to oxygen 

concentration within the cell (Jiang et al. 1996b). Stable HIF-1α subunit translocates into 

the nucleus where it dimerizes with HIF-1β and transactivates HIF-1 genes that possess 

hypoxic response elements (HRE) (short sequences of DNA that include 5’-CGTGC/T-

3’).    

 

HIF and the Developing Heart 

 Both HIF-1αβ & 2 αβ are expressed in the cardiac tissue (Wiesener et al. 2003; 

Stroka et al. 2001). Little is known about the role of HIF-2 in heart formation and 
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development, although HIF-2 knockout impairs vascular development as well as altered 

cardiac rhythm due to the deregulation of catecholamine release (Peng et al. 2000). 

Though it is not fully understood how HIF-1 dependent mechanisms coordinate in 

cardiogenesis, it is known that HIF-1 expression is vital for proper myocardial 

remodeling and coronary vessel formation. Elevated HIF-1 expression is found in fetal 

hearts exposed to hypoxia (Sugishita et al. 2004; Bae et al. 2003). HIF-1 was also found 

in the nuclei of OFT cardiomyocytes undergoing apoptosis as well as those that are not 

(Sugishita et al. 2004). This implies HIF-1 activity is involved in orchestrating OFT 

cardiomyocyte fate. The importance of hypoxic-dependent signaling in myocardial 

development is further supported by studies using mice deficient in HIF-1.  Global 

knockout of HIF-1α resulted in arrested development by day E9 and embryonic lethality 

by day E11 with significant cardiovascular irregularities including cardiac bifida, 

abnormal cardiac looping, abnormal remodeling of the aortic outflow tract and cephalic 

blood vessels, and mesenchymal cell death (Compernollo et al. 2003; Iyer et al. 1998). 

When HIF-1α null mice were placed in hyperoxia, partial recovery of the embryos was 

observed, suggesting that adaptation to hypoxic conditions requires HIF-1 signaling in 

the developing heart (Compernollo et al. 2003). HIF-1 is known to up-regulate, either 

directly, through binding to HRE sites, or indirectly, by influencing other transcription 

factors that promote prosurvival and apoptotic genes.  In the fetal heart, HIF-dependent 

activation of VEGF, stromal cell-derived factor-1 and EPO receptor expression promote 

the vessel formation (Ladoux and Frelin, 1997; Tilmanns et al. 2008; Maloyan et al. 

2005). In addition, survival signals in the myocardium are augmented by HIF-dependent 

direct activation of glycolytic genes such as Glucose transporter 1 (Glut1), aldolase A, 
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enolase 1 (EN01), lactate dehydrogcnasc A, and phosphoglyceratc kinase 1(PGK1), 

which facilitate the shift from aerobic to anaerobic respiration (Wenger and Gassmann, 

1997; Gordan and Simon, 2007). Paradoxically, HIF-1 has been shown to up-regulate 

proapoptic genes BNIP3 and Bax in cardiomyocytes (Graham et al. 2004). This dual role 

of HIF is also seen in cerebral ischemia models where HIF-1 up-regulates prosurvival 

(EPO, GLUT1, VEGF) and death genes (BNIP3, caspase 3, stabilization of p53) 

depending on the extent and duration of the ischemic insult (Chen et al. 2009). It is likely 

that complex mechanisms contribute to the duality of HIF-1 signaling in cardiogenesis. 

Presumably the ability of HIF-1 to bind HRE sites and thus influence gene activity 

changes depending on the timing and duration of hypoxic insult.  This twin nature of HIF 

may influence HIF-dependent cardiomyocyte survival or death, and possibly play a role 

in long-term programming of fetal cardiomyocytes during chronic hypoxia. 

 

Fetal Hypoxia and Abnormal Heart Development 

 Though fetal hearts show remarkable ability to survive and function under low 

oxygen, chronically pathophysiological hypoxia is associated with numerous 

complications that have both short and long-term effects.  Some of the most striking data 

illustrating the effects of hypoxia on fetal development originate from high altitude 

studies.  About 140 million people live in high altitude environment worldwide, of which 

some 400,000 live in the United States (Moore et al. 2001). High altitude is considered to 

be elevations above 2500 meters (8000ft) (Moore et al. 2001).  Pregnancies at higher 

elevations may result in significantly depressed maternal arterial pO2 and changes in 

placental growth when compared to the sea level (Zamudio, 2003). Epidemiological 
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studies have indicated that high altitude pregnancies increase the risk of intrauterine 

growth restriction (IUGR) and low birth weight (Jensen and Moore, 1997; Moore et al. 

2001; Moore, 2003). These factors are known to cause premature birth, infant mortality, 

and an increased risk of developing cardiovascular related diseases (Barker et al. 1989; 

Barker, 1994; Barker, 1997; Zhang, 2005). Other factors that may contribute to hypoxia 

in utero include pre-existing maternal illness, pre-eclampsia, cord compression, smoking, 

pollution, hemoglobinopathy, and aberrant placenta development. Lowered maternal 

arterial pO2 or incomplete delivery of oxygen to fetal tissues induces hypoxemia and 

sustained tissue hypoxia in utero, resulting in significant changes in fetal development 

(Blackburn, 2007; Lueder et al. 1995).  

 The developing heart, more than any other organ, is susceptible to hypoxic stress 

due to its enhanced metabolic demand. Numerous studies, primarily in animals, have 

shown that hypoxia causes incomplete development of the heart.  One of the earliest 

studies demonstrating the adverse effects of simulated high altitude on pregnant rats 

found that hypoxia caused ventricle septal defects in rat offspring (Clemmer, 1966). More 

recent studies have found that insufficient oxygen in utero produces myocardial thinning, 

ventricle dilation, and epicardium detachment. It also slows fetal heart maturation in both 

chicken and mouse (Ream et al. 2008; Sharma et al. 2006). Other studies demonstrated 

cardiomyocyte hypertrophy and myocardial hypoplasia in fetal hearts subjected to 

chronic hypoxia (Val’kovich et al. 1986; Martin et al. 1998; Bae et al. 2003; Ream et al. 

2008). It is likely that the increase in size of cardiomyocyte is compensatory for reduced 

proliferation of myocyte. Interestingly, studies have found that prenatal hypoxia increases 

the heart to body mass ratio (Martin et al. 1998; Xiao et al. 2000; Bae et al. 2003), 
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suggesting either reduced growth of nonessential organs or heart enlargement. The 

reduction in cardiomyocyte number is likely influenced by either increased program cell 

death and/or reduced cellular proliferation during critical periods of development.  

Hypoxia-mediated increase in apoptosis is supported by studies that indicate that prenatal 

hypoxia increased death signaling via elevated caspase 3 activity and Fas mRNA, and 

also suppressed survival pathways via depressed Bcl-2 and Hsp70 expression in fetal 

hearts (Bae et al. 2003). Conversely, the reduction in cardiomyocyte may be attributed to 

premature exit of cardiomyocytes from the cell cycle.  Bae et al. (2003) reported that 

prenatal hypoxia increased the percentage and size of binucleated cardiomyocytes in fetal 

rat hearts.  Binucleated cardiomyocytes are terminally differentiated cells that are no 

longer capable of division.  Taken together, prolonged insufficient oxygen alters fetal 

heart growth resulting in abnormalities in heart structure.  These abnormalities likely 

involve sustained reduction in cardiomyocyte proliferation and increased apoptosis.  

 Intrauterine stress via hypoxia induces not only changes in fetal heart 

morphology, but also in function.  In humans, changes in fetal heart rate have long been 

observed in fetuses in response to intrauterine stress (Thornburg, 1991). Animal studies 

have also confirmed the dysfunction of the myocardium in response to hypoxia. Sedmera 

et al. (2002) demonstrated that the rate of recovery from anoxia/reoxygenation declines 

from the loop tubular heart to the septated trabeculated heart, suggesting oxygen 

dependence increases with the development.   In a study examining the significance of 

catecholamines in development, researchers reported hypoxia decreased the heart rate of 

fetal mice by 35-40% in culture and by 20% in utero when compared to wild-type hearts 

(Portbury et al. 2003). High altitude Sheep models also present with altered cardiac 
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function in response to prenatal hypoxia as demonstrated by decreased cardiac output and 

lowered contractility studies (Kamitomo et al. 1994 & 2002; Gilbert, 1998; Browne et al. 

1997). Possible explanations for the depressed cardiac function relate to altered calcium 

homeostasis and reduced ATP availability due to decreased Mg2+-activated myofibrillar 

ATPase activity (Browne et al. 1997; Kamitomo et al. 2002; Onishi et al. 2004).  In avian 

models, poor cardiac performance was observed as demonstrated by decreased maximum 

ventricular +dP/dt and peak pressure, increased ventricular end-systolic volume, elevated 

after-load, and decreased left ventricular ejection fractions (Sharma et al. 2006; Tintu, 

2009). Whether hypoxia directly mediates or indirectly facilitates these changes is not 

clear. Studies suggest that cardiac defects such as cardiac bifida and looping defects may 

be mediated via A1 adenosine receptor signaling in chicken hearts (Ghatpande et al. 

2008). Sarre et al. (2006) demonstrated in an in vitro model arrhythmias in 4-day-old 

isolated embryonic hearts subjected to anoxia/reoxygenation. Graf et al. (2006) observed 

an increased rate of contractions and decreased sensitivity to norepinephrine of cultured 

rat cardiomyocytes exposed to hypobaric hypoxia during organogenesis. In utero stress 

may cause an increase in circulating stress hormones, which may explain reduced cardiac 

performance. In addition, structural changes in the myocardium may contribute to 

depressed cardiac function. It should be noted that many hypoxic models involve 

maternal exposure to reduced room oxygen. More studies demonstrating the direct effect 

of hypoxia on fetal hearts are warranted. Taken together, prolong exposure to hypoxia in 

utero alters heart structure and function and these changes may persist into adulthood. 
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Hypoxia and Intrauterine Programming of the Heart 

 Many studies have correlated an adverse intrauterine environment with an 

increase predisposition for developing cardiovascular-related diseases in adulthood. Most 

notably, epidemiological studies by Barker and colleagues (Barker, 1989; Barker and 

Osmond 1986) were the first to correlate undernutrition and low birthweight with 

increased incidence of coronary heart disease in adulthood.  Hypoxia in utero is known to 

cause depressed cardiac performance and cardiomyopathies that persist into adulthood 

(Tintu et al. 2009). It is less clear, however, the extent to which hypoxia mediates 

programming of genes that alter structure, function and survival that are not apparent 

until later in life.  

Recently, researchers have used animal models to elucidate the role of hypoxia in 

intrauterine programming.  Li and colleagues demonstrated that 6-month-old male rat 

hearts exposed to prenatal hypoxia responded less favorably than control animals when 

subjected to simulated ischemia and reperfusion (I/R) injury (Li et al. 2003).  The 

hypoxic animals exhibited a persistent decrease in postischemic recovery, an increase in 

myocardial infarction (MI), and fewer but larger cardiomyocytes.  In addition, the hearts 

of these animals had elevated caspase 3 activity and decreased levels of Hsp70 and eNOS 

when compared to control animals. While both Hsp70 and eNOS play important roles in 

cardioprotection against I/R injury, caspase 3 belongs to a family of proteases that 

perform critical cellular functions to facilitate programmed cell death (Nicholson et al. 

1995; Okamura et al. 2000; Snoekx et al. 2001; Sharp et al. 2002). Xu and colleagues 

also observed lower levels of metalloproteinase-2 in 4-month-old rats (Xu et al. 2006). 

Moreover, prenatal hypoxia abolishes the protective affects afforded by heat stress 
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against I/R injury and significantly reduces HSP70 and PKC content in the left 

ventricles (Li et al. 2004). Furthermore, Xue and colleagues showed that prenatal hypoxia 

caused a decrease in I/R recovery in 3-month-old male, but not female, rat offspring (Xue 

and Zhang, 2009).  When normoxic offspring were exposed to simulated I/R in the 

presence of PKC translocation inhibitor peptide, those animals also displayed reduced 

I/R recovery; suggesting that programming of decreased PKC gene expression is key to 

the observed increase vulnerability to I/R injury in males (Xue and Zhang, 2009). This 

finding is supported by studies involving PKC over-expression, PKC null animals, and 

PKC activating peptide, which confirm the pivotal role of PKC in I/R preconditioning 

and myocardial protection (Saurin et al., 2002; Ping et al. 2002; Inagaki et al., 2005 & 

2006).  

Conversely, Netuka et al. (2006) reported no difference in MI in prenatally 

hypoxic rats of either sex, but noted that normoxic females had less MI than normoxic 

males when exposed to I/R.  They also noted that prenatal hypoxia protected against 

ischemic-induced arrhythmias of female rats, but was deleterious in male rats. The 

disparate results reported by Li (2003), Xu (2006) & Xue (2009) and Netuka’s (2006) 

studies might be explained by differences in strain, age, and experimental models.  

Whereas the Xue (2009), Xu (2006) and Li (2003) studies used 3, 4 & 6-month-old 

Sprawley Dawley rats respectively exposed to hypoxia only in utero, Netuka (2006) used 

3-month-old Wistar rats exposed to intermittent hypobaric hypoxia in utero and 10 days 

postgestation.  In addition, Li et al. (2003) used simulated I/R insult with hearts removed 

from the animal, while Netuka et al. (2006) performed open chest I/R insult.  These 

reasons may explain the differing results; nonetheless, both groups drew similar 



23 

conclusions in that prenatal hypoxia causes programming of the fetal heart. It is also clear 

that prenatal hypoxia has sex dependent effects, as demonstrated by poor recovery of 

male rats, which likely involves altered programming of cardioprotective genes, namely 

PKC.  

The long-term effect of hypoxia in utero is not restricted to the cardiovascular 

system but also produces programming affects in other tissues. Pregnant sheep exposed 

to chronic high altitude conditions had significant reduction in kidney to body weight 

size, larger Bowman’s capsule in nephrons and alterations in angiotensin I and II 

expression (Mao et al. 2009). Long-term hypoxia alters the expression of CYP17 and 

CYP11A1 in fetal sheep adrenal glands (Myers et al. 2005). CYP17 and CYP11A1 are 

two key enzymes involved in steroidogenesis, suggesting that high altitude exerts stress 

on animals such that elevated levels of stress hormone may be measured in fetal tissues.  

Whether this expression pattern is maintained into adult stages is not known.  

Furthermore, the direct effects of hypoxia are not clear.  The maternal hypoxic model is 

capable of significantly lowering fetal oxygen status. However, maternal hypoxia elicits 

other systemic effects that may reflect the observed effects.  For example, maternal 

hypoxia increases circulating glucocortoids that may cause abnormal development of the 

fetus (Levitt et al. 1996). Identifying the direct effects of hypoxia on fetal heart 

development is critical to understanding the underlying mechanisms involved in hypoxia-

induced programming of fetal hearts.   
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Hypoxia and Oxidative Stress 

 The majority of ATP synthesizes occurs in the mitochondria through oxidative 

phosphorylation.  Oxidative phosphorylation utilizes proton concentration differences 

across the inner membrane of the mitochondria to create an electrochemical gradient. The 

electrochemical gradient is important in several functions including the transport of 

metabolites across the membrane, the import of proteins from the cytosol and the 

synthesis of ATP by ATP synthase. During this process, the majority of oxygen is 

reduced to water.  However, between 1-4% of oxygen is only partially reduced to 

superoxide (O2
-). O2

- belongs to a family of compounds called Reactive Oxygen 

Species (ROS).  ROS can oxidize and damage nucleic acids, lipids, and proteins resulting 

in significant cellular damage.  Typically, superoxide is eliminated by endogenous 

antioxidant defense systems.  For example, Mitochondrial Superoxide Dismutase 

(mtSOD) converts superoxide to hydrogen peroxide (H2O2). H2O2 is further broken down 

into H2O and O2 by glutathione peroxidase or by catalases found in peroxisomes. In the 

presence of reduce metals, H2O2 is converted to the highly reactive hydroxyl ion (OH).  

A significant endogenous antioxidant is the reduced form of glutathione.  Glutathione 

reductase and NADP regenerate Glutathione.   When antioxidant defense systems are 

unable to restore cellular redox balance, Glutathione levels fall promoting a state of 

oxidative stress. In cardiomyogenesis, oxidative stress plays an important role in 

signaling events that regulate cardiomyocyte differentiation (Sauer and Wartenberg, 

2005). 

 Hypoxia is a unique phenomenon in that it paradoxically increases intracellular 

ROS (Chandel et al., 1998; Mansfield 2005; Liu et al., 2008). Interestingly, Chandel et 
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al., (1998) reported hypoxia increases ROS; influences hypoxic dependent gene 

expression and that the primary source of hypoxia-induced ROS is the mitochondria. 

Furthermore, mitochondrial complex III was identified as the major site of  mtROS 

productions (Guzy & Schumacker, 2006).  Hypoxia increases probability of free radicals 

interacting with oxygen to produce superoxide along the electron transport chain. 

Interestingly, studies have suggested that hypoxia-derived ROS via mitochondrial 

complex III initiates the events necessary for HIF-1 stabilization (Chandel et al., 2000). 

The change in intracellular redox state reduces the levels of Fe2+, a necessary cofactor 

for prolyl hydroxylases hydroxylation of HIF-1.  Reduced prolyl hydroxylases activity 

allows nuclear accumulation of HIF-1. While this theory is most commonly accepted, a 

recent study contends that oxygen availability instead of ROS production is the main 

stimulus altering prolyl hydroxylase activity and therefore HIF-1α stabilization (Chua et 

al., 2010).   ROS is known to alter gene expression patterns. Studies have shown 

moderate hypoxia induces intracellular ROS production that initiates the Integrated Stress 

Response (ISR), which involves PERK activation, eIF2 phosphorylation and ATF4-

mediated stress gene induction (Liu et al., 2008).  These events alter global protein and 

mRNA synthesis, which is a likely response to reduce energy production. These findings 

suggest oxidative stress generated by the mitochondria as a result of hypoxia may 

increase HIF-1 nuclear accumulation as well as influence gene expression.   

 ROS causes extensive DNA damage that can lead to genomic mutations and 

tumor formation, but researches have sought to determine the link between oxidative 

stress and epigenetic modifications. In one elegant study, researchers demonstrated 

oxidative stress decreased E-cadherin expression in hepatocellular carcinoma cells (Lim 
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et al., 2008). Reduced E-cadherin expression is associated with tissue-type transitions, 

metastasis and poor outcomes in hepatocellular carcinoma (Endo et al., 2000). Lim et al., 

(2008) showed ROS increases Snail expression, which then recruits DNA 

methyltransferase 1 (DNMT1) and histone deacetylase 1 (HDAC1).  The interaction 

between Snail and epigenetic modifiers caused increased methylation of E-caherin 

promoter and reduced E-cadherin expression. It is therefore conceivable that hypoxia-

induced ROS may mediate epigenetic changes in the promoters of cardioprotective genes, 

resulting in long-term down regulation of cardioprotective genes in fetal cardiomyocytes. 

(See figure 16). 

 

PKCε and Cardioprotection 

PKCε belongs to a group of phospholipid-dependent kinases. PKC isoforms share 

common domains in the regulatory region such as pseudosubtrate domains that binds the 

substrate recognition site while the kinase is inactive; C1a and C1b domains for 

diacylglcerol, phosphatidylserine, and phorbol ester binding; and, C2 region for receptor 

activated C kinase (RACK) interaction (Newton, 1995).  PKC isoforms contain 

significant homology within the kinase or catalytic domain.  The kinase domain is the 

region where ATP and substrate binding occurs. PKC isoforms are divided into three 

groups based on their primary structure. Conventional isoforms (α, βI, βII, γ) are 

responsive to diacylglcerol (DAG) and Ca2+.  Novel isoforms (δ, ε, η, θ) are DAG 

sensitive and Ca2+ insensitive.  Atypical isoforms (ζ, ι/λ) are insensitive to both DAG and 

Ca2+, and are responsive to lipid-derived molecules (Newton, 1995).   Compounds that 

mimic DAG binding to C1 domain such as tumor promoting phorbol ester can also 
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activate PKCε.  Moreover, lipid-derived molecules such as arachidonic acid can activate 

PKCε.  Interestingly, PKC isoforms must be primed through phosphorylation at three 

sites termed; the activation loop, hydrophobic motif and turn motif; in order to fully 

respond to allosteric regulators (Barnette, 2007).  Phosphorylation is initiated either by 3-

phosphoinositide-dependent protein kinase-1 (PDK1) or through autophosphorylation 

mechanisms.  Once activated, PKC translocates to subcellular compartment via its 

interaction with RACK proteins. PKC then influences a wide array of cellular functions 

including muscle contraction, gene expression, differentiation, cell growth and ischemic 

preconditioning (Bogoyevitch & Sugden, 1993; Newton, 1995). 

PKCε is highly expressed in heart tissue and is activated during ischemic 

preconditioning (IPC) (Bogoyevitch & Sugden, 1993; Gray et al., 1997).  Knockout 

studies indicate PKCε is not critical for development, but plays a critical role in ischemic 

reperfusion preconditioning (Saurin et al., 2002). Studies using PKCε translocation 

inhibitory peptide (PKCε-TIP) and PKCε activating peptide provide further evidence of 

PKCε involvement in myocardial protection from ischemic reperfusion injury (Ping et al., 

2002; Inagaki et al., 2004; Xue et al., 2009).  The mechanism whereby PKCε protects 

hearts from ischemia reperfusion injury has not been fully explained.  However, ischemia 

reperfusion insult increases the levels of intracellular ROS, which is known to stimulate 

PKCε activity.  ROS may activate PKC causing its translocation to the mitochondria. 

Studies have shown PKCε interacts with mitochondrial proteins that potentially may 

mediate cytoprotection (Ardehali, 2006).  Studies have shown PKCε enhances 

phosphorylation of BAD proteins, causing its inactivation and attenuating its ability to 

induce apoptosis (Bertolotto et al, 2000).  In addition, phosphorylation of mitochondrial 
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KATP by PKCε during ischemic stress causes the opening of mitoKATP allowing K+ into 

the inner matrix and thus hyperpolarizing and stabilizing the mitochondria. (Takano et 

al., 2003; Das et al., 2003; Hausenloy et al., 2003; Ardehali H, 2006; Jaburek et al., 2006; 

Kabir et al., 2006).  

 

Epigenetics: A Plausible Mechanism 

The mechanisms underlying the changes in function and gene expression in fetal 

hearts are not fully understood and are complex; however, epigenetic modifications are 

likely present. Major epigenetic modifications include methylation of cytosine in CpG 

dinucleotide, and post-translation modification of histone proteins (e.g. acetylation).  

DNA methylation plays a critical role in gene silencing and has been implicated in 

processes such as imprinting and embryogenesis (Hirst, 2009).  Methylated Cytosines 

recruit methyl binding proteins that act to restrict binding of transcription factors to 

promoter regions.  Methylation of CpG is normally conserved during somatic replication.  

Modifications of histone proteins can either increase or reduce the association of DNA 

with histones thereby regulating access of transcription machinery for selected genes.  

These modifications are dynamic and are influenced by a range of factors including the 

expression of cofactors, phase of cell cycle (i.e. G1, S, mitosis), and environmental 

stimuli (Nafee, 2008). Major histone modification include acetylation of lysine residues 

via histone acetyltransferases that are associated with transcription activity;  deacetylation 

of lysine residues via histone deacetylases that are commonly associated with 

transcription repression; methylation of lysine 4 on histone H3 is generally associated 

with transcriptional active promoters while multiple methylation of histone restricts 
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transcription (Hirst, 2009). Further modifications include phosphorylation, 

ubiquitousation, hydoxlation, and sumolation.  Histone modification not only influences 

transcription, but DNA replication, repair, and condensation.    

Epigenetics plays an important role in embryonic development. In embryogenesis, 

developmental changes involve a progressive specialization of gene expression patterns 

that incorporate epigenetic mechanisms such as DNA methylation, chromatin 

remodeling, and/or histone posttranslational modification (Wu and Sun, 2006).   Aberrant 

epigenetic silencing or enhancing of genes that influences cell cycle, death, and 

metabolism is commonly found in tumoriogenesis (Mckenna and Roberts, 2009; Hirst 

and Marra, 2009; Delcuve et al., 2009). Epigenetic modifications alter gene expression 

pattern in the long-term. In a related model, studies have demonstrated that maternal 

cocaine injections increases DNA methylation at Sp1 binding sites in PKC promoter in 

fetal hearts (Zhang et al., 2009; Meyer et al., 2009B). Maternal cocaine injections during 

gestation induce intrauterine stress that results in increased susceptibility to I/R injury and 

abolition of protection afforded by preconditioning in the hearts of male offspring (Bae et 

al, 2005; Meyer et al., 2009A).  In addition, reduced PKC and phospho-PKC 

expression was noted in the left ventricles of male offspring exposed to maternal cocaine, 

suggesting altered programming of the PKC gene (Meyer et al., 2009A).  Zhang et al. 

(2009) showed that cocaine exposure in utero caused hypermethylation of CpG 

dinucleotides of Sp1 binding sites for PKC gene in left ventricles of 3-month-old rats. 

Supporting this discovery was the finding that Sp1 binding sites on the proximal 

promoter played a significant role in PKC gene transcription (Zhang et al., 2009). Meyer 

et al. (2009A) used DNA methylation inhibitors 5-aza-2-deoxycytine and procainamide, 
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to block cocaine-mediated down-regulation of PKC. These findings clearly link 

epigenetics via DNA methylation in utero with the increased susceptibility to coronary 

heart disease later in life.  The similarities between prenatal hypoxia and cocaine 

exposure are striking, and it is possible that the underlying mechanisms for both are 

concurrent.  It is well known that cocaine acts as a potent vasoconstrictor, which may 

alter blood flow to the uterus resulting in oxygen insufficiency in utero. Furthermore, 

both hypoxia and cocaine cause an increase in oxidative stress. How prenatal hypoxia 

predisposes fetal hearts to I/R injury, and whether the mechanisms mirrors that of 

cocaine, are fascinating questions that remain to be elucidated.     

 

HIF and Epigenetics 

To date, little is known about HIF-1 in epigenetics and whether it plays a role in 

long-term gene silencing in immature cardiomyocytes. Since HIF activity is central to 

cellular adaptation to hypoxic stress, it is plausible HIF may play a role in hypoxia-

induced fetal programming of cardiomyocytes. Hypoxia through HIF plays an important 

role in influencing transcription of multiple genes in embryogenesis. Epigenetic 

mechanisms play an important role in the process of both cases. An example of the 

influence of hypoxia in embryogenesis is seen in stem cell differentiation. Studies have 

demonstrated that normal placental development requires HIF-1 induction for proper 

trophoblast differentiation (Adelman et al., 2000; Cowden et al., 2005; Maltepe et al., 

2005). One fascinating study demonstrated that HIF-2 preferentially up-regulated Oct-4 

(Wiesener et al., 2003). Oct-4 plays an important role in maintaining a dedifferentiated 

cell disposition in embryonic stem cells, primordial germ cells and embryonic epiblast 
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(Scholer et al., 1990; Suzuki et al., 1990; Nichols et al., 1998). Furthermore, reports have 

shown the involvement of HIF-1 in tumor formation and irregular gene expression 

silencing via DNA methylation (Kondo et al., 2002; Gordan et al., 2008).  HIF-1 has also 

been shown to interact directly with epigenetic modulators. Studies done by Beyer (2008) 

and Wellmann et al. (2008) identified a HRE site in the proximal promoter of the histone 

demethylase Jumonji domain containing 1A and 2B (JMJD1A, JMJD2B). JMJD1A and 

JMJD2b demethylate H3K9 residues of histones, which are usually associated with 

reduced acetylation and gene repression [Beyer et al., 2008; Chen et al., 2006). In renal 

cell carcinoma, von Hippel Lindau activity is lost leading to aberrant expression of HIF-1 

& 2, as well as increased expression and activity of histone demethylases JMJD1A and 

JMJD2b (Kondo et al., 2002; Gordan et al., 2008; Krieg et al., 2000). In addition, studies 

suggest that HIF-1 interacts directly with histone deacetylases 7 (HDAC7) (Maltepe et 

al., 2005; Granger et al., 2008). The interaction seems to highlight HDAC7 ability to 

enhance HIF activity by forming a complex with HIF and p300 and influencing gene 

transcription.  Histone deacetylases remove acetyl groups from histone residues, causing 

structural changes that preclude the binding of transcription factors and RNA polymerase 

II to gene targets.  HIF-1 is known to influence cellular adaptation in response to acute 

and chronic hypoxia; yet HIF-1 may also mediate long-term changes in gene expression 

through direct modulation of epigenetic effectors. 

Recently, studies have linked c-myc activity with HIF-1 and HIF-2.  C-myc is a 

proto-oncogene involved in cell proliferation and enhancement of cellular metabolism.  

There is evidence that c-myc can modulate epigenetic mechanisms.  Work done by He et 

al. (2009) demonstrated a link between overexpression of c-myc and hypermethylation of 
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CpG sites in the tumor suppressor gene’s retinoic acid receptor beta (RARbeta) and 

PDLIM4 in a prostate cancer cell line. Brenner et al, (2005) found that c-myc is able to 

direct DNA methyltransferase 3a (DNMT3a) to the p21Cip1 promoter through direct 

binding with DNMT3a and Miz-1, identifying a potential mechanism for epigenetic 

silencing in cancer.  In cancer cell models, HIF-1 actively competes with c-myc causing 

inhibition of gene targets, while HIF-2 promotes c-myc activity (Gordan et al., 2008; 

Koshiji et al., 2004). These findings suggest HIF may also indirectly influence epigenetic 

patterns through interaction with c-myc or other transcription factors. Undoubtedly, HIF-

1 plays an important role in normal fetal heart development, and may also play a key role 

in fetal programming of the myocardium through modulation of epigenetic effectors.  

 

Central Hypothesis 

Our hypothesis is that hypoxia directly affects PKC expression in fetal hearts 

through epigenetic modifications of the PKC promoter; and, hypoxia-induced HIF-1 

stabilization and/or oxidative stress play a role in this process. 

 

Significance 

 Increasing evidence suggests programming of protective genes in utero can 

predispose offspring to developing coronary disease later in life. Particularly, PKC 

expression is known to play a vital role in cardioprotection against ischemia reperfusion 

injury; however prenatal hypoxia reduces PKC expression in adult hearts increasing the 

susceptibility to I/R injury. Although hypoxia is known to cause certain 

cardiomyopathies, little is known about the mechanism through which hypoxia mediates 
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programming of cardioprotective genes and whether it involves epigenetics. Since 

hypoxic stress is a common insult during development and very little is known about the 

role of epigenetics in hypoxia-induced down-regulation of cardioprotective genes, we 

expect findings from our study to reveal a novel role of hypoxia and hypoxia-induced 

gene expression in fetal programming of cardiomyocytes.   We further anticipate our 

findings to have relevance in areas beyond cardiogenesis; including embryogenesis and 

tumorigenesis, where normal and aberrant gene programming as a result of epigenetic 

modifications are common.  Our findings will provide a greater understanding of how 

adaptations in response to intrauterine stress, namely hypoxia, can influence cellular 

responses to stress later in life.  
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Abstract 

Rationale: Epidemiological studies demonstrate a clear association of adverse 

intrauterine environment with an increased risk of ischemic heart disease in adulthood. 

Hypoxia is a common stress to the fetus, and results in decreased protein kinase C epsilon 

(PKCε) expression in the heart and increased cardiac vulnerability to ischemia and 

reperfusion injury in adult offspring in rats.  

Objectives: The present study tested the hypothesis that fetal hypoxia-induced 

methylation of CpG dinucleotides at the PKC promoter is repressive and contributes to 

PKC gene repression in the heart of adult offspring.  

Methods and Results: Hypoxic treatment of pregnant rats from day 15 to 21 of 

gestation resulted in significant decreases in PKCε protein and mRNA in fetal hearts. 

Similar results were obtained in ex vivo hypoxic treatment of isolated fetal hearts and rat 

embryonic ventricular myocyte cell line H9c2. Increased methylation of PKCε promoter 

at SP1 binding sites, -346 and -268, were demonstrated in both fetal hearts of maternal 

hypoxia and H9c2 cells treated with 1% O2 for 24 h. Whereas hypoxia had no significant 

effect on the binding affinity of SP1 to the unmethylated sites in H9c2 cells, hearts of 

fetuses and adult offspring, methylation of both SP1 sites reduced SP1 binding. The 

addition of 5-aza-2’-deoxycytidine blocked the hypoxia-induced increase in methylation 

of both SP1 binding sites and restored PKCε mRNA and protein to the control levels. In 

hearts of both fetuses and adult offspring, hypoxia-induced methylation of SP1 sites was 

significantly greater in males than in females, and decreased PKC mRNA was seen only 

in males. In fetal hearts, there was significantly higher abundance of estrogen receptor  

(ER) and  (ER) isoforms in females than in males. Both ER and ER interacted 
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with the SP1 binding sites in the fetal heart, which may explain the gender differences in 

SP1 methylation in the fetal heart. Additionally, selective activation of PKC restored the 

hypoxia-induced cardiac vulnerability to ischemic injury in offspring.     

Conclusion: The findings demonstrate a direct effect of hypoxia on epigenetic 

modification of DNA methylation and programming of cardiac PKCε gene repression in 

a sex-dependent manner, linking fetal hypoxia and pathophysiological consequences in 

the hearts of adult offspring.  

 

Keywords:  Fetal heart, PKCε, hypoxia, epigenetics, DNA methylation 

 
 

Introduction 

Heart disease is the leading cause of death in the United States. In addition to 

other risk factors, recent epidemiological and animal studies have shown a clear 

association of adverse intrauterine environment with an increased risk of hypertension 

and ischemic heart disease in adulthood.1-4 Hypoxia is a common form of intrauterine 

stress, and the fetus may experience prolonged hypoxic stress under a variety of 

conditions, including pregnancy at high altitude, pregnancy with anemia, placental 

insufficiency, cord compression, preeclampsia, heart, lung and kidney disease, or with 

hemoglobinopathy. Animal studies suggest a possible link between fetal hypoxia and 

increased risk of cardiovascular disease in offspring.5-13 Studies in rats have demonstrated 

that maternal hypoxia results in an increase in cardiac vulnerability to ischemia and 

reperfusion injury in male offspring.10,14,15 In addition, it has been demonstrated that 

down-regulation of protein kinase C epsilon (PKC) protein expression in the hearts of 
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adult offspring is a mechanism for the increased heart susceptibility to ischemia and 

reperfusion injury in the animals exposed to hypoxia before birth.14  

Among other mechanisms, PKC plays a pivotal role of cardioprotection in heart 

ischemia and reperfusion injury.16-18 The study in a PKC knock-out mouse model has 

demonstrated that PKC expression is not required for cardiac function under normal 

physiological conditions, but PKC activation is necessary for acute cardioprotection 

during cardiac ischemia and reperfusion.19 The finding that fetal hypoxia resulted in a 

decrease in PKC protein expression in the heart of adult offspring10,14 suggests that an 

epigenetic mechanism may explain PKC gene repression in the heart. Epigenetic 

mechanisms are essential for development and differentiation, and allow an organism to 

respond to the environment through changes in gene expression patterns.20-22 DNA 

methylation is a chief mechanism for epigenetic modification of gene expression patterns, 

and occurs at cytosines in the CpG dinucleotide sequence.23 Methylation in promoter 

regions is generally associated with repression of transcription, leading to a long-term 

shutdown of the associated gene. Methylation of CpG islands in gene promoter regions 

alters chromatin structure and transcription. Similarly, methylation of CpG dinucleotides 

within transcription factor binding sites generally represses transcription.20,24,25 The 

present study tested the hypothesis that fetal hypoxia-induced methylation of CpG 

dinucleotides at the PKC promoter contributes to PKC gene repression in the heart of 

adult offspring. Herein, we present evidence that hypoxia has a direct effect on PKC 

expression in the fetal heart, and demonstrate in a cell model that hypoxia causes an 

increase in methylation of CpG dinucleotides at the proximal promoter region of PKC 
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gene, resulting in decreased binding of sequence-specific transcription factors to the 

promoter and reduced PKC gene expression.   

 

Methods 

An expanded Methods section is available in the data supplement. 

 

Experimental Animals 

Pregnant rats were randomly divided into two groups: 1) normoxic control; and 2) 

hypoxic treatment of 10.5% O2 from day 15 to 21 of gestation.14 Hearts were isolated 

from near-term (21 d) fetuses and 3 months old offspring. To study the direct effect of 

hypoxia on the fetal heart, hearts were isolated from day 17 fetal rats and cultured at 37 

C in 95% air/5% CO2 and 1% O2 for 48 h, as reported previously.24
   

 

Cell Culture 

H9c2 cells were grown and sub-cultured and experiments were performed at 70-

80% confluent. For hypoxic studies, cells were treated with 1%, 3%, or 10.5% O2, 

respectively, for 24 h.  

 

Western Blot Analysis 

Protein abundance of PKC, SP1, alpha (ER) and beta (ER) subtypes of 

estrogen receptors in H9c2 cells and hearts of fetuses and adult offspring were measured 

with Western blot analysis, and were normalized to beta2-microglobulin (B2M), as 

described previously.25, 26  
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Real-Time RT-PCR 

PKCε mRNA abundance in H9c2 cells and hearts of fetuses and adult offspring 

was determined by real-time RT-PCR and was normalized to B2M.25, 26   

 

Quantitative Methylation-Specific PCR 

DNA collected from H9c2 cells and hearts of fetuses and adult offspring was 

treated with sodium bisulfite at 55 C for 16 h. Bisulfite-treated DNA was used as a 

template for real-time fluorogenic methylation-specific PCR (MSP) using primers created 

to amplify promoter binding sites containing possible methylation sites based on our 

previous sequencing of rat PKCε promoter.25 

 

Electrophoretic Mobility Shift Assay (EMSA) 

Nuclear extracts were collected from H9c2 cells and hearts of fetuses and adult 

offspring. EMSA was performed using the oligonucleotide probes with either CpG or 

mCpG in the two SP1 binding sites (− 346 and − 268) at rat PKCε promoter region, as 

described previously.25  

 

Chromatin Immunoprecipitation (ChIP) 

Chromatin extracts were prepared from H9c2 cells and fetal hearts. ChIP assays 

were performed for the two SP1 binding sites at the PKCε promoter in DNA sequences 

pulled-down by SP1, ER, and ER antibodies.25  

 

 



40 

Hearts Subjected to Ischemia and Reperfusion 

Isolated hearts from 3 months old male offspring were subjected to 20 minutes of 

global ischemia followed by 30 minutes of reperfusion in the absence or presence of a 

PKC activator peptide -RACK (0.5 M, KAE-1, KAI Pharmaceuticals) in a 

Langendorff preparation, as previously described.14, 27 Post-ischemic recovery of left 

ventricular function and lactate dehydrogenase (LDH) release were determined.14  

 

Statistical Analysis 

Data are expressed as mean ± SEM. Statistical significance (P < 0.05) was 

determined by analysis of variance (ANOVA) followed by Neuman-Keuls post hoc 

testing or Student's t test, where appropriate. 

 

Results 

Effect of Hypoxia on PKC Protein and mRNA in Fetal 
Cardiomyocytes 

Maternal hypoxia resulted in significant decreases in both protein and mRNA 

abundance of PKC in fetal rat hearts (Figure 2A). Similar findings were obtained in 

isolated fetal hearts treated ex vivo with 1% O2 (Figure 2A), demonstrating a direct effect 

of hypoxia on PKC expression in the heart. Further study demonstrated in rat embryonic 

ventricular myocyte cell line H9c2 that 1% O2, but not 3% or 10.5% O2, significantly 

decreased PKC mRNA and protein levels as compared to 21% O2 (Figure 2B).   
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Methylation of SP1 Binding Sites at the PKC Promoter 

Eight putative transcription binding sites containing CpG dinucleotides at rat 

PKC promoter were previously identified.25  Treatment of H9c2 cells with 1% O2 for 24 

h resulted in a significant increase in methylation of SP1 binding sites at -346 and -268, 

but decreased methylation of MTF1 binding site at -168, as compared to 21% O2 control 

(Figure 3). Hypoxia did not change significantly the methylation status of Stra13, 

PPARG, E2F, Egr1, and MTF1 at -603. Consistent with the findings in H9c2 cells, 

maternal hypoxic treatment revealed a similar pattern of increased methylation of the two 

SP1 binding sites, -346 and -268, at the PKCε promoter in the fetal hearts (Figure 3). In 

addition, in vivo hypoxia resulted in an increase in methylation of the putative Egr1 

binding site in the fetal heart (Figure 3).   

 

Methylation Inhibits SP1 Binding 

H9c2 cells were used to further determine the role of methylation in PKCε down-

regulation. Given the previous finding that deletions of the regions containing the 

putative Egr1 site and MTF1 site at -168 had no significant effects on the PKCε promoter 

activity,25 our further investigation focused on the two SP1 binding sites. SP1 binding 

and the functional significance of the SP1 binding sites in the regulation of PKCε gene 

activity was demonstrated previously.25 To determine if methylation of the SP1 sites 

inhibits SP1 binding from nuclear extracts of H9c2 cells, EMSA was performed with 

methylated and unmethylated oligonucleotide probes containing the SP1 sites at -346 and 

-268. As shown in Figure 4, nuclear extracts from H9c2 cells bound and shifted the 

double-stranded unmethylated SP1 oligonucleotides at both sites, but failed to cause a shift 
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of the methylated SP1 oligonucleotides. This is consistent with the previous findings in fetal 

rat hearts showing a loss of binding of the nuclear extracts to the methylated SP1 

oligonucleotides.24     

 

Effect of Hypoxia on SP1 Abundance and Binding Affinity 

Western blots revealed that hypoxia caused a significant increase in nuclear SP1 

abundance in H9c2 cells (Figure S1, available in the data supplement). In contrast, there 

was no significant difference in SP1 abundance either in fetal hearts between control and 

maternal hypoxic treatments, or in the hearts of both male and female offspring between 

the control and prenatally hypoxic animals (Online Figure I). The binding affinity of SP1 

to the unmethylated SP1 binding sites was determined in competition studies performed 

in pooled nuclear extracts with the increasing ratio of unlabeled/labeled oligonucleotides 

encompassing the SP1 sites at -346 and -268, respectively. Hypoxia had no significant 

effect on the binding of nuclear extracts to either SP1 sites at -346 or -268 in H9c2 cells, 

fetal hearts, or the hearts of both male and female offspring (Online Figure II).  

 

Inhibition of DNA Methylation Restored PKC Expression 

To determine the causal role of CpG dinucleotide methylation in the down-

regulation of PKC expression, we exposed H9c2 cells to 1% O2 in the absence or 

presence of increasing concentrations of the DNA methylation inhibitor 5-aza-2’-

deoxycytodine. As shown in Figure 4, 5-aza-2’-deoxycytodine produced a concentration-

dependent inhibition of hypoxia-induced decrease in PKC mRNA and 30 µM 5-aza-2’-

deoxycytodine restored the mRNA to normoxic levels. This was accompanied by 
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restoration of PKC protein (Figure 5). The inhibition of hypoxia-induced methylation of 

the two SP1 binding sites by 5-aza-2’-deoxycytodine was demonstrated (Figure 6A). To 

confirm that hypoxia-induced methylation alters SP1 binding to the PKCε promoter in the 

context of intact chromatin, ChIP assays were performed using a SP1 antibody. Figure 

6B shows that hypoxia caused significant decreases in the SP1 binding to both SP1 sites at -

346 and -268, respectively, in H9c2 cells. However, in the presence of 5-aza-2-

deoxycytine, there were no significant differences in SP1 binding to the either sites 

between hypoxic and normoxic samples (Figure 6B). 

 

Sex Differences in Hypoxia-Induced Changes in Methylation and 
PKC Expression 

We further investigated the potential sex differences in hypoxia-induced 

methylation of the SP1 binding sites and PKCε transcription. Maternal hypoxia caused a 

minimal but significant increase in methylation at both SP1 binding sites in the hearts of 

female fetuses, but induced significantly greater methylation in male fetal hearts (Figure 

7A). PKCε mRNA was significantly decreased in the hearts of male but not female 

fetuses (Figure 7B). The similar pattern of sex differences in the hypoxia-induced SP1 

methylation and PKCε transcription was demonstrated in the hearts of male and female 

offspring (Figure 7A, B). The sex difference observed in the fetal hearts was intriguing 

given that male and female fetuses were likely exposed to the similar concentrations of 

steroid hormones in utero. However, both ER and ER abundance was significantly 

higher in the hearts of female, as compared with male fetuses (Figure 8A). Chromatin 

immunoprecipitation assay demonstrated the PCR products of the two SP1 binding sites 

in the DNA sequences pulled-down by both ER and ER antibodies in the fetal hearts 
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(Figure 8B), suggesting an interaction between estrogen receptors and the SP1 binding 

sites at the PKCε promoter. 

 

PKC Activation Restored Hypoxia-Induced Cardiac Vulnerability to 
Ischemic Injury 

The cause-and-effect evidence of the functional importance of PKCε in hypoxia-

mediated, sex-dependent programming of increased heart vulnerability to ischemia and 

reperfusion injury in adult male offspring has been previously demonstrated by selective 

inhibition of PKCε with a PKCε translocation inhibitor peptide.14 To further demonstrate 

that decreased PKC is an important factor in the hypoxia-induced increase in cardiac 

ischemic susceptibility in male offspring, additional studies were performed in the hearts 

in a Langendorff preparation using a selective PKC activator peptide -RACK 

obtained from KAI Pharmaceuticals.16, 27-29 There were no significant differences in left 

ventricle developed pressure (LVDP), heart rate (HR), dP/dtmax, dP/dtmin and coronary 

flow rate at the baseline among all groups (Online Table I). In the absence of -RACK, 

fetal hypoxia caused a significant decrease in post-ischemic recovery of LVDP and 

increases in left ventricle end diastolic pressure (LVEDP) and lactate dehydrogenase 

(LDH) release (Figure 8), as well as decreases in the recovery of dP/dtmax and dP/dtmin 

(Figure S3), as previously reported.14 -RACK increased post-ischemic recovery of left 

ventricular function as shown in the previous studies27, 29 and abolished the hypoxic 

effects (Figure 9 and Online Figure III).           
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Figure 2. Effect of hypoxia on PKC protein and mRNA. (A) Fetal hearts of maternal 
hypoxia (MH) and isolated fetal hearts (IFH) treated with 1% (hypoxia) and 21% O2 
(control) for 48 hours. (B) H9c2 cells treated with 1%, 3%, 10.5%, and 21% O2 for 24 
hours.  Data are means  SEM.  * P < 0.05 vs. control (n = 5-15) 
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Figure 3. Effect of hypoxia on methylation of the PKCε promoter. Methylation 
patterns were determined in fetal hearts of maternal hypoxia and H9c2 cells treated with 
1% O2 vs. 21% O2 for 24 hours.  Data are means  SEM.  * P < 0.05 vs. control (n = 5-10)  
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Figure 4. Effect of methylation on SP1 binding. Nuclear extracts of H9c2 cells were 
incubated with unmethylated (UM-oligo) or methylated (M-oligo) oligonucleotides 
containing SP1 consensus sequence at sites -346 and -268.  
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Figure 5.  Effect of 5-aza-2’-deoxycytidine on PKC mRNA and protein. H9c2 cells 
were treated with 1% O2 and 21% O2 for 24 hours in the absence or presence of increasing 
concentration of 5-aza-2’-deoxycytidine (5-Aza-2’-dC). Data are means  SEM.  * P < 
0.05 vs. control (n = 4-17).  
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Figure 6. Effect of 5-aza-2’-deoxycytidine on methylation of SP1 sites and SP1 binding. 
H9c2 cells were treated with 1% O2 and 21% O2 for 24 h in the absence or presence of 30 
µM 5-aza-2’-deoxycytidine (5-Aza). (A) Methylation of SP1 binding sites was determined 
by methylation-specific PCR. (B) SP1 binding was determined by ChIP assays. Data are 
means  SEM.  * P < 0.05 vs. control (n = 4-9).  
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Figure 7. Effect of hypoxia on SP1 methylation and PKC mRNA. Pregnant rats 
were treated with hypoxia, and hearts were isolated from near-term fetuses or 3 months 
old offspring. M, male; F, female. (A) Methylation of SP1 binding sites at the PKC 
promoter. (B) PKC mRNA. Data are means  SEM.  * P < 0.05 vs. control (n = 5)  
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Figure 8. Estrogen receptors and SP1 binding sites in the fetal heart. Hearts were 
isolated from near-term fetuses. (A) Protein abundance of estrogen receptor alpha (ER) 
and beta (ER) subtypes. Data are mean  SEM. * P < 0.05 vs. male (n = 5). (B) PCR 
products of the SP1 binding sites (-346 and -268) following chromatin 
immunoprecipitation (ChIP) with ER and ER antibodies, respectively, in the fetal 
heart.  M, markers.  
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Figure 9. Effect of PKC activation on cardiac ischemia and reperfusion injury. 
Hearts were isolated from 3-month-old male offspring that had been exposed to 
normoxia (control) or hypoxia before birth, and were treated in the absence or presence 
of the PKC activator -RACK (0.5 μM) for 10 minutes before subjecting to 20 
minutes of ischemia and 30 minutes of reperfusion in a Langendorff preparation. Post-
ischemic recovery of left ventricular developed pressure (LVDP) and end diastolic 
pressure (LVEDP) were determined. Lactate dehydrogenase (LDH) release over 30 
minutes of reperfusion was measured as area under curve (AUC). Data are mean  
SEM. * P < 0.05, hypoxia vs. control; † P < 0.05, + -RACK vs. --RACK. n = 5.  
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Discussion 

The present study demonstrates that hypoxia has a direct effect on fetal 

cardiomyocytes causing a reduction in PKC protein and mRNA. This is correlated with 

increased methylation of CpG dinucleotides in the two SP1 binding sites at the proximal 

promoter region of PKC gene, resulting in decreased binding of SP1 to the promoter. 

The causal effect of methylation in the hypoxia-induced PKC gene repression is 

demonstrated through the use of a DNA methylation inhibitor, which blocks the 

methylation and restores PKC mRNA and protein expression to normal. 

Previous studies demonstrated the long-term adverse effect of maternal hypoxia 

on cardiac vulnerability to ischemia and reperfusion injury in adult male offspring in a 

sex-dependent manner.10,14,15 Particularly, the decreased expression of cardioprotective 

genes, namely PKC in hearts of adult male offspring are of significant interest.14 Acute 

hypoxia and reactive oxygen species increase the activity of PKC in the heart, which 

plays an important role in cardioprotection during ischemia and reperfusion injury.30 The 

present study demonstrated that chronic hypoxia during gestation down-regulated PKC 

expression in the developing heart through an epigenetic modification. This suggests 

differential regulations of acute hypoxia and chronic hypoxia on PKC activity and gene 

expression in the heart. The causal role of reduced PKC in sex-dependent programming 

of increased heart vulnerability to ischemia and reperfusion injury in adult male offspring 

has been demonstrated by selective inhibition of PKCε with a PKCε translocation 

inhibitor peptide.14, 31 The present study demonstrated that a selective PKC activator 

peptide16, 27-29 restored the hypoxia-induced cardiac vulnerability to ischemic injury, 

providing further evidence of cause-and-effect role of decreased PKCε in the hypoxia-
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mediated, sex-dependent programming of increased heart ischemic vulnerability in male 

offspring. This is consistent with other studies showing that PKC expression is 

necessary for acute cardioprotection during cardiac ischemia and reperfusion.19 The 

present finding of decreased PKC protein and mRNA in fetal hearts caused by maternal 

hypoxia suggests that the reduction in PKC expression observed in adult rats10,14 

originates in utero. Previous studies in the same animal model demonstrated that 

maternal hypoxia increased hypoxia-inducible factor 1 (HIF-1) protein in fetal hearts, 

suggesting tissue hypoxia in the fetal heart.32 The similar results of isolated hearts treated 

ex vivo with hypoxia indicate that hypoxia is necessary and sufficient to impact the PKC 

expression in fetal hearts. Whether this decreased PKC expression in the heart is a 

protective mechanism that increases fetal survival is not clear at present. However, the 

finding that the down-regulation of PKC resulted in increased heart ischemic 

vulnerability in offspring would suggest that it is a maladaptive response.    

The present study used the embryonic rat ventricular myocyte cell line H9c233 to 

investigate the underlying mechanisms. H9c2 cell line has been widely used in a variety 

of myocardiocyte studies, including those investigating apoptosis, differentiation and 

ischemia and reperfusion injury.34-38 H9c2 cells retain many electrophysical properties 

found in freshly isolated cardiomyocytes,33 albeit they do not spontaneously contract and 

are capable of continuous growth.39  In the present study, the hypoxia-induced decrease 

in PKC expression observed in fetal hearts in vivo and ex vivo mirrored that found in 

H9c2 cells, suggesting a congruent underlying mechanism for each model and providing 

a comparable model of H9c2 cells in the study of PKC gene regulation. Similar to the 
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present finding, it has been reported that PKC protein expression is decreased in H9c2 

cells exposed to 2 and 8 h of hypoxia in the presence of low and high glucose.40, 41   

Another question pertained to normal physiological PKC expression in fetal 

heart cells. 21% O2 (147 torr) is generally considered normal for adult cells. Because fetal 

partial oxygen pressures are closer to 20 torr,42 21% O2 is hyperoxic for fetal 

cardiomyocytes. This may alter underlying gene expression patterns since normal oxygen 

levels in fetal hearts are significantly lower. Interestingly, we found that exposure to 

21%, 10.5% and 3% O2 had no significantly different effects on PKC expression in 

H9c2 cells. While the potential effect of ‘hyperoxia’ on fetal cardiomyocytes remains to 

be further investigated, the finding that 1% O2 down-regulated PKC expression suggests 

modification in gene expression patterns as a mode of adaptation to oxygen insufficiency 

in cardiomyocytes. This is in agreement with many previous studies in which hypoxic 

effects were investigated in H9c2 cells under 1% O2.
37,38,43,44     

The finding of similar pattern of increased methylation of the two SP1 binding 

sites at the PKC promoter between H9c2 cells and the fetal hearts of maternal hypoxic 

treatment provides further evidence supporting the model of H9c2 cells in the present 

study. Whereas the differences in methylation patterns in the putative Egr1 and MTF1 (-

168) binding sites observed in fetal hearts and H9c2 cells are intriguing, the functional 

significance of this finding is not clear given that deletions of the regions containing the 

Egr1 and MTF1 (-168) sites had no significant effects on the PKCε promoter activity.25 

In contrast, deletion of the confirmed binding sites for both SP1 (-346) and SP1 (-268) 

significantly decreased the PKCε promoter activity in H9c2 cells.25  In the present study, 

we demonstrated by EMSA that methylation of CpG dinucleotides at the core of both 
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SP1 binding sites abolished SP1 binding in H9c2 cells. Previous studies with site-directed 

methylation of PKCε promoter-luciferase constructs selectively at SP1 binding sites at -

268 and -346, demonstrated that mutation of CmG at either SP1 site -268 or -346 alone 

had no significant effect on the promoter activity, but mutation of CmG at the both SP1 

binding sites significantly reduced the promoter activity in H9c2 cells.24 Although 

increases in nuclear SP1 protein abundance in hypoxic H9c2 cells may serve as a 

compensatory mechanism, this increase is relatively ineffective because increased 

methylation of SP1 binding sites caused an even more significant decrease in SP1 

binding to the PKCε promoter in the intact chromatin as demonstrated by ChIP assays. 

The finding that SP1 abundance was not significantly affected by hypoxia in fetal hearts, 

as well as in the hearts of either male or female adult offspring, together with the finding 

that hypoxia had no significant effect on SP1 binding affinity in H9c2 cells, fetal and 

adult hearts, reinforces a primary role of methylation in programming of PKCε gene 

repression.     

 The causal effect of increased methylation in hypoxia-induced PKCε gene 

repression was further demonstrated with a DNA methylation inhibitor 5-aza-2’-

deoxycytodine in the present study. 5-Aza-2’-deoxycytodine binds to DNA 

methyltransferase 1 causing its depletion and preventing DNA methylation,45 and has 

been widely used to inhibit DNA methylation.46-49 In the present study, we demonstrated 

that 5-aza-2’-deoxycytodine concentration-dependently inhibited hypoxia-induced down-

regulation of PKC mRNA expression. This is caused by inhibition of the hypoxia-

induced methylation of both SP1 binding sites resulting in recovered SP1 binding to the 

PKCε promoter in the intact chromatin. Whereas the study of 5-aza-2’-deoxycytodine in 
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H9c2 cells is limited, relatively high concentrations of 5-aza-cytidine (a close derivative 

of 5-aza-2-deoxycytidine) have been shown to rescue luciferase activity in transfected 

H9c2 cells in excess of 250 µM,50 which may reflect cell-type specific response to 5-aza-

2-deoxycytidine and derivatives. The ability of 5-aza-2-deoxycytidine to restore PKC 

mRNA and protein expression in cardiomyocytes in the presence of a stressor is 

consistent with earlier studies that showed that 5-aza-2-deoxycytidine blocked cocaine-

mediated repression of PKC expression in fetal rat hearts.24 

Previous studies demonstrated that prenatal hypoxia caused an increase in heart 

susceptibility to ischemia and reperfusion injury in a sex-dependent manner, which was 

due to fetal programming of PKC gene repression resulting in downregulation of PKC 

function in the heart of adult male offspring.14 In the present study, no significant 

differences were found in SP1 methylation and PKC mRNA abundance between male 

and female control groups in both fetuses and offspring. This is consistent with the 

previous findings of no significant difference in PKC protein abundance in the heart 

between control males and females.14, 51 However, the sex differences in hypoxia-induced 

changes in methylation of the SP1 binding sites and PKCε transcription were 

demonstrated in both fetal and offspring hearts. The finding that the hypoxia-induced 

methylation was significantly greater in the hearts of male fetuses is intriguing given that 

male and female fetuses are likely exposed to the similar concentrations of steroid 

hormones in utero. Whereas the mechanisms are not clear at present, the sex difference 

observed may be caused in part by the greater expression of ER and ER in the hearts 

of female fetuses. The finding that both ER and ER interacted with the SP1 binding 

sites at the PKCε promoter in intact chromatin in the fetal heart suggests a possible 
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mechanism for the increased protection of SP1 binding sites and PKCε transcription in 

the female hearts in response to hypoxic stress. It has been demonstrated that both ER 

and ER can activate transcription of the retinoic acid receptor 1 (RAR-1) gene by the 

formation of an ER-SP1 complex on the SP1 sites in the RAR-1 promoter.52 It is not clear 

at present whether the presence of phytoestrogens in the diet of soy-based chows used in 

the present study might contribute to the gender difference, though the pregnancy is a 

stage of high estrogen concentrations. This remains as an intriguing area for the future 

investigation using a casein-based diet. The similar pattern of sex differences in the 

hypoxia-induced SP1 methylation and PKCε transcription demonstrated in the hearts of 

male and female offspring supports the notion that fetal hypoxia-induced methylation of 

CpG dinucleotides at the PKCε promoter contributes to PKCε gene repression in the 

heart of adult offspring.       

The present investigation provides evidence of a novel mechanism of methylation 

in non-CpG island, sequence-specific transcription factor binding sites in subtle 

epigenetic modifications of gene expression pattern in fetal programming of cardiac 

function in response to adverse intrauterine environment. Although it may be difficult to 

translate the present findings directly into the humans, the possibility that fetal hypoxia 

may result in programming of a specific gene in the offspring with a consequence of 

increased cardiac vulnerability provides a mechanistic understanding worthy of 

investigation in humans. This is because hypoxia is one of the most important and 

clinically relevant stresses to the fetus, and because large epidemiological studies indicate 

a link between in utero adverse stimuli during gestation and an increased risk of ischemic 

heart disease in the adulthood. 
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Abstract 

Aims: Fetal hypoxia causes promoter methylation and gene repression of protein 

kinase C epsilon (PKCε) in the developing heart resulting in the heightened cardiac 

susceptibility to ischemia and reperfusion injury in offspring. The present study tested the 

hypothesis that HIF-1 and/or hypoxia-derived reactive oxygen species (ROS) mediate the 

hypoxia-induced PKCε gene repression.  

Methods and Results: Hypoxic treatment of pregnant rats from day 15 to 21 of 

gestation resulted in significant decreases in PKCε protein and mRNA in fetal hearts. 

Similar results were obtained in ex vivo hypoxic treatment of isolated fetal hearts and rat 

embryonic ventricular myocyte cell line H9c2. Increased methylation of PKCε promoter 

at the SP1 binding sites, -346 and -268, were demonstrated in both fetal hearts of 

maternal hypoxia and H9c2 cells treated with 1% O2 for 24 h. In H9c2 cells, hypoxia 

caused a significant nuclear accumulation of HIF-1α. HIF-1α inhibitors, YC-1 and 2-

methoxy estradiol, decreased the hypoxia-mediated HIF-1α nuclear accumulation, but 

had no effect on the hypoxia-induced PKCε mRNA repression. Hypoxia produced a time-

dependent increase in the ROS production in H9c2 cells, which was blocked by ROS 

scavengers N-acetylcysteine or 4-hydoxy tempo. In accordance, N-acetylcysteine and 4-

hydoxy tempo, but not apocynin, inhibited the hypoxic effect and restored PKCε protein 

and mRNA expressions to the control values in the fetal heart and H9c2 cells. The ROS 

scavengers blocked hypoxia-induced CpG methylation of the SP1 binding sites and 

restored the SP1 binding to the PKCε promoter to the control levels.  
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Conclusion: The results demonstrate that hypoxia induces epigenetic repression 

of the PKCε gene through a NADPH oxidase-independent ROS-mediated pathway in the 

fetal heart.   

 

Keywords: PKCε, HIF-1α, ROS, DNA methylation, H9c2 

 

Introduction 

Epidemiological studies have demonstrated a clear association between an 

adverse intrauterine environment and an increased risk of heart disease later in life [1-4].  

Hypoxia is a common form of intrauterine stress. Animal studies have suggested a 

possible link between chronic maternal hypoxia and increased risk of cardiovascular 

disease in offspring [3-6]. Recent studies in rats have demonstrated that maternal hypoxia 

results in the heightened cardiac vulnerability to ischemia and reperfusion injury in 

offspring in a sex-dependent manner [6]. Additionally, it has been demonstrated that the 

downregulation of protein kinase C epsilon (PKC) gene expression in the hearts of adult 

offspring is a mechanism for the increased heart susceptibility to ischemia and 

reperfusion injury in the animals exposed to hypoxia before birth [6,7].  PKCε plays an 

important role in cardioprotection against ischemic injury [8-10]. Further investigation 

has revealed that hypoxia has a direct effect on epigenetic repression of the PKCε gene in 

fetal hearts through DNA methylation of the PKCε promoter at the SP1 binding sites [7]. 

However, the mechanisms underlying hypoxia-mediated methylation of the PKCε 

promoter has yet to be elucidated. 
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One of the most important mediators for the hypoxic effect is hypoxia inducible 

factor 1 (HIF-1) that regulates many genes involved in external and internal adaptation to 

hypoxic stress. HIF-1 is composed of two subunits, HIF-1β (constitutively active) and 

HIF-1α (regulatory subunit). Although recent studies have implicated several 

mechanisms for HIF-1α regulation, oxygen availability is classically described [11]. 

Under normoxic conditions, proline hydroxylases (PHDs) add hydoxyl groups to proline 

residues 402 and 564, which afford the recruitment and binding of von Hippel-Lindau 

protein (E3 Ligase). This event then primes HIF-1α for proteasomal degradation. 

Additionally, factor inhibiting HIF (FIH) regulates the transcriptional activity of HIF-1 

[12].  In normoxia, FIH hydroxylates arginine 803, preventing the association of HIF-1 

and its binding partner CREB-binding protein (CBP)/p300 and thereby inhibits 

transcriptional activity. Under hypoxic conditions, HIF-1α subunit stabilizes and 

translocates to the nucleus where it dimerizes with HIF-1β.  HIF-1 then interacts with 

CBP/p300 and influences gene transcription through either direct binding to hypoxic 

response elements (HRE), or indirect modulation of the activity or expression of other 

transcription factors [13-15].   

Another key mediator in the hypoxic effect is reactive oxygen species (ROS). 

Under hypoxic conditions, intracellular ROS paradoxically increases [16]. The main site 

for ROS production is the electron transport system (ETS) located in the inner membrane 

of the mitochondria.  Uncoupling of ETS caused by hypoxia slows the electron flow 

through the ETS thereby increasing the probability of molecular oxygen interacting with 

free radicals (i.e., semiubiquione) to produce superoxide ion [16,17]. Cardiomyocytes are 

major producers of ROS due to their high metabolic demand. Increased ROS can 
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significantly alter gene expression patterns through the induction of the integrated stress 

response that involves PERK activation, eIFα phosphorylation and ATF4-mediated stress 

gene induction [18]. Recent studies have suggested a link between prolonged oxidative 

stress and aberrant DNA methylation patterns [19-21].  

Since HIF-1 activity is central to cellular adaptation to hypoxic stress and 

hypoxia-derived ROS is known to influence gene expression, it is plausible that HIF-1 

and/or ROS may mediate the hypoxia-induced epigenetic repression of PKCε gene 

expression in fetal hearts.  The present study tests this hypothesis in fetal rat hearts and 

rat embryonic ventricular cell line H9c2 that has been widely used in a variety of 

myocardiocyte studies. Our recent study has demonstrated a congruent underlying 

mechanism in fetal hearts and H9c2 cells in the epigenetic regulation of PKC gene 

repression [7]. Herein, we present evidence that blockade of hypoxia-derived ROS, but 

not HIF-1, inhibits the hypoxia-induced increase in methylation of the SP1 binding sites, 

reverses the decreased SP1 binding to the PKCε promoter, and restores PKCε mRNA and 

protein abundance to the control levels.  

 

Methods 

Experimental Animals 

Time-dated pregnant Sprague-Dawley rats were purchased from Charles River 

Laboratories (Portage, MI) and were randomly divided into two groups: 1) normoxic 

control, and 2) hypoxic treatment of 10.5% oxygen from gestational day 15 to day 21, as 

described previously (7). To examine the effect of antioxidant, the rats were treated in the 

absence or presence of N-acetyl-cysteine (NAC, Sigma) in the drinking water (500 
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mg/kg/day). Hearts were isolated from near-term (21 d) fetuses. For ex vivo studies, 

hearts were isolated from day 17 fetal rats and cultured in M199 media (Hyclone, Logan, 

UT) supplemented with 10% FBS and 1% penicillin/streptomycin at 37 C in 95% air/5% 

CO2, as reported previously (7). Hearts were given 24 h of recovery time before being 

placed in a hypoxic chamber with 1% O2 for 48 h in the absence or presence of NAC (1 

mM). All procedures and protocols were approved by the Institutional Animal Care and 

Use Committee guidelines, and followed the guidelines by US National Institutes of 

Health Guide for the Care and Use of Laboratory Animals. 

 

Cell Culture 

H9c2 cells were obtained from ATCC (Rockville, MD, USA). Cells were 

maintained in DMEM and supplemented with 10% FBS and 1% penicillin/streptomycin 

at 37 C in 95% air/5% CO2. Cells were grown and sub-cultured in 6-well plates with 

experiments performed between 70-80% confluent. For the hypoxic treatment, cells were 

transferred to the hypoxic chamber and maintained at 1% O2 for 24 h, as previous 

described (7).  

Western Blot Analysis 

Western blots were performed as previously described [7,14,22]. Briefly, hearts or 

H9c2 cells were homogenized in a lysis buffer containing 150 mM NaCl, 50 mM 

Tris.HCl, 10 mM EDTA, 0.1% Tween-20, 0.1% β-mercaptoethanol, 0.1 mM 

phenylmethylsulfonyl fluoride, 5 µg/ml leupeptin, and 5 µg/ml aprotinin, pH 7.4 and 

allowed to incubate for 1 h on ice. Homogenates were then centrifuged at 4C for 20 min 

at 10,000 g, and supernatants collected. Nuclear extracts were prepared using the 
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NXTRACT CelLytic Nuclear Extraction Kit (Sigma) with few modifications. Hypotonic 

buffers were supplemented with 1 μM lactacystin and 1 mM EDTA. Protein 

concentrations were measured using a protein assay kit (Bio-Rad, Hercules, CA).  

Samples with equal amounts of protein were loaded onto 7.5 % polyacrylamide gel with 

0.1% SDS and separated by electrophoresis at 100 V for 90 min. Proteins were then 

transferred onto nitrocellulose membranes. Nonspecific binding was blocked for 1 h at 

room temperature in the blocking buffer. The membranes were then probed overnight 

with primary antibodies against PKCε (Santa Cruze Biotechnology; Santa Cruz, CA) and 

HIF-1α (BD Biosciences), as described previously [23]. β-actin antibody (Sigma) was 

used to normalize loading. After washing, membranes were incubated with IRDye® 

secondary antibodies (LI-COR biosciences). Proteins were visualized and analyzed with 

the Odyssey imagine system.  

 

Real-Time RT-PCR 

RNA was extracted from hearts or H9c2 cells using TRIzol protocol (Invitrogen, 

Carlsbad, USA). PKCε mRNA abundance was determined by real-time RT-PCR using 

Icycler Thermal cycler (Bio-Rad), as described previously [7]. The primers for PKCε are 

5’-GCGAAGCCCCTAAGACAAT-3’ (forward) and 5’-

CACCCCAGATGAAATCCCTAC-3’ (reverse). Real-time RT-PCR was performed in a 

final volume of 25 µl. Each PCR reaction mixture consisted of 600 nM of primers, 33 

units of M-MLV reverse transcriptase (Promega, Madison, WI), and iQ SYBR Green 

Supermix (Bio-Rad) containing 0.625 unit Taq polymerase, 400 µM each of dATP, 

dCTP, dGTP, and dTTP, 100 mM KCl, 16.6 mM ammonium sulfate, 40 mM Tris-HCl, 6 

mM MgSO4, SYBR Green I, 20 nM fluorescing and stabilizers. The following RT-PCR 
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protocol was used: 42 °C for 30 min, 95 °C for 15 min, followed by 40 cycles of 95 °C 

for 15 s, 59 °C for 20 s, 72 °C for 10 s. GAPDH was used as an internal reference and 

serial dilutions of the positive control was performed on each plate to create a standard 

curve. PCR was performed in triplicate, and threshold cycle numbers were averaged. 

 

Quantitative Methylation-Specific PCR 

DNA was isolated from hearts or H9c2 cells using a GenElute Mammalian 

Genomic DNA Mini-Prep kit (Sigma), denatured with 2 N NaOH at 42 C for 15 min, 

and treated with sodium bisulfite at 55 C for 16 h, as previously described [7,27]. DNA 

was purified with a Wizard DNA clean up system (Promega) and resuspended in 100 µl 

of TE buffer. Bisulfite-treated DNA was used as a template for real-time fluorogenic 

methylation-specific PCR (MSP) using primers created to amplify promoter binding sites 

containing methylation sites based on the previous sequencing of rat PKCε promoter 

[23]. GAPDH was used as an internal reference gene. Real-time MSP was performed 

using the iQ SYBR Green Supermix with iCycler real-time PCR system (Bio-Rad). 

 

Measurement of Intracellular ROS 

The fluorescent indicator 2’7’-dichlorofluorescein diacetate was used to measure 

intracellular ROS in H9c2 cells. 2’7’-Dichlorofluorescein diacetate enters cells where it is 

de-esterified and converted to the highly fluorescent 2′,7′-dichlorofluorescein (DCF) 

upon oxidation.  Cells were subcultured in black-wall, clear-bottom 96 well plates and 

allowed to grow to 50-70% confluence. Cells were then exposed to hypoxic treatment at 

various time points.  After the treatment, cells were washed twice with PBS and then 
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loaded with 5 μM of 2’7’-dichlorofluorescein diacetate in serum free DMEM and placed 

in a 37 °C incubator for 30 min.  Cells were removed from the incubator and washed 

twice with PBS.  Fluorescence (excitation wavelength at 495 nm and emission 

wavelength at 515 nm) was measured using a Synergy HT Multi-Mode Microplate 

Reader (Winooski, VT). All experiments were done with minimal exposure to light and 

fluorescence was normalized to cell count. 

 

Chromatin Immunoprecipitation (ChIP) 

Chromatin extracts were prepared from H9c2 cells. ChIP assays were performed 

using the ChIP-IT™ Express Chromatin Immunoprecipitation Kit (Active Motif, 

Carlsbad, CA), as previously described [7,22]. Briefly, cells were exposed to 1% 

formaldehyde for 10 min to crosslink and maintain DNA/protein interactions.  After the 

reactions were stopped with glycine, cells were washed, chromatin isolated and the DNA 

sheared into medium fragments (200–1000 base pairs) with 7 pulses at ¼ power using a 

sonicator.  ChIP reactions were performed using a SP1 antibody (Active Motif) to 

precipitate the transcription factor/DNA complex.  Crosslinking was then reversed using 

a salt solution and proteins digested with proteinase K. Two sets of primers flanking the 

two SP1 binding sites at -346 and -268 were used: 5′-accatttcctctcgacatgc-3′ (forward) 

and 5′-agatttcaacccggatcctc-3′ (reverse); 5′-agaggatccgggttgaaatc-3′ (forward) and 5′-

ctcacctacctttccgaaaca-3′ (reverse). PCR amplification products were visualized on 1.5% 

agarose gel stained with ethidium bromide. To quantify PCR amplification, 45 cycles of 

real-time PCR were carried out with 3 min initial denaturation followed by 95 °C for 

30 s, 51 °C for 30 s, and 72 °C for 30 s, using the iQ SYBR Green Supermix with iCycler 

real-time PCR system (Bio-Rad). 
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Statistical Analysis 

Data are expressed as mean ± SEM. Experimental number (n) represents the 

hearts of fetuses from different dams. Statistical significance (P < 0.05) was determined 

by analysis of variance (ANOVA) followed by Neuman-Keuls post hoc testing or 

Student's t test, where appropriate. 

 

Results 

The Effect of HIF-1α Inhibitors on Hypoxia-Induced Decrease of 
PKCε Expression 

To assess the role of HIF-1α in hypoxia-induced decrease of PKCε expression, 

YC-1 and 2-methoxyestradiol (2ME) were used to block HIF-1α nuclear accumulation. 

YC-1 blocks HIF-1α protein by enhancing degradation [24], and 2ME blocks HIF-1α 

through an oxygen and proteasome independent pathway that involves disruption of 

mircotubules [25]. H9c2 cells were treated with 1% O2 for 24 h in the absence or 

presences of YC-1 (10 or 100 μM) or 2ME (10 or 100 μM). Nuclear extracts were 

collected for determining HIF-1α nuclear accumulation.  Figure 1A shows that HIF-1α 

protein accumulated in the nuclear compartment under the hypoxic treatment. The 

addition of YC-1 or 2ME significantly reduced HIF-1α nuclear accumulation (Figure 

1A).  However, neither YC-1 nor 2ME had significant effects on the hypoxia-induced 

decrease in PKCε mRNA expression (Figure 1B), suggesting the minimum role of HIF-

1α in regulating PKCε gene transcription under hypoxic conditions.  
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The Effect of ROS Scavengers on Hypoxia-Induced Decrease of PKCε 
Expression 

To determine the role of ROS in hypoxia-induced decrease of PKCε expression, 

the ROS scavengers, N-acetyl-cysteine (NAC) and tempol were used to reduce 

intracellular ROS. H9c2 cells were treated with 1% O2 for 24 h in the absence or presence 

of NAC (0.5, 0.75, 1 mM), tempol (1, 2.5, 5 mM). Additionally, apocynin (0.5 mM) was 

used to determine the role of NADPH oxidase in the hypoxic effect. Hypoxia 

significantly decreased PKCε protein and mRNA abundance (Figure 2A, B).  NAC 

produced a dose-dependent inhibition of the hypoxic effect on PKCε mRNA repression 

(Figure 2A). Similar findings of blockade of the hypoxic effect were obtained with 

tempol (Figure 2A). In contrast, apocynin had no significant effect on the hypoxia-

mediated downregulation of PKCε expression (Figure 2A). Consistent with the results of 

mRNA, both NAC and tempol blocked the hypoxia-induced reduction of PKCε protein 

expression in H9c2 cells (Figure 2B). In agreement with the findings in H9c2 cells, 

maternal hypoxia-mediated downregulation of PKCε mRNA and protein expressions in 

the fetal heart were blocked by NAC (Figure 3A). The similar results were obtained in 

isolated fetal hearts treated ex vivo with 1% O2, showing the reversal of hypoxia-induced 

downregulation of PKCε gene expression by NAC (Figure 3B).    

 

Hypoxia Increased ROS Production in H9c2 cells 

To determine whether hypoxia significantly alters ROS production in H9c2 cells, 

we performed a time course experiment using 2’7’-dichlorofluorescein diacetate to 

measure intracellular ROS production. H9c2 cells were treated with 1% O2 for 2, 4, 8, 16, 

and 24 h. Fluorescence of DCF was measured using a microplate reader and normalized 



76 

to cell count. As shown in Figure 4A, ROS levels were significantly elevated at the 2 h 

treatment. At the 4 h time point, ROS levels peaked and gradually declined afterward 

until the 16 h mark when it continued to increase again (Figure 4A). We further assessed 

the effect of NAC or tempol on hypoxia-induced ROS production at the 4 h time point.  

As shown in Figure 4B, in the presence of NAC or tempol, the hypoxia-induced ROS 

production was blocked.  

 

ROS Scavengers Abolished Hypoxia-Induced Methylation at the 
PKCε Promoter 

Previous studies have demonstrated prolonged hypoxia treatment significantly 

increases methylation of the SP1 binding sites -346 and -268 at the PKCε promoter in 

H9c2 cells [7]. We therefore determined whether the inhibition of ROS significantly 

altered the methylation status of the SP1 binding sites at the PKCε promoter. H9c2 cells 

were treated with 1% O2 for 24 h in the absence or presence of NAC or tempol.  Genomic 

DNA was isolated and methylation-specific PCR was performed using primers that had 

been previously designed for the SP1 sites -346 and -268 [7,23]. Consistent with the 

previous findings, hypoxia significantly increased the methylation status of the both SP1 

binding sites in the absence of ROS scavengers (Figure 5A). NAC and tempol blocked 

the hypoxia-induced increase in CpG methylation of the both SP1 binding sites -346 and 

-268 at the PKCε promoter (Figure 5A). In agreement with the findings in H9c2 cells, the 

maternal hypoxic treatment revealed a similar pattern of increased methylation of the two 

SP1 binding sites, -346 and -268, at the PKCε promoter in the fetal hearts, which was 

inhibited by NAC (Figure 5B).    
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ROS Scavengers Restored SP1 Binding to the PKCε Promoter 

Previous studies have demonstrated that methylation of the SP1 binding sites -346 

and -268 decreases SP1 binding to the PKCε promoter resulting in the reduced 

transcription activity [7,22].  To evaluate further whether the inhibition of ROS restored 

the binding of SP1 protein to the SP1 binding sites at the proximal PKCε promoter in the 

context of intact chromatin, ChIP assays were performed using the SP1 antibody. Figure 

6 shows the binding of SP1 to both SP1 elements at −346 and −268 at the PKCε promoter 

in intact chromatin in H9c2 cells. Hypoxia significantly decreased SP1 binding to the 

both SP1 binding sites (Figure 6).  In the presence of NAC or tempol, the SP1 binding 

was restored to the control values for the both SP1 binding sites (Figure 6).   
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Figure 10. The effect of HIF-1α inhibitors on PKCε expression.  A, H9c2 cells were 
treated with 21% O2 (control, C) or 1% O2 (hypoxia, H) in the absence or presence of 
YC-1 (100 μM) or 2-ME2 (100 μM) for 24 h. HIF-1α protein in the nuclear extracts was 
measured by Western blots. B, H9c2 cells were treated with 21% O2 (Control) or 1% O2 
(Hypoxia) in the absence or presence of YC-1 (10, 100 μM) or 2-ME2 (10, 100μM) for 
24 h. PKCε mRNA abundance was determined by real-time RT-PCR.  Data are means  
SEM. * P < 0.05, hypoxia vs. control. n = 10- 
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Figure 11. The effect of ROS scavengers on PKCε expression.  A, H9c2 cells were 
treated with 21% O2 (control) or 1% O2 (hypoxia) in the absence or presence of 
apocynin, NAC or tempol for 24 h. PKCε mRNA abundance was measured by real-time 
RT-PCR. Data are means  SEM. * P < 0.05, hypoxia vs. control. n = 5   B, H9c2 cells 
were treated with 21% O2 (control, C) or 1% O2 (hypoxia, H) in the absence or presence 
of NAC or tempol for 24 h. PKCε protein abundance was determined by Western blots. 
Data are means  SEM. * P < 0.05, hypoxia vs. control. n = 4-9  
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Figure 12. The effect of NAC on PKCε expression in fetal hearts. A, Hearts were 
isolated from near-term fetuses of pregnant rats treated with control (C) and hypoxia 
(H) in the absence or presence of NAC. B, Isolated fetal hearts were treated ex vivo 
with control (C) and hypoxia (H) in the absence or presence of NAC. PKCε protein 
abundance was determined by Western blots, and mRNA abundance was determined by 
real-time RT-PCR. Data are means  SEM. * P < 0.05, hypoxia vs. control; † P < 0.05, 
+NAC vs. –NAC. n = 



81 

 
  

 

 
 
 

 

 

 

Figure 13. Measurement of intracellular ROS in H9c2 cells.  A, H9c2 cells were 
treated with 21% O2 (control) or 1% O2 (hypoxia) for 0, 2, 4, 8, 16, 24 h. Cells were then 
loaded with 5 μM of 2’7’ dichlorofluorescein diacetate for 30 min and fluorescence 
measured with a microplate reader.  Data are means  SEM. * P < 0.05, hypoxia vs. 
control. n = 4-8   B. H9c2 cells were treated with 21% O2 (control) and 1% O2 (hypoxia) 
in the absence or presence of NAC or tempol for 4 h. Cells were then loaded with 5 μM of 
2’7’ dichlorofluorescein diacetate for 30 min and fluorescence measured with a microplate 
reader. Data are means  SEM. * P < 0.05, hypoxia vs. control. n = 5-6   
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Figure 14. The effect of ROS scavengers on PKCε promoter methylation. A, H9c2 
cells were treated with 21% O2 (control) or 1% O2 (hypoxia) in the absence (C) or 
presence of NAC (N) or tempol (T) for 24 h. B, Hearts were isolated from near-term 
fetuses of pregnant rats treated with control and hypoxia in the absence or presence of 
NAC. Methylation of the SP1 binding sites at -346 and -268 was determined by 
methylation specific PCR.  Data are means  SEM. * P < 0.05, hypoxia vs. control. n = 4- 
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Figure 15. The effect of ROS scavengers on SP1 binding to the PKCε promoter. 
H9c2 cells were treated with 21% O2 (control) or 1% O2 (hypoxia) in the absence (C) or 
presence of NAC (N) or tempol (T) for 24 h. SP1 binding to the PKCε promoter at -346 
and -268 in the context of intact chromatin was determined by ChIP assays.  Data are 
means  SEM. * P < 0.05, hypoxia vs. control. n = 4-9 
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Discussion 

The present study presents evidence for the first time that prolonged hypoxia 

mediates epigenetic repression of the PKCε gene in the fetal heart through a ROS, but not 

HIF-1α, dependent pathway. The studies demonstrate that the attenuation of hypoxia-

derived ROS restores PKCε protein and mRNA expressions by inhibiting CpG 

methylation of the SP1 binding sites and restoring SP1 binding to the PKCε promoter. In 

contrast, the inhibition of HIF-1α did not affect the hypoxic effect on repression of the 

PKCε gene. 

The present study builds upon the recent work that demonstrated the heightened 

cardiac susceptibility to ischemia and reperfusion injury in offspring that had experienced 

prolonged hypoxia before birth [5,6]. Interestingly, the ventricles of these offspring 

showed significantly less PKCε abundance compared to the control animals [6]. Previous 

studies have shown that acute exposure to hypoxia increases the activity of PKCε in the 

adult heart [26]. We have demonstrated that chronic gestational hypoxia decreases the 

expression of PKCε in the fetal heart, suggesting that prolonged hypoxia in utero 

suppresses PKCε gene activity [7]. Further investigation has revealed that chronic 

hypoxia directly regulates PKCε gene expression through increased methylation of two 

SP1 binding sites at the PKCε promoter [7]. This pattern of increased promoter 

methylation was present from the fetal heart and persists into the adulthood [6,7]. 

Consistent with the increased methylation, SP1 binding to the PKCε promoter in the 

context of intact chromatin was significantly decreased [7,22,23]. Site-directed 

methylation of PKCε promoter-luciferase constructs for both SP1 sites, but not either site 

alone, caused a significant decrease in the promoter activity in H9c2 cells, demonstrating 
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an important epigenetic mechanism involving the two SP1 binding sites in regulating 

PKCε gene transcription activity [7,22]. Furthermore, the causal role of DNA 

methylation in the hypoxia-induced PKCε gene repression was demonstrated using a 

methylation inhibitor, 5-aza-2-deoxycytdine that blocked the hypoxic effect on the 

downregulation of PKCε gene expression, thereby restoring PKCε protein and mRNA to 

the control values [7].   

The present findings add new insights into the hypoxia-mediated regulation of 

PKCε expression in cardiomyocytes and demonstrate that hypoxia-derived ROS mediates 

the epigenetic repression of PKCε gene in the fetal heart. The finding that NAC and 

tempol, but not apocynin, blocked the hypoxic effect on the PKCε repression is intriguing 

and suggests a role of NADPH oxidase-independent ROS in the hypoxia-mediated effect 

in the fetal heart. While NADPH oxidase has been shown to play a role in regulating the 

ROS production under chronic hypoxic conditions in some cell types, particularly in the 

pulmonary vasculature and carotid body, its involvement in hypoxia-mediated ROS 

production and hypoxia-related gene regulation appears to be tissue and organ selective. 

Consistent with the finding of minimum role of NADPH oxidase in the hypoxia-mediated 

effect in the present study, previous studies in guinea pig ventricular myocytes 

demonstrated that NADPH oxidase did not appear to contribute substantially in the 

hypoxia-induced ROS production and myocyte dysfunction [27]. The present findings 

that the ROS scavengers NAC and tempol inhibited hypoxia-mediated methylation of the 

SP1 binding sites and restored SP1 binding to the PKCε promoter indicates that hypoxia-

derived ROS plays a vital role in causing DNA methylation of the PKCε promoter in the 

fetal heart. Similar findings showed that NAC significantly reduced global DNA 
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methylation during anchorage blockade in murine nontumorigenic melanocyte, 

supporting the notion that ROS plays an important role in regulating DNA methylation 

[28]. Consistent with these findings, previous studies demonstrated that prolonged 

exposure to ROS caused significant hypermethylation of the E-cadherin promoter [21]. 

ROS-mediated methylation of E-cadherin promoter involved up-regulation of Snail, 

which recruited epigenetic effectors (i.e. DNA methyltransferase 1) to suppress gene 

transcription. Interestingly, Snail overexpression alone was sufficient to induce 

hypermethylation of E-cadherin promoter, suggesting Snail regulation was a key factor in 

mediating epigenetic modification of gene promoters [21]. Determining whether Snail 

activity is important in hypoxia-induced heightened methylation of CpG dinucleotides at 

transcription factor binding sites for the PKCε promoter deserves further investigation. 

Furthermore, understanding whether the mechanism by which hypoxia through ROS 

mediates methylation of the SP1 binding sites is a broad event (occurring in many genes) 

or selective (occurring in a few genes) warrants future research.  

Previous studies in myocardial, non-myocardial tissues and H9c2 cell line have 

found that hypoxia increases ROS [18,29,30]. Consistent with these findings, we found 

that hypoxia significantly increased ROS in H9c2 cells using 2’7’-dichlorofluorescein 

diacetate. Time course studies revealed a biphasic production of ROS in H9c2 cells with 

an initial peak at 4 h treatment, which declined to the 16 h mark, then was significantly 

increased by 24 h. Time course studies by Chen et al. [31] showed a similar biphasic 

elevation of ROS in human embryonic kidney and glioma cell lines treated with 

mitochondria complex inhibitor I rotenone or mitochondraia complex II inhibitor TTFA. 

As shown in the present study, the prolonged hypoxia treatment for 24 h maintained 
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significantly higher levels of ROS and produced heightened and prolonged oxidative 

stress. Although acute exposure to ROS increases the activity of PKCε and promotes a 

cardioprotective phenotype often observed in acute ischemia and reperfusion setting in 

the adult heart [26], the present study demonstrates that prolonged hypoxia cause a 

sustained increase in ROS that results in the downregulation of PKCε gene expression in 

H9c2 cells.  These findings suggest differential regulations of the PKCε activity and gene 

expression in response to acute or chronic hypoxia. This difference may represent a 

negative feedback loop where short-term hypoxia significantly enhances the PKCε 

activity to promote a cardioprotective phenotype, while long-term exposure to hypoxia-

derived ROS promotes adaptive changes that include the downregulation of PKCε gene 

expression.  

The present study found that H9c2 cells exposed to 1% O2 for 24 h resulted in 

significant nuclear accumulation of HIF-1α that is a marker of hypoxia. This is consistent 

with the previous study showing that maternal hypoxia increased HIF-1 protein levels 

in the fetal heart [32], indicating tissue hypoxia of the fetal heart in response to maternal 

hypoxia. Other studies have found that similar oxygen levels and exposure are sufficient 

to induce HIF-1α stabilization and nuclear accumulation [33]. YC-1 and 2-ME have been 

widely used to inhibit HIF-1α nuclear accumulation. Previous studies suggested that YC-

1 inhibited HIF-1α protein by enhancing its degradation through FIH-dependent COOH-

terminal transactivation domain (CAD) inactivation [24]. 2-ME inhibits HIF-1α 

independent of oxygen and proteasome pathways by disrupting microtubules preventing 

the translocation of HIF-1α into the nuclear compartment, thus preventing the HIF-1 

activity [25].  Interestingly, both YC-1 and 2-ME have been shown to block HIF-2α 
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nuclear accumulation as well, thereby inhibiting the HIF-2 activity. Although HIF-2α is 

not the focus of this study, the use of YC-1 and 2-ME may also provide clues as to the 

role of HIF-2α in hypoxia-induced PKCε gene repression.  

Little is known concerning the role of HIF-1α in the methylation of specific gene 

promoters [34]. HIF-1α regulates the expression of epigenetic effectors, namely histone 

deacetylases and demethylase (JMJD1A) [35], but it is unclear whether HIF-1α directly 

or indirectly regulates DNA methyltransferase (DNMT). Previous studies have shown 

that HIF-1 regulates the c-myc activity [14]. C-myc has been shown to recruit DNA 

methyltransferase resulting in promoter hypermethylation for some genes [36], 

suggesting a possible mechanism whereby HIF-1 may influence methylation of promoter 

regions. Interestingly, Watson et al. reported that chronic hypoxia increased global 

methylation patterns and expression of DNA methyltransferase 3b in prostate cell lines 

absent of HIF-1α protein expression [37], suggesting chronic hypoxia can influence DNA 

methylation independent of HIF-1. In the present study, we found that the inhibition of 

HIF-1α with YC-1 or 2-ME had no significant effect on hypoxia-induced repression of 

PKCε mRNA, suggesting that HIF-1α does not play a significant role in altering PKCε 

promoter methylation.  Importantly, it has been demonstrated that hypoxia induces the 

stabilization of HIF-1α protein through alterations in the redox state.  The mechanism is 

thought to be through mitochondrial derived ROS from complex III that regulate the 

prolyl hydroxylases activity [20,38].  Other studies contend that oxygen availability 

instead of ROS production is the main stimulus altering prolyl hydroxylase activity and 

therefore HIF-1α stabilization [39]. In the present study, we demonstrate that attenuation 
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of ROS, but not HIF-1α, plays a major role in hypoxia-induced reduction of PKCε 

expression. 

A model used in the present study was the embryonic rat ventricular myoctye cell 

line H9c2. The H9c2 cell is a widely used system for studying cardiomyocytes, including 

cell death, differentiation and fetal programming [7,29,32]. Electrophysically, H9c2 cells 

are similar to primary cardiomyocytes, but differ phenotypically [40,41]. Although 

differences exist, recent studies using the H9c2 cell line to study the effects of hypoxia on 

PKCε abundance have found consistent results with freshly isolated fetal cardiomyocytes 

and intact hearts [7]. Thus, H9c2 cells exposed to 1% O2 for 24 hours displayed a similar 

pattern of decreased PKCε protein and mRNA as those seen in freshly isolated fetal rat 

cardiomyocytes and intact hearts exposed to 1% O2 [7]. Furthermore, both models found 

increased methylation of CpG dinucleotides at SP1 binding sites at the PKCε promoter. 

This suggests the underlying mechanism for hypoxia-induced decrease in PKCε gene 

expression is similar in both the freshly isolated fetal rat hearts and H9c2 cell line. Other 

studies also demonstrated that prolonged hypoxia in the presence of low or high glucose 

significantly decreased PKCε protein abundance in H9c2 cells [42,43]. Consistent with 

these findings, the present study demonstrates a congruent underlying mechanism of the 

heightened ROS in hypoxia-mediated PKCε gene repression in fetal hearts and H9c2 

cells, supporting the use of the H9c2 cells in investigating the epigenetic mechanisms of 

PKC gene expression patterns.  

In summary, the present study identifies a novel mechanism of hypoxia-derived 

ROS in inducing CpG methylation of sequence specific transcription factor binding sites 

at the PKCε promoter and its gene repression in the fetal heart. Although it is difficult to 
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translate directly these findings into humans, linking chronic exposure to hypoxia-derived 

ROS with the downregulation of a cardioprotective gene has significance clinical 

implications. Elevated levels of ROS have been implicated in numerous disease models 

and thus, may initiate epigenetic modification of cardioprotective genes in long-term 

leading to an increased susceptibility to ischemic heart disease. Potentially, this 

knowledge may lead to interventions involving antioxidants defense during gestation that 

may prevent the long-term adverse effects of chronic intrauterine hypoxia. 
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CHAPTER 4 

GENERAL DISCUSSION 

 
 Hypoxic stress is one of the most common insults to the developing fetus.  Acute 

exposure to hypoxia has beneficial effects on heart development.  Short-term hypoxia 

causes outflow tract remodeling and coronary vasculargenesis.  However, chronic 

pathophysiological hypoxia is associated with significant harmful effects that may 

produce structural, functional, and gene expression changes in fetal heart that may persist 

throughout life (Patterson and Zhang 2010).  In rodents, chronic maternal hypoxia 

induces hypertropic growth, and reduces proliferation of fetal cardiomyocytes.  In adult 

male offspring, chronic maternal hypoxia causes a significant increase in susceptibility to 

ischemia reperfusion injury and considerably reduces the expression of the 

cardioprotective gene PKC (Xue and Zhang 2009). PKC translocation inhibitors reduce 

postischemic recovery in control animals, linking PKC gene regulation to protection 

against ischemia reperfusion injury (Xue and Zhang 2009).  Previous work in the cocaine 

model of intrauterine stress has established DNA methylation of CpG dinucleotides at the 

PKC promoter as the major mechanism for long-term repression of PKC.   This study 

establishes epigenetic repression through DNA methylation of PKC gene as the 

principle process underlying long-term repression of PKC expression in fetal hearts 

exposed to chronic maternal hypoxia.  This study presents additional evidence that 

oxidative stress independent of HIF-1 initiates events responsible for epigenetic 

modification of PKC gene expression. 
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The Direct effects of Hypoxia on Fetal Heart  

 In chapter 2, we demonstrated hypoxia significantly alters PKC protein and 

mRNA in fetuses exposed to maternal hypoxia (10.5% O2) from day 15 through 21.  This 

finding builds on previous work that found maternal hypoxia significantly reduced PKC 

expression in adult male offspring (Li et al, 2003, Xue and Zhang 2009).  Our finding 

supports studies done by Hlaváčková et al. (2010) who found chronic intermittent 

hypoxia (CIH) significantly decreased PKC protein but did not alter phospho- PKC 

levels in adult wistar rats. In addition, Hlaváčková et al. (2010) reported CIH increased 

the total expression of total PKCδ and phospho-PKCδ. PKCδ expression has been linked 

with increased ischemia reperfusion injury (Budas et al., 2007).  The effect of chronic 

maternal hypoxia on PKCδ expression in fetal hearts is not clear and deserves future 

investigation. 

Chronic maternal hypoxia effects fetal rat heart architecture by inducing 

hypertropic growth, reducing cellular proliferation of fetal cardiomyocytes, reducing 

metalloproteinase-2 activity, increasing collagen I and III expression and increasing the 

heart to body ratio (Bae et al 2003, Xu et al, 2006).  These findings suggest hypoxic 

insult significantly alters fetal cardiomyocyte homeostasis, producing cellular and organ 

specific changes that in the short term may be compensatory, but in the long term 

increases the hearts susceptibility to cardiomyopathies in adulthood. In chapter 2, our 

data confirmed that prenatal hypoxia causes intrauterine programming of rat offspring. 

We found that selective PKC activation protects hearts exposed to maternal hypoxia, 

thus supporting studies done by Inagaki et al. (2004), who demonstrated selective PKC 

activation conferred in vivo protection against ischemic reperfusion injury in mice and 
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porcine hearts.  These findings place PKC regulation as central in conferring 

cardioprotection in adult rat hearts. 

 Since maternal hypoxia can cause significant maternal stress that may result in 

dramatic systemic adaptation, which may affect the fetus and account for the 

downregulation of PKC and increased sensitivity to ischemia reperfusion injury, it was 

necessary to determine the direct effect of hypoxia on fetal hearts. Therefore, we 

demonstrated in chapter 2 by using a whole organ culture model that chronic hypoxia is 

sufficient to induce a direct effect on PKC expression in fetal hearts.  We exposed fetal 

hearts to 1% O2 in cultured media for 48 hours and found significant reduction in PKC 

protein and mRNA as compared to control.  Similarly, cocaine exposure of culture intact 

fetal hearts also resulted in significant decrease in PKC protein and mRNA (Meyer 

2009B).  These findings demonstrate hypoxia directly regulates PKC expression in fetal 

rat hearts.  The extent to which other maternal derived stressors induced by chronic 

hypoxia such as increased circulating catecholamines or glucocortoids affects PKC 

expression is not clear. In fetal sheep, chronic hypoxia modulates the fetal hypothalamic-

pituitary-axis (HPA) causing the elevation of in plasma precursor ACTH that allow for 

heighten cortisol secretion in response to secondary stressor (Carmicheal et al., 1997; 

Duscay, 1998; ).  Chronic hypoxia also induces arterial sympathetic hyperinnervation, 

elevation in epinephrine and noreprinephrine content in the heart (Jelinek and Jensen, 

1991; Ruijtenbeek et al., 2000).  These finding suggest additional factors produced by in 

response to hypoxia may potentiate the effect of hypoxia on PKC expression.  The 

combined effect of hypoxia and stress hormones on cardioprotective genes such as PKC 

is intriguing and warrants further study. 
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The effect of Hypoxia In vitro 

 Although the use of maternal hypoxia and intact fetal heart models revealed 

significant information pertaining the effects of hypoxia on rat heart, we determined to 

use the cell culture model to study more closely the mechanisms responsible for PKC 

repression.  We selected the embryonic rat ventricular myoctye cell line H9c2.  The 

advantage in selecting the H9c2 cell line pertains to its unique fetal heart origin, which 

afforded us a glimpse at fetal cardiomyocyte behavior from the controlled environment of 

cell culturing.   H9c2 cells retain many properties consistent with normal cardiomyocyte 

physiology, including electrophysical characteristics (Hescheler, 1991).  In addition, the 

H9c2 cell line is used to study a variety of areas including cell death, differentiation and 

ischemia reperfusion injury (Chong, 1998; Hwang, 2008; Graf, 2006).   

 There are obvious drawbacks in using a cell model.  The cell model cannot 

reproduce the microenvironment of the fetal heart. The fetal heart alone includes a variety 

of cell populations such as fibroblast, endothelial cells, various types of cardiomyocytes 

and neuronal cell types. Although paracrine and endocrine signaling cannot be 

reproduced in this model, the use of the whole animal and intact heart model gives insight 

into this process. The cell line selected does differ from normal freshly isolated fetal 

cardiomyocytes.  Freshly isolated cardiomyocytes are contractile and display a restricted 

level of proliferation, whereas H9c2 are not contractile and under the right conditions are 

capable of continuous proliferation.  The H9c2 cell line may also differentiate into a 

different phenotype over time with numerous passages, and therefore must be constantly 

monitored.  We were careful to confirm results obtained in the H9c2 cell line intact whole 

hearts and hearts exposed to maternal hypoxia. 
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 In chapter 2 & 3, we demonstrated that PKC protein and mRNA was decreased 

in H9c2 cells exposed to 1% O2 for 24 hours.  This finding is consistent with the maternal 

hypoxia and intact fetal heart models, which suggest that the underlying mechanism for 

PKC repression is consistent across each model.  Our findings are consistent with 

studies that demonstrated prolonged hypoxia in the presence of low or high glucose 

significantly decreased PKCε protein abundance in H9c2 cells (Kim 2003, 2004). In 

tumor cells, chronic hypoxia significantly reduced PKCε protein causing increased 

sensitivity to TNF-related apoptosis ligand (TRAIL) (Gobbi, 2010). Moreover, in chapter 

3, we confirmed hypoxia-induced nuclear accumulation of HIF-1α in H9c2 cells, which 

is consistent with studies that have demonstrated HIF-1α protein accumulation in fetal 

hearts, H9c2 and freshly isolated cardiomyocytes cells (Bae et al, 2003; Hwang 2008; 

Gobbi, 2010). Given these results, it seems H9c2 cells responds to hypoxia in a manner 

consistent with normal cardiomyocytes and therefore supports the use of this model in 

examining the underlying mechanism of hypoxia-induced gene repression. 

 An area of considerable discussion pertains to the use of 21% O2 as control for 

cell culturing experiments.  Since we chose to study fetal cardiomyocytes, the question of 

what is normal physiological oxygen tension is critical.  Fetal cardiomyocytes develop at 

low pO2 values as compared to normal adult cardiomyocytes (Patterson and Zhang, 

2010).  Some studies have found fetal oxygen tension to be as low as ~20 mm Hg 

(Bishai, 2003; Webster 2007).   In addition, fetal cardiomyocytes utilize large amounts of 

oxygen due to high metabolic activity (Ascuitto and Ross-Ascuitto, 1996). This suggests 

that normal physiological oxygen tension for fetal cardiomyocytes is significantly lower 

than the 21% O2 (~147 mm Hg) used in standard culturing techniques, which could 



100 

significantly distort results.   These concerns were also highlighted in a review by Dr. 

Ivanovic (2009), who argued that standard culture condition do not reflect normal oxygen 

tension levels in a variety of tissues (i.e. bone marrow) in the mature organ system. He 

argued the term normoxia, which represented 21% O2 in classical physiology was also 

adopted in cell biology and culturing but is not an accurate representation of normal for 

tissue and cell environments (Ivanovic 2009).  We also recognized these concerns when 

considering the H9c2 cell model. In chapter 2, we designed experiments using various 

levels of oxygen tension and demonstrated that there was no difference in PKC protein 

or mRNA when we used 21% (~147 mm Hg), 10.5% (~73.5 mm Hg) or 3% (~21 mm 

Hg) O2, but found significant differences in PKC protein and mRNA at 1% (~7 mm Hg) 

O2.  Furthermore, in chapter 3 we demonstrated nuclear accumulation of HIF-1α protein 

at 1% O2, while no HIF-1α protein could be detected at 21% O2. These findings support 

our hypothesis that the H9c2 model system using 21% O2 as control and 1% O2 as 

hypoxia is consistent with the maternal hypoxia model and is ideal for studying the 

molecular mechanisms regulating PKC expression.   

 

PKC Regulation 

 The regulation of PKC expression under hypoxic condition is the focus of this 

project. Normally, PKCε expression increases 10-fold in the rat heart from neonatal to 

adult periods (Clark et al., 1995).  Our lab has shown maternal hypoxia from day 15 to 21 

of gestation resulted in increase sensitivity to ischemia reperfusion and injury and 

decrease PKC abundance in the ventricles of adult male rats (Li, 2003; Xue and Zhang 

2009).  Interestingly, researchers have demonstrated no significant change in the ratio of 
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phospho-PKC/ PKC between control and maternal hypoxia groups, suggesting PKC 

activity is not affected by chronic gestational hypoxia (Xue and Zhang 2009). In chapter 

2, we showed that hypoxia directly regulates PKC abundance in isolated intact fetal 

heart and H9c2 cells. Studies examining the effect of cocaine and nicotine through 

catecholamines on PKC expression have found concurrent findings with the hypoxia 

model, suggesting a similar pattern of PKC regulation (Meyer 2009B; Lawrence 2008). 

In fact, cocaine and nicotine exert vascular altering properties that may affect fetal 

oxygen supply (Wood, 1987; Lawrence, 2008).  Indeed, these findings may shed clues as 

to a general mechanism for adaptation to intrauterine stress and the consequences in 

terms of PKC gene regulation in fetal heart. 

 Our lab has found cocaine directly regulates PKC gene repression through 

increased DNA methylation for transcription factor binding sites of PKC promoter 

(Meyer 2009B).  Specifically, cocaine treatment significantly increased methylation at 

Sp1 binding sites -346 and -268 and this significantly reduced binding of SP1 to those 

sites (Meyer 2009B).  In chapter 2 & 3, we found chronic hypoxia also significantly 

increased methylation of SP1 binding sites -346 and -268. We confirmed with EMSA 

assays that methylation at the core of SP1 binding sites -346 and -268 abolished SP1 

binding and that hypoxia does not significantly alter the binding affinity of SP1 protein to 

SP1 binding sites -346 and -268.  Reporter gene assay indicated the regions 

encompassing SP1 binding sites -346 and -268 play a significant role in promoter activity 

(Zhang 2009).  While methylation of a single SP1 site does not substantially alter PKC 

promoter activity, methylation of both SP1 sites (-346 and -268) significantly decreases 

PKC promoter activity (Meyers, 2009B).  In H9c2 cells, we demonstrated with CHIP 
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assay that chronic hypoxia decreases the binding of SP1 protein to Sp1 binding sites -346 

and -268 in vivo and that SP1 binding is restored in the presence of DNA methylation 

inhibitor 5-aza-2-deoxycytidine. This finding supports previous work that found cocaine-

induced repression of SP1 binding is restored in the presence of DNA methylation 

inhibitors 5-aza-2-deoxycytidine and procainamide (Meyer, 2009). We further 

demonstrated that 5-aza-2-deoxycytidine blocked the hypoxic effect on PKC protein and 

mRNA, definitively linking epigenetic repression through CpG dinucleotide methylation 

as chief mechanism of hypoxia-induced PKC repression (See Figure 16).  The observed 

heightened sensitivity of the PKCε promoter to methylation in response to cocaine, 

nicotine and chronic hypoxia in fetal hearts is intriguing and suggest a common pathway 

of regulation in response to intrauterine stress.  
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Figure 16: Plausible mechanisms for hypoxia-induce downregulation of PKCε in 
hearts. Hypoxia causes the stabilization of HIF-1α and increases ROS production in fetal 
hearts. Increase ROS causes the recruitment of epigenetic modifiers, i.e. DNA 
methyltransferase (DNMT) and possibly histone deacetylases (HDAC). These modifiers 
increase methylation of promoter at transcription factor binding sites and deacetylate 
histone residues resulting in the decreased transcription of PKCε.  
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 We have presented data showing PKCε expression is altered in utero in the hearts 

of fetus exposed to chronic maternal hypoxia.  It is not clear, however, the affect of 

chronic hypoxia on PKCε gene expression in other organ systems such as in brain or liver 

and the long-term implication. Studies in brain have found PKC is important in 

preconditioning of ischemia reperfusion injury (Raval AP, 2003; Kim et al., 2007). PKC 

also plays an important role in hyperalgesic priming, a process whereby one or several 

acute inflammatory events involving pain becomes a chronic condition with heightened 

pain sensation (Reichling D, 2009). PKC plays an important role in nociceptors 

progression from acute to chronic pain sensitization (Reichling D, 2009).   Interestingly, 

the selective activation of PKCε with bryostatin1 or DCP-LA has been shown to reverse 

or prevent synaptic lost in the hippocampus, reduced Aβ protein accumulation and 

improve cogitative memory in Alzheimer’s disease models (Hongpaisan et al., 2011).  In 

each model, oxidative stress has been shown to contribute to disease progression. 

Perhaps, ROS-signaling may be the common pathway modulating PKCε expression.  The 

apparent involvement of PKC in multiple organ systems suggests that perinatal 

regulation of PKC expression has important implications for a variety of diseased and 

non-diseased states later in life. 

 

DNA Methylation 

 DNA methylation is the chief mechanism for transcriptional repression.  

Methylation of cytosine plays an important role in normal physiology.  Among other 

examples, genomic imprinting during early stages of development utilizes DNA 

methylation (Okano et al., 1999; Miranda and Jones 2007).   Differentiation of stem cells 
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into specialized tissue such as cardiomyocytes, neurons, and hepatocytes involves 

selective repression of genes through DNA methylation. The role of DNA methylation in 

fetal programming of disease is intriguing. A classic example of the importance of DNA 

methylation in gestational epigenetics is found in studies done in the Agouti mouse 

model (Waterland and Jirtle, 2004).  Avy/a mice display a range of fur colors from yellow 

to mottle to brown (Waterland and Jirtle, 2004).  The yellow agouti (Avy) mouse has a 

mutation that causes yellow pigmentation. When pregnant yellow agouti (Avy) mice were 

supplement with methyl rich or high soy diets, the fur of the offspring shifted towards 

brown fur color, and in the case of the high soy diets significantly reduced the weight of 

brown offspring in comparison to yellow (Dolinoy, 2006). In comparison, reduced folate 

intake during pregnancy can lead to genetic instability with abnormal chromosomal re-

arrangement as result of poor gene regulation due to hypomethylation (Okano et al., 

1999).  Methyltetrahydrofolate (folate) is an important methyl donor to S- adensonyl 

Methionine (SAM). DNA methylation is mediate by a family of enzymes known as DNA 

methyltransferases (DNMT). DNMT uses methyl groups from SAM to methylate CpG 

dinucleotides of target genes. It is not clear whether DNMT expression or activity is 

altered by hypoxic insult. Studies in prostate cell line PwR-1E have shown increased 

DNMT3b (a isoform responsible for de novo methylation) activity in response to chronic 

hypoxia (Watson, 2009). The effect of hypoxia on the activity of DNMT’s and global 

methylation patterns in fetal cardiomyocytes is an area yet to be elucidated.  We have 

found that in response to chronic hypoxia, fetal cardiomyocytes adjust gene expression 

patterns through targeted methylation of SP1 binding sites at the PKC promoter.  The 

term “targeted” is used since the methylation levels for most transcriptional factor 
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binding sites with CpG dinucleotides in the proximal PKCε promoter (except MTF1-2 -

168) were not significantly changed as a result of chronic hypoxia (See chapter 2, figure 

3).  Only Sp1 binding sites (-346, and -268) in both H9c2 and fetal hearts and Egr1 (-

1008) in fetal hearts were significantly increased by chronic hypoxia. Methylation of Sp1 

binding sites does not completely abolish gene transcription but significantly reduces 

basal levels (Zhang, 2009), which leads to heighten sensitivity to stress in adult life.  

Interestingly, our lab has reported similar patterns of methylation for PKC promoter in 

cocaine (Sp1) and nicotine (Egr1) models of intrauterine stress (Zhang, 2009; Lawrence 

2011).  It is unknown whether the process of methylation of PKC in cardiomyocytes is 

present in other forms of intrauterine stress such as undernutrition, alcohol exposure, or 

elevated stress hormones.  Moreover, the effect of chronic intrauterine hypoxia on the 

methylation status of the PKC promoter in other tissues such as brain is not known and 

warrants future study. 

  

Hypoxia and Sex Dimorphism of Cardiac Vulnerability 

 Previous studies have reported significant sex differences in the effect of maternal 

hypoxia on cardiac vulnerability in adulthood. Maternal hypoxia causes increase 

susceptibility to ischemia reperfusion injury in male rat offspring (Xue and Zhang 2009).  

Further investigation revealed reduced expression of PKC protein in male rats compared 

to female rats.  In chapter 2, we demonstrated maternal hypoxia caused significant 

decrease in PKC mRNA and increase methylation of both SP1 bindings sites (-346 and -

268) for fetuses and adult offspring. The degree to which methylation was increased in 

female hearts was considerably lower than in male hearts. Fetal hearts exposed to 
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maternal cocaine responded in a similar sex dependent manner (Zhang, 2009).   Maternal 

cocaine exposure caused increase CpG methylation for SP1 binding sites -346 and -268 

in male and -268 only in female offspring (Zhang, 2009).  Likewise, maternal nicotine 

exposure caused increased susceptibility to ischemia reperfusion injury in both male and 

female offspring, with poorer recovery in female offspring (Lawrence 2008). PKC 

protein was significantly reduced in both male and female hearts exposed to prenatal 

nicotine, which suggest nicotine induces a different pattern of regulation in fetal hearts 

(Lawrence, 2008).  Furthermore, Netuka et al. (2006) found maternal hypoxia 

significantly improved cardiac tolerance to ischemic arrhythmias in female offspring, but 

had the opposite effect in male offspring. These findings indicate sex dependent 

mechanisms for in utero programming of the myocardium. 

 Studies have found a general tendency for female offspring to be more resistant to 

cardiovascular diseases induced by prenatal stressors (Zhang 2009, Xue 2009). Indeed, 

cardiomyocytes isolated from female hearts are more resistant to ischemia reperfusion 

injury (Rank et al. 2001). Sex specific differences in gene expression become evident by 

midgestation in rodents (Dewing 2003).  The contribution of (XX) and (XY) dependent 

genes in reduced or enhanced cardioprotection of male or female offspring respectively, 

is not clear.  In neonatal brains, a PARP1 knockout potentiate differences in relative 

NAD+ utilization and expression between male and females, and has therefore been 

proposed as a contributing factor in increased sensitivity of male neonates to ischemia 

reperfusion injury (Hurn, 2005). The increase cardioprotection observed in female 

offspring may inpart be explained by the presence of estrogens sex hormone. Removal of 

the ovaries and estrogen replacement in rats has implicated estrogens in cardioprotection 
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against ischemia reperfusion injury in female rat hearts (Zhai et al. 2000).  The exact 

mechanism is not clear, but studies in female rat hearts have found estrogens replacement 

reduced the expression of tumor necrosis factor-alpha (Xu 2006).   Further studies have 

found estrogen receptor alpha agonist (4,4',4''-[4-propyl-(1H)-pyrazole-1,3,5-triyl]tris-

phenol [PPT]) or selective beta agonist (2,3-bis(4-hydroxyphenyl)-propionitrile [DPN]) 

improve myocardial recovery from acute ischemia reperfusion insult (Vornehm 2009). 

These findings are interesting given that male and female fetuses are likely exposed to 

similar concentration of steroid hormones.  In chapter 2, we demonstrated significant 

higher expression of ERα and ERβ in female fetal hearts compared to male, which may in 

part explain the enhanced protection afforded in female hearts.  Furthermore, we 

demonstrated using ChIP assay that ERα and ERβ interact with SP1 binding sites -346 

and -268 at PKC promoter.  The functional significance of this interaction is yet to be 

understood, however, several studies examining multiple genes have demonstrated ERα 

and ERβ are capable of binding GC rich regions and forming ER-SP1 complexes that are 

important in gene transactivation (Safe, 2008; Sisci 2010; Nilsson 2001).    The relative 

gender differences in PKC promoter methylation and ERα and ERβ expression in utero 

are fascinating and deserve future study. 

 

HIF-1α and Epigenetic Repression of PKC Gene 

 HIF-1α plays an important regulatory role in cellular and tissue adaptation to 

hypoxic stress. HIF-1α influences the expression of genes involved in apoptosis, cellular 

differentiation, metabolism and cell signaling (Semenza, 2007).   Previous work in our 

lab and has demonstrated increased HIF-1α expression in the fetal rat hearts exposed to 
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maternal hypoxia in late gestation (Bae et al., 2003).  Studies in the developing chick 

embryo have also demonstrated HIF-1α stabilization (Sugishita et al., 2004A). In fetal 

heart development, HIF-1α plays a critical role in modulating cardiomyocyte survival and 

death pathways, thereby orchestrating remodeling events during cardiogenesis (Sugishita 

et al, 2004A; Patterson and Zhang, 2010). The role HIF-1α plays in epigenetic 

modulation through methylation of CpG dinucleotides is not well understood.  To our 

knowledge, interaction between HIF-1 and DNMT has not been described. HIF-1α has 

been reported to interact with histone modulators such as histone deacetylases and 

methylases (Granger 2008; Beyer 2008).  In particular, HIF-1 transactivates histone 

demethylase JMJD1A, JMJD2A, JMJD2B, and JMJD2C (Wellman et al. 2008).  

JMJD1A and JMJD2A remove dimethyl marks on histone 3 lysine 9 (H3K9me2), while 

JMJD2B removes trimethyl marks (H3K9me3) and more weakly JMJD2C which 

converts H3K9me3 to me2 (Xia et al. 2009; Pollard et al. 2008; Maltepe et al. 2005; 

Charron et al. 2009). H3K9 methylation produces compaction of chromatin thereby 

decreasing exposure of DNA to damage. H3K9 demethylation is one epigenetic 

mechanism that is thought to be link to chronic inflammation and HIF-1 activity in 

carcinogenesis (Brigati 2010).  Additionally, chemically induced hypoxia in prostate 

cancer cell lines induces HIF-1 stabilization with concurrent reduction in miR-101 (Cao, 

2010). Although the researchers in this study did not distinguish between the ROS and 

HIF-1 effects, this finding implies that hypoxia via HIF-1 may modulate micro-RNA 

expression suggesting an additional role for HIF-1 in epigenetic regulation.  
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 In chapter 3, we demonstrated inhibition of HIF-1α with YC-1 or 2-me2 did not 

attenuate the hypoxia-induced repression of PKC mRNA, suggesting HIF-1 does not 

play a significant role in epigenetic repression of PKC gene (See Figure 16).  Since YC-

1 and 2-me2 have been shown to diminish HIF-2α nuclear accumulation, it is unlikely 

HIF-2 plays a significant role in epigenetic repression of PKC.  The role of HIF-3 in 

epigenetics is unknown.  However, studies using a dominant negative HIF-3alpha splice 

variant suggest HIF-3 negatively regulates HIF-1 & 2 activity (Maynard 2007). 

 

Hypoxia, Oxidative Stress and PKC 

 The role of oxidative stress during hypoxia is a fascinating area of research.  

Studies have shown hypoxia increases ROS in cardiomyocytes resulting in reduced 

contractility (Duranteau et al. 1998). In Chapter 3, we demonstrated chronic hypoxia 

increases ROS in H9c2 cells. The exact mechanism is not clear, however the consensus in 

the field suggests complex III of the mitochondrial electron transport chain is the primary 

sites of ROS generation during hypoxia (Galansis et al., 2008).  Interestingly, a recent 

study found mitochondrial derive ROS plays a critical role in cardiac hypertrophy and 

failure (Dai et al., 2011). We demonstrated in chapter 3 that N-acetyl cysteine or tempol, 

but not apocynin (NADPH oxidase inhibitor) blocked hypoxia-induced repression of 

PKC protein and mRNA in hearts exposed to hypoxia pregnant rats from day 15 to 21 of 

gestation, in isolated whole fetal hearts, and H9c2 cells, implicating oxidative stress in 

the hypoxia-induced decrease PKC expression. Although NADPH oxidase has been 

shown to regulate ROS production under chronic hypoxic conditions in some cell types, 

its role in hypoxia-induced repression of PKCε expression is minimal. Our lab has also 
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found cocaine induce repression of PKCε in fetal hearts involves oxidative stress that is 

independent of NADPH oxidase activity (unpublished data).  This finding further 

supports the concurrent mechanism of in utero repression of PKCε expression. 

Interestingly, acute exposure to ROS increases the activity of PKCε by promoting the 

translocation from cytosolic to particulate fraction and thus a cardioprotective phenotype 

often observed in acute ischemia and reperfusion models (Golberg et al., 1996; Kabir et 

al., 2006). These finding suggests ROS differentially regulates PKCε gene, perhaps 

through a negative feedback loop that is dependent on the duration of the insult (See 

Figure 17). This implies that while short bouts of hypoxia are protective by stimulating 

PKCε activity, long-term hypoxia significantly reduces PKCε expression thereby 

considerably reducing the threshold necessary for cell death to occur. Interestingly, NAC 

attenuates apoptosis and ischemia reperfusion injury in H9c2 cells and ex vivo neonatal 

rabbit hearts (Peng et al., 2011).  Although PKCε expression was not examined in this 

study, the notion that antioxidant defense protects against ischemia reperfusion injury 

supports our findings that PKCε gene activity is maintained at basal levels in the presence 

of NAC.  Previous work in our lab has shown a cause and effect relationship between 

PKCε expression and postischemic recovery (Li et al., 2003; Xue et al., 2009).  Perhaps, 

the preservation of PKCε expression with antioxidant exposure during chronic maternal 

hypoxia will improve postischemia recovery in those animals.  
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Figure 17: The short and long term effects of ROS on PKCε in cardiomyoctes. 
Hypoxia causes the increase reactive oxygen species (ROS).  Acute exposure to ROS 
causes PKCε migration from soluble to particulate fraction which is indicative of 
increase activity and cytoprotection.  Chronic exposure to ROS induces reduced PKCε 
expression and concurrent reduced cardioprotection. 
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 Recently, the connection between oxidative stress and epigenetics has gained 

interest. Studies using superoxide dismutase knockout mice have found increased 

oxidative stress associate with reduce global DNA methylation (Bhusari et al., 2010). 

Generation of free radicals through X-ray, UV, and γ-rays causes widespread DNA 

damage that significantly reduces the methyl-accepting ability of DNA (Wilson and 

Jones, 1983; Becker et al., 1985; Kalinich et al., 1989). The presence of 8-OHdG in CpG 

dinucleotides has also been shown to significantly impede methylation of adjacent 

cytosines (Weitzman et al., 1994; Turk et al., 1995).  The presence of single stranded 

DNA can signal De novo methylation (Christman et al., 1995).  Perhaps the presence of 

single strand breaks caused by oxidant damage may promote aberrant methylation 

patterns that can lead to disease progression. Indeed, oxidative damage reduces global 

methylation but increases regional methylation patterns.  Studies in tumoriogenesis have 

found hypoxia mediates suppression of E-cadherin expression through methylation of E-

cadherin promoter in ovarian carcinoma (Imai et al., 2003).  The mechanism involves an 

increase in oxidative stress that promotes epigenetic modification of E-cadherin promoter 

through CpG methylation that is SNAIL dependent (Imai et al., 2003; Cannito et al., 

2008). Furthermore, we found ROS scavengers blocked hypoxia-induced methylation of 

PKC promoter suggesting oxidative stress plays an important role in regulating PKC 

promoter methylation. Interestingly, studies have found certain fruits and vegetables 

protect against aberrant methylation in prostate cells, which further supports the use of 

antioxidants in protection against oxidative damage that leads to mutagenic processes 

(Ornish et al., 2005; Donkena et al., 2010). Together, these findings reflect a complex 
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system of regulation involving cellular adaptation to hypoxia-induced oxidative stress 

and the in utero programming PKC expression (Figure 16).  

 

Clinical Significance 

 The clinical significance of this project is immense.  Hypoxia is one of the most 

common gestational insults.  Hypoxia during critical periods of development can alter 

organ and tissue maturation. There is an increased risk of fetal hypoxia in pregnancy 

where there is cord compression, preexisting maternal illness, smoking, drug use, 

placenta abnormalities and high altitude (Zhang 2005; Patterson 2010).  Our study 

indicates that chronic hypoxia during the latter stages of fetal rat heart development 

causes the epigenetic modification of PKC promoter leading to reduced PKC 

expression.  We were able to demonstrate that ROS scavenging with NAC was able to 

block the hypoxia-induced methylation of PKC promoter and reduced expression. The 

clinical importance of linking oxidative stress to hypoxia-induced repression of PKC in 

utero is profound. Currently, clinical studies are examining the role of pregestational 

diabetes during pregnancy in altering the epigenetic landscape of the fetus 

(NCT01255384).  The rationale for this study is based on the understanding that the 

diabetic environment increases oxidative stress and causes significant changes in gene 

expression that may involve epigenetic mechanisms.  In addition, a recent clinical study 

examining the effect of NAC on the prevention of preterm delivery has recently 

completed phase IV trials (NCT00568113).  The results from this study are yet to be 

reported, however, it raising the issue that oxidative stress is important in the fetal 

development and disease.  The implication of oxidative stress in hypoxia-mediated 
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epigenetic repression may influence future clinical studies examining intrauterine stress 

and fetal outcomes. 

 PKC plays a critical role in myocardial protection against ischemia reperfusion 

injury. In the rat model, chronic maternal hypoxia causes long-term repression of PKC 

expression in myocardial tissue leading to enhance vulnerability to ischemia reperfusion 

later in life.  We have demonstrated that chronic hypoxia represses PKC expression 

through methylation of CpG dinucleotides at the PKC promoter. PKC is involved in a 

wide array of physiological and pathophysiological processes. PKC is expressed in 

tissues throughout the body and has been implicated in precondition against ischemia 

reperfusion injury, oncogenesis, addiction, hyperanalgesia and thrombosis (Rechling and 

Levine, 2009; Harper and Poole, 2010; Ardehali, 2006; Barnett, 2007; Lesscher, 2009). 

The intrauterine regulation of PKC in cardiomyocyte may reflect broader regulation of 

PKC and other protective genes, placing gestational epigenetics as critical to 

understanding adult disease.   Currently, there are several clinical trials examining the 

effect of selective inhibition of several PKC isoforms.  One example involves a double-

blinded randomized clinical study examining the efficacy of using KAI-9803 to block 

PKCδ in reducing infarct size in-patient with myocardial infarction undergoing a 

percutaneous coronary intervention (NCT00785954). PKC on the other hand is fairly 

unstudied clinically.  However, clinical trials are examining the efficacy in using 

selective PKC blockers (KAI-1678) for the treatment of postoperative pain and PKC 

activators (Bryostatin) in treating Alzheimer disease (NCT01015235, NCT00606164). 

Perhaps, in utero programming of PKC gene may have tissue specific patterns and 

therefore influence the function of several organ systems.  In myocardial studies, PKC is 
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used as a primary outcome indicator for the use of blood pressure cuff induced 

preconditioning in patients recovering from heart surgery (NCT00546390). Indeed, 

chronic oxygen insufficiency in utero may suppress or deregulate genes in myocardial 

and nonmyocardial tissues, reducing the organ systems ability to adapt to insults later in 

life.   With an increased understanding of hypoxia-induced intrauterine modulation of 

PKC expression in fetal hearts, preventative and therapeutic measures may be employed 

to improve patient outcomes.  

 

Future Studies 

 The findings observed in this project have produced several questions that warrant 

further investigation.  We found hypoxia mediates repression of PKCε expression 

through CpG dinucleotide methylation of Sp1 binding sites.  The mechanism involves 

oxidative stress dependent pathways.  We demonstrated in an in vivo, ex vivo, and H9c2 

cell line model that ROS scavengers block the hypoxia-induced repression of the PKCε 

gene.  The functional significance of this finding suggests attenuation of oxidative stress 

in utero will improve postischemia reperfusion recovery in adult rat hearts. However, it 

has not been determined whether attenuation of maternal hypoxia-derived oxidative stress 

translates into improved postischemia recovery in adult rat offspring. Attenuation of 

hypoxia-derived oxidative stress maintains basal expression of PKCε in fetal rat hearts 

and therefore would likely improve cardiac performance in adult offspring, but this has 

not been proven experimentally. Interestingly, when Wistar rats exposed to 

undernutrition during fetal development were pretreated with NAC for 48 hours 6 months 

after delivery, they showed improved recovery from ischemia reperfusion injury (Elmes 
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et al., 2007).  Furthermore, determining whether the use of antioxidants such as vitamin 

A, C or E can produce effects similar to NAC is of considerable importance. Previous 

studies have shown Vitamin A, C, and E given during late gestation reduces hypoplasia 

associated with congenital diaphragmatic hernia in fetal rat hearts exposed to Nitrofen 

(Gonzalez-Reyes, 2005).  Vitamin A, C and E are found in numerous plant-based foods 

and are widely consumed in the general population. If the actions of the vitamins mirror 

those of NAC in the in vivo, ex vivo, and H9c2 models, then this may provide a natural 

therapeutic model to protect fetal hearts from intrauterine stress.  

 

Oxidative Regulation of PKCε 

 In chapter 3, we demonstrated that maternal hypoxia represses PKCε promoter 

through an ROS dependent pathway involving methylation of CpG dinucleotides for Sp1 

binding sites.  The primary source of hypoxia-derived ROS was reported to originate in 

Complex III of the electron transport chain (Guzy & Schumacker, 2006).  The 

mitochondrial production of ROS via complex III is also reported to regulate HIF-1α 

stability (Reviewed by Chandel NS, 2010). The role of complex III activity in hypoxia-

induced repression of PKCε has not been elucidated. The effect of complex III 

antagonists (i.e. Stigmatellin, myxothiazol) on hypoxia-induced ROS production and 

repression of PKCε expression is an interesting question that deserves further study. If 

the mitochondria were the primary producer of ROS, then the attenuation of 

mitochondrial derived ROS would answer multiple questions pertaining to the signaling 

events initiating PKCε gene repression.  Xanthine oxidase activity is another possible 

player in hypoxia-induced PKCε repression.  Kayyali et al (2001) demonstrated that 
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hypoxia induced the phosphorylation and increased activity of xanthine oxidase.  

Xanthine oxidase catalyzes the conversion of hypoxanthine to xanthine and xanthine to 

uric acid (Harris CM et al., 1999).  Xanthine oxidase preferentially uses molecular 

oxygen as the electron acceptor thus producing superoxide radical.  The effect of 

blocking xanthine oxidase with allopurinol, a xanthine oxidase antagonist on hypoxia 

induced repression of PKCε expression is interesting and deserves further study. 

 The exact mechanism of hypoxia-induced increase in methylation of the PKCε 

promoter is yet to be elucidated.  Hypoxia-induced hypermethylation of E-cadherin 

promoter was reported to involve SNAIL transcription factor activity.  SNAIL is 

involved in the repression of epithelial specific genes such as occuludins, E-cadherin and 

stimulating mesenchymal gene transcription (Reviewed by De Herreros et al., 2010). 

Whether SNAIL activity is involved in hypoxia-induced repression of PKCε gene is an 

intriguing question.  Since both cocaine and nicotine have been reported to increase 

oxidative stress, further understanding of SNAIL in hypoxia-induced repression of PKCε 

may yield insight into a common pathway of intrauterine stress adaptation in fetal heart 

cells.  

 

Fetal Hypoxia and Cardioprotective Genes 

 The effect of maternal hypoxia on the expression of cardioprotective genes goes 

beyond PKCε.  Previous work in our lab has demonstrated maternal hypoxia causes a 

reduction in the expression of endothelial nitric oxide synthase (eNOS) in adult offspring 

(Li et al., 2003). NO plays an important role in maintaining normal vascular integrity. 

While the cardioprotective role is controversial, with studies suggesting nitric oxide (NO) 
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accumulation is important in ischemia reperfusion injury (Csonka, 1999) and others 

showing NO to be protective (Boli, 2001), the use of gain of function/ lost of function 

experiments in transgenic mice seem to suggest a strong correlation of NO in promoting 

cardioprotection against ischemia reperfusion injury (Reviewed by Jones SP, 2006). 

Interestingly, SP1 transcription factor is important for critical basal expression of eNOS 

in endothelial cells (Zhang et al., 1995). Furthermore, mutation of Sp1 concensus 

sequence at -104 of the eNOS promoter significantly reduced basal eNOS activity 

(Kumar et al., 2008). The GC rich region at -104 contains two potential CpG dinucleotide 

sequence at the core the binding motif (Kumar et al., 2008).  The sequence is as follows 

(-119 5′ATT GTG TAT GGG ATA GGG GCG GGG CGA G 3′ -92). Kumar et al. 

(2008), was able to demonstrate H2O2 significantly reduces eNOS promoter activity by 

decreasing SP1 activity. In addition, methylation of eNOS promoter plays an important 

role in regulating cell specific expression of eNOS (Chan et al., 2004).  Whether chronic 

hypoxia directly regulates eNOS promoter through increase CpG dinucleotide 

methylation of Sp1 binding sites in fetal hearts is intriguing and warrants further study. 

 Heat shock protein 70 (Hsp70) presents another interesting cardioprotective gene 

that was reported to be sensitive to maternal hypoxia.  Studies have shown chronic 

maternal hypoxia significantly reduces protein and mRNA levels in fetal hearts (Bae et 

al., 2003).  The down regulation on Hsp70 gene persists into adulthood (Li et al, 2003).  

Hsp70 plays an important role in protection against ischemia reperfusion injury and 

injury due to heat shock (Snoeckx et al., 2001; Okubo et al., 2001 Jayakumar et al., 

2001).  The amount of Hsp70 directly correlates with the degree of cardioprotection 

conferred (Hutter et al., 1994).  Our lab has demonstrated that chronic maternal hypoxia 
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reduces the expression of Hsp70 and reduces recovery from heat shock in adult rat hearts 

(Li et al., 2004).  Morgan (1989) demonstrated Sp1 binding to Hsp70 promoter promotes 

transcription activity.  Interestingly, Morgan (1989) identified two Sp1 binding sites at 

the proximal promoter (-172 to -163 and -50 to -41) that possess CpG dinucleotides in 

their consensus sequence.  Whether methylation of those binding sites reduces SP1 

binding and Hsp70 promoter activity is an intriguing question.  Whether those binding 

sites are sensitive to chronic hypoxia in fetal hearts is interesting and warrants future 

investigation. 

 

  Previous studies in our lab have shown prenatal hypoxia causes the increased 

expression of β2AR and the ratio of Gsα/Giα.  The functional significance of this finding 

is not clear. However, studies in mice have shown overexpression of β2AR increased 

contractility and ischemia reperfusion injury in male but not female hearts (Cross et al., 

2002).  In addition, β2AR knockout mice showed reduce injury from middle cerebral 

artery occlusion or wild-type mice pretreated with β2AR antagonist.  Studies looking at 

epigenetic modifications to the proximal promoter of β2AR gene are few, but recent work 

done by McAlees et al. (2011) found that methylation of proximal promoter of β2AR 

occurred in CD4+ T cells.  Perhaps this region is sensitive to intrauterine stress in fetal 

cardiomyocytes, resulting in changes in methylation patterns for β2AR gene leading to 

enhanced vulnerability to ischemia reperfusion injury.  
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Conclusion 

 The findings from this study demonstrate chronic hypoxia directly regulates 

PKCε expression in fetal hearts through increase methylation of two Sp1 binding sites 

located at the proximal promoter.  The mechanism initiating the epigenetic modification 

of PKCε promoter involves the elevation of ROS but does not require HIF-1α nuclear 

accumulation.  Our findings contribute significant understanding to the processes 

involved in fetal programming.  Indeed, the methods used to elucidate PKCε regulation in 

the context of the developing myocardium may be applied to other tissues.  The effect of 

chronic intrauterine hypoxia on cardioprotective, neuroprotective, and tumorigenic genes 

may shed new understanding that will allow for future interventions, which may protect 

against the onset of adult diseases. 
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