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ABSTRACT OF THE DISSERTATION 

 

IGF2 Promotes Activation of Estrogen Receptors in Basal-like Breast Cancer Cells 

 

by 

Angelique Ellerbee Richardson 

Doctor of Philosophy, Graduate Program in Microbiology and Molecular Genetics 

Loma Linda University, March 2011 

Daisy D. De León, Chairperson 

 

 

The autocrine-paracrine effects of IGF2 are important in the growth and 

differentiation of normal breast.  In breast cancer (BC), IGF2 is initially stimulated by 

estrogen, progesterone and prolactin to regulate proliferation and cancer progression. 

These actions are mediated by the IGF-1R and insulin receptor A (IR-A) both members 

of the tyrosine- kinase receptors family.  The activation of Estrogen Receptor (ER) is also 

very important in BC growth and progression.    

As BC progresses to estrogen-independent growth, the IGF-1R and the estrogen 

receptor (ER) interact in crosstalk mechanisms that are synergistic and results in 

enhanced activation of both receptors signaling cascades. This mechanism plays a central 

role in the transition of estrogen-dependent to estrogen-independent breast cancer (BC) 

progression.  

Basal-like BC (BLBC) is a sub-group of estrogen-independent tumors that have a 

very aggressive clinical behavior and are resistant to hormone-based therapy resulting in 

reduced disease-free survival period and increasing the mortality of breast cancer (BC) 

patients. Our BC research team has elucidated how IGF2 crosstalk signaling results in the 

activation of ER pathways independent of estrogen. Central to our investigation is how 

this mechanism is associated to the survival disparity observed among African American 



xii 

(AA) BC patients.  BLBC accounts for nearly 15-20% of all breast cancers, however it 

represents 45% of all BC observed in AA patients.  

Analyses of subcellular compartments, Western-Blot and siRNA demonstrated 

that IGF2 activates ER-α and ER-β in ER negative BLBC cells Hs578t and CRL-2335.  

Our studies show that both IGF-1R and IR crosstalk with ER-α and ER-β promoting 

BLBC progression. This novel mechanism offers new therapeutic targets that will 

significantly impact treatment and diagnosis of BLBC patients. 
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CHAPTER ONE 

INTRODUCTION 

 

Disparities in Breast Cancer 

African-Americans (AA) diagnosed with all cancer types have a higher death rate 

and lower survival when compared to other ethnic groups in the United States (Ward et 

al. 2004). This health disparity is also present in breast cancer.  Breast cancer is the 

second most common form of cancer in women, however, it is the number one diagnosed 

cancer in African-American (AA) women (Ward et al. 2004).  AA women are more 

likely to have highly aggressive tumors when compared to their Caucasian (CA) 

counterparts (Chlebowski et al. 2005).  

Reasons for this survival health disparity in AA women are complex.  Some 

factors are social (inequalities in work, wealth, education, standard of living) and some 

factors are biological such as loss of tumor suppressor gene expression, loss imprinting of 

insulin like growth factor 2 gene, and BRCA 1 and 2 mutations (Baker, Metzler, and 

Galea 2005; Fine, Ibrahim, and Thomas 2005; Woolf 2004).  This study will evaluate the 

role of biological factors in the breast cancer survival disparities seen in AA women.  

There are several findings which suggest that the biological factor IGF2 is a contributor 

in the survival health disparity seen among breast cancer patients (Elledge et al. 1994)(Fu 

et al. 2003) (Poola et al. 2005).    
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Figure 1.  Bar graph of Western Blot Analysis Showing IGF2 

Expression in Normal and Malignant Breast Tissue Samples.  
  

Kalla Singh et al. 2010. Differential Insulin-like Growth Factor (IGF-II) Expression: A Potential Role for 

Breast Cancer Survival Disparity.  Growth Hormone & IGF Research, 20:162-170.   
 

 

 

Role of IGF-II in Breast Cancer 

There is a higher expression of IGF2 in both normal and cancerous breast tissues 

of AA women when compared to normal and tumor breast tissues from Caucasian 

women (Figure 1).   AA women overexpress several factors that lead to an increased 

expression of IGF2 which in turn promotes breast cancer cell survival (Singh, et al. 

2008)(Singh, et al. 2007).  One such factor is mutated p53.  Mutated p53 has been shown 

to lead to an increase in IGF2 expression and promote the upregulation of cell survival 

pathways leading to increased tumor aggressiveness (Zhang, et al. 1996) (Kanashiro, et 

al. 2003) (Carey et al. 2006) (Carey et al. 2006).  This evidence suggests that there may 

be a direct correlation between an increased expression of IGF2 and breast tumor 
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aggressiveness in AA women which may, in part, explain the decrease in survival seen in 

these women.  

Multiple steps occur as a cell progresses from its normal cell phenotype to its 

cancerous phenotype.  The cancer cell develops the ability to avoid apoptosis, maintain a 

limitless replicative potential, and provide its own growth signals (Hanahan and 

Weinberg 2000).  Interestingly, IGF2 has been shown to regulate all of the steps needed 

in carcinogenesis.  The overexpression of IGF2 is involved in the development of various 

cancers, including breast cancer  (Haruta et al. 2008; Honda et al. 2008; Wilkin et al. 

2000)(Vu et al. 2003; Wise and Pravtcheva 2006).     

Our lab has shown that IGF2 plays a role in promoting breast tumor progression 

towards aggressiveness.  The study demonstrated that the expression of IGF-II promoted 

tumor growth and metastasis without the requirement of estrogen in nude and Severe 

Combined Immunodeficient (SCID) mice.  This data suggests that IGF2 promotes tumor 

progression towards aggressiveness by allowing the tumor to grow independent of 

estrogen in these mice models.     

Insulin-like Growth Factor Family 

IGF2,  a member of the insulin-like growth factor (IGF) family, plays an 

important role in the development and maintenance of normal body function (LeRoith et 

al. 1995).  Also, included in the IGF family is the IGF1 ligand, cell membrane receptors 

insulin-like growth factor receptor 1 (IGF1R), IGF2R and the Insulin Receptor (IR), as 

well as six IGF-binding proteins (IGFBP-1 through IGFBP-6) (Yu and Rohan 2000).  

Notably, the IGF family ligands are highly homologous (62%) and both IGF1 and IGF2 

are able to bind to each of the IGF family receptors and promote mitogenic and 
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antiapoptotic actions affecting cell proliferation, differentiation, and transformation 

(Corps and Brown 1991; Wood et al. 2000; Yu and Rohan 2000).  

       

IGF2 

The igf2 gene is located on chromosome 11 (Brissenden, Ullrich, and Francke 

1984).  From four promoters (P1-P4) multiple mRNA transcripts are produced and 

alternatively spliced (Sara and Hall 1990)(Yu and Rohan 2000).   In the adult, the P1 

promoter is responsible for the transcription of IGF2 whereas in the fetus P3 and P4 

regulates IGF2 transcription (Sara and Hall 1990).  Importantly, P3 and P4 promoters are 

also activated in breast cancer (Yu and Rohan 2000).    Activation of P3 and P4 

promoters in cancer cells is a result of the cell reverting back to a less differentiated fetal 

phenotype.   

IGF2 is produced as a prohormone (pre-proIGF2) and it is cleaved post-translationally by 

proprotein convertase 4 (PC4), a serine protease, to yield several isoforms including 

proIGF2 (1-156 amino acids, aa) and (1-104 aa) and mature IGF2 (1-67 aa) (Figure 2) 

(Qiu et al. 2005).  ProIGF2 and mature IGF2 are glycosylated to yield isoforms of 

varying molecular weights ranging from 21 kDa (proIGF2) to 7.5 kDa (mature IGF2) 

(Vyas, Asmerom, and De Leon 2005).  The various IGF2 isoforms have different 

biological activities.  ProIGF2, also known as “big” IGF2,  is the predominate form 

expressed in breast cancer and it has a different mechanism of action when compared to 

mature IGF2 (mIGF2) (Singh et al. 2008; Singh et al. 2007) (Ellis et al. 1998; Ishida et al. 

1995; Rasmussen and Cullen 1998; Singh et al. 2007; Vyas, Asmerom, and De Leon 

2005).   
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Figure 2.  Schematic Representation of pre-proIGF2, proIGF2, and mature IGF2. 

This figure shows the cleavage of pre-proIGF2 into the proIGF2 (1-156 amino 

acids, aa) and (1-104 aa) and mature IGF2 (1-67 aa) by proprotein convertase 4 

(PC4). 
  

Adapted from Miraki-Moud F. et al. J Clin Endocrinol Metab 2005; 90:3819-3823  
 

 

 

 

Insulin-like Growth Factor 1 Receptor 

Insulin-like growth factor 1 Receptor (IGF1R) is activated by both IGF1 and 

IGF2 (Ellis et al. 1998).  IGF1R is a tetrameric glycoprotein located on the cell 

membrane.  The expression of IGF1R is upregulated by estrogens, growth hormone (eg. 

IGFs), follicle-stimulating hormone (FSH) and glucocorticoids, and downregulated by 

wild-type p53 and the Wilms tumor protein (Sepp-Lorenzino 1998)(Werner 1998; 

Werner et al. 1996; Werner et al. 1993).  Once IGF1 or IGF2 binds to the IGF1R a 

conformational change occurs resulting in its autophosphorylation at tyrosine residues in 
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the juxtamembrane and flanking regions which serve as docking sites for insulin receptor 

substrates (IRS) and Shc adaptor proteins.  IRS and Shc recruit other proteins, such as 

Grb2/SOS and phosphatidyl inosital 3’kinase (PI3 Kinase), which can then activate the 

mitogen-activated protein kinase (MAP kinase) and PI3 kinase pathways.  The MAP 

kinase and PI3 kinase pathways regulate transcription factors that alter gene expression, 

as well as, control cell proliferation, differentiation, and apoptosis (LeRoith et al. 1995; 

Yu and Rohan 2000).   

The igf1r mRNA expression has been found to be upregulated in most breast 

cancer cell lines and in over 90% of human breast tumors (Papa et al. 1993; Pekonen et 

al. 1988).   IGF1R expression is important for the inhibition of apoptosis in tumor cells  

and it has been postulated that the primary role of IGF1R signaling in tumor cells is to 

maintain tumor cell survival and protection from apoptosis (Baserga et al. 1997) (Dunn et 

al. 1997; Resnicoff et al. 1995).        

 

Insulin-like Growth Factor 2 Receptor 

IGF2 also binds the insulin-like growth factor 2 receptor (IGF2R), and though it is 

highly debated, evidence suggests that the IGF2R may mediate signaling via a G protein-

coupled mechanism (Baserga 1995; LeRoith et al. 1995)(Hawkes et al. 2007).  The 

IGF2R is monomeric and it contains three ligand binding regions in the extracellular 

domain: one site is for IGF2 binding and the other two sites are for the binding of 

mannose-6-phosphate (M-6-P) containing proteins (Brown, Jones, and Forbes 2009; 

Morgan et al. 1987; Oshima et al. 1988) (Oates et al. 1998) (Jones and Clemmons 1995). 
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Thus, the IGF2R is sometimes referred to as the IGF2R/ mannose-6-phosphate (M-6-P) 

receptor  (Kiess et al. 1989; Vignon and Rochefort 1992).   

The IGF2R  regulates the bioavailability of IGF2 by leading to its degradation and 

thus it has been considered as a tumor suppressor (Hankins et al. 1996)(LeRoith et al. 

1995; Oates et al. 1998).   Thus, loss of this receptor may contribute to various aspects of 

tumor pathophysiology (Oates et al. 1998).  Little is known about the regulation of the 

IGF2R but it has been suggested that IGFs, epidermal growth factor (EGF) and M-6-P 

may lead to an increase in its expression (Hoeflich et al. 1996; Jones and Clemmons 

1995).   

 

Insulin Receptor 

The IR is a cell surface glycoprotein with a heterotetrameric structure made up of 

two alpha and two beta subunits.  The extracellular alpha-subunits consist of the insulin 

binding domains, and the transmembrane beta-subunits consist of the tyrosine kinase and 

the phosphorylation sites.  The binding of ligand to the IR activates its tyrosine kinase 

signaling pathway leading to autophosphorylation of the IR and its associated 

endogenous substrates such as insulin receptor substrate proteins (IRS-1, -2, -3, and –4), 

and Shc (White 1998; White and Kahn 1994).  

Insulin and IGF2 bind to and activate the insulin receptor (IR) (LeRoith et al. 

1995).  An IR-isoform, IR-A, has been shown to display high affinity for IGF2.  IR-A is 

encoded by the mRNA lacking exon 11.  The binding of IGF2 to IR-A mediates 

proliferative and anti-apoptotic effects.  In contrast, IGF-II binding to IR-B, the IR 
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isoform which includes exon 11, elicits primarily metabolic effects and cell 

differentiation (Frasca et al. 1999).   

 IR and IGF1R are structurally homologous and activated by tyrosine 

phosphorylation.  These receptors are implicated in the regulation of cellular 

differentiation, mitosis and metabolism (Moxham and Jacobs 1992; White and Kahn 

1994).  Moreover, the IR and IGF1R both share certain substrates such as Shc and 

members of the IRS family.  Once IRS is phosphorylated then it forms a signaling 

complex with growth factor receptor binding protein (GRB2), Syp (SH PTP2) 

phosphotyrosine phosphatase, and phosphatidylinositor kinase (PI3K) (Lowenstein et al. 

1992; Skolnik et al. 1993).  IRS-1 couples GRB2 to IR and IGF1R.  Shc functions in a 

similar manner.  The coupling of GRB2 to the IR and IGF1R leads to association of the 

complex with son of sevenless (SOS) Ras GFP/GTP exchanger.  This leads to the 

activation of Ras/mitogen-activated protein kinase (MAPK) pathway.  Activation of 

MAPK pathway regulates cell growth, differentiation, and proliferation in response to 

insulin, IGF1 and IGF2.  The increased expression of IR in breast cancer and breast 

cancer cell lines has been shown to promote tumor development (Papa et al. 1990) 

(Milazzo et al. 1992).       

 

Estrogen Receptors 

Estrogen Receptors in Cancer 

Normal estrogen receptor signaling is necessary for the development and 

maturation of the mammary gland in contrast aberrant ER signaling is implicated in 

breast carcinogenesis and progression (Huseby, Maloney, and McGrath 1984; Mueller et 
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al. 2002) (Herynk and Fuqua 2004).  Estrogen receptors are steroid hormone receptors 

and members of a nuclear superfamily whose subgroup consists of  the estrogen receptor 

alpha (ER-) and estrogen receptor beta (ER-) and its natural ligand estrogen 

(Griekspoor et al. 2007)(Arpino et al. 2008; Kuiper et al. 1997; Webb et al. 1999).   

ER- is located on human chromosome 6 and ER- is found on human 

chromosome 14 (Enmark et al. 1997; Gosden, Middleton, and Rout 1986; Gustafsson 

1999; Ponglikitmongkol, Green, and Chambon 1988).  Though they are different gene 

products, ER-α and ER-β, exhibit 97% and 60% of homology in the DNA- and ligand-

binding domains, respectively.  Thus, ER- and ER- interact with identical DNA 

estrogen response elements (EREs) and exhibit a similar binding affinity for estrogen, but 

they appear to respond to ligands in a receptor-specific manner (Lazennec et al. 

2001)(Kuiper et al. 1997)(Driscoll et al. 1998).   

Because of their high degree of homology, initially ER- was thought to represent 

a level of redundancy in estrogen signaling (Couse and Korach 1999; Ogawa et al. 1999; 

Ogawa et al. Molecular cloning and characterization of human estrogen receptor β-cx: A 

potential inhibitor ofestrogen action in human 1998).  Current studies indicate the unique 

but highly controversial role of ER- in breast cancer development and progression 

(Flynn et al. 2008).  Some studies suggest that ER- behaves like a tumor suppressor in 

the breast and is related to a favorable outcome (Speirs 2002).  Other studies suggest that 

ER- expression is associated with a poorer prognosis (Iwao et al. 2000; Knowlden et al. 

2000; Roger et al. 2001; Speirs et al. 1999). 

The estrogen receptor subgroup also includes three orphan receptors, estrogen 

related receptors  (ERR ), ERR , and ERR , and estrogen receptor variants 
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(Griekspoor et al. 2007)(Poola et al. 2005; Vladusic et al. 1998).  In this dissertation, the 

expression and activity of the variant ER-β5 is studied because data suggests that this 

variant plays a significant role in the development of estrogen-independent breast cancer, 

and it is expressed at higher levels in African-American women.  This increased 

expression has been linked to an increase in tumor aggressiveness (Inoue et al. 2000; 

Peng et al. 2003)(Poola et al. 2005; Vladusic et al. 1998)(Poola, Abraham, and Liu 2002).       

The subcellular localization of the ERs is important when considering its role in 

tumor progression and must be taken into account.  Studies demonstrate that when ER- 

localizes to the mitochondria, in breast cancer cells, it then binds to the mitochondrial 

genome at ERE sequences leading to the regulation of estrogen’s effects at this organelle, 

including modulation of calcium influx, ATP production, apoptosis, and free radical 

species generation (Demonacos et al. 1996)(Chen et al. 2004; Demonacos et al. 1996; 

Nilsen and Diaz Brinton 2003; Richards et al. 1996; Sekeris 1990; Wang, Green, and 

Simpkins 2001; Yang et al. 2004).  This dissertation shows the ability of IGF-II to 

promote ER-α and ER-β translocation to the mitochondria in breast cancer cells 

providing a mechanism in which IGF-II can regulate the mitochondria.  

 

Estrogen Receptor Signaling 

There are two signaling mechanisms for the estrogen receptor.  The first 

mechanism discovered is called the classical ER signaling pathway or the 

genomic/nuclear-initated signaling pathway (Hall, Couse, and Korach 2001) (Rosenfeld 

and Glass 2001) (Rosenfeld and Glass 2001).  This mechanism involves the passive 

diffusion of estrogen into the cell and its binding to the ER, leading to receptor 
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dimerization and translocation into the nucleus.  Once inside of the nucleus the receptor 

binds to the estrogen responsive element (ERE) in the promoters of target genes 

(Bjornstrom and Sjoberg 2005)(Hall, Couse, and Korach 2001) (Rosenfeld and Glass 

2001)(Rosenfeld and Glass 2001).   

Traditionally, the genomic or nuclear-initiated ER signaling has been considered 

the primary action of the ERs.  However, recently plasma membrane estrogen receptors 

have been discovered (Moriarty, Kim, and Bender 2006).  These rapid, membrane-

initiated signaling cascades via plasma membrane-associated ERs are referred to as 

nonclassical or nongenomic/membrane-initiated estrogen receptor signaling (Bjornstrom 

and Sjoberg 2005; Razandi et al. 2003).  This alternate pathway  involves the activation 

of cell surface receptors that lead to the rapid activation of signaling cascades resulting in 

the regulation of target genes (Kousteni et al. 2001; Levin 2005; Mendelsohn 2000; Xu et 

al. 2004; Yang et al. 2004)(Rosenfeld and Glass 2001)(Moriarty, Kim, and Bender 2006).   

It is important to note that the nuclear-initiated and membrane-initiated signaling 

pathways do not function independently of one another.  Instead, the two pathways 

converge in the cell to regulate ER-regulated gene expression.  Therefore, the distinction 

between the two signaling pathways is blurred (Bjornstrom and Sjoberg 2005; Moriarty, 

Kim, and Bender 2006).   

 

Growth Factor Receptor and Estrogen Receptor Cross-talk 

Interactions between growth factor receptors and estrogen receptors are important 

in the development and progression of breast cancer (Arpino et al. 2008).  Growth factor 

receptors have been shown to activate the estrogen receptors (ER) through a mechanism 
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known as cross-talk which is bidirectional (Hall, Couse, and Korach 2001)(Fagan and 

Yee 2008; Kahlert et al. 2000; Shou et al. 2004).  There are studies showing cross-talk 

between the ER-α and the Human epidermal growth factor receptor (HER2/neu), the 

Epidermal Growth Factor Receptor (EGFR) and the IGF-1R (Kato et al. 1995; Lee et al. 

1999; Richards et al. 1996; Shou et al. 2004).  As the complexities of ER and growth 

factor signaling cross-talk are being discovered, it is becoming increasingly clear that the 

treatment of breast cancer will have to involve more than just endocrine therapy that only 

targets the ER.       

 

Breast Cancer Subtypes 

Breast cancer patients are usually grouped together based on their tumor receptor 

status using immunohistochemistry.  Treatment is based on the presence or absence of 

estrogen receptor (ER) and/or human epidermal growth factor receptor (HER2) (Walker 

2008).  Patients who have ER/PR positive tumors receive therapy directed towards 

blocking the activity of  estrogen (Tamoxifen and Raloxifen) or stopping estrogen 

production (aromatase inhibitors) (Carpenter and Miller 2005; Jordan 2007; Reis-Filho 

and Tutt 2008; Robson and Offit 2007).  If the tumor expresses HER2 then a HER2 

directed therapy (Trastuzamab/Herceptin) is given to the patient (Albanell et al. 2003; 

Brenton et al. 2005).  Those individuals whose tumors do not express ER, PR or HER2 

are usually treated with chemotherapy. 

Alternatively, breast cancers may be divided into subgroups using gene 

expression profiles (Brenton et al. 2005; Dawood and Cristofanilli 2007; Jumppanen et 

al. 2007).  The subgroups are normal breast-like, luminal, basal-like, and HER2 (ERBB2) 
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overexpressing (Dawood and Cristofanilli 2007; Jumppanen et al. 2007).   These 

subgroups display distinct differences in biology, behavior, prognosis and response to 

therapy (Brenton et al. 2005).  The normal breast-like subtype consists of normal breast 

samples and fibroadenomas (benign tumors) (Ihemelandu et al. 2007).  The luminal 

subgroup is mainly comprised of  ER positive tumors and the ER negative tumors are in 

the HER2 overexpressing and basal-like subtypes (Table 1) (Brenton et al. 2005).   

Basal-like breast cancers (BLBC) account for nearly 15-20% of all breast cancers 

(Kobayashi 2008).  Fourty-five percent of those diagnosed with BLBC are young (<50 

years old), African-American women (Ihemelandu et al. 2007; Reis-Filho and Tutt 2008).  

There appears to be a positive correlation between Breast Cancer 1 gene (BRCA 1) 

mutations, increased expression of mutated p53 and the development of BLBC in AA 

women (Brenton et al. 2005; Sorlie et al. 2001)(Reis-Filho and Tutt 2008; Turner, Tutt, 

and Ashworth 2004).     

 

Table 1. Typical Immunohistochemical Classification of Breast Cancer 

Subtypes  

 

 

 

 

 

 

Adapted from Ihemelandu et al. 2007. Journal of Surgical Research. Vol 143, Issue 1, 

p.109-118.   

 

 

Luminal A ER + and/or PR+, HER2- 

Luminal B ER+ and/or PR+, HER2+ 

Basal cell-like ER-, PR-, HER2- 

HER-2/neu ER-, PR-, HER2+ 
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The majority of BLBC present with an ER, PR and HER2/neu negative (triple 

negative) phenotype (Brenton et al. 2005; Jumppanen et al. 2007)(Reis-Filho and Tutt 

2008).  BLBC has a poor prognosis due to the absence of targeted therapies and its 

intrinsically aggressive biology (Turner, Tutt, and Ashworth 2004).  There is a need to 

develop targeted therapies for women diagnosed with these tumors.   

 

Significance of the Studies 

Breast cancer is the second most common cancer in women (Ward et al. 2004).  

Basal-like breast cancer (BLBC) accounts for approximately 15-20% of all breast cancers 

in women, however 45% of these women are AA and this  may partly explain why AA 

women overall have a higher mortality rate from breast cancer (Chlebowski et al. 2005; 

Finn et al. 2007; Munzone et al. 2006; Szepeshazi et al. 1992)(Ward et al. 2004). 

Basal-like breast cancer has a poor prognosis due to the absence of targeted 

therapies and its intrinsically aggressive biology (Turner, Tutt, and Ashworth 2004).   

Currently, targeted therapies for breast cancer are aimed at preventing estrogen dependent 

growth which is not effective for the treatment of BLBC, because it has developed the 

ability to grow independent of estrogen.  Little is known about how these cells grow 

independent of estrogen.  This dissertation addresses this lack of knowledge by 

elucidating a mechanism in which these BLBC grow independent of estrogen via growth 

factor and estrogen receptor cross-talk mechanisms driven by IGF-II.    

This study is highly significant and transformational because several observations 

made in this study will lead to major changes in clinical outcomes for AA women with 

BLBC.  
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Approach of Studies 

This study was designed to demonstrate the ability of IGF2 to circumvent the 

requirement for estrogen in breast cancer cells by acting through the IGF1R and IR to 

phosphorylate/activate ER- and ER-.  Central to this study is the association of this 

mechanism with survival health disparities in AA women with breast cancer.  An 

appropriate cell model had to be selected for demonstrating the role of IGF2 in estrogen-

independent activation/phosphorylation of ER- and ER- in breast cancer cells.   

The desirable cell model had to have several features important to the study.  The 

cell model had to express ER- and ER- in order to demonstrate the ability of IGF2 to 

phosphorylate both receptors.  The breast cancer cell line, MCF-7, was chosen.  MCF-7 is 

derived from a Caucasian women and it is an ER positive cell line.  This cell line 

expresses both ER- and ER-.  Hs578T cell line is also derived from a Caucasian 

woman, but it is an ER negative breast cancer cell line, and it was selected to serve as a 

control.  

In addition, this study was designed to elucidate the role of IGF2 in the survival 

health disparity seen in AA women with breast cancer.  Therefore, an ER positive and ER 

negative breast cancer cell line derived from AA women were selected and compared to 

the MCF-7 and Hs578T cell lines.  CRL-2335 (ER-) and CRL-2315 (ER+) AA cell lines 

were choosen for this study.    

The MCF-7, Hs578T, CRL-2315 and CRL-2335 cells were characterized using 

Real-time Polymerase Chain Reaction (RT-PCR) to determine the expression of ER- 

and ER-.  RT-PCR revealed that the ATCC designated ER-negative breast cancer cell 

lines (Hs578T and CRL-2335) express ER- and ER-.  Studies show that ER 
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designation is given to a breast cancer by immunohistochemistry.  Breast tumors that 

express less than 10% of ER- in the nucleus are designated as ER-negative (Nadji et al. 

2005; Swain 2001).     

Based on these observations focus shifted to the “ER-negative” breast cancer cell 

lines, and the subcellular localization of ER- and ER-.  First, the effect of IGF2 on the 

activation and subcellular localization of ER- and ER- in these breast cancer cells 

needed to be determined.  ER activation was measured by ER phosphorylation and 

translocation within the subcellular compartments.   In order to determine the role of 

IGF2 in estrogen-independent activation of ER in the CRL-2335 and Hs578T cells had to 

be treated with both proIGF2 and mIGF2.  CRL-2335 and Hs578T cells were treated with 

both proIGF2 and mIGF2 at varying concentrations 25, 50 and 100 ng/mL at different 

time points (0, 10, 15, 20 and 30 minutes) and analyzed for ER activation by measuring 

ER phosphorylation and translocation.  The proIGF2 (100ng/mL) treatment for 20 

minutes showed the most effect in the CRL-2335 and Hs578T cell lines.  The 

experiments in this dissertation used this time point and concentration of proIGF2.   

The cell lines used for this study were basal-like breast cancer cell lines, CRL-

2335 and Hs578T.  Molecular gene expression profiling data has subgrouped the CRL-

2335 and Hs578T cell lines into the basal-like breast cancer subgroup (Finn et al. 2007).  

These cell lines were the ideal models for elucidating estrogen independent growth 

mechanisms in breast cancer cells.  Estrogen independent growth is the primary 

mechanism of growth in basal-like tumors.  Moreover, basal-like tumors are more 

common in AA women.  Currently, there is little knowledge regarding how these basal-

like tumors grow independent of estrogen.  There is an even larger gap in knowledge 
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concerning what predisposes AA women to these tumors.  In this study we have proposed 

a novel mechanism for how these basal-like breast cancers promote estrogen independent 

signaling mechanisms in AA women.   

This dissertation study was designed to demonstrate the ability of IGF2 to activate 

the IGF-1R and IR promoting the phosphorylation of ER-α and ER-β via cross-talk 

mechanisms.  This proposed mechanism was based on studies showing cross-talk 

between the ER-α and IGF-1R (Kato et al. 1995; Lee et al. 1999; Richards et al. 1996).  

Although many breast cancers express both ER-α and ER-β there is no published study 

demonstrating a cross-talk between ER-β and IGF-1R.  Also, there are no studies in the 

literature showing a cross-talk between ER-α and/or ER-β and the IR.  Nevertheless, we 

believe there is evidence supporting a crosstalk between the ER and IR based on the 

following observations.  IGF-1R and the IR are 70% homologous, structurally and 

functionally, and ER may cross-talk with IR in a similar manner as IGF1R (Morrione et 

al. 1997).   This study provides a more comprehensive understanding of this cross-talk 

pathway thus providing more insight into how to appropriately development more 

targeted therapies.    
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Abstract 

 The estrogen receptor (ER) is a primary target for breast cancer (BC) treatment. 

As BC progresses to estrogen-independent growth, the IGF-1R and the ER interact in 

synergistic crosstalk mechanisms which results in enhanced activation of both receptors 

signaling cascades. Insulin-like growth factor 2 (IGF-2) is critical in BC progression and 

its actions are mediated by the IGF-1R. Our previous studies showed that IGF-2 regulates 

survival genes that protect the mitochondria and promote chemoresistance. In this study, 

we analyzed BC cells by subcellular fractionation, Western-Blot, qRT-PCR and siRNA 

analysis. Our results demonstrate that IGF-2 activates ER-α and ER-β and modulates 

their translocation to the nucleus, membrane organelles and the mitochondria. IGF-2 

actions are mediated by the IGF-1R and the insulin receptor (IR). This novel mechanism 

of IGF-2 synergistic crosstalk signaling with ER-α and ER-β can promote estrogen-

independent BC progression and provides new therapeutic targets for the treatment of 

breast cancer patients. 

 

Introduction 

Estrogen signaling is mediated through two receptors, ER and ER (Arpino, 2008; 

Kuiper, 1997; Webb, 1999) When the ER- was discovered it was thought that it 

represented a splice variant of ER, however current studies showed that ER- and ER- 

are different genes with distinct physiological functions (Flynn, 2008). While ERα 

mediates its effects in the nucleus, ER- is predominantly localized in the mitochondria 

and regulates mitochondrial gene expression and membrane potential as well as ATP 

production (Chen, 2004; Demonacos, 1996; Nilsen, 2003; Richards, 1996; Sekeris, 1990; 
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Wang, 2001; Yang, 2004). Activation of either ER- or ER-, promotes BC cell growth 

and survival, however, estrogen dependent tumors eventually develop mechanisms to 

activate ER mediated pathways without the requirement of estrogen (Szepeshazi, 1992).   

  The development of estrogen-independent BC involves cross-talk between several 

growth factors and the estrogen receptors (Gee, 2005; Shou, 2004). Insulin-like growth 

factor-2 (IGF-2) is a growth factor that plays a critical role in organ development, 

differentiation and metabolism by signaling via both the IGF-1R and the IR-A (Abbas, 

2007). Signaling through both receptors also regulates the growth and differentiation of 

normal breast epithelial cells (Ishida, 1995; Rasmussen 1998; Singh, 2007; Vyas, 2005; 

Yballe, 1996).  

The expression of the IGF-II gene is tightly regulated and inhibited by tumor 

suppressor genes such as p53, Pten, WT1, GC factor (GCF) and several other oncogenes 

(Zhang et al. 1996, Toretsky and Helman 1996, Kitadai et al. 1993). Mutations in tumor 

suppressors contribute to higher IGF-II expression not only for lack of suppression but 

also for gain of function as mutated p53 that stimulates IGF-II (Zhang et al., 1998). The 

hormonal regulation of IGF-II is positively regulated by E2, progesterone, prolactin and 

GH, all important hormones in normal breast development and in breast cancer 

progression (Brisken, et al 2002; Goldfine et. al., 1992; Hamelers et.al., 2003). Thus, 

IGF-II expression is important in normal breast development and increased IGF-II in the 

mammary gland contributes to tumor formation. In addition to hormonal stimulation and 

tumor suppressor inhibition of IGF-II, there are many other critical pathways that activate 

IGF-II that are also important in breast cancer development. The most significant include 

IGF-II stimulation by oxidative stress, the Wnt-pathway (disrupts eCadherin-catenin), 
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integrins and mTOR (Erbay et al, 2003;Goel et.al., 2006, Morali et.al., 2001). Mutations 

in the IGF-II receptor (Byrd, et al., 1999) and pTEN also regulate IGF-II levels and IGF-

II regulates pTEN (Sukmi Kang-Park et al, 2003, Perks et.al. 2007). The extensive 

regulatory mechanisms involved in IGF-2 expression also includes miRNAs, 

methylation, imprinting and other epigenetic alterations present in early development of 

cancer (Chao et al, 2008, Ge and Chen, 2011) 

IGF-2 is highly expressed in breast cancer patients and plasma levels of free IGF-2 

directly correlates to BC tumor size (Singer, 2004). Furthermore, transgenic animal 

models expressing high levels of IGF-2 develop aggressive breast cancer tumors 

(Pravtcheva, 1998; Pravtcheva, 2003; Bates, 1995).   

We have shown that IGF-2 also promotes proliferation, inhibit apoptosis and 

stimulate the transformation of breast cancer cells (Singh, 2007; Singh, 2008). Our 

studies also showed that IGF-2 can activate estrogen-regulated genes like survivin, BCL-

xl and BCL-2 independent of estrogen through IGF-1R and Insulin receptor. Thus, our 

particular interest in IGF-2 effects in breast cancer is based on our original observations 

that IGF-1 was not present in these breast cancer cells and that published studies about 

IGF-1 analysis by RIA reflected interference with IGFBPs and not IGF-I (De León et al, 

1988,1989, 1992). Furthermore, IGF-1 is mainly regulated by GH while IGF-2, as 

discussed above, is tightly regulated by a wide range of tumor suppressors and hormones 

that are critical for breast cancer development. Thus, IGF-2 plays a critical role in normal 

breast differentiation and in the development and progression of breast cancer, 

demonstrating that IGF-2 have a broader range of biological functions at the cell or tumor 

level. 
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Since IGF-1 activation of the IGF-1R can cross-talk and activate the ER- signaling 

pathway (Fagan and Yee, 2008) we propose that likewise, IGF-2 can activate the ER-. 

We also propose that IGF-2 may activate ER- signaling pathway via cross-talk with the 

IGF-1R. Moreover, since IGF-2 not IGF-1 binds the insulin receptor-A, also a member of 

the IGF-1R family, we thought that IGF-2 activation of the IGF-1R and IR-A signaling 

pathways results in the phosphorylation/activation of ER- and ER- in BC cells. Thus, 

the present study aims to elucidate if IGF-2 binding to both, IGF-1 receptor and the 

insulin receptor-A results in activation and translocation of the estrogen receptors. 

 

Materials and Methods 

Cell Culture 

CRL-2335, HS578T, and MCF-7 cell lines were obtained from the American 

Type Culture Collection (ATCC). The CRL-2335 cell line was derived from a 60-year 

old African-American (AA) woman and the HS578t cell line was derived from a 74-year 

old Caucasian (CA) woman and both cell lines are triple negative (ER-,PR-,Her2-). 

MCF-7 cells were derived from a pleural effusion of a CA woman (69 yo breast cancer 

patient) and it is used as a positive control for ER-α and ER-β expression.  Cultures were 

maintained at 37C in a 5% CO2 incubator.  CRL-2335 cell cultures were maintained in 

RPMI 1640 media (ATCC) supplemented with 10mL of penicillin/streptomycin (10,000 

units/mL penicillin and 10,000 units/mL streptomycin sulfate, Cellgro), 3ug/ml B-

amphotericin, and 10% fetal bovine serum (Hyclone).  HS578T cell cultures were 

maintained in DMEM/F12 media (Cellgro) with 4mM L-glutamine, 1.5g/L sodium 

bicarbonate, 4.5g/L glucose, 0.01mg/ml bovine insulin (Sigma), 10mL of 
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penicillin/streptomycin (10,000 units/mL penicillin and 10,000 units/mL streptomycin 

sulfate, Cellgro), and 10% fetal bovine serum (Hyclone).  MCF-7 cells were maintained 

in DMEM/F12 media (Cellgro) supplemented with 10 ml of 5000 U 

penicillin/streptomycin
 
(100 U/ml penicillin and 100 U/ml streptomycin sulfate, Cellgro),

 

4 mM L-glutamine (Cellgro), 3 µg/ml ß-amphotericin,
 
and 5% fetal bovine serum 

(Hyclone). 

 

Quantitative Real Time PCR (qRT-PCR) 

Total RNA was extracted using the Aurum
TM

 Total RNA Mini Kit (BioRad).  

RNA integrity was evaluated by UV spectroscopy and RNA Quality Indicator (RQI) 

values were obtained using the Experion
TM

 Automated Electrophoresis System (BioRad). 

Total RNA samples were stored at -80C until assayed. Quantitative reverse-transcription 

PCR (qRT-PCR) was performed to determine ER- and ER- mRNA expression in 

MCF-7, CRL-2335 and HS578T cells.   

The primer pairs used for ER- (SA Biosciences) are: 

ER- forward – 5’-ATCCTGATGATTGGTCTCGTCT-3’ 

ER- reverse - 5’-TCTGGAAGAGAAGGAACCATATCC-3’  

The primer pairs used for ER- (SA Biosciences) are: 

ER- forward - 5’-GCTCATCTTTGCTCCAGATCTTG-3’  

ER- reverse - 5’-GATGCTTTGGTTTGGGTGATTG-3’ 

     cDNA synthesis was performed using the iScript™ cDNA synthesis kit (Bio-Rad) 

with 400ng total RNA in a 20 L reaction. The reaction protocol is as follows: 5 min 

25C, 30 min 42C, and 5 min 85C. Each 50 L qRT-PCR reaction contained 1 µl of 
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cDNA product from the first-strand synthesis, 25 µl of iQ™ SYBR® Green Supermix 

(Bio-Rad:100mM KCL, 6 mM MgCl2, 40mM Tris-HCL, pH 8.4, 0.4mM of dATP, 

dCTP, dGTP and dTTP, iTaq DNA Polymerase 50 U/mL, SYBR Green I, 20mM 

Fluorescein),  and 300nM of each forward and reverse primer. Before PCR amplification, 

iTaq DNA polymerase was activated at 95C for 10 minutes. This was followed by forty 

cycles of PCR amplification: 30 sec denaturation at 95C, 15 sec annealing at 57C, and 90 

sec elongation at 72C.  Fluorescence was detected at the end of every 72C extension 

phase. To confirm the presence of specific PCR products, melting curve analyses were 

performed on the PCR products after the cycling protocol.   

 

Subcellular Fractionation  

HS578T, CRL-2335 and MCF-7 cells were plated at a density of 1 x 10
6
 cells/ml 

and grown to 80% confluency in 10mm culture plates. Cultures were treated with 

100ng/ml proIGF-2 (GroPep) or mIGF-2 (PeproTech) in phenol-red free and serum free 

media for 20 minutes.  MCF-7 cells were left untreated.  The Proteo-Extract Subcellular 

Proteome Extraction Kit (Calbiochem) was used according to manufacturer’s protocol to 

obtain cytosolic, membrane/organelle (mitochondria) and nuclear fractions.  All fractions 

were stored at –80C until assayed.   

 

Western Blot Analysis 

 The Coomassie Plus Protein Assay Reagent (Pierce Biotechnology) was used to 

assess protein concentration.  Forty micrograms of each protein sample were loaded into 

a 4-12% polyacrylamide-SDS gradient gel then transferred onto a PVDF membrane 
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(Invitrogen) using an X-Cell SureLock electrophoretic transfer module (Invitrogen). 

Membranes were blocked for 1 hour at room temperature with 5% nonfat dry milk in 1X 

PBS/0.05% Tween. Phosphorylated ER-α was detected by incubating membranes at 4C 

overnight with either rabbit anti-human pER- (Tyr 537) (Santa Cruz Biotechnology) 

diluted 1:500 in 3% w/v Bovine Serum Albumin (BSA) or mouse anti-human pER (Ser 

118) (Cell Signaling Technology) diluted 1:500 in 5% w/v nonfat dry milk in 1X 

PBS/0.05% Tween.  Phosphorylated ER-β was detected by incubating membranes with 

rabbit anti-human pER (Ser 87, 1:1000, Santa Cruz Biotechnology). Unphosphorylated 

ERs were detected by incubating membranes at 4C overnight in 3% w/v non-fat dry milk 

in 1X PBS/0.05% Tween with either mouse anti-human ER- (1:1000, Cell Signaling 

Technology) or mouse anti-human ER- (1:1000, GeneTex). Proteins specific for the 

membrane/organelle (mitochondrial) and nuclear fractions were used to confirm the 

integrity of the subcellular compartments: membrane/organelle (mitochondrial) fraction - 

MnSOD (1:500, BD Biosciences) and nuclear fraction- LEDGF (1:1000, BD 

Biosciences). Membranes were then washed 3 times for 5 minutes in 10 ml of 1X 

PBS/0.05% Tween.  The appropriate biotinylated secondary antibody was diluted in 1X 

PBS/0.05% Tween and incubated with each membrane for 1 hour (anti-rabbit IgG & anti-

mouse IgG 1:5000, Amersham), followed by streptavidin-horseradish peroxidase (HRP, 

1:2000, Amersham) for 1 hour.  Each membrane was washed 4 times for 10 minutes in 

10ml of 1X PBS/0.05% Tween.  Protein visualization was achieved using enhanced 

chemiluminescence (ECL) (Pierce) followed by autoradiography with Hyperfilm ECL 

(Amersham).  Band density obtained from WB analysis was quantified using the 

ChemiImager 4000 (Alpha Innotech Corporation).   
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siRNA Analysis 

  CRL-2335 and HS578T cells were plated in 6-well plates at a density of 1 X 10
5
 

cells/well and allowed to attach overnight in a 37C 5% CO2 incubator.  Cells were grown 

to 60 -80% confluency then treated with 60 pmols of either IR (sc-29370, Santa Cruz 

Biotechnology), IGF-1R (sc-29358, Santa Cruz Biotechnology) or scrambled (sc-Santa 

Cruz Biotechnology) siRNA in the supplied transfection media and incubated for 9 hours 

at 37C in a 5% CO2 incubator. Complete media containing 20% FBS was added to the 

serum-free media so that the final serum concentration was 10% FBS. The cells were 

then incubated for 24 hours in a 37C 5% CO2 incubator. Media was replaced with fresh 

media followed by an additional 24-hour incubation period in a 37C 5% CO2 incubator. 

Afterwards, cells were incubated for 6 hours in serum-free, phenol-free media and then 

treated with either 100ng/ml of mIGF-2 or proIGF-2 for 20 minutes. Cells treated with 

scrambled siRNA did not receive treatment with IGF-2.  Cellular fractions were prepared 

as previously described and stored at -20
0
C until assayed. 

    

Statistical Analysis 

 The data for rtPCR was analyzed by One-way ANOVA with Tukey's Multiple 

Comparison Post Test using GraphPad Prism software version 5.02 for Windows 

(GraphPad Software, San Diego, CA). *** - p <0.001, ** - p <0.01. 

Statistical analysis for the Western blots scans was performed using one-way ANOVA, 

SPSS 11.0 software (SPSS, Inc.). Values are expressed as the mean ± SEM of three or 

more replicate experiments performed in triplicate.  Values of p < 0.05 were considered 

statistically significant.  
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Results 

ER- and ER- mRNA in Breast Cancer Cells 

ER status is the golden test to determine whether a breast cancer tumor is sensitive to 

endocrine therapy. Tumors are designated as ER- when there is less than 10% staining for 

ER-α in the nuclei as assessed by immunohistochemistry (IHCC).  Likewise, when cell 

lines are established from tumors their ER status is assigned by IHCC. Figure 3 depicts 

the expression of ER-α and ER-β mRNA in MCF-7 cells (positive control for ER-α and 

ER-β) and in the ER- cell lines CRL-2335 and Hs578T assessed by qRT-PCR.   

 

 

Figure 3. ER-α and ER-β mRNA expressed as fold change of mRNA expression in MCF-

7, CRL-2335 and Hs578T cells.  Figure 3A depicts the expression of ER-α in MCF-7, 

CRL-2335 and Hs578T cell lines.  Figure 3B shows the expression of ER-β in these same 

cell lines. Results are expressed as relative fold change (Ct).  A p-value of less than 

0.01 is represented by ** and a p value of less than 0.001 is represented by ***.   
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As expected, MCF-7 cells (ER+) expressed significantly higher levels of ER- 

mRNA (Fig. 3A) compared to the ER- cell lines CRL-2335 and Hs578T. Of note, ER- 

CRL-2335 cells expressed 30% of the ER-α mRNA detected in ER+ MCF-7 cells. Fig.3 

B shows the expression of ER-β mRNA. The highest levels of ER-β mRNA were 

detected in the CRL-2335 cells (6 fold higher than MCF-7 cells) while the ER- Hs578t 

cells expressed the lowest levels of ER-β mRNA amongst all 3 cell lines studied.  

Phosphorylation and Subcellular Translocation of ER- and ER-  

Since IGF-2 stimulates estrogen regulated genes, we chose two ER- cell lines, 

CRL-2335 and Hs578T to determine whether IGF-2 treatment regulates the expression or 

localization of ER- and ER- in the absence of estrogen.  Figure 4 depicts the basal 

levels of ER-α and ER-β in MCF-7 cells.  

 

 

 

Figure 4. Western Blot of Subcellular localization of Total and Phosphorylated ER- and 

ER- in MCF-7 cells.  The basal expression of total and phosphorylated ER- and ER- 

was detected in MCF-7 cells. In order to verify separation and quantify loading of the 

subcellular compartments LEDGF and MnSOD were used as controls. Western blot is 

representative of three independent experiments in triplicate.   
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As expected, there is significant expression of ER- and ER-β protein in the 

nuclear compartment of MCF-7 ER+ cells.  MCF-7 cells were grown in serum-free, 

phenol-free media without estrogen, yet, ER-α and ER-β are present in cytosolic, 

membrane/organelle (mitochondrial) and nuclear fractions. Thus, in MCF-7 cells we can 

detect activated nuclear and organelle ER-α and ER-β receptors without the requirement 

of estrogen. 

 Likewise, the expression of ER- and ER-β in Hs578T and CRL-2335 cell lines 

was evaluated by Western blot analysis (WB).   Fig. 5A and Fig. 5C shows the levels of 

total and phosphorylated ER- (Fig. 5A) and ER-β (Fig. 5C) in the cell compartment of 

ER- Hs578t cells. The basal expression of total ER- and ER-α (Ser 118) in ER- Hs578t 

cells is localized in the cytosol (Fig. 5A).  In contrast, ER- is also detected in the 

membrane/organelle (mitochondrial) fraction in ER- Hs578t cells. No pER- (Ser 87) 

was detected in the membrane/organelle, suggesting that the ER-β present in the 

organelle/mitochondrial fraction is not phosphorylated. Interestingly, when ER- Hs578t 

cells were treated with proIGF-2, ER- translocates from the cytosol to 

membrane/organelle (mitochondrial) fraction and to the nucleus. (Fig.5B). Of great 

significance, proIGF-II treatment to ER- Hs578t cells stimulates the translocation of ER-

β from the cytosol to the membrane/organelle (mitochondriafraction and the nucleus 

(Fig.5D).  ProIGF-2 also stimulated the phosphorylation of the ER- receptor present in 

the membrane/organelle (mitochondria) fraction pER- (Ser 87). Thus, in ER- Hs578t 

cells, the basal expression of total and phosphorylated ER-α (Ser 118) is localized in the 
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cytosol. When ER- Hs578t cells are treated with proIGF-II, ER-α translocates to the 

membrane/organelle (mitochondria) fraction and nucleus while pER-α  (Ser 118) is 

localized in the mitochondrial/membrane fraction. Of note, treatment with mIGF-2 did 

not stimulate any changes in ER- or ER- subcellular localization in CRL-2335 and 

Hs578T BC cells (Data not shown). 

 

 

 
Figure 5. Western Blot of Subcellular localization of Total and Phosphorylated ER- and 

ER- in Hs578T cells in response to proIGF2 (100ng/mL) treatment.  Figure 5A and 5C 

shows the basal expression of total and phosphorylated ER- and ER-.  Figure 5B and 

5D shows the subcellular translocation of total and phosphorylated ER- and ER- in 

cells treated with proIGF2.  Western blot is representative of three independent 

experiments in triplicate.   

 

 

 Figure 6 shows a western blot of the subcellular localization of total and 

phosphorylated ER- and ER-β in ER- CRL-2335 cells. Figs.6A and 6C shows that in 

basal conditions, total and phosphorylated ER- and ER-β are localized in the cytosol, 
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while ER- is also localized in the membrane/organelle (mitochondria) fraction. 

Treatment with proIGF-2 stimulated cytosolic ER- translocation to the 

membrane/organelle (mitochondria) fraction (Fig.6B) where all of the pER- (Ser 118) 

was localized. In contrast, treatment with proIGF-II in CRL-2335 cells only partially 

stimulated ER- and pER- translocation to the membrane/organelle (mitochondria) 

fraction (Fig.6D). Thus, both cell lines designated as estrogen negative cells, CRL-2335 

and Hs578T, express phosphorylated ER- and ER-β and treatment with proIGF-2 

stimulates translocation of both receptors. These data suggests that ER- and ER-β play 

an important extranuclear function in estrogen negative breast cancer cells and also 

shows that both receptors can be regulated by proIGF-2. 

 

 

 
Figure 6. Western Blot of Subcellular localization of Total and Phosphorylated ER- and 

ER- in CRL-2335 cells in response to proIGF2 (100ng/mL) treatment.  Figure 6A and 

6C shows the basal expression of total and phosphorylated ER- and ER-.  Figure 6B 

and 6D shows the subcellular translocation of total and phosphorylated ER- and ER- 

in cells treated with proIGF2. WB is representative of at least three separate experiments.  
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IGF-2 Stimulates the Translocation of the ERs through IGF-1R and IR   

Since IGF-2 actions are mediated by binding to the insulin-like growth factor-1 

receptor (IGF-1R) and the insulin receptor-A (IR-A) we assessed whether proIGF-2 

mediates the activation and translocation of the estrogen receptors through IGF-1R, the 

IR-A or both. Hs578T and CRL-2335 cell lines were treated with IGF-1R and IR-A 

siRNA to determine which of these receptors were mediating IGF-2 actions. Figure 7 A 

shows a Western Blot of Hs578t cells treated with IGF-1R siRNA, scrambled siRNA and 

control and demonstrates that siRNA successfully blocked the expression of the IGF-1R.  

 

 

Figure 7 A&B.  Western Blot of Total and Phosphorylated expression of ER- in 

Hs578T cells treated with IGF-1R siRNA . Figure 7A shows a WB of Hs578T cells 

untreated (Control), treated with “scrambled” siRNA (siRNA control) and IGF-1R 

siRNA.  Figure 7B shows WB of ER- expression following proIGF2 and mIGF2 

treatment of IGF-1R siRNA treated Hs578T cells.  The bar graphs show the results of the 

densitometry analysis of the WBs phosphorylated ER- normalized to -actin and 

represent the mean +/- SE of three separate experiments. Solid brackets and * represents 

values significantly different from control (*p<0.05). Dashed brackets and * represents 

values significantly different from values between IGF-1R siRNA only treated cells and 

IGF-IR siRNA with proIGF2 and/ or IGF1R siRNA with mIGF2 treated cells.   
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Knock-down of the IGF-1R (Fig. 7B) in the Hs578T cell line significantly (p<.05) 

reduced the phosphorylation of both pERα and pERβ (Fig. 7B & 7C). Interestingly, when 

siRNA transfected cells were treated with IGF-2 the levels of pER and pER were 

restored comparable to the control cells (Fig. 7B & C). Thus, IGF-2 rescued the 

phosphorylation of pERα and pERβ when IGF-1R was reduced or knocked-down, 

suggesting that another receptor(s) were mediating IGF-2 signaling in the absence of the 

IGF1R. 

 

 
 

Figure 7 C. Western Blot of Total and Phosphorylated expression of ER- in Hs578T 

cells treated with IGF-1R siRNA .  Figure 7C shows WB of ER- expression following 

proIGF2 and mIGF2 treatment of IGF-1R siRNA treated Hs578T cells.  The bar graphs 

show the results of the densitometry analysis of the WBs phosphorylated  ER- 

normalized to -actin and represent the mean +/- SE of three separate experiments. Solid 

brackets and * represents values significantly different from control (*p<0.05). Dashed 

brackets and * represents values significantly different from values between IGF-1R 

siRNA only treated cells and IGF-IR siRNA with proIGF2 and/ or IGF1R siRNA with 

mIGF2 treated cells.   
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In contrast, no effect in the phosphorylation of ER or ERβ was observed when the IR 

was successfully knocked-down in these same cells (Fig. 8A-C).   

 

 

 

Figure 8 A & B.  Western Blot of Total and Phosphorylated expression of ER- in 

Hs578T cells treated with IR siRNA. Figure 8A shows a WB of Hs578T cells untreated 

(Control), treated with “scrambled” siRNA (Control siRNA) and IR siRNA.  Figure 6B 

shows a WB of ER- following proIGF2 and mIGF2 treatment of IR siRNA transfected 

Hs578T cells. The bar graphs show the results of the densitometry analysis of the WBs of 

phosphorylated ER- normalized to -actin and represent the mean +/- SE of three 

separate experiments.  

 

 

 

These results suggest that IGF-2 mediated phosphorylation and translocation of 

ER and ERβ  is dependent on activation of the IGF-1R but in its absence IGF-2 can 

activate the IR or other receptor to restore ER- and ER-β phosphorylation. 
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Figure 8 C.  Western Blot of Total and Phosphorylated expression of ER- in Hs578T 

cells treated with IR siRNA. Figure 8C shows a WB of ER- following proIGF2 and 

mIGF2 treatment of IR siRNA transfected Hs578T cells. The bar graphs show the results 

of the densitometry analysis of the WBs of phosphorylated ER- normalized to -actin 

and represent the mean +/- SE of three separate experiments.  

 

 

Figure 9 A-C shows that successful knockdown of IGF-1R in the CRL-2335 

breast cancer cells had no effect on the phosphorylation of ER- and ER-β1.  In contrast, 

a significant reduction in the phosphorylation of ER-5 (53kDa) variant (Fig.9C) was 

observed when the IGF-1R was blocked with siRNA. The phosphorylation of the ER-5 

variant was not restored with IGF-2 treatment suggesting that it requires the activation of 

the IGF-1R signaling. This is significant because ER-5 is expressed in breast tumors 

from African-American women and CRL-2335 cells were established from an AA breast 

cancer patient. 



48 

 

Figure 9 A & B. Western Blot of Total and Phosphorylated expression of ER- in CRL-

2335 cells treated with IGF-1R siRNA.   Figure 9A shows a WB of CRL-2335 cells 

untreated (Control), transfected with “scrambled” siRNA (Control siRNA) and IGF-1R 

siRNA.  Figure 9B shows a WB of ER- in CRL-2335 cells treated with IGF-1R siRNA.  

The bar graphs show phosphorylated ER-  normalized to -actin and represent the mean 

+/- SE of three separate experiments.   

 

 

 Notably, when CRL-2335 cells were treated with IR siRNA a significant 

reduction in the phosphorylation of ER-, ER-1 and ER- (Fig.10 A-C) was observed. 

In contrast to the Hs578t BC cells, phosphorylation of ER- and ER-β in the CRL-2335 

cells is more dependent on the activation of the IR signaling. Also distinct in the CRL-

2335 cells is the expression of the ER- variant which is not detected in the Hs578t BC 

cells.  
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Figure 9 C. Western Blot of Total and Phosphorylated expression of ER- in CRL-2335 

cells treated with IGF-1R siRNA .   Figure 9C shows a WB of ER- in CRL-2335 cells 

treated with IGF-1R siRNA.  The bar graphs show phosphorylated ER- normalized to -

actin and represent the mean +/- SE of three separate experiments.  Bar graphs with solid 

brackets and * represents values significantly different from control (*p<0.05).   Bar 

graphs with dashed brackets and * show significantly different (*p<0.05) values between 

IGF-1R siRNA only treated cells and IGF-IR siRNA with proIGF2 and/ or IGF1R siRNA 

with mIGF2 treated cells.   

 

 

Treatment with IGF-2 restored phosphorylation of ER-, ER-1 and ER- in the 

CRL-2335 BC cells (Fig. 10 B&C). Simultaneous knockdown of IR and IGF-1R was 

lethal (Data not shown).  
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Figure 10 A & B.  Western Blot of Total and Phosphorylated expression of ER- in 

CRL-2335 cells treated with IR siRNA. Figure 10A shows a WB of CRL-2335 cells 

untreated (Control), transfected with “scrambled” siRNA (Control siRNA) and IR 

siRNA.  Figure 10 B shows a WB of total and phosphorylated ER- following proIGF2 

and mIGF2 treatment and/or IR siRNA treatment in CRL-2335 cells.  The bar graphs 

show phosphorylated ER- normalized to -actin and represent the mean +/- SE of three 

separate experiments.  Bar graphs with solid brackets and * represents values 

significantly different from control (*p<0.05).   Bar graphs with dashed brackets and * 

significantly different (*p<0.05) values between IR siRNA only treated cells and IR 

siRNA with proIGF2 and/ or IGF1R siRNA with mIGF2 treated cells.   
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Figure 10 C.  Western Blot of Total and Phosphorylated expression of ER- in CRL-

2335 cells treated with IR siRNA.  Figure 10C shows a WB of total and phosphorylated 

ER- following proIGF2 and mIGF2 treatment and/or IR siRNA treatment in CRL-2335 

cells.  The bar graphs show phosphorylated ER- normalized to -actin and represent the 

mean +/- SE of three separate experiments.  Bar graphs with solid brackets and * 

represents values significantly different from control (*p<0.05).   Bar graphs with dashed 

brackets and * significantly different (*p<0.05) values between IR siRNA only treated 

cells and IR siRNA with proIGF2 and/ or IGF1R siRNA with mIGF2 treated cells.   

 

 

Discussion 

The acquired ability of hormone refractory breast cancer cells to avoid cell death 

in the presence of anti-estrogen therapy means that the cells have developed the ability to 

maintain cell survival signaling pathways without the requirement of estrogen.  The 
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mechanism(s) used by breast cancer to acquire this ability are not well-defined. A general 

consensus in the field is that “cross-talk” mechanisms between growth factor receptors 

(IGF-1R and EGFR) and estrogen receptors (ER-α) facilitate the progression of breast 

cancer tumors that become hormone insensitive and refractory (Schiff, 2004).  In fact, 

activation of the IGF-1R (Kato, 1995; Lannigan, 2003) can lead to the activation of ER-α 

through activation of the mitogen-activated protein (MAP) kinase pathway resulting in 

the phosphorylation of ER- at Ser 118.    Since IGF-2, not IGF-I, is the growth factor 

expressed in breast cancer cells (Pezzino, 1996), we propose that IGF-2 can maintain 

survival signals in an autocrine fashion by binding to the IGF-1R and possibly to the IR 

(LeRoith, 1995; Sciacca, 1999).  Furthermore, since many breast cancers express both 

ER-α and ER-β, we deduced that IGF-2 can bind and activate the IGF-1R and IR leading 

to the activation of both ER-α and ER-β in BC cells.  This IGF-1R and IR/ER cross-talk 

allows the cells to activate/phosphorylate the ERs without the need of estrogen.   Thus, 

current anti-estrogen therapies would not be able to effectively prevent ER activation in 

these BC cells.  

 Binding of IGF-2 to the IGF-1R and IR activates different signaling pathways 

(Valentinis, 2001; Chen, 2009).  Our study suggests that the activation of these different 

signaling pathways give each receptor a unique role in the phosphorylation of ER-α and 

ER-β. In ER- Hs578T cells, IGF-1R knockdown decreased the phosphorylation of both 

ER-α and ER-β.  However, treatment with IGF-2 was able to increase the 

phosphorylation of both, ER-α and ER-β, back to control levels in IGF-1R siRNA 

transfected Hs578T cells.  Thus, IGF-1R appears to be important in the phosphorylation 

of ER-α and ER-β in Hs578T cells, however IGF-2 treatment was able to restore ER 



53 

phosphorylation presumably by acting through the IR-A.  Indeed, Hs578t was the first 

breast cancer cell line shown to express high levels of IR-A (Sciacca, 1999). In contrast, 

knocked down expression of the IGF-1R in the ER- CRL-2335 cells had no effect on the 

phosphorylation of ER-α or ER-β1 but it decreased the activation of the ER-β5 variant. 

The ER-β5 variant is overexpressed in African-American (AA) women with aggressive 

BC (Poola, 2005) and this study shows that ER-β5 variant is expressed in the ER- CRL-

2335 cells derived from an AA breast cancer patient (Gazdar, 1998). Treatment with 

IGF-2 was unable to restore ER-β5 phosphorylation in the IGF-1R siRNA transfected 

ER- CRL-2335 cells.  These results suggest that IGF-1R expression is required for the 

phosphorylation of the ER-β5 variant. In contrast, ER-β5 variant is not expressed in the 

Hs578T cell line derived from a Caucasian breast cancer patient (Hackett, 1977).  

 IR knockdown further demonstrated the different roles of IGF-1R and IR in the 

phosphorylation of ER-α and ER-β.  In contrast to the inhibition of the IGF-1R, IR 

knockdown in Hs578T cells had no effect on the phosphorylation of either estrogen 

receptor.  Of note, IR siRNA transfected CRL-2335 cells showed a decrease in the 

phosphorylation of ER-α, ER-β and ER-β5. IGF-2 treatment restored the phosphorylation 

of all, ER-α, ER-β and ER-β5, possibly thorough the IGF-1R. These findings are very 

significant because they show the unique ability of IGF-2 to activate both the IGF-1R and 

IR to enhance ER activation and signaling in BC cells.  Thus, both, IGF-1 and IR are 

important targets in the treatment of estrogen independent breast cancers.  

Our study also shows that IGF-2 treatment not only phosphorylated ER-α and ER-

β but it also stimulated the sub-cellular translocation of both estrogen receptors from the 

cytosol to the organelles/membrane (mitochondria) fraction.  The organelles/membrane 
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(mitochondria) fraction contains the plasma membrane where the estrogen receptors 

activate a unique signaling cascade that results in rapid changes that do not require 

estrogen receptor translocation to the nucleus (Bjornstrom, 2005). The translocation of 

the extranuclear ER to the plasma membrane allows for cross-talk between the growth 

factor receptors and ER which then promotes the activation of cell survival pathways 

such as the MAP kinase pathway (Kahlert, 2000; Klotz, 2002).  

These data also demonstrates that IGF-2 stimulated extranuclear ER translocation 

to the mitochondria where it can regulate mitochondrial function (Bjornstrom, 2005;  

Pietras, 2007; Singh, 2007; Song, 2006; Xu, 2004).  We have previously shown that IGF-

2 regulation of the mitochondria allows breast cancer cells to prevent apoptosis and 

provide energy for cell growth, thus, promoting cell survival (Singh, 2007).  

This paper shows that IGF-2 is able to promote breast cancer cell survival by 

activating the IGF-1R and the IR-A which promotes the activation of cell survival 

pathways.  We also demonstrate that IGF-2 is able to regulate the translocation of ER-α 

and ER-β to the mitochondria and plasma membrane in order to promote cell survival 

(Anders, 2008). Our study presents compelling evidence that IGF-2 plays an important 

role in promoting growth factor and estrogen receptor cross-talk mechanisms thus, 

activating estrogen signaling pathways without the requirement of estrogen.  

In summary, IGF-2 promotes the activation of estrogen cell survival pathways 

without the requirement for estrogen.  The novel proposed mechanism is that IGF-2 is 

able to bind to the IGF-1R and IR-A to promote ER-α and ER-β phosphorylation and 

translocation to the nucleus, plasma membrane and mitochondria leading to the activation 

of cell survival pathways.  Breast cancers that grow independent of estrogen currently 
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have no targeted treatments due to a gap in knowledge of cell survival mechanisms in 

these cells.  The mechanism proposed in this paper may lead to the development of 

targeted treatments for these breast cancers.   
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CHAPTER THREE 

EXTRACELLULAR EXPRESSION OF ERS IN BREAST CANCER TISSUES 

 

Introduction  

 

One major finding in this dissertation was the extranuclear expression of ER- 

and ER- in two cell lines, CRL-2335 and Hs578T, designated by ATCC as ER negative.  

These cells were designated as ER negative based on the staining patterns of the cells 

nuclei for the presence of ER- using immunohistochemistry (IHC) (Nadji et al. 2005; 

Swain 2001).  The extranuclear expression of the ERs was not taken into account.  The 

experiments presented in this chapter show that the extranuclear expression of ER- and 

ER- in breast cancers designated as ER negative is not unique to breast cancer cell lines.  

The extranuclear expression of ER- and ER- in ER negative designated tumor tissue 

samples was analyzed using IHC.   

 

Materials and Methods 

Breast Cancer Tissue Specimens 

Frozen and parafilm AA women breast cancer tissue specimens were obtained 

from the Cooperative Human Tissue Network (CHTN).  The tumors were designated as 

ER negative or ER positive in pathology reports received along with the tumor tissue 

samples.    
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Immunohistochemistry Analysis 

A four micron tumor slice of frozen tissue or paraffin block sections were slice,  

mounted on slides and stored at 4° C.   Slides were de-waxed in CitriSolv solution (Fischer 

Scientific) three times for 5 minutes.  The slides were then hydrated in 100%, 95% and 

80% ethanol sequentially for 3 minutes then immersed in tap water for 5 minutes.  Each 

slide was heated for 12 minutes in a 95°F water bath in 1x Reveal solution (Biocare 

Medical) then allowed to cool to room temperature and washed with 1x PBS for 1 

minute.  To quench endogenous peroxide activity each slide was immersed in a 3% 

hydrogen peroxide solution (Sigma) for 10 minutes followed by a 1x PBS wash.  

Following a 1 hour incubation with blocking serum, a 1:50 dilution of ERα or ERβ 

antibody was prepared in blocking serum and 1x PBS following manufacturer’s 

recommendations (Mouse or rabbit ABC Staining System, Santa Cruz Biotechnology).  

Each slide was incubated overnight at 4°C.  The primary antibody was removed with 3 

washes of 1x PBS.  The biotinylated secondary antibody was diluted in 1x PBS and 

blocking serum according to manufacturer protocol (Mouse or rabbit ABC Staining 

System, Santa Cruz Biotechnology) and added to each slide. This incubation occurred at 

room temperature for 30 minutes.  After washing each slide three times with 1x PBS 

streptavidin-peroxidase and its substrate were added according to manufacturer’s 

recommendations (Mouse or Rabbit ABC Staining System, Santa Cruz Biotechnology) 

for 30 minutes at room temperature.  Counterstaining was obtained with 25μl of Gill 

hematoxylin.  Twice each slide was placed in 100% ethanol solution followed by 

CitriSolv for 1 minute at room temperature.  A 1.5 glass cover slip (Thermo Scientific) 

was mounted to each slide and staining was observed.  
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Results 

Detection of ER and ER in Breast Cancer Tissues 

Evaluation of human breast cancer tissues designated as ER negative demonstrates 

intense staining of ER-α and ER-β outside of the nucleus (Fig. 11 A & B), and it is 

predominantly located in the nucleus of estrogen receptor positive tumor samples (Fig 12 

A & B).  ER localization is determined based on the intensity of brown staining seen in 

the sample compared to slides with non-specific staining.   

 

 

 

 

 

Figure 11. IHC of ERα (A) and ERβ (B) in African-American ER Negative Breast 

Cancer Tissues.  The ERα and ERβ staining is outside of the nucleus in these ER 

Negative breast cancer tissues. 

A. 

B. 



65 

 

 

 

Figure 12.  IHC of ERα (A) and ERβ (B) in African-American ER Positive Breast Cancer 

Tissues.  There is strong nuclear staining of ERα and ERβ in these ER positive breast 

cancer tissues. 

 

 

 

Discussion 

Breast tumors are given ER designation in order to determine available treatment 

options.  ER positive tumors are treated with hormonal therapies directed towards 

A. 

B. 
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estrogen and the estrogen receptor (Jordan, 2007).  There is a lack of targeted therapies 

for ER negative tumors (Reis-Filho et al., 2008).  Tumor designation is based on the 

staining pattern of ER-α in the nuclei of the breast cancer cells using IHC (Nadji et al. 

2005; Swain, 2001). This was the method used to determine the designation of the breast 

cancer tissues used in this study as ER negative (Figure 11 A and B) and ER positive 

(Figure 12 A and B).  Our IHC results confirmed that the ER negative breast cancer 

tissues (Fig 11) lack significant ERα nuclear staining and that there is strong nuclear 

staining of ERα in the ER positive breast cancer tissues (Fig 12).  However, the current 

method used to assign ER designation does not consider the extranuclear expression of 

ERα  and ERβ in ER negative breast cancer.       

Importantly, studies in this dissertation demonstrate the expression and 

significance of extranuclear ERα and ERβ in ER negative breast cancer.  Our studies 

show that when stimulated by IGF2  extranuclear ERs translocate to the mitochondria 

and plasma membrane.  In the mitochondria, ERs bind to estrogen response like elements 

in the mitochondrial DNA and prevent apoptosis , and ERs translocated to the plasma 

membrane promote ER and growth factor receptor cross-talk which activates the cell 

survival MAP kinase pathway (Singh, 2007; Bjornstrom and Sjoberg 2005; Pietras and 

Marquez-Garban 2007; Klotz et al. 2002).  In light of these studies the current IHC 

method guidelines used in the clinic to determine ER designation based on the nuclear 

staining of ERα needs to be revised to include the evaluation of extranuclear ER- and 

ER- because they play a major role in breast cancer growth and survival.    
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CHAPTER FOUR 

DISCUSSION 

 

Conclusions and Future Directions 

Breast cancer is the most common form of cancer in women (Tian et al., 2010; 

Greenlee et al., 2001).  The risk of a women developing breast cancer in her lifetime has 

nearly tripled over the last sixty years (Tian et al., 2010; Feuer et al., 1993).  The estrogen 

receptor (ER) is the primary target for both chemoprevention and endocrine therapy for 

breast cancer treatment (Griekspoor et al., 2007; Jordan, 2007; Reis-Filho et al., 2008; 

Robson and Offit 2007). The majority of breast cancer tissues have an increased 

expression of both the estrogen receptor alpha and estrogen receptor beta (ER- and ER-

) (Speirs, 2002; Herynk et al., 2004; Mueller et al., 2002; Song et al., 2004).  However, 

most breast cancers are estrogen dependent at the time of diagnoses, but eventually 

develop a mechanism that allows estrogen independent tumor growth as the disease 

progresses (Szepeshazi, 1992).  This estrogen independent breast tumor growth affects 

different ethnic groups disproportionately (Chlebowski et al. 2005; Ihemelandu et al. 

2007; Reis-Filho et al., 2008).  When compared to Caucasian women, African-American 

(AA) women are more likely to have aggressive tumors that grow independent of 

estrogen (Kobayashi 2008; Ihemelandu et al., 2007; Reis-Filho et al., 2008).  These 

tumors are resistant to the endocrine therapy currently used and they are therefore 

referred to as being chemoresistant (Turner et al., 2004; Brenton, 2005; Jumppanen et al., 

2007; Reis-Filho et al., 2008).  This dissertation addressed the need for a comprehensive 
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approach to understanding the biological factors associated with chemoresistance and 

increased mortality among AA patients diagnosed with breast cancer.  

This dissertation investigated how insulin-like growth factor-II (IGF-II) 

contributes to the survival disparity among AA women.  IGF-II is an important hormone 

in the development of normal breast tissue and breast cancer (Singh et al., 2008; Singh et 

al., 2007; Vyas et al., 2005).  It is alternatively spliced into two forms, the precursor IGF-

II (proIGF-II) and the mature IGF-II (mIGF-II).  ProIGF-II is the predominant form 

expressed in cancer (Singh et al., 2008; Singh et al., 2007).  

The mitogenic effects of IGF-II are mediated through the Insulin-like growth 

factor I receptor (IGF-IR) and the Insulin Receptor (IR) (Abbas et al., 2007; Ellis et al. 

1998; (LeRoith et al. 1995).  The importance of growth factor activation of IGF-IR in 

Estrogen Receptor activation has not been fully deciphered but, it has been shown that 

IGF-I binding to the IGF-IR leads to the phosphorylation of ER- (Schiff, 2004; Gee, 

2005; Shou, 2004; Fagan and Yee, 2008).  However, IGF-II and not IGF-I is 

overexpressed in breast cancer cells.  Moreover, most breast cancer cells express both 

ER- and ER-.   

This dissertation has provided evidence demonstrating that IGF-II abrogates the 

requirement for estrogen in breast cancer cells by acting through the IGF-IR and IR to 

phosphorylate/activate ER- and ER-, thus promoting estrogen independent growth.   

We used two BLBC cell lines, CRL-2335 and Hs578T, for the studies in this 

dissertation.  These ATCC breast cancer cell lines are designated as ER negative.  

However, in our studies we determined that these cell lines not only expressed ER-α and 
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ER-β but these receptors also had the ability to become activated and translocate to the 

mitochondria and plasma membrane to regulate cell survival.   

 The studies in this dissertation show that the activation of ER in Hs578T and 

CRL-2335 basal like breast cancer (BLBC) cell lines is independent of estrogen.  IR and 

IGF-1R was successfully knocked down in Hs578T and CRL-2335 cell lines and ER-α 

and ER-β phosphorylation in response to IGF2 treatment was evaluated and IGF2 was 

able to activate both the IGF-1R and IR in BLBC cells leading to ER activation.   

   The BLBC cell lines used in this dissertation were designated, by ATCC, as being 

ER negative based on the cells nuclear staining pattern using IHC (Nadji et al. 2005; 

Swain 2001).  This dissertation not only demonstrates the extranuclear expression of ER-

 and ER- in breast cancers cell lines and breast cancer tissues designated as ER 

negative, but it also shows that these ERs are activated by IGF2 and promote breast 

cancer cell survival.  Notably, the ER- and ER- antibodies used in these western blot 

and IHC studies are standard antibodies used for breast cancer ER designation in the 

clinic.  We suggest that the ER designation of breast tumors must take into consideration 

extranuclear ER expression.    

 There are many future studies that can be done from the groundwork of this 

dissertation.  There is a big gap in knowledge concerning the treatment of women with 

BLBC.  The main reason for this is because the cell survival pathways used by these cells 

are poorly understood.  This dissertation outlines a novel mechanism used by BLBC to 

promote cell survival.  Studies in our laboratory show that MAP kinase pathway is one of 

the cell survival pathways activated by IGF2 in BLBC cells.  However, in order to 

develop targeted treatment for BLBCs there is a need to further elucidate the role of these 
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pathways in promoting breast cancer cell survival.   

 Hormonal therapies, such as Tamoxifen (Tamox), are used as the standard of care 

for women with estrogen-dependent breast cancer (Jaiyesimi, et al. 1995) (Massarweh, et 

al. 2008).   While Tamoxifen use in estrogen-dependent breast cancer has been shown to 

be beneficial, there is increasing evidence that the treatment of estrogen-independent 

tumors, such as BLBC, with Tamoxifen is detrimental and leads to a decrease in patient 

survival (Merglen, et al. 2009).   The underlying mechanism for this detrimental effect is 

unknown, but evidence suggests that increased growth factor receptor signaling plays a 

significant role (Shou, 2004; Gee et al., 2004; Britton et al., 2006).  Studies in our 

laboratory shed some light on the subject by demonstrating that Tamox leads to the 

activation of ER phosphorylation and the upregulation of ER-regulated survival genes 

(IGF-II, Survivin and BCL-X) in BLBC cell lines.   This increase in IGF-II activates 

IGF-1R and IR potentiating ER activation via cross-talk mechanisms.  This suggests a 

novel mechanism in which anti-estrogen therapy, Tamox, plays a role in promoting breast 

cancer cell survival in BLBC.  However, there is a need to future elucidate the connection 

between Tamox treatment and its effects on BLBC growth and survival.   

 Lens epithelium-derived growth factor (LEDGF) was used in this dissertation as a 

marker for the integrity of the nuclear compartment extractions.  LEDGF is alternatively 

spliced into LEDGF/p75 and LEDGF/p52.  Evidence suggests that LEDGF p75 and p52 

behave as antagonist in the cellular stress response in cancer cells (Brown-Bryan, 2008).  

In our studies we observed a differential expression of LEDGF in the CRL-2335, Hs578T 

and MCF-7 breast cancer cell lines.  LEDGF/p52 was expressed in the CRL-2335 and 

Hs578T cell lines, and LEDGF/p75 was detected in MCF-7 cells.  There is a need to 
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further elucidate how the differential expression of LEDGF in breast cancer cell lines 

mediates cell survival.    

 In conclusion, the studies demonstrated in this dissertation are significant and will 

have a great impact in the breast cancer field once implemented in the clinical setting.  

Our studies provide evidence for a need to change the way breast cancer is designated.  

Currently, breast cancer tissues are designated as ER negative if there is less than 10 

percent nuclear staining of ERα (Nadji et al. 2005; Swain 2001).  Breast cancer 

designated as ER negative is considered to lack ER mediated signaling and thus it is not 

treated with ER targeted therapies.   

 In addition, ER negative breast cancer cells are able to grow independent of 

estrogen and therefore thought to have no need for ER signaling.  However, our studies 

show that breast cancer cells and tissues designated as ER negative actually do express 

ER but it is outside of the nucleus (extranuclear).  Moreover, these breast cancer cells not 

only express extranuclear ERα but they also express extranuclear ERβ.   

 In this dissertation we have demonstrated the importance of this extranuclear 

expression of ERα and ERβ.  Our studies show that IGF2 binds to the IR and IGF-1R 

leading to the activation and translocation of ERα and ERβ to the plasma membrane and 

mitochondria where ERs are then able to promote breast cancer cell survival independent 

of estrogen.  This represents a novel mechanism in which these breast cancer cells are 

able to promote ER activation without the need for estrogen.  In the light of these studies 

which show that extranuclear ERs promote breast cancer cell survival there is a need to 

reconsider breast cancer designation based on nuclear staining for ERα to include 

extranuclear expression of both ERα and ERβ.  Also, the recognition of the importance 
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and role of extranuclear ER signaling in breast cancer cells will allow for the 

investigation of targeted therapies for these cancers.     
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