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ABSTRACT OF THE DISSERTATION 

The Role of the Pituitary-Adrenal Axis in G-CSF Therapy after 
Neonatal Hypoxia-Ischemia 

 
by 

Mélissa Stéphanie Charles 

Doctor of Philosophy, Graduate Program in Microbiology and Molecular Genetics 
Loma Linda University, June 2012 

Dr. Jiping Tang, Chairperson 
 

Several reports indicate that the activity of the hypothalamic-pituitary-adrenal 

axis (HPA) as measured by the increased level of adrenocorticotropic hormone (ACTH), 

and corticosterone is increased after a brain insult. These hormones are the effectors 

secreted respectively by the pituitary and adrenal glands. It has been shown that the 

down-regulation of corticosterone levels can improve detrimental outcomes associated 

with ischemic brain injuries. Neonatal hypoxia-ischemia (HI) is a devastating perinatal 

event with a grim prognosis and limited therapeutic strategies. In recent studies, 

granulocyte-colony stimulating factor (G-CSF) has shown promise in neonatal HI 

investigations by improving neuromotor function and reducing apoptosis in the brain. 

Furthermore, G-CSF is shown in the naïve rat to regulate hormones of the HPA axis. 

Therefore we hypothesized that G-CSF may in part confer its neuroprotective properties 

by influencing the pituitary-adrenal response after neonatal HI. To test our hypothesis, 

metyrapone was administered to inhibit the release of rodent specific glucocorticoid, 

corticosterone, at the adrenal level. Dexamethasone, a synthetic glucocorticoid, was 

administered to agonize the effects of corticosterone. Following the Rice-Vannucci 

model, seven-day old rats (P7) were subjected to unilateral carotid ligation followed by 
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2.5 hours of hypoxia. Our results show that both G-CSF and metyrapone significantly 

reduced infarct volume via anti-apoptotic properties but lost its protective effect when 

combined with dexamethasone. Additionally, G-CSF suppressed the increase of 

corticosterone in the blood after HI. To investigate the mechanism by which G-CSF 

modulated corticosterone synthesis, we evaluated its effect in adrenal cortical cells in 

vitro. Our results indicate that G-CSF activated the JAK/PI3K/Akt/PDE3B pathway, 

which in turn inhibited corticosterone synthesis. The inhibitors of JAK/PI3K/PDE3B 

respectively Tyrphostin AG490, LY-294002, and 3-isobutyl-1methylxanthine reversed 

the inhibitory effect of G-CSF on corticosterone synthesis. We report that G-CSF was 

neuroprotective in neonatal HI by reducing infarct volume, by suppressing the HI-

induced increase of the Bax/Bcl-2 ratio, and by decreasing corticosterone at the adrenal 

level via the JAK/PI3K/PDE3B pathway. Metyrapone was able to confer similar 

neuroprotection as G-CSF while dexamethasone reversed the effects of G-CSF. In 

conclusion, we show that reducing corticosterone was neuroprotective after neonatal HI, 

which can be achieved by administering G-CSF.  
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CHAPTER ONE 

INTRODUCTION 

 
Neonatal Hypoxia Ischemia 

 Neonatal hypoxia-ischemia (HI) is a major public health concern affecting both 

term and preterm infants. It is characterized by exposure to low oxygen (hypoxia) and 

decreased blood flow (ischemia) before, during, or after labor (Covey and Levison, 

2006). This event is clinically defined as asphyxia and diagnosed as hypoxic-ischemic 

encephalopathy (Zanelli et al, 2009). This clinical diagnosis is a tragic occurrence that 

will afflict the infants with lifelong complications. For instance, inveterate conditions 

such as cerebral palsy, mental retardation, and epilepsy are part of the grim prognosis, to 

name a few (Hill and Volpe, 1989). Undoubtedly, this clinical event is increasingly 

becoming burdensome not only for the patients, but also for the families, and 

communities that care for them. This alarming problem is a financial issue as much as it 

is a health complication. The lifelong projected costs for cerebral palsy alone are 

estimated at $11.5 billion dollars in the United States (Derrick et al, 2007). For this 

reason it has become imperative to investigate the causes and prevalence of this particular 

condition in the population. Thereupon, one can establish how to approach an issue that 

transcends medical science, public health, and the economy.  
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Epidemiology 

 HI is a major contributor to global child mortality and morbidity (Wachtel et al, 

2011). HI has an overall incidence of 1-8 cases per 1000 births affecting 60% of preterm 

infants (Vannucci et al, 1999; Zanelli et al, 2009). With the increasing rate of premature 

births in the United States (Callaghan et al, 2006), the projected costs associated with HI 

are bound to increase. The chronic complications induced by HI affect a staggering 80% 

of survivors (Derrick et al, 2007; Zanelli et al, 2009). Because premature infants have an 

underdeveloped cerebral circulation, a high density of excitatory neurons, and more 

vulnerable neurons to reactive oxygen species and reactive nitrogen species, they 

experience a more severe injury than full-term infants (Takeoka et al, 2002). HI injury is 

caused by a cascade of cytotoxic, oxidative and inflammatory stresses leading to brain 

infarct, cerebral edema and neurological deficits (Vannucci et al, 2000). 

 

Pathophysiology of HI 

 The development of brain injury in the immature brain can be divided in two 

phases; acute phase, and the reperfusion (delayed) phase (Lai and Yang, 2011). The 

magnitude of the damage depends on the duration of the insult, the age of the infant, 

reperfusion injury, and apoptosis (Zanelli et al, 2011). The initial effect of the depleted 

oxygen concentration and reduced blood flow to the brain is energy failure (Vannucci et 

al, 2005). The deprivation of glucose and the oxygen supply forces the cells to generate 

energy via glycolysis through anaerobic respiration. This increases lactate production and 

creates an acidic environment for the cells in the central nervous system (CNS) (Verklan, 

2009). The deleterious effect of this primary energy failure impairs vascular 
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autoregulation, and the low pH halts the activity of cellular enzymes (Johnston et al, 

2001). The sodium potassium ATP pump will then begin to fail, and cause an 

intracellular accumulation of sodium and calcium ions (Barks and Silverstein, 1992). The 

intracellular accumulation of these ions will cause the neurons to depolarize and release a 

large amount of excitatory amino acid including glutamate (Wyatt et al, 1989). During 

the reperfusion period, free radical damage will be initiated and the reactive oxygen 

species will combine with the synthesized nitric oxide from glutamate receptor activation 

to form toxic oxidants (Zanelli et al, 2011; Lai and Yang, 2011; Pacher et al, 2007). 

Calcium ion accumulation will activate a series of enzymes including endonucleases, 

proteases and phospholipases that will damage and degrade protein, and DNA 

(Ankarcrona et al, 1995). The latter will initiate the apoptotic and necrotic cascade which 

will cause the cells to die.  The releasing of pro-inflammatory cytokines by resident 

immune cells of the CNS, and peripheral immune cells extravasating to the area of injury 

will initiate the inflammatory response (Iadecola and Anrather, 2011; Ferriero, 2004). All 

of which contribute to cerebral edema, subsequently leading to cell death. Early cell 

death is typically necrotic and the continuum will make delayed cell death apoptotic 

(Northington et al, 2001). Apoptosis will occur over days as a result of a less severe 

insult, thus being a potential therapeutic target (Varklan, 2009). The penumbra, the area 

surrounding the ischemic necrotic core, is not exposed to the same intensity of energy 

failure placing these neurons in a critical stage where they can be recovered (Nakajima et 

al, 2000; Pulera et al, 1998). Nevertheless, if these neurons are not rescued, within hours 

the damage will eventually become irreversible as energy failure propagates towards the 

rescuable cells in the penumbra. 
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Clinical Presentation 

Within the first hours after the injury, the neonate will be unresponsive to sensory 

input, and have a low level of consciousness (Volpe, 2003; Sarnat and Sarnat, 1976). 

Hypotonia, pupillary response may be intact depending on the severity and propagation 

of brain injury. The infant will also exhibit abnormal respiratory patterns (Ferriero, 

2004). In severe cases, 50-60% of those affected will have seizures. Subtle seizures can 

be observed as rowing, bicycling, sucking movements, and apnea (Verklan, 2009). 

Eventually, in the cases of moderate-severe injury, within 24-72 hours the infant will 

succumb and deteriorate (Volpe, 2003). Respiratory failure, deep stupor, and fixed pupils 

may occur prior or immediately before death (ibid; Varklan, 2009). 

 

Therapeutic Options 

In spite of the critical mortality, morbidity, and socio-economic hardship 

accompanied with HI, therapeutic avenues are still lacking. Various anticonvulsants, 

hypothermic treatments, and fluid and electrolytes management constitute current clinical 

treatment, however, they have proven only some degree of success (Koenisgsberger, 

2000; Zanelli et al, 2009). Due to the complexity of timing, time-window of experimental 

therapeutic options, and a lack of thorough mechanistic studies, it has become crucial to 

investigate novel and effective treatment plans for HI. Since the body’s compensatory 

response often contributes to the injury, it has become increasingly imperative to 

understand the physiological cascades that preclude the pathophysiological sequelae. For 

example, one physiological response that is known to exacerbate injury, is the increase of 

the activity of the hypothalamic-pituitary-adrenal axis.  
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Hypothalamic-Pituitary-Adrenal (HPA) Axis 

The HPA axis is an intrinsic neuroendocrine regulatory system found in 

vertebrates that allows the organism to respond and adapt to internal or external stressors 

(Tsigos and Chrousos, 2002). It is a system that helps the organism maintain homeostasis 

particularly after a challenge and is vital for supporting normal physiological functioning 

(Kudielka and Kirschbaum, 2005). For the interest of clarity, we chose a simplified 

definition of stress as internal or external stimuli that can disrupt the biological 

equilibrium. This can include a cerebrovascular event such as HI (Krugers et al, 2000; 

Fassbender et al, 1994). 

 

Anatomy of the HPA Axis 

The brain circuits that initiate the stress response start in the paraventricular nuclei 

(PVN) of the hypothalamus (Chrousos, 1992). The parvocellular corticotropin-releasing 

hormone (CRH) and arginine-vasopressin are secreted and released in the hypophyseal 

portal system where it can act on the anterior lobe of the pituitary gland (Lamberts et al, 

1984; Vale et al, 1981). The PVN has neurons that project to the median eminence where 

a hypophyseal system of capillaries transports CRH in the vascularized anterior pituitary 

gland (Turnbull and Rivier, 1999). CRH is a 41-amino acid peptide that drives the 

adrenocorticotropic hormone (ACTH) secretion and synthesis (Vale et al, 1981). 

Arginine-vasopressin has little secretagogue activity, it acts as a synergistic factor for 

CRH activity at the pituitary level. In normal conditions, when there is no stress, CRH is 

released in a pulsatile fashion resulting in a diurnal rhythm peaking in the early hours of 

the morning and nadir during the first few hours of sleep (Turnbull and River, 1999; 
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Tsigos and Chrousos, 2002; Horrocks et al, 1990). The circadian changes are influenced 

by a variety of factors, such as lighting, activity, and stress. CRH binds to its G-protein 

coupled receptor on the corticotrope cells of the anterior pituitary lobe to stimulate the 

synthesis of proopiomelanocortin (POMC), the ACTH precursor (Turnbull and Rivier, 

1996; Turnbull and Rivier, 1999). ACTH is then secreted in the systemic circulation, and 

binds to its receptor, also G-protein coupled, in the zona fasciculata of the adrenal cortex. 

The downstream signaling pathway of ACTH receptor activation leads to the synthesis 

and secretion of glucocorticoids in the blood (Ottenweller and Meier, 1982). In humans 

the major glucocorticoid is cortisol, and in rodents it is corticosterone. Glucocorticoids 

are the final effectors of the HPA axis that control a variety of physiological functions. 

These include the immune response, cardiac output, and metabolism, all of which 

participate in maintaining homeostasis (Pratt, 1990). Glucocorticoids also interact with 

the pituitary gland and the hypothalamus in the classical feedback endocrine system, to 

terminate the stress response by inhibiting the synthesis of CRH and ACTH.  

 

Steroidogenesis 

Glucocorticoids are products of steroidogenesis, the biological process where 

steroids are generated from cholesterol. When ACTH binds to its receptor the 

melanocortin receptor-2, a G-protein coupled receptor, it activates adenylyl cyclase, 

which will increase cyclic (cAMP) (Mountjoy et al, 1992; Liakos et al, 1998). The 

increase of intracellular cAMP will activate protein kinase A (PKA), which will release 

its catalytic subunit and activate the cAMP response element binding protein (CREB) 

(Sun et al, 2003). CREB will then activate the transcription, and translation of the 



7 

steroidogenic acute regulatory (Star) protein responsible for the rate-limiting step of 

steroidogenesis: transporting cholesterol from the outer to the inner mitochondrial 

membrane (Manna et al, 2002; Rainey et al, 2004). Once in the mitochondria, the 

cholesterol is cleaved by cytochrome P450 enzyme (Privalle et al, 1983). Through a 

series of hydroxylation mediated by enzymes located in the smooth endoplasmic 

reticulum and mitochondria, cortisol and corticosterone are synthesized. Once secreted in 

the circulatory system, it then exerts its physiological function by activating its 

ubiquitous glucocorticoid cytoplasmic receptor, a 94 kDa polypeptide (Smith and Toft, 

1993; Pratt, 1990).  

 

Glucocorticoid Functions 

The binding of glucocorticoids to the glucocorticoid receptor will cause it to 

phosphorylate and translocate to the nucleus, where it interacts with glucocorticoid 

responsive elements (Pratt, 1990). This will lead to the repression or activation, 

transcription, and translation of genes, which will cause pleiotropic physiological effects 

(Scheinmann et al, 1995). The effects of glucocorticoids target metabolism, arousal, 

cognition, development, and the immune system.  

Glucocorticoids, as the name suggests, is involved in glucose metabolism 

(Chrousos, 2000). Extra-hepatical amino acids are mobilized as a response to increased 

circulating glucocorticoids and used as substrate for gluconeogenesis (Tsigos et al, 1997). 

The increase of glucocorticoids will inhibit glucose uptake and induce insulin resistance 

(Tsigos and Chrousos, 2002). Chronic activation of stress will eventually increase 

visceral adiposity, decrease lean body mass, and suppress osteoblastic activity (ibid). 
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These effects can become clinically problematic for diseased patients, who may be 

subjected to a stressor whether physiological or emotional. 

 Events associated with strong emotions or deemed stressful are often clearly 

remembered by the subjects who experienced it. This “flash bulb” memory of the event is 

attributed to the action of glucocorticoid on hippocampus, amygdala, and frontal lobes 

(Cahill and McGaugh, 1999). The effect of glucocorticoid on cognitive performance and 

memory is substantiated by extensive animal research (ibid). However the effects of 

glucocorticoid follow an inverted-U-shape dose response curve (Lupien et al, 2007). Too 

much glucocorticoid and too little will lead to poor memory consolidation, and will 

inhibit the retrieval of previously stored information (de Quervain et al, 1998). 

Glucocorticoids are also critical for lung maturation and development (Olson et 

al, 1979). This rings particularly true for preterm infants. Premature babies do not have 

adequate surfactant in their lungs, which is necessary to decrease the air-liquid surface 

tension interface (Bolt et al, 2001). Due to this insufficiency, these infants are at 

increased risk for respiratory distress syndrome (Crowley, 2000). If the respiratory 

distress syndrome is treated with long term mechanical ventilation it can lead to 

bronchopulmunary dysplasia (Northway et al, 1967). These conditions are treated with 

synthetic glucocorticoids to increase surfactant production. However, as previously 

mentioned, glucocorticoids increase glucose synthesis, and reduce its uptake, therefore 

some side effects include hyperglycemia, hypertension, inhibition of somatic growth and 

a myriad of other physiological changes (Halliday and Ehrenkranz, 2000). Although 

beneficial for lung maturation, the detrimental effects of chronic administration of 

glucocorticoids may outweigh the benefits.  



9 

In addition to their effects on memory, glucose metabolism, and development, 

glucocorticoids are well characterized for their immune suppressing capabilities 

(Franchimont, 2004). Glucocorticoids have been in use for over half a century to treat 

inflammatory and autoimmune diseases (ibid). This class of hormones suppresses cellular 

immunity, and promotes humoral immunity. Although the anti-inflammatory effects of 

glucocorticoids are reported in the peripheral system, this effect does not translate to the 

CNS. In fact, it is reported to exacerbate injury and increase inflammation after a 

neuronal insult (Sorrells et al, 2009). The activity of HPA axis after a cerebrovascular 

event, and the effect of glucocorticoid after such a stressor do not align with its anti-

inflammatory properties. 

 

Glucocorticoids and Brain Injury 

  Recent advances reveal that glucocorticoids are detrimental to neuronal repair 

and survival after an insult (Sapolsky, 1999; Dinkel et al, 2003). Notably, it is shown to 

increase pro-inflammatory cytokines, induce apoptosis, and increase neurotoxicity (Caso 

et al, 2007; Macpherson et al, 2005; Zoloaga et al, 2011; Arya et al, 2006). It was further 

demonstrated that treatment with the rodent specific glucocorticoid, corticosterone, 

worsened hippocampal neurons after global ischemia (Sapolsky and Pulsinelli, 1985). It 

appears that glucocorticoids have opposite effects in the CNS. This raises the question 

whether these reports found in adult studies are true to neonatal models of brain injuries.  

Studies have shown that administering a synthetic glucocorticoid, dexamethasone, 

before a hypoxic-ischemic event in neonatal rats is beneficial (Feng et al, 2011; Ikeda et 

al, 2005; Felszeghy et al, 2004; Ekert et al, 1997; Tuor et al, 1996). However, these 
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studies overlook that most incidences of HI can occur in utero, thus making the time of 

occurrence difficult to detect (Perlman, 2006). Particularly since these studies suggest 

that the protective effects only are seen when dexamethasone is administered at least 6 

hours prior to the insult. Because synthetic glucocorticoid administration has not 

previously been investigated in neonatal HI after the insult, it is highly probable that post-

treatment, may result in hyperglycemia, hypertension, and decrease of somatic growth as 

reported in preterm infants treated for bronchopulmunary dysplasia (Halliday and 

Ehrenkranz, 2000). Also, since glucocorticoids are the last effector of the HPA axis it 

may be likely that agonizing an already stressed HPA with dexamethasone could prove 

detrimental.  

The HPA activity is increased after a cerebrovascular event. Numerous studies 

focusing on the pituitary-adrenal response show that ACTH and corticosterone is 

upregulated after HI and that inhibiting glucocorticoid synthesis can reduce brain damage 

(Krugers et al, 1998; Krugers et al, 2000). Clinical studies have also shown that 

glucocorticoids reduce cerebral cortical grey matter volume (Murphy et al, 2001), and 

impair long-term neuromotor and cognitive function (Yeh et al, 2004). Understanding the 

implication of the last effector of the HPA axis is clinically paramount since synthetic 

glucocorticoids are often administered systemically in premature infants. The hormones 

of the HPA axis appear to be beneficial or detrimental within certain confines and 

limitations warranting a better understanding of its regulation and modulation. A recent 

report showed that a neuroprotective agent widely used in the clinic for hematopoietic 

purposes, could modulate the levels of ACTH and corticosterone in naïve adult rats 
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(Mucha et al, 2000). This promising neuroprotective drug is granulocyte-colony 

stimulating factor (G-CSF). 

 

Granulocyte-Colony Stimulating Factor (G-CSF) 

Functions of G-CSF 

G-CSF is a glycoprotein with a molecular weight of 19 kDa produced by a wide 

range of cells including bone marrow cells, fibroblasts, and endothelial cells (Demetri 

and Griffin, 1991). It is a hematopoietic growth factor that initiates proliferation, 

differentiation, and proliferation of granulocytes (Nicola, 1990). The G-CSF protein is 

encoded by a single gene located on chromosome 17 q11-12 (Solaroglu et al, 2006; Le 

Beau et al, 1987). G-CSF confers its action by activating its receptor (G-CSF-R), a 

transmembrane protein of the class I cytokine receptor family (Bazan, 1990). The 

receptor has an immunoglobulin-like domain, a cytokine receptor-homologous domain 

and three fibronectin type III domains in the extracellular region (Fukunaga et al, 1991). 

The downstream signaling pathway of G-CSF-R activation include the Janus Kinase 

(JAK)/ signal transducer and activator of transcription (STAT), the Ras/mitogen-

activated protein kinase (MAPK) and the phosphatidylinositol 3-kinase (PI3K) pathway 

(Tian et al, 1994; Shimoda et al, 1997; Ward et al, 2000). G-CSF-R is expressed on a 

myriad of cells including those in the CNS; neurons, glial cells, and endothelial cells 

(Demetri and Griffin, 1991). The cloning of G-CSF established its clinical application 

were it is now commonly used to treat chemotherapy-induced neutropenia (Schneider et 

al, 2005; Neidhart et al, 1989). The wide use of G-CSF for hematopoietic recovery has 
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made this drug potentially translatable to neurological brain injury, particularly since its 

pharmacokinetic profile is well known. 

 

Neuroprotective Capabilities of G-CSF 

Numerous studies give account of G-CSF as a neuroprotective agent (Solaroglu et 

al, 2006; Schäbitz et al, 2010; Popa-Wagner et al, 2010). It was first investigated in vitro 

where it protected neurons from glutamate-induced cell death (Schäbitz et al, 2003). 

Furthermore, it was shown to be upregulated in the penumbra after an ischemic insult 

(ibid; Kleinschnitz et al, 2004). This suggests that the organism has a compensatory 

response to increase endogenous neuroprotective proteins. Other studies using various 

models of brain injury reported that G-CSF reduced infarct volume, mortality, brain 

edema, and apoptosis (Six et al, 2003; Park et al, 2005; Whalen et al, 2000). It was 

postulated that G-CSF may confer its protective properties by increasing neutrophils in 

addition to activating its receptor in the CNS. However, reports have shown that the 

increase of neutrophils or bone marrow stromal cells do not improve neurological 

function after a brain insult (Chopp and Li, 2002; Hudome et al, 1997). Therefore 

suggesting that neutrophil increase is not involved in G-CSF induced neuroprotection.  

Additionally, it was further demonstrated that 5 daily doses of G-CSF (50 µg/kg) 

improved neurological behavior 28 days after ischemia, as measured by cognitive and 

sensorimotor tests (Gibson et al. 2005; Fathali et al, 2010). The protective properties of 

G-CSF are pleiotropic as it was demonstrated that it could improve neural plasticity and 

vascularization, reduce pro-inflammatory cytokines, and protect against excitotoxicity 

(Zavala et al, 2002; Schäbitz et al, 2003; Shyu et al, 2004). In light of these observations, 
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G-CSF has promising therapeutic potential due to its multimodal effects. Whether these 

results translate to the pediatric population is questioned since these studies were mostly 

conducted in adults. Although cues are taken from the vast body of literature of adult 

ischemic injury, the nature of neonatal injury is substantially different (Vannucci, 2007). 

The brain of term infants is susceptible to injury in areas of high metabolic demands, and 

high density of excitatory neurons (Takeoka et al, 2002). Preterm infants sustain a more 

severe injury because of their underdeveloped circulatory system (ibid). Therefore to 

adequately assess the therapeutic potential of G-CSF in the pediatric population, 

specifically low birth weight and premature infants, age appropriate animal models are 

required. 

G-CSF has shown promise in neonatal studies where it protected the brain from 

apoptosis, increased development, and improved neurobehavioral outcomes (Yata et al, 

2007; Fathali et al, 2010). There is one study conducted by Schlager and colleagues, 

which shows that G-CSF did not improve neurobehavioral outcomes or brain injuries 

(2011).  The contradicting results reported by Schlager and colleagues could be attributed 

to their experimental design. They used 4 times the dose reported in previous studies, and 

administered the drug 60 hours after the initial insult whereas other studies started 

therapy as early as 1 hour after the insult (Yata et al, 2007; Fathali et al, 2010). All things 

considered, the dearth of neonatal studies looking at G-CSF after HI indeed shows an 

area meriting scientific exploration.  

The mechanism of G-CSF action remains to be adequately elucidated. The 

evidence that G-CSF may modulate (ACTH) and glucocorticoids in naïve rats (Mucha et 

al, 2000) suggests that it has a probable interaction with the neuroendocrine system. 
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These hormones are effectors of the HPA axis, which are reported to play a critical role 

in ischemic brain injury. Determining if G-CSF regulates these hormones in a neonatal 

model with a different HPA response than adults, after a diseased state known to increase 

HPA activity warrants much needed examination.  

 

Significance of Studies 

The complexity of the neurodevelopmental sequelae of HI necessitates a drug 

with multimodal properties. Therefore, to address the limitations clinically observed for 

the treatment of HI, we propose to study for the first time the interaction between a 

hematopoietic neuroprotective growth factor, G-CSF, with the neuroendocrine pituitary-

adrenal activation in a neonatal model of HI brain injury. G-CSF and its mechanistic 

properties on the HPA axis have not previously been studied in a neonatal HI model. 

Furthermore, the effects of G-CSF on infarct volume have not previously been reported 

in neonates. The novel theoretical concept that this study sets forth will challenge the 

clinical practice paradigm that administers synthetic glucocorticoids to pre-term neonates 

with high propensity to HI complications. Equally important, is the fact that no previous 

reports examined the mechanism of G-CSF on steroidogenesis. For this purpose, our 

proposed investigation will add fundamental information that may guide future research 

in a wide range of directions. Particularly since G-CSF is already in clinical use for 

neonatal neutropenia, this compound can feasibly be introduced into practice for neonatal 

neuroprotection (Schlager et al, 2011; Kuhn et al, 2009; Carr et al, 2003). Herein lies the 

novelty where we aim at investigating the mechanism of G-CSF via the HPA effector 

hormone, corticosterone, in a rat neonatal model of HI. 
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The supposition that G-CSF may influence glucocorticoid synthesis is highly 

probable due to its ability to activate class I cytokine receptors (Aritomi et al, 1999). 

Class I cytokine receptors are transmembrane proteins expressed on the surface of cells 

including the steroidogenic adrenal cortical cells (Hoggard et al, 1997; Malendowicz et 

al, 2003). Studies have shown that class I cytokine receptor ligands, such as leptin, can 

inhibit corticosterone synthesis in vitro (Hsu et al, 2006; Salzmann et al, 2004). Because 

G-CSF and leptin share sequence homology, we propose that G-CSF may inhibit 

glucocorticoid synthesis. No previous reports indicate that the G-CSF receptor is 

expressed on adrenal glands; therefore we postulate that its activity is via the cytokine 

family receptor. Also, a variety of intracellular cascades activated by G-CSF decrease 

apoptotic markers caspase-3 and Bax (Solaroglu et al, 2009); these intracellular cascades 

are also regulated by glucocorticoids. Based on this evidence our central hypothesis is 

that is that G-CSF will protect the neonatal brain from apoptosis by suppressing the 

activity of the pituitary-adrenal response via the activation of its cytokine receptor after 

HI. 

 

Approach of Studies 

The rationale of this study is that identifying the mechanisms involved in G-CSF 

therapy for neonates will extend into adequately designed clinical applications for infants 

victimized by HI. We plan to achieve the goal of this study with the following aims 

which is summarized in a schematic diagram (Figure1.1). 

AIM 1: Evaluate the anti-apoptotic properties of G-CSF via the pituitary-adrenal axis 

after neonatal HI.  
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Because reports indicate that glucocorticoids can exacerbate apoptosis we 

hypothesize that G-CSF reduces brain infarct and does so by inhibiting corticosterone 

synthesis. 

AIM 2: Determine the mechanism by which G-CSF inhibits corticosterone synthesis in 

vitro.  

We hypothesize that G-CSF activates class I cytokine receptors on the adrenal 

glands which reduces corticosterone. This study will be conducted in well-characterized 

rodent Y1 adrenal cortical cells. 
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Figure 1.1. Schematic representation of the central hypothesis and specific aims. 
Aim 1 as illustrated in blue will investigate the effect of G-CSF on corticosterone 
synthesis in vivo after neonatal HI, measure the apoptotic markers in the brain and assess 
infarct volume. Aim 2 (black) will study the effect of G-CSF in vitro on corticosterone 
synthesis. This aim proposes that G-CSF activates the JAK2/PI3K/Akt/PDE3B signaling 
pathway to inhibit corticosterone synthesis by degrading cAMP. 
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Abstract 
 

Several reports indicate that the activity of the hypothalamic-pituitary-adrenal 

axis (HPA) is increased after a brain insult and that its down-regulation can improve 

detrimental outcomes associated with ischemic brain injuries. Granulocyte-colony 

stimulating factor (G-CSF) is a neuroprotective drug shown in the naïve rat to regulate 

hormones of the HPA axis. In this study we investigate whether G-CSF confers its 

neuroprotective properties by influencing the HPA response after neonatal hypoxia-

ischemia (HI). Following the Rice-Vannucci model, seven-day old rats (P7) were 

subjected to unilateral carotid ligation followed by 2.5 hours of hypoxia. To test our 

hypothesis, metyrapone was administered to inhibit the release of rodent specific 

glucocorticoid, corticosterone, at the adrenal level. Dexamethasone, a synthetic 

glucocorticoid, was administered to agonize the effects of corticosterone. Our results 

show that both G-CSF and metyrapone significantly reduced infarct volume while 

dexamethasone treatment did not reduce infarct size even when combined with G-CSF. 

The protective effects of G-CSF do not include blood brain barrier preservation as 

suggested by the brain edema results. G-CSF did not affect the pituitary released 

adrenocorticotropic hormone (ACTH) levels in the blood plasma at 4 hours, but 

suppressed the increase of corticosterone in the blood. The administration of G-CSF and 

metyrapone increased weight gain, and significantly reduced the Bax/Bcl-2 ratio in the 

brain while dexamethasone reversed the effects of G-CSF. The combination of G-CSF 

and metyrapone significantly decreased caspase-3 protein levels in the brain, and the 

effect was antagonized by dexamethasone. We report that G-CSF is neuroprotective in 

neonatal HI by reducing infarct volume, by suppressing the HI-induced increase of the 
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Bax/Bcl-2 ratio, and by decreasing corticosterone in the blood. Metyrapone was able to 

confer similar neuroprotection as G-CSF while dexamethasone reversed the effects of G-

CSF. In conclusion, we show that decreasing HPA axis activity is neuroprotective after 

neonatal HI, which can be conferred by administering G-CSF.  

 

Introduction 

Neonatal hypoxia ischemia (HI) remains the leading cause of perinatal brain 

injury, which ultimately leads to cerebral palsy, mental retardation, and epilepsy 

(Vannucci et al, 1999). It is a major public health concern with a prevalence of 60% in 

preterm infants and an incidence of 1-8 cases per 1000 births (Vannucci, 2000). In spite 

of its critical mortality and morbidity rate, current therapeutic avenues are still lacking; 

thus necessitating alternative strategies to amplify current therapeutic potential. 

Several reports suggest that the activity of the hypothalamic-pituitary adrenal (HPA) axis 

is increased after HI, and that its down-regulation can reduce brain damage (Krugers et 

al, 1998, Krugers et al, 2000). HPA axis activation involves the upregulation of the 

adrenocorticotropic hormone (ACTH) and glucocorticoids. ACTH is released from the 

pituitary gland in the blood stream where it acts on the adrenal glands to induce synthesis 

and release of glucocorticoids. Glucocorticoids are reported to play an important role in 

neurological function (Sorrells et al, 2009; Dumas et al, 2010), and neuronal damage in 

the hippocampus after ischemic insults (Roy and Sapolsky, 2003). Studies have shown 

that supraphysiological levels of glucocorticoids can exacerbate excitotoxic effects 

(Stein-Behrens et al, 1992), elevate levels of reactive oxygen species (McIntosh and 

Sapolsky, 1996), and increase neuroinflammation and apoptosis (MacPherson et al, 2005; 
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Kuchinsky and Gillardon, 2000). This is of clinical relevance, since synthetic 

glucocorticoids are often administered systemically in premature infants (Thébaud et al, 

2001). Clinical studies have shown that premature infants treated with synthetic 

glucocorticoids have reduced cerebral cortical grey matter volume (Murphy et al, 2001), 

and impaired long-term neuromotor and cognitive function (Yeh et al, 2004). 

Accordingly, targeting the HI induced elevation of glucocorticoids may be a promising 

therapeutic target. 

A promising stroke drug candidate, granulocyte-colony stimulating factor (G-

CSF), has been shown to modulate ACTH and glucocorticoids in rats (Mucha et al, 

2000). G-CSF is a glycoprotein, and a growth factor known to confer neuroprotection in 

various models of brain injury (Yata et al, 2007; Popa-Wagner et al, 2010). It is currently 

in Phase II clinical trial for adult ischemic stroke, and well tolerated at high doses 

(Schäbitz et al, 2010). In various animal studies, G-CSF has been reported to have anti-

apoptotic, anti-inflammatory, excitoprotective, and neurotropic properties (Solaroglu et 

al, 2006, Gibson et al, 2005; Schäbitz et al, 2003; Konishi et al 1993). Furthermore, it has 

shown promise in neonatal HI studies where it protected neurons from apoptosis, and 

improved long term neurobehavior outcome (Yata et al, 2007; Fathali et al, 2010). A 

variety of intracellular cascades activated by G-CSF decrease apoptotic markers caspase-

3, Bax (Solaroglu et al, 2009); these intracellular cascades are also regulated by 

glucocorticoids. Whether G-CSF confers its neuroprotective effects through the HPA axis 

in neonatal HI has yet to be determined.  

On the basis of these observations, we hypothesize that G-CSF attenuates 

apoptosis partially by down-regulating the activity of the HPA axis. Herein we chose to 
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focus on the pituitary-adrenal response by measuring ACTH and rodent specific 

glucocorticoid, corticosterone. To test this hypothesis we used metyrapone, an inhibitor 

of glucocorticoid synthesis, which suppresses circulating levels corticosterone. 

Metyrapone reduces corticosterone production by inhibiting the 11-β hydroxylation of 

11-deoxycorticosterone. In addition, we used dexamethasone, a synthetic glucocorticoid 

that agonizes the effects of circulating corticosterone. Here we investigate whether G-

CSF reduces neuronal apoptosis partially by regulating the ACTH and corticosterone 

response following experimental neonatal HI. 

 

Materials and Methods 

Animal Model 

The Institutional Animal Care and Use Committee of Loma Linda University 

approved all the experiments used in this study. A modified Rice-Vannucci model was 

used as previously described (Rice et al, 1981; Chen et al, 2009). In brief, Sprague-

Dawley 7-day old rat pups (P7) underwent unilateral right common carotid ligation under 

isoflurane anesthesia at 0300 hours. Because P7 rats do not have an established diurnal 

rhythm of plasma corticosterone or ACTH, (Allen and Kendall, 1966; Leal et al, 1999) 

we chose a time that was in the dark cycle consistent with the nocturnal activities of rats 

(Levin and Levine, 1975).  For consistent hormonal results, the ordered animals were 

allowed 3 days to acclimate to the new facility and the surgeries were all conducted at the 

same time. After recovery for 1 hour, the animals were placed in a hypoxic chamber 

submerged in a 37oC water bath, subjected to 8% O2 balanced in N2 for 2.5 hours. Sham 

animals underwent anesthesia and neck incision, the carotid was exposed without the 



23 

ligation and was exposed to normoxic conditions. All P7 rats were returned to their 

mothers at the same time after hypoxic exposure.  

 

Drug Administration 

A total of two hundred and fourteen animals were used in this study. Sixteen 

animals expired in the hypoxic chamber giving this study a mortality of 7.47 percent. The 

remaining one hundred and ninety-eight animals were randomly divided into the 

following groups: Sham (n=24), Vehicle (n=27), G-CSF 50 µg/kg (n=29), Metyrapone 10 

mg/kg (n=8), Metyrapone 30 mg/kg (n=29), G-CSF + Metyrapone 30 mg/kg (n=27), 

Dexamethasone 0.1 mg/kg (n=7), Dexamethasone 0.5 mg/kg (n=23), G-CSF + 

Dexamethasone 0.5 mg/kg (n=24). The drugs were administered subcutaneously in a total 

volume of 30 µL one hour after hypoxia.  

 

Blood and Collection 

Blood was sampled 3 hours after drug administration and 24 hours after HI. 

Briefly the animals were deeply anesthetized with isoflurane, and the blood was collected 

via cardiac puncture with a 22-gauge needle. Blood was transferred in EDTA coated 

tubes, and centrifuged at 3,000 rpm for 5 minutes. Blood plasma was immediately 

removed and stored at -80oC until assayed (Mucha et al, 2000).   

 

Infarct Volume and Body Weight 

At 24 hours, brains were collected and infarct volume was determined with 2,3,5-

triphenyltetrazoliumchloride monohydrate (TTC) (Sigma Aldrich, St-Louis, MO USA) 
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staining and analyzed by Image J software as previously described (Zhou et al, 2009). 

Briefly, the brains were sectioned in 2 mm slices, incubated in 2% TTC solution for 5 

minutes in the dark, washed in phosphate buffered saline (PBS), and fixed in 10% 

formaldehyde. The infarct volume was traced and analyzed with Image J Software 

(Version 1.43u; National Institutes of Health, Bethesda, MD, USA). The animals were 

weighed on a high precision balance before surgery and at 24 hours immediately before 

being euthanized. The weight difference was calculated as (weight 24 hrs after HI – 

weight before surgery). 

 

Brain Water Content 

Pups were euthanized 24 hours after HI and the brains were divided in three parts 

(ipsilateral and contralateral hemispheres, and cerebellum). Each part was immediately 

weighed  (wet weight) on a high precision balance (Denver Instrument, sensitivity ± 

0.001 g) and again after drying in a 100oC oven for 24 hours (dry weight) as previously 

described (Chen et al, 2008). The percentage was calculated as [(wet weight-dry 

weight)/wet weight] x 100.  

 

Hormone Assay 

ACTH was measured with a two-site enzyme-linked immunosorbent assay 

(ELISA) kit (MD Bioproducts, St.-Paul, MN, USA) following the manufacturer’s 

protocol. This assay used a goat polyclonal antibody to ACTH, and a mouse monoclonal 

antibody to ACTH that respectively bound the C-terminal (34-39) and the N-terminal of 

ACTH (1-24).  The minimum detection limit of the assay was 0.22 pg/mL. 
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Corticosterone was measured with an ELISA kit (Enzo Life Sciences, Plymouth Meeting, 

PA, USA) with a sensitivity of 27.0 pg/ml according to the manufacturer’s instructions. 

 

Western Blot 

Animals were euthanized at 24 hours after HI. The brain hemispheres were 

immediately collected and snap frozen in liquid nitrogen and stored at -80oC until 

analyzed. Whole cell protein extracts were obtained from brain samples by homogenizing 

in RIPA lysis buffer (Santa Cruz Biotechnology, Inc, Santa Cruz, CA, USA) and 

centrifuging for 25 minutes in 4oC at 14,000 g. Ten percent SDS-PAGE gels were used, 

and 50 mg of denatured protein extracts were loaded in each well. The gel was 

electrophoresed and transferred to a nitrocellulose membrane (Bio-Rad, Hercules, CA, 

USA). The membrane was blocked with 5% non-fat blocking grade milk (Bio-Rad) and 

probed with appropriate dilution of primary antibody overnight. The following primary 

antibodies used were: cleaved caspase-3 (Santa Cruz Biotechnology, 1: 1000), Bax (Cell 

Signaling Technology, Danvers, MA, USA, 1:1000), Bcl-2 (Cell Signaling Technology, 

1:1000), and actin (Santa Cruz Biotechnology, 1:1000). After washing the membranes 

three times, they were probed with specie-specific secondary antibodies (Santa Cruz 

Biotechnology) at 1:1000 dilutions for 1 hour at room temperature and visualized using 

ECL Plus, Chemiluminescence (GE Healthcare and Life Sciences, Piscataway, NJ). The 

optical densities of the bands were analyzed with Image J Software (Version 1.43u; 

National Institutes of Health, Bethesda, MD) and normalized to actin as the loading 

control. 
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Statistical Analysis 

The results are presented as the mean ± standard error mean (SEM). Statistical 

differences among groups were analyzed by using one-way analysis of variance 

(ANOVA) followed by the Tukey multiple comparison test (Graph Pad Prism Version 

5.0d). Probability value<0.05 was considered statistically significant. 

 

Results 

Determining the Optimal Dose of Metyrapone and Dexamethasone 

The metyrapone clinical dose for adrenal insufficiency is 30 mg/kg (Giordano et 

al, 2008) hence the starting dose of choice. We used two doses 10 mg/kg and 30 mg/kg to 

determine which dose would optimally reduce infarct volume compared to the control 

groups. Dexamethasone on the other hand has previously been studied in neonatal HI 

using the two following doses: 0.1 mg/kg and 0.5 mg/kg (Tuor et al, 1993, Ikeda et al, 

2002). However, these reports use dexamethasone as pretreatment, our study will use it as 

post-treatment. Our infarct volume results indicate that metyrapone reduces the infarct 

volume in a dose dependent manner and the effect is significant with the 30 mg/kg 

dosage (Figure 2.1). The vehicle group has a mean of 29.42% ± 3.40 and metyrapone 30 

mg/kg significantly reduced the infarct percentage to 16.08% ± 2.57 (p<0.01vs HI 

+Vehicle). The administration of dexamethasone did not significantly reduce infarct 

volume when compared to vehicle; low dose (0.1 mg/kg) mean infarct percentage was 

23.99% ± 1.25 and high dose (0.5 mg/kg) was 27.69% ± 1.69 (Figure 2.1). 

Dexamethasone 0.5 mg/kg produced a significantly larger infarct volume compared to 

that produced by metyrapone 30 mg/kg treatment (p<0.05) (Figure 2.1). Based on these 
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Figure 2.1 Dose responses of metyrapone and dexamethasone. Representative 
TTC stained coronal brain section of the dose response analysis for metyrapone 
(MET) and dexamethasone (DEX) at 24 h. (* = p < 0.01 vs Vehicle, # = p < 0.05 vs 
MET 30 mg/kg, all HI groups p < 0.01 vs Sham). Each line on the left hand side of 
the brain images demarks 1 mm. 
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results metyrapone 30 mg/kg and dexamethasone 0.5 mg/kg were considered as the 

appropriate dosages for all the following experiments and molecular studies. The F value 

for the ANOVA analysis conducted is 22.36. 

 

Infarct Volume and Body Weight after G-CSF, Metyrapone  
and Dexamethasone Administration 

 
The administration of G-CSF (50 mg/kg) 1 hour after HI was able to significantly 

reduce infarct percentage at 24 hours from 29.42% ± 3.40 to 14.70% ± 3.63 (p<0.05 vs. 

HI + Vehicle, Figure 2.2A). Metyrapone (30 mg/kg) and the Metyrapone + G-CSF 

groups similarly conferred neuroprotection by significantly reducing infarct volume 

compared to the Vehicle group to 16.08% ± 2.57 and 15.08% ± 3.47 respectively (p<0.05 

vs. HI + Vehicle). Furthermore, agonizing the HPA axis with dexamethasone (0.5 mg/kg) 

administration did not significantly affect infarct volume compared to the Vehicle group 

(27.69% ± 1.69 infarct percentage) and G-CSF lost its neuroprotective effect when co-

administered with dexamethasone yielding an infarct percentage of 26.36% ± 2.78 

(Figure 2.2A). 

Since a characteristic of HI injury is weight loss (Chen et al, 2011), the weight 

difference at 24 hours after HI was measured. The sham animals gained a mean weight of 

2.11 g ± 0.22 after 24 hours while the HI vehicle treated pups lost an average 0.78 g ± 

0.42. The animals treated with G-CSF lost 0.63 g ± 0.49 and the group treated with 

metyrapone lost 1.07 g ± 0.26 which were not significantly different compared to the 

vehicle treated group. Co-administration of G-CSF and metyrapone significantly reversed 

the weight loss compared to all the other HI groups, the animals gained 1.25 g ± 0.39 
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Figure 2.2 Infarct volume and body weight at 24 h after G-CSF, metyrapone and 
dexamethasone administration. A. TTC stained coronal brain section of Sham, and G-
CSF, MET, DEX treated groups after HI. (* = p < 0.05 vs Vehicle, # = p < 0.05 vs G-
CSF, all HI groups p < 0.01 vs Sham). B. Body weight gain was measured on a high 
precision balance scale and calculated as such: (Weight 24 h post-HI) − (Weight before 
HI). (* = p < 0.01 vs Vehicle, # = p < 0.05, ** = p < 0.001 vs Sham, ## = p < 0.01 vs 
MET + G-CSF). Each line on the left hand side of the brain images demarks 1 mm 
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(P<0.01, Figure 2.2B). The administration of dexamethasone significantly exacerbated 

weight loss compared to vehicle treated group by losing a mean 2.73 g ± 0.23  (p<0.01, 

Figure 2.2B). Even when co-administered with G-CSF, the animals lost a mean of 2.14 g 

± 0.42 (Figure 2.2B). All the groups that underwent HI significantly lost weight 

compared to Sham group (p<0.001) except for the HI + G-CSF + Metyrapone group. 

 

Measuring the Effect of G-CSF, Metyrapone and  
Dexamethasone on Brain Edema After HI 

 
Brain edema was assessed by measuring brain water content, which was elevated 

in the ipsilateral hemisphere of the Vehicle treated group compared to Sham (p<0.05) 

(Figure 2.3). G-CSF did not significantly reduce brain edema, but was significantly 

different than the dexamethasone treated group (p<0.01), which also had elevated brain 

edema when compared to Sham (p<0.01). Dexamethasone increased brain water content 

even when co-administered with G-CSF (p<0.05 vs. Sham). The administration of 

metyrapone alone or in combination with G-CSF did not significantly alter brain water 

content. No significant changes in the brain water content amongst all the groups were 

observed in the contralateral hemisphere and the cerebellum (Figure 3).  
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Figure 2.3.  Brain water content after G-CSF, metyrapone, and dexamethasone 
treatment after HI. Quantification of brain water content 24 h after HI in the 
cerebellum, contralateral, and ipsilateral brain hemisphere. Brain water content was 
markedly increased by HI + Vehicle, DEX and DEX + G-CSF treated groups. 
(* = p < 0.05). No significance was observed in G-CSF, MET and MET + G-CSF. DEX 
treated group had higher brain water content than the G-CSF treated group (## = p < 0.05 
vs G-CSF). No significant difference was observed amongst the groups in the cerebellum 
and contralateral hemisphere. 
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ACTH Blood Plasma Level 4 Hours and  

24 Hours after HI 
 

The ACTH level in the blood was increased after HI (p<0.05 vs. Sham), and 

administering G-CSF did not influence ACTH levels (Figure 2.4A). The administration 

of metyrapone increased ACTH levels, while dexamethasone significantly reduced it as a 

result of both drugs interfering with the negative feedback mechanism of the HPA axis 

(p<0.01) (Figure 2.4A). At 24 hours, no significant differences were observed amongst 

all the groups (Fig 2.4B). 

 

Corticosterone Blood Plasma Level 4 Hours and  
24 Hours after HI 

 
The levels of corticosterone in the blood significantly increased after HI, and the 

administration of G-CSF reduced corticosterone (Figure 2.5A). Metyrapone reduced 

corticosterone levels while the administration of dexamethasone alone or in combination 

with G-CSF increased corticosterone levels 4 hours after HI. At 24 hours, corticosterone 

levels decreased in all the groups. It must be noted, that the groups that had G-CSF in 

their treatment regimen had lower corticosterone levels than their control groups (Figure 

2.5B). The dexamethasone+G-CSF group had significantly lower corticosterone levels 

than the dexamethasone treated group.  
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Figure 2.4 ACTH blood plasma level 4 h and 24 h after HI. A. At 4 h, ACTH levels 
were significantly increased by HI (* = p < 0.05 vs Sham). MET and MET + G-CSF 
groups had markedly increased ACTH level compared to Vehicle (## = p < 0.05). DEX 
and DEX + G-CSF had significantly decreased ACTH levels compared to MET and 
MET + G-CSF groups (# = p < 0.01 vs MET 30 mg/kg, ** = p < 0.01 vs MET + G-CSF). 
B. ACTH blood plasma level is normalized to Sham at 24 h after HI. 
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Figure 2.5 Corticosterone blood plasma level 4 h and 24 h after HI. A. HI 
considerably increases CORT levels and G-CSF robustly decreases CORT levels at 4 h (# 
= p < 0.05 vs Sham, * = p < 0.01 vs Vehicle). MET + G-CSF decreased CORT compared 
to Vehicle group while the DEX + G-CSF group increased CORT levels significantly (** 
= p < 0.05). B. CORT levels remain higher in Vehicle and DEX treated groups (* = 
p < 0.05 vs Sham). All groups with G-CSF in their regimen have lower CORT levels than 
their control group (# = p < 0.05 vs DEX 0.5 mg/kg). 



35 

 
Apoptotic Markers Expression in the  

Brain After Treatment 

The western blot results indicate that G-CSF reduced pro-apoptotic marker Bax 

(Figure 2.6A), and increased Bcl-2 (Figure 2.6B) in the ipsilateral hemisphere, however 

the data did not yield statistical significance. HI induced an increase in the Bax/Bcl-2 

ratio (p<0.05); this ratio was significantly lowered by the treatment of G-CSF, 

metyrapone and the combination of metyrapone and G-CSF (p<0.05) (Figure 2.6C). The 

HI-induced increase of cleaved caspase-3 was significantly reduced by the combination 

of G-CSF and metyrapone treatment. Dexamethasone and dexamethasone + G-CSF co-

treatment further increased cleaved caspase-3 levels (p<0.05 vs. Sham, p<0.05 vs. 

MET+G-CSF). 
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Figure 2.6 The expression of apoptotic markers in the ipsilateral hemisphere 24 h 
post-HI. A. HI increased Bax protein expression. No significant difference is reported 
amongst all groups. B. Bcl-2 relative density normalized to actin is decreased by HI but 
no significant difference is observed between groups. C. Bax/Bcl-2 ratio was 
significantly increased by HI (# = p < 0.05 vs Sham). G-CSF, MET and MET + G-CSF 
treated groups significantly reduced Bax/Bcl-2 ratio compared to Vehicle treated groups 
(* = p < 0.05). D. Cleaved caspase-3 levels are markedly increased by HI (# = p < 0.05 vs 
Sham), and relatively lowered by G-CSF and MET groups (no significance observed). 
MET + G-CSF significantly decreased caspase-3 levels (* = p < 0.05 vs Vehicle), and 
DEX + G-CSF group antagonized the effects (** = p < 0.05 vs MET + G-CSF). 
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Discussion 

In the present study, we show that targeting the elevation of corticosterone in the 

blood with G-CSF and metyrapone can protect the neonatal brain from HI injury, 

increase development, and reduce apoptosis. We also show that administering 

dexamethasone after HI impairs development, and worsens apoptosis. These results 

support the hypothesis that elevated corticosteroids are detrimental to the functioning and 

recovery of neurons after an insult (Tombaugh and Sapolsky, 1992; McIntosh and 

Sapolsky, 1996). 

G-CSF reduced infarct volume 24 hours after HI, and metyrapone similarly 

reduced infarct volume. When G-CSF was co-administered with metyrapone, no further 

reduction on infarct size was observed. As metyrapone could not potentiate the lowering 

effect of G-CSF on the infarct volume it may be probable that both G-CSF and 

metyrapone share a common mechanism of neuroprotective action. However this remains 

to be elucidated. We postulate that the combination of G-CSF+ metyrapone maximally 

reduced the progression of HI in the penumbra where milder injury is sustained as 

detected by TTC for that specific time point of 24 hours. Because HI injury is more 

severe and necrotic at its core (Nakajima et al, 2000; Pulera et al, 1998), the necrotic cells 

have been irreversibly damaged and are beyond rescue. The penumbra, the area 

surrounding the ischemic core, is not exposed to the same intensity of energy failure; 

these neurons are in a critical stage where they can be recovered. It is with that premise 

that combined therapy, may have maximally rescued the cells in the penumbra but could 

not reverse the damage caused at the core. Although no synergistic effect was observed in 
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the infarct volume analysis, the animals treated with G-CSF and metyrapone gained 

weight in comparison to all the other groups that were subjected to HI. 

When the activity of corticosterone was agonized with dexamethasone no 

difference in infarct volume was detected when compared to the Vehicle treated group. 

The protection observed with G-CSF treatment was completely lost when combined with 

dexamethasone. This result suggests G-CSF may also exert its protection through 

lowering the corticosterone level. This data is of extreme importance since multiple 

reports suggest that dexamethasone treatment is neuroprotective in HI studies (Feng et al, 

2011; Ikeda et al, 2005; Felszeghy et al, 2004; Ekert et al, 1997; Tuor et al, 1996). In 

those reports, dexamethasone was administered before inducing experimental HI. Since 

most incidences of HI can occur in utero thus making the time occurrence difficult to 

detect (Wörle et al, 1984; Perlman, 2006), the translatability of these findings are 

extremely difficult. Especially since pretreatment would imply indentifying children who 

are at risk for hypoxia ischemia, which is difficult to assess (Perlman, 2006; Butt et al, 

2008). Additionally, a long-term study reports that preterm infants treated with 

dexamethasone for bronchopulmonary dysplasia or chronic lung disease (Halliday et al, 

2009) were at increased risk for cerebral palsy and adverse neurological effects, all of 

which are outcomes caused by HI (Volpe, 2001; Vannucci et al, 2000). Although pre-

treatment of dexamethasone does reduce HI injury and facilitates extubation, (Tuor et al, 

1995; Davis et al, 2000), it could be detrimental for proper neurological development in 

preterm infants. Our results show that dexamethasone administration after HI does not 

reduce infarct volume, and further exacerbates development as indicated by weight loss. 

If G-CSF were to be administered clinically in a preterm child, the administration of 
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dexamethasone may antagonize its effects. This postulate would require human studies to 

be authenticated. 

The occurrence of apoptosis prevails in the penumbra where milder injury has 

been sustained after the HI insult (Pulera et al, 1998). Apoptosis peaks from 24-72 hours; 

since its occurrence is delayed, it is an important and suitable target for treatment. Our 

results show that the expression of apoptotic markers are influenced by the hormones 

involved in the pituitary-adrenal response. The Bax/Bcl-2 ratio was significantly lowered 

by the administration of metyrapone alone and G-CSF. Additionally, the combined G-

CSF + metyrapone treated group had significantly lower caspase-3 than G-CSF and 

metyrapone alone. These results suggest that the synergistic effect of both drugs could be 

attributed to other pathways all directed at lowering caspase-3. When dexamethasone was 

administered, higher expression of caspase-3 was observed, thus inferring that the 

progression of the disease is worsened by dexamethasone administration. 

The pathophysiology of HI also involves an increased vascular permeability, 

which leads to brain edema. It is well documented clinically that the administration of 

corticosteroid can reduce brain edema (Betz et al, 1990 stroke; Heiss et al, 1996). The 

integrity of the blood brain barrier is usually compromised within hours of ischemic 

injuries (Zhang et al, 2000). Administering corticosteroid to target brain edema has been 

shown to reduce the pathological sequelae involved in brain swelling (Fishman, 1982). 

Our results however indicate that brain edema is significantly increased when 

dexamethasone 0.5 mg/kg is administered. The contradiction of our results to what is 

typically observed clinically could be due to the inverted-U shape dose effect curve of 

corticosteroids (Baldi and Bucherelli, 2005). The non-linear effect of corticosteroids 
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ought to be considered when interpreting our results.  Understanding the exact dose 

response of dexamethasone and treatment in neonatal hypoxia ischemia therapy for brain 

edema is an area necessitating further studies. Also, whether targeting brain edema is 

sufficient to reduce neuronal cell death in neonates is another area granting further 

investigation. When it came to G-CSF and metyrapone, these drugs did not significantly 

reduce brain edema. The interpretation of this data suggests that their mechanism of 

action may not involve preserving blood brain barrier integrity.  

It is clear that the pituitary-adrenal response is increased after HI, and that 

modulating its effects may prove beneficial in reducing infarct volume in the acute phase 

of injury. Considerable reports have shown that elevated plasma corticosterone can 

exacerbate neuronal damage in adult brain injury models of HI (Krugers et al, 2000, Stein 

and Sapolsky et al, 1988). Our results show that administering metyrapone reduced 

corticosterone levels in neonates after HI, however the administration of G-CSF reduced 

corticosterone levels more robustly as seen at the 4 hours time-point. At 24 hours, all the 

animals that had G-CSF in their treatment regimen had lower corticosterone levels than 

their control group.  What is perplexing is that ACTH levels were not affected by the 

administration of G-CSF. This implies that G-CSF signaling is able to either directly 

affect steroidogenesis at the adrenal level, or decrease the free corticosterone in the blood 

by increasing corticosteroid-binding protein in the blood. It can be argued that G-CSF 

affects the pituitary-adrenal response as a by-standard effect of its capacity to reduce 

injury (Yata et al, 2007) and thus reducing the stress on the animal. However, we oppose 

this precept since G-CSF did not affect ACTH levels. Furthermore a previous report has 

shown that G-CSF can modulate the pituitary-adrenal response in naïve rats (Mucha et al, 
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2000). The mechanism by which G-CSF affects corticosterone level after HI should be a 

new area of interest to further understand its application clinically.   

We conclude that reducing HI-induced corticosterone elevation with both G-CSF 

and metyrapone reduces infarct volume, and pro-apoptotic markers. Additionally, the 

nature of G-CSF neuroprotection may involve CORT suppression in the blood. We also 

demonstrate that administering dexamethasone after HI exacerbated neuronal damage, 

impaired development and apoptosis. 
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Abstract 

It has been reported that granulocyte-colony stimulating factor (G-CSF) 

influences the activity of the hypothalamic-pituitary-adrenal (HPA) axis primarily via the 

hormones adrecorticotropic hormone (ACTH) and glucocorticoids. Namely, G-CSF was 

shown to inhibit corticosterone in rodents after a hypoxic-ischemic event; the rodent 

specific glucocorticoid known to exacerbate injury after an insult. The manner in which 

G-CSF interacts with corticosterone biosynthesis remains to be examined. In this study, 

we investigate for the first time the underlying mechanism of G-CSF on corticosterone 

biosynthesis in a rodent Y1 adrenal cortical cell line. Cholera toxin was used to agonize 

corticosterone synthesis by constitutively increasing cyclic adenosine monophosphate 

(cAMP). Corticosterone and cAMP were quantitatively assayed using a commercial 

enzyme-linked immunosorbent assay (ELISA). Janus Kinase 2 

(JAK2)/Phosphatidylinositol-3-kinases (PI3K)/Protein kinase B (Akt), the downstream 

signaling components of G-CSF receptor activation, their phosphorylated forms and 

Phosphodiesterase 3B (PDE3B) were detected by western blot. G-CSF at a low dose (30 

ng/ml) inhibited corticosterone synthesis, but lost its inhibitory effect as you increased its 

concentration. The inhibitory effect of G-CSF was conferred by interfering with the 

cAMP signaling via the activation of JAK2/PI3K/PDE3B pathway, as verified with 

respective inhibitors. The degradation of cAMP by G-CSF signaling reduced 

corticosterone.  We conclude that G-CSF mediates corticosterone synthesis inhibition at 

the adrenal level via JAK2 activation ultimately degrading intracellular cAMP in Y1 

cells.
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Introduction 

Previous reports indicate that G-CSF, a neuroprotective and hematopoietic 

protein, may be involved in regulating hormones of the hypothalamic-pituitary-adrenal 

(HPA) axis, primarily adrenocorticotropic hormone (ACTH) and the rodent specific 

glucocorticoid, corticosterone (Mucha et al, 2000; Charles et al, 2012). The paucity of 

studies investigating the effect of hematopoietic growth factors on neuroendocrine 

activity highlights an important area that necessitates investigation (Zylińska et al, 1999; 

Tringali et al, 2007). Particularly in light of devastating clinical conditions that increase 

HPA activity such as a cerebrovascular event (Charles et al, 2012; Weidenfeld et al, 

2011; Krugers et al, 2000; Fassbender et al, 1994). Understanding how G-CSF influences  

HPA activity may become a beneficial area of study, particularly when it can 

downregulate the detrimental HPA activity reported in a rodent hypoxia-ischemia 

neuronal injury model (Charles et al, 2012).   

The results from the previous reports suggest a probable relation and interaction 

between G-CSF and the organs of the HPA axis. Starting with the adrenal gland, no 

studies have demonstrated the direct effect of G-CSF on the adrenal cells involved in 

steroidogenesis. Furthermore, the expression of the G-CSF receptor on adrenal glands has 

not previously been reported. However, there are other reports illustrating that other 

ligands such as erythropoietin and leptin, that have similar downstream signaling 

pathways as G-CSF, interact with the HPA axis (Roubos et al, 2012; Hsu et al, 2006; 

Tringali et al, 2007; Tokgöz et al, 2002). The supposition that G-CSF may influence 

corticosterone synthesis is highly probable since its receptor belongs to a long chain 
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helical cytokine family whose ligands have shown to influence steroidogenesis (Hiroike 

et al, 2000; Mashburn and Atkinson, 2008; Hsu et al, 2006). The Janus Kinase 2 (JAK2)/ 

phosphatidylinositol-3-kinases (PI3K)/ protein kinase B (Akt) signaling pathway has 

been shown to inhibit steroidogenic products in cell culture models, and regulate 

steroidogenic proteins transcription and translation (Lefrancois-Martinez et al, 2011; Li et 

al, 2003; Hsu et al, 2006). In light of these observations, it is highly probable that G-CSF 

may exert its steroidogenic influences similarly.  

At the adrenal level, steroidogenesis occurs in adrenal cortical cells, and is 

initiated by ACTH which increases the intracellular level of its second messenger cyclic 

adenosine monophosphate (cAMP) (Rainey et al, 2004; Cooke, 1999). In the widely used 

Y1 rodent adrenal cortical cell line, steroidogenesis can be initiated by any stimulant of 

cAMP production such as cholera toxin (Forti et al, 2002; Yasumura et al, 1966).  The 

induction of cAMP production leads to the activation of protein kinase A (PKA) 

ultimately leading to steroidogenesis (Lin et al, 1995; Lopez et al, 2001; Clark et al, 

2000). Previous reports have shown that JAK2 activation can suppress steroidogenesis by 

inhibiting its upstream regulator cAMP with phosphodiesterase 3B (PDE3B) (Hsu et al, 

2006; Johnsen et al, 2009). Additionally, we have previously shown that G-CSF can 

reduce corticosterone after neonatal hypoxia–ischemia (Charles et al, 2012).  Whether G-

CSF influences the steroidogenic process initiated by cAMP through JAK2 activation in 

an adrenal cell culture model has yet to be explored.  

In light of these observations, we propose to study for the first time the effects of 

G-CSF on steroidogenesis in Y1 adrenal cortical cells. We hypothesize that G-CSF 

mediates corticosterone synthesis inhibition on Y1 cells by activating the 
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JAK2/PI3K/Akt/PDE3B pathway. We will use cholera toxin to constitutively increase 

cAMP production, and test our hypothesis by inhibiting the JAK2/PI3K/PDE3B pathway 

with appropriate inhibitors. We will investigate the mechanistic effect of G-CSF on 

cAMP and corticosterone production. 

 

Material and Methods 

Cell Culture 

Rodent Y1 adrenal cortical cells (ATCC, Manassas, VA) were grown in F12K 

medium (ATCC) supplemented with 2.5% fetal bovine serum (ATCC), 15% horse serum 

(Fisher Scientific, St-Louis, MO), and 1% penicillin/streptomycin (Thermo Scientific, 

Rockford, IL), as a monolayer in a humidified atmosphere at 37oC in 5% CO2 in T75 

flasks (BD Biosciences, San Jose, CA). Medium was changed every 4 days, and cells 

were sub-cultured after 8 days and split to a 1:3 ratio. The cells were stored in liquid 

nitrogen (5% dimethyl sulfoxide (DMSO) growth medium) or plated for experiments. All 

experiments were conducted in passage 4 - passage 6 cells. Cells were counted using the 

TC10TM Automated Cell Counter (Bio-Rad Life Science, Hercules, CA) and seeded in 12 

well plates at a concentration of 1 X 106 of live cells/well. The cells were grown in 2 ml 

of growth media/well for 48 hours. The cells were immediately serum starved for 8 hours 

as previously described (Calejman et al, 2011) and subsequently incubated with growth 

medium for 24 hours containing the appropriate chemicals for the respective groups.   
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Chemicals and Treatment 

Cholera toxin, the JAK2 inhibitor Tyrphostin AG490 (AG490), the PI3K inhibitor 

LY-294002, and the PD3B inhibitor 3-isobutyl-1-methylxanthine (IBMX) were 

purchased from Sigma-Aldrich (St. Louis, MO). The inhibitors AG490, LY-294002, and 

IBMX were respectively diluted in DMSO for stock solutions of 1mg/ml, 5 mg/ml, and 

0.5 M. G-CSF receptor chimera (Fc Chimera Active) was purchased from Abcam 

(Cambridge, MA) and G-CSF was obtained from Loma Linda University Pharmacy. The 

following concentrations were used: cholera toxin (50 ng/ml) (Hsu et al, 2006), AG490 

(50 µM) (Chen et al, 2005), LY-294002 (20 µM) (Williams et al, 2010), IBMX (10 µM) 

(Montero-Hadjadje et al, 2006). A dose response for G-CSF (30, 100, 300 ng/ml) (Hsu et 

al, 2006) and the G-CSF receptor chimera (10, 30, 100 ng/ml) after cholera toxin 

treatment was conducted. At 24 hours, growth media were collected from each well for 

subsequent assay and analysis. G-CSF treated cells were collected at the following time 

points after the initiation of treatment: 0, 5, 15, 30, 60, 120 minutes to determine the 

activity of the JAK/PI3K/Akt/PDE3B pathway. 

 

Cell Viability Assay 

At 24 hours post-treatment, growth media were removed from each well and the 

cells were trypsinized. Trypan Blue Cell Exclusion was used to determine cell viability 

which was assayed and recorded using the TC10 Automated Cell Counter Cell Viability 

analysis and protocol (Bio-Rad).  
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Corticosterone and cAMP Quantitative Assay 

Corticosterone was measured in the growth media 24 hours after treatment (Astort 

et al, 2009, Calejman et al, 2010) using a commercial enzyme-linked immunosorbent 

assay (ELISA) kit (Enzo Life Sciences, Farmingdale, NY). The minimum detection limit 

of the assay was 27.0 pg/ml. A 1:20 dilution of the media was assayed according to the 

manufacturer’s instructions. After 2 hours of treatment (Hsu et al, 2006), growth media 

were removed and hydrochloric acid was added to the cells to stop the activity of 

phosphodiesterases. The levels of cAMP were quantitatively analyzed using a 

colorimetric competitive ELISA kit (Enzo Life Sciences) with a sensitivity of 0.30 

pmol/ml. 

 

Western Blot 

Cells were washed with phosphate buffered saline (PBS) and incubated in 100 µl 

of RIPA cell lysis buffer (Santa Cruz Biotechnology, Inc., Santa Cruz, CA) for 20 

minutes. Cells were snap-frozen in liquid nitrogen, thawed, and centrifuged at 125g for 

10 minutes. The supernatant was collected, and assayed for protein concentration using 

the spectroscopic Bradford protein Assay (Bio-Rad). Approximately 30 µg of proteins 

were electrophoresed in 10% SDS-PAGE gel, and transferred on a nitrocellulose 

membrane (Bio-Rad). The membrane was blocked with 5% non-fat blocking grade milk 

(Bio-Rad) and probed with a 1:1000 dilution of primary antibody overnight. The 

following antibodies were used: G-CSF receptor (Abcam), JAK-2 (Abcam), phosphor-

JAK2 (Abcam), PI3K (Cell Signaling Technology, Danvers, MA), phosphor-PI3K (Cell 
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Signaling Technology), Akt (Cell Signaling Technology), phosphor-Akt (Cell Signaling 

Technology), PDE3B (Abcam), and actin (Santa Cruz Biotechnology). After washing the 

membranes three times, they were probed with a 1:1000 dilution secondary antibodies 

(Santa Cruz Biotechnology) for the specie of the primary antibody for 1 hour at room 

temperature. The protein bands were visualized with ECL Plus, Chemiluminescence (GE 

Healthcare and Life Sciences, Piscataway, NJ). The densities were analyzed using Image 

J Software (Version 1.43u; National Institutes of Health, Bethesda, MD) and normalized 

to actin. 

 

Statistical Analysis 

The data are presented as the mean ± standard error mean (SEM). One-way 

analysis of variance (ANOVA) followed by post-hoc Tukey multiple comparison test was 

used. A probability value < 0.05 was considered statistically significant.  

 

Results 

G-CSF Influences Cholera Toxin-Induced Steroidogenesis via its 
Own Receptor on Y1 cells 

 
The expression of the G-CSF receptor has not previously been reported in adrenal 

cells. Therefore, its expression was first investigated with western blot. Our results 

indicate that the G-CSF receptor protein is expressed in Y1 cells (Figure 3.1A) 

suggesting its function on adrenal cortical cells. The administration of cholera toxin 

significantly (p<0.001) increased the steroidogenic product of corticosterone 5 times the 

percentage of the vehicle group (Figure 3.1B).  G-CSF administration with cholera toxin 

inhibited corticosterone synthesis at the low dose of 30 ng/ml (p<0.05 vs. cholera toxin) 
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but lost its inhibitory property as you increased the dose to 100 and 300 ng/ml (Figure 

3.1B). The concentration of cholera toxin +G-CSF 300 ng/ml was significantly increased 

compared to cholera toxin + G-CSF 30 ng/ml (p<0.05).  To determine if G-CSF receptor 

activation was responsible for the inhibitory effect observed on corticosterone synthesis, 

the cells were incubated with cholera toxin + G-CSF + G-CSF Receptor Chimera (10, 30, 

100 ng/ml). The inhibition of corticosterone synthesis was lost when the G-CSF receptor 

chimera was added (Figure 3.1C). The inhibitory effect reached significance at 30 ng/mL. 

In light of the objective of this study, G-CSF 30 ng/mL was used for subsequent 

molecular assays and hormone analysis. 
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Figure 3.1. G-CSF influences cholera toxin-induced steroidogenesis via its own 
receptor on Y1 cells. A) G-CSF receptor is expressed in Y1 adrenal cortical cells. B) G-
CSF significantly inhibits cholera toxin (CTX)-induced synthesis of corticosterone at low 
dose 30 ng/ml but loses its inhibitory property at 100 and 300 ng/ml. G-CSF 30 ng/ml 
does not affect basal corticosterone synthesis. N=8/ group C) The addition of the G-CSF 
receptor chimera reversed the inhibitory effect of G-CSF and reach significance at 100 
ng/ml. #=p<0.01 vs Vehicle, * = p<0.05 vs CTX ** =p<0.05 vs CTX + G-CSF 30 ng/ml 
N=6/group 

G-CSF-R 
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G-CSF Activates the JAK2/PI3K/Akt Pathway in Y1 cells 

G-CSF receptor activation is known in other cell types to activate JAK2 and PI3K/Akt 

downstream signaling (Nakamae-Akahori et al, 2006; Schneider et al, 2005). Whether 

this is conserved in adrenal cells has yet to be determined. Accordingly, G-CSF (30 

ng/ml) was administered and protein expression of JAK2, PI3K and Akt as well as their 

phosphorylated active form were analyzed 0, 5, 15, 30, 60, 120 minutes after treatment 

initiation. JAK2 phosphorylation increased over the time course as well as the total JAK2 

protein (Figure 3.2A). The ratio of phosphor-JAK2/total JAK2 peaked at 60 minutes but 

did not reach significance (Figure 3.2B). The increase of total JAK2 after G-CSF 

treatment significantly peaked 30 minutes after treatment (p<0.05 vs. 0 minutes). The 

protein expression of phosphor-PI3K increased over the time course and peaked 30 

minutes after treatment (phosphor-PI3K/total PI3K) (p<0.05 vs. 0 minutes, Figure 3.2C). 

Total PI3K protein expression remained constant (Figure 3.2D). The ratio of phosphor-

Akt/total Akt significantly increased and peaked 15 minutes post-treatment (P<0.05 vs. 0 

minutes) (Figure 3.2E), while the total Akt protein expression remained constant (Figure 

2F). PDE3B a downstream component of PI3K/Akt signaling was activated after G-CSF 

treatment and increased 5 minutes after treatment (p<0.05 vs 0 minutes) (Figure 3.3.) 
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Figure 3.2. G-CSF activates the JAK2/PI3K/Akt pathway in Y1 cells. A) & B) 
Phophor-JAK2/total JAK2 in increased over the course of 120 minutes after G-CSF 
treatment and peaks at 60 minutes. The total JAK2 protein expression is increased over 
120 minutes and significantly peaks at 30 minutes (p<0.05 vs 0 minutes). C) & D) 
Phosphor-PI3K/total PI3K peaks 30 minutes after G-CSF treatment (p<0.05 vs 0 
minutes). Total PI3K expression is not affected by G-CSF treatment. E) & F) Phosphor-
Akt/total Akt protein activation is increased after G-CSF treatment and peaks at 15 
minutes (p<0.05 vs 0 minute). Total Akt remains unchanged. N=4/group 
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Figure 3.3. G-CSF activates PDE3B expression in Y1 cells. PDE3B is activated after 
G-CSF 30 ng/ml treatment and significantly peaks 5 minutes after treatment (p<0.05 vs 0 
minute). PDE3B levels decrease over time. N=4/group 
 



60 

 
G-CSF Inhibits Corticosterone Synthesis via the  

JAK2/PI3K/PDE3B Pathway 
 

To determine whether JAK2/PI3K and the downstream element PDE3B is 

involved in G-CSF inhibition of corticosterone synthesis, JAK2 inhibitor AG490, PI3K 

inhibitor LY-294002 and PDE3B inhibitor IBMX were added to cholera toxin + G-CSF 

30 ng/mL treatment. Additionally, since the inhibitors were dissolved in DMSO, a 

control group DMSO (0.2%) was added for comparative analysis. DMSO 0.2% did not 

increase corticosterone synthesis compared to control group. The addition of each 

inhibitor in combination with cholera toxin + G-CSF 30 ng/ml to the media blunted the 

inhibitory effect of G-CSF corticosterone synthesis (p<0.05 vs. cholera toxin + G-CSF 30 

ng/mL) (Figure 3.4A). Corticosterone was significantly higher (p<0.05) in the media of 

cells in the following groups compared to cholera toxin + G-CSF 30 ng/ml: cholera toxin, 

cholera toxin + G-CSF 30 ng/mL + AG490, cholera toxin + G-CSF 30 ng/ml + LY-

294002, cholera toxin + G-CSF 30 ng/mL + IBMX. The administration of the drugs did 

not significantly affect the cell viability as assessed with Trypan Blue Cell Exclusion 

(Figure 3.4B) 
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Figure 3.4. G-CSF inhibits corticosterone synthesis via the JAK2/PI3K/PDE 
pathway. A) The JAK2 inhibitor (AG490), PI3K inhibitor (LY-294002), and PDE 
inhibitor (IBMX) significantly reverse the corticosterone inhibition conferred by G-CSF 
on cholera toxin-induced steroidogenesis (p<0.05 vs CTX + G-CSF 30 ng/ml). The 
treatment with DMSO (0.2%), G-CSF 30 ng/ml, AG490, LY-294002, IBMX alone did 
not significantly affect basal corticosterone synthesis compared to Control group. B) 
Trypan Blue Cell Exclusion assay illustrates that the viability of each treated group is not 
significantly different. N=6/group.  
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G-CSF Inhibits Cholera Toxin-induced cAMP  

Upregulation via JAK2/PI3K/PDE3B 
 

The primary function of phosphodiesterases is to cleave the phosphodiester bond 

of cAMP, the primary messenger and mediator of steroidogenesis (Mehats et al, 2002). 

The measure of cAMP was assessed two hours after initiating treatment as previously 

described (Hsu et al, 2006). Cholera toxin treatment increased cAMP significantly 

compared to Control treated cells from 3.85 ± 0.20 pmol/L to 22.2 ± 2.84 pmol/ml 

(p<0.01 vs. Control and DMSO) (Figure 3.5). G-CSF administration alone did not 

significantly affect cAMP levels compared to Control and DMSO treated cells. The 

combination of cholera toxin + G-CSF 30 ng/ml significantly reduced the cholera toxin 

induced upregulation from 22.2 ± 2.84 pmol/mL to 14.47 ±0.60 pmol/mL (Figure 3.5).  

The inhibition of JAK2 with AG490 in the cholera toxin + G-CSF 30 ng/ml + AG490 

treated cells significantly antagonized the inhibitory effect of G-CSF (p<0.01 vs. cholera 

toxin + G-CSF 30 ng/mL), the average concentration was 24.83 ± 2.60 pmol/mL. 

Inhibiting PI3K with LY-294002 in the cells treated with cholera toxin + G-CSF 30 

ng/ml yielded a cAMP level of 19.18 ± 1.38 pmol/mL; significantly higher than cells 

without LY-294002 in the growth medium (p<0.01 vs. cholera toxin + G-CSF 30 

ng/mL). The inhibition of PDE3B with IBMX substantively and significantly increased 

cAMP levels in cells treated with cholera toxin + G-CSF to 61.15 ± 27.08 pmol/mL 

(p<0.01 vs. cholera toxin + G-CSF 30 ng/mL). All the inhibitors reversed the G-CSF 

reduction of cAMP levels in cholera toxin treated cells.  Treatment with G-CSF 30 

ng/mL and the inhibitors alone did not significantly change cAMP levels when compared 

to control and DMSO treated cells. 
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 Figure 3.5. G-CSF abates cholera toxin-induced cAMP upregulation via the 
JAK2/PI3K/PDE pathway. CTX significantly increased cAMP levels from 3.85 ± 0.20 
pmol/l to 22.20 ± 2.84 pmol/ml (p<0.001 vs Control and DMSO (0.2%)). G-CSF 
decreased the upregulation of cAMP to 14.47 ± 0.60 pmol/ml which was antagonized by 
adding to the treatment the JAK2, PI3K, and PDE inhibitor (AG490, LY-294002, 
IBMX). The treatment with DMSO (0.2%), G-CSF 30 ng/ml, AG490, LY-294002, and 
IBMX alone did not significantly affect basal cAMP. N= 6/group. 
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Discussion 

In this current study we investigated for the first time the direct effect of G-CSF 

on adrenal steroidogenesis and explored the probable mechanism by which G-CSF-

induced inhibition of steroidogenesis. Thereupon we examined the involvement of G-

CSF in a well characterized rodent Y1 adrenal cortical cell line on steroidogenic 

products. We show that G-CSF at 30 ng/mL inhibits cholera toxin induced corticosterone 

synthesis and cAMP upregulation. We also report that the G-CSF receptor is expressed in 

adrenal cortical cells and by co-administering G-CSF with its G-CSF receptor chimera 

the inhibitory effect against cholera toxin is lost. Additionally, we demonstrate that G-

CSF activates the JAK2/PI3K/Akt/PDE3B pathway in adrenal cells which is responsible 

for the inhibition of cAMP and steroidogenic signaling components and product hence 

blunting corticosterone biosynthesis.  

We first determined whether G-CSF receptor protein was expressed in the adrenal 

cortical cells as no previous reports indicated the latter. Since our results show that the G-

CSF receptor was expressed, a dose response using G-CSF was conducted to determine 

its influence on the glucocorticoid involved in HPA activity in rodent corticosterone. Our 

results show that G-CSF inhibits corticosterone synthesis at low dose (30 ng/mL), but as 

you increased the concentration the inhibitory effect was lost. We postulate that this 

phenomenon is probably a result of non-genomic effects due to the saturation of the G-

CSF receptor. Hence other signaling pathways could be activated to oppose the inhibitory 

effect or drive steroidogenesis. Based on the premise that increasing G-CSF 

concentration reverses the inhibition, it is probable that increasing the concentration 

beyond the ones used for this study could potentially increase steroidogenesis. This 
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explanation would help reconcile the results of Mucha and colleagues (2000) indicating 

that G-CSF increases corticosterone blood plasma level after chronic administration in 

naïve rats. However, this remains to be elucidated.  

The inhibitory effect of G-CSF was modulated by the activation of its receptor as 

the addition of the G-CSF receptor chimera at various concentration resulted in an 

increased corticosterone product (Figure 3.1C). For the first time, we show that G-CSF 

has direct interaction with cells of an HPA organ. This is of critical importance primarily 

if the effect can potentially cause adverse or beneficial therapeutic effects in a clinical 

setting.  

Since G-CSF is known to activate JAK2/PI3K/Akt in other tissues (Nakamae-

Akahori et al, 2006) and that PI3K/Akt is upstream to PDE3B, we measured the total and 

activated forms of JAK2/PI3K/Akt and the expression of PDE3B over two hours after G-

CSF treatment initiation. Our results indicate that JAK2 phosphorylation increased over 

two hours as did the total form of JAK2. Total JAK2 protein expression significantly 

increased and peaked 30 minutes after treatment initiation. The activated forms of PI3K, 

and Akt also increased over two hours peaking from 15-30 minutes, but unlike JAK2 the 

total forms of PI3K and Akt expression were not affected. G-CSF also increased PDE3B 

over the 120 minutes time course which peaked at 5 minutes. These results show that the 

JAK2/PI3K/Akt activation of G-CSF is preserved in rodent adrenal cortical cells. 

The corticosterone measurements indicate that G-CSF inhibits cholera toxin via 

the JAK2/PI3K/PDE3B pathway since the addition of the inhibitors in the treatment 

reversed its inhibitory effect. Therefore, this suggests that the pathway may be involved 

in corticosterone synthesis inhibition. To verify that the differences reported amongst 
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each treated groups were not due to cell viability, Trypan Blue Exclusion was used. The 

results indicate that no significant difference was observed in cell viability amongst the 

groups. Therefore, the observed effects in corticosterone synthesis and other molecular 

events were attributed to the drugs influence on signaling pathways and not cell viability. 

The elevation of cAMP observed two hours after the initiation of treatment with 

cholera toxin was inhibited by G-CSF. This report suggests that the activation of 

JAK2/PI3K/PD3B by G-CSF inhibits steroidogenesis by reducing cAMP levels. 

Furthermore, the inhibitors of JAK2/PI3K/PDE3B individually reverse the inhibition of 

cAMP levels. The levels of cAMP were further increased when treated with cholera toxin 

+ G-CSF 30 ng/mL +IBMX compared to cells treated with cholera toxin alone. This 

occurrence may be a result of inhibiting the basal levels of PDEs, which are activated by 

steroidogenic signaling (Mehats et al, 2002). Steroidogenesis can initiate other signaling 

pathways such as calcium signaling whose downstream event includes the activation of 

PDEs (ibid). Therefore IBMX may inhibit the basal activity of PDEs, which would 

attribute to the higher cAMP levels.  

Concerning the limited studies that look at G-CSF and HPA activity, one in naïve 

rats and one after hypoxia ischemia, one must understand the complexity of what is at 

hand. Markedly, the putative ability of G-CSF to influence HPA activity ought to be 

investigated also at the pituitary level and at the hypothalamic level. Reports have 

indicated that other hematopoietic growth factors with similar signaling pathways can 

inhibit corticotropin-releasing hormone (CRH) which is responsible for ACTH synthesis 

at the pituitary level (Tringali et al, 2007; Zylińska et al, 1999). In light of our previous 

report (Charles et al, 2012) indicating that ACTH was not increased in spite of 
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corticosterone inhibition, one must consider the delicate negative feedback and the 

probable interaction of G-CSF with the pituitary gland. This perplexing result puts in 

question the negative feedback which should have shown an increase of ACTH as a result 

of corticosterone inhibition. Therefore it is probable that G-CSF may have direct effects 

on each organ of the HPA axis. Determining the manner in which G-CSF influences HPA 

activity in a naïve model and after a diseased state merits further exploration. 

In conclusion, we demonstrate that G-CSF has non-hematopoietic function in the 

HPA axis by regulating steroidogenesis in the Y1 adrenal cortical cell line. G-CSF was 

able to abate the upregulation of cholera toxin-induced cAMP via the 

JAK2/PI3K/Akt/PDE3B pathway which ultimately inhibited the steroidogenic product of 

corticosterone. We propose that a better understanding of the manner in which G-CSF 

has neuroendocrine properties may better translate its efficacy in a clinical setting, 

particularly when investigating diseases that involve the over-activation of the HPA axis. 
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CHAPTER FOUR 
 

DISCUSSION 
 
 

How the activity of the HPA axis and its relation to G-CSF therapy reflect on 

pathophysiological outcomes of HI was not previously investigated.  For that reason, the 

underlying foundation of this scientific initiative was to investigate the latter. We show 

for the first time that the neuroprotective properties of G-CSF depend on its inhibition of 

corticosterone synthesis. Furthermore, we demonstrate for the first time that G-CSF has 

direct effects on steroidogenesis by activating its receptor on adrenal cortical cells. These 

findings bifurcate our current knowledge of G-CSF function, similarly to when G-CSF 

was first discovered to be neuroprotective. 

G-CSF was first reported almost a decade ago, to have neuroprotective properties 

in brain injury models such as stroke by activating its receptor in the central nervous 

system (CNS) (Schäbitz et al, 2003; Gibson et al, 2005). It was joining the ranks of 

another hematopoietic factor known to have modalities in the brain after injury, 

erythropoietin (Masuda et al, 1993; Digicaylioglu et al, 1995). Subsequent studies that 

emerged from this discovery have shed light on its multimodal properties that span across 

a multitude of brain insults (Park et al, 2005; Ren and Finkelstein, 2005; Schneider et al, 

2005). The numerous reports have indicated G-CSF as an angiogenic, neurogenic, anti-

inflammatory, and anti-apoptotic agent (Shyu et al, 2004; Gibson et al, 2005; Komine-

Kobayashi et al, 2006; Schneider et al, 2005; Solaroglu et al, 2009, Strecker et al, 2010). 
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Currently it is in Phase II clinical trial for adult ischemic injury where it is well tolerated 

at high doses (Schäbitz et al, 2010). In addition to its promise in adult studies reflecting 

similar injury as that seen in neonates, age appropriate animal models of HI also indicate 

that G-CSF improves outcome after the insult (Yata et al, 2007, Fathali et al, 2010, 

Charles et al, 2012). G-CSF was once unrecognized for its function in the CNS, and we 

now show that its properties extend beyond its direct neuroprotective effects as illustrated 

in stroke studies. Unknowingly, G-CSF had properties that influenced a very dynamic 

and delicate neuroendocrine system, the HPA axis (Mucha et al, 2010).  

There are numerous areas of HI pathophysiology that are still not investigated in 

neonates as it pertains to HPA activity after a brain insult. However, indices can be 

retrieved from other models indicating that high levels of glucocorticoids were associated 

with poor outcome (Feibel et al, 1977; Krugers et al, 1998; Stein-Sapolsky, 1988).  In the 

adult HI injury model, results indicate that HPA overactivation in the acute phase was 

detrimental and its down-regulation led to improved neurological outcome (Krugers et al, 

2000; Smith-Swintosky et al, 1996). We measured for the first time the hormones of 

ACTH and corticosterone in a neonatal HI model and indicated that G-CSF conferred its 

properties by significantly decreasing corticosterone. Using metyrapone, the inhibitor or 

corticosterone, and dexamethasone, a synthetic steroid that agonized the effects of 

corticosterone, we showed that regulation of pituitary-adrenal activity is of critical 

importance in G-CSF therapy. Especially since agonizing corticosterone led to impaired 

development, and increased pro-apoptotic biomarkers even when co-administered with 

G-CSF. Dexamethasone was administered after the insult, which was different from other 

studies administering it hours prior to HI in neonates (Tuor et al, 1993; Ikeda et al, 2002). 
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This difference yielded opposite effects. Pre-treatment with dexamethasone appears to be 

protective, while our data show that post-treatment exacerbates injury. Why post-

treatment of dexamethasone is detrimental in contrast to pre-treatment is an area that 

remains to be elucidated; particularly when it comes to its co-administration with G-CSF. 

This difference in pre and post-treatment could be owed to the intact versus disrupted 

BBB, especially since dexamethasone does not cross an intact BBB. Hence its 

exacerbation of injury could be attributed to its effect in CNS, while the protective effects 

could be due to its impact in the periphery. This fact would need to be substantiated with 

adequate HI studies.   With attention to the hormone results, metyrapone and 

dexamethasone show that the negative feedback in neonates in responsive. This finding 

suggests that elements of the HPA axis are functional in the neonatal rat after HI. For this 

reason, the suggestion that neonates have a hyporesponsive HPA axis needs to be 

examined, particularly in the context of a cerebrovascular event (Tu et al, 2006). Overall, 

the hormone data ultimately led to the question of how G-CSF inhibited corticosterone 

synthesis? The analysis of the data immediately pointed towards G-CSF having a 

probable direct interaction with the adrenal gland of the HPA axis.  

The initial step was to determine whether the G-CSF receptor was expressed on 

adrenal cortical cells. We identified for the first time the expression of the G-CSF 

receptor on rodent adrenal cortical cells suggesting its direct effect on HPA activity. The 

results we reported were perplexing as they were interesting.  It was interesting since G-

CSF was shown to inhibit corticosterone synthesis. However this was true only at a low 

dose. It became perplexing when at higher doses G-CSF lost its inhibitory properties. The 

span of concentration that was utilized only covered so much ground. Therefore, one 
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must wonder, whether high doses of G-CSF could do the exact opposite? If this were the 

case then the study of Mucha and colleagues would be explained (2000). Particularly 

since they report that chronic administration of G-CSF increased ACTH and 

corticosterone in naïve rodent models. Whether this is a matter of alternate signaling 

pathways or saturation of G-CSF receptor activation remains to be investigated. 

Understanding the mechanism of G-CSF signaling as it pertained to 

corticosterone inhibition is primordial to establish how the two components interrelate. 

Since the receptor was expressed on a different cell type, we verified whether the 

JAK/PI3K/Akt signaling was conserved. Our data indicate that the pathway is preserved 

in adrenal cortical cells, and that it is responsible for the inhibitory proponent of G-CSF 

activity on corticosterone synthesis.  

 

Clinical Significance 

The current therapeutic avenues of HI are extremely limited. Only hypothermic 

therapy has shown a confined amount of success (Koenisgberger et al, 2000). There is a 

plethora of determining factors including a paucity of adequate mechanistic animal 

studies that halt the progress of promising drugs in the clinical setting. The complexity of 

this issue contributes to the grim prognosis of HI patients. These patients are primarily 

premature infants, and since the development of premature babies differ from term 

babies, our study utilized a model reflective of that population. Can G-CSF uphold the 

promise that our animal studies suggest in the clinic? Perhaps. However one must 

consider the multiple physiological and molecular mechanisms that are activated by G-

CSF. Particularly, when it comes to its inhibitory properties on steroidogenesis. Our 
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results show that co-administering G-CSF with dexamethasone does not protect the brain 

of the animal from injury (Charles et al, 2012). In fact, it worsened development and 

apoptosis (ibid). Scientifically this supported our hypothesis, but it challenges the 

translatability of G-CSF. Here is why. Preterm infants often have developmental, and 

lung maturation complications which are clinically treated with synthetic glucocorticoids 

(Davis et al, 2001). If G-CSF were studied in a human clinical trial, the co-administration 

of synthetic glucocorticoid would impair its neuroprotective ability as our data suggest. 

This devastating outcome could lead clinicians to prematurely overlook the promise of G-

CSF. This could lead to a misguided conclusion, when ultimately the synthetic 

glucocorticoid commonly found in the treatment regimen of premature infants is what 

diverged the action of G-CSF.  This study shows that in the acute phase, synthetic 

glucocorticoids are detrimental. This is substantiated by a longitudinal study in which 

preterm infants were at increased risk for cerebral palsy and adverse neurological effects 

when treated with synthetic glucocorticoids, all of which are outcomes caused by HI 

(Volpe, 2001; Vannucci et al, 2000). Nonetheless, because G-CSF potentially could 

increase glucocorticoid long-term, it could potentially facilitate extubation by 

endogenously increasing glucocorticoids (Mucha et al, 2000). This remains to be verified 

with animal and human studies. 

G-CSF has an excellent safety record, and a well-known pharmacological profile 

due to is clinical use for neutropenia and bone marrow harvesting (Schneider et al, 2005; 

Neidhart et al, 1989; Morstyn et al, 1989).  This advantage makes its translatability 

propitious. Additionally, its multimodal properties suggest that it can target the multiple 

facets of HI pathophysiological sequelae. Therefore, if it were to transition into clinical 
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trial for preterm infants, it could potentially be promising. The only caveat would be to 

consider the use of synthetic glucocorticoids to maximize the promise of G-CSF. 

 

Future Directions 

Our study focused on two general areas: the effect of G-CSF after HI on the 

synthesis of pituitary-adrenal axis hormones, and the mechanism by which it confers its 

effect. We approached the first part of our study by investigating the effect of G-CSF on 

pituitary-adrenal hormones as it pertained to apoptosis. Since glucocorticoids can also 

affect inflammation, and glutamate excitotoxicity after a neuronal insult, these areas 

merit further exploration (Dinkel et al, 2003; Goodman et al, 1996). Also, our study only 

investigated the effect of G-CSF in the acute phase. How chronic administration of G-

CSF affects the pituitary-adrenal axis hormones long-term needs to be explored. The 

neurobehavioral outcomes, brain atrophy, angiogenesis, and neurogenesis should also be 

evaluated at long-term time points; particularly as in regards to dexamethasone, and 

metyrapone administration.  Additionally, an adequate dose response for G-CSF and its 

effect on corticosterone should be investigated. Especially since the in vitro studies show 

that higher doses of G-CSF lost its inhibitory property. Not to mention, that a study using 

higher dose of G-CSF (200 µg/kg) did not protect the brain from neonatal HI injury, 

compared to our lower dose (50 µg/kg) (Schlager et al, 2011; Charles et al, 2012). 

Determining how this occurs and whether this effect is dependent on corticosterone is 

essential to harness the full therapeutic promise of G-CSF. 

In addition to the neuroprotective effect of G-CSF, G-CSF influences the 

hormones of the neuroendocrine system. Our study focused on the direct interaction of G-
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CSF on the adrenal gland of the HPA axis, but many other areas have yet to be 

investigated. There are cues from other studies showing growth factors or hormones with 

similar signaling cascade that exert effect of the HPA-axis. Therefore there is a high 

probability that the actions of G-CSF extend beyond the adrenal gland. Perhaps G-CSF 

controls the activity of the HPA axis at the level of the hypothalamus and/or the pituitary 

gland. The details of this possible interaction should be considered for subsequent 

studies.  

 

Conclusion 

G-CSF has pleiotropic physiological effects, and we demonstrate that its 

neuroprotection is dependent on its direct interaction with the HPA axis. We show that 

G-CSF inhibits corticosterone synthesis, and protect the neonatal rat brain from HI injury, 

by reducing infarct volume and reducing pro-apoptotic markers. Agonizing the effects of 

the HPA axis with a synthetic glucocorticoid exacerbated injury even when co-

administered with G-CSF.  This study highlighted a novel function of G-CSF, since it 

inhibited the HI-induced upregulation of corticosterone. We found that the G-CSF 

receptor was expressed on adrenal glands and conferred its inhibitory effect on 

corticosterone synthesis by activating the JAK2 signaling pathway. Future studies are 

needed to better understand the interaction with G-CSF and the HPA axis. Nevertheless, 

the promising therapeutic potential of G-CSF should continue to be pursued in 

subsequent preclinical stroke research.  
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