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ABSTRACT OF THE THESIS 

The Influence of Outdoor Air Quality on Maxillofacial Growth and Development 

by 

Ryan Rudd 

Master of Science in Orthodontics, School of Dentistry 
Loma Linda University, September 2012 

Dr. Joseph Caruso, Chairperson 
 

Introduction:  Mild to moderate deviations from normal facial types can 

significantly change orthodontic treatment modalities.  Studies linking ambient air 

pollution with respiratory problems, as well as craniofacial morphology with respiratory 

problems are well established.1-19  In this study we aimed to determine if there was a 

correlation between ambient air pollution and maxillofacial growth and development.  

We also wanted to determine if further research should be done in this area, and if so how 

can the study be improved. 

Materials and Methods:  We selected Santa Maria, CA and Upland, CA as sample 

areas due to their significant differences in air quality.  Initial lateral cephalometric 

radiographs were collected from 400 patients in each area.  The combined 800 subjects’ 

addresses were geocoded and ambient air pollution exposure was calculated based on air 

quality statistics from the California Air Resources Board, Environmental Protection 

Agency and NAVTEQ.  Vertical measurements of facial depth (FD), total face height 

(TFH), lower face height (LFH), facial axis (FA), and mandibular plane (MP) were made 

on the initial T1 lateral cephalometric radiographs.   

Statistical Analysis:  Spearman’s rho was used to determine if an association 

existed between the pollution metrics and craniofacial outcome variables. 



 

xii 

Results:  At a statistically significant level, no association exists between the 

pollution metrics (TRI, RD, TP, O3, PM2.5NAA, PM2.5N24HA) and the craniofacial 

measurements (FD, MP, FA, LFH, TFH).  The air quality between Upland and Santa 

Maria did differ significantly for O3, PM2.5NAA, and PM2.5N24HA.  

Conclusions:  Increased exposure to ambient air pollution did not seem to have an 

effect on the craniofacial morphology of our sample groups.  We were unable to account 

for the many confounding variables, which may have hampered our ability to see any 

correlation.  Future studies should attempt to incorporate dichotomous sampling areas 

and account for as many confounding variables as possible.   
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CHAPTER ONE 

INTRODUCTION 

 
Statement of Problem 

 
Diagnosing and treatment planning an orthodontic case requires a thorough 

analysis of several factors, including characteristics of the patient’s craniofacial 

morphology.  Mild to moderate deviations from normal facial types can significantly 

change orthodontic treatment modalities. Extreme morphological variations often require 

surgical correction to obtain functional and esthetic goals.  Understanding the etiology of 

these morphological differences could aid orthodontists treat and potentially even prevent 

unfavorable growth patterns derived from environmental factors.   

The influence of environmental factors on the growth and development of 

children has been studied for many decades.  Studies linking ambient air pollution with 

respiratory problems, as well as craniofacial morphology with respiratory problems are 

well established1-19.  Kaplan20 attempted to find a direct association between air pollution 

and several measurements of malocclusion.  She was able to find a correlation with 

Molar Relation, but drew from a relatively homogenous sample group.  Her sample 

measured a relatively large environmental group, but the vast majority of the patients 

came from areas with poor air quality. 

The purposes of this study were twofold:  First, to assess the association between 

ambient air pollution and craniofacial measurements within two sample groups from two 
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very different air pollution environments.  Second, to determine if further research should 

be done in this area and if so what changes should be made. 

 

Hypothesis 
 

 The null hypothesis in this study was:  There is no association between exposure 

to ambient air pollution and skeletal measurements of the vertical dimension among 

adolescents in a clinical cohort from Santa Maria, CA and Upland, CA. 

 The alternative hypothesis was:  There is a significant association between 

exposure to ambient air pollution and skeletal measurements of the vertical dimension 

among adolescents in a clinical cohort from Santa Maria, CA and Upland, CA. 
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CHAPTER TWO 

REVIEW OF THE LITERATURE 

 
The Etiology of Craniofacial Growth 

 
 The driving force behind the development of the craniofacial complex has long 

been debated.  During the first half of the 20th century, the orthodontic profession 

predominantly believed in the genetic theory, which stated that craniofacial growth could 

not be altered and was genetically predetermined.  Edward Angle was one of the key 

supporters of the genetic theory, which led to widespread acceptance in the orthodontic 

community.  Scientifically, there has been support for the genetic theory in studies that 

noted similarities in malocclusion among monozygotic twins.21  In 1960, Moss proposed 

the functional matrix hypothesis, stating that all skeletal structures grow in direct 

response to its extrinsic, epigenetic environment.22  His hypothesis was a bold 

contradiction to the prevailing genetic theory.  More recently however, twin studies have 

demonstrated that both environment and genetics play an important role in 

development.23  Townsend et al., found that certain traits (tooth size and arch dimensions) 

are highly heritable, while others (intercuspal distance, overbite and overjet) had a 

stronger contribution from the environment. 
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Ambient Air Pollution and Respiratory Effects 

 Numerous studies have been done linking ambient air pollution to respiratory 

illnesses.  Proximity to roadways and the subsequent pollution produced by motor 

vehicles has been shown in several studies to increase the severity and number of 

asthmatic episodes.1,4,5,7  Traffic related pollution also increases the risk of atopic diseases 

and allergic sensitization.2,8,9  Children are especially vulnerable to the effects of air 

pollution; their lungs are not fully developed, they generally have greater exposure than 

adults, and the exposure can deliver higher doses that may remain in the lungs for a 

greater duration.6  

 Air pollution also affects the development and function of the lungs.  Expiratory 

flow and forced expiratory volume were both decreased in children exposed to higher 

levels of traffic-related air pollution.3,11,12  Fanucchi et al.,15 evaluated postnatal lung 

morphogenesis in infant monkeys, whose lung development is similar to humans. Airway 

morphology was evaluated at the end of 5 months of episodic exposure to 0.5 ppm ozone 

(O3) and compared to a non-exposed control group. They discovered that episodic 

exposure to environmental O3 compromised postnatal lung morphogenesis. 

 The effects of air pollution on the upper airway have also been analyzed.  Wardas, 

et al., found that higher pollution levels increased the number of glycosaminoglycans 

(GAGs) in the palatine tonsils.24  GAGs have been shown to increase the incidence of 

infections in the upper airway.  The tonsils, even in a pristine environment, are host to 

numerous microbes vital to maintaining health.   A disruption of the microbial flora by 

environmental air pollution, has been shown to increase the colonization of several 

facultatively pathogenic bacteria and fungi.25   
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Types of Air Pollution 

 Fine particles appear to have a greater effect on health for several reasons:  (1) 

they remain airborne longer than large particles, increasing exposure time; (2) they have a 

larger surface to volume ratio, increasing their toxicity; and (3) they can lodge deeply in 

the lungs and even enter systemic circulation.26  Motor vehicles, power plants, wood 

burning, and certain industrial processes are all sources of “fine” particulate matter 

(PM2.5), particles less than 2.5 micrometers in aerodynamic diameter.  The United States 

Environmental Protection Agency (U.S. EPA) has issued a statement noting, “Health 

studies have shown a significant association between exposure to fine particles and 

premature death from heart or lung disease. Fine particles can aggravate heart and lung 

diseases and have been linked to effects such as: cardiovascular symptoms, cardiac 

arrhythmias, heart attack, respiratory symptoms, asthma attacks, and bronchitis.”26 

 Other indicators of ambient air pollution are PM10 (particles less than 10 

micrometers in aerodynamic diameter), ozone (O3), nitrogen dioxides (NOx), and sulfur 

oxides (SOx). These are known as background or regional pollutants as they tend to 

distribute pervasively over wide areas, exhibiting large-scale variation, and the potential 

damage caused by them is experienced at locations removed from the source.  In contrast, 

local pollutants are subject to small-scale variation and the potential harm caused by them 

is experienced near the source of emissions. It is important then, to distinguish the 

contributions of local and/or mobile sources of air pollution from background or regional 

sources. Local sources include stationary facilities or processes that generate a significant 

amount of air pollution during manufacturing, power generation, heating, etc. Mobile 

sources include on or off-road vehicles, cars, trains, boats, etc.27 A commonly used 
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approach to estimating exposure to local and mobile emissions consists of measuring 

residential distance to stationary point sources (e.g., industrial plants), major roadways, 

and by characterizing traffic density near locations of interest (e.g., home, school, 

workplace, etc.).6 

 

Geographic Information Systems 

 Recent studies have derived individual estimated exposure levels using 

geographic information systems (GIS)-based modeling. GIS is a system designed to 

capture, store, manage, manipulate, analyze, and present different types of geographically 

referenced data. The key advantage afforded by the use of GIS in health studies resides in 

the enhanced flexibility to link, integrate, process and query disparate data sets pertaining 

to environmental and health elements. A particularly significant advantage of the 

application of GIS technology in epidemiologic research is the possibility of flexibly geo- 

referencing the actual locations of subjects or patients and then seamlessly linking those 

locations with modeled exposure fields or specific sources. 

 Traditionally, data from the nearest air pollution monitoring site was used to 

estimate exposure using inverse distance methods. However, GIS provides the 

opportunity to implement sophisticated spatial models in order to predict pollutant 

concentration on a fine spatial scale, providing good approximations of long-term 

average exposures.4 Scientists from longstanding air pollution epidemiologic studies 

(e.g., Loma Linda University’s AHSMOG Study, Harvard’s ACS Study, or University of 

Southern California’s Children’s Study) are now routinely using GIS-based methods for 

exposure assessment. 
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 Employing GIS-based modeling techniques, Morgenstern et al.2 recently 

identified a clear dose-response relationship for PM2.5 and sensitization to inhalant 

allergens. Other cohort studies of children living in southern California have discovered, 

using GIS modeling, that living within 500 meters of a freeway has resulted in significant 

deficits in lung function development.5 In addition, living within 300 meters of arterial 

roads or freeways is associated with an increased risk of asthma-related repeated hospital 

encounters in children under the age of 18,1 while those who reside within 75 meters of a 

major road are at increased risk of being diagnosed with asthma.4 

 

Effects on Craniofacial Morphology 
 

 Respiratory obstruction has been linked to changes in the craniofacial complex in 

many studies.  Subjects with nasal breathing obstruction were found to have enlarged 

adenoids and a more vertical growth pattern.27  A change in oral posture and the position 

of the tongue appear o be strong causative factors of a change in growth.  Oral breathing 

necessitates that the tongue be in the floor of the mouth rather than the palate, altering the 

soft tissue muscular influence on both the maxillary and mandibular arches.23 The 

absence of lateral force from the tongue in the palate allows the musculature of the 

cheeks to narrow the maxillary arch.28  The resulting change in occlusion due to a narrow 

maxillary arch increases the vertical dimension.18,28  The complete absence of nasal 

breathing has been shown to decrease mandibular length, nasal width, basilar length, 

intercuspal width, facial length, skull length, and cranial length.29 

 Treatment for nasal obstruction often includes removal of the adenoids, tonsils, or 

both.  When the adenoids are removed due to obstruction, many subjects are able to 
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change to a nasal mode of breathing.  These subjects also have a corresponding change in 

dentoalveolar height and a difference in ratio of upper and lower anterior face height.30 
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CHAPTER THREE 

MATERIALS AND METHODS 

 
Ethics and Confidentiality 

 This study was approved by the Institutional Review Board (IRB) of Loma Linda 

University.  The orthodontists from each office gave written permission to use the 

collected protected health information (PHI).  Data was anonymized from the data set and 

a random number was assigned to each subject prior to being geocoded by the GIS 

technician.  Addresses were used solely for the purpose of calculating individual 

exposure to ambient air pollution and were removed from the data set prior to statistical 

analysis. 

 
Cohort Data 

 Subjects for this study were randomly drawn from a sample of current and past 

patients from orthodontic offices in Santa Maria, CA (SM) and Upland, CA (UP) 

between the months of December 2011-February 2012.  We used the Children’s Health 

Study32 to find two locations with highly contrasting air qualities.  We found that SM was 

consistently at the lower end of air pollution metrics while UP was consistently at the 

higher end (Figure 1). 

Inclusion criteria were: (1) adolescents aged 10-15, (2) having a diagnostic initial 

cephalometric radiograph.  Exclusion criteria were:  (1) individuals with previous 

orthodontic treatment and (2) craniofacial malformations or syndromes (e.g. cleft 



 

10 

lip/palate).  Patients whose residential locations could not be geocoded due to incomplete 

or missing address information were also excluded. 

 
 

 

Figure 1.  Figure taken from the Children’s Health Study.32  Upland (red ovals) had 
significantly higher levels of air pollution (taller bars) across multiple variables than 
Santa Maria (green ovals).   
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Figure 2.  Map of study area and approximate locations of survey cohort.  The letter “H” 
designates the location of each orthodontic office.  The pink circle represents Upland and 
green circle Santa Maria. 

 

 

Orthodontic Data Collection 

Digital lateral cephalometric radiographs taken prior to the start of treatment were 

collected from orthodontic offices in Santa Maria, CA and Upland, CA (Figure 2).  The 

Upland practice’s radiographs were taken with a Planmeca ProMax imaging system using 

Dimax3 software.  The Santa Maria office used a Yashida Kaycor system with Quick 

Ceph software.  Collected digital radiographs from both locations were then imported and 
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traced with Quick Ceph Studio 3.0.7.  The cephalometric measurements used (see Figure 

3) were mandibular plane (MP-FH), facial axis (Na-Ba to PTV-Gn), facial depth (Na-Po 

to FH), lower face height (Xi-Pm to Xi-ANS) and total face height (Na-Ba to Xi-Pm). 

 All measurements were performed by one examiner.  Angular measurements were 

made to the nearest 0.1 degree.  Reliability of landmark identification was verified by 

repeating measurements on 80 randomly selected radiographs 5 months later.  

Measurements were recorded in a Microsoft Excel® 2007 spreadsheet. 
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Figure 3.  Cephalometric tracing showing the five craniofacial measurements used in this 
study to determine the growth pattern:  Mandibular Plane (MP), Total Face Height 
(TFH), Facial Axis (FA), Lower Face Height (LFH), and Facial Depth (FD).  Increased 
angles for MP, TFH, and LFH and decreased angles for FA and FD indicate a more 
vertical pattern.
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Pollution Metrics 

 ArcGIS software (Esri Inc., www.esri.com), version 10.0 was used to geocode 

residential addresses obtained from patient chart information and to create several 

indicators of ambient air pollution exposure, accounting for background, local, and 

mobile sources (Table 1). 
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Table 1.  .Summary of Pollution Metrics used to Characterize and Estimate Exposure of 
Subjects to Ambient Air Pollution 

Pollution Metric Definition Units Source 

PM2.5 (NAA, 
N24HA) 

Exposure to particulate matter <2.5 
µg in aerodynamic diameter 
compiled from data collected over 
2009-2011. 

Micrograms 
per cubic 
meter 
(µg/m3) 

Background 

O3 (EPDC, 
National 8-hour 
Average) 

Ozone exposure, compiled from 
data collected over 2009-2011 

Parts per 
million 
(ppm) 

Background 

Proximity to 
Toxic Waste 
Sources 

Chemical exposure based on 
subjects’ location within a 1-mile 
radius of a toxic waste site 
weighted for the ponds of toxic 
waste site weighted for the pounds 
of toxic waste emitted per year and 
the inhalation toxicity of chemical 
being released. 

Pounds per 
square 
kilometer per 
year 
(lbs/km2/yr) 

Local 

Road Density The length of roads (in miles) that 
occur within a 1-mile radius of 
subjects’ residence based on data 
from 2008. 

Miles per 
square mile 
(mi/mi2) 

Local 

Proximity to 
Traffic 

Proximity values of 1,2,3 were 
given depending on if the 
residential distance was ≤ 100m, > 
100m and ≤ 200m, or >200m 
respectively 

Ordinal 
measure 

Local 
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Background Air Pollution Sources 

 We estimated subjects’ exposure to ambient air pollutants using data collected 

over the air quality monitoring network dispersed across southern California.  GIS-

derived geostatistical surfaces were linked with the subjects’ residential and school 

locations in order to assign exposure estimates to each subject.  All exploratory spatial 

data analyses, cross-validations, and spatial interpolations, were performed with the 

Geostatistical Analyst, a software extension available from ArcGIS 10.0.  Exposure 

estimates were developed for the following air pollutants: 

 

Particulate Matter 2.5 (PM2.5) 

 To derive exposure assessments, we interpolated PM2.5 data from the California 

Air Resources Board Air Quality System (http://www.arb.ca.gov/adam/index.html) and 

collected over 55 state and local district monitoring stations for the years 2009-2011.  

Two PM2.5 metrics, anchored on the current National Ambient Air Quality Standards 

(NAAQS) framework, were developed:  (1) the National Annual Average (NAA), and (2) 

the National High 24-Hour PM2.5 Average (N24HA).  The NAA for PM2.5 is calculated 

based on the average of the year’s quarterly averages.  The N24HA captures extreme 

events and corresponds to the highest daily 24-hour PM2.5 average observed in a given 

year.  Both measures are used as a basis for federal designation of nonattainment areas.  

A given location is in violation of the NAA or the N24HA NAAQS if PM2.5 

concentrations exceed 15 or 65 micrograms per cubic meter, respectively. 

 A three-year average, 2009-2011, was computed for each PM2.5 metric at each 

monitoring site.  Two surfaces were then interpolated for each of the two PM metrics 
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using universal kriging (UK)(Figure 4) and a radial basis function (RBF) multiquadric 

interpolator (Figure 5)..  Kriging interpolation, a stochastic method, tends to produce the 

best linear unbiased estimation of the air pollution field.  However, after crossvalidation, 

following Jerret et al.,31 a combination of UK and multiquadric RBF was used.  This 

approach leverages the local detail in the RBF surface and the general trend in the UK 

surface.  Estimated UK and RBF surfaces for the NAA and N24HA metrics were 

averaged based on 500-meter grid cells.  
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Fig 4.  Map illustrating values of PM2.5 at each location compared to adjacent locations. 
The weight of the value decreases as the distance between points increases; ordinary 
kriging of National Annual Average (µg/m3) based on monitoring data collected over 
the years 2009-2011. 
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Fig 5.  Map illustrating values of PM2.5 NAA (µg/m3)  using Radial Basis Function 
(RBF).  RBF surfaces are able to give better local detail than the general trend in the UK 
surface. 
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Ozone (O3) 

 Like in the case of PM, two ozone indices were created based on the (NAAQS) 

framework: the expected peak daily concentration (EPDC) and National Ozone 8-Hour 

Design Value.  O3 data from the California Air Resources Board air quality database for 

112 sites dispersed across the study area were also obtained.  An ozone surface was 

interpolated using a UK exposure model based on the EPDC, which is a statistical 

measure designated to assess the likely exceedance of the 8-hour ozone average 

concentration at a given site based on the previous 3 years.  The EPDC captures extreme 

events and represents a robust index for estimating stable spatial patterns of likely ozone 

exceedances.  Year-specific EPDC values at each monitoring station were estimated for 

the period 2009-2011 and then interpolated.  In addition, an ozone exposure surface was 

derived via UK based on the national 8-hour design value.  This metric represents the 

average of the three annual fourth highest 8-hour averages over 2009-2011. The national 

8-hour standard is violated when the national 8-hour ozone design value is greater than or 

equal to 0.075 ppm. 

 

Local Stationary Sources 

Proximity to Toxic Waste Sources 

 Data on local exposures to hazardous waste and other sources of air toxics were 

obtained form Toxic Release Inventory (TRI) for 2010 (Figure 6).  The TRI database is 

maintained by the US EPA and contains information on the quantity of certain chemicals 

released into the environment by toxic waste facilities in the U.S.  While the TRI 

database only includes large facilities, it does give a reasonable approximation of the  
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Fig 6.  Example of map used to determine exposure to local sources of toxic waste 
modeled by applying a 1-mile kernel density function to EPA’s Toxic Release Inventory 
dataSites. Blue lines delineate counties. Each circle represents a 1-mile radius around 
each toxic waste site with the facility located at the center. A color gradient from yellow 
to red indicates the amount of exposure to toxins, with the darker red representing 
greatest exposure. In addition, the taller the cone, the greater the exposure. 
 
 
 
amount of such activity in a neighborhood.  The air pollution metric created was the 

pounds of toxic waste emitted per year, weighted by the inhalation toxicity of each 

particular chemical.  Briefly, the procedure for creating this measure is as follows.  First, 

the location of each site was geocoded according to the EPA supplied coordinates.  

Second,a measure was developed that aggregated the emissions by TRI location, taking 

into account the toxicity of the particular chemicals being released by multiplying the 

pounds of each chemical released by a unique inhalation toxicity score using the Risk-

Screening Environmental Indicators tool constructed by the U.S. EPA (see 

http://www.epa.gov/opptintr/rsei for more information on the RSEIs tool).  Third, a 
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kernel density function (KDF) implementing a one-mile radius neighborhood was applied 

to the set of TRI locations operating a given year to model the area impacted by the toxic 

waste released from each site.  In this manner, a KDF-based surface was produced for  

the TRI data were available. Although the area impacted by toxic waste varies according 

to the chemical involved and local meteorology, a KDF based on one-mile 

neighborhoods was chosen since this distance has been validated as a reasonable 

approximation of the geographic dispersion of the impact from these sources.  Prior 

studies proceed by apportioning the estimated amount of toxic waste to the exposed 

populations near the TRI facilities under the assumption that the concentration of the 

emitted chemicals is constant within the one- mile buffer defined around each site. The 

KDF however more realistically models the dispersion of pollutants away from the 

source as it is a distance-decay function which produces an exposure field (or virtual 

landscape) across which emissions peak at the top of a series of bell-shaped domains 

centered at the exact locations of the TRI facilities.  This gradually decreases within one 

mile around each site, and drops to zero beyond that distance. 

 Finally, the KDF yearly surface was overlaid with the GIS layers representing the 

residential locations of the patients in order to assign the exposures related to the 

emissions from TRI facilities located within one mile of the home and school locations. 

In regions where TRI sites were in close proximity, the amounts of toxic waste modeled 

through the KDF were summed up at locations where the one-mile neighborhoods around 

each facility overlapped. This ensured that subjects who reside at points located under 

two (or more) KDF-derived toxic waste bell-shaped domains are assigned exposure 

estimates based on the impact of all of the facilities found within one mile of home and 
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school locations. The total annual exposure estimates were divided by 12 to arrive at an 

“average” monthly value.   For each patient, the total exposure resulted from cumulating 

the average monthly exposure estimate over age calculated in months. 

 

Mobile Sources 

 To assess the impact of local traffic, two metrics were constructed: road density 

(RD) and proximity to traffic (TP).  RD approximates the density of the transportation 

network near residential and school locations, while TP provides an estimate of the 

residence’s proximity to major roadways. In other words, RD assesses the number of 

roads near the patient, while TP quantifies how close those roads are.   

 It is assumed that patients who live near busy roads experience greater exposure 

to traffic-related emissions, compared to those who live further away. RD and TP 

approximated exposure to traffic pollution, which may exert independent effects in 

addition to pollutants such as PM2.5 and O3, which vary over larger areas. 

 

Road Density (RD) 

 Freeways and major roads were identified according to the U.S. Bureau of the 

Census feature class codes, and extracted from a GIS database (i.e. Streetmap, which is 

based on commercial street data from NAVTEQ and Tele Atlas/TomTom for the United 

States, www.Esri.com/data/streetmap). Using GIS-based geoprocessing tools, the total 

length (in miles) of all major road segments within a 1-mile radius of residential and 

school locations was summed and this value was then assigned to each patient. 
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Proximity to Traffic (TP) 

 Residential traffic proximity was characterized for major roadways.  Three 

indicators of roadway proximity were evaluated through a three-tiered exposure gradient: 

a) ≤ 100 m; b) > 100 m and ≤ 200 m; and c) > 200 m.  The areas within 100 m or 200 m 

of either side of a major road are referred to as 100-m and 200-m buffers.  Patients were 

assigned proximity indicators 1, 2, or 3 if their geocoded residential locations fell within 

the 100-m buffer, the 200-m buffer, or occurred beyond 200 m, respectively.  

 

Statistical Analysis 

 The craniofacial measurement and air pollution data was exported from the 

Microsoft Excel 2007 spreadsheet and imported into the SAS v. 9.2 and SPSS v. 19.0 

(IBM corporation) software packages for statistical analysis.  Standard descriptive 

statistics (means and standard deviations) were calculated for all measurements.  A p-

value of α < 0.05 was considered statistically significant. 

 Reliability of angular measurements was evaluated using Cronbach’s alpha and 

intraclass correlation. Measurements were repeated on 10% of the subjects (n=80) with 

an interval of 5 months between measurements. A Cronbach’s alpha of 0.8 to 1.0 was 

considered a strong correlation. 

 This was a cross-sectional study design. Given that the sets of dependent variables 

(FA, MP, FD, LFH, TFH) and independent variables (PM2.5, O3, and other pollution 

metrics) were measured on a continuous scale and contained data not normally 

distributed, statistical analysis included Spearman’s rho.  
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CHAPTER FOUR 

RESULTS 

 
Study Population 

 The study population consisted of 764 subjects.  372 came from the Santa Maria 

clinic (SM), while 392 came from the Upland (UP) clinic.  807 subjects were originally 

included in the study, but 43 were excluded due to either unreadable radiographs or 

unusable addresses (P.O. Box or out of state address).  All the subjects were between the 

ages of 10-15 years old.  The SM group averaged an age of 12.7 years, while the UP 

group averaged 12.2.  The mean of the entire sample was 12.5 years  We were unable to 

record other demographic data.  Table 2 illustrates some of the demographic differences 

between SM and UP. 
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Table 2.  Demographic data from the Children’s Health Study illustrating some of the 
differences between the two communities.32  Racial makeup and income differ 
significantly. 

 
 
 
 
 

Craniofacial Measurements 

 Each of the craniofacial indicators followed a normal distribution pattern (Figure 

7).  FD was the only measurement that had a median that was significantly different (α < 

0.05) between UP and SM (α = 0.042). 
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Figure 7.  Histograms showing the distribution of each of the craniofacial measurements.  
Mandibular Plane (MP), Total Face Height (TFH), Lower Face Height (LFH), Facial 
Axis (FA), and Facial Depth (FD) each followed a normal distribution.  The y axis 
represents the number of patients and the x axis represents the craniofacial measurement 
in degrees. 
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 All of the craniofacial measurements trended toward a more brachyfacial pattern 

and had a larger standard deviation when compared to published Caucasian norms (Table 

3).  The measurement difference could be due to racial variability in norms.  Larger 

standard deviations are probably due to differences in sample size. Comparing the 

averages of the two cohorts indicate similar results, with the means only varying between 

.1-.6 degrees (Table 4).   

 

Table 3.  Craniofacial Caucasian norms compared to observed means with standard 
deviations.  The observed measurements all indicate a less vertical pattern than the 
published norms. 
Craniofacial Indicator Caucasian 

Norm 
Norm Std. 

Dev. 
Observed Observed 

Std. Dev. 

MP 26 ± 4 23.9 ± 5.8 

TFH 60 ± 3 55.9 ± 5.6 

FD 87 ± 3 87.5 ± 3.3 

LFH 45 ± 4 44.1 ± 4.7 

FA 90 ± 3 90.6 ± 4.4 
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Table 4.  Baseline Characteristics of Craniofacial Data 

Craniofacial 
Measurement 

 Santa Maria Upland 

Mandibular Plane Mean 23.6 24.2 
Standard 
Deviation 

6.1 5.6 

Median 23.7 24.1 
Percentile 25 19.5 20.3 
Percentile 75 27.2 27.8 
Minimum 3.7 5.5 
Maximum 48.4 42.9 

Total Face Height Mean 55.6 56.2 
Standard 
Deviation 

5.8 5.4 

Median 55.8 56.2 
Percentile 25 52.2 52.6 
Percentile 75 58.9 59.7 
Minimum 35.7 39.0 
Maximum 76.9 76.0 

Facial Depth Mean 87.3 87.7 
Standard 
Deviation 

3.3 3.2 

Median 87.4 87.9 
Percentile 25 85.0 85.3 
Percentile 75 89.6 89.9 
Minimum 76.1 79.7 
Maximum 97.7 96.4 

Lower Face Height Mean 44.1 44.0 
Standard 
Deviation 

4.7 4.6 

Median 44.0 43.9 
Percentile 25 41.1 40.8 
Percentile 75 47.4 47.4 
Minimum 30.7 30.8 
Maximum 62.8 61.9 

Facial Axis Mean 90.6 90.5 
Standard 
Deviation 

4.7 4.2 

Median 90.8 90.7 
Percentile 25 88.0 87.7 
Percentile 75 93.4 93.4 
Minimum 73.9 75.0 
Maximum 106.8 103.5 
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Air Pollution Metrics 

 The air pollution data showed a significant difference (α < 0.05) in levels of O3 (α 

= 0.000) and PM2.5 (α = 0.000) between the Upland and Santa Maria cohorts.  TRI (α = 

0.601) and RD (α = 0.731) were not significantly different (Table 5).   

 

Table 5.  Baseline Characteristics of Air Pollution Data 

Air Pollution 
Measurement 

 Santa Maria Upland 

Total Exposure 
(TRI) 

Mean 156 87 
Standard Deviation 1385 872 
Median 0 0 
Percentile 25 0 0 
Percentile 75 0 0 
Minimum 0 0 
Maximum 17006 14702 

Road Density Mean 2.5 0.4 
Standard Deviation 15.3 1.7 
Median 0.0 0.0 
Percentile 25 0.0 0.0 
Percentile 75 0.0 0.0 
Minimum 0.0 0.0 
Maximum 202.6 10.2 

Ozone EPDC Mean 0.083730 0.105439 
Standard Deviation 0.002031 0.004248 
Median 0.084564 0.105777 
Percentile 25 0.083102 0.103561 
Percentile 75 0.084564 0.108462 
Minimum 0.060250 0.065638 
Maximum 0.100472 0.113313 

Ozone  8-Hour 
Average 

Mean 0.127250 33.216373 
Standard Deviation 1.011048 9.039733 
Median 0.069014 33.387869 
Percentile 25 0.031319 28.860487 
Percentile 75 0.120561 38.042360 
Minimum -0.036782 -0.019013 
Maximum 19.492577 64.527178 
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PM2.5 24- Hour 
Average 

Mean 0.4300320 2.7707969 
Standard Deviation 0.3963550 1.1114654 
Median 0.3688308 2.4665893 
Percentile 25 0.3486995 1.9149755 
Percentile 75 0.4509595 3.5214795 
Minimum 0.2562955 0.3289260 
Maximum 7.6895180 6.1260770 

PM2.5 Annual 
Average 

Mean 1.636466 5.939368 
Standard Deviation 0.720385 2.174495 
Median 1.608065 5.229509 
Percentile 25 1.262535 4.186914 
Percentile 75 1.844260 7.689039 
Minimum 0.408861 1.176681 
Maximum 9.003932 11.797426 

 

 

The distributions of both PM2.5 and O3 were clearly separated by location (Figures 8, 9).  

For both histograms the spike on the left represents the Santa Maria cohort, while the 

spike on the right represents Upland. 
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Fig 8.  Histogram depicting PM2.5 Predicted 24 Hour Average for the entire patient 
population.  The peak to the left represents SM, while the group to the right represents 
UP.  The separate grouping shows a clear difference in PM2.5 levels between the sample 
areas. 
 
 
 

. 
 
Fig 9.  Histogram depicting O3 exposure for the entire patient population study 
population.  The peak to the left represents SM, while the group to the right represents 
UP.  The clear bimodal distribution indicates a significant difference in O3 exposure 
between the sample areas. 
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Reliability 

 The coefficients of Cronbach’s alpha and intraclass correlation (ICC) are shown 

in Table 6, demonstrating high reliability for the five cephalometric measurements with 

narrow confidence intervals in all measurements except total face height.  The lower 

bound of TFH shows a high correlation, but low agreement.  The measurements were 

consistently higher than the originals for the 80 random subjects selected for reliability 

testing. 

 

Table 6.  Reliability:  Cronbach’s Alpha and Intraclass Correlation.  Both show high 
reliability, however the lower bound of the 95% confidence interval for TFH showed 
poor agreement. 

Craniofacial 
Measurement 

Cronbach’s 
Alpha 

ICC 95% Confidence Interval 

Lower Bound Upper Bound 

MP 0.973 0.974 0.959 0.983 

TFH 0.974 0.931 0.231 0.980 

FD 0.970 0.964 0.927 0.980 

LFH 0.969 0.953 0.838 0.980 

FA 0.973 0.961 0.868 0.983 

 
 
 

Spearman’s Rho Correlation 

 Spearman’s rho correlation coefficient was used to assess the correlation between 

air pollution metrics and craniofacial measurements.  We chose the non-parametric 

Spearman’s rho due to the fact that some of our air pollution data (RD and RP) were 

ordinal data and not normally distributed.   
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 Between craniofacial measurements and air pollution data no statistically 

significant correlation was found (Table 7).  Within the air pollution data, however, there 

was a strong correlation between PM2.5 24HA, PM2.5 AA, and O3.  RD and RP also 

correlated with each other.  A strong correlation between the air pollution metrics was 

expected since many of the sources of ambient air pollution produce multiple types of 

pollution.  A strong correlation between RD and RP also is expected since areas with a 

higher density of roads will tend to have residences in closer proximity. 
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Table 7.  Spearman’s Rho:  Correlations between Air Pollution Metrics and Craniofacial 
Measurements 

Variable TRI RD RP EPDC PM2.5 
24HA 

PM2.5 
AA 

O3 

MP        
  Correlation .083* -0.015 0.003 0.041 0.030 0.056 .071*

  Sig. (2-tailed) 0.021 0.682 0.928 0.257 0.408 0.121 0.048 

TFH        
  Correlation 0.059 -0.022 0.017 0.045 0.028 0.058 0.059 

  Sig. (2-tailed) 0.102 0.536 0.630 0.216 0.432 0.111 0.102 

FD        
  Correlation -.078* 0.031 0.004 0.057 0.066 0.058 0.034 

  Sig. (2-tailed) 0.031 0.398 0.903 0.114 0.068 0.107 0.354 

LFH        
  Correlation .073* -0.006 0.010 0.001 -0.037 0.008 0.011 

  Sig. (2-tailed) 0.045 0.877 0.786 0.988 0.312 0.818 0.769 

FA        
  Correlation -0.063 0.037 -0.034 -0.035 0.001 -0.035 -0.032 

  Sig. (2-tailed) 0.080 0.310 0.344 0.341 0.979 0.329 0.376 

TRI        
  Correlation 1 -0.021 0.024 0.059 -.082* 0.024 0.030 

  Sig. (2-tailed)  0.560  0.511 0.101 0.024 0.515 0.403 

RD        
  Correlation -0.021 1 -.888** -0.058 0.002 -0.017 -0.049 

  Sig. (2-tailed) 0.560  0.000 0.109 0.947 0.644 0.173 

Proximity        
  Correlation 0.024 -.888** 1 0.063 -0.001 0.021 0.059 

  Sig. (2-tailed) 0.511 0.000  0.079 0.979 0.556 0.101 

EPDC        
  Correlation 0.059 -0.058 0.063 1 .724** .747** .819**

  Sig. (2-tailed) 0.101 0.109 0.079  0.000 0.000 0.000 

PM2.5 24HA        
  Correlation -.082* 0.002 -0.001 .724** 1 .906** .692**

  Sig. (2-tailed) 0.024 0.947 0.979 0.000  0.000 0.000 

PM2.5 AA        
  Correlation 0.024 -0.017 0.021 .747** .906** 1 .721**

  Sig. (2-tailed) 0.515 0.644 0.556 0.000 0.000  0.000 

O3        
  Correlation 0.030 -0.049 0.059 .819** .692** .721** 1 

  Sig. (2-tailed) 0.403 0.173 0.101 0.000 0.000 0.000  

*Correlation is significant at the 0.05 level (2-tailed). 

**Correlation is significant at the 0.01 level (2-tailed). 
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CHAPTER FIVE 

DISCUSSION 

 

 Our study was a follow up to the research done by Kaplan.20  She examined 

differences in craniofacial morphology and dental malocclusion in relation to ambient air 

pollution.  We attempted to simplify and strengthen her study by focusing only on 

craniofacial morphology, selecting two heterogenous air pollution environments, and 

significantly increasing the sample size.  The Children’s Health Study has established air 

quality measurements from communities throughout Southern California.  We chose 

Santa Maria and Upland because of their contrasting air qualities. 

 

Statistical Significance 

 No statistically significant correlation between the air pollution metrics and the 

craniofacial measurements were found.  There was no significant difference between the 

craniofacial measurements of each sampling area, with the exception of a small 

difference in the medians of facial depth.  The air pollution metrics between the two 

sampling areas were, however, significantly different. 

 

Clinical Significance 

 In order to have a clinically significant change, our outcome variables would need 

to change by at least several degrees.  What we instead found was that the means between 
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groups only varied from .1-.6 degrees.  Such a small change in any of the measurements 

would not be likely to change the diagnosis or treatment planning of any subjects.  The 

small variation is well within the expected error inherent to tracing the radiographs.   

 

Strengths and Weaknesses 

 The study has several strengths.  First, we were able to identify two areas in 

Southern California with highly contrasting air qualities.  The Children’s Health Study32 

indicated that Upland and Santa Maria have some of the highest and lowest levels of air 

pollution respectively and our data confirmed that.  Second, our sample size of roughly 

800 subjects is more than adequate for a study of this nature.  And third, we used multiple 

craniofacial measurements to measure vertical growth.  FA, TFH, FD, and MP all 

incorporate some portion of the cranial base, while LFH uses the maxilla and mandible.  

If there was a significant change in vertical growth, one of these measurements should 

have been able to detect it.   

 The major weaknesses of this study were mostly related to the huge number of 

confounding variables that we were unable to account for.  Sex, race, residential history, 

history of household smoking, indoor/outdoor time, diet, full medical history, etc., were 

not included in our data.  Acquiring this data requires a comprehensive questionnaire, 

which would be time prohibitive for us when conducted on groups of this size. 

 Also, our study was only able to look at one of the final adaptive changes to an 

environmental stimulant.  The chain of events that lead to a change in craniofacial 

morphology is long.  We didn’t measure or detect any of the intermediate stages (change 

in posture, decrease in airway volume, change in mode of breathing, etc.).  Being able to 
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see the progression of physiological and anatomical adaptation in response to a higher 

level of air pollution could have helped isolate causative variables along the way.   

 

Areas for Further Study 

 In order to find any correlations in this type of study, the many confounding 

variables need to be accounted for.  Further studies need to either have a comprehensive 

questionnaire along with a large sample size or use an established cohort, such as from 

the USC Children’s Health Study.32   

 What may prove most beneficial is studying correlations between air pollution 

and the many adaptive changes that occur before craniofacial morphology changes.  

Airway volume, airflow, postural changes, and mode of breathing should be affected 

prior to the subject having an adaptation in vertical facial growth.  Future studies should 

incorporate exhaustive patient histories with the aforementioned indicators of adaptation. 

 

Conclusions 

 The null hypothesis was accepted and no association between ambient air 

pollution and craniofacial measurements was found.. 

1.  Using two areas with contrasting levels of air pollution offers a distinct 

advantage with exposure studies.  Future studies should attempt to maximize the 

difference between the sample areas. 

2.  Growth of the craniofacial complex depends on a large number of variables.  

Accounting for these many variables is difficult, but necessary to isolate contributing 

factors. 
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