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ABSTRACT OF THE DISSERTATION 

Mechanical Evaluation of Mandibular Defects Restored with rhBMP-2: A 
Finite Element Model 

 
by 

Jelson J. Yalung 

Master of Science in Orthodontics and Dentofacial Orthopedics 
Loma Linda University, August 2012 
Dr. Joseph M. Caruso, Chairperson 

 

Introduction: The utilization of recombinant human Bone Morphogenetic Protein-2 (rh-

BMP2) to form new bone has been shown to be a promising alternative to autogenous 

bone grafts.  Understanding the biomechanical properties of rhBMP-2 restored 

mandibular defects would provide useful knowledge in the future success of orthopedic 

and dental treatment in patients who have had restoration of mandibular defects with 

rhBMP-2. The aim of the study was to evaluate and compare the biomechanical 

characteristics of rhBMP-2 regenerated bone in mandibular defects using 2 different 

concentrations of rhBMP-2 with a given carrier in non-human primates 

Material and Methods:  Critical-sized defects (approximately 2.5 cm) were created in 

the mandibles of 6 adult male non-human primates. Each side of the mandibles received 

one of 2 carrier types: 1) 1.35 mg/mL rhBMP-2 combined with a collagen ceramic 

sponge (CCS) and 2) 0.75 mg/mL rhBMP-2 combined with CCS. All defects were 

stabilized with a titanium reconstruction plate. Young’s modulus of 10 bone samples was 

calculated using the results from a tensile test of the samples. Density of the 10 samples 

was determined with a pycnometer. A 2-dimensional model of the mandible was virtually 

created to simulate the mandible for a given BMP/carrier group. Subdomains of the 



x 

model included cortical bone, regenerated bone, periodontal ligament, enamel, and 

cementum. Boundary conditions of the subdomains were assigned using the 

biomechanical properties determined in the literature and the regenerated bone values 

were assigned based on prior testing. Finite Element Analysis was performed with the 

COMSOL Finite Element Modeling software to measure peak Von Mises stresses and 

surface displacement of the newly regenerated bone in response to a 150 N force of the 

masseter muscle.     

Results: There was no statistical difference between the mechanical properties among 

treatment groups. However, both treatment groups showed a statistically significant 

difference in stress distribution, displacement in the x-axis, and displacement in the y-

axis when compared to the control group (p < 0.05) but no statistically significant 

difference when compared to each other (p < 0.05). 

Conclusions: The differences in stress distribution and displacement when comparing the 

treatment group to the control group indicate that the treatment group regenerated bone 

was less stiff which lead to more displacement in the mandible and higher stress in 

response to function. This may be attributed to the 6-month follow-up period where the 

regenerated bone did not complete mineralization. The similarity in mechanical 

properties, stress, and displacement between treatment groups indicate that a rhBMP-2 

concentration of 0.75 mg/mL produced bone that was biomechanically comparable to a 

concentration of 1.35 mg/mL.  
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CHAPTER ONE 

EXPANDED REVIEW OF THE LITERATURE 

 
 To date, autogenous bone grafts are considered the “gold standard” for bone 

grafting, which all other grafts have been compared. Autogenous bone grafts are 

harvested from a donor site of either iliac crest or rib, which require a second site of 

surgery to the patient and carry an increased risk of complication. These risks include 

pain, paresthesia, gait disturbances, scarring, and infection. To reduce the surgical 

morbidity associated with autogenous bone grafts, a number of studies have been 

conducted to develop alternative grafting techniques.1-10 In 1965, Urist reported a case in 

which he induced ectopic bone formation in an animal model using an osteoinductive 

growth factor, which he later termed Bone Morphogenetic Protein (BMP).10 Since its 

discovery, use of BMP has been studied in laboratory and clinical settings and is now 

produced using recombinant DNA technology (rhBMP) for its potential use in 

regeneration of osseous defects in the maxillofacial region. 

 With an increasing prevalence of dental patients having undergone restoration of 

maxillofacial osseous defects, it is important to know the biomechanical characteristics of 

the BMP “regenerated bone” to decipher the limitations that may occur during orthopedic 

or dental treatment. While previous studies have shown the success of osseous 

reconstruction using BMP,1,3-5 the literature has yet to report the biomechanical response 

of this regenerated bone to stress and strain. This literature review will examine 
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reconstruction of osseous defects using BMP and the analysis of the regenerated bone’s 

biomechanical characteristics.  

 

rhBMP-2 and Induction of Bone Formation 

 rhBMP-2 is a growth factor that has been shown to induce osteoid production by 

converting uncommitted mesenchymal cells into an osteoblastic lineage of cells.11  Urist 

was the first to discover the bone-induction principle of BMP in 1965.10 In this study he 

took long bones from adult rabbits and decalcified them in HCl. This decalcified bone 

matrix was then implanted into muscle pouches of rabbits, rats, mice, and guinea pigs. He 

found that a component of the implanted bone matrix caused generation of new bone by 

the induction of stem cells into bone producing osteoblasts. He identified the source of 

the cell transformation as a growth factor, which he later called BMP.10 This finding was 

a key discovery because it was the first to identify that a specific protein could induce 

bone formation by induction of mesenchymal cells. 

 Another study was done by Wang et al in 1989 to further define the factors of bone 

formation using BMP-2.12 In this study, BMP-2 was purified and recombinant human 

BMP was made from Chinese Hamster ovary cells. rhBMP-2 was then implanted in rats 

at varying concentrations. Cartilage formation was observed at day 7 and bone formation 

at day 14. They found that the timing of bone formation was dependent on the amount of 

rhBMP-2 implanted, which was confirmed by bone formation in only 5 days with the 

highest concentration of implanted rhBMP-2. Their histological analysis of rhBMP-2 

regenerated bone showed no significant difference from the original bone extracts. With 

their findings, Wang concluded that rhBMP-2 from Chinese Hamster Ovary has the 
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potential for de novo bone formation in humans.12  

 With the regenerative potential of rhBMP-2 being investigated in animal and 

clinical models, the biomaterials used to deliver rhBMP-2 have been observed to play a 

critical role in the osteoinductive activity of BMP.31 A study done by Zellin and Linde13 

aimed to investigate whether the choice of carrier/delivery system might be crucial for 

rhBMP-2 induced osteogenesis. The authors implanted rhBMP-2 into 5mm transosseous 

mandibular defects in rats using either a collagen sponge or bioabsorbable poly beads 

(PLA/PGA) w/ allogenic blood. The implanted rhBMP-2/carrier matrix was then placed 

with either a membrane or no membrane. Their findings showed that when comparing the 

use of a BMP carrier with a membrane to membrane alone, there was enhanced 

osteogenesis with the addition of the BMP and carrier. This is validated in their result of 

complete regenerated bone bridging with use of rhBMP-2 and PLA/PGA under a 

membrane but only 53% bone bridging when membrane was used alone. Furthermore, 

when comparing the two carrier systems overall, the PLA/PGA carrier was superior to 

the collagen carrier in the presence of a membrane.  They concluded that the delivery 

system used can enhance the amount of bone formation obtained.13 

 Another study done by Uludag14 attempted to describe the pharmakokinetics of 

rhBMP-2 with biomaterial used as a carrier and a correlation it has with its osteoinductive 

ability. The basis of their idea was the observation in other studies that when a 

biomaterial was used with rhBMP-2, (i) induction of bone was in close proximity to 

biomaterial (ii) the dose of rhBMP-2 needed for bone induction was significantly less 

with biomaterial (iii) the bone induction cascade was improved. To test their idea, they 

used a rat animal model and implanted rhBMP-2 and rhBMP-4 at varying concentrations 
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with an absorbable collagen sponge. The sponges were grouped as untreated, 

formaldehyde treated, and formaldehyde and ethylene oxide treated. Their results show 

varying retention of rhBMP-2 to the biomaterial based on the physical characteristics of 

the sponge. The group with the sponge treated with formaldehyde and ethylene oxide saw 

the highest retention of rhBMP-2. Their findings identified that the biomaterial was a 

critical component to the osteoinductive properties of rhBMP-2 and was also seen to 

modulate local protein pharmacokinetics.  

 Collectively, the findings of these studies validate the use of rhBMP-2 in 

regenerating bone. Under the proper conditions, rhBMP-2 has the potential to be used in 

restoration of osseous defects in medicine and dentistry. With the positive results 

stemming from rhBMP-2 in laboratory studies, a wave of clinical trials began that 

addressed using rhBMP-2 to restore osseous defects in the maxillofacial region. 

 

rhBMP-2 Clinical Use in Restoration of Mandiular Defects 

Initially, the first studies involved an animal model to test the capability of 

rhBMP-2 to restore defects in the mandible.6- 9,15,16  In a study done by Toriumi in 1991, 

they evaluated the ability of BMP-2 implants to form bone and restore mandibular 

continuity and provide functional stability.16 Their sample included 26 dogs who had 3-

cm mandibular defects. They treated 3 groups, where group 1 was treated with BMP-2 

and a matrix carrier, group 2 was treated with carrier alone, and group 3 was given no 

treatment. Their results showed that in group 1, a histomorphometric analysis revealed 

68% replacement of the BMP-2 implant with mineralized bone whereas group 2 and 3 

showed very little bone formation. They also found an average bending strength of group 
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1 to be 27% of the contralateral mandible where strength increased significantly from 

post-operative months 3-6 which the others attribute to an increase in the degree of 

mineralization and thickness of bone bridging. This study signifies the success of BMP-2 

in restoring mandibular discontinuity defects in an animal model. 

 Another study done by Marukawa in 2002 observed reconstruction of a primate 

mandible using rhBMP-2 over the period of a year. Their goal was to evaluate the long-

term functional properties of bone regenerated with rhBMP-2.7 In this study, they 

restored 30mm mandibular defects in 6 primate models using rhBMP-2 with poly-D, L-

lactic glycolic acid-coated gelatin sponge. They then placed dental implants in the 

regenerated mandible 20 weeks after surgery and loaded the implants 8 weeks after 

implant placement. Using histological and radiographic analysis of the newly generated 

bone, they found that the resected mandibles were completely regenerated with rhBMP-2 

induced bone. The bone maintained its functionality for 1 year and demonstrated its use 

as a viable option for mandibular reconstruction to autogenous bone grafts.7 

 Toriumi carried out another study in 1999 to follow mandibular reconstruction 

using rhBMP-2 for an even longer period of time, thirty months. His goal was to 

determine the degree of bone resorption and stability of 3-cm, full thickness canine 

mandibular defects restored with rhBMP-2 and a poly bioerodable carrier.9 In his sample, 

he used nine dogs divided into three groups, which included six dogs that were restored 

with rhBMP-2 and carrier, of which three were sacrificed at three months and 3 at 30 

months. The other 3 animals served as control and only received carrier alone and were 

sacrificed at 3 months. The results of their study showed that control animals did not 

show any bone formation across the defect while the short term animals showed 41% 
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mean area density of defect regeneration. The long-term animals showed d 56.5% mean 

area density of restored defect and stabilization at 11 months with no indication of 

resorption. Over time, the authors observed an increase in the density of the regenerated 

defect in the long-term animals. These findings suggest that rhBMP-2 regenerated 

mandibular defects successfully integrate with host bone and are capable of responding to 

normal masticatory function with no signs of significant resorption.  

 A number of authors have used the success of rhBMP-2 from animal studies and 

observed the results of using rhBMP-2 in a human model. In 2008, Herford conducted a 

study on 14 human patients that had mandibular continuity defects caused by neoplastic 

and pathologic conditions.5 The author’s goal in the study was to observe the effects of 

rhBMP-2 in a collagen carrier in restoring critical sized defects of the mandible. His 

findings showed that all patients exhibited radiographic evidence of bone formation at 

three to four months after surgery and regained continuity of the mandible seen both 

radiographically and clinically.5 This study shows that rhBMP-2 can be used to restore 

mandibular continuity defects successfully without the need of calcified graft system.  

Another study done by Heford in 2007 used rhBMP-2 with a collagen sponge to restore 

premaxillary clefts.4 In this study, ten patients had unilateral premaxillary clefts restored 

with rhBMP-2/carrier and were compared with two patients who had unilateral 

premaxillary clefts restored with autogenous bone grafts from the anterior iliac crest. The 

volume of each defect was calculated pre-operatively and compared to the post-operative 

volume of the regenerated bone. At four months post-operatively, volume ratios of 

rhBMP-2 restored defects ranged from 24.1-90.6% with an average of 71.7% while 

patients who received autogenous bone grafts had volume ratios ranging from 71.3-
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84.9% with an average of 78.1%. This study compares the use of rhBMP-2 in 

regenerating premaxillary clefts with what is still considered the “gold standard” of 

grafting in autogenous bone grafts. These findings suggest that rhBMP-2 is an effective 

alternative to autogenous bone grafts without the risks associated with the surgical 

morbidity of autogenous bone grafts.4 

 These pre-clinical and clinical trials show the effectiveness of using rhBMP-2 to 

restore defects in maxillofacial region.1, 3, 4, 6- 9,15,16 However, in regenerating osseous 

defects, it is important to know the biomechanical characteristics of the regenerated bone 

and if the physical and biological response of the bone will be similar to native bone.    

 

Finite Element Analysis Using a Mandibular Model 

 Determining the response of bone to a given force is important in determining its 

response to functional, physiologic, and even therapeutic forces. Several authors have 

sought to measure the strength of mandibular bone using a finite element model (FEM). 

FEM consists of a numerical procedure that simulates strain and stress response of a 

material based on the physical characteristics of that material. A 3-D reconstruction of a 

sample is made using a type of scan which can include cone beam CT or conventional 

CT, and the 3-D model is divided into voxels which are assigned a value based on the 

density reading provided by the scan. Using a set of equations, values simulating an 

external force can be input to the model which will in turn produce an output that 

correlates to stress and strain of the sample. FEM has been shown to be a useful tool in 

modeling functional forces of the TMJ,17,18 forces applied to bone surrounding implants 

during loading,19,20 and even effects of third molar removal on the mandible.20 A study 
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done by Al-Sukhun tested the validity of FEM in analyzing mandibular strain by 

comparing its values to mandibular surface strain calculated by strain gauges. He found 

good agreement between predicted values by FEM and measure strain values deeming 

FEM a valid tool in measuring strain in the mandible.21 In 2000, Vollmer carried out a 

similar experiment seeking to define mandibular deformation under a given load by 

comparing FEM to measured surface strain. In this study he also found agreement 

between the FEM and measured strain. With this he concluded that FEM is a valid and 

accurate, non-invasive method to predict biomechanical behavior of the mandible.22  

 Tie conducted a study using FEM that compared the biomechanical effects of 

restoring a mandibular defect with autogenous bone compared to native bone. In this 

study, computerized tomography scans of the mandible, fibula, and iliac crest were 

collected and used to model the FEM. A masticatory force modeling the TMJ and 

masticatory muscles was simulated and applied to the sample.  FEM showed that the iliac 

bone graft compared to fibula had the most similar distribution of Von Mises stresses as 

the normal mandible. Most of the stress on the autograft was in the form tensile and 

compressive and was overall less in the autograft from the iliac crest. Using FEM, they 

were able to conclude that mandibles repaired with iliac crest grafts are more similar to 

normal bone biomechanically.23 

 These studies show that FEM can be an effective tool in modeling the mandible 

and functional forces that act on the mandible. While a number of studies have 

documented the biomechanical characteristics of the mandible and autogenous grafts 

using FEM, there is little, if any, literature that models the strength of BMP restored 
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defects compared with native bone. A study of this nature would provide information 

helpful in restoring a functional occlusion both dentally and orthopedically. 

 The literature shows that restoration of osseous defects in the maxillofacial region 

can be done successfully with rhBMP-2. In addition, grafting with rhBMP-2 does not 

carry the surgical morbidity associated with autogenous bone grafts and may serve as a 

more desirable treatment option to patients. With the refinement of grafting techniques 

and the increasing familiarity surgeons will have with rhBMP-2, it is expected that the 

number of patients receiving rhBMP-2 bone grafts will increase in the coming years. As 

dentists, it will be important to know the biomechanical characteristics of the regenerated 

bone to aid in making prudent treatment planning decisions. Examples include scenarios 

such as the role functional forces may have in loading the grafted area, which may lead to 

resorption or apposition in the defect site, or even the effect skeletal or dental expansion 

may have in a grafted premaxillary site of cleft palate patients. While the literature 

supports the use of modeling forces of the mandible using a Finite Element Model, it has 

yet to use this model to quantify the stress and strain response of rhBMP-2 restored 

defects in the mandible. This model would provide a valid, non-invasive approach to 

learning more about the biomechanical properties of rhBMP-2 restored defects. 
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CHAPTER TWO 

INTRODUCTION 

 
Statement of the Problem 

 Reconstruction of osseous defects in the maxillofacial region with rhBMP-2 has 

been shown to be a viable alternative to autogenous bone grafting. Autogenous bone 

grafting, which is considered to be the current gold standard in regenerating bone, suffers 

several drawbacks, including most notably donor site morbidity and difficulty with 

obtaining a sufficient donor supply. Given the novel nature of grafting with rhBMP-2, the 

biomechanical properties of the regenerated bone have not been addressed in the 

literature. What has historically been limited in treatment options, osseous defects of the 

mandible now have alternatives for restoration, which include Bone Morphogenetic 

Protein. Understanding the biomechanical characteristics of the BMP “regenerated bone” 

would be important to decipher the limitations that may occur during orthopedic or dental 

treatment and serve as an aid in making prudent treatment planning decisions. 

  With the increasing prevalence of dental patients having undergone restoration of 

maxillofacial osseous defects with BMP, it is important to understand the biomechanical 

characteristics of the BMP “regenerated bone” to decipher the limitations that may occur 

during orthopedic or dental treatment. Those who have undergone neoplastic tumor 

resection, were born with incomplete fusion of sutures, seen in cleft palate, and even 

localized bone loss caused by periodontal disease are a population who seek novel ways 

to regenerate bone and restore a functional occlusion. While previous studies have shown 
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the success of osseous reconstruction using BMP,1-4 the literature has yet to report the 

biomechanical response of this regenerated bone to stress and strain.  

The purpose of this study is to use Finite Element Analysis to evaluate and 

compare the biomechanical characteristics of the rhBMP-2 regenerated bone in 

mandibular osseous defects using 2 different concentrations of rhBMP-2 with a given 

carrier in non-human primates (Macaca fascicularis). 

 

Hypothesis 

The null hypothesis is there is no difference in peak stresses within a regenerated 

mandible between the 2 concentrations of rhBMP-2/carrier when exposed to forces of the 

masticatory musculature. 

The alternative hypothesis is that a mandible with defects restored with a higher 

concentration of rhBMP-2/carrier will exhibit a different distribution/magnitude of peak 

stresses and displacement when exposed to forces of the masticatory musculature.  

 

Materials and Methods 

Surgical Procedures 

 This study was approved by the Institutional Animal Care and Use Committee. 

Six adult male non-human primates (Macaca Fascicularis) were used in this study to 

produce 12 mandible-halves for evaluation.  Each animal underwent two separate 

surgical procedures.  In the first surgical procedure, the canines, 1st and 2nd premolars, 

and 1st and 2nd molar teeth were bilaterally extracted to produce a smooth, edentulous 

ridge in preparation of the mandibular discontinuity defects. Six weeks later, bilateral 
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(approximately 2.5 cm) critical sized defects were created with immediate reconstruction 

with a reconstruction plate and simultaneous implantation of a graft material. Before each 

surgery, each animal was given 0.2 mg/kg Ketamine intramuscularly IM and local 

anesthesia of 2% lidocaine with 1:200,000 Epinephrine.  During surgery, each animal 

was given intravenous 2 mg/kg Ketamine every 25 minutes, 2% lidocaine with 1:200,000 

Epinephrine, oral endotracheal Isofluorane, and 0.5% Marcaine with 1:100,000 

Epinephrine.   

 Long term care with a soft diet and exercise was observed for 6 months.   

Tetracycline labels to produce intravital fluorochrome for bone labeling were 

administered at the following intervals: 

 - 3 weeks post-resection and reconstruction to indicate initial bone matrix  

             deposition. 

 - 16 weeks post-resection and reconstruction to label bone turnover 

 At the 6th post-operative month, the animals were euthanized and underwent  

cannulation of bilateral carotid arteries and were perfused with 10% formalin. The 

mandibles were subsequently harvested. All 6 mandibles were then radiographically 

scanned using the Newtom 5G CBCT machine (QR Srl, Verona, Italy). 
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Figure 1. Distribution of treatment groups.  

 
 

Graft Materials 

 In restoring the critical-sized defects, a split mouth study design was used where 

each mandible-half was selected to receive one of 2 types of carrier/rhBMP-2 dose 

combinations, resulting in six defects per carrier group.  The bulking agent used was a 

collagen ceramic sponge comprised of bovine type I collagen sponge impregnated with 

15% hydroxyapatite/85% B-tricalcium phosphate ceramic granules. Group A received 

1.35 mg/mL rhBMP-2 combined with CCS received (Figure 1). Group B received 0.75 

mg/mL rhBMP-2 combined with a CCS. The animals were divided into 2 groups (n=6 for 

each group). Because the defects varied in size slightly, the doses were calculated after 
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the bone was removed from the defect and measured.  In order to calculate the total dose 

for the groups the dry volume (length x width x height) was multiplied by the solution 

concentration (either 1.35 mg/mL—Group A, or 0.75 mg/mL—Group B) and the soak 

load (0.5 mL for both). All of the defects were stabilized by a 2.4 cm locking 

reconstruction plate (Synthes, Paoli) to provide rigid fixation after creation of the defect. 

 

 

 
 

Figure 2. Resected bone with rhBMP-2 and CCS 
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              Figure 3. Group A carrier (CCS with 0.75 mg/mL rhBMP-2) stabilized with   
   titanium plate.  
 
 
 

Tensile Testing 

Bone specimens from each treatment group were collected by slicing a sagittal 

section through the defect site. Twelve samples were collected and placed in a formalin 

solution. To prepare for tensile testing with the MTS mechanical testing machine (MTS 

Systems, Eden Prairie, MN), soft tissue was removed from the bone leaving a solid piece 

of intact bone. Out of the 12 samples that were collected, Ten samples, five from each 

treatment group, were prepared for use in this study. The remaining 2 samples had excess 

soft tissue and did not have enough bone, as a result of a poor slice. The bone from each 

sample was then sectioned within the defect site between the remaining molar and the 

lateral incisor using a diamond disc to achieve a dimension compatible with the 

functional components of the MTS machine. 
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Figure 4. Regenerated bone from the defect site was sectioned after sacrifice of the 
animals. From each section, regenerated bone was further cut to be tested with an MTS 
machine.  
 
 

The tensile testing of our bone samples in this study followed the protocol 

outlined by Jonas et al. 43 Each bone sample was sectioned using two diamond discs 

(Komet, Rock Hill, SC) separated by two 1 mm spacers attached to an electric handpiece. 

The length of each specimen was then cut to a length of 8-10 mm. Undercuts at the end 

of each of the bone samples were made with a cutting bur and then embedded in dental 

acrylic to function as a grip for the MTS machine. Once each sample was prepared, the 

width and length measurements were collected and recorded. Each sample was then 



17 

placed in the jaws components of the MTS machine and analyzed using the tensile test 

module of the Testworks software (Testworks V4.12) Young’s modulus for each bone 

sample was calculated using the following equation: 

Young’s modulus = (force/cross section of area)/(change in length/original length). The 

force value was selected on the stress-strain curve within the sample’s elastic limit. 

 

 

Figure 5. Stress-strain curve of a regenerated bone sample.  

 

To determine the density of the regenerated bone specimens, each sample was 

placed in a pycnometer and the amount of water displaced was measured. Poissons ratio 

of the regenerated bone was assigned a value of 0.33.  
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Figure 6. MTS machine was used to complete tensile testing of our bone specimens. 

 

Model Acquisition 

The model acquired and imported to COMSOL Multiphysics (COMSOL, 

Burlington, MA) was processed through three different steps as shown in Figure 7.  

Step 1: Noise from post-treatment radiographic scans was eliminated using Amira® 

software (Amira 5.2.2; Visage Imaging, Inc, Carlsbad, CA). 

Step 2: A virtual model was drawn using AutoCAD® (San Rafael, CA) referencing 

images from post-treatment radiographic scans to reproduce a 2-dimensional sagittal 

view of our mandible sample. 

Step 3: Finite element analysis was carried out using the Structural Mechanics Module of 

the COMSOL Multiphysics® software (Burlington, MA). The COMSOL Multiphysics® 
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model was meshed and solved for displacement of the regenerated bone for the twelve 

samples as shown in Figure 8.  

 

  

Figure 7. The process flow developed to accurately import the image for finite element 
modeling.  
 

 

Figure 8. Virtual model of regenerated mandible 

 

Subdomain Conditions  

This model was then imported into COMSOL Multiphysics® where the 

subdomain boundaries were identified. The following subdomains were created in our 2-

dimensional model: a) cortical bone b) regenerated bone c) cementum d) enamel 5) 

periodontal ligament. 
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Figure 9. The figures above illustrate the locations of each subdomain. a). Cortical bone 
b). regenerated bone (from tensile testing) c). cementum d). enamel e). periodontal 
ligament 

 
 

Values for Young’s modulus and Poissons ratio for cortical bone, periodontal 

ligament, cementum, and enamel were collected from studies done by Middleton et al. 27 

and Nagasao et al28. Young’s modulus for the regenerated bone was drawn from the 

results of the tensile testing and the density was found using a pycnometer. The titanium 

plate was extracted from the model in order to simulate a continuous mandible with the 

biomechanical properties of the regenerated bone in the defect site.  

 

Mesh Sizing 

Once the model was completed, a mesh was generated with the COMSOL 

Multiphysics® software. Two different mesh sizes were created: (1) approximately 
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14,800 triangular elements and (2) approximately 900,000 triangular elements. A 

variation in mesh sizing was done in order to see if there was a difference in the 

resolution. The models were independently simulated with both the 900,000 and 14,800 

elements with no significant differences in the results. As shown in Table 1, a Tolerance 

Test was performed to check for mesh independency. It was therefore decided that the 

14,800 mesh element model would be used for our study in order to increase the 

efficiency of solving the differential equations.  

 
 
Table 1. Tolerance Test with 14800 mesh elements to 183000 mesh. 
 

Number of 
elements 

Time 
(s) 

Deformation, δ 
 (cm x 10-6) 

Tolerance  
 

14.8K 10 7.48 0.0053 

26K 46 7.49 0.0040 

49.7K 9 7.50 0.0027 

85.2K 13 7.50 0.0027 

183K 21 7.52 0 

 

 

Boundary Conditions 

To illustrate a functional activity of the mandible, the activity of the masseter 

muscle was simulated virtually. Activity of the masseter muscle was simulated by 

applying a force with a vector of 130 N in the X direction and 75 N in the Y direction. 

The total magnitude of force by the masseter muscle was simulated to be 150 N at a 30° 

angle.  

 

mesh finest

mesh coarsemesh finest   


 
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Figure 10. The figures above illustrate the boundary conditions applied to the mandible. 
The first model shows a force from the masseter muscle. The second model shows the 
location of the pivot point from the temporomandibular joint. The last model shows the 
location of the fixed point applied to the lower incisor.  
 
 
 

The temporomandibular joint of this model was designated the pivot point of the 

model, while the lower incisor was assigned as a fixed point, toward which the masseter 

muscle is lifting the mandible.  

 

Methodology of the Measurements 

 A total of ten models were created to represent each treatment sample. An 

eleventh model was created to represent the control sample, where the regenerated bone 
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subdomain was given biomechanical values identical to cortical bone.28 All eleven 

models were run individually using the 14,800 mesh elements. Data was collected for 

von Mises stress, displacement in the X-direction, and displacement in the Y-direction. 

To gather a varied distribution of data from our model, four domains were chosen. One 

domain was completely within the cortical bone subdomain, one was completely within 

the regenerated bone subdomain, and the remaining two were at the anterior and posterior 

cortical bone-regenerated bone boundary (Figure 11). In each domain, a three by three 

grid was created to reduce sampling error. Each point within a domain was assigned a 

coordinate. Values for the variables von Mises stress, displacement-x, and displacement-

y were collected using the COMSOL Multiphysics® software. 
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a) 

 

 

b) 

 

 

 Figure 11. Four domains were created for comparisons of strain, displacement-x, and 
displacement-y. a) 2 domains were within subdomains b) The remaining 2 were at 
subdomain boundaries. Within each domain, a 3x3 grid was created to provide a larger 
sample of data.  
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Figure 12.  Diagrammatic representation of the regions of interest (ROIs) in 2-D 
arranged from posterior to anterior. First digit indicates domain location. Second 
digit indicates orientation within domain.  
 

Statistical Analysis 

  For each mandible, 36 data points were collected for the 3 variables which 

included stress, displacement-x, and displacement- y. Means and standard deviations of 

all variables were calculated. Friedman’s two-way analysis of variance by ranks was 

performed to compare differences in stress and displacement of the mandible among the 

treatment groups and the control. Further analysis included the Wilcoxon Signed Rank 

Test omitting data points in the domains that were on the boundary of bordering 

subdomains to account for any discrepancy in the differential equations at the borders.  

The Independent Wilcoxon Signed Rank Test was also used to detect any clinically 

significant differences in the 3 variables among the control group and among regions 

completely within its subdomain. All statistical analyses were performed with SAS v. 

9.1.3 (SAS Institute, Cary, North Carolina) at the significance level of α = 0.05.   
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CHAPTER THREE 

RESULTS 

The biomechanical properties from each sample are summarized in Table 2. The 

average modulus of elasticity of regenerated bone from group’s A and B were 40.0% 

(range = 31-84%) and 20.7% (range = 2-76%) of cortical bone, respectively.  The value 

for Young’s modulus of elasticity for cortical bone was referenced as 150 x 108Pa.27 

 

Table 2. Modulus of elasticity and density values tests from each treatment group.  
 

 
Sample 

 
Young’s Modulus (108 Pa) 

 
Density (g/cm3) 

 
Group A 

 
60.00  39.95 

 
1.00  0.10 

 
Group B 

 
31.01  46.83 

 
1.00  0.50 
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Figure 13. Color map shows the magnitude of strain, displacement-x, and displacement-y 
in the treatment groups. Blue color indicates lower values while the red indicates greater 
values.   

a) 

b) 

c) 
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There was no statistical difference between the distribution of stress in the 

regenerated mandibles between treatment group A and group B in response to function. 

However, both treatment groups A and group B showed significantly less distribution of 

stress when compared to the control group. Evaluating the amount of displacement in 

response to function, the results were similar for both displacement in the x coordinate 

and displacement in the y coordinate for treatment group A and group B. There was no 

statistical difference between group A and group B for both displacement in the x 

coordinate and displacement in the y coordinate. However, both treatment groups A and 

B showed significantly more displacement than the control group in response to function.  

 

 
Table 3.  Related samples Friedman’s two-way analysis of variance by ranks test of strain 
distribution and displacement among groups.  

 
 

Variable 
 

Control 
 

Group A 
 

Group B 
 

p-value 

Stress Distribution 
(103Pa) 

 
8.11 +/-3.80a 

 
7.95+/- 3.65b 

 
7.29+/-2.53b 

 
.038 

Displacement-x 
(10-5mm) 

 
0.35+/-0.035a 

 
1.40+/-1.82b 

 
1.04+/-0.50b 

 
.000 

Displacement-y 
(10-5mm) 

 
0.30+/-0.055a 

 
1.46+/-1.99b 

 
1.07+/-0.57b 

 
.000 

a,b: Different letters denote statistically significant differences 
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CHAPTER FOUR 
 

DISCUSSION 
 
 

 Bone grafting with rhBMP-2 has been shown to be a viable alternative to 

autogenous bone grafts in restoring osseous defects in the maxillofacial region3-5. While 

these studies have shown clinical success in restoring maxillofacial defects with rhBMP-

2, the mechanical properties of the restored bone are still relatively unknown. In this 

study, rhBMP-2 regenerated bone was tested to determine it’s mechanical properties and 

modeled in a functional mandible using Finite Element Analysis. In this study, tensile 

testing of the low and high concentration rhbmp-2 regenerated bone samples showed an 

average of 20.7% and 40.0% the stiffness of cortical bone.28 The disparity in stiffness 

between treatment groups and cortical bone likely contributed to statistically significant 

differences between treatment groups and control, when evaluating differences in stress 

distribution, displacement-x, and displacement-y. There were, however, no statistically 

significant differences in stress distribution, displacement-y, and displacement-x between 

treatment group A and treatment group B. This suggests that the load bearing capacity of 

a restored mandible with different concentrations of rhBMP-2 might be comparable.  

These results are consistent with other studies, which have reported mechanical 

properties of BMP regenerated bone to have a mean stiffness of 24% (range 9-63%) the 

stiffness of non-operated bone.29 Studies have suggested that a longer follow up period 

might result in rhBMP-2 regenerated bone with mechanical properties approaching that 

of cortical bone.1, 29 The sample of regenerated bone created in our study was collected at 
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6 months, which may have contributed to the inferior quality compared to cortical bone. 

Furthermore, our tensile testing of regenerated bone yielded a large variability in 

Young’s modulus within the same treatment group. This finding is consistent with other 

studies that have attempted to compare the mechanical properties of BMP-induced bone 

to native bone.32 This can be attributed to variable rates of bone mineralization with 

BMP-induced bone. In this study, there may have also been variability in the location 

when sectioning the regenerated bone, yielding a different location within the defect site. 

Standardization of the bone section of bone samples taken for tensile testing may reduce 

the disparities in mechanical properties due to anatomical differences.  

Studies have demonstrated that a threshold dose of BMP is needed to form bone, 

but significantly higher doses beyond this may not increase the volume or quality of the 

regenerated bone .30,31 It has been shown that BMP’s can stimulate osteoclastic activity 

when present at high doses,30 and high doses are likely to turn on negative feedback 

mechanisms prohibiting excess bone formation.31 The results of this study suggest that 

the 0.75 mg/cc rhBMP-2 dose with CCS reached the threshold dose for BMP to 

adequately form bone, and higher doses were not more effective. This substantiated the 

finding of a previous study where no significant differences (p < .05) in bone densities 

were found between bone regenerated with high (2.0 mg/mL rhBMP-2) and low 

concentration (0.75 mg/mL rhbmp-2) BMP.33 

In this study, Finite Element Analysis was used to illustrate the mechanical 

properties of a mandible restored with rhBMP-2. The basis for our the use of finite 

element analysis were studies that showed agreement between the methodology of using 

mandibular strain gauges and finite element analysis in evaluating the stress of a 
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mandible in response to bending.21,22 In this study, finite element analysis was used to 

illustrate a regenerated mandible. The goal of this study was to theoretically model the 

restored mandible, and provide a template for future studies. By using a 2-dimensional 

model, errors in solving the differential equations could be minimized. Future studies 

involving the 3-dimensionally restored mandible can potentially depict more accurately 

areas where high stress and displacement may occur. 

 

Limitations of the Study 

 A limitation of this finite element study of new bone formation involves the non-

standardized sample of regenerated bone. Each slice of bone was gathered from different 

segments of the mandible, which in turn may have contributed to a different rate of 

mineralization. This could account for the variability in Young’s modulus that was 

observed among the samples. Precisely designed sections could provide a more accurate 

picture of the mechanical properties of the regenerated bone and may show less of a 

deviation among samples.  

While the 2 dimensional nature of our model can give a snapshot of how a 

restored mandible would behave mechanically, it only provides a snapshot. In the future, 

a 3-dimensional model could provide more detail and information to specific areas that 

may be susceptible to high stress and displacement. 

 The original data set comprised 2 treatment groups with 6 samples in each group. 

Due to limitations in the slice of each sample, only 5 samples for each treatment group 

were available for use in this study. The small sample size may have contributed to 

variability in our data set. Future studies will benefit if more animals were included in 
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each treatment group, or results from multiple studies were grouped to increase the 

sample size.  
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CHAPTER FIVE 

CONCLUSIONS 
 

1. After 6 months, treatment group A and B produced regenerated bone that possessed 

40.0%  and 20% stiffness of cortical bone, respectively. 

2. There were no statistical differences in stress distribution, displacement-x, and 

displacement-y between treatment group A and treatment group B (p < .05).  

3. There was a statistically significant difference between the control group and 

treatment group A and treatment group B. Both treatment groups had a mean 

difference of 119 Pa (group A) and 814 Pa (group B). This difference is equal to 

approximately 0.1% and 0.69% of the peak maximum stress in the mandible 

exhibited in the model. While this difference is significant statistically, the small 

fraction of difference is clinically insignificant. Differences between treatment groups 

and control group in displacement were also clinically insignificant with their 

magnitude of difference being on the order of a thousandth of a millimeter.  

4. A concentration of 0.75 mg/mL rhbmp-2 carrier with CCS produced bone with 

similar mechanical characteristics to a higher concentration of 1.3 mg/mL rhbmp-2 

with CCS. 0.75 mg/cc rhbmp-2 is shown to fall within the threshold amount to 

regenerate adequate bone. 

5. Finite Element Analysis is a non-invasive method where the biomechanical properties 

of a functional model based on the material properties of the regenerated bone can be 

tested.  
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