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Anatomical differences were observed between sexes of P. samuelis. We 

measured the major cheliped and carapace lengths of hermit crabs caught off the coast of 

Southern California and found that male chelipeds were significantly larger relative to 

their carapace length than female chelipeds. Average male cheliped:carapace ratios were 

1.86 while average female cheliped:carapace ratios were 1.32. We predicted that males 

and females would respond differently to cue waters created from their own sex.  Females 

were exposed to female cue treatment odors and males were exposed to male cue 

treatment odors. We recorded hermit crabs exposed to cue treatment waters and analyzed 

four behaviors: withdrawn, head-extended, walking, and meral spread. Females were 

more likely than males to remain withdrawn in their shells when in non-agonistic cue 

treatment waters. Males were more likely than females to display meral spread when 

sensing conspecific cues. Both sexes displayed no difference in the amount of time spent 

stationary with head-extended across all cue treatment waters. Both sexes tended to walk 

more in the presence of agonistic cue waters. 
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CHAPTER ONE 

INTRODUCTION 

 
 Research done on crustaceans has varied from anatomical studies (Evans et al., 

1976; Horner et al., 1997), mating behavior (Adams and Moore, 2003; Contreras-

Garduno et al., 2007), and agonistic behavior (Briffa and Elwood, 2002; Elwood et al., 

2006; Hsu et al., 2006), to recognition of conspecifics (Karavanich and Atema, 1998a; 

Schneider et al., 2001; Gherardi and Atema, 2005; Gherardi et al., 2005), taphonomy 

(Shives and Dunbar, 2010), and sex-specific traits (Frix et al., 1991; Bach et al., 2006). 

Studies on communication and sexual differences can tie many of these topics together as 

some of these themes are related through communication and sexual differences. 

 In this thesis, I present results of a study on the hermit crab, Pagurus samuelis, 

analyzing both anatomical and behavioral differences between males and female  and the 

impacts chemical cues have on the behavior of these hermit crabs. 

I begin this chapter by stating my objectives and hypotheses. I follow with a review 

of the behavioral ecology of hermit crabs as a taxon, proceeding to review the literature 

on sexual differences within crustaceans, and then review communication and behavior 

of crustaceans in the context of chemical communication. 

 In Chapter 2 I present results of my research on hermit crab anatomical and 

behavioral differences between males and females. I present research on hermit crab 

reactions to two chemical cues from conspecifics of the same gender. 

 In Chapter 3 I discuss implications of my research on the understanding of the 
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ecology of hermit crabs and crustaceans, and conclude with some suggestions on areas of 

further research. 

 

Goals and Hypotheses 

My research was performed with the following goals in mind: 1) to explore 

differences in anatomy between male and female Pagurus samuelis, 2) to quantify 

behavioral differences between male and female Pagurus samuelis, and 3) to explore 

aspects of interaction in chemical communication and behavior in Pagurus samuelis. 

Hypothesis 1: Male Pagurus samuelis have a larger cheliped:carapace ratio than 

females. To test this hypothesis, male and female chelipeds and carapaces were measured 

and the measurements were analyzed to determine evidence for sexual dimorphism. 

Hypothesis 2: Male P. samuelis respond with higher levels of agonistic behaviors 

than female P. samuelis when exposed to chemical cues from their own sex. This 

hypothesis was tested by recording crab behavior during exposure to chemical cues from 

their own sex. Data from each sex were analyzed to determine differences in behavior 

between the sexes. 

Hypothesis 3: P. samuelis increases the amount of locomotion and displays higher 

aggression level behaviors when sensing chemical cues from other P. samuelis hermit 

crabs in agonistic environments than when other P. samuelis hermit crabs are in non-

agonistic and control environments. For this hypothesis, crab behaviors were recorded 

and analyzed to determine if there were differences in behaviors of crabs exposed to 

treatment cue waters and control water. 
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Behavioral Ecology of Hermit Crabs 

Hermit crabs make up the Super-family Paguroidea (Phylum: Arthropoda, Order: 

Decapoda, Infraorder: Anomura). The Infraorder Anomura is made up of four 

superfamilies: Galatheoidea, Hippoidea, Lomisoidea, and Paguroidea. Hermit crabs are 

different from other crustaceans in that their abdomens are uncalcified, and twisted to the 

right in healthy individuals (Lancaster, 1988). Their uncalcified abdomens make them 

susceptible to higher levels of predation (Reese, 1968) and osmotic stress (Reese, 1968; 

Shumway, 1978) unless they can find suitable shelter. Thus, they mostly seek shelter and 

protection in empty gastropod shells. Although some hermit crab species have found 

shelter in sessile tubes (Caine, 1980), almost all 800 species of hermit crabs have the 

ability to be sheltered while mobile, making them highly successful marine invertebrates 

found in almost all marine environments, including tropical terrestrial shores (Hazlett, 

1981).  

Hermit crabs rely on their shell for many important reasons. In many cases, crabs 

must find larger shells in order to grow larger (Fotheringham, 1976; Angel, 2000). 

Desiccation and osmotic stress are inevitable without a suitable shell (Brodie, 2005; 

Hamasaki et al., 2011). As a crab grows larger, predation rates also increase with 

adequate shells becoming a limiting factor (Vance, 1972). Inadequate shells may not be 

able to properly protect the soft abdomen of hermit crabs. Proper development will not 

occur unless a shell is available (Vance, 1972; Brodie, 1999).  

Hermit crabs are generally considered opportunistic detritivores. Some species are 

filter-feeders and use their antenna to sift their food from the surrounding water (Gerlach 

et al., 1976; Caine, 1980). However, most can be found eating detritus from the seafloor, 
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in intertidal pools, and on coastal zones. 

Hermit crabs often contest with each other over shells. An attacker will signal his 

motivation to evict a crab by shell-rapping (Briffa and Elwood, 2000, 2001, 2002; 

Elwood et al., 2006). Shell-rapping consists of an attacker hermit crab holding onto the 

shell of another crab. The attacker brings its shell down forcefully onto the shell of the 

defending crab. The intensity of the rap and the number of raps per bout demonstrate the 

motivation level of the attacker to the defender. When an attacking crab has higher 

motivation to evict a crab than a defending crab has to defend its shell, the invading crab 

has a higher likelihood of causing an eviction. 

In mating, males may exhibit pre-copulatory guarding (Goshima et al., 1998). 

Males will hold the shell of a female for up to 5 days before copulating. During 

copulation, the male grasps the female’s shell with the shell apertures facing each other 

(Hazlett, 1996). The male then proceeds by rotating the shell of the female side-to-side in 

a figure eight style or by cheliped tapping. Cheliped tapping is performed by the male 

tapping the chelipeds against the rim of the aperture of the female’s shell. The male 

guards the female between bouts of rotation or cheliped tapping. After several hours, the 

female and male mate by partially emerging from their respective shells. The male 

deposits the spermatophore onto the ventral surface of the female’s cephalothorax, then 

guards the female for an additional 15 minutes after copulation. The female extrudes the 

eggs within one hour of copulation. 

 

Sex-Specific Differences 

Differences between sexes have been studied in many animal taxa including, but 
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not limited to, humans (Folkman and Lazarus, 1980; Stewart et al., 1992; Calle et al., 

1999), birds (Quillfeldt et al., 2011), fishes (Roelke and Sogard, 1993; Bartolino et al., 

2011), insects (Nilsen et al., 2004), and crustaceans (Frix et al., 1991; Bach et al., 2006).  

In crustaceans, sex-specific differences can be evident physiologically (Pereira et 

al., 2011; Sroda and Cossu-Leguille, 2011a), through resource acquisition (Bach et al., 

2006; Briffa and Dallaway, 2007), anatomically (Wang et al., 2011), and behaviorally 

(Skog, 2009). On a microscopic level, Garza-Torres et al. (2011) found a slight difference 

in the nuclear diameter of gametes, with the nuclear diameter of female gametes tending 

to be larger than male gametes, although not significantly. Females may have different 

requirements than males and thus, female decisions, anatomy, and behavior may be 

readily distinguishable from those of males.   

 

Physiological and Hormonal Differences Between Sexes 

Physiological responses can differ between sexes. Sroda and Cossu-Leguillle 

(2011a) found that females of the freshwater amphipod, Gammarus roeseli, and the killer 

shrimp, Dikerogammarus villous, were more resilient than males when exposed to 

sublethal copper concentrations. Females tended to have more energy reserves and had 

higher levels of glutathione peroxidase, an antioxidant enzyme, and lower levels of 

malondialdehyde, an indicator for toxic effect of potential contaminants and pollutants of 

aquatic ecosystems. Even when tested in nontoxic environments, female G. roeseli 

showed higher levels of lipids, proteins, and glutathione peroxidase activities than males, 

giving evidence that females may have a better defense system against toxins (Sroda and 

Cossu-Leguille, 2011b). Carcinus maenus females from Portuguese coasts tended to have 
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higher levels of metals, such as Cr, Cu, and Ni in their hepatopancreas than males 

(Pereira et al., 2011). Female C. maenus also exhibited higher levels of glutathione S-

transferase at some Portuguese coast localities. Because of the differences between males 

and females and how they handle these toxins, Pereira et al. (2011) advised that male and 

female C. maenus be analyzed separately in chemical bioaccumulation analyses.  

Some aspects of physiology show no differences between sexes. Chen and Chia 

(1997) measured oxyhemocyanin, protein, osmolality, and electrolyte levels in the mud 

crab, Syclla serrata. They found no difference in levels between males and females even 

though there were size differences between males and females. Similar testing was done 

on the giant river prawn, Macrobrachium rosenbergii (Cheng et al., 2001). No significant 

differences were found between sexes, except that very large males had lower levels of 

oxyhemocyanin, Ca2+ and Mg2+, and a lower ratio of oxyhemocyanin to protein (Cheng et 

al., 2001). The striped shore crab, Pachygrapsus crassipes, displayed no differences in 

fatty acid constitution between sexes (Sjoeben et al, 2010). The striped shore crab’s fatty 

acid amount and constitution was not necessarily dependent on just temperature, but may 

have also changed due to energy resources, reproduction, day length, and molting. Biggs 

and McDermott (1973) found that the hermit crab, Pagurus longicarpus, showed no 

significant differences between sexes in the ability to tolerate fluctuating temperature and 

salinity levels. 

 

Anatomical Differences 

Anatomical differences are also apparent between sexes of some crustaceans. The 

crayfish, Procambarus clarkii, shows sexual dimorphism (Wang et al., 2011). Males tend 
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to be heavier, yet have shorter tails than their female counterparts. Carcinus maenus 

exhibits a difference between males and females, with males being larger and heavier 

than females (Pereira et al., 2011). Chen and Chia (1997) noted a size difference between 

sexes in the mud crab, Scylla serrata. Male carapace width was, on average, larger than 

female carapace width. 

Thiel et al. (2010) found that the dancing shrimp, Rhynchocinetes bruicei, 

displayed very little sexual dimorphism, although three male morphotypes were present. 

The largest male morphotype was termed robustus, and the two smaller male 

morphotypes are typus and intermedius. Female sizes were insignificantly smaller than 

the typus males. Macrobrachium rosenbergii also show evidence of male morphotypes. 

Small males and females were similar in size and weight (Cheng et al., 2001).  

Perhaps one of the best examples of sexual dimorphism in the crustacean world is 

evident in fiddler crabs (Genus: Uca). Male fiddler crabs have much larger chelae  than 

females, which may give them an advantage in predator avoidance (Bildstein et al., 

1989). Weissburg and Derby (1995) showed that both female claws in Uca pugilator are 

much more sensitive to chemical stimulation than the male feeding claw. The male major 

claw is not used for feeding, but for mating rituals and for agonistic contests among male 

conspecifics. Weissburg et al. (2001) found that limbs from female Uca pugilator that 

were actually transplanted onto males in place of their major claw, still retained features 

and behavioral traits normally identified as female. Female feeding claws on male host 

bodies showed much higher sensitivity to chemical stimulants than native male feeding 

claws. They found that the nerves of the transplanted limb did not innervate areas of the 

central nervous system that are responsible for chemical sensory input, yet the limb was 
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nevertheless stimulated chemically. Thus, neuronal organization itself is different 

between males and females in this species. 

In Uca mjoebergi, the male major claw actually reflects more light per unit area 

than the female claw (Cummings et al., 2008). This is advantageous for males to more 

easily attract females in their claw-waving mating rituals. Interestingly, Cummings et al. 

(2008) found that the dorsal carapace of U. mjoebergi showed very little dimorphism 

between the sexes. Both male and female carapaces blend better with the surroundings 

from above, while the male major claw is visible from below for mating. This would be 

advantageous, as avian predators are more likely to be looking down from above. 

Some hermit crab males have a larger major cheliped than females, as in Pagurus 

bernhardus (Briffa and Dallaway, 2007) and P. criniticornis (Mantelatto et al., 2007). 

This trait may also have been developed more dramatically in males since larger male 

hermit crabs win more often than smaller male conspecifics in competitions for female 

hermit crabs, as in Coenobita compressus (Contreras-Garduno et al., 2007), and for food 

(Ramsay et al., 1997). Larger sizes and larger chelipeds in male hermit crabs may be a 

reproductive advantage when males are competing for females. 

 

Behavioral Differences Between Sexes 

Sex-specific differences are often displayed in behavior. Crustacean behavior, in 

turn, is often affected by anatomy (Frix et al., 1991), energy preservation (Billock and 

Dunbar, 2008), resources acquisition (Briffa and Williams, 2006; Billock and Dunbar, 

2011), predator avoidance (Frix et al., 1991; Hazlett, 1999; Schneider and Moore, 2000), 

reproduction (Hayden et al., 2007), and communication (Moore and Bergman, 2005).  
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Resource Acquisition and Defense 

Sex-specific behavior in decapods can impact resource acquisition. When feeding, 

the male sentinel crab, Macrophthalmus convexus, showed much lower scoop rates per 

minute than females (Schuwerack et al., 2006). Male M. definitus also had lower scoop 

rates than females, but only significantly different from their conspecific females during 

the first quarter of the lunar cycle. Schuwerack et al. (2006) noted that male M. convexus 

pinched their food more before bringing the food to their mandibles. They noted that 

more food uptake per scoop may make up for their lower scoop rate overall. 

Molis et al. (2011) found female C. maenus did not consume periwinkles, while 

45 - 50% of the males ate periwinkles that were smaller than 18 mm. Weissburg and 

Derby (1995) found that feeding behavior in the fiddler crabs, Uca pugilator and U. 

pugnax, was dependent on sex. Females are much more sensitive to chemical food 

stimulants than males and were able to feed at lower food levels than males. 

Another important resource is shelter. Peeke et al. (1998) found Homarus 

americanus males to be more successful at defending shelters than females. Females 

were weak in defending their shelters from other female intruders. Males may defend 

their shelters more efficiently because of the need for this resource in mating. Females 

seek out males in shelters (Atema, 1986) and thus have less need to defend their own 

shelters.  

Male Pagurus longicarpus were more likely to be found in shells covered with 

the epibiont, Hydractinia symbiolongicarpus, than females (Bach et al., 2006). There 

were proportionally more ovigerous females than non-ovigerous females in shells with 

Hydractinia. Bach et al. (2006) attributed this to the possibility that hermit crab egg 
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predation can occur if a female were to try to switch into or out of shells covered with 

Hydractinia. Therefore, females are more likely to choose shells without this epibiont. 

Females are also less likely to switch out of a Hydractinia-covered shell if they are 

ovigerous. 

 Responses to stimuli were different between sexes in P. bernhardus. Appel and 

Elwood (2009) drilled holes in the shells of P. bernhardus, into which electric probes 

were placed. They shocked the abdomens of male and female hermit crabs and found that 

shocked females were more likely to evacuate their shells than shocked male 

conspecifics.  

Female P. bernhardus are more likely than males to switch to new shells and to 

quickly withdraw or thrust their abdomens into their new shells (Appel and Elwood, 

2009). Interestingly, female P. bernhardus appears to fight harder than males to evict 

conspecifics from their shells (Briffa and Dallaway, 2007). Males were more likely to 

initiate fights. If the defender was female, the attacker was more persistent even though 

there was no difference between males and females in the ability to defend their shell. 

Overall, male P. bernhardus appeared to have the advantage over females in gaining the 

vital resource of a snail shell, but only because males initiated more fights. 

 

Predator Avoidance 

One important behavior for crustaceans is predator avoidance, which can differ 

between sexes. In the fiddler crabs, Uca pugilator and U. pugnax, sex affected the way in 

which crabs avoided predators, with females retreating further in burrows than males 

when an imitation avian predator was introduced into their environment (Frix et al., 
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1991). The hermit crab, Clibanarius vittatus, also exhibited a difference between sexes 

when sensing one of its predators, the stone crab, Minnipe mercenaria (Hazlett and 

Rittschof, 2000). Males were less disturbed in the presence of predators and would 

continue to exhibit pre-copulatory mating behaviors. The presence of predators 

significantly reduced a female’s attractiveness to males. The authors suggested that 

females may change their chemical cues or stop sending out pheromones so that males do 

not find them attractive for mating. 

 

Aggression 

Aggression levels can be different between sexes in crustaceans. In the crayfish, 

Orconectes rusticus, reproductive state influenced aggression and fight outcomes (Martin 

and Moore, 2010). Reproductive males were the most dominant, while non-reproductive 

females were the most subordinate. However, reproductive females would usually win in 

contests against non-reproductive males. The European lobster, Homarus gammarus 

(Skog, 2009) showed evidence that females are more aggressive overall than males. 

Female H. gammarus escalated into higher levels of aggression, such as claw locking, 

significantly more often than males.  

 

Recognition 

Skog (2009) found that recognition patterns differed between males and females 

of H. gammarus. Females that lost a recent fight with another female distinguished 

unfamiliar conspecifics as a winner when the unfamiliar conspecific had recently won 

agonistic contests. The loser from the previous fight behaved subordinately much more 
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quickly. Even when meeting unfamiliar conspecifics, female losers tended to lose to 

females that had won previously. Males exhibited individual recognition and fought at 

equal intensity when interacting agonistically with any unfamiliar conspecific. Male 

losers from a previous fight won 33% of the time with a winner from a previous fight, 

showing dominance reversals are not uncommon within males.  

 

Chemical Cues, Mating and Reproduction 

Behavior is often impacted by mating and reproduction. Many of the behavioral 

differences between sexes may be attributable to chemical cues given off or sent by one 

sex to the opposite sex. Successful chemical communication is extremely important in 

finding (Atema and Cowan, 1986) and competing for mates (Prenter et al., 2006). Urine 

signals and molt odors appear to be necessary in identifying the gender of crustaceans 

during reproductive periods.  

 

Chemical Communication Through Urine and Cues 

Two studies showed the crayfishes, Orconectes rusticus and Pacifastacus 

leniusculus, used urine to signal reproductive maturity and gain access to females (Simon 

and Moore, 2007; Berry and Breithaupt, 2008).  Simon and Moore (2007) found that O. 

rusticus appeared to have a degree of control over urine output. When reproductive male 

and female O. rusticus were paired, they excreted more urine than when only one of them 

was in a reproductive state, or if both of them were not in reproductive states. Berry and 

Breithaupt (2008) found that urine from a female crayfish, Pacifastacus leniusculus, was 

able to significantly stimulate male conspecifics to initiate breeding attempts with a 
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female dummy, caused the heart to skip a few heart beats, and then increased the overall 

heart rate of the male. Male urine and control water did not significantly alter the male 

crayfish in the same fashion. 

The lobster, H. americanus, also releases urine to chemically signal reproductive 

readiness (Atema and Cowan, 1986; Bushmann and Atema, 1996). Bushman and Atema 

(1996) found that urine is important in finding mates in H. americanus because female 

lobster urine causes the male lobster to reduce aggression and engage in mating behavior. 

Male urine also establishes the status of the male with the female, since females prefer 

dominant males (Bushmann and Atema, 2000). Female H. americanus molt about 0.5 hr 

before mating (Atema, 1986). A combination of urine and molt odors is important for 

males to recognize these females as reproductive (Atema and Cowan, 1986). Homarus 

americanus males reacted very strongly to female urine (Atema and Cowan, 1986). 

Females did not react to male urine as definitively as males did to female urine. Atema 

and Cowan (1986) found evidence that urine and body odors from males, and urine and 

body odors from females, elicited different responses from conspecifics of the opposite 

sex. This showed that chemical cues in urine were different based on sex. 

Carcinus maenus males only responded with sexual behaviors when they were 

exposed to urine from a pre-moult female crab (Bamber and Naylor, 1997). Urine 

samples from premoult males and intermoult males and females did not cause any sexual 

behavioral responses, but urine from pre-moult female crabs elicited sexual responses 

from receptive males. Callinectes sapidus showed evidence that reception of chemical 

cues were highly important for mating (Bushmann, 1999). When male antennules were 

ablated or nephropores were blocked, there were less incidences of successful pair 
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formation.  

In Procambarus, males were willing to mate as long as a chemical cue from a 

female was present (Aquiloni and Gherardi, 2008). Males remained aggressive when 

given only visual cues of a female conspecific. By exposing a male to the female cue, the 

male behaved in a less aggressive manner.  

In the grapsid crab, Cyclograpsus lavauxi, females usually molt after the breeding 

season (Brockerhoff and McLay, 2005), which may indicate that premolt odors may also 

be a sign of reproductive readiness. Several decapod species, such as the lobster, 

Homarus americanus, and the hermit crab, Pagurus longicarpus, communicate 

reproductive status through pheromones or other body odors (Atema and Cowan, 1986; 

Gherardi and Tricarico, 2007). 

 

Reproductive Behavioral Differences Between Sexes  

Males and females have very specific roles they must fulfill in order to reproduce 

successfully. The male shore crab, Carcinus maenus, displayed decreased feeding 

activities during the peak mating and reproductive months of summer, lowering the 

likelihood of cannibalism of its soft-bodied female mate, while females were active 

feeders year round (Hayden et al., 2007). Hayden et al. (2007) found this is primarily due 

to exposure of crustecdysone by the female during its post-molt state. Bamber and Naylor 

(1997) found that when male C. maenus were restricted from their sexual pose of rising 

up on pereopods 2-4 with pereopods 5 extended behind, that receptive females still 

continued with their part of the ritual and placed themselves upside down with the dorsal 

side of the carapace touching the floor of the test tank and flexing their abdomens. This 
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study showed that females are much more active in the mating process than was 

previously thought.  

The female crayfish, Orconectes quinebaugensis, appeared to lower aggression 

during fall reproductive months, perhaps to invest energy in other areas (Warren et al., 

2009), while males remained more agonistic overall. Warren et al. (2009) suggested that 

males have a reproductive advantage if they have higher dominance in the hierarchy. 

Their continued aggression can aid them in the reproductive hierarchy, while 

reproductive females can focus more on egg formation than agonistic interactions. 

Pre-molt H. americanus females seek out dominant males in shelters to mate and 

reproduce with (Atema et al., 1979) which is different from Procambarus clarkia,  in 

which males appear to seek out females (Aquiloni and Gherardi, 2008). Indeed, Cowan 

(1991) found that ablating male H. americanus antennules did not interfere with 

courtship and mating, but ablation of female antennules had very drastic results. Female 

H. americanus that had the antennules excised exhibited aberrant behavior by molting 

outside of a shelter, molting at odd times (normal times for molting were in the morning), 

and mating, but not cohabiting. Many of these females were injured after molting and one 

experienced death. This demonstrated that in H. americanus, female olfaction during 

mating is more important than male olfaction. In the case of the land hermit crab, 

Coenobita compressus, Contreras-Garduno, et al. (2007) found that males will compete 

with each other for females. However, females will ultimately choose which male to mate 

with. 

Aquiloni and Gherardi  (2008) found Procambarus clarkii males and females 

responded differently to signals for mating. Both reacted aggressively by raising their 
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chelipeds to the opposite sex if only visual stimuli were used, but males showed non-

aggressive gestures with lowered chelipeds, as long as female chemical cues were 

present, even if no visual cue was present. Females remained aggressive until both visual 

and chemical cues were presented together. The authors suggested that males may be the 

mate searchers in this species since they utilize odors more in the search for mates.  

Booksmythe et al. (2008) found that the female fiddler crab, Uca mjoebergi, 

travels less in search for mates, while male counterparts were much more willing to travel 

longer distances to find a mate. Female U. mjoebergi prefer more attractive males over 

less attractive mates only when the attractive male’s distance was within 20 cm of the 

female. Males were considered more attractive if they initiated the mating ritual of claw-

waving before other males. In order for males to offset the disadvantage of being too far 

away from a female, males were willing to leave their burrows unguarded, travel farther 

distances, and come within 5 cm of a tethered female to convince the female to come 

with them. 

The male hermit crab, Pagurus filholi, exhibits pre- and post-copulatory guarding, 

and will choose females to mate with if they are within 5 days of spawning (Goshima et 

al., 1998). When females are not ready to spawn, they are likely to consider conspecifics 

as competitors. During reproductive months, males become resources for the female and 

the female’s behavior changes as the female is dragged by the male in pre-copulatory 

guarding behavior.  

Although so much of reproduction is dependent on chemical cues, crustaceans are 

highly dependent on chemical stimuli in many other areas of their lives. 
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Chemical Communication 

Communication in crustaceans is very important. Many factors influence the way 

in which crustaceans communicate. One important factor is competition for resources. 

Motivation levels of an animal to acquire resources may differ in individuals (Billock and 

Dunbar, 2008), and thus may lead to different behaviors and higher levels of competition 

for the resources (Pechenik et al., 2001). Larger individuals of hermit crabs often have a 

higher degree of limiting resources in finding large shells (Shih and Mok, 2000), thus 

increasing their aggressiveness and motivation level for those resources.  

Marine invertebrates may opt not to physically compete for resources, since doing 

so will deplete energy sources and may cause injury. Visual or tactile communication can 

then be utilized. Adamo and Hanlon (1996) found that the male cuttlefish, Sepia 

officinalis, gives visual cues through face darkening to male conspecifics to signal levels 

of aggression. Darker faces mean higher aggression. The hermit crab, Pagurus 

bernhardus, displays its cheliped to display its size in an agonistic interaction (Elwood et 

al., 2006). Hermit crabs also exhibit a tactile form of communication in shell rapping, 

which takes place between an attacker and defender in competition for a gastropod shell. 

The power of the shell rapping by the attacker informs the defender of the motivational 

level of the attacker (Briffa and Elwood, 2000, 2002).   

Olfaction or chemical communication may be just as important as visual 

communication. Relaying chemical messages may increase efficiency, and reduce energy 

consumption and potential for physical harm when interacting with conspecifics and 

predators. In aquatic animals, the importance of chemical communication is heightened 

by turbid waters when visibility is reduced (Dodson et al., 1994; Correia et al., 2007).  



18 

Predators and Predation Events 

Crustaceans may be warned of the presence of predators by signals sent out from 

conspecifics that have encountered predators and escaped (Schneider and Moore, 2000), 

by the odor of the predator itself (Chiussi et al., 2001; Briffa et al., 2008), or by sensing 

dead conspecifics in the water around them (Hazlett et al., 2006). The crayfish, 

Procambarus clarkii, increased its output of urine when under stress by a predator and 

also released a chemical in its urine when it was exposed to predators (Schneider and 

Moore, 2000). Although the crayfish were not harmed by the predator, they were in visual 

contact with the predator. Schneider and Moore (2001) then exposed conspecifics to the 

water that surrounded these stressed conspecifics. When other conspecifics sensed this 

chemical from stressed crayfish, the conspecifics walked faster and farther than they did 

in non-stressed crayfish cue waters, and moved away from the source of the signal. These 

investigators found that stressed crayfish were aiding in the survival of conspecifics by 

sending out specific chemicals about predators. Thus, it appears that a different chemical 

is released in crayfish urine when they sense predators than when they engage in other 

activities.  

Juvenile blue crabs, Callinectes sapidus, will not respond to visual cues of 

predators unless chemical cues of estuarine origins are introduced (Diaz et al., 2003). The 

juvenile mangrove crab, Aratus pisonii, can sense predator odor and, on average, orients 

itself 21% more often towards visual cues for shelter when predator odor is introduced 

(Chiussi, 2003). The crayfish, Orconectes virilis, decreases the time spent grooming, 

moving its chelipeds or antennae, or exhibiting feeding movements when predator odor is 

introduced (Hazlett, 1999). When food odor is introduced, the crayfish spends more time 
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moving and exhibiting feeding movement and less time in its burrow than when predator 

odor is introduced.  

Crustaceans also react to different chemical cues released from crushed 

conspecifics (Chiussi et al., 2001; Diaz et al., 2003; Hazlett et al., 2006; Bulinski, 2007). 

They can sense conspecific haemolymph in the surrounding water.  Researchers have 

used crushed conspecifics to simulate a predation event in many crustacean studies. 

Crustaceans that encounter an environment with crushed conspecifics usually respond by 

hiding, as in the case of the crayfish, O. virilis (Hazlett et al., 2006), or exhibiting an 

escape response, as in the blue crab, C. sapidus (Diaz et al., 2003). However, Bulinski 

(2007) found that the hermit crab, Pagurus granosimanus, actually switched shells more 

often when exposed to crushed conspecifics. Bulinski (2007) suggests that this may be 

because a dead conspecific may signal that a shell has become available for habitation.  

The hermit crab, Clibanarius vittatus, exhibits a flight response when a predator 

odor is introduced to the water (Rittschof and Hazlett, 1997). The hermit crab, 

Clibanarius antillensis (Chiussi et al., 2001), responded significantly more often towards 

or away from visual targets when appropriate chemical cues of gastropod and calcium 

odors, predator odors, and seagrass odors were given than when no odors were given.   

 

Hierarchies and Agonistic Interactions 

Crustaceans show evidence of individual recognition. Individuals of the  crayfish, 

Orconectes rusticus, recognize conspecifics they have encountered previously, and 

engage in agonistic interactions for a shorter time when they meet a familiar conspecific 

(Schneider et al., 2001). These crayfish also sense the status of conspecifics and thus can 
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either fight one that seems to be subordinate, or not fight an individual that seems to be 

more dominant. Urine plays an important part in these behaviors. Those crayfish with 

blocked nephropores spent much more time and energy engaging in agonistic interactions 

(Schneider et al., 2001).  

The big-clawed snapping shrimp, Alpheus heterochaelis, may use urine as a 

means of chemical messaging in establishing dominance. It is more aggressive towards 

conspecifics that have previously lost to another conspecific, and are less aggressive 

towards a conspecific that has won in a recent fight (Obermeier and Schmitz, 2003). 

The lobster, Homarus americanus, increases its urine output when it encounters 

other conspecifics and engages in agonistic interactions. On average, aggressive 

individuals released seven times more urine than nonaggressive, defending individuals 

(Breithaupt et al., 1999). Lobsters can even recognize conspecifics they have met before 

by their urine, and create social hierarchies (Karavanich and Atema, 1998c; Karavanich 

and Atema, 1998b). When a known, or familiar, dominant individual releases urine, the 

subordinate lobster immediately retreats, thereby avoiding a potentially costly agonistic 

interaction (Karavanich and Atema, 1998b). Another study on H. americanus by 

Breithaupt and Atema (2000) found lobsters that won agonistic interactions with a 

conspecific usually released urine early on in the fight. They suggested that urine release 

coupled with aggressive behavior may let the receiver know the status of the lobster and 

thus discourage the subordinate from fighting a long and injurious fight. By 

demonstrating that these crustaceans can control their urine output, Breithaupt and Atema 

(2002) have provided a good foundation for examining hypotheses regarding chemical 

use by specific crustaceans during messaging in different situations. 
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The hermit crab, Pagurus bernhardus, has been shown to release an unidentified 

chemical when engaging in agonistic interactions with other hermit crabs (Briffa and 

Williams, 2006). Their study showed how a focal male hermit crab reacted to odors left 

by other male hermit crabs that had been involved in aggression through shell swapping. 

These focal hermit crabs spent more time in their shell, less time in locomotion, and less 

time foraging for food when they sensed aggressive conspecific behaviors.  

 

Resource Acquisition 

Urine is also important for the Caribbean spiny lobster, Panuliris argus, in finding 

shelter (Horner et al., 2008). This study on Panuliris argus showed how the aesthetic 

region of the lateral flagellum of the antenna was the sensitive area for urine pheromones 

when in search of suitable shelter. Urine in this species is an aggregation pheromone 

(Horner et al., 2006). Aesthetic-ablated lobsters sought shelter as much as aesthetic-intact 

lobsters, but aesthetic-intact lobsters preferred shelters emanating conspecific urine, 

while aesthetic-ablated lobsters showed no significant preference for shelters with 

conspecific urine or odor-free seawater (Horner et al., 2008). 

The hermit crab, Pagurus longicarpus Say 1817, has a more complex system for 

individual recognition than was supposed invertebrates were capable of (Gherardi et al., 

2005). When a focal crab sensed an empty shell in the presence of a familiar crab that had 

a high-quality shell, the focal crab was more likely to investigate the shell quicker and for 

a longer period of time than in the presence of a familiar crab that had a low-quality shell. 

This showed that these crabs were utilizing their memory, so that if a familiar crab had a 

high-quality shell and vacated it for a better one, other crabs more readily took over the 
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shell that was empty.  

 

Hormones and Behaviors 

Many studies have been performed on crustacean hemolymph, biogenic amines, 

and hormones. The purposes of these studies have varied from understanding how 

hormones affected dominant and subordinate behavior (Antonsen and Paul, 1997; 

Sneddon et al., 2000; Briffa and Elwood, 2007), and crustacean circulatory systems 

(Tsukamoto and Kuwasawa, 2003; Yamagishi et al., 2004), to crustacean physiology (Sy 

and Airriess, 2002; Tierney et al., 2003). Hormonal levels have been shown to play a part 

in invertebrate behavior, and may play an important role in chemical communication. 

Hormones in crustacean hemolymph have been connected with different behaviors. 

Antonsen and Paul (1997) found they could manipulate certain behaviors by injecting 

biogenic amines into the squat lobster, Munida quadrispina. These lobsters are usually 

nonaggressive and do not set up any type of observed dominance hierarchy. Injecting 

serotonin into these usually docile creatures caused them to become much more 

aggressive. One animal exhibited aggression towards a potential predator instead of 

exhibiting an escape response. Lobsters injected with octopamine became more likely to 

exhibit escape responses. These researchers claimed that aminergic neurons were heavily 

responsible for some types of behavior in the squat lobster.  

Huber and Delago (1998) showed that manipulating serotonin levels in crayfish 

can cause a subordinate crayfish, Astacus astacus, to fight longer than normal. 

Subordinate animals would escalate fighting instead of retreating when infused with 

serotonin. Although higher serotonin levels caused a subordinate crayfish to fight longer, 
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it did not ensure it would be the winner. Panksepp et al. (2003) infused crayfish, Astacus 

astacus, with serotonin and noted aggression. They found that the amines themselves 

were not responsible for certain behaviors in the crayfish. After size-matching dominant 

and subordinate crayfish, they found no difference in levels of dopamine and serotonin in 

hemolymph when compared to controls. Their conclusion was that amines only fine tune 

and modulate behavior and are not necessarily the causal element of behavior in crayfish. 

Panksepp et al. (2003) state that there are more elements to consider when observing 

animal behavior than just biogenic amines. Circumstances, motivational state, and 

neurochemical mechanisms all play a crucial role in determining animal behavior.  

Such close relationships between these hormones and the nervous system must 

impact the behavior of the animal in very important ways. Laxmyr (1984) measured 

levels of serotonin, dopamine, noradrenaline, octopamine, and dihydroxyphelalanine in 

the nervous systems of five different decapod crustaceans using high pressure liquid 

chromatography. The animals were Carcinus maenas, Eupagurus bernhardus, Homarus 

vulgaris, Pandalus borealis, and Leander squilla. Octopamine had the highest levels of 

all hormones for most of the species. All substances were present in all species, except 

Leander squilla. Neither octopamine nor serotonin levels were detected in this species 

because of insufficient sample size. The study by Laxmyr (1984) merely established the 

presence of these biogenic amines and amino acids in the central nervous system (CNS) 

of these crustacean species, but did not determine the direct effect of the amines on 

behavior. Laxmyr (1984) states that the presence of noradrenaline and dopamine in the 

CNS of these animals elevates the chance that these are neurotransmitters in the CNS of 

crustaceans. 
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Marine invertebrates have much more complex systems than previously recognized. 

It was previously thought that physical strength alone was the factor determining the 

outcome of fights over resources or in establishing dominance. However, Moore and 

Bergman (2005) showed how chemical communication, previous history, and the 

neurochemical state of opponents often determine outcomes of crayfish fights, not simply 

physical strength. 

Stressful conditions can also cause changes in levels of specific compounds in the 

hemolymph (Lacoste et al., 2001; Chang, 2005). Chang (2005) investigated Crustacean 

Hyperglycemic Hormone (CHH) and heat stress proteins, and found that CHH levels in 

crabs can vary under differing oxygen levels, salinities, and temperatures. He found that 

individuals of the Norway lobster, Nephrops norvegicus, with parasites had higher levels 

of CHH. With heat-shock treatment and salinity changes, these lobster exhibited higher 

heat shock protein levels or had elevated mRNA expression than normal. A similar study 

was done on the oyster, Crassostrea gigas (Lacoste et al., 2001). Researchers exposed the 

oyster to different types of stressors: shaking, temperature change, and salinity change. 

They found increased levels of measured noradrenaline (NA) and dopamine (DA) in the 

hemolymph after the oysters were exposed to these stressors. 

Research on ovigerous H. americanus showed that there was no difference in 

levels of hormone in the hemolymph when females were stripped of their eggs or left 

with their eggs (Figler et al., 2004). Nonstripped females were usually more aggressive 

than stripped females. Researchers found no significant difference between serotonin 

levels of nonstripped and stripped females, and thus, concluded that their maternal 

aggressiveness did not directly stem from serotonin. A study has also been done showing 
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how varying serotonin levels in juvenile H. americanus affect their behavior in shelter 

competition (Peeke et al., 2000). Lobsters with high (> 3.0 mg/kg) dosages of serotonin, 

had lower ability to compete for a shelter than saline-injected lobsters. Although 

serotonin appears to increase aggression in many animals, it appears to decrease ability to 

compete for resources in this species. 

Sneddon et al., (2000) showed that activity alone does not raise or lower hormone 

levels in the shore crab, Carcinus maenas. These researchers caused crabs to walk on 

treadmills and found that walking alone did not alter the hormone levels. They found that 

agonistic interactions were the cause of increased octopamine levels in losers and 

decreased levels in winners. In contrast, serotonin levels increased in both winners and 

losers and may have been related to the fact that both were fighting and engaging in 

aggressive behavior. Still, winners of fights had higher levels of serotonin than losers. 

The intensity of the interactions was positively correlated with levels of dopamine. 

Sneddon et al. (2000) found octopamine, serotonin, and dopamine to be related to 

agonistic behavior, while tyramine and norepinephrine had no part in the behavior. 

Serotonin and dopamine levels have been studied in hermit crab hemolymph (Briffa 

and Elwood, 2007). Levels of these monoamines differ according to the role the hermit 

crab played, either as attacker or defender. Dopamine levels were usually higher in 

attackers or initiators of fights. Serotonin levels were high in those individuals that 

successfully evicted conspecifics from their shells. 

Although there are conflicting studies regarding the role of hormones in 

aggressive behavior, hormones do appear to have a strong relationship with dominance. If 

dominant animals tend to release more urine in agonistic interactions than subordinate 
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ones and dominant animals have higher levels of certain types of hormones, there may be 

evidence of hormone-like molecules in the urine of these animals. Very few studies have 

looked at the contents of urine, although research thus far has shown that some type(s) of 

urine-borne signals are responsible for chemical communication (Atema and Cowan, 

1986; Breithaupt and Atema, 1993; Schneider and Moore, 2000; Breithaupt and Eger, 

2002). To date, the only study that identified a urine-borne signal was work on the shore 

crab, Carcinus maenus, by Hardege et. al. (2002), who found that the female sex 

pheromone does not appear to be a type of steroid. Sulphate metabolites have also been 

noted in the urine of lobsters (Huber et al., 1997). 

 

Purpose of Study 

Sex and chemical communication can have large impacts on behavior in 

crustaceans. Understanding communication and sex-specific differences in crustaceans 

may be one of the steps to understanding toxic effects on aquatic ecosystems. Male and 

female crustaceans may have different tolerances to toxins in the water. Sroda and Cossu-

Leguille (2011a) found that female Gammarus roeseli had higher tolerance to toxic 

copper. Researchers now have a stronger basis for studying both sexes when analyzing 

effects of toxins on species. In research, understanding sexual dimorphism can allow for 

sex-specific collection of animals. This would allow less sacrifice of animals when 

performing sex-specific research. There are also commercial benefits. Wang et al. (2011) 

found that female P. clarkii yield more abdominal meat than males. They suggested that 

taking out large aggressive male P. clarkii from populations in aquafarms may promote 

the growth of larger females and may promote the growth of smaller, less aggressive 
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conspecific males. 

We have used the hermit crab, Pagurus samuelis, which is an abundant animal 

along Southern California coasts. Pagurus samuelis has been used in various studies of 

aggression (Courches.E and Barlow, 1971), shell selection (Hahn, 1998), and behavior 

(Billock and Dunbar, 2008; Shives and Dunbar, 2010; Billock and Dunbar, 2011). Hermit 

crabs are unique in that one of their major resources- the shell- can be a sign of a mate, a 

competitor, its home, or its food. I explored sexual dimorphism in P. samuelis. 

Cephalothorax and chelae measurements were taken in both male and female hermit 

crabs to determine if there is evidence of sexual dimorphism in this species. Individuals 

were analyzed to determine if there were differences in behavior between sexes when 

hermit crabs were exposed to chemical cues from conspecifics of the same sex. Visual 

cues were absent in our research on P. samuelis behavior to ensure the absence of any 

confounding factors on a study designed to test reactions to chemical cues.  
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Abstract 

We compared anatomical differences between sexes of P. samuelis, measuring the 

major cheliped and carapace lengths of hermit crabs, caught off the coasts of Southern 

California. Male chelipeds were significantly larger relative to their carapace lengths than 

female chelipeds. Average male cheliped:carapace ratios were 1.86 while average female 

cheliped:carapace ratios were 1.32. We suggest that intrasexual selection is the reason for 

dimorphism in this species. Behavioral gender differences were studied for responses to 

cue waters created from their own sex.  We recorded hermit crabs exposed to cue 

treatment waters and analyzed four behaviors: withdrawn, head-extended, walking, and 

meral spread. In non-agonistic cue treatment waters, females were more likely than males 

to remain withdrawn in their shells. Males were more likely than females to display meral 

spread when sensing conspecific cues. Both sexes displayed no difference in the amount 

of time spent stationary with head-extended across all cue treatment waters. Both sexes 

tended to walk more in the presence of agonistic cue waters. 

 

Keywords: Chemical communication, crustaceans, sexual differences 
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Introduction 

Chemical communication in crustaceans can be just as important as visual or 

tactile communication. The importance of chemical communication may be heightened 

by darkness or turbid waters when visibility is reduced (Dodson et al., 1994; Correia et 

al., 2007). Relying on chemical messages may increase efficiency and reduce energy 

consumption and potential for physical harm when interacting with conspecifics or 

avoiding predators. Some species will interpret their visual surroundings based on 

chemical input (Diaz et al., 2003), part of what Billock and Dunbar (2011) termed 

“Contextual Decision Hierarchies.” Chemical communication can also be essential in 

social contexts, such as establishing social hierarchies (Moore and Bergman, 2005).  

Competition for resources can influence methods of communication. Motivation 

levels of an animal to acquire resources may differ among individuals (Billock and 

Dunbar, 2008), and thus lead to a variety of behaviors and higher levels of competition or 

aggression for resources (Pechenik et al., 2001). Female hermit crabs, for example, may 

seek different types of shells than males (Wait and Schoeman, 2012; Yoshino et al., 2011) 

depending on ovigery and volume of the shell, leading to sexual differences in the use of 

resources. Large hermit crabs often encounter difficulties in finding suitably large shells 

(Shih and Mok, 2000), leading to increased aggressiveness for this essential resource and, 

potentially, different communication methods.  

One way hermit crabs communicate their motivation levels to conspecifics is by 

powerful shell rapping. When hermit crabs contest over a gastropod shell that is already 

occupied, the attacker holds the shell of the opponent and brings its own shell into contact 

with the other shell, initiating a series of shell raps. The power of the rap itself, and the 



42 

intervals between shell rapping bouts communicate to the defender the strength and 

motivation level of the attacker (Briffa and Elwood, 2000, 2002). In intersexual agonistic 

contests, females of P. bernhardus initially fought harder through shorter intervals 

between shell rappings than males did (Briffa and Dallaway, 2007), but there was no 

difference in actual eviction success between the sexes.  

Several decapod species rely heavily on chemical cues (Atema, 1986; Gherardi 

and Tricarico, 2007). These cues may be used to lower the likelihood of cannibalism of 

soft-bodied mates (Hayden et al., 2007), and to communicate sex (Atema and Cowan, 

1986) and reproductive status (Simon and Moore, 2007). Females of the crayfish 

Orconectes quinebaugensis, for example, appear to lower aggression during fall 

reproductive months, perhaps to invest energy in other areas, while males remain more 

agonistic overall (Warren et al., 2009). Warren et al. (2009) suggested that the continued 

aggression by males can aid them in acquiring higher social status in the dominance 

hierarchy, whereas reproductive females focus more on egg formation and reproduction 

than on agonistic interactions, thereby giving dominant males a reproductive advantage. 

Males of the hermit crab Pagurus filholi exhibit pre- and post-copulatory guarding, and 

can perceive and preferentially choose females to mate with that are within 5 days of 

spawning (Goshima et al., 1998). 

Although crustaceans may not be able to control their odors all the time, 

especially in the case of injured individuals, studies have demonstrated that they exhibit a 

degree of control over the release of their chemical messages (Breithaupt et al., 1999; 

Breithaupt and Atema, 2000; Schneider and Moore, 2000; Breithaupt and Eger, 2002). 

The hermit crab P. bernhardus, for example, releases an unidentified chemical when 
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engaging in agonistic interactions with other hermit crabs (Briffa and Williams, 2006). 

Focal male hermit crabs in the study reacted to odors left by other male hermit crabs that 

had engaged in aggressive shell swapping. These focal hermit crabs spent more time in 

their shell, less time in locomotion, and less time foraging for food when they sensed the 

presence of aggressive conspecifics.  

In some crustacean species, anatomical size or size of body parts appear to 

determine agonistic contest outcome. Mowles et. al (2011) found that winners in shell 

fights have larger abdominal muscle mass:body mass ratios than losers.  The hermit crab 

Pagurus bernhardus displays its cheliped to show its size in agonistic interactions 

(Elwood et al., 2006; Arnott and Elwood, 2010). Larger hermit crabs are more likely to 

have larger chelipeds, which would increase the potential of winning agonistic contests. 

Larger male hermit crabs win more often than smaller conspecifics in competition for 

female hermit crabs (Contreras-Garduno et al., 2007; Yoshino et al., 2011) and for food 

(Ramsay et al., 1997). Males contesting over females in the species Diogenes nitidimanus 

appear to have a much greater advantage when they have larger major cheliped:body 

mass ratios (Yoshino et al, 2011).  

Some hermit crab species exhibit sexual dimorphism in cheliped size. Males 

possess larger chelipeds than females, as documented in the hermit crabs Pagurus 

bernhardus (Briffa and Dallaway, 2007), P. criniticornis (Mantelatto et al., 2007), 

Isocheles sawayai (Fantucci et al., 2009), and Diogenes nitidimanus (Koga et al., 2010). 

In the case of P. bernhardus, possessing a larger chela does not appear to give one crab an 

advantage over another when contesting over gastropod shells with conspecifics (Briffa 

and Dallaway, 2007). However, males of D. nitidimanus with larger major chelipeds gain 
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a significant advantage when contesting for females (Yoshino et al., 2011), thus giving 

evidence that this trait may be a consequence of intrasexual selection. 

The hermit crab Pagurus samuelis occurs abundantly along the West coast of 

North America. This species was analyzed in prior studies of aggression (Courches and 

Barlow, 1971), shell selection (Hahn, 1998), and behavior (Billock and Dunbar, 2008; 

Shives and Dunbar, 2010), but sexual differences in behavior have not been examined. 

Hermit crabs are unique in that one of their major resources, the shell, may be a visual 

cue for a mate, a competitor, its home, or its food (Billock and Dunbar, 2008). This 

suggests that chemical cues may be important in determining what type of resource a 

shell really is.  

The purpose of this study was to explore the potential for and presence of sex-

specific responses to chemical cues in P. samuelis. We began by testing the hypothesis 

that sexual dimorphism exists for cheliped size in P. samuelis. We then evaluated the 

hypothesis that P. samuelis exhibits different behavioral responses to same-sex agonistic, 

versus same-sex non-agonistic, chemical cues. Our experimental design also allowed us 

to test for sex-specific and size-related differences in the behavioral responses.  

 

Methods 

Capture and Housing 

We hand-captured 150 Pagurus samuelis specimens on the coast of southern 

California (Moss Street Beach: 33o31’38,61”N, 117o46’18.01”W; Little Corona Del Mar: 

33o35’33.51”N, 117o52’04.21”W), and housed them in 40-L aquaria. Each aquarium 

contained approximately 12 L of constantly aerated seawater, 1 – 2 cm of sand and 
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pebbles for substrate, and one large rock with a portion above the 7-cm-deep water. We 

obtained seawater from the Kirkhoff Marine Laboratory at Newport Beach. Crabs were 

maintained at a constant temperature of 21.5 ± 2.4 °C with ambient light, and fed 2–3 

times a week with commercial frozen shrimp.  

After 1–2 weeks of acclimation in the laboratory, hermit crabs were individually 

placed in small plastic containers (80 – 120 cm2 floor area) with 350 ml seawater and 

constant aeration. Subjects remained isolated 10–30 days prior to testing, during which 

they were fed and the water was changed 2–3 times per week. We withheld food 2 days 

prior to testing, and changed the water 1 day prior.  

 

Sexual Dimorphism Measurements 

Hermit crabs were removed from their shells by gently cracking the shells open 

with a table vise. We weighed and sexed all 150 hermit crabs, and measured the calcified 

anterior portion of the cephalothorax (shield) and major cheliped to the nearest 0.5 mm 

using calipers. For consistency, one of us (MK) obtained all measurements. We 

determined sex using a dissecting microscope to detect the gonopore found in females at 

the coxa of the third periopods (McLaughlin, 1974). 

After initial collection of hermit crabs, and noting apparent sexual dimorphism in 

cheliped size, we attempted to predict the sex of individuals in the field while collecting 

the last 47 specimens. Thus, we recorded our impression of sex based on relative cheliped 

size, and compared our sex assignments to actual sex determined subsequently using a 

microscope. 
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Cue Water Preparation 

Hermit crabs were subjected to three water treatments with different chemical 

cues present: 1) same-sex agonistic cues, 2) same-sex non-agonistic cues, and 3) a control 

devoid of hermit crab cues. Accordingly, three types of cue water were prepared for each 

sex. Agonistic-male cue water was prepared by placing four hermit crabs in 400 ml of 

UV-filtered seawater with aeration for 4 hr prior to focal crab exposure to cue water. 

Agonistic-female cue water was prepared in the same way using four female hermit 

crabs. To elicit agonistic behavior during cue water preparation, each hermit crab was 

previously provided only damaged shells with holes or borings (4 mm width) in the 

shell structure. Eviction of conspecifics was noted within the agonistic cue treatment 

water in the first 5 min. Non-agonistic cue water was prepared by placing a single hermit 

crab (of appropriate sex) in a plastic container with 100 ml of UV-filtered seawater with 

aeration for 4 hr. The crab was also previously provided with a damaged shell during 

isolation. Control water was comprised of 100 ml of UV-filtered seawater devoid of 

hermit crab chemicals. All seawater used in experimentation was filtered through a UV-

filter and a 200-μm mesh filter. 

Briffa and Williams (2006) used water from 40 crabs left in a tank with 4.2 L of 

seawater for 16 hr to create their agonistic cue waters. We opted not to leave the crabs for 

so long, as cannibalism was often noted for crabs left together for that duration. 

Cannibalism would allow hemolymph to mix into the water, thus acting as a confounding 

factor in chemical communication. We sought to eliminate any chemical cues that were 

not derived from the cue animals as odors or urine. 
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Experimental Setup of Behavioral Observations 

We randomly selected 20 crabs - 10 of each sex - and tested them in a room with 

no external light. The arena was a small, white, plastic Tupperware container (10-cm 

diameter) with 100 ml of treatment seawater. The arena was surrounded by a thick black 

cloth so crabs would not be disturbed by investigator movements in the room. Trials were 

videotaped using a Logitech QuickCam Orbit AF (Logitech, Newark, California) placed 

25 cm above the water level. Crabs were individually exposed to, and recorded in, one of 

the three different cue waters every 3 days. Each crab was tested in each of the three cue 

waters that were prepared for its own sex. The order of exposure to different cue waters 

was randomized.  

For each trial, an isolated crab was taken from its container and placed into the 

circular arena filled with 100 ml of cue treatment water. Videotaping and experimental 

observations commenced immediately. After 2 min, the arena was gently shaken by hand 

until the crab withdrew completely into its shell. This mechanical stimulus was 

performed to observe behavioral changes when the crab sensed conspecifics chemically 

and then experienced a type of environmental mechanical stimulus or shock. 

Observations continued for another 2 min.  Data were pooled across the 4 min, and 

differences in reactions between sexes were analyzed.  

We analyzed behavior from the videos using JWatcher software (UCLA and The 

Animal Behaviour Lab, Macquarie University, Sydney). During video review, we 

recorded the following behaviors and postures for individual hermit crabs: withdrawn 

(body inside its shell so that the anterior portion was not visible); head-extended (anterior 

portion out of shell but stationary, eyestalks and pereopods of crab visible to the 
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observer); walking (crab locomoting in the arena); and meral spread (major and minor 

cheliped fully extended anteriorly). We then computed the proportion of time during the 

4-min trial that each crab devoted to each behavior. 

 

Data Analyses 

All data were analyzed using SPSS 13.0 (Statistical Package for the Social 

Sciences, Inc., Chicago, IL, 2002), with α = 0.05. We employed both statistical 

significance (null hypothesis testing) and practical significance (effect size or magnitude) 

to assess the relevance of our data. Measures of effect size offer advantages to statistical 

significance in that they are independent of sample size, they better identify meaningful 

differences, and they are more readily compared among different data sets and different 

studies (Cohen, 1988; Nakagawa, 2004; Nakagawa and Cuthill, 2007). 

To evaluate sexual dimorphism in cheliped size, we used analysis of covariance 

(ANCOVA) and discriminant function analysis (DFA; Mertler and Vannatta, 2002). Mass, 

carapace length, and cheliped length were log10-transformed to better meet parametric 

assumptions. Although carapace length could not be normalized and was homoscedastic 

only after rank-transformation, the results of tests were identical using both 

transformations, so we report only those involving log-transformation. For the ANCOVA, 

we treated cheliped length as the dependent variable, sex as the independent variable, and 

carapace length as the cofactor. Effect sizes were computed as partial eta-squared (2), 

with values of ~0.01 loosely regarded as small, ~0.06 medium, and ≥0.14 large (Cohen, 

1988). The DFA models, including mass, carapace length, and cheliped length as 

predictors of sex, were constructed using SPSS defaults with leave-one-out classification 
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to cross-validate results. To compare our prediction of sex of individual hermit crabs in 

the field with actual sex determined microscopically in the lab, we used Chi-square 

analysis (Zar, 1996) and computed Phi (φ) for effect size, with values of ~0.1, 0.3, and 

0.5 loosely deemed small, medium, and large, respectively (Cohen, 1988). 

To compare behavioral responses between sexes and among the three chemical 

cue conditions, we conducted four separate 2 × 3 ANOVAs, one for each behavior, with 

the behavior (proportion of time exhibited during trial) as the dependent variable, sex as a 

between-subjects factor, and treatment as a within-subjects factor. We could not use an 

omnibus model that included the four behaviors within a single independent variable 

because the percentages summed to 100%, which confounded the interaction terms. 

Furthermore, statistical power constrained by sample size was too weak to include body 

size as a covariate, or to include all four behaviors as dependent variables within a 

multivariate analysis of variance model (MANOVA; Mertler and Vannatta, 2002). For 

each ANOVA model, several cells failed to meet the assumption of normality, and 

because transformations (arcsin, log, rank) failed to improve this situation, we simply 

analyzed the original data. Fortunately, ANOVA is robust to departures from normality 

(Mertler and Vannatta, 2002). Because two of the four models failed the repeated-

measures assumption of sphericity, we applied Greenhouse-Geisser adjustments to the 

degrees-of-freedom for the effects that included repeated measures (Mertler and Vannatta, 

2002). Effect sizes were computed as partial eta-squared (2) values. Post-hoc multiple 

comparisons were achieved using least significant differences (LSD; Mertler and 

Vannatta, 2002). 

Because body size may have influenced behavioral responses in the chemical cues 
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experiment, male and female body size was compared using a t-test (Zar, 1996; 

parametric assumptions were met) and Cohen’s d for the effect size, with values of ~0.2, 

~0.5, and ≥0.8 loosely considered small, medium, and large effect sizes, respectively 

(Cohen, 1988). We conducted bivariate Pearson's correlations (r; Zar, 1996) for each sex 

separately to examine the relationship between body size and frequency of each behavior 

(averaged for each individual across the three chemical cues), with r values of ~0.10, 

~0.30, and ≥0.50 loosely regarded as small, medium, and large effect sizes, respectively 

(Cohen, 1988). However, because one hermit crab of each sex exhibited a relatively high 

level of meral spread, a non-parametric Spearman's correlation (rs; Zar, 1996) more 

appropriately described the association of this behavior with body size. 

Following Nakagawa (2004), we chose not to adjust α for multiple tests. Mean 

values presented here are reported with standard deviation unless otherwise indicated. 

 

Results 

Sexual Dimorphism in Pagurus samuelis 

From the ANCOVA model, a significant interaction existed between sex and 

carapace length for cheliped length (F1,146 = 21.15, P < 0.001, partial 2 = 0.13), 

indicating that relative cheliped length differences between males (N = 85) and females 

(N = 65) increased with growth in body size (Fig. 1). Although the interaction indicated 

violation of the ANCOVA assumption of equal regression slopes (Zar, 1996), existence of 

the interaction confirmed sexual dimorphism in cheliped size, with males having 

relatively larger chelipeds than females (Fig. 1). The effect size for carapace length (F1,146 

= 231.45, P < 0.001, partial 2 = 0.61) far exceeded that of both sex (F1,146 = 11.03, P < 
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0.001, partial 2 = 0.07) and the interaction of sex and carapace length (noted above). 

The DFA model also confirmed that anatomical differences between sexes were 

significant (Wilks’ Λ = 0.32, χ2 = 166.2, df = 3, P < 0.001). Cheliped length proved better 

than mass and carapace length at discriminating between males and females  
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Fig 1. Significant correlation between cheliped length and carapace length and significant 

interaction between cheliped length and sex (Wilks’ Λ = 0.32, χ2 = 166.2, df = 3, P < 
0.001). ●- males, ○- females, solid line- fit line for males, dotted line- fit line for females.  
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(standardized coefficients were 1.722, -0.68, and -0.52, respectively). Males (N = 85) and 

females (N = 64; mass was missing for one individual) were correctly assigned 94.1% 

and 96.9% of the time, respectively (95.3% for all crabs), for both original and cross-

validated classification. 

Our attempt to identify sex in the field based on relative cheliped size proved 

much more successful than expected by chance (χ2 = 29.07, df = 1, P < 0.001, φ = 0.79). 

We correctly guessed the sex of 90.5% of 21 males and 88.5% of 26 females, which 

compared favorably to predictions based on morphological measurements (the DFA 

results). 

 

Behavioral Responses to Chemical Cues  

When the 20 hermit crabs (10 of each sex) were tested for behavioral responses in 

the presence of agonistic, non-agonistic, and control chemical cues, walking was the most 

frequently observed behavior, followed by head-extended, withdrawn (remaining in 

shell), and meral spread, respectively (Fig. 2). For withdrawn behavior (remaining in 

shell), neither main effect (sex, chemical cue condition) nor the interaction were 

significant (Table 1). However, the relatively large effect size for the interaction (partial 

η2 = 0.12) suggests that females were more likely than males to remain withdrawn in the 

presence of non-agonistic chemical cues relative to agonistic and control cues (Fig. 2). 

This effect is almost certainly due to the size difference between males and females. For 

head-extended behavior, the lack of significant effects and relatively small effect sizes 

(Table 1) suggest that this behavior did not differ between the sexes or among the three 

chemical cues (Fig. 2). For walking, there was no interaction and no effect of sex;  
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Table 1. Behavior Table 

Behavior 
Sex Condition Interaction 

F(1,18) P η2 F(2,36) P η2 F(2,36) P η2 

Withdrawn 2.10 0.164 0.11 2.35a 0.138 0.12 2.64a 0.116 0.13

Head-extended 0.90 0.355 0.05 1.61 0.215 0.08 1.36 0.269 0.07

Walking 0.05 0.826 0.00 3.40 0.044 0.16 1.24 0.301 0.06

Meral spread 3.73 0.069 0.17 2.41a 0.130 0.12 1.36a 0.264 0.07

 

aGreenhouse-Geisser adjustment applied to degrees-of-freedom: F(1.15,20.75) 
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<Figure 2 about here.> Fig. 2. Percent of time spent in observed behaviors. Black bars- 
males, gray bars- females, error bars- SE.  Panels A, B, C and D present the % of time the 
observed crabs were described as withdrawn, with head extended, walking and with 
meral spread, respectively.  
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however, the chemical cue condition was significant (P = 0.044, partial η2 = 0.16; Table 

1), with post-hoc comparisons (LSD) indicating that ambulation by both sexes occurred 

more frequently in the presence of agonistic cues than in the presence of non-agonistic 

cues (Fig. 2). For meral spread behavior, no effects were significant, but the large effect 

size for sex (partial η2 = 0.17; Table 1) suggests that males exhibited meral spread with 

greater frequency than females because of size differences between the sexes. Males in 

this experiment averaged 34.4% more in mass than females (mean ± SD: 0.77 ± 0.19 g 

and 0.57 ± 0.18 g, respectively; t = 2.37, df = 18, P = 0.029, Cohen’s d = 1.06). 

Accordingly, sex differences in behavior could have resulted because of body size 

disparity between the sexes. Among the 10 females, body size was moderately and 

negatively associated with withdrawn (r = -0.34, P = 0.34) and head-extended (r = -0.34, 

P = 0.34), but positively and more strongly associated with walking (r = 0.55, P = 0.10) 

and meral spread (rs = 0.51, P = 0.13). Among the 10 males, body size was strongly and 

negatively associated with withdrawn (r = -0.69, P = 0.026), independent of head-

extended (r = 0.03, P = 0.93) and walking (r = 0.16, P = 0.66), and somewhat positively 

associated with meral spread (rs = 0.24, P = 0.50). Thus, the two consistent relationships 

between body size and behavior in both males and females were that larger individuals of 

both sexes spent less time withdrawn and more time in meral spread than smaller 

individuals. When data were pooled for the two sexes (N = 20), the associations of body 

size with withdrawn (r = -0.46, P = 0.040) and meral spread (rs = 0.45, P = 0.046) 

became significant.  
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Discussion 

 This study yielded two noteworthy findings. First, we showed that sexual 

dimorphism in cheliped size exists in P. samuelis, which we suggest may have resulted 

from intrasexual selection. Second, we found that the behavioral responses of P. samuelis 

varied depending on the presence of same-sex agonistic chemical cues in the water. 

Although we interpret the results while emphasizing practical significance (effect size) 

because of sample size constraints, our conclusions are nevertheless supported by 

statistical significance. 

 

Sexual Dimorphism 

We found significant differences in cheliped:carapace ratios between the sexes of 

P. samuelis, providing evidence of sexual size dimorphism, which also exists among 

other Paguroideans (Bach et al., 2006). In our study, the major chelipeds of males were 

relatively larger than those of females. The two main reasons for sexual dimorphism are 

sexual selection (Yoshino et al., 2011) or ecological advantage (Slatkin, 1984). Examples 

in Shine’s (1989) appendix show that sexual dimorphism in the order Decapoda can often 

be attributed to sexual selection versus ecological causes. However, crustaceans in other 

subphylums show evidence of sexual dimorphism due to ecological functions (Gilbert & 

Williamson, 1983; Kornicker, 1985; Shine, 1989). Shine (1989) also suggests that 

modifications between sexes can occur if one sex was predominantly capturing prey or 

acquiring resources while the other sex was escaping from danger. Filling separate 

ecological niches could allow for sexual dimorphism to occur.  

In the case of P. samuelis, we suggest that sexual dimorphism is apparent due to 
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reproductive advantage and, more specifically, to intrasexual selection, since in the case 

of the close relative P. bernhardus, having a larger chela did not give any advantage in 

contests over gastropod shells (Briffa and Dallaway, 2007). No observations, thus far, 

have been made of any sexual differences in the use or acquisition of resources. Also, 

larger P. bernhardus males win more often in contests over resources, such as females 

and food, than smaller males (Contreras-Garduno et al., 2007; Ramsay et al., 1997). 

Sanvicente-Anorve and Hermoso-Salazar (2011) found that in the land hermit crab, 

Coenobita clypeatus, males tended to be larger than females. They attribute this to the 

fact that females invest much more energy into reproduction. 

Large male chelipeds may be advantageous for reproductive behavior, as male 

hermit crabs tend to compete aggressively for females (Hazlett, 1996). In the hermit crab 

Diogenes nitidimanus, larger males and males with larger chelipeds tend to outcompete 

smaller males in contests over females (Asakura, 1987). Female size had no impact on 

being chosen by males for reproduction. Males of D. nitidimanus are, on average, larger 

than females (Asakura, 1995). Larger male chelipeds may also be helpful in the many 

species of crustaceans that engage in precopulatory guarding (Goshima et al., 1998; 

Hazlett, 1996). However, having a larger, stronger cheliped may come with a higher 

metabolic cost, and therefore limit sexual dimorphism in this trait (Doake et al., 2010). 

For Pagurus samuelis, however, females may actually be more aggressive than 

males (personal observation). Tanks in which males and females were separated by sex 

showed that females had more evidence of aggression, with many more females losing 

appendages than males in male tanks. However, we did not quantify these observations 

and the loss of appendages among females may be due to other factors, such as stress of 
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capture or autotomy. 

Whereas males likely expend more energy and resources toward developing 

larger major chelipeds, female P. samuelis may expend more energy towards egg 

production rather than size development.  In the case of the hermit crab, Calcinus 

tubularis, egg clutch size was not impacted by female size (Gherardi, 2004). In the wild, 

98% of all males were found inhabiting shells, while 84% of females were found in 

tubes. Contests between genders revealed that males that were previously housed in 

shells won more contests than females regardless of the females’ previous dwelling. 

When females that had shells contested with males that lived in tubes, females usually 

won. In this case it appears that, first, having a shell and, second, being male gives a crab 

an advantage over resources when competing with conspecifics.  These data provide 

evidence that Calcinus tubularis males expend more energy in gaining better resources, 

such as gastropod shells, while females tend to focus on egg production or other 

activities. Because of the difference in motivation levels for various resources, females 

may not benefit as much as males from having a larger cheliped. 

During the reproductive autumn season, males of the crayfish Orconectes 

quinebaugensis were much more agonistic overall than reproductive females (Warren et 

al., 2009). Thus, larger males may have greater genetic fitness than smaller males, while 

female size does not appear to impact reproductive advantage. 

Stein (1976) found that the larger chelae in the male crayfish, Orconectes 

propinquus, was primarily for social hierarchy among the males. During the breeding 

season, males took on a breeding form with the large chelae, and males with the largest 

chelae were most successful in breeding attempts. Interestingly, when predation risk was 
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highest for the crayfish in the summer months, males were in the non-breeding form 

when the chelae are much smaller in proportion to their body size. Thus, in this species, a 

larger chela was not necessarily an advantage in predator defense or they would show this 

form during times of high predation risk. Females would also exhibit larger chelae if it 

was advantageous in food acquisition. Because this is not the case, Stein (1976) 

concluded that sexual dimorphism in O. propinquus was primarily for reproductive 

purposes.  

 

Behavioral Differences between Sexes 

In this study, we subjected male and female hermit crabs to three different 

chemical cues (same-sex agonistic odors, same-sex non-agonistic odors, and a control 

with absence of conspecific odors) and recorded four behavioral responses. We 

anticipated different responses to the chemical cues, and possibly sex-specific or size-

related differences as well. Behavioral differences between the sexes were fairly subtle.  

Females were more likely than males to remain withdrawn in their shells in non-

agonistic cue treatment waters than in agonistic and control cue treatment waters. These 

females may have displayed this defensive posture more in this treatment water than 

agonistic and control waters as a way of limiting the opportunity of encountering a lone 

conspecific in need of a better shell.  

In agonistic cue treatment waters, both sexes increased the amount of time spent 

walking compared to non-agonistic cue waters. This difference in behaviors between the 

two treatment waters suggests that when a crab senses many conspecifics engaging in 

agonistic contests, the crab will exhibit a flight response while a female crab specifically 
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may opt to remain withdrawn if she senses only a single conspecific. Also, time allotted 

to walking in agonistic cue treatment water may be higher than normal because the crabs 

used in creating treatment waters all had inadequate shells. The focal crab may have been 

attempting to escape from the environment in which it sensed other crabs contending 

with each other for an adequate shell, or to investigate for a better shell of its own 

(Bulinski, 2007). 

The meral spread behavior is often seen in decapods in agonistic or aggressive 

situations (Breithaupt and Atema, 2000). In our study, males were more likely to exhibit 

this behavior than females in agonistic environments. Also, our research shows that larger 

males generally have larger major chelipeds (Fig. 1). If males are more likely to engage 

their chelipeds in agonistic behavior, and if larger males win in contests over females 

(Contreras-Garduno et al., 2007), sexual selection may be a component in the reason why 

sexual dimorphism is apparent in this species. 

The amount of time spent in the head-extended posture showed no difference 

among the three treatments or the sexes. This behavior appears to be neither aggressive 

nor defensive and may be the posture for processing their environment. Both males and 

females appear to need the same amount of time for processing stimuli regardless of their 

environment.  

We found evidence that P. samuelis behavior is impacted by chemical cues. In the 

highly social context that hermit crabs inhabit, chemical cues are important in agonistic 

contests over resources, reproduction, and predator avoidance. Further studies may more 

clearly demonstrate if there are behavioral differences between sexes when they sense 

chemical cues from a conspecific of the opposite sex.  
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CHAPTER THREE 

DISCUSSION 
 
 

Sexual dimorphism 

I found significant differences in cheliped:shield ratios between sexes of P. 

samuelis. Male major chelipeds were significantly larger relative to body size than 

females. Although having a stronger, larger cheliped may require more metabolic energy, 

the larger cheliped may aid male hermit crabs in competing for females (Hazlett, 1996) 

and in pre-copulatory guarding (Goshima et al., 1998; Hazlett, 1996). Pre-copulatory 

guarding in hermit crabs involves the male grasping the shell of the female until 

copulation occurs.  

Studies on the role of gender in agonistic contests are conflicting.  According to 

Yoshino and Goshima (2002), male Pagurus filholi were more dominant than females 

when they were contesting in shell fights.  They found that larger males could evict 

females from their shells faster than smaller males could evict females. In this species, 

larger animals are more likely male than female (Yoshino et al., 2001). In another study, 

Pagurus bernhardus males were more likely to initiate attacks (Briffa and Dallaway, 

2007). However, once a crab began attacking, gender had no role in the success of the 

attacker. Cheliped size also had no relationship to success or failure of an attacker. Briffa 

and Dallaway (2007) noted that male P. bernhardus appeared more successful in fights 

because they initiated more often than females, but males did not actually have any 

advantage over females when contesting for shells. The difference in results between 
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Yoshino and Goshima (2002) and Briffa and Dallaway (2007) may be attributed to a 

difference in species or a difference in design. Briffa and Dallaway (2007) stated that 

males appeared to have higher success in evicting defending crabs, but they realized this 

was due to the fact that males were more likely to initiate the attacks. Yoshino and 

Goshima (2002) may not have factored in the higher likelihood of a male to initiate 

attacks than females, thus giving them different results from Briffa and Dallaway’s study 

(2007). 

Sexual size dimorphism may be evident in crustaceans for several reasons. Larger 

males overall tend to be more successful in gaining and defending resources, such as 

females, in the hermit crabs, Clibanarius digueti (Harvey, 1990),  Clibanarius vittatus 

(Hazlett, 1996), and  Coenobita compressus (Contreras-Garduno et al., 2007). This allows 

for higher genetic success for larger size to be passed down to their progeny. In 

Clibanarius species, large intruding males could interrupt a courting pair and mate with 

the female when the original mating male was smaller than the intruder (Harvey, 1990; 

Hazlett, 1996).  

In the land hermit crab, Coenobita compressus, larger males win more often than 

smaller males when competing for females (Contreras-Garduno et al., 2007). This type of 

competition, found in various species, may give crustacean males an advantage if they 

are larger in size and have larger chelipeds than other males. Females focus much more 

of their energy on egg production and protection in many crustacean species (Page and 

Cooper, 2004; Warren et al., 2009). Thus, males, and not females, have the larger claw in 

many decapod species.  

Larger-chelaed crustaceans often have a greater advantage than smaller-chelaed 
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crustaceans when competing for resources or avoiding predators. Stein (1976) found that 

in the crayfish, Orconectes propinquus, males have chelae that are up to twice as large as 

females, overall. He found the greatest evidence for larger chelae in males to be in 

support of the idea of reproductive success. Prey and food capture is important, but if the 

primary advantage of larger chelae was simply food acquisition, females might also be 

expected to have large chelae. Larger chelae have been hypothesized to be an advantage 

during times of predator defense.  Stein (1976) found that the smallmouth bass, 

Micropterus dolomieui, a natural predator, pick out crayfish with smaller chelae. 

However, male crayfish of this species molt between two forms, a breeding form and 

non-breeding form. The non-breeding form is most common for approximately eight 

weeks during the summer months. In this form, the male chelae are much smaller, 

proportional to the body, than in the breeding form. Fish predation is highest during 

summer. If larger chelae were advantageous as predator defense, then male crayfish 

might be expected to show the larger-chelae during non-breeding times, instead of the 

observed smaller-chelae. Again, if the primary function of large chelae was predator 

defense, females might also be expected to exhibit this enlarged body structure. Males 

with larger chelae were significantly more successful in reproduction than males with 

relatively smaller chelae during competition for females (Stein, 1976). 

The advantages of exhibiting a sexually dimorphic trait must outweigh the 

disadvantages. Male fiddler crabs have a large major claw and a smaller minor feeding 

claw. Having such a large appendage can be metabolically expensive. However, Bildstein 

et al. (1989) found that female  fiddler crabs were more prone to avian predation than 

males. Darnell and Munguia (2011) observed differences in body temperature increases 
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when exposed to radiant heat in intact males, males with the major claw removed, males 

with the minor claw autotomized, and females. Males with the major claw autotomized 

showed similar patterns of body temperature increases to females when exposed to 

radiant heat. Males with only the minor claw removed showed patterns similar to intact 

males and did not increase in body temperature as much as females or males with no 

major claw. Thus, thermoregulation can offset the energetic costs of having such a large 

appendage that is necessary for breeding in males. 

Larger chelae did not appear to give males an advantage over females in O. 

propinquus (Stein, 1976) and larger chelipeds did not appear to gives males an advantage 

over females in P. bernhardus (Briffa and Dallaway, 2007). Like O. propinquus and P. 

behernardus, having larger chelipeds and body mass may aid male Pagurus samuelis 

hermit crabs to have higher social status and thus, have improved mating success, but not 

necessarily better access to resources than their smaller-chelaed female conspecifics, 

although social status was not tested in the current study.  

Abrams (1988) put forth three reasons why sexual dimorphism may be evident in 

hermit crab species: 1) differences in allocation of energy for growth; 2) competition 

between males for females favor the larger individual, thus, males increase in size more 

quickly than females; and 3) competition for shells causes character displacement 

between sexes. Ultimately, sexual dimorphism cannot necessarily be more advantageous 

for one sex over the other because the other gender would likely, over time, also display 

those sex-defining characteristics (Stein, 1976) due to environmental pressures. Sexual 

dimorphism must be apparent for reproductive reasons, for various roles that sex plays in 

mating, or to fill sex-specific niches.  
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Chemical communication and Behavior 

My research showed significant behavioral differences when the hermit crab, 

Pagurus samuelis, was exposed to different treatment waters. All crabs used in making 

cue treatment waters were housed in inadequate shells. Thus, agonistic cue treatment 

water contained hermit crabs that were contesting over gastropod shells. All crabs used in 

the creation of treatment cue waters were the same gender as the focal crab. Single cue 

treatment water contained a single hermit crab of the same gender as the focal crab, while 

control water was pure seawater. Crab behaviors were very predictable and significant 

overall. Animals spent the most time walking and the least time exhibiting meral spread. 

After walking, the second most common behavior was stationary with the anterior 

portion of the body visible, and the third most common behavior was withdrawn in the 

shell. 

Briffa and Williams (2006) found that P. bernhardus stayed withdrawn in its shell 

more when it sensed agonistic interactions or shell fights among conspecifics. Although 

there were no significant interactions between sex and chemical cue conditions, females 

in my study tended to stay in their shells more when in single cue treatment waters than 

when in agonistic or control cue conditions. Crabs in my study increased the amount of 

time spent walking when in agonistic cue treatment water, suggesting that crabs may 

have been exhibiting a stronger escape or locomotion response when in agonistic cue 

treatment water than when in the single cue treatment water or control water. When in 

single cue water, they may have tried to protect themselves from any potential agonistic 

encounter with a single hermit crab in an inadequate shell. Alternatively, they may have 

been waiting for some type of stimulus. 
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The agonistic meral spread posture was very seldom observed, even when crabs 

were exposed to agonistic cue treatment waters. Meral spreads and other agonistic or 

aggressive postures were observed often in H. americanus in the case of predator 

avoidance (Schneider and Moore, 2000), and agonistic interactions between conspecifics 

(Breithaupt and Atema, 2000). In contrast to the current study, however, both previous 

studies used visual cues. Breithaupt and Eger (2002) also found that Astacus 

leptodactylus showed aggression towards conspecifics. This posture may be highly 

dependent on visual stimuli. Pagurus samuelis is a highly social crab and can be found 

feeding in large groups in the intertidal zone. Agonistic postures may only be necessary 

when a crab is directly competing for resources.  

Visual stimulation, in combination with chemical cues, has been shown to alter 

behavior in crustaceans. The hermit crab, Clibanarius antillensis, responded much more 

strongly to visual cues when appropriate chemical cues were present (Chiussi et al., 

2001). Hermit crabs oriented themselves towards targets representing gastropod shells 

when calcium and gastropod odors were introduced. They also oriented themselves more 

to striped targets representing seagrass when seagrass odor was introduced. In the 

crayfish, Procambarus clarkii, males were willing to mate when only the female 

chemical signal was given (Aquiloni and Gherardi, 2008). However, females required 

both male visual presence as well as chemical stimulation for mating. The blue crab, 

Callinectes sapidus, reacted by moving away from visual targets if there was a chemical 

cue, regardless of what that cue was - predator odors, crushed conspecific odors, or 

waters from estuaries (Diaz et al., 2003).  

While I found significant differences in behavior between treatment waters and 
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control waters overall, I found no significant behavioral differences between sexes of P. 

samuelis when exposed to the treatment cue waters from conspecifics in agonistic 

interactions or single hermit crab water. However, I found large effect sizes for the 

interaction between sex and chemical cue condition for females in the non-agonistic cue 

condition for the withdrawn behavior. Meral spread behavior data analyses showed that 

although there were no significant effects, there was also a large effect size showing that 

males were more likely to exhibit this behavior than females.  

My study focused on reactions to cue waters created by the same sex as the 

treatment crab. Female P. samuelis responded to female cue waters in the same way that 

male P. samuelis responded to male cue waters. One of the weaknesses of my study is 

that I did not test responses of male hermit crabs to female cue treatment waters, or 

female hermit crabs to male cue treatment waters. However, there is good reason to 

believe that such experiments would be beneficial in our understanding of chemical 

communication and behavioral differences between sexes of Pagurus samuelis, since 

cues from the opposite sex may also cause behavioral changes. There appeared to be 

higher number of missing or autotomized appendages in tanks containing only females 

than in tanks of only males. This could be due to higher levels of aggression between 

females than is apparent between males, or to increased autotomy overall in females. 

However, this was not quantified in the current study. 

There are many ways in which behavior may be altered by chemical cues from the 

other sex, with reproductive behaviors providing the best examples. In the hermit crab, 

Pagurus filholi, males could sense when a female was within 5 days of spawning 

(Goshima et al., 1998). Only when a female was within that period of time were they 
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constrained by males in pre-copulatory guarding. In the hermit crab, Clibanarius vittatus, 

male crabs reacted significantly to female odors by increasing the amount of time spent in 

locomotion and even grasping other smaller males when water from tanks that housed 

only female hermit crabs was introduced into the male tank (Hazlett, 1996). Male P. 

clarkii were aggressive towards female conspecifics when given only visual cues, but 

became willing to mate when presented with female conspecific cues (Aquiloni and 

Gherardi, 2008). In the crayfish, Homarus americanus, males responded very strongly to 

female urine by raising their bodies higher off the ground (Atema, 1986). Female shore 

crabs from the species Carcinus maenas released hydroxyecdysone during the summer 

reproductive months to deter males from cannibalistic behavior while the females were in 

their soft moulting stage (Hayden et al., 2007). During that time, females continued to 

feed intensely, while males significantly reduced their feeding activities.  

Even in agonistic environments, individuals of a species may alter behavior based 

on the sex of conspecifics encountered. Briffa and Dallaway (2007) found that Pagurus 

bernhardus attackers, regardless of sex, can sense when a female is defending its shell. 

The attacker is more persistent than when a male is defending its shell. However, in the 

end, males and females had the same ability to defend. A similar phenomenon was 

observed intersexually and intrasexually in Pagurus filholi when males defended their 

shells in agonistic shell fights for significantly longer times than females (Yoshino and 

Goshima, 2002). Males fought longer overall. Thus, behaviors change not only in 

reproductive settings, but in agonistic settings between sexes, as well. 

Martin and Moore (2010) found that O. rusticus exhibits varying levels of 

aggression based on reproductive state in fights against conspecifics of the opposite sex. 
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Reproductive males won significantly more often when fighting against reproductive and 

non-reproductive females. Reproductive females won significantly more fights when the 

male was non-reproductive than when the male was reproductive. In intersexual agonistic 

fights, when both crayfish were reproductive, fights lasted longer and potentially ended in 

matings. Simon and Moore (2007) found that crayfish in this species excreted more urine 

during intersexual agonistic contests when both animals were reproductive than when 

only one was reproductive or neither were reproductive, giving more evidence for the 

role of chemical communication in mating rituals.  

In general, pheromones, cues, odors, signals from the natural habitat, 

conspecifics, predators, and other species have all been shown to alter behavior in 

crustaceans. The hermit crab, Clibanarius vittatus, increases overall locomotion when a 

predator odor is introduced to its environment (Rittschof and Hazlett, 1997). Evidence 

shows that crayfish establish a hierarchical system, partly based on chemical 

communication (Moore and Bergman, 2005). The crayfish, Orconectes rusticus 

(Schneider et al., 2001), and the lobster, Homarus americanus (Karavanich and Atema, 

1998a; Karavanich and Atema, 1998b), can recognize conspecifics it has met before by 

their urine, thus decreasing time spent in agonistic contests between familiar 

conspecifics. The lobster, H. americanus, uses urine to send signals during agonistic 

contacts and always in connection with aggressive behavior (Breithaupt et al., 1999). 

They found that aggressive lobsters and eventual winners release more urine at the onset 

of agonistic contests. The mangrove crab, Aratus pisonii,  finds shelter when predator 

odor is introduced (Chiussi, 2003). The crayfish, Orconectes virilis, also alters its 

behavior when predator odor is introduced (Hazlett, 1999).  
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Chemical cues can alter behavior in measurable ways. Crustaceans are highly 

dependent on chemical cues for their survival and for information regarding both their 

environments and their interactions with other organisms. The decisions they make, the 

contests they win or lose, and the shelters they choose, may all be dependent on the 

correct interpretation of chemical cues. 

 

 

Directions of Future Research 

The role of sex-specific differences in anatomy and behavior in Pagurus samuelis 

has received investigative attention. Sexual dimorphism is mainly apparent for each sex 

to fill a sex-specific role or niche, or for reproductive advantage within one sex (Stein, 

1976). Thus research determining the effects, the roles, and the necessity of sexual 

dimorphism should be pursued to understand the ecological and behavioral roles that 

sexual dimorphism plays in P. samuelis. 

Future studies in resource utilization differences between sexes, intrasexual versus 

intersexual agonistic contests, and responses to agonistic cue treatment waters of the 

opposite sex would be beneficial. Studies in resource utilization differences would help 

determine potential issues in population decline if one sex was declining due to certain 

limited resources. Comparing differences in intersexual contests versus intrasexual 

contests would give a much better understanding of motivation levels between sexes and 

behavioral differences between sexes. Differences in reaction to chemical cues from 

males or females in agonistic contests would give evidence for significant differences in 

the chemical cues between sexes. Chemical cues from the opposite gender in agonistic 



78 

situations may allow less energy to be spent in fighting when conspecifics understand the 

motivation levels for those resources based on the conspecific’s sex. 
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