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ABSTRACT OF THE DISSERTATION 

Towards a Better Treatment of Parkinson’s Disease 

by 

Bradley Darryl Karain 

Doctor of Philosophy, Graduate Program in Microbiology and Molecular Genetics  
Loma Linda University, March 2014 

Dr. Wei-Xing Shi, Chairperson 
 

Current therapies for Parkinson’s Disease, the second most common 

neurodegenerative disorder, do not prevent disease progression, and induce extremely 

detrimental side-effects.  Improving the best current pharmacological therapy, L-DOPA, 

carries important clinical benefits, partly by reducing the dose-related side-effects which 

occur after five to ten years of use.  Thus the central aim of this proposal is to 

determine whether low doses of a D2 antagonist may, by selectively blocking the 

dopamine autoreceptor-mediated feedback inhibition of dopamine neurons, 

potentiate L-DOPA’s effect on individual basal ganglia neurons and its 

antiparkinsonian effects in Parkinsonian animals. 

 Electrophysiology (extracellular single-cell recording in the globus pallidus) and 

behavioral (cylinder test) studies were performed to determine if co-administration of a 

small dose of the D2 antagonist raclopride with L-DOPA results in an enhanced 

therapeutic effect of L-DOPA in 6-OHDA lesioned (parkinsonian) rats. 

 Preliminary data revealed different subgroups of pallidal neurons, with different 

responses to L-DOPA injection.  However, we showed that a major method by which 

sub-groups of pallidal neurons have been identified in previous studies was unreliable, 

halting further study of L-DOPA’s effect on different subgroups of pallidal neurons using 

that method.  Thus, we focused on classification of pallidal neurons and the changes of 

these neurons in Parkinsonian animals.  Previous studies report pallidal neurons as 
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Type-I (negative initial peak) or Type-II (initial positive peak).  Our studies suggest 

electrode impedance determines whether the recorded waveform is Type-I (low 

impedance electrode) or Type-II (high impedance electrode).  Pallidal neurons can be 

more reliably classified based on functional connectivity with cortical neurons.  More 

importantly, our findings showed that, in Parkinsonian rats, pallidal neurons positively 

coupled to cortical activity usually lag, while in control rats close to half of pallidal 

neurons lead cortical activity.  Also, we found significantly increased cortical control of 

pallidal neurons in Parkinsonian rats indicated by a significant increase in the observed 

number of pallidal cells negatively coupled to cortical activity.  The quantity of pallidal 

neurons uncoupled to cortical activity was observed to significantly decrease in 6-OHDA 

lesioned rats compared to controls.  

 Behaviorally, raclopride (5 µg/kg, i.p.) was found to significantly potentiate the 

therapeutic benefit of L-DOPA (3 mg/kg, i.p.). 
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Abstract 

Parkinson’s Disease (PD) is a neurodegenerative condition characterized by the 

loss of dopamine producing cells in the substantia nigra (SN). The most obvious and 

early symptoms of the disease occur due to the loss of dopamine (DA) innervation in 

groups of subcortical nuclei known as the basal ganglia (BG).  These nuclei include the 

striatum (Str), globus pallidus internus (GPi) and globus pallidus externus (GPe).  

Different subgroups of globus pallidus (GP) neurons are likely to have different functional 

roles, and several methods exist for identifying heterogeneity among pallidal neurons, 

including differences among action potential shape.  We consider effects on the GP of 

the major afferent (glutamatergic from the subthalamic nucleus (STN) and GABAergic 

from the Str) and efferent (GABA to all basal ganglia nuclei) projections. The cortex has 

a large indirect influence due to glutamatergic cortical projections to both the Str and 

STN.  DA and DA agonists have a critical modulatory influence on GP activity through 

opposite effects on the largely independent BG pathways referred to as ‘direct’ and 

‘indirect’.  The Str medium spiny neurons (MSN) in the ‘direct’ pathway express Gs-

coupled D1 receptors and activation of the direct pathway facilitates movement, whereas 

the ‘indirect’ pathway Str MSNs express Gi-coupled D2 receptors and activation of the 

indirect pathway inhibits movement.  DA autoreceptors are DA receptors expressed on 

DA neurons.  They are D2-like and highly sensitive to small doses of DA agonists with 

raclopride being a highly specific D2 antagonist. The specific aims explored are 1) 

identify GP neuron subgroups in isoflurane-anesthetized rats using previously described 

classification schemes, one based on shape of the extracellular waveform and another 

based on functional connectivity between GP and cortical neurons, and quantify 

changes in these groups following DA depletion 2) test the hypothesis that low doses of 

raclopride selectively block DA autoreceptors and potentiate the therapeutic effect of L-

DOPA on behavior. 
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Parkinson’s Disease and Movement Control 

PD was first described 200 years ago, yet remains the second most common 

neurodegenerative disorder, with no clear path for prevention or cure.  The pathological 

hallmark of PD is the death of DAergic neurons in the SN that innervate a complex and 

highly interconnected group of subcortical nuclei known as the basal ganglia (BG).  The 

BG are intimately involved in control of movement[1] and may be considered to consist 

of three components.  First, the input nuclei comprised of the caudate nucleus and the 

putamen, collectively referred to in rats as the striatum (Str).  Next is the output nucleus, 

the internal segment of the globus pallidus (GPi), referred to in rats as the 

entopeduncular nucleus.  The substantia nigra pars reticulate (SNr) is also an output 

nucleus but is located at the base of the midbrain, some distance from the BG.  Lastly is 

the intrinsic nucleus, the external segment of the globus pallidus (GPe) referred to in rats 

simply as the GP.  The activity of the GPe is strongly influenced by the subthalamic 

nucleus (STN) and the substantia nigra pars compacta (SNc), though again these nuclei 

are located some distance from the BG. 

The BG of the rat evinces conscious movement control due to the activity of 

approximately 26,000 DA neurons in the SNc extensively innervating the Str.  The left 

diagram in Fig. 1.1 [2] is a simplified diagram of the functional organization of the BG.  

Red arrows indicate glutamatergic (excitatory) inputs, blue arrows indicate GABAergic 

(inhibitory) inputs, and the grey arrow is DAergic.  The diagram on the right in Fig 1.1 

shows localization of the BG in the human.  Ninety percent of Str neurons are MSNs (the 

other 10% being interneurons), divided into the D1R-expressing neurons giving rise to 

the direct pathway (Fig. 1.1: Str  GPi/SNr).  and D2R-expressing neurons of the 

indirect pathway (Fig. 1.1: Str  GPe  STN  GPi/SNr) [2].  Each DA axon innervates 

approximately 75,000 MSNs, with each MSN innervated by 95 to 194 DA neurons [3].  In 
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humans each DA neuron innervates as many as 1 million MSNs.  The modulatory 

influence of DA is thought to occur in part by an excitatory influence on MSNs 

expressing D1 receptors (Gs-coupled) and an inhibitory influence on MSNs expressing 

D2 receptors (Gi-coupled)[3]. 

 

 

 

 

 

 

 

Importance of the GP 

Pallidal projection neurons are GABAergic, 1/3 of which project exclusively back 

to the Str.  GPe neurons project to many subcortical regions including the GPi, STN, and 

SNr) [3, 4].  Reciprocal connections between the GP and other BG nuclei indicate that 
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the GP plays a significant role in modulating neuronal activity of the entire BG; in turn, 

the activity of GP neurons is coordinated by several major inputs that involve the Str [5]. 

Early BG models considered the GP to be a homogeneous relay nucleus, simply 

passing striatal information to the subthalamic nucleus (STN) and BG output nuclei.  In 

fact, the GP appears to be a diverse structure that performs complex computations 

within its borders [6].  Also, the Str and GP are both post-synaptic to DA neurons, but 

GP neurons fire tonically at a relatively high frequency compared to Str neurons [7].  

Thus, as an important integrator of BG activity with numerous feedback loops, coupled 

with a faster firing rate than Str neurons, GP neurons are a preferred target to study 

effects of drugs on the BG electrophysiologically.  

 

Afferent Glutamatergic Projections 

STN neurons are glutamatergic, and occupy a pivotal position in the circuitry of 

the BG. They receive direct excitatory input from the cerebral cortex and the thalamus, 

and directly excite the GABAergic BG output neurons in the GPi and the SNr. They are 

also engaged in a reciprocal synaptic arrangement with GABAergic neurons in the GPe.  

STN lesions reduce bursting in normal rats and normalize the firing pattern in the GP of 

rats with 6-OHDA lesions, suggesting the STN is important in modulation of the pattern 

of activity of GP neurons.  This may account for the therapeutic effect of STN lesions in 

Parkinson's disease [8].  One of the functions of the excitatory glutamatergic STN is to 

relay cortical activity to other basal ganglia structures. The response of the STN to 

cortical input is influenced by GABAergic inhibition from the reciprocally connected GP.  

STN and GP activity is intimately related to cortical activity.  The oscillatory activity of the 

STN-GP network is regulated in a complex manner, with the cortex possibly driving 

oscillatory activity observed in disease states [9]. 
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Animal models of parkinsonism have shown that excitatory corticosubthalamic 

input, during periods of synchronized bursting activity, are partly responsible for driving 

changes in neuronal GP activity [10].  However, the increased activity of STN neurons 

following a midbrain dopaminergic lesion cannot be due solely to inhibition-disinhibition 

involving the striato-pallido-subthalamic pathway and induced by striatal DAergic 

depletion [11]. 

There are approximately 46,000 GPe neurons in the rat [12], able to fire autonomously 

and requiring no external source for maintenance. However, neuronal reactivity in the 

BG network considerably differs between early and late stage models of PD.  Severe 

lesions induce pathological activity of STN neurons not mediated by the GP.  STN 

hyperactivity is a cause of the unchanged GP neuron activity.  In the GP-STN-GP 

network, the excitatory influence of the STN-GP pathway overrides that of the 

GABAergic GP-STN pathway [13]. 

 

Afferent GABAergic Projections 

GP neurons in 6-OHDA-treated hemi-parkinsonian rats fire significantly more 

strong bursts than in normal rats.  DA-depletion increases burst firings of striatal (Str) 

neurons projecting to the GP and the increased Str-GP burst inputs play a 

significant role in the generation of pauses and bursts in GP and its projection sites.  

Striatal muscimol injection in 6-OHDA-lesioned rats increases firing rate, with reduced 

pauses and bursts in the GP.  Str projection neurons in control rats have very low 

spontaneous activity, whereas DA-depletion causes Str neurons to exhibit stronger 

bursts and a higher firing rate, most of which are MSNs projecting only to the GP.  Thus, 

DA-depletion increases burst firing of Str neurons projecting to the GP and increased 

Str-GP burst inputs play a significant role in the generation of pauses and bursts in GP. 
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Therapeutic reduction of bursting in Str-GP inhibitory inputs may help reduce PD 

dysfunction [14]. 

Slow oscillatory activity emerges in BG nuclei in anesthetized rats after DA cell 

lesion. Unilateral DA cell lesion induces a striking ipsilateral increase in incidence of slow 

oscillations (0.3-2.5 Hz) in firing rate in STN, GP, and SNr. Phase relationships 

assessed through paired recordings using SNr LFP as a temporal reference show that 

slow oscillatory activity in GP spike trains is predominantly antiphase with Str 

oscillations, while STN slow oscillatory activity is in-phase with the cortex but antiphase 

with the GP. Thus, following DA lesion, increased oscillatory activity in GP spike trains is 

shaped more by increased phasic inhibitory input from the Str than by phasic excitatory 

input from the STN.  Also, oscillatory activity in SNr spike trains is typically antiphase 

with GP oscillatory activity and in-phase with STN oscillatory activity.   Increased 

oscillatory activity in the GP is facilitated by an effect of DA loss on Str 'filtering' of slow 

components of oscillatory cortical input.  Increased oscillatory activity in STN spike trains 

is supported by convergent antiphase inhibitory and excitatory oscillatory input from GP 

and cortex, respectively.  Increased oscillatory activity in SNr spike trains is driven by 

convergent antiphase inhibitory and excitatory oscillatory input from GP and STN, 

respectively [15]. 

Str and GPe neurons fire synchronously following acute and repeated DA 

blockade.  Although phase lags between neuronal discharges in the GPe and Str are 

uniformly distributed prior to DA blockade, Str significantly lags GPe discharges after 

repeated DA blockade.  Acute DA blockade is sufficient to produce synchronous 

oscillatory activity across BG neuron populations, and prolonged DA blockade results in 

phase lag changes in pallidostriatal synchrony [16]. 
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Classification of GP Neurons 

Several systems have been introduced to describe the heterogeneity of GP 

neurons.  Kita and Kitai describe three distinct electrophysiological groupings in the adult 

rat: continuous repetitive firing (more than 70%), burst firing neurons, and a few non-

firing neurons [7].  Alternatively, Nambu et al. describes three different types of neurons 

in brain slices from adult guinea pigs: At the resting membrane potential, Type I neurons 

(56%) are approximately 40 x 23 µm , Type-II neurons (37%) are approximately 29 x 17 

µm, and Type III neurons (7%) which are approximately 18 x 12 µm.  The morphological 

differences are supported by numerous electrophysiological differences.  Type-I and II 

were shown to be projection neurons while Type III were small interneurons [17, 18]. 

Cooper et al. describe GP neurons  in three subgroups based on both 

electrophysiological properties and morphology of biocytin-filled neurons.  Type A 

neurons (63 %), Type B neurons (32 %), and Type C (5 %).  The rarely encountered 

type C cells are believed to be large cholinergic neurons [19].  These results confirm 

neuronal heterogeneity in the adult rodent GP.  However, a GP neuron subtype 

identified in one study is often not easily identified in another study.  For example, the 

Type III cells identified by Nambu et al. [17, 18] are not found at all by Cooper et al [19]. 

 

Waveform Classification 

A classification scheme based on extracellular waveform properties was used in 

1995 by Kelland et al [20].  Extracellular single-unit recording techniques were used to 

examine the rat GP.  Two distinct biphasic extracellular waveforms were observed in 

both paralyzed and ketamine-anesthetized rats, Type-I (negative/positive waveform) and 

Type-II (positive/negative waveform).  A higher mean firing rate, with significantly slower 

conduction velocities, was found in Type-II neurons compared to Type-I.  The most 

striking pharmacological difference Kelland et al. found was that the mixed DA agonist 
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apomorphine inhibited Type-I GP neurons, where previous studies repeatedly found 

Type-II GP cells to be excited by the same treatment. 

Pretreatment with a subthreshold dose of apomorphine reduced the 

responsiveness of Type-I and Type-II cells to a subsequent high dose of apomorphine. 

However, pretreatment with the NMDA antagonist dizocilpine (MK801) produced a 

significant change in the pattern of response to apomorphine for Type-II GP neurons 

only. Relative to observations in locally anesthetized, paralyzed rats, ketamine 

anesthesia reduced the firing rate of both cell types, but did not significantly alter their 

direction of response to apomorphine. This suggested the existence of two GP cell types 

with distinct extracellular waveforms and opposite responses to dopamine receptor 

stimulation [20]. 

 

Classification by Functional Connectivity 

The cause of abnormal oscillatory synchrony in PD remains unclear. Nonlinear 

time series analyses and information theory capture the effects of dopamine depletion 

on directed information flow within and between the STN and GP.  Neuronal activity 

recorded simultaneously from these nuclei in 6-OHDA-lesioned Parkinsonian rats, and 

compared to that in DA-intact control rats, shows that lesioning increased beta-

frequency (∼20 Hz) oscillations and information transfer between STN and GP neurons.  

Temporal profiles of the directed information transfer supported the neurochemistry of 

these nuclei, "excitatory" from STN to GP and "inhibitory" from GP to STN.  The GP of 

lesioned animals consists of "type-inactive" (GP-TI) and "type-active" (GP-TA) neurons, 

with the firing preferences revealing distinct temporal profiles of interaction with STN and 

each other.  GP-TI neurons output is of greater causal significance than that of GP-TA 

neurons for the reduced activity that periodically punctuates the spiking of STN neurons 

during beta oscillations. A key driver for recruiting GP-TI neurons (but not GP-TA) was 
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the STN. Short-latency interactions between GP-TI and GP-TA neurons suggested 

mutual inhibition. Information flow around the STN-GP circuit is found to be exaggerated 

in Parkinsonism [21].    

Different striatal projection neurons create a dual organization essential for basal 

ganglia function.  Similarly, there exists an analogous division of labor in the GP of 

Parkinsonian rats.  The characteristics of GP-TA and GP-TI neurons are maintained by 

distinct molecular profiles and axonal connectivities.  GP neurons firing antiphase to 

STN neurons often express parvalbumin and target downstream BG nuclei, including 

STN. In contrast, GP neurons firing in-phase with STN neurons, express 

preproenkephalin and only innervate the Str. This novel cell type provides the largest 

extrinsic GABAergic innervation of the Str, targeting both projection neurons and 

interneurons. The two GP neuron populations together orchestrate activities across all 

basal ganglia nuclei in a cell-type-specific manner [22]. 

 

Modulatory Role of Dopamine 

DAergic cells are six to ten times more sensitive to DA and DA agonists [23] than 

most Str cells.  This differential sensitivity of DA auto- and postsynaptic receptors may 

explain the apparently paradoxical behavioral effects induced by small compared to 

large doses of some DA agonists [23, 24].  DA receptors occur in five subtypes (D1 

through D5) grouped into two families, D1-like and D2-like, commonly referred to simply 

as D1 and D2 DA receptors.  Of the many D2 antagonists available, raclopride has a 

high D2 receptor specificity in the rat brain both in vitro and in vivo, and is a useful 

tool to study DA D2 receptors [25-27].  The plasma half-time of raclopride is short in the 

rat (about 40 min), and high in man (about 14 hours) [28]. 

Synergistic effects are exerted on firing rates of BG neurons and on 

the expression of stereotyped behavior in rats, evidenced by the attenuation of D2 
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agonist effects in the absence of endogenous dopamine [29]. Dopamine, via D2 

receptors, inhibits striatopallidal activity, resulting in a disinhibition of neurons in GP [30].  

DA and DA agonists may affect BG function by modulating GABAergic transmission in 

the GP [31]. 

DA acts on presynaptic D2 receptors on striatopallidal terminals to reduce the 

release of GABA in the GP. Attenuation of this mechanism following the depletion of DA 

may contribute to the changes in GP neuronal activity observed in animal models of PD 

[32]. 

DA modulates multisecond oscillations in GP activity, while tonic DAergic and 

glutamatergic transmission is necessary for normal slow oscillatory function [33, 34].  For 

instance, the mixed DA agonist apomorphine causes an increase in the unit activity of 

spontaneously firing neurons in the rat GP [35]. Interestingly, the psychostimulant d-

amphetamine causes a significant increase in the unit activity of spontaneously firing 

neurons in the rat GP [36].  The time schedule of drug administration is critical, as a 

nonexcitatory ‘priming’ dose attenuates the significant increase in unit activity of rat GP 

neurons [34, 37].  Blocking D1 receptors attenuates the postsynaptic, but not 

autoreceptor-mediated (or D2) effects of dopamine agonists [38].  Stimulation of both 

receptor subtypes is necessary for full expression of postsynaptic receptor-mediated 

effects of DA and DA agonists in the BG [39-41].  The denervated DA receptors in rats 

with unilateral nigrostriatal lesions, or the processes they mediate, change such that they 

no longer have the requirement seen in controls for concurrent stimulation of the 

complementary DA receptor subtype for expression of the selective agonist effects [42].  

The changes in rate and entrainment to the LFP observed in MSNs after DA depletion 

are somewhat dissociable, and lack of D1- or D2-type receptor activation can exert 

independent yet interactive pathological effects during the progression of PD [43]. 
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Following DA depletion, there is an increase in the expression of GABAA and 

GABAB receptors and the ratio of AMPA to NMDA receptors.  The autonomous activity 

of GPe neurons declines following DA depletion [12].  Tonic stimulation of AMPA 

receptors plays an important role in maintaining the basal activity of GP neurons and in 

mediating the effects of increased excitatory input from STN afferent neurons [44]. 

Postsynaptic D2-like receptors are functionally expressed on GP cell bodies and 

may supersensitize following DA-denervation. A direct D2 modulation of calcium 

conductance in the GP may alter GP firing properties and GABA release onto 

pallidofugal targets [45].  DA modulates coherent oscillatory activity in the BG, and 

through the STN shapes the effects of DA receptor stimulation on BG output [46]. 

DA D1 receptors potentiate D2 receptor effects. The similar actions of partial and 

full D1 agonists support evidence for a D1 receptor reserve and possibly an effector 

system other than adenylate cyclase [47]. The GP exerts significant control over the 

firing rate and pattern of SNc DAergic neurons through a disynaptic pathway involving 

SNr GABAergic neurons [48] and is at least one important way in which local application 

of the GABAA antagonist bicuculline induces burst firing of dopaminergic neurons 

(through disinhibition of this tonic inhibitory input) [49]. 

A combination of direct and indirect influences ultimately determines the impact 

that an activated DAergic system has on pallidal brain regions [50].  Both glutamate and 

acetylcholine appear to play a role in DAergic modulation of Str and GP activity [51].  

Tonically active DA neurons, probably acting through the striatopallidal pathway, 

regulate the activity of GP neurons [52].  Striatopallidal neurons contribute to the 

excitatory effect of apomorphine on the activity of pallidal neurons in normal animals 

[53].  However, DAergic influences reduce the flow of information from the cortex to the 

pallidum, which may constitute a focusing mechanism by which only information from the 
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strongest cortical inputs would pass to the pallidum, with less prominent activity 

disregarded [54]. 

The DAergic control of multisecond oscillations in GP firing rate demonstrates D1/D2 

receptor synergism, in that the effects of D1 agonists are potentiated by and partially 

dependent on D2 receptor activity.  Modulation of multisecond oscillations in firing rate 

represents a means by which DA can influence GP physiology [55]. 

Collaterals of SNc DAergic axons project to the Str and GP.  Further, DA plays a 

role in the modulation of the firing rate but not the firing pattern of GP neurons. DA 

depletion in the SNc-GP DAergic pathway may play a role in the development of motor 

dysfunction [56]. 

Autonomous GPe pacemaking, normally serving to desynchronize activity, 

declines in Parkinsonian mice.  This is attributable to the downregulation of the 

hyperpolarization and cyclic nucleotide-gated (HCN) channel, an ion channel essential to 

pacemaking. Viral delivery of HCN2 subunits are shown to restore pacemaking and 

reduced burst spiking in GPe neurons. However, the motor dysfunction induced by DA 

depletion is not reversed, suggesting that pacemaking loss is a consequence, not a 

cause, of key network pathophysiology [57]. 

In extracellular single-unit recording studies in awake, immobilized rats, many 

tonically active neurons in the entopeduncular nucleus, GP, and SNr have multisecond 

slow oscillations in the firing rate.  There is significant structure in BG neuron spiking 

activity at unexpectedly long time scales, as well as a novel effect of DA on firing pattern 

in this slow temporal domain. The modulation of multisecond periodicities in firing rate by 

DAergic agonists suggests the involvement of these patterns in behaviors and cognitive 

processes that are affected by DA. Periodic firing rate oscillations in BG output nuclei 

should strongly affect the firing patterns of target neurons and are likely involved in 

coordinating neural activity responsible for motor sequences. Modulation of slow, 
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periodic oscillations in firing rate may be an important mechanism by which DA 

influences motor and cognitive processes in normal and pathological states [58]. 

Burst firing in DAergic neurons leads to an increase in extracellular DA levels in the Str 

when compared with less bursty patterns with similar overall firing rates [59].  

Striatonigral and striatopallidal neurons differentially modulate motor behavior under 

normal and pathological conditions [60]. 

The pallidal disynaptic disinhibitory control of the dopaminergic neurons 

dominates the monosynaptic inhibitory influence because of a differential sensitivity to 

GABA of the two nigral neuron types. Nigral GABAergic neurons are more sensitive to 

GABAA mediated inhibition than DAergic neurons, in part due to a more hyperpolarized 

GABAA reversal potential. The more depolarized GABAA reversal potential in the 

DAergic neurons is due to the absence of KCC2, the chloride transporter responsible for 

setting up a hyperpolarizing Cl(-) gradient in most mature CNS neurons. In addition to 

the effects that nigral GABAergic output neurons have on their target nuclei outside of 

the BG, local interactions between GABAergic projection neurons and DAergic neurons 

are crucially important to the functioning of the nigral DAergic neurons [61]. 

6-OHDA lesions provide a model of progressive DA neuron degeneration in the 

rat, useful for exploration of neuroprotective therapies and to study mechanisms of 

functional and structural recovery after partial damage of the nigrostriatal DA system 

[62]. 

The GP sends a significant GABAergic projection to the thalamic reticular 

nucleus.  DA controls the activity of the thalamic reticular neurons by regulating the 

inhibitory input from the GP [63]. 

Motor dysfunction may be caused by DA-depleted BG abnormally processing 

information originating from the massive projections of the motor cortex (MC).  Following 

DA-depletion, the spontaneous firing of Str-GPe neurons increases, and MC stimulation 
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evokes a shorter latency excitation followed by a long-lasting inhibition not normally 

visible. The increased firing activity and the newly visible long inhibition generate tonic 

inhibition and a disfacilitation in GP. The disfacilitation in the GP generates a powerful 

long inhibition in the GPi. Motor dysfunction in PD is partially due to the generation of 

abnormal response sequences in the BG.  Interestingly, intra-striatal DA supplements 

effectively suppress abnormal signal transfer [64]. 

 

Relationship to Cortical Activity 

Oscillatory processes at the levels of single neurons and neuronal networks in 

the STN and GP are associated with the operation of the BG.  Abnormal low-frequency 

rhythmic bursting in the STN and GP is characteristic of PD, whereas autonomous 

oscillation of STN and GP neurons underlies tonic activity and is important for synaptic 

integration.  The BG uses both the pattern and the rate of neuronal activity to encode 

information.  In the DA-depleted state the STN and GP are more sensitive to cortical 

oscillation [65].  Cortical activation drives individual pallidal neurons which may in turn 

influence GABAergic interneuron activity of the neostriatum while simultaneously 

patterning neuronal activity in the BG downstream of the neostriatum [66].  Both the rate 

and pattern of activity of STN and GP neurons are profoundly altered by chronic DA 

depletion. Furthermore, the relative contribution of rate and pattern to pathological 

information transfer is closely related to cortical activity [67].  Coherent oscillatory activity 

is present at the level of LFPs recorded in cortico-BG circuits and synchronized 

population activity is dynamically organized according to brain state, frequency, and 

nucleus. In these brain circuits, synchronized activity is a potential mechanism 

underlying functional organization [68]. 

It is unclear what modifications of neuronal activity underlie the clinical 

manifestations of PD and the efficacy of antiparkinsonian pharmacotherapy.  Studies 
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suggest release of GABAergic striatopallidal neurons from D2 receptor-mediated 

inhibition allows spreading of cortical rhythms to the GP in rats with 6-OHDA-induced 

nigrostriatal lesions.  Two neuronal populations coexist in the GP of 6-OHDA-lesioned 

rats, but have opposite phase relationships with cortical and Str activity. 'Inverse-phase' 

GP neurons exhibit reduced firing coupled to Str activation during slow waves, 

suggesting GP oscillation driven by striatopallidal hyperactivity.  Spreading of inverse-

phase oscillations through pallidonigral axons might contribute to the abnormal ‘direct-

phase’ cortical entrainment of BG output.  Abnormal slow rhythms may promote 

enduring changes in functional connectivity along the striatopallidal axis, contributing to 

D2 agonist-resistant clinical signs of parkinsonism [69]. 

Inappropriately synchronized beta oscillations (15-30 Hz) in the STN accompany 

movement difficulties in PD. The cellular and network substrates underlying these 

exaggerated beta oscillation remains unclear.  However, GP activity, forming a 

pacemaker network with the STN, might be of particular importance.  GP neurons, by 

virtue of their spatiotemporal synchronization, widespread axon collaterals and feed-

back/feed-forward mechanisms, are well placed to orchestrate and propagate 

exaggerated beta oscillations throughout the entire BG in PD [70]. 

 

Human Studies 

Current hypotheses of BG dysfunction in PD suggest that neuronal hypoactivity 

in the GPe, and hyperactivity in the output nuclei (GPi and SNr), result in the cardinal 

symptoms of PD. The therapeutic effect of the mixed DA agonist apomorphine results 

from a normalization of the imbalance of neuronal activity in the direct and indirect 

pathways [71].  A decreased motor response after repeated doses of apomorphine is 

observed in severely affected PD patients.  Fast postsynaptic desensitization to DA 

agonists may take place in the BG nuclei and play a role in the physiopathology of L-
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DOPA long-term treatment syndrome [72].  However, apomorphine-induced reduction of 

parkinsonian symptoms is not solely due to a decrease in overall activity in the GPi or 

STN as predicted by the current model of BG function in PD [73]. 

The BG may receive multiple cortical inputs at frequencies <30 Hz and, in the 

presence of DAergic activity, produce a high frequency drive back to the cerebral cortex 

[74].  Neurons in the motor territories of the GPe and GPi respond to cortical stimulation. 

Response patterns observed in PD patients are combinations of an early excitation, an 

inhibition, and a late excitation. Many GPe and GPi neurons of the PD patients showed 

burst or oscillatory burst activity [75]. 

 

Primate Studies 

MPTP treatment changes the pattern of activity and synchronization in the GPe 

and GPi. These changes are related to the symptoms of PD and especially to the 

parkinsonian tremor [76].  Extracellular recordings in primates have identified two types 

of neurons in the GPe: high frequency pausers (HFP) and low frequency bursters (LFB).  

The differences are possibly related to underlying cellular properties which are 

fundamentally different [77].  Two distinct neuronal populations exhibit firing-pattern 

characteristics conserved between species, although the firing rate is significantly lower 

in rats than in primates. Significant differences in waveform duration and shape are 

insufficient to create a reliable waveform-based classification in either species [78]. 

The pattern of activity of GPe neurons is tightly regulated by GABAergic 

inhibition. In addition to extrinsic inputs from the Str, the other source of GABA to GP 

neurons arises from intrinsic intranuclear axon collaterals. Also, increased intranuclear 

transmission promotes resetting of autonomous activity and rebound-burst firing 

following DA depletion. This suggests that intranuclear synaptic transmission is 
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augmented by chronic DA depletion which could contribute to the aberrant GP neuronal 

activity observed in PD [79]. 

Lesions involving the nigrostriatal pathway change the firing patterns but not the mean 

firing rates of pallidal neurons. In lesioned monkeys pallidal neurons fire in bursts 

continuously: during movement, rest and sleepiness. The bursting pallidal activities are 

likely a consequence of the interruption of the nigrostriatal DAergic pathway [80]. 

Abnormalities exist in the spontaneous activity of GP neurons at the output of the 

basal ganglia, with the mean spontaneous firing rate of GPi neurons increased and GPe 

decreased. Shorter spike intervals, suggesting increased excitation, are seen in both the 

GPi and GPe. However, the proportion of spike intervals longer than 100 ms increased 

in the GPe but remained unchanged in the GPi, suggesting increased inhibition only in 

the GPe. In the two populations, bursting activities and the mean variability of firing rate 

increased.  Intensity of the changes varied with time and severity of the nigral lesion. In 

severe parkinsonism, the neuronal activity at the output of the basal ganglia is excessive 

[81]. 

Filion et al. [82] injected cynomolgus monkeys with the mixed dopamine agonist 

apomorphine, before and after they were rendered parkinsonian.  Nearly all GPi neurons 

decreased their firing rate following apomorphine, with the opposite effect in the GPe.   

Identical doses of apomorphine were seen to effect a large variation between neurons in 

firing rate change. When the changes in firing rate were moderate or null, abnormal 

bursting firing patterns were normalized.  LFB neurons showed decreased firing rate 

following apomorphine. 

After being rendered parkinsonian, many pallidal neurons (35%) become oscillatory, and 

19% of pallidal pairs have oscillatory cross-correlograms, supporting the model of 

parallel processing in the BG of normal monkeys and suggesting a breakdown of the 

independent activity in the parkinsonian state [83].  Boraud et al. found, following 
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parkinsonism, a decrease in firing rate and a slight increase in bursting activity of GPe 

neurons [84].  The GPi showed a considerable increase in both firing frequency and the 

number of bursting cells.  L-DOPA treatment left the GPe firing pattern unchanged, while 

the GPi showed decreased firing frequency (even below control level) and slightly 

reduced bursting activity. 

Abnormal cortical firing patterns and synchronization, rather than reduced firing 

rates, may underlie PD akinesia and persistent muscle rigidity [85]. 

After parkinsonism, firing rates decrease in the GPe and increase in the GPi. A reversal 

of these rate changes occurrs during the "on" periods of DA replacement therapy.  

Changes in both pallidal discharge rates and synchronization are correlated with the 

clinical manifestations of parkinsonism and its pharmacological treatment [86]. 

Hong et al. found that multisecond oscillations commonly occur in primate BG 

neurons and are unchanged by parkinsonism [87]. The GPi may initiate reward-related 

signals through its effects on the lateral habenula, which then influences the DAergic 

and serotonergic systems [88].  Reduced GPe activity alone does not 

produce parkinsonism. Other changes, such as altered discharge patterns in STN and 

GPi, may play an important role in the generation of parkinsonism [89]. 

 

Cylinder Test 

PD is primarily identified as a movement disorder.  Thus, any animal model will 

require sensitive behavioral tests to determine both motor impairment and therapeutic 

benefit, if any, according to treatment regimen.  The animal behavior correlates in PD 

may be investigated in several ways.  The rotarod and cylinder test reveal significant 

motor impairment, but only the cylinder test reveals improvement due to dopaminergic 

drugs [90].  The cylinder test, a modification of a test first described in 1990 [91] has 

been found to have the ability to detect even mild neurological impairments [92]. 
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Effect of L-DOPA 

Though long-term use of L-DOPA evokes dyskinesia through striatal site-specific 

mechanisms [93], L-DOPA remains the most effective pharmacological treatment for the 

motor dysfunctions of PD.  L-DOPA, as a DA precursor, increases DA synthesis and 

release.  This increased stimulation of postsynaptic DA receptors, coupled with 

simultaneous interference with the DA autoreceptor negative feedback mechanism could 

be an important approach for alleviation of Parkinsonian symptoms [94]. 

 

The hypothesis of this proposal is that low doses of raclopride (a D2 antagonist) 

selectively blocks DA autoreceptors and potentiates L-DOPA’s effects on neurons 

postsynaptic to DA terminals including GP neurons.   

 

This hypothesis is based on the observation that low doses of D2 agonists 

selectively activate D2 autoreceptors on DA neurons without significantly affecting D2 

receptors on DA target neurons.  Since activation of D2 autoreceptors inhibits DA 

release, blockade of these receptors by low doses of a D2 antagonist would enhance the 

effect of L-DOPA on DA target neurons.  If this hypothesis proves to be correct, co-

administration of a low dose of a D2 antagonist may reduce the dose of L-DOPA 

required to produce therapeutic effects, thereby delaying the onset of undesirable side 

effects of L-DOPA.  The latter have been shown to be dose-dependent.  In order to test 

this hypothesis, experiments were planned to test the electrophysiological effect of L-

DOPA on GP neurons and compare the effect to that of L-DOPA plus raclopride.  

However, in pursuit of this investigation, the first set of experiments explored the effect of 

L-DOPA on GP neurons, compared to the effect of L-DOPA co-administered with a low 

dose of the highly selective D2 antagonist raclopride. 
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Preliminary results with L-DOPA indicated the firing rate of GP neurons often 

increased, but also sometimes decreased, surprising since early studies of non-selective 

DA agonists on GP neurons typically show a significant increase in the activity of GP 

cells [29, 34, 35, 37, 39].  One reason for the discrepancy may be due to earlier studies 

averaging the effect seen on all GP neurons.  More recent studies reveal a more 

nuanced breakdown of specific responses of GP neurons to non-selective DA agonist 

administration [20, 50].  Indeed, Kelland et al. found the firing rate of roughly half of GP 

cells to increase and half to decrease [20]. 

One of the main methods Kelland et al. used to distinguish GP neuron subtypes 

was the shape of the extracellularly recorded waveform, type-I with a negative initial 

peak and type-II with a positive initial peak [20].  The existence of GP neuron subtypes, 

with distinctly different responses to non-selective DA agonists, suggested the 

exploration of the response of GP neurons to L-DOPA should be delayed until we first 

obtained a more detailed characterization of GP cells themselves.  Accordingly, the 

electrophysiological protocol was altered so that the subtypes described by Kelland et al. 

could be verified.  Using the same experimental conditions as Kelland et al., we 

reproduced the results of Kelland. 
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Figure 1.2 Electrode Impedance Effects on Waveform Shape 

 

 

However, our results reveal information not evident in the results of Kelland et al.  

Fig 1.2 shows that small-tip, large impedance electrodes record waveforms as Type-II 

whereas large-tip, small impedance electrodes preferentially record waveforms as Type-

I, so we were able to show that one of the main findings of Kelland, that GP neurons 

may be distinguished based partly upon the spike shape was in fact an unreliable 

measure. 

While Kelland et al. used ketamine (an injectable anesthetic), we chose to use 

isoflurane (an inhaled anesthetic).  Injected anesthetics are generally given in a bolus 

dose, then supplemented as necessary, so the animal has widely varying plasma levels 

of anesthetic.  Isoflurane, being inhaled, reaches a steady state level far faster and is 

easily adjusted so that only the minimum required dose is administered. 

However, it is possible to classify GP neurons in another way.  During the course 

of verifying the results of Kelland et al. another classification system was also confirmed.  
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A second recording electrode was placed in the cortex, and a classification of GP neuron 

subtypes based on functional connectivity between the GP and the cortex was observed, 

in agreement with previous studies (which used urethane, another injectable anesthetic) 

[22, 69].  With no clear evidence linking these disparate classification systems, the 

experimental design was altered to first characterize GP neurons.  Only then could the 

effort be made to determine how different GP subtypes would respond to L-DOPA.  

Given this requirement, the following specific aims are designed to test the hypothesis. 

 

Specific Aims 

Specific Aim 1 

Identify GP neuron subgroups in isoflurane-anesthetized rats using previously 

described classification schemes, one based on shape of the extracellularly recorded 

spike waveform and another based on functional connectivity of GP neurons to the 

cortex, and quantify changes in these groups following DA depletion. 

 
Studies in animals anesthetized with injectable anesthetics suggest that GP 

neurons can be functionally classified into subtypes and each may play a unique role in 

PD.  The inhalational anesthetic isoflurane will be used, allowing more constant and 

easily regulated levels of anesthesia than injectable anesthetics.  GP neurons in rats will 

be studied electrophysiologically, to determine if previously described functional 

classifications of GP neurons may be confirmed, and if they display different responses 

to dopamine depletion. 

 

Specific Aim 2: 

Test the hypothesis that low doses of raclopride selectively block DA 

autoreceptors and potentiate the therapeutic effect of L-DOPA on behavior. 
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DA autoreceptors are DA receptors on DA neurons, consisting exclusively of D2-

like receptors.  Activation of DA autoreceptors inhibits DA cell firing and reduces DA 

release.  Raclopride, a selective D2 antagonist, is known to block the autoreceptor–

mediated negative-feedback inhibition of DA neurons, thereby increasing DA release in 

the striatum.  Previous results have shown that DA autoreceptors are extremely 

sensitive to DA agonists such as apomorphine; at low doses, apomorphine activates DA 

autoreceptors without affecting DA receptors post-synaptic to DA terminals [23, 95]. 

Our hypothesis is that DA autoreceptors are also more sensitive than DA 

postsynaptic receptors to D2 antagonists such as raclopride.  Behavioral tests will be 

conducted to investigate whether co-administration of a low dose of raclopride enhances 

the therapeutic effect of L-DOPA.  Low doses of raclopride (2.5, 5, or 10 µg/kg) will be 

co-administered with L-DOPA (6 mg/kg) to determine whether they can block the 

inhibitory effect of L-DOPA on DA neurons  and enhance the therapeutic effect of L-

DOPA in Parkinsonian animals (6-OHDA lesioned rats). 

  



25 

 

 

CHAPTER TWO 

RAT GLOBUS PALLIDUS NEURONS:  

FUNCTIONAL CLASSIFICATION AND EFFECTS OF DOPAMINE DEPLETION 

 

Brad Karain1, Dan Xu2, John A. Bellone3, Richard E. Hartman3, Wei-Xing Shi1,2 

 

Departments of Basic Sciences1, Pharmaceutical Sciences2, and Psychology3 

Loma Linda University Schools of Medicine, Pharmacy, and Behavioral Health 

Loma Linda, CA 92350, USA 

 

 

 

 

 

 

 

 

 

 

To be Published: Movement Disorders 



26 

Abstract 

Background: The rat globus pallidus is homologous to the primate globus 

pallidus externus.  Studies of rats anesthetized with injectable anesthetics suggest that 

pallidal neurons can be functionally classified into subtypes (I and II) based on spike 

shape, and that each plays a unique role in Parkinson’s disease.  In this study, we 

examined the electrophysiology of pallidal neurons using the inhalational anesthetic 

isoflurane, which offers more constant and easily regulated levels of anesthesia than 

injectable anesthetics.  We also tested whether subtypes of pallidal neurons respond 

differently to dopamine depletion.  Methods: Pallidal neurons were recorded 

extracellularly in isoflurane-anesthetized rats.  Cortical local field potentials were 

simultaneously recorded to determine the functional connectivity of individual neurons to 

the cortex.  Results: All pallidal neurons fired Type-II spikes when recorded with small 

tip, high-impedance electrodes.  Type-I spike shapes were observed only with large tip, 

low-impedance electrodes.  Pallidal neurons can also be classified as positively coupled, 

negatively coupled, or uncoupled according to their functional connectivity to the cortex.  

All three types were found under isoflurane anesthesia.  Lesions of dopamine neurons 

using 6-hydroxydopamine decreased uncoupled cells, increased negatively coupled 

cells, and altered the phase relationship of positively coupled cells to the cortex. 

Conclusions: Spike shape depends critically on the recording electrode and is not 

reliable in distinguishing Type-I and Type-II neurons.  Positively coupled, negatively 

coupled, and uncoupled cells are found in isoflurane-anesthetized rats and are 

differentially affected by dopamine depletion. 
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Abbreviations 

PC: positively coupled  

NC: negatively coupled 

UC: uncoupled 

DA: dopamine 

6-OHDA: 6-hydroxydopamine 

GP: globus pallidus 

 

Introduction 

The rat globus pallidus (GP) is homologous to the human external GP.  Based on 

extracellularly recorded spike shape, two types of GP neurons have been previously 

reported, Type-I and Type-II [20, 50].    Type-I spikes have a negative initial phase, 

whereas Type-II spikes have a positive initial phase.  Under ketamine anesthesia, the 

two types were reported to be in equal abundance, but Type-I neurons had a faster 

axonal conduction velocity and were inhibited, instead of being excited, by the dopamine 

(DA) agonist apomorphine [20].  GP neurons can also be classified based on their 

functional connectivity to the cortex.  Positively coupled (PC) or Type-Active neurons fire 

during the active phase of cortical slow oscillation (SO), whereas negatively coupled 

(NC) or Type-Inactive cells fire during the inactive phase of the SO [9, 69, 70].  Neurons 

whose firing shows no correlation with cortical activity are referred to as uncoupled cells 

(UC).  Recently, NC neurons are shown to innervate primarily downstream basal ganglia 

nuclei such as the subthalamic nucleus, while PC cells project heavily back to the 

striatum [22]. 

In this study, we asked whether GP neurons in isoflurane-anesthetized rats can 

be similarly classified.  As an inhalational anesthetic, isoflurane provides more constant 

and easily regulated levels of anesthesia than injectable anesthetics used in previous 



28 

studies.  We also asked whether DA depletion produces different effects on different 

types of GP neurons. 

 

Materials and Methods 

All procedures were performed in accordance with protocols approved by the 

Institutional Animal Care and Use Committee and in compliance with National Institutes 

of Health Guide for the Care and Use of Laboratory Animals.  Male Sprague-Dawley rats 

(Harlan, Indianapolis, IN), weighing between 250 and 400g, were used.  Unless 

otherwise noted, all drugs were purchased from Sigma-Aldrich (St. Louis, MO). 

 

Electrophysiology 

Rats were anesthetized with isoflurane (Butler Schein Animal health, Dublin, OH, 

3.0% for surgery, maintained at 1.5%) or ketamine (150 mg/kg, i.p.).  GP neurons were 

recorded extracellularly using techniques described previously.[96-98]  Briefly, glass 

electrodes (World Precision Instruments, Sarasota, FL) were pulled using a PE-2 puller 

(Narishige, Long Island, NY) and filled with 0.5 M NaAc and 1% pontamine sky blue 

(Bio/Medical Specialties, Santa Monica, CA), providing an impedance of about 30 MΩ 

(measured in vitro using 1 kHz 100 pA current pulses).  For some recordings, the 

electrode tip was broken back to about 2 µm and filled with 2 M NaCl or 0.5 M NaAc, 

providing an impedance of approximately 4 and 15 MΩ, respectively. 

GP recordings were made in the right hemisphere (P 0.8-1.2, L 2.6-3.0, V 5.0-7.0 

mm from bregma).  Local field potentials (LFPs) were recorded with an additional 

electrode inserted into the motor cortex (M1: A 2.0, L 3.0, V 2.0 mm from bregma).  

Signals were amplified by a CyberAmp 380 (Molecular Devices, Sunnyvale, CA) and 

filtered online using a single pole RC filter (0.3-2 kHz for spike recording and 0.1-100 Hz 

for LFP recording, Clampex, Molecular Devices).  Body temperature was maintained at 
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37±0.5°C with a homeothermic blanket system (Harvard Apparatus Inc., Holliston, MA).  

Following each recording session, the recording site was marked by electrophoretic 

ejection of pontamine sky blue through the microelectrode (-20 µA, 10 min).  Recording 

sites were verified using standard histological techniques [99, 100]. 

 

6-Hydroxydopamine Injections 

In some animals, DA neurons were lesioned by 6-hydroxydopamine (6-OHDA, 8 

µg/4 µl) injected into the right medial forebrain bundle (P 4.4, L 1.2, V 7.8 mm from 

bregma).  Thirty minutes prior to the injection, animals were pretreated with desipramine 

(Bio Trend, Destin, FL, 12.5 mg/kg, i.p.) to protect noradrenergic neurons.  Two to three 

weeks after 6-OHDA treatment, apomorphine (50 µg/kg) was injected subcutaneously, 

and the number of contralateral rotations counted for 30 minutes.  Only animals 

exhibiting four or more turns per minute were included as lesioned animals. 

The lesion was confirmed by immunostaining for tyrosine hydroxylase.  Briefly, 

40 µm serial sections containing the substantia nigra were cut and incubated with 1% 

H2O2 for 20 min.  Sections were washed with PBS and incubated with a blocking buffer 

(5% goat serum, 0.1% Triton X-100, for 1 hour at room temperature) followed by 

monoclonal antibody to tyrosine hydroxylase raised in rabbit (dilution 1:1000, Invitrogen, 

Carlsbad, CA, for 24 hours at 4°C).  Tyrosine hydroxylase was visualized by incubating 

the sections with horseradish peroxidase-goat anti-rabbit antibody (dilution 1:2000, 

Invitrogen, for 2 hrs at 4°C) followed by Stable DAB (Invitrogen, for 10 minutes or until 

the color sufficiently darkened).  DAB reaction was terminated with a final rinse in PBS. 

 

Data Analysis 

All analyses were performed using Clampfit 10 (Molecular Devices) and in-house 

VBA subroutines in Excel (Microsoft, Redmond, WA).  Firing rate and variability of firing, 
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estimated by the coefficient of variation (CV) and CV2 of interspike intervals, were 

determined every 10 sec.  CV2 is less sensitive to firing rate variations than CV [101].  

Firing periodicity was analyzed using methods similar to those described previously [96-

98].  Briefly, rate histograms (bin width: 10 ms) were constructed based on a 2 min 

stable recording selected from each cell.  Following tapering using the Hanning-Tukey 

window function and removal of the linear trend, a fast Fourier transform (FFT) was 

performed to yield spectra with a resolution of 0.097 Hz.  LFP autospectra (down-

sampled to 100 Hz) were obtained using similar methods.  The degree of correlation 

between GP cell firing and cortical LFP was evaluated using cross-spectral and 

coherence analysis.  Phase lags were calculated from portions of the phase spectrum 

encompassing the peak frequencies of cross spectra. 

Phase lags were also determined using a Hilbert transform (HT)-based method, 

[102] in which cortical LFPs were first band-pass filtered using a zero-phase, 12-pole 

Butterworth filter.  After the HT, instantaneous phases corresponding to each spike were 

determined.  The circular mean of all spike phases was then calculated and reported as 

the mean phase of a GP neuron relative to cortical LFP.  In both the FFT and HT-based 

methods, the peak of the cortical up state was defined as 0°.  PC neurons were defined 

as cells showing significant coupling to cortical LFP with a phase lag >-90° and <90°.  All 

other coupled cells were classified as NC cells.  Numerical results were expressed as 

mean±SEM.  Phase value differences were evaluated based on the D and U2 values 

derived from the Kuiper’s V test and the Watson U2 test, respectively.  Significance of all 

other data was determined based on the Z values provided by the two tailed Mann-

Whitney U test. 
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Results 

Type-I and II Neurons 

A total of 80 GP neurons were recorded from 48 isoflurane-anesthetized rats.  All 

cells fired Type-II spikes (Fig. 2.1A).  To test whether Type-I cells were suppressed, 

recordings were made from two ketamine-anesthetized rats.  In a previous study using 

ketamine, 50% of GP neurons were Type-I and 50% Type-II [20].  In this study, all GP 

neurons (n=29) recorded under ketamine were still Type-II.  In one cell, the spike initially 

presented as Type-I, but as the electrode advanced to the vicinity of the cell, the spike 

transitioned to Type-II (Fig. 2.1A). 

To determine whether spike shape depends on the electrode used, recordings were 

made using electrodes similar to those used by Kelland et al. [20].  Thus, the electrode 

tip was broken back to about 2 µm and filled with 2 M NaCl or 0.5 M NaAc.  As would be 

expected, the impedance of these electrodes was reduced (2 M NaCl: 3.3-4.5 MΩ, 0.5 M 

NaAc: 13-16 MΩ) compared to our routinely used, small tip electrodes (30-34 MΩ).  

Using large-tip electrodes, 72 GP cells were recorded from two isoflurane-anesthetized 

rats.  Of these cells, 44 were Type-I, 18 Type-II, and 10 initially Type-I that then 

transitioned into Type-II. 

Type-I cells may have a narrow initial rising phase only detectable by a high-

impedance electrode.  Supporting this possibility, Type-II spikes recorded with large-tip 

electrodes were narrower (0.24±0.01 ms, n=18) than those recorded with small tip 

electrodes (0.33±0.01 ms, n=80, z=3.95, p<0.001).  Also consistent with this possibility, 

spikes recorded in ketamine-anesthetized rats using small-tip electrodes showed a 

bimodal distribution (Fig. 2.1B).  In the single neuron that initially showed Type-I spikes 

and eventually displayed a positive initial peak, the half-maximal width of the initial peak 

was 0.27 ms, which is near the center of the smaller of the two ranges for the bimodal 

distribution.  However, in transitional cells recorded with large-tip electrodes, the initial 
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positive phase was broader (0.29±0.02 ms, n=10) than that of Type-II cells (0.24±0.01 

ms, n=18, z=2.4, p<0.05).  Additionally, the initial rising phase was shortened under 

isoflurane compared to ketamine (0.41±0.02 ms, n=29, z=3.68, p<0.001, Fig. 2.1B). 

Unfiltered raw recordings were compared to filtered signals to rule out the 

possibility that the online filter converts Type-I spikes into Type-II.  Off-line filtering was 

also performed.  None of the filters tested changed the polarity of the initial phase (Fig 

2.1C). 

  



33 

 

 

 

 

 

 

 

 

 
 

Figure 2.1 Shape of extracellularly recorded action potentials of GP neurons.   

A) Recordings showing a typical Type-II spike recorded from a GP neuron in an 

isoflurane-anesthetized rat (left) and the transition of spike, recorded from a GP neuron 

in a ketamine-anesthetized rat, from Type-I to Type-II as the electrode approached the 

cell (right).  The leftmost action potential (Type-I) was recorded furthest from the cell.  B) 

Ordinary (left) and cumulative distributions (right, CP, cumulative probability) of spike 

widths.  Under ketamine, spike widths exhibited a bimodal distribution (red).  Isoflurane 

significantly shifted the distribution to a narrower range (blue).  C) Upper traces are raw 

(blue) and online-filtered recordings (red) of a Type-I (left) and Type-II spike (right).  The 

online filter was a single-pole RC filter with a bandpass of 0.3-2 kHz.  Lower traces are 

the same raw signals offline-filtered by either a single-pole RC or 12-pole Butterworth 

(BW) filter.  Three bandpass settings (0.05-10k, 0.3-2k, and 0.5-1 kHz) were tested.  

None changed the polarity of the initial peak of the spike. 
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Positively Coupled, Negatively Coupled, and Uncoupled Pallidal 
Neurons 

To identify PC, NC, and UC cells, dual-site recordings were made from 5 

isoflurane-anesthetized rats.  Fig 2.2 shows phase analysis results from a typical PC 

neuron.  The FFT-based method suggests that at the peak frequency of the cross 

spectrum (0.59 Hz), cortical activity lags GP activity by 35.3°.  The HT method using a 

bandpass filter selective for the SO (0.1-1.5 Hz) or a narrow bandpass filter (±0.4 Hz) 

centering at 0.59 Hz produced similar results.  Fig 2.2 also shows that the phase 

spectrum derived from the FFT method is relatively insensitive to filtering (Fig 2.2 B-D).  

For simplicity, in the remainder of this paper we only report results from the HT method 

using a bandpass filter of 0.1-1.5 Hz. 
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Figure 2.2  Comparison of FFT and HT-based phase analysis.  A) Left traces are 

segments of recordings of LFPs in the primary motor cortex (M1 LFP, red) and spike 

activity of a GP neuron (GP Spike, blue) in an isoflurane-anesthetized rat.  Right charts 

are the cross and phase spectrum of the two recordings showing that at the peak 

frequency of the cross spectrum (0.59 Hz), cortical activity lagged behind the activity of 

the GP neuron by 35.3°.  B-D) Shown on the left are the same LFPs but filtered by three 

different bandpass filters (blue), corresponding instantaneous phases derived from the 

HT of filtered LFPs (red, y-axis ranging from -180° to 180°), and GP spike times (gray).  

On the right are circular plots of instantaneous phases corresponding to all spikes 

recorded from the GP neuron (red circles) and phase spectra obtained from FFT 

analysis of filtered LFPs.  Included also in the circular plot are the circular histogram 

(binwidth: 30°, black) and the mean vector (circular mean of all spike phases, red line).  

The length of the mean vector ranges from 0 to 1 and indicates the dispersion of spike 

phases.  The low and high-cutoff frequencies of the three bandpass filters were 0.1-6 Hz 

(B), 0.1-1.5 Hz (C), and 0.59±0.4 Hz (D), respectively.  The circular mean varied from -

23.6° to -36.8° depending on the filter used.  In contrast, the phase value, measured at 

0.59 Hz by the FFT method, was virtually unchanged by filtering. 
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In 40 GP neurons recorded, 16 (40%) were identified as PC cells, 7 (17.5%) NC 

cells, and 17 (42.5%) UC cells (Fig 2.3A).  These neurons differred not only in functional 

connectivity, but also firing rate.  NC cells fired significantly faster than PC (z=3.14, 

p<0.005) and UC cells (z=2.57, p=0.01).  They also showed reduced CV2 compared to 

PC (z=3.21, p<0.005) and UC cells (z=2.25, p<0.05)(Fig 2.3B).  A comparison of firing 

rate with previous studies is complicated by the fact that often only GP neurons firing 

between 10 and 70 Hz were studied [34, 39].  Since both PC and UC cells were found to 

fire considerably slower than 10 Hz, the possibility exists that PC and UC cells were 

unintentionally excluded from analysis in those earlier studies.  Also, those earlier 

studies used rats anesthetized with chloral hydrate, or awake rats paralyzed with gallium 

triethiodide. 

Since choice of anesthetic is known to have large effects on neuronal activity in 

the GP (neurons in rats anesthetized with urethane fire at half the rate of GP neurons in 

rats paralyzed with gallamine triethiodide [58]), the results we report using isoflurane-

anesthetized rats are unsurprisingly quite different from reported rates in earlier studies.  

A similar problem occurs for classification of GP neurons by functional connectivity with 

cortical neurons as PC, NC, or UC.  Earlier studies used urethane-anesthetized rats [69] 

and found 75% of GP neurons to fire in ‘direct phase’ with cortical activity (PC cells).  

Other studies used urethane supplemented with ketamine/xylazine and found 75% of 

GP neurons in control rats to be UC cells, with 10% NC and 15% PC.  GP neurons in 

lesion rats were found to be 72% NC, 17% PC and 12% UC [70].  Our results differ in 

that we find roughly equal numbers of UC and PC cells, although our results agree with 

these previous studies concerning lesion rats where instead of large numbers of UC 

cells we instead find many more NC cells and fewer UC cells with only small changes in 

the number of PC cells. 
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Dual-site recordings were also made in one ketamine-anesthetized rat, in which 

6/12 GP neurons were identified as PC, 1 NC, and 5 UC.  Under ketamine, UC cells 

(0.11±0.03 spikes/sec) fired slower than PC cells (16.44±11.04, z=2.74, p<0.01).  Their 

firing rate was also slower than that of UC cells under isoflurane (6.71±2.75, n=17, 

z=2.15, p<0.05). 
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Figure 2.3  GP neurons in isoflurane-anesthetized rats.  A) Bar graph showing 

distribution of PC, NC, and UC cells in isoflurane-anesthetized rats (left) and circular plot 

of mean phases of all GP neurons showing functional coupling to the cortex.  Of all GP 

cells recorded, 40% were PC cells, 17.5% NC cells, and 42.5% UC cells.  Included also 

in the circular plot are the circular histogram (black) and the mean vector (blue line).  B) 

Bar graphs comparing firing rate, CV and CV2 between subtypes of GP neurons.  NC 

cells fired significantly faster and had a reduced CV2 compared to both PC and UC cells. 
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Effects of 6-OHDA Lesions 

In six 6-OHDA-lesioned, isoflurane-anesthetized rats, 52 GP neurons were 

recorded, of which 22 (42.3%) were PC cells, 19 (36.5%) NC cells, and 11 (21.2%) UC 

cells.  Compared to controls, lesions of DA neurons decreased UC cells from 42.5% to 

21.2% and increased NC and PC cells from 17.5% to 36.5% and 40% to 42.3%, 

respectively.  In each subgroup, DA depletion had no effect on firing rate, CV, and CV2, 

except an increase in CV in PC cells (n1=22, n2=16, z=2.28, p<0.05, Fig 2.4).   

Lesions of DA neurons significantly changed phases of GP neurons (d=0.487, 

p<0.001, u2=0.21, p<0.05, Fig 2.4A).  Further analysis suggests that the change is due 

to a shift in phase in PC cells (d=0.585, p<0.005, u2=0.203, p<0.05, Fig 2.4). 
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Figure 2.4  Effects of 6-OHDA lesions on GP neurons.  A) Bar graphs comparing 

proportions of PC, NC, and UC cells, and their firing rate , CV and CV2 in control (blue) 

and 6-OHDA lesioned rats (red, Lesion).  Lesions of DA neurons increased PC and NC 

cells and decreased UC cells.  Except an increase in CV in PC neurons, the lesions had 

no effect on firing rate, CV, and CV2 of the three subtypes of GP neurons.  B) Circular 

plots and cumulative distributions of phases of all coupled cells (left), PC cells (center), 

and NC cells (right).  Compared to controls (blue), a significant shift in phase was 

observed in GP neurons recorded in 6-OHDA lesioned rats (red).  When PC and NC 

neurons were analyzed separately, a significant change was observed only in PC cells 

and not in NC cells.  In control rats, cortical activity lagged the activity of PC cells by an 

average of 11.6°.  In lesioned rats, cortical activity led the activity of PC cells by 20.7°. 
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Discussion 

This study showed that all GP neurons fired Type-II spikes when recorded with 

small-tip electrodes of high impedance.  Type-I neurons were observed only with large-

tip electrodes.  PC, NC, and UC neurons were present in isoflurane-anesthetized rats, 

differed significantly in firing rate and regularity, and were differentially affected by 

lesions of DA neurons. 

 

Type-I and Type-II GP Neurons 

Earlier studies found two types of striatal neurons based on the spike shape, 

Type-I and Type-II [23].  Studies in the GP observed similar waveforms and used the 

same designations [20, 29, 34, 35, 50, 53].  In this study, all GP neurons recorded with 

small-tip electrodes fired Type-II spikes.  Our evidence further suggests that Type-II 

spikes may exhibit as Type-I when recorded with large-tip electrodes.  Consistent with 

this suggestion, the initial positivity of Type-II waveforms diminishes when low-

impedance electrodes are used [103], and only Type-I spikes are observed when 

tungsten electrodes are used [54, 78]. 

Type-I and Type-II cells also differ in axonal conduction velocity and response to 

the DA agonist apomorphine [20].  While our recordings do not allow classification based 

on polarity of the initial spike phase, recordings in ketamine-anesthetized rats suggest 

that cells with a narrow initial phase may be Type-I and those with a broad initial phase 

may be Type-II since the initial peak widths are bimodally distributed.  In the single cell 

that transitioned from Type-I to Type-II, the initial peak width was near the center of the 

smaller of the two ranges in the bimodal distribution.  However, recordings using large-

tip electrodes suggest the opposite.  Thus, in these recordings, the initial positive peak of 

transitional cells, which might be Type-I, was significantly wider than that of cells initially 

presenting as Type-II.  We also found that spike width varied depending on the electrode 
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used.  Type-II spikes recorded with small-tip electrodes were significantly wider than 

those recorded with large-tip electrodes.  Taken together, these results suggest that 

when recorded extracellularly, neither spike polarity nor spike width is reliable in 

distinguishing Type-I from Type-II GP neurons. 

 

Positively Coupled, Negatively Coupled, and Uncoupled Neurons 

Phase lag between GP and cortical activity was determined using both FFT and 

HT methods.  The latter has the advantage of being applicable to nonstationary signals 

and maintaining information in the time domain.  The technique, however, requires 

filtering to extract signals of specific frequencies.  We found that narrow-band filters 

centering at the peak frequency of the cross-spectrum (±0.1 to ±0.5 Hz) or covering the 

entire range of the SO (0.1-1.5 Hz) produced results similar to those derived from the 

FFT method.  For simplicity, this study only reports results obtained using a bandpass 

filter of 0.1-1.5 Hz. 

This study showed that under isoflurane anesthesia, 40% of GP neurons 

recorded were PC cells, 17.5% NC cells, and 42.5% UC cells.  These numbers differ 

from those reported previously.  In one study, 91% GP cells recorded in ketamine-

anesthetized rats were functionally coupled to cortical activity, while under urethane 

most GP cells were uncoupled [9].  In another study also using urethane, 72% of GP 

neurons were PC and 2% NC [69].  In a study using urethane supplemented with 

ketamine, only 15% were PC and 10% NC [70].  The discrepancy may have been 

caused by multiple factors including differences in anesthesia, data analysis, and 

electrode.  Low-impedance electrodes have been suggested to preferentially record NC 

cells [22]. 

We found that PC, NC, and UC cells also differed significantly in firing rate and 

regularity.  NC cells fired significantly faster and showed a reduced firing variability 
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compared to PC and UC cells.  These results raise the possibility that NC cells 

correspond to high frequency, low CV pausers (HFP) found in the primate external GP, 

whereas PC and/or UC cells correspond to low frequency, high CV bursters (LFB) [77, 

78].  However, differences in species and use of anesthesia require further investigation 

to test this possibility.  One study suggests that rat GP neurons can be similarly 

classified as HFP and LFB, but the two groups of cells show no difference in firing rate in 

rats [78]. 

PC and NC neurons have been recently shown to project to different basal 

ganglia nuclei [22].  Their difference in functional connectivity suggests that they also 

receive different inputs.  For example, the cortex may modulate PC cells through 

subthalamic glutamate neurons and NC cells through striatal GABA neurons [3, 104, 

105].  Two observations suggest that this scheme is overly simplified.  First, NC cells 

fired significantly faster than PC cells, suggesting that they also receive an excitatory 

input and/or PC cells are tonically influenced by an inhibitory input.  Second, cortical 

activity lagged behind GP activity in many cells (see circular histograms in Figs 3 and 4), 

suggesting that oscillatory activities in these cells are not driven solely by the cortex, but 

in conjunction with other areas.  For example, the thalamus, known to trigger cortical SO 

[106], provides extensive glutamate projections to the striatum and subthalamic nucleus 

[3, 107, 108].  A direct innervation of the GP by the thalamus has also been 

demonstrated [107].  Thus, the anatomical basis underlying the differences in functional 

connectivity between PC, NC, and UC neurons remains to be determined. 

 

Effects of 6-OHDA lesions 

Lesions of DA neurons induced by 6-OHDA produced two main effects on GP 

neurons.  First, the lesions increased PC cells from 40% to 42.3% and NC cells from 

17.5% to 36.5%, but decreased UC cells from 42.5 to 21.2%.  Qualitatively similar 
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results were observed in a previous study using urethane supplemented with ketamine, 

in which 6-OHDA lesions increased PC cells from 15% to 17% and NC cells from 10% to 

72% [70].  However, in another study also using urethane, 6-OHDA lesions decreased 

PC neurons from 72% to about 30%, increased NC cells from about 2% to 43%, and 

slightly increased UC cells [69].  The cause for the discrepancy is unknown and may be 

related to the differences in type and level of anesthesia as well as electrodes used in 

different studies.  As mentioned earlier, low-impedance electrodes may preferentially 

record NC cells [22]. 

The second main effect of 6-OHDA lesions observed in this study was the phase 

change in PC cells.  Under control conditions, cortical activity led GP activity in about 

56% of PC cells (Fig 2.4).  Following 6-OHDA lesions, cortical activity led GP activity in 

91% of PC cells.  Interestingly, the lesions only slightly increased the number of PC 

cells.  In contrast, lesions of DA neurons significantly increased the number of NC cells 

but had no significant effect on their phases.  If the STN and Str are partially responsible 

for the functional coupling between PC and NC cells to the cortex, respectively, our 

results would suggest that lesions of DA neurons alter information transmission through 

both nuclei. 

To summarize, Type-I and Type-II GP neurons, while likely representing distinct 

neuronal populations, are poorly represented by the spike shape, even though this is 

how they were originally defined.  PC, NC, and UC cells are present in isoflurane-

anesthetized rats.  The three subtypes of GP neurons differ from each other not only in 

functional connectivity to the cortex, but also in firing rate, firing regularity, and 

responses to lesions of DA neurons.  These results support the suggestion that the three 

subtypes of GP neurons play different roles in PD. 
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CHAPTER THREE 

POTENTIATION OF L-DOPA’S EFFECT ON BEHAVIOR 
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Abstract 

Previous studies have shown that asymmetrical forelimb use during exploration 

in the cylinder test is highly sensitive to levels of dopamine (DA) depletion and to the 

therapeutic effect of antiparkinsonian drugs [109].  Using the test, daily L-DOPA 

administration (6 mg/kg) has been shown to be behaviorally effective for up to 140 

minutes with substantial abnormal involuntary movements (AIMs) appearing within 3 

weeks of repeated administration [110].  AIMs are unwanted side effects caused by 

chronic use of L-DOPA.  We hypothesize that co-administration of a small dose of a D2 

antagonist potentiates the antiparkinsonian effect of L-DOPA so that lower doses of L-

DOPA can be used to reduce or to delay AIMs.  The goal of this study is to use the 

cylinder test to determine whether raclopride at behaviorally ineffective doses (2.5, 5, or 

10 µg/kg) blocks L-DOPA induced inhibition of DA neurons and whether at those doses 

it enhances L-DOPA’s therapeutic effect. 

Our results suggest that at 5 μg/kg (i.v.), raclopride can significantly potentiate 

the therapeutic effect of L-DOPA in a subgroup of animals.  A more sensitive test with an 

improved signal-to-noise ratio could provide a more confident answer regarding 

significance. 

  

Abbreviations  

DA: Dopamine 

6-OHDA: 6-hydroxydopamine 

D3: dose of L-DOPA (3 mg/kg) 

R2.5/5/10: dose of raclopride (2.5, 5, or 10 µg/kg) 
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Introduction 

Investigations in rodents of skilled forepaw actions, including placing, grooming, 

or foot faults, have clear correlates in Parkinson's disease, and are, therefore, the most 

sensitive ways of detecting motor impairment following dopamine loss from the basal 

ganglia of rodents.  The rotarod and cylinder test were found to reveal significant motor 

impairment in lesioned animals, but only the cylinder test revealed improvement due to 

dopaminergic drugs [90].  Developing and using tests that have the ability to identify 

behavioral deficits is essential to expanding the development of translational therapies. 

The cylinder test, a modification of a test first described in 1990 [91] has been found to 

have the ability to detect even mild neurological impairments [92].  Chemical toxins 

capable of producing degeneration of the nigrostriatal dopaminergic pathway are 

commonly used in animal models of PD in both rodents and primates, contributing 

significantly towards the development of symptomatic therapies for PD patients.  

Translational success depends upon an accurate assessment of these models.  A 

sensitive test should evaluate the degree of impairment, any neuroprotection afforded, 

and any therapeutic improvement due to treatment [111]. 

Kirik et al. induced partial lesions of the nigrostriatal dopamine system using the 

neurotoxin 6-OHDA.  A differential sensitivity was found regarding the degree of damage 

to the nigrostriatal pathway, depending on which behavioral test was used.  A 60-70% 

reduction in tyrosine hydroxylase (TH)-positive fiber density in the lateral striatum, 

accompanied by a 50-60% reduction in TH-positive cells in substantia nigra (SN), is 

sufficient for the induction of significant impairment in the stepping test.  Impaired skilled 

paw-use, on the other hand, was obtained only with a four-site (4 x 7 microgram) lesion, 

which induced 80-95% reduction in TH fiber density throughout the rostrocaudal extent 

of the lateral striatum and a 75% loss of TH-positive neurons in SN [112]. The cylinder 

test is sensitive to lesions as small as 30% [109], and is able to measure recovery of 
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sensorimotor function independent of the extent of test experience. The cylinder test is 

sensitive to dopaminergic neurodegeneration of the nigrostriatal system [113], and may 

be used with animals not naive to the test [111]. 

Our preliminary electrophysiological data suggests that at behaviorally ineffective 

low doses (10 μg/kg or less), raclopride significantly reduces or blocks L-DOPA induced 

inhibition of DA neurons.  Fig. 3.1 shows two firing traces of a DA neuron in the SNc of a 

healthy rat.  The top trace shows a DA neuron firing at ~8 Hz that drops to ~5 Hz after 

i.v. administration of L-DOPA (50 mg/kg, i.v.).  The bottom trace shows an initial injection 

of raclopride (20 µg/kg. i.v.) completely blocks a subsequent injection of L-DOPA (50 

mg/kg, i.v.). 
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Figure 3.1  Raclopride blocks L-DOPA induced inhibition of DA neurons 

Top trace shows that a DA neuron decreases its firing rate from ~8 Hz to ~5 Hz after i.v. 
administration of L-DOPA (50 mg/kg, i.v.).  The bottom trace shows an initial injection of 
raclopride (20 µg/kg. i.v.) completely blocks a subsequent injection of L-DOPA (50 
mg/kg, i.v.). 
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Thus, we hypothesize that a low dose of raclopride may selectively block DA 

autoreceptors and potentiate the therapeutic effect of L-DOPA on behavior.  The goal of 

the study is to use the cylinder test to measure the deficit in movement incurred through 

unilateral 6-OHDA lesions of DA neurons and to test whether raclopride co-administered 

with L-DOPA enhances L-DOPA’s therapeutic effect. 

 

Materials and Methods 

All procedures were performed in accordance with protocols approved by the 

Institutional Animal Care and Use Committee and in compliance with National Institutes 

of Health Guide for the Care and Use of Laboratory Animals.  Male Sprague-Dawley rats 

(Harlan, Indianapolis, IN), weighing between 250 and 400g, were used.  Unless 

otherwise noted, all drugs were purchased from Sigma-Aldrich (St. Louis, MO). 

 

Partial Lesion Model 

Rats were rendered unconscious with 3.0% isoflurane (maintained at 2.0% at 

start of injection) and mounted in a stereotaxic apparatus. Animals received three 

unilateral stereotaxic injections of 6-OHDA (7 µl) in the right striatum.  The injection was 

made at a rate of 1.0 µl/min using a 0.1 mm cannula connected by polyethylene tubing 

to a 10µl Hamilton microsyringe driven by an infusion pump (Stoelting).  The syringe 

needle was left in place after each injection for an additional 2 minutes, then withdrawn 

slowly to prevent reflux of the solution.  The 7 µl doses were administered at the striatal 

coordinates, measured in mm relative to Bregma, (AP, ML, DV): (+1.0,-3.0,-5.0), (-0.1,-

3.7,-5.0), (-1.2,-4.5,-5.0).  To minimize variability due to degradation of the toxin, 6-

OHDA solutions were freshly made with ice-cold saline containing 0.03% ascorbic acid, 

kept on ice and protected from exposure to light [112].  While desipramine is normally 

administered 30 minutes prior to 6-OHDA injections to protect norepinephrine terminals, 
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it has not been demonstrated to be required in this model as no neurons other than 

nigral DA neurons have been shown to be harmed by 6-OHDA injections in these striatal 

regions. 

 

Cylinder Test 

This test is a modification of the forelimb asymmetry motor test first described by 

Schallert and Lindner [91], was performed as described by Kirik et al. [111].  Briefly, the 

animal is placed in a clear glass cylinder approximately 20 cm diameter x 30 cm height.  

The animal is allowed to move freely for 5 minutes while being visually recorded.  Mirrors 

are placed behind the cylinder so that the video camera has visual access to all paw 

placements around the cylinder.  The data are presented as impaired (contralateral) 

forepaw contacts as a percentage of the total forepaw contacts.  Recorded time points 

were 50, 100, 150, 200, and 250 minutes following the single-injection drug 

administration (i.p.) 

 

 

 

Results 

Model Verification 

Immunofluorescence staining is shown for animal A38 (Fig. 3.3) for histological 

verification of the results from the cylinder test.  Fig. 3.2 shows a coronal brain slice 

through the SNc, immunostained for tyrosine hydroxylase (TH).  While TH is not 

exclusive to DA neurons, TH is a marker exclusive to DA neurons in the region shown.  

Notice that the unilateral 6-OHDA injections into the right Str caused a marked reduction 

in DA neurons on the ipsilateral (right) side.  This is in agreement with the degree of 

reduction seen in % left paw use for animal A38 in Fig. 3.3. 
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Figure 3.2  TH immunostaining for coronal section through SNc and VTA in  rat 

brain showing lesions of DA neurons by 6-OHDA injection in the striatum.  A 

decrease in TH+ cell bodies is seen on the lesioned (right) side of the brain in the SNc.  

As expected, this lesion model does not diminish DA cell bodies in the VTA. 
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Sensitivity of Cylinder Test 

Fig. 3.3 shows the activity of rats in the cylinder test, both as healthy animals 

(pre-lesion) and as parkinsonian animals (post-lesion).  The top diagram shows the % 

Left Paw Use for each animal both before and after 6-OHDA lesion.  The left paw is the 

impaired paw for animals with a unilateral lesion on the right side of the brain.  The solid 

blue bar illustrates that each animal experiences ~50% use of the left paw before 6-

OHDA was administered unilaterally to lesion DA neurons in the right Str (axons) and 

SNc (cell bodies).  The solid red bar illustrates the use of the left paw two weeks 

following the lesion (6-OHDA) surgery.  This demonstrates that the cylinder test quite 

easily detects the difference between healthy (control) animals and parkinsonian (6-

OHDA lesion) animals. 

The middle diagram shows the total touches on the wall surface completed with 

the either paw (# with right paw + # with left paw + (# with both paws simultaneously x 

2)).  The solid blue bar indicates how many touches were completed in a test session 

prior to lesion surgery, while the solid red bar shows the total touches completed two 

weeks following surgery.  As expected, animals are generally much more active before 

surgery than after. 

Animals A27 through A38 were used only for preliminary data, with animal A41 

excluded due to insufficient movement during testing.  Notice in particular animal A27, 

which shows no deficit due to the lesion surgery.  Any animal showing a similar lack of 

deficit would not have been included in the study.  Interestingly, while A27 shows no 

deficit of left paw use due to 6-OHDA lesion, there is a marked reduction in total activity 

(from 34 touches to 13).  This suggests that the surgery itself may cause a significant 

reduction in the activity of the animal recorded in the cylinder two weeks after the 

surgery. 
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Figure 3.3  Cylinder test before and after 6-OHDA lesion.  Top figure shows the 
cylinder test is very sensitive to 6-OHDA lesions.  All 24 rats but two showed a clear 
decrease in left paw use after the lesion.  The bottom figure shows that the same 
animals were generally much less active in the cylinder test following surgery 
(parkinsonian) than before surgery (control).  Insets for each figure show the means for 
each diagram with significant decrease in % Left Paw Use (p<0.001) and significant 
decrease in Total # of Wall Contacts (p<0.001) respectively. 
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Fig 3.4 shows correlation analysis for Fig 3.3.  The leftmost diagram shows there 

is no correlation between total activity and use of the left paw (before surgery when the 

animals were healthy).  The center diagram shows a very weak correlation between total 

activity and % use of the left paw in the same animals following lesion induction (when 

the animals were parkinsonian).  The rightmost diagram is a correlation analysis 

between the change in total activity (from control to parkinsonian) versus the change in 

% use of the left paw (from control to parkinsonian), and shows a very weak correlation.  

These results suggest that the decrease in left paw use in lesioned rats is not secondary 

to the decrease in total activity. 
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Figure 3.4  Correlation of Activity with Left Paw Use.  The leftmost diagram shows 
there is no correlation between total activity and use of the left paw (before surgery when 
the animals were healthy).  The center diagram shows a very weak correlation between 
total activity and % use of the left paw in the same animals following lesion induction 
(when the animals were parkinsonian).  The rightmost diagram is a correlation analysis 
between the change in total activity (from control to parkinsonian) versus the change in 
% use of the left paw (from control to parkinsonian), and shows a very weak correlation. 
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Consistency of Cylinder Test 

The cylinder test is most often used at a single time point post following lesion 

induction.  Thus there remains some uncertainty as to consistency of the results when 

the animal is well-habituated to the cylinder.  One of the ways to measure potentiation of 

the therapeutic effect of L-DOPA is to determine if the therapeutic effect lasts longer.  

Therefore, the modified treatment is to be measured not simply at a single time point, but 

at several consecutive time points.  We found that the subject was most active when 

initially introduced to the cylinder, but while the activity level subsequently declined, the 

decline was asymptotic instead of linear. 

Fig.3.4 shows the total activity level of 11 animals given only a saline injection, 

calculated as the total number of times either the left or right forepaw touched the 

cylinder while the rear paws supported a rearing posture.  The activity at the initial time 

point (50 min) was normalized to 100%, and the activity at subsequent time points is 

shown as a percentage of this value, diminishing from 100% at the first time point (50 

min) to approximately 70% at the final two time points (200 min and 250 min).  That the 

final value is approached asymptotically rather than linearly suggests the animal would 

perform adequately even if further time points were attempted.  Importantly, the number 

of times the impaired paw was used relative to the total number of wall touches 

remained relatively constant, from 14.9% +/- 2.7% (50 min) to 15.6% +/- 3.8% (250 min). 

These results show for the first time that the % use of the impaired paw 

(contralateral to lesion side of the brain) is independent of the total activity level and are 

consistent with data shown in fig 3.3 which shows no correlation between total activity 

and % use of the left paw in healthy (control) animals, and only a very weak correlation 

in 6-OHDA lesion (parkinsonian) animals.  Fig. 3.3 also shows a similarly very weak 

correlation between the change in activity due to lesion and % use of the left paw. 
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Figure 3.5 Cylinder Test at Consecutive Time Points.  Bars show the Total activity 

levels at different time points (normalized to 100% at the first time point, 50 min, as this 

is the event with highest activity).  Subsequent time points (100 min, 150 min, 200 min, 

and 250 min) are seen to decrease non-linearly to about 70% for the measurements at 

200 and 250 min, quantified using the vertical axis on the left.  The percentage of time 

that the impaired paw is used is shown by the blue diamonds, quantified by the vertical 

axis on the right.  Use of the left paw (as a percentage) does not appear to depend on 

overall activity level, ranging from 14.9% +/- 2.7% (50 min) to 15.6% +/- 3.8% (250 min). 
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Correcting for Different Sets of Model Animals 

Many factors may confound the behavioral results of the cylinder test.  Lesion 

size and location will be the largest variables, but these in turn depend on factors which 

in theory are identical but in practice will have slight variations, such as effectiveness of 

the lesioning neurotoxin 6-OHDA.  For instance, the 6-OHDA was made fresh every 3 

hours, kept in the dark and on ice.  However, since the surgical groups were on different 

days, small variations in concentration or effectiveness could have been introduced.  For 

this reason the % use of the left (impaired) paw was tracked during vehicle injection for 4 

consecutive weeks, starting at 3 weeks post-lesion.  Figure 3.5 shows group 2 (n=6) has 

an improvement in left paw use over the four weeks that was larger than the 

improvement shown by group 1 (n=5).  Improvement in ability to use the impaired paw 

was unexpected, as it is generally presumed that the lesions are progressive and 

permanent. 

The possibility exists that the neuronal axons and cell bodies may well be 

perishing in a progressive and permanent manner, but the animal is nevertheless 

adapting to the disability in such a way that an overall improvement in behavioral score 

is observed.  Another possibility is that the improved movement score seen in 

succeeding weeks is partly due to a long-term benefit of the injection of L-DOPA from 

the previous week.  One possibility for the differential recovery rate observed between 

groups 1 and 2 could be that the group 2 animals received smaller lesions (on average) 

and therefore recovered faster (on average) than the animals in group 1.  Schallert et al. 

showed that performance in the cylinder test, as a function of dopamine depletion was 

significant (r=0.91, p<0.001) [113].  The correlation between SN DA cell loss and 

cylinder test performance in mice is not as strong [114]. 

This is important for interpreting the dose-response curve (Fig. 3.6), because a 

moving baseline will artificially inflate the apparent therapeutic benefit of raclopride co-
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administered with L-DOPA.  Achieving an accurate dose response curve requires 

adjusting the cylinder test scores according to the weekly baseline measurements.  The 

slope of the line for each group was used to adjust behavioral scores of later weeks for 

comparison to the baseline values obtained in the first week. 
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Figure 3.6 Spontaneous behavioral recovery of separate surgical groups. Lesions 

were induced through stereotactic surgery in two groups of animals on two consecutive 

days.  Group 2 (n=6) has an improvement over the four weeks of testing that was larger 

than the improvement shown by group 1 (n=5). 
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Dose Response 

If raclopride does indeed potentiate the therapeutic value of L-DOPA, the 

possibility exists that there may be an optimum dose, above and below which efficacy is 

diminished.  Fig. 3.6 shows the dose response for L-DOPA (3 mg/kg) being co-

administered with raclopride (0 µg/kg, 2.5 µg/kg, 5 µg/kg, and 10 µg/kg), broken down to 

show each time point. 
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Figure 3.7 Dose response across all time points.  The dose response for L-DOPA (3 

mg/kg) being co-administered with raclopride (0, 2.5, 5 and 10 µg/kg) for 50, 100, 150, 

200, and 250 minutes. 
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Since no particular time point stands out, the time points are averaged and 

displayed in Fig. 3.7.  Interestingly, while there is an improvement over vehicle in each 

case where L-DOPA was administered, the only raclopride dose showing some 

improvement over L-DOPA alone was the 5 µg/kg dose.  All treatments were 

significantly improved over vehicle (saline) with p and z values of (0.029, -2.179) (0.033,-

2.131) (0.001,-3.181) and (0.028, -2.200) for saline compared to D3, D3+R2.5, D3+R5, 

and D3+R10 respectively.  However, no statistical difference was seen between D3, 

D3+R2.5, D3+R5, and D3+R10.  D3+R5 had the largest mean, even though not 

significantly different from the others, so it was the dose used for further tests. 
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Figure 3.8 Dose Response of L-DOPA and raclopride co-administration  The dose 

response for L-DOPA (D3, 3 mg/kg) being co-administered with raclopride at various 

doses: 0 (vehicle or D3), R2.5 (2.5 µg/kg), R5 (5 µg/kg), and R10 (10 µg/kg).  All 

treatments were significantly improved over vehicle (saline) with p and z values of 

(0.029, -2.179) (0.033,-2.131) (0.001,-3.181) and (0.028, -2.200) for saline compared to 

D3, D3+R2.5, D3+R5, and D3+R10 respectively.  However, no statistical difference was 

seen between D3 and any dose of raclopride co-administered with L-DOPA. 

  



66 

Therapeutic Effect of Raclopride 

To avoid the possible confounding variable of a treatment injection affecting the 

results of another treatment injection in a later week, observations are restricted to only 

the first week of treatment.  Fig 3.8 shows two traces, each evaluated at five time points: 

50, 100, 150, 200, and 250 minutes.  The top trace (n=6 animals) evaluates ability to use 

the left paw following administration of either saline or L-DOPA (3 mg/kg).  No 

statistically significant improvement is observed. 

The bottom trace (n=5 animals) also evaluates ability to use the left paw, but 

following administration of either saline or L-DOPA (3 mg/kg) co-administered with 

raclopride (5 µg/kg).  Statistically significant improvements are observed at both 50 

(p=0.043) and 150 (p=0.043) minutes, with power analysis (GPower 3.1.7) suggesting 

significance may be found with one additional animal (β= 0.3) at 250 minutes. 
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Figure 3.9  Therapeutic Effect of raclopride   

Top trace (n=6 animals) evaluates ability to use the left paw at several time points (50, 

100, 150, 200, 250 minutes) following administration of either saline or L-DOPA (3 

mg/kg).  No statistically significant improvement is observed. 

Bottom trace (n=5 animals) evaluates ability to use the left paw at the same time points, 

but following administration of either saline or L-DOPA (3 mg/kg) co-administered with 

raclopride (5 µg/kg).  Statistically significant improvements are observed at both 50 and 

150 minutes, with power analysis (GPower 3.1.7) suggesting significance may be found 

with one additional animal (β= 0.3) at 250 minutes. 
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Overall Therapeutic Effect of Raclopride 

Fig. 3.9 shows the data from Fig. 3.8, but with all time points combined.  The 

data from each individual animal is shown in between the means of the saline and 

treatment groups.  The graph on the left shows a comparison of % left paw use following 

injection of either saline or L-DOPA (3 mg/kg).  No statistically significant improvement is 

observed from the L-DOPA injection, at any time point.  

However, the graph on the right shows a similar comparison of % left paw use 

following injection of either saline or L-DOPA (3 mg/kg) co-administered with raclopride 

(5 µg/kg).  A statistically significant 2-fold improvement is observed for treatment with L-

DOPA combined with raclopride (p=0.001) compared to animals that received only 

saline. 
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Figure 3.10  Overall therapeutic effect of raclopride.  With all time points combined, 

the data from each individual animal is shown in between the means of the saline and 

treatment groups.  The graph on the left (n=6 animals) shows a comparison of % left 

paw use following injection of either saline or L-DOPA (3 mg/kg).  No statistically 

significant improvement is observed from the L-DOPA injection, at any time point.  

However, the graph on the right (n=5 animals) shows a similar comparison of % left paw 

use following injection of either saline or L-DOPA (3 mg/kg) co-administered with 

raclopride (5 µg/kg).  A statistically significant 2-fold improvement is observed for 

treatment with L-DOPA combined with raclopride (p=0.001) 
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Discussion 

The data is highly variable.  There may be several ways to mitigate this.  First, 

animals could be selected with similar post-surgery baseline behavioral scores.  

Clinically this would be similar to selecting patients with similar levels of disease 

progression.  The possibility exists that individuals with similar levels of neurological 

damage could respond similarly to treatment, and that there may be a correlation with 

level of neurological damage and the dosage observed to be effective.  All animals 

showed behavioral scores in the cylinder test that indicated the % left paw use (as 

parkinsonian animals) was independent of total activity level. 

The possibility also exists of dividing model animals into two groups, those 

expressing many autoreceptors per DA neuron and those expressing relatively few.  

This selection could be performed with a straightforward behavioral test.  The animals 

with more autoreceptors would be expected to have improved use of the impaired 

forelimb compared to the animals with fewer autoreceptors.  

Finally, there is some uncertainty in whether the animal has actually made 

contact with the cylinder surface.  A way may be found to measure actual rather than 

perceived contact.  Other metrics for wall contact may prove more useful than the 

standard counting of ipsilateral, contralateral, or simultaneous paw placement.  For 

instance, measuring the total time the left (or right) paw is in contact with the cylinder 

wall during the course of the recording period holds potential to be a more sensitive 

measure of impairment.  A more sensitive measure could also involve a combination of 

total time of contact, height at which the paw touches the wall, and percentage of the 

paw surface which makes contact. 

The critical consideration in this set of experiments is potentiation of the 

therapeutic benefit of L-DOPA.  The dose of 3 mg/kg was specifically chosen because 6 

mg/kg was found in the literature to be the smallest dose with any therapeutic benefit, as 
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well as the smallest dose which produced AIM’s (the behavioral dyskinesias resulting 

from repeated long-term use of L-DOPA).   

We found that raclopride (5 µg/kg) co-administered with L-DOPA (3 mg/kg) does 

significantly improve the therapeutic benefit of L-DOPA behaviorally, using the cylinder 

test for evaluation.  When broken down into individual time points, statistically significant 

improvements were noticed at both 50 (p=0.043) and 150 minutes (p=0.043), with power 

analysis (GPower 3.1.7) suggesting significance may be found with one additional 

animal (β= 0.3) at 250 minutes. 
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CHAPTER FOUR 

DISCUSSION AND CONCLUSION 

 
Introduction 

The hallmark pathogenic feature of Parkinson’s Disease (PD) is the death of 

dopamine (DA) producing neurons in the substantia nigra (SN), which in a healthy 

subject release DA into the striatum (Str).  The most effective treatment is an orally 

administered drug, L-DOPA, a DA precursor permeable to the blood-brain barrier.  As a 

DA precursor, L-DOPA acts to re-establish reduced striatal DA levels.  However, long-

term use of L-DOPA results in dose-dependent side effects which are at least as 

debilitating as the disease itself. 

 

Hypothesis 

In this thesis we hypothesize that a low dose of raclopride (a D2 antagonist) 

selectively blocks DA autoreceptor-mediated feedback inhibition of DA neurons, thereby 

potentiating L-DOPA’s effects on neurons postsynaptic to DA terminals including GP 

neurons.  To test this hypothesis we employed both electrophysiology and behavioral 

tests.  Preliminary data suggested that doses of raclopride as low as 10 ug/kg may block 

the DA autoreceptor -mediated inhibition of DA neurons induced by L-DOPA.  

Raclopride is not currently known to have any other biological effect at this dose, and 

therefore should have no effect on post-synaptic receptors. 

Electrophysiological Studies 

In the course of the electrophysiological studies it was realized that the method 

demonstrated in previous studies for identifying distinct subgroups of GP neurons was 
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actually incorrect.  Previous studies used a method which looked at the shape of the 

extracellularly recorded action potential, dividing these into Type-I with a negative initial 

peak, and Type-II with a positive initial peak.  We found that Type-I and Type-II 

waveforms are due to electrode tip-size and impedance, rather than the action potential 

itself.  Thus, an alternative method was used, in which subgroups of GP neurons were 

identified by functional connectivity (UC, PC, or NC) with cortical neurons.  We found 

that UC, PC, and NC neurons in the GP also differed significantly in firing rate and 

pattern in a manner not entirely consistent with previous studies, suggesting that 

differences in anesthesia and electrode type may be of greater importance than 

heretofore acknowledged.  Following 6-OHDA lesions, the number of NC cells increased 

with no change in phase relationship to cortical activity.  Before 6-OHDA lesions ~50% of 

PC cells in the GP are seen to lag cortical activity, but following 6-OHDA lesions cortical 

activity leads GP activity in ~91% of PC cells in the GP.  Since there are no direct 

cortical projections to GP neurons, the phase shift of PC cells is likely to be due to the 

influence of STN neurons with synaptic connections to GP neurons.  The drop in UC 

cells, with concomitant increase in NC cells, might be due to increased cortico-GP 

coupling through Str after 6-OHDA lesions.  These results lay the basis for future studies 

to investigate the effect of L-DOPA combined with raclopride on GP neurons. 

Behavioral Studies 

For behavioral studies, we decided to use L-DOPA at 3 mg/kg, just below the 

threshold known to have therapeutic benefit, in combination with raclopride at 5 ug/kg (a 

dose not known to have any biological effect) in order to test the potentiation of L-

DOPA’s therapeutic benefit. 

Potentiation of the therapeutic benefit of L-DOPA by a small dose of raclopride 

may occur in several ways.  First, the effect of treatment may be more pronounced.  

Second the effect of treatment may last longer.  Third, the treatment may delay the onset 
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of the dyskinesias evident with long-term repeated use of L-DOPA.  Behaviorally, the 

most effective dose of raclopride to potentiate the therapeutic effect of L-DOPA was 5 

µg/kg.  A small increase or decrease in dose led to behavioral scores in the cylinder test 

which not only had no statistically significant difference from the scores obtained from 

administering L-DOPA alone, but whose means were actually below that of L-DOPA 

alone.  This suggests that those doses are at best not efficacious, and at worst injurious.  

However, importantly, all treatments in the dose response curve (Fig. 3.7) were 

significantly improved over saline.  This implies that other doses of raclopride may have 

been equally efficacious. 

We found that the degree of behavioral impairment is independent of the overall 

activity level.  Also, the degree of behavioral impairment was observed to decrease from 

week to week.  The possibility exists that behavioral scores in successive weeks were 

affected by treatment injections from previous weeks.  Another possibility is that the 

animals were recovering due to an adaptation that worked to counteract the behavioral 

deficit the animal faced.  Receptor sensitization also may have been occurring, which 

would similarly explain the spontaneous recovery in behavioral scores. 

 

Conclusion 

We found that raclopride (5 µg/kg) co-administered with L-DOPA (3 mg/kg) does 

significantly improve the therapeutic benefit of L-DOPA behaviorally.  However, we 

recommend further study to confirm the optimum combinatory dose for L-DOPA and 

raclopride.  The possibility exists that the 2-fold increase in therapeutic benefit already 

observed could be increased further yet.  In terms of human studies, considering the 

effect on DA autoreceptors requires still living DA neurons, it would be advantageous to 

introduce subjects to the therapy as early as possible. 
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