
Loma Linda University Loma Linda University 

TheScholarsRepository@LLU: Digital TheScholarsRepository@LLU: Digital 

Archive of Research, Scholarship & Archive of Research, Scholarship & 

Creative Works Creative Works 

Loma Linda University Electronic Theses, Dissertations & Projects 

9-2014 

Copper, Aluminum and Nickel: A New Monocrystalline Copper, Aluminum and Nickel: A New Monocrystalline 

Orthodontic Alloy Orthodontic Alloy 

Mark Wierenga 

Follow this and additional works at: https://scholarsrepository.llu.edu/etd 

 Part of the Orthodontics and Orthodontology Commons 

Recommended Citation Recommended Citation 
Wierenga, Mark, "Copper, Aluminum and Nickel: A New Monocrystalline Orthodontic Alloy" (2014). Loma 
Linda University Electronic Theses, Dissertations & Projects. 195. 
https://scholarsrepository.llu.edu/etd/195 

This Thesis is brought to you for free and open access by TheScholarsRepository@LLU: Digital Archive of 
Research, Scholarship & Creative Works. It has been accepted for inclusion in Loma Linda University Electronic 
Theses, Dissertations & Projects by an authorized administrator of TheScholarsRepository@LLU: Digital Archive of 
Research, Scholarship & Creative Works. For more information, please contact scholarsrepository@llu.edu. 

https://scholarsrepository.llu.edu/
https://scholarsrepository.llu.edu/
https://scholarsrepository.llu.edu/
https://scholarsrepository.llu.edu/etd
https://scholarsrepository.llu.edu/etd?utm_source=scholarsrepository.llu.edu%2Fetd%2F195&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/657?utm_source=scholarsrepository.llu.edu%2Fetd%2F195&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsrepository.llu.edu/etd/195?utm_source=scholarsrepository.llu.edu%2Fetd%2F195&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsrepository@llu.edu


 

 

 

LOMA LINDA UNIVERSITY 

School of Dentistry 

in conjunction with the 

Faculty of Graduate Studies 

 

 

 

____________________ 

 

 

 

 

Copper, Aluminum and Nickel: A New Monocrystalline 

Orthodontic Alloy  

 

 

by 

 

 

Mark Wierenga 

 

 

 

____________________ 

 

 

 

 

A Thesis submitted in partial satisfaction of  

the requirements for the degree 

Master of Science in Orthodontics and Dentofacial Orthopedics 

 

 

 

____________________ 

 

 

 

 

September 2014  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2014 

 

Mark Wierenga 

All Rights Reserved



iii 

Each person whose signature appears below certifies that this thesis in his opinion is 

adequate, in scope and quality, as a thesis for the degree of Master of Science. 

 

 

 

 

 

 

 , Chairperson 

V. Leroy Leggitt, Professor of Orthodontics 

 

 

 

 

  

Gregory Olson, Associate Professor of Orthodontics and Pediatric Dentistry 

 

 

 

 

  

Kitichai Rungcharassaeng, Professor of Orthodontics 



iv 

ACKNOWLEDGEMENTS 

 

 

I would like to express my appreciation to the individuals who helped me 

complete this study.  I am grateful to the Loma Linda University Department of 

Orthodontics and the members of my guidance committee.  Thank you to Mr. Sam 

Alauddin, Mr. Steven Li, and Dr. Rodrigo Viecilli for their advice and comments. I am 

forever thankful for the love and support of my wife, Jenna. I am especially grateful for 

the guidance and inspiration from the late Dr. Craig Andreiko. 



v 

CONTENTS 

 
 

Approval Page .................................................................................................................... iii 

 

Acknowledgements ............................................................................................................ iv 

 

List of Figures .................................................................................................................... vi 

 

List of Tables .................................................................................................................... vii 

 

List of Abbreviations ....................................................................................................... viii 

 

Abstract .............................................................................................................................. ix 

 

Chapter  

 

1. Review of the Literature ..........................................................................................1 

 

2. Copper, Aluminum and Nickel: A New Monocrystalline Orthodontic 

Alloy ........................................................................................................................8 

             

Abstract ..............................................................................................................8 

Introduction ........................................................................................................9 

Materials and Methods .....................................................................................12 

 

Statistical Analysis .....................................................................................16 

 

Results ..............................................................................................................17 

 

Elastic Modulus .........................................................................................17 

Deflection Force.........................................................................................19 

Hysteresis ...................................................................................................26 

 

Discussion ........................................................................................................28 

Conclusions ......................................................................................................31 

References ........................................................................................................32 

 

3. Extended Discussion ..............................................................................................34 

 

References ..........................................................................................................................36 

 

Appendices 

A. Tukey Post-hoc Analysis  ...................................................................................39 

B. Five Wire Types in 3-Point Bend Testing ..........................................................40  



vi 

FIGURES 

 

Figure Page 

 

1. Tensile testing set-up ...................................................................................................13 

2. 3-point bend set-up ......................................................................................................14 

3. Mean interbracket distance diagram ............................................................................15 

4. 6 mm deflection test set-up ..........................................................................................16 

5. 0.018” 3-point bend testing results ..............................................................................21 

6. 0.019” x 0.025” 3-point bend testing results................................................................22 

7. 0.018” tensile testing results ........................................................................................23 

8. 0.019” x 0.025” tensile testing results .........................................................................24 

9. 6 mm deflection testing results ....................................................................................25 

10. Wire binding after deflection .......................................................................................26 

 

 



vii 

TABLES 

 

 

Table Page 

 

1. Wire types evaluated ..................................................................................................12 

2. Elastic modulus results (MPa) for all tests .................................................................18 

3. Deflection forces (N) of round wire 3-point bend testing ..........................................21 

4. Deflection forces (N) of rectangular wire 3-point bend testing .................................22 

5. Deflection forces (N) of round wire tensile testing ....................................................23 

6. Deflection forces (N) of rectangular wire tensile testing ...........................................24 

7. Deflection forces (N) of round wire tensile 6 mm deflection testing .........................25 

8. Hysteresis results for all tests ............................................................................................ 27 

 

  



viii 

ABBREVIATIONS 

 

 

AO American Orthodontics©  

ANOVA Analysis of Variance 

AUC Area Under the Curve 

β-Ti Beta-Titanium 

CuAlNi Copper, Aluminum, and Nickel Alloy (Material Under Study) 

CuNiTi Copper Nickel Titanium 

NiTi Nickel Titanium 

RMO Rocky Mountain® Orthodontics 

SS Stainless Steel 

TMA Titanium Molybdenum Alloy 

 

  



ix 
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Introduction:  This study was designed to evaluate, via tensile and bend testing, 

the mechanical properties of a newly-developed monocrystalline orthodontic archwire 

comprised of a blend of copper, aluminum, and nickel (CuAlNi).  Methods:  The sample 

was comprised of three shape memory alloys; CuAlNi, copper nickel titanium (CuNiTi), 

and nickel titanium (NiTi); from various orthodontic manufacturers in both 0.018” round 

and 0.019” x 0.025” rectangular dimensions. Additional data was gathered for similarly 

sized stainless steel and beta-titanium archwires as a point of reference for drawing 

conclusions about the relative properties of the archwires. Measurements of loading and 

unloading forces were recorded in both tension and deflection testing. Repeated-measure 

ANOVA (α= 0.05) was used to compare loading and unloading forces across wires and 

one-way ANOVA (α= 0.05) was used to compare elastic moduli and hysteresis. To 

identify significant differences, Tukey post-hoc comparisons were performed.  Results:  

The modulus of elasticity, deflection forces, and hysteresis profiles of CuAlNi were 

significantly different than the other superelastic wires tested. In all tests, CuAlNi had a 

statistically significant lower modulus of elasticity compared to the CuNiTi and NiTi 

wires (P <0.0001). The CuAlNi wire exhibited significantly lower loading and unloading 



x 

forces than any other wire tested. In round wire tensile tests, loading force at all 

deflections was significantly lower for CuAlNi than CuNiTi or NiTi (P <0.0001). In 

tensile testing, the CuAlNi alloy was able to recover from a 7 mm extension (10% 

elongation) without permanent deformation and with little to no loss in force output. In 

large-deflection bend tests at 4, 5, and 6 mm deflection, CuAlNi showed the significantly 

lowest loading forces across the three wire materials (P <0.0001). The NiTi wires showed 

up to 12 times the amount of energy loss due to hysteresis compared to CuAlNi. CuAlNi 

showed a hysteresis loss that was significantly less than any other wire tested in this 

study (P <0.0001). Conclusions: The relatively constant force delivered for a long period 

of time during the deactivation of this wire, the minimal hysteresis loss, the low force 

output in deflection, and the relatively low modulus of elasticity suggest that CuAlNi 

wires should be considered an important material addition to orthodontic metallurgy. 
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CHAPTER ONE 

REVIEW OF LITERATURE 

 

 Andreasen first introduced shape memory alloys to the field of orthodontics in the 

early 1970s.1 Since then, shape memory alloys have been attractive for use as archwires 

with their superelastic properties in addition to shape memory mechanics. Since the 

1970s, the formulation of these alloys has been adjusted to meet the demands of the 

orthodontist. The most recent development of a copper, aluminum and nickel 

monocrystalline hyperelastic archwire shows promise to continue the progression of 

improved clinical performance. As with any new wire, it is important to understand the 

composition of the wire and its mechanical properties in order to evaluate its potential 

clinical usefulness.  

 Nickel-titanium (NiTi) wire was originally developed during the 1960’s by 

William Buehler. Through the efforts of Andreasen and Unitek in the early 1970’s, the 

first NiTi alloy was marketed to orthodontists as NitinolTM, an acronym for nickel 

titanium and its origin at the Naval Ordnance Laboratory in Silver Springs, Maryland.2,3 

What was so attractive about this composition of nickel and titanium was its low spring-

back force following activation. Compared to the other orthodontic archwires available, 

Nitinol delivered only one-fifth to one-sixth the force per unit of deactivation.4 When 

Andreasen and Morrow analyzed Nitinol they reported a modulus of elasticity of 4.8x106 

psi and an ultimate tensile strength of 230-300,000 PSI for Nitinol, compared with 

28.5x106 psi and 280-300,000 PSI for the corresponding stainless steel tested.2 Nitinol 
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had a greater elastic limit, a very low modulus of elasticity, and possessed moderate 

strength. When comparing stainless steel and Nitinol wires of the same diameter, NiTi 

alloy wires delivered lower force levels while also displaying a significantly greater 

stored energy potential.5 Since ideal archwires move teeth with light continuous forces,6 

this new addition to the orthodontists’ arsenal was quickly adopted as an initial leveling 

archwire. 

 Multiple new combinations of nickel, titanium and other metals have been 

developed since the initial release of Nitinol that have unique properties while still 

maintaining the qualities of shape memory alloys. In 1985, Burstone introduced the 

orthodontic community to an austenitic NiTi developed in Beijing.7 In this article, 

Burstone introduced this Chinese NiTi and compared it to the Nitinol and stainless steel 

archwires that were available at the time. He studied the wire’s springback, stiffness, and 

the maximum moment using a flexural design study. Compared to the original Nitinol 

wire and a stainless steel wire of equal size, the Chinese NiTi had significantly lower 

stiffness, a larger springback, and a favorably lower maximum moment. The very next 

year, Miura, et al, published similar data about an austenitic NiTi developed in Japan. 

Miura used tensile and 3-point bend tests to make conclusions about the wire’s unique 

properties compared to traditional nitinol alloy.8 

 Ormco developed a thermoelastic nitinol in 1994 that included copper in the 

traditional nickel and titanium alloy. Copper NiTi (CuNiTi) contains approximately 5-6% 

copper and small amounts of chromium. The addition of copper allows for a 

transformation between the softer, more pliable martensitic phase and the shape-retaining 

austenitic phase at different temperature ranges. Thus, these wires have the advantage of 
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being body heat–activated, more easily engaged at room temperature, while transitioning 

into a more functional stiffness at temperatures encountered in the mouth.9 The addition 

of copper has also been shown to reduce hysteresis - the energy lost in deformation.10 

This leads to a more stable delivery of force.11 Adjusting the levels of chromium in the 

alloy changes the transformation temperature of the wire as the crystalline structure 

switches between martensite and austenite.12  

 Beta-titanium has been known to the clinician as the happy medium between NiTi 

and stainless steel since its introduction in the 1980’s. Beta-titanium is marketed by the 

Ormco Corporation (Glendora, CA, USA) as titanium-molybdenum alloy (TMA). Beta-

titanium is commonly produced at the ratio of 80% titanium, 11.5% molybdenum, 6% 

zirconium, and 4.5% tin.13 Beta-titanium delivers lower biomechanical forces compared 

to stainless steel. The elastic modulus for beta-titanium wires is approximately 40% that 

of stainless steel and elgiloy blue wires. In addition to a lower elastic modulus, beta-

titanium wires have significantly improved values of springback thus improving their 

working range for tooth movement.14 

 When classifying a new wire, its mechanical properties will assist in 

characterizing its clinical capabilities. A wire’s modulus of elasticity is a basic material 

property that can reveal the relative stiffness of one wire to the next. The higher the 

modulus of elasticity, the greater the force magnitude delivered or stiffness of the 

wire.6,15 As an archwire is bent, the outer curvature of the wire at the bend is placed under 

tensile forces while the wire at the inner portion of the bend is compressed. A wire that 

can withstand increased levels of tensile stress without permanent deformation will thus 

be able to return to its original shape after the bending force is released. For this reason, 
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tensile and 3-point bend testing are valuable mechanical tests to compare different alloys 

used in orthodontics. Tensile testing was carried out soon after the initial development of 

Japanese NiTi. By measuring wire length before and after sequential elongation of an 

archwire, Miura, Mogi, Ohura, and Hamanaka were able to draw conclusions regarding 

the wire’s behavior in an orthodontic environment.16  Both tensile testing and the 3-point 

bending method are not directly transferable to the clinical setting, rather, they have been 

employed as physical property tests. These methods focus more on the physical and 

biomechanical properties of the wires, offer reproducibility, and are useful for purely 

theoretical evaluations. Both are standardized testing methods that make comparison to 

other studies possible. Unfortunately, there has not been a proper methodology developed 

that addresses the unusual properties found in superelastic wires. Most researchers have 

chosen to adhere to 3-point bend testing as described by the American Dental Association 

specification number 32.17 This standard was originally formulated for stainless steel 

wires and was developed before the NiTi wire was introduced into mainstream 

orthodontic use. In many studies on superelastic wires, some investigators have 

developed their own testing methods in an attempt to quantify the bending characteristics 

of the wires beyond the traditional 3 mm of deflection. A consensus has not been reached 

on whether to continue using the existing 3-point bend test method, or to adopt a new and 

improved method of testing.  

 Another important characteristic of orthodontic archwires to analyze is their time-

dependent properties and responses to repeated masticatory forces over time. Because an 

archwire remains in the patient’s mouth for weeks to months at a time, it is important that 

the wire maintains its activity over time despite the continual cycling produced by 
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repeated bends of the wire. In his article describing Chinese NiTi, Burstone investigated 

how a 6.5 mm vertical discrepancy would affect the deformation of NiTi compared to 

stainless steel and Nitinol. He compared the wires at time periods of one minute, one 

hour, and three days. After each time period, he analyzed and quantified the permanent 

deformations of the wire.6 He found a favorable response to his austenitic NiTi over 

extended periods of deflection. Similar studies are needed to classify new orthodontic 

archwires.  

 In a system of brackets and wires, the effectiveness of the wire is directly 

correlated to the friction that exists with it and the brackets. Schumacher, Bourauel, and 

Drescher initiated a study of friction during the deactivation of leveling archwires. Their 

study showed a substantial decrease in the effective springback-force during deactivation 

due to friction elsewhere between the arch wire and brackets. Schumacher and colleagues 

found as much as a 50% reduction in the deactivation-force due to this friction.18 For this 

reason, the friction values of any new orthodontic wire must be appropriately examined.  

In a typical superelastic force deflection curve, there is a difference between the 

forces produced by a wire as its loaded compared to the unloading force produced. The 

areas of the curve showing nearly constant stress are the loading and unloading plateaus. 

The loading plateau represents the period during which the austenitic crystalline structure 

is stress-induced into martensite. As the load is removed, the stress-induced martensite 

transforms back into austenite along the unloading plateau. The loading plateau stress is 

always greater than the unloading plateau stress but the amount of difference is a key 

determinant of material properties. This difference in stress at loading and unloading 

plateaus is hysteresis in the system.19 Bending the tines of a fork back and forth will 
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demonstrate hysteresis as the metal becomes less responsive with repeated applications of 

force. With repeated bending, the metal builds up a lag in response to the same force. 

Hysteresis has been said to lead to unpredictable unloading forces potentially exceeding 

levels of patient comfort, resistance to sliding in brackets, and wires taking a permanent 

set or exhibiting incomplete recovery upon high straining.13 Larger strains in the wire 

induce greater hysteresis for nickel titanium alloys, thus greater malocclusions are more 

likely to induce permanent wire deformation and a more unpredictable hysteresis loss. 

Studies have shown that the commercially available NiTi alloys behave in a variable 

manner, often deviating from superelasticity.20 In a 2007 study by Bartzela, Senn, and 

Wichelhaus, 48 commercially available NiTi wires from five manufacturers were tested 

to determine if they were superelastic as advertised. In their study, they found that only 

29 of the studied archwires (60%) showed true superelasticity. Of the remaining 19 

archwires, seven were borderline superelastic, three were borderline nonsuperelastic, and 

three developed a permanent set after traditional three-point bend testing.21 

 In a polycrystalline wire, grains are separated by grain boundaries. It is at the 

grain boundaries where the grains slip past each other to result in a deformed wire. With 

the development of a monocrystalline wire, no grain boundaries exist. For that reason, 

repeatable and complete shape recovery has been obtained even at greater than 10% 

percent deformation. According to the manufacturer, this shape recovery correlates to 

three times greater than that of Nitinol.22 

 The Copper, Aluminum, and Nickel alloy (CuAlNi) has been referred to as being 

“hyperelastic.” When traditional superelastic archwires transform from one crystalline 

structure to another, energy is lost to hysteresis. In hyperelastic transformations, the 
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energy is absorbed and released at nearly constant force, so that constant acceleration is 

attainable.23 Because the range of strain recovery is so far beyond the maximum strain 

recovery of both conventional polycrystalline shape memory alloy materials and non-

shape memory metals and alloys, such repeatable strain recovery properties of single 

crystal shape memory alloy has been referred to as hyperelastic.24 To the orthodontist, 

this is especially favorable as the forces placed on the teeth must be of sufficient pressure 

to stimulate movement, but not enough to cause necrosis of the bony tissue or resorption 

of the roots. 25 

 Hyperelastic alloys like the CuAlNi alloy under study are purported to have 

properties enabling them to undergo large recoverable distortions. The initial claims from 

its originators suggest it can withstand distortions at least an order of magnitude greater 

than that which could be obtained if the component were made of non-shape memory 

metals and alloys, and nearly an order of magnitude greater than can be obtained with 

polycrystalline shape memory alloy materials.22, 23 Because the CuAlNi wire is 

monocrystalline, the hysteresis and the unloading curves are much more predictable than 

with a polycrystalline wire such as NiTi or CuNiTi. The study that follows was designed 

to quantify these mechanical properties of CuAlNi archwires in order to begin 

discovering its clinical usefulness. 
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Abstract 

Introduction:  This study was designed to evaluate, via tensile and bend testing, 

the mechanical properties of a newly-developed monocrystalline orthodontic archwire 

comprised of a blend of copper, aluminum, and nickel (CuAlNi).  Methods:  The sample 

was comprised of three shape memory alloys; CuAlNi, copper nickel titanium (CuNiTi), 

and nickel titanium (NiTi); from various orthodontic manufacturers in both 0.018” round 

and 0.019” x 0.025” rectangular dimensions. Additional data was gathered for similarly 

sized stainless steel and beta-titanium archwires as a point of reference for drawing 

conclusions about the relative properties of the archwires. Measurements of loading and 

unloading forces were recorded in both tension and deflection testing. Repeated-measure 

ANOVA (α= 0.05) was used to compare loading and unloading forces across wires and 

one-way ANOVA (α= 0.05) was used to compare elastic moduli and hysteresis. To 
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identify significant differences, Tukey post-hoc comparisons were performed.  Results:  

The modulus of elasticity, deflection forces, and hysteresis profiles of CuAlNi were 

significantly different than the other superelastic wires tested. In all tests, CuAlNi had a 

statistically significant lower modulus of elasticity compared to the CuNiTi and NiTi 

wires (P <0.0001). The CuAlNi wire exhibited significantly lower loading and unloading 

forces than any other wire tested. In round wire tensile tests, loading force at all 

deflections was significantly lower for CuAlNi than CuNiTi or NiTi (P <0.0001). In 

tensile testing, the CuAlNi alloy was able to recover from a 7 mm extension (10% 

elongation) without permanent deformation and with little to no loss in force output. In 

large-deflection bend tests at 4, 5, and 6 mm deflection, CuAlNi showed the significantly 

lowest loading forces across the three wire materials (P <0.0001). The NiTi wires showed 

up to 12 times the amount of energy loss due to hysteresis compared to CuAlNi. CuAlNi 

showed a hysteresis loss that was significantly less than any other wire tested in this 

study (P <0.0001). Conclusions: The relatively constant force delivered for a long period 

of time during the deactivation of this wire, the minimal hysteresis loss, the low force 

output in deflection, and the relatively low modulus of elasticity suggest that CuAlNi 

wires should be considered an important material addition to orthodontic metallurgy. 

 

Introduction 

The field of orthodontics continues to develop with the introduction of new 

products. Orthodontic practitioners are constantly looking for more advantageous 

treatment protocols and technology.  Research and technology in orthodontics are driven 

by the desire to decrease treatment time, costs and patient discomfort while increasing 
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compliance and favorable health outcomes. In the past, as new orthodontic wires have 

been developed, appropriate laboratory and clinical studies have been run to determine 

whether the new materials are suitable for clinical use in orthodontic practice.  

 Nickel-titanium (NiTi) wire was originally developed during the 1960’s by 

William Buehler. Through the efforts of Andreasen and Unitek in the early 1970’s, the 

first NiTi alloy was marketed to orthodontists as NitinolTM, an acronym for nickel 

titanium and its origin at the Naval Ordnance Laboratory in Silver Springs, Maryland.1,2,3 

What was so attractive about this composition of nickel and titanium was its low spring-

back force following activation. Compared to the other orthodontic archwires available, 

Nitinol delivered only one-fifth to one-sixth the force per unit of deactivation.4 When 

comparing stainless steel and Nitinol wires of the same diameter, NiTi alloy wires 

delivered lower force levels while also displaying a significantly greater stored energy 

potential.5 Since ideal archwires move teeth with light continuous forces,6 this new 

addition to the orthodontists’ arsenal was quickly adopted as an initial leveling archwire. 

 Multiple new combinations of nickel, titanium and other metals have been 

developed since the initial release of Nitinol that have unique properties while still 

maintaining the qualities of shape memory alloys. In 1985, Burstone et al introduced the 

orthodontic community to austenitic NiTi.7 In this article, Burstone compared a new 

formulation of NiTi developed in Beijing to the Nitinol and stainless steel archwires that 

were available at the time. He studied the wire’s springback, stiffness, and the maximum 

moment. Compared to the original Nitinol wire, the austenitic Chinese NiTi had 

significantly lower stiffness, a larger springback, and a favorably lower maximum 

moment. The very next year, Miura, et al, published similar data about an austenitic NiTi 
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developed in Japan. Miura used tensile and 3-point bend tests to make conclusions about 

the wire’s unique properties compared to traditional nitinol alloy.8 

 Ormco introduced a thermoelastic nitinol in 1994 that included copper in the 

traditional nickel and titanium alloy. Copper NiTi (CuNiTi) contains approximately 5-6% 

copper. The addition of copper allows for a transformation between the softer, more 

pliable martensitic phase and the shape-retaining austenitic phase at different temperature 

ranges. Thus, these wires have the advantage of being body heat activated, more easily 

engaged at room temperature, while transitioning into a more functional stiffness at 

temperatures encountered in the mouth.9 The addition of copper also has been shown to 

reduce hysteresis - the energy lost in deformation.10 This leads to a more stable delivery 

of force.11  

The recent introduction of a monocrystalline copper, aluminum and nickel alloy 

for orthodontic use is intended to create more biologically compatible tooth movement 

and exert more predictable forces. This study was designed to quantify pertinent 

mechanical properties of CuAlNi archwires in order to begin discovering its clinical 

usefulness. The null hypothesis was that there is no difference between CuAlNi and 

similarly-sized superelastic wires when measuring the modulus of elasticity, deflection 

forces, and stress-induced hysteresis. Conversely, the alternative hypothesis is that there 

is a difference in the three measures between CuAlNi and the other wires tested. Data 

was obtained and compared for the CuAlNi wire and a sampling of other currently 

available superelastic orthodontic wires of similar size. Additional data was gathered for 

similarly sized stainless steel and beta-titanium archwires as a point of reference for 

drawing conclusions about the relative properties of the new archwire. This information 
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should provide an initial set of foundational information for the orthodontic community 

about CuAlNi archwires and potentially serve as a reference for further study into this 

wire’s use and clinical effectiveness.   

 

Materials and Methods 

Ten wire types were evaluated. Nickel titanium (NiTi), thermally activated copper 

nickel titanium (CuNiTi), beta-titanium (β-Ti), titanium molybdenum (TMA) and 

stainless steel (SS) archwires were selected at random from well-known orthodontic 

manufacturers (Table 1). Three separate tests were run; 3-point bend, tensile, and 6 mm 

deflection tests (Fig 1-4). Each test was comprised of ten wires of each wire type tested 

(n=10).  

 

 

Table 1. Wire Types Evaluated 

Wire Type Manufacturer Dimension (in) 

SS RMO 0.018 

TMA Ormco 0.018 

NiTi AO 0.018 

CuNiTi 3M Unitek 0.018 

*CuAlNi Ormco 0.018 

SS Ormco 0.019 x 0.025 

β-Ti AO 0.019 x 0.025 

NiTi 3M Unitek 0.019 x 0.025 

CuNiTi RMO 0.019 x 0.025 

*CuAlNi Ormco 0.019 x 0.025 

 

 

 
 

All testing was performed with a 1-kN electromechanical load frame (Instron 

5944, Norwood, MA). 3-point bend and tensile test were performed in accordance with 
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the International Organization for Standardization (ISO) methods described in the 

American National Standard and American Dental Association (ANSI/ADA) 

specification number 32.17 

Tensile testing of the wires was carried out on a 70 mm gauge wire stretched 7 

mm for analysis of wire characteristics (10% elongation).  The load frame crossheads 

were separated at a rate of 2 mm per minute. Temperature was regulated at 36±1°C (Fig 

1). 

 

 

Fig 1. Tensile testing set-up 
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The 3-point bending test was carried out with wire at a length of 30 mm loaded at 

36±1°C (Fig 2). A centrally placed indenter was used to deflect the wires 3.1 mm 

vertically across a 10 mm horizontal span at a rate of 7.5 mm per minute. A custom 

fabricated indenter and fulcrum were used both having radii of 0.10 mm in accordance 

with the ANSI/ADA specifications. Bending force was reported from the raw data at 

loading and unloading deflections of 0.5, 1.0, 2.0, and 3.0 mm. 

 

 
Fig 2. 3-point bend set-up. In accordance to ADA Specifications.17 (A) Indenter (B) 

Fulcrum 

 

 

To measure loading and unloading forces at deflections greater than established in 

the ADA specifications, a custom jig was constructed. Four Damon® self-ligating 

brackets (Ormco, Glendora, CA) were bonded to bovine enamel blocks adhered to a 

fixture as shown in Figure 3. Brackets were placed in positions representing a maxillary 

central, lateral, first premolar and second premolar with the load cell acting as a displaced 

canine. A 15.5 mm interbracket distance was used to simulate the average width between 

a lateral incisor and first premolar according to Moyers, et al27 (Figs 3 and 4). Wire 
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deflection was carried out gingivo-occlusally in the model to mimic intraoral conditions. 

Ten samples of each of the three 0.018” round superelastic wire types were deflected 6.1 

mm across the 13.5 mm fulcrum distance using a centrally placed indenter with a 

crosshead rate of 7.5 mm/min at 36±1°C. Loading forces were measured and reported 

from the raw data at 4, 5, and 6 mm. 

 

 
Fig 3. Mean interbracket distance diagram. Used as a reference for fabrication of large-

deflection fixture (modified from Moyers et al27). 
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Fig 4. 6 mm deflection test set-up. (A) Indenter  (B) Brackets  (C) Custom Jig 

 

Temperature regulation was carried out with the use of dual Varitemp Heat Guns 

(Master Appliance, Racine, WI) with a thermometer mounted directly adjacent to the 

wire. Temperature was set to 36±1°C to simulate intraoral temperatures and activate the 

wires accordingly. All loadframe testing data was measured and recorded with Bluehill 2 

software (Instron, Norwood, MA).  

 

Statistical Analysis 

 Statistical comparisons were performed with the Statistical Package for Social 

Sciences software for Windows (SPSS, Chicago, Ill). Repeated-measures ANOVA was 

performed to compare loading and unloading force across wires in all tensile and bending 

tests. The ANOVA model included wire material and compressive extension (mm) as 

main effects, as well as an interaction term between the two (wire × extension). One-way 

ANOVA was conducted to see if there were any significant differences in elastic 

modulus among the five wire materials. Comparison of hysteresis among the wire types 

was calculated by subtracting the area under the curve (AUC) of unloading forces from 
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the AUC of loading forces. One-way ANOVA was used to compare mean hysteresis 

across the wires. Wherever significance was indicated, Tukey post-hoc comparisons were 

performed to reveal which of the wire materials were significantly different. The alpha 

level was set to be 0.05. ANOVA assumptions were verified with residual plots. No 

violation of ANOVA assumptions was present.  

 

Results 

Elastic Modulus 

In all tests (3-point bend, tensile, and 6 mm deflection test) ANOVA showed 

there were significant differences. Tukey post-hoc testing identified the location of 

significant differences (Table 2, Appendix A). 

CuAlNi had a statistically significant lower modulus of elasticity in all tests 

compared to the other four CuNiTi and NiTi wires (P <0.0001). In 3-point bend tests 

(round), all modulus values were all significantly different, except between the 3M 

CuNiTi and American NiTi (P= 0.51) archwires. The mean modulus of elasticity was 

significantly different between all rectangular wires in 3-point bend and tensile tests (P 

<0.0001). In tensile tests (round), there was no significant difference in modulus between 

3M CuNiTi and American NiTi (P= 0.18). In the large-deflection tests, mean modulus 

values were all significantly different (P <0.0001). Stainless steel wires consistently 

demonstrated the highest modulus among all wires, with a mean modulus eight times 

greater than was measured for CuAlNi. 
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Table 2. Elastic modulus results (MPa) for all tests 

 
3-point bend (round) 

    

3-point bend (rectangular) 

 
          Wire N Mean SD 

  

Wire N Mean SD 

CuAlNi 10 802.9 58.9 

  

CuAlNi 10 1278.1 54.9 

NiTi 10 2399.8 201.0 

  

NiTi 10 2794.8 167.0 

CuNiTi 10 2484.5 132.7 

  

CuNiTi 10 3589.0 251.3 

TMA 10 2667.9 64.1 

  

β-Ti 10 4006.3 46.2 

SS 10 6818.9 75.1 

  

SS 10 9911.3 264.6 

    

  

    

One-way ANOVA: Main effect for Wire: P <0.0001 One-way ANOVA: Main effect for Wire: P <0.0001  

Tukey post-hoc tests show means are all 

significantly different at α = 0.05, except 
between CuNiTi and NiTi (P = 0.51) 

  

Tukey post-hoc tests show means are all 

significantly different at α = 0.05. 

          Tensile test (round) 

    

Tensile test (rectangular) 

  
          Wire N Mean SD 

  

Wire N Mean SD 

CuAlNi 10 14440.8 1386.5 

  

CuAlNi 10 8909.6 1127.7 

NiTi 10 41722.1 2301.5 

  

CuNiTi 10 20031.8 3233.9 

CuNiTi 10 43708.3 3239.2 

  

NiTi 10 24482.0 1881.4 

    

  

    

One-way ANOVA: Main effect for Wire: P <0.0001 One-way ANOVA: Main effect for Wire: P <0.0001 

Tukey post-hoc tests show that CuAlNi has a 

significantly lower modulus than the other wires 
(P <0.0001)  

  

Tukey post-hoc tests show means are all 

significantly different at α = 0.05. 

      

          6 mm Deflection (round) 

       
          Wire N Mean SD 

      CuAlNi 10 587.8 43.5 

      CuNiTi 10 1479.0 78.7 

      NiTi 10 1747.2 45.4 

          

      One-way ANOVA: Main effect for Wire: P <0.0001 

    Tukey post-hoc tests show means are all  

      significantly different at α = 0.05. 

        

  



19 

Deflection Force 

Repeated-measure ANOVA analyses were performed comparing loading and 

unloading forces across all wires in each of the three test types. Tukey post-hoc 

comparisons were used to see if loading and unloading forces were significantly different 

across wires at any extension or deflection (Appendix A). Means and SD of loading and 

unloading force by wire and extension are presented in Tables 3-7 including notations on 

the statistically significant differences.  

In all tests (3-point bend, tensile, and 6 mm deflection tests), there were significant 

wire × extension interactions (all P <0.0001). This indicated that the stress-strain curves 

were significantly different between wire types. In 3-point bend tests for both round and 

rectangular wires, loading forces at 0.5, 1, 2, and 3 mm of loading and unloading were 

significantly lower for CuAlNi than all other wire materials (P <0.0001). In round wire 

tensile tests, loading force at all deflections was significantly lower for CuAlNi than 

CuNiTi or NiTi (P <0.0001 for both). In rectangular wire tensile tests, loading forces at 2, 

3, 4, 5, 6, and 7 mm were all significantly different across the three wire materials, with 

CuAlNi having the lowest deflection forces. Loading force was highest in NiTi wires, 

followed by CuNiTi and CuAlNi. 

In 6 mm deflection tests, at 4, 5, and 6 mm extensions, CuAlNi showed the 

significantly lowest loading forces across the 3 wire materials. In unloading force, 

CuAlNi wires were significantly lower than CuNiTi or NiTi at 6 mm (P <0.0001 for 

both). There was no significant difference between CuNiTi and NiTi (P = 0.19). There 

were no significant differences between the three wire types at 5 mm of unloading force 

due to binding in the brackets. At an unloading deflection of 4 mm, there was a 
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statistically significant higher level of force for the CuAlNi as it was the only wire to 

have all 10 specimens avoid binding in the brackets following the 6 mm deflection. Of 

the 10 NiTi specimens run in this test, 7 became bound after the 6 mm deflection and of 

the 10 CuNiTi wires, 8 experienced binding after the 6 mm deflection (see Fig 13). These 

wires did not show permanent deformation after being removed from the apparatus post-

test. 
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Table 3. Deflection forces (N) of round wire 3-point bend testing  

 

 Extension (mm) CuAlNi CuNiTi NiTi TMA SS P-Value 

L
o

ad
 

0.5 0.92±.06a 2.47±.23b 2.79±.23c 2.64±.09d 8.13±.30e <0.0001 

1.0 1.12±.11a 3.05±.09b 4.06±.14c 5.60±.10d 13.14±.17e <0.0001 

2.0 1.12±.10a 3.38±.10b 4.46±.14c 6.75±.09d 13.20±.27e <0.0001 

3.0 1.07±.09a 3.35±.09b 4.40±.13c 6.21±.07d 11.87±.14e <0.0001 

U
n

lo
ad

 

3.0 0.78±.06a 2.01±.08b 2.94±.14c 2.80±.12c 4.89±.55d <0.0001 

2.0 0.72±.07a 1.30±.10b 2.75±.15c 1.75±.07d 1.21±.10b <0.0001 

1.0 0.71±.07a 1.10±.08b 2.35±.12c 0.17±.01d 0.19±.01d <0.0001 

0.5 0.79±.10a 1.03±.09b 2.07±.32c 0.17±.01d 0.19±.01e <0.0001 

a,b,c,d,e: different letters denote statistically significant difference between forces (ANOVA at α = 

0.05) 

 

  

 
Fig 5. 0.018” 3-point bend test results (mean values of all specimens). 
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Table 4. Deflection forces (N) of rectangular wire 3-point bend testing 

 

Extension (mm) CuAlNi CuNiTi NiTi β-Ti SS P-Value 

L
o

ad
 

0.5 2.05±.10a 5.07±.12b 6.13±.35c 8.60±.05d 19.97±.48e <0.0001 

1.0 2.09±.13a 5.67±.13b 9.28±.39c 15.24±.21d 29.07±.25e <0.0001 

2.0 2.28±.12a 6.76±.13b 11.70±.39c 18.87±.23d 30.16±.32e <0.0001 

3.0 2.31±.13a 7.18±.20b 12.35±.38c 17.34±.35d 29.30±.68e <0.0001 

U
n

lo
ad

 

3.0 1.32±.09a 3.85±.13b 6.44±.72c 7.15±.64d 16.36±.65e <0.0001 

2.0 1.30±.09a 3.14±.13b 6.30±.50c 5.33±.14d 0.02±.01e <0.0001 

1.0 1.40±.14a 2.89±.15b 5.48±.49c 0.25±.02d 0.02±.01d <0.0001 

0.5 1.46±.10a 2.67±.16b 4.39±.51c 0.25±.02d 0.02±.01e <0.0001 

a,b,c,d,e: different letters in rows denote statistically significant difference between forces (ANOVA at 

α = 0.05) 

 

 

 
Fig 6. 0.019” x 0.025” 3-point bend test results (mean values of all specimens) 
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Table 5. Deflection forces (N) of round wire in tensile testing 
 

Extension (mm) CuAlNi CuNiTi NiTi P-Value 

L
o

ad
 

0.5 3.69±1.90a 23.53±9.62b 15.06±8.98b <0.0001 

1.0 18.08±2.80a 61.25±3.50b 58.08±9.19b <0.0001 

2.0 23.55±1.80a 65.44±1.89b 78.36±2.21c <0.0001 

3.0 24.12±1.89a 67.86±1.75b 81.09±2.49c <0.0001 

4.0 24.67±1.88a 69.96±1.70b 83.23±2.41c <0.0001 

5.0 24.82±1.41a 74.08±3.00b 84.86±2.17c <0.0001 

6.0 25.87±1.61a 82.22±3.31b 88.33±2.89b <0.0001 

7.0 27.27±1.52a 104.24±6.50b 105.67±4.39b <0.0001 

U
n

lo
ad

 

7.0 27.27±1.52a 104.246.50b 105.65±4.39b <0.0001 

6.0 24.36±1.99a 41.65±3.05b 58.85±2.29c <0.0001 

5.0 22.68±1.61a 28.27±2.60a 46.82±2.41b <0.0001 

4.0 22.13±1.31a 19.28±3.27a 46.42±4.84b <0.0001 

3.0 21.55±1.44a 20.19±1.91a 44.09±2.42b <0.0001 

2.0 21.01±1.46a 16.19±1.81a 38.06±2.79b <0.0001 

1.0 12.41±3.02a 0.67±1.67b 17.76±4.08a <0.0001 

0.5 1.27±0.97 -0.91±0.15 0.64±0.61 0.20 

a,b,c: different letters denote statistically significant difference between load forces 

(ANOVA at α = 0.05) 

 

 
Fig 7. 0.018” tensile testing results (mean values of all specimens) 
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Table 6. Deflection forces (N) of rectangular wire in tensile testing 
 

 Extension (mm) CuAlNi CuNiTi NiTi P-Value 
L

o
ad

 

0.5 2.18±1.17a 5.93±6.73b 10.68±7.49c <0.0001 

1.0 12.43±7.53a 24.33±18.36a 55.10±15.49b <0.0001 

2.0 35.50±10.88a 86.16±8.37b 139.58±9.71c <0.0001 

3.0 40.93±2.11a 94.32±5.11b 161.39±1.33c <0.0001 

4.0 42.07±1.85a 101.42±5.84b 170.06±2.51c <0.0001 

5.0 43.70±2.15a 110.67±4.23b 181.19±5.06c <0.0001 

6.0 45.08±2.06a 120.00±6.13b 210.54±10.56c <0.0001 

7.0 46.42±2.48a 147.74±10.81b 217.63±43.51c <0.0001 

U
n

lo
ad

 

7.0 46.42±2.48a 147.74±10.81b 217.61±43.49c <0.0001 

6.0 40.84±2.25a 70.51±5.17a 140.11±17.20b <0.0001 

5.0 39.6±2.11a 58.24±5.25a 109.21±4.16b <0.0001 

4.0 38.76±2.12a 50.65±6.83a 95.82±11.50b <0.0001 

3.0 37.04±3.27a 43.40±6.02a 73.66±28.34b <0.0001 

2.0 29.45±12.42 16.03±5.51 29.32±23.46 0.04 

1.0 4.99±4.66 0.60±0.31 -0.73±1.09 0.60 

0.5 0.63±0.38 0.17±0.38 -1.5±.12 0.93 

a,b,c: different letters denote statistically significant difference between load forces 

(ANOVA at α = 0.05) 

    

 
Fig 8. 0.019” x 0.025” tensile testing results (mean values of all specimens) 
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Table 7. Deflection forces (N) of round wire in bracket deflection testing 

 

Extension (mm) CuAlNi CuNiTi NiTi P-Value 

L
o

ad
 4.0 1.55±.14a 6.92±.58b 8.28±.22c <0.0001 

5.0 1.60±.16a 8.08±.82b 9.21±.31b <0.0001 

6.0 1.66±.19a 9.24±1.11b 10.36±.45b <0.0001 

U
n

lo
ad

 6.0 0.46±.05a 1.02±.26b 0.84±.16b <0.0001 

5.0 0.17±.09 0.02±.04 0.06±.08 0.05 

4.0 0.30±.08 -0.01±.01 0.13±.22 <0.0001 

a,b,c: different letters denote statistically significant difference between load forces 

(ANOVA at α = 0.05) 

  

 
Fig 9. 0.018” 6 mm deflection testing results (mean values of all specimens) 
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Fig 10. Wire binding after deflection (seen in 7 NiTi and 8 CuNiTi specimens) 

 

 

 

Hysteresis 

Hysteresis, the difference between loading and unloading force output, was 

calculated by subtracting the area under the curve (AUC) of unloading forces from the 

AUC of loading forces. One-way ANOVA was used to compare mean hysteresis across 

the wires. Means and SD of hysteresis by wire are presented in Table 8 including 

notations on the statistically significant differences.  

CuAlNi showed a return force significantly closer to its displacement force 

compared to all other wires in all tests meaning CuAlNi wires had the lowest energy loss 

to hysteresis. The NiTi wires showed up to 12 times the amount of hysteresis loss 

compared to CuAlNi. In 3-point bend tests, stainless steel wires had the highest 

hysteresis, at approximately 30 times the magnitude of hysteresis loss of CuAlNi.  
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Table 8. Hysteresis results for all tests 

 

3-point bend (round) 

    

3-point bend (rectangular) 

      Wire N Mean SD 

  

Wire N Mean SD 

CuAlNi 10 0.88 0.10 

  

CuAlNi 10 2.12 0.22 

NiTi 10 3.90 0.08 

  

CuNiTi 10 7.97 0.21 

CuNiTi 10 4.56 0.09 

  

NiTi 10 11.64 0.78 

TMA 10 11.39 0.20 

  

β-Ti 10 31.96 0.84 

SS 10 27.17 0.37 

  

SS 10 63.38 0.65 

    

  

    

One-way ANOVA: Main effect for 

wire: P <0.0001 

  

One-way ANOVA: Main effect for wire: 

P <0.0001 

Tukey post-hoc tests show means are all 

significantly different at α = 0.05 

 

Tukey post-hoc tests show means are all 

significantly different at α = 0.05 

          Tensile test (round) 

    

Tensile test (rectangular) 

      Wire N Mean SD 

  

Wire N Mean SD 

CuAlNi 10 25.7 2.8 

  

CuAlNi 10 48.0 4.0 

NiTi 10 252.0 8.6 

  

CuNiTi 10 347.3 30.7 

CuNiTi 10 322.1 9.6 

  

NiTi 10 549.6 67.1 

    

  

    

One-way ANOVA: Main effect for 

wire: P <0.0001 

  

One-way ANOVA: Main effect for wire: 

P <0.0001 

Tukey post-hoc tests show means are all 

significantly different at α = 0.05 

 

Tukey post-hoc tests show means are all 

significantly different at α = 0.05. 

          6 mm Deflection (round) 

       

      Wire N Mean SD 

      CuAlNi 10 2.66 0.34 

      3M CuNiTi 10 15.63 1.69 

      NiTi 10 17.97 0.67 

                

One-way ANOVA: Main effect for 

wire: P <0.0001 
 

     Tukey post-hoc tests show means are 

all significantly different at α = 0.05.  

         

 

 

  



28 

Discussion 

This study detected statistically significant differences in deflection forces, tensile 

responsiveness, and hysteresis profiles between the archwires. The CuAlNi wire 

exhibited statistically significant lower loading and unloading forces than any other wire 

tested. Data gathered in 3-point bend testing showed an average of 1.3 N of force in 

unloading for a 0.019”x 0.025” CuAlNi wire. This force level corresponds to published 

unloading forces of 3M Unitek’s 0.016” superelastic Nitinol wire (1.2 to 2.1 N at 3 mm 

deflection). 28 Therefore, CuAlNi may be more favorable in clinical situations requiring 

predictable, light force application as a larger cross-section behaves like a much smaller 

NiTi wire.  

Of particular interest are the differences in loading and unloading forces seen 

between each of the wire types. When wires express a large stress hysteresis, forces can 

often exceed levels of patient comfort, resistance to sliding in brackets is dominated by 

binding forces between the bracket and wire, and wires may take a permanent set or 

exhibit incomplete recovery following high levels of strain. The 0.018” NiTi showed 

mean values of loading forces at 500 MPa while in unloading showed an average of 275 

MPa. Thus the hysteresis loss in this wire approximated 45%. Similarly, the 0.018” 3M 

CuNiTi wire showed an average loading force of 425 MPa while in unloading averaged 

150 MPa, a hysteresis loss of 65%. In contrast to the other wires, the 0.018” CuAlNi 

shows a nearly identical loading and unloading force with plateaus centering around 130 

to 150 MPa, which remained consistent to 10% strain. Force levels for the CuAlNi 

returned to pretest values much more predictably than with NiTi and CuNiTi wires, both 

of which displayed permanent deformation and a return to 0 MPa before the crossheads 
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returned to 0% strain. A similar response was seen with the rectangular 0.019” x 0.025” 

wires shown in Fig 6. As with the round wires, the NiTi shows higher force values in 

loading and unloading, with a return to 0% stress before the crossheads returned to their 

pretest position. Statistical analysis revealed a significant difference between the 

hysteresis profiles of all wires tested. The greater hysteresis for the NiTi wires represents 

a greater likelihood of wire fatigue. With repeated masticatory forces placed on wires 

throughout orthodontic treatment there is a cycling of loading and unloading stress 

plateaus on the wires, affecting the hysteresis and reducing force output of the wire.  

The amount of crowding can be a relatively major consideration in the selection 

of an orthodontic archwire. With increased crowding, the CuAlNi wire is more likely to 

achieve complete adaptation into the bracket slot and perform with a lighter unloading 

force than previously possible with these large archwires. Yet while there may be 

statistically significant differences in the performance of individual wires in various 

mechanical test simulations, this does not necessarily indicate that such differences will 

exist in clinical performance. In a crowded dentition, high forces may be dissipated 

through interdental contacts as well as in overcoming friction amongst the brackets, wire, 

and ligatures.29, 30, 31 

The obtained values for NiTi in the 3-point bend test at 3 mm deflection averaged 

4.5 N while in the 6 mm deflection test the forces on loading at 3 mm deflection were 7 

N. Just as is in clinical practice, friction between the wire and each of the four brackets is 

likely to have played a roll in the increased force values seen. It is likely that traditional 

3-point bend tests underestimate the forces placed on teeth in loading as the more 

clinically-oriented 6 mm bend test shows a higher magnitude of force when friction of the 
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brackets is taken into account. The opposite is true with unloading forces. With increased 

friction and binding of the archwires in the brackets, lower force values were produced 

by the wires as the 6 mm deflection was released. Yet, despite the attempt in the present 

study to design a model resembling clinical conditions, conclusions of the clinical 

performance of wires in the test must be made with caution.  

The CuAlNi wire showed significantly lower force values in deflection than all 

other wires tested. It also produced nearly horizontal loading and unloading curves 

corresponding to a more consistent force delivery than any other wire tested. The clinical 

significance of consistent force delivery could mean lighter forces for patients treated 

with more crowding and therefore larger wire deflections. Caution must be taken in 

extrapolating numerical load values directly to clinical performance, yet the CuAlNi wire 

shows more consistent performance compared to traditional superelastic archwires. The 

concept of light forces producing more physiological and less painful tooth movement 

has been a matter of debate. While this study quantified the CuAlNi wire mechanically 

and showed that it produced a significantly lower level of force than NiTi and CuNiTi, 

additional laboratory and clinical research is needed to investigate the potential 

improvement in patient comfort with lighter forces delivered from this CuAlNi. Driving 

patient comfort as a priority in materials development will help improve not only the 

experience of our patients but also the practice environment of the orthodontic clinician.   
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Conclusions 

1. According to the results of this study, CuAlNi shows a significantly lower 

modulus of elasticity compared to all other wires tested. 

2. The CuAlNi alloy provided consistently lower force values in deflection and 

tension compared to all other wires studied. 

3. The mechanical hysteresis loss of CuAlNi following deflection was significantly 

less than any other wire tested in this study. 

4. Of the superelastic archwires tested, the NiTi wire provided the highest unloading 

values for every test deflection and model design. 
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CHAPTER THREE 

EXTENDED DISCUSSION 

This study serves as an initial look into the new alloy's mechanical properties as 

they relate to orthodontics. While the study examined the wire according to ADA 

Specification Number 32, future studies are needed that more closely simulate the oral 

environment to better determine the CuAlNi wire’s clinical effectiveness. The extended 

deflection test run in this study showed a positive response from the CuAlNi wire in 

deflections of up to 6 mm over a 13.5 mm span. The extended capabilities of modern 

orthodontic archwires are more able to be shown in this test compared to frequently 

criticized and antiquated tests that have been run in the past. In future extended deflection 

tests, rather than wire indentation with a pointed fixture, a bracket could be used to grasp 

and deflect the wire. This would introduce additional friction components of multiple 

brackets as seen in a clinical setting.  

Additional insight is needed to determine the sliding friction characteristics of the 

CuAlNi alloy. Having a highly flexible wire that produces consistent low force means it 

is a wire that will likely be used to unravel significant imbrication. In order to remain 

effective, the coefficient of sliding friction between the wire and bracket must be 

minimal. Due to CuAlNi being monocrystalline, the absence of grains and grain 

boundaries would likely lead to lower friction values. The manufacturing process and 

surface polishing of the CuAlNi must be optimized to ensure a smooth external surface. 

Reduced friction may have played a role in the superior performance of the CuAlNi wire 
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which returned from the 6 mm deflection without binding. Confirmation of lower friction 

values of the CuAlNi wire compared to NiTi and CuNiTi wires will further develop the 

understanding of the capabilities of this new archwire.  

Additional testing would be beneficial to determine the effects of mastication on 

the archwire and the response to the archwire over periods of weeks to months. Repeated 

cycling of the wire through its loading and unloading plateaus would provide additional 

insight into the potential effects of mastication on the archwires. A wire that shows 

greater hysteresis is likely to show a reduction in force output after repeated bending.  In 

addition to repeated bending tests, time dependent studies that test the wire’s 

responsiveness over extended periods of time would continue to develop our 

understanding of the capabilities of monocrystalline shape memory alloys.  

Future studies are needed to fully understand the wire’s clinical effectiveness and 

potential limitations. While lab studies are helpful to gain an initial understanding of new 

products, it is the clinical trials and case reports that will further the clinician’s 

knowledge of this wire and increase the orthodontist’s repertoire when it comes to 

aligning teeth.    
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APPENDIX A 

TUKEY POST-HOC ANALYSIS 
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APPENDIX B 

FIVE WIRE TYPES IN 3-POINT BEND TEST 
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