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ABSTRACT OF THE DISSERTATION 

Survivin: Regulation by YY1 and Role in Pancreatic Cancer Combination Therapy 

by 

Nicholas R. Galloway 

Doctor of Philosophy, Graduate Program in Biochemistry 
Loma Linda University, March 2014 

Dr. Nathan Wall, Chairperson 
 

Despite significant clinical and basic science advancements, cancer remains a 

devastating disease that affects people of all ages, races, and background.  Survivin, the 

fourth most common transcript found in cancer cells, is a protein that is thought to be 

involved in the enhanced proliferation, survival, and metastasis of cancer cells.  

Therefore understanding how this gene is regulated is potentially of vital importance to 

improving cancer management and therapy.   Our work has identified a novel 

transcriptional regulator of survivin called Yin Yang 1 (YY1).  YY1 is a transcription 

factor that has been observed to activate some gene promoters and repress others, and it is 

gaining increasing interest as a target of cancer therapy.  Our work shows for the first 

time that YY1 is a repressor of survivin transcription and can do so by physically 

interacting with the survivin promoter.  Furthermore, YY1 appears to contribute to basal 

survivin transcriptional activity, indicating that disruption of its binding may in part 

contribute to survivin overexpression after cellular stress events including chemo- and 

radiotherapy.  It is also important to use gained mechanistic understandings of cancer 

initiation and progression to design logical new approaches to cancer therapy. Pancreatic 

cancer is one of the most deadly forms of cancer known, and survivin expression has 

been observed to be an important factor in pancreatic cancer aggressiveness or resistance 



 xii 

to therapy.  Therefore survivin downregulation may represent an important means of 

gaining improved treatment efficacy in pancreatic cancer.  Using combined gemcitabine 

and proton radiation therapy, we show that downregulation of survivin and its family 

member X-linked IAP may lead improved cell death following treatment, particularly 

when gemcitabine therapy is instituted prior to proton radiotherapy.  
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CHAPTER ONE 

INTRODUCTION 

 
Cancer Facts and Figures 

Cancer is one of the most devastating diseases in the world, and one that has 

touched the lives of nearly every family and individual in the United States.  The 

National Cancer Institute estimates that in January 2012 there were an estimated 13.7 

million individuals living in the United States that had a personal history of cancer.  The 

projected number of new cases of cancer in 2013 is 1,660,290.  It is the second most 

common cause of death, accounting for approximately 1 in 4 deaths in the United States.  

Furthermore, 580,350 individuals are projected to die as a result of cancer in 2013.  

Figure 1 illustrates the death rates for males (A) and females (B) from 1930-2009.  

Fortunately, progress has been made in detection and treatment of cancer, resulting in an 

increase in overall 5-year cancer survival of 68% between 2001-2008 up from 49% 

between 1975-1977.   

Cancer also imposes an enormous financial burden on the United States.  The 

National Institutes of Health estimate the overall cost of all cancers in 2008 to be $201.5 

billion: $77.4 billion for direct medical costs and $124 billion for indirect costs related to 

premature death and lost productivity1. 
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Figure 1.  Age-adjusted cancer death rates, 1930-2009.  Upper panel shows values for 
males, lower panel shows values for females.  Adapted from American Cancer Society 
Cancer Facts and Figures 2013 1. 
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The leading cause of cancer death in 2013 was lung and bronchus cancer for both 

men and women.  However, prostate and breast cancer continue to have the highest 

incidence in men and women, respectively.   Pancreatic cancer, a disease of particular 

importance to the chapter 3 of this dissertation, has presented a particularly large 

challenge to cancer biologists and oncologists, as it continues to be one of the most lethal 

cancers.  Pancreatic cancer will cause an estimated 38,460 deaths in 2013, occuring 

almost equally in men and women (Figure 2).  From 2001-2007, the 5 year survival rate 

for pancreatic cancer (all stages) was 6%.  Since 2004, the overall incidence of pancreatic 

cancer has been increasing by 1.5% per year.    
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Figure 2.  Leading new cancer cases and deaths-2013.  The estimated number of new 
cases for males vs. females is shown of the left, and esimates for cancer deaths in males 
vs. females is shown on the right.  Adapted from American Cancer Society Cancer Facts 
and Figures 2013 1. 
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The figures shown above illustrate that some of the advances made in clinical and 

basic science are indeed making an impact.  However, they simultaneously depict a 

disease in which scientists may be winning battles, but are clearly still losing the war.  

This dissertation will explain work that has been done regarding the regulation of a 

dysregulated cancer gene called survivin that may very well be a key to moving past 

incremental, small victories in the fight against cancer onto large changes in how cancer 

of all types is treated, and hopefully one day eradicated.  It will also present work that 

was aimed to take advantage of the James M. Slater Proton Treatment and Research 

Center facility at Loma Linda University Medical Center by providing evidence for an 

alternative and potentially more efficacious approach to pancreatic cancer treatment. 

 

The Inhibitor of Apoptosis Survivin 

Survivin controls diverse cellular functions including surveillance checkpoints, 

suppression of cell death, the regulation of mitosis, and the adaptation to unfavorable 

environments 2-5.  Its suppression of cell death activities and the baculovirus IAP repeat 

(BIR) domain characterize it as a member of the inhibitor of apoptosis (IAP) family of 

proteins 6. However, its lack of a COOH-terminal RING finger domain and the caspase 

recruitment domain 7 make it structurally unique among the mammalian IAPs.  The 

overall multifaceted functionality of survivin is still being intensely scrutinized, though it 

appears that protein compartmentalization plays an important role.  Survivin has been 

shown to colocalize in the mitochondria where it abolishes tumor cell apoptosis and 

promotes tumorigenesis in immunocompromised animals 8.  It, therefore, may possess a 

role in apoptosis similar to the pro-apoptotic Bcl-2 family of proteins.  Survivin has also 

been found in the nucleus and cytosol where it has roles in mitosis regulation and 
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apoptosis inhibition, respectively 9.  Survivin has been observed to be expressed in most 

common human cancers and, while present during embryonic and fetal development, 

survivin is undetectable in a variety of adult tissues 10.  Its aberrant, high protein 

expression in cancer cells and concomitantly low expression in most normal tissues 

makes survivin an important anticancer target 11.   

The accumulated data from the characterization of survivin expression in human 

cancer tissues reveals an overwhelming consistent observation that the expression of 

survivin is enhanced in various human cancers in comparison with the adjacent normal 

tissue.  Multiple therapeutic strategies have been successfully investigated including the 

molecular antagonists such as antisense oligos, RNA inhibition, dominant negative 

mutants, survivin-specific cytolytic T cells, a nonphosphorylatable survivin mutant 

Thr34�Ala (T34A), and, most recently, binding interface mimetics 12-19.  The observation 

that a pool of survivin is localized extracellularly and is linked to erosive joint disease in 

a significant fraction of rheumatoid arthritis patients, and that an autoimmune response 

(survivin-targeting antibodies) to survivin correlates with protection from joint disease 

20,21 provides evidence that anti-survivin therapy may be possible in other pathologies 

such as cancer.  Work in our laboratory is currently defining the role of exosomal 

survivin in regulation of the tumor microenvironment 22. 

While many different therapeutic approaches have been employed, few have been 

aimed at regulation of survivin transcription.  This is owed in large part to the complexity 

of mechanisms involved in epigenetic, transcriptional, and post-transcriptional gene 

regulation.  It will likely require uncovering of all or most aspects of the machinery 
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involved in aberrant gene regulation to reach the goal of developing personalized medical 

approaches to treating unique cancer types. 

 
 

Survivin Transcription 

Survivin transcription is critical in embryogenesis, but is normally turned off in 

adult life 23.  However, survivin can be transcriptionally upregulated in adult life and 

often results in disease, particularly cancer.  Survivin is the fourth-most frequently 

overexpressed transcript in most human cancers 24, and the specificity of the survivin 

promoter for regulation in cancerous tissue has been demonstrated numerous times.  It is 

currently being investigated as a means of driving expression of therapeutic genes 25-27 

because its high degree of specificity to malignant cells which could decrease off target 

expression  of  a  suicide  gene  or  other  forms  of  gene  therapy.    Survivin’s  robust  and  

specific upregulation in cancer implies that the transcription factors involved in survivin 

transcription must be present and themselves upregulated in cancerous tissue.  Table 1 

summarizes the role of several key transcription factors in survivin transcriptional 

regulation. 
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Table 1: Summary of Key Transcriptional Regulators of 
Survivin (modified from Zhang et al., 2006. 

Pathway Key info and current 
status 

NF-KB Regulates survivin, but 
mechanism unclear 

p53 Transcriptionally 
downregulates survivin 

APC/Beta catenin/TCF-4 APC dowregulates survivin 
by inhibiting B-
catenin/TCF-4 

HIF-1D Transcriptionally 
upregulates survivin 

Sp1-DNA Interference of Sp1 
interaction-survivin 
interaction downregulates 
survivin 

 

 



9 

Activators of Survivin Transcription 

Survivin transcription is induced in part by the presence of cellular stress such as 

that induced by chemotherapeutic agents, radiotherapy, and aspects of the tumor 

microenvironment.  One such aspect of the tumor microenvironment that is common to 

most solid tumors is hypoxia and subsequent induction of neovascularization via VEGF 

and HIF-1D activation.  This has lead to investigation a possible relationship between the 

hypoxia-responsive gene HIF-1D and survivin.  A study from Wei et al. 28 found a strong 

correlation between HIF-1D and survivin expression in immunohistochemically analyzed 

pancreatic cancer samples.  Follow up studies found that use of antisense HIF-1D in 

pancreatic cancer BxPc-3 cells inhibited survivin expression and induced apoptosis in 

cells 29.  Peng et al. found an association between Epidermal Growth Factor (EGF) 

overexpression and survivin overexpression 30.  This EGF-related upregulation was 

mediated by HIF-1D transcriptional activation of the survivin gene, even under normoxic 

conditions.  Bai et al. more recently identified a strong relationship between survivin 

overexpression and HIF-1D overexpression in cervical cancer 31.  They show HIF-1D-

responsive element independent upregulation of survivin reporter constructs, specifically 

in the first 158 bp of the survivin promoter.  Indeed HIF-1D-mediated upregulation of 

survivin has now been observed in many cancer types including pancreatic, prostate 32, 

cervical 31, non-small cell lung 33, laryngeal 34, and colorectal cancer 35.  Efforts are 

underway to evaluate the effectiveness of disruption of HIF-1D expression as a means to 

sensitize cells to therapeutic modalities. 

It is now known that basal survivin transcription requires Sp1 (more will be said 

about Sp1 later in this dissertation) or KLF5 36,37, but there are numerous other 



10 

transcription factors and coactivators that are thought to drive high levels of survivin 

transcription.  NF-κB is one of these transcription factors.  It is a complex of proteins that 

are involved in inflammation, increased cell proliferation, metastasis, and inhibition of 

apoptosis.  One of the mechanisms by which it contributes to these phenotypes is by 

transcriptional activation of survivin 38-40.  Members of the signal transducers and 

activators of transcription (STAT) family are also transcription factors capable of binding 

and activating the survivin promoter 41.   

 

Downregulation of Survivin Transcription 

Several key proteins are also able to downregulate survivin transcription.  In 

addition  to  p53’s  critical  involvement  in  cell  cycle  checkpoint  regulation,  it  also  prevents  

the transcription of oncogenes such as survivin.  Retinoblastoma (Rb) and E2F have 

similar effects on survivin transcription 42.  However, these genes are often silenced, 

mutated, and/or nonfunctional in patients with cancer.  Therefore identification of other 

transcription factors that may negatively regulate survivin is of importance to cancer 

therapy.  Egr-1, a transcription factor that shares many similarities with YY1, has 

previously been noted to be involved in cell cycle, death, and differentiation.  Much like 

YY1, Egr-1 can either act as an activator or repressor depending on the promoter in 

question and the available coregulators with which it can interact.  Egr-1 has a consensus 

binding site that shares some overlap with the Sp1 transcription factor 43,44.  Interestingly, 

YY1 can also be repressive or activating depending on a number of factors, and it also 

shares some overlap with Sp1 binding sites for some of its targets 45.  This dissertation 

will show that the transcription factor YY1 may be involved in direct transcriptional 

repression of survivin, which may reveal a novel means of studying inhibition of survivin 
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transcription for therapeutic treatments. 

Natural agents are gaining increasing interest as a means of distrupting oncogene 

transcription, including survivin.  YM155, a small molecule inhibitor of survivin, has 

recently been investigated in Phase II clinical trials for a variety of cancers including 

diffuse large B-cell lymphoma 46, prostate cancer 47, melanoma 48, and non-small cell 

lung cancer 49 due to its previously observed ability to induce apoptosis and reduce tumor 

bulk in various in vitro and in vivo models 50.  This induction of cell death is thought to 

be due, at least in part, to its ability to decrease survivin transcription, but the mechanism 

by which it does this is still under investigation.  Nakamura et al. 51 recently found a role 

for interleukin enhancer-binding factor 3 (ILF3/NF110) in this observed inhibition of 

survivin expression by YM155.  They also found that in luciferase reporter experiments,  

ILF3-dependent upregulation of reporter activity could be attenuated with YM155, 

suggesting that ILF3/NF110 is a physiological target of YM155.  Currently, clinical trials 

are showing promise for YM155, particularly as a combination therapy to sensitize 

tumors to existing therapies.  Other natural agents are also showing potential for 

disruption of survivin transcriptional activity.  Specificity proteins Sp1, Sp3, and Sp4 

have long been known to be important transcription factors involved in the 

overexpression of survivin in human cancer.  However, little progress has been made to 

exploit this relationship for gains in therapeutic approaches to cancer.  Recently, 

curcumin was identified as a natural agent that inhibits the ability of Sp1, Sp3, and Sp4 to 

activate survivin transcription 52. It appears to do so by generating reactive oxygen 

species that upregulate repressors of Sp proteins ZBTB10 and ZBTB4, and 

downregulation of the microRNAs mir-20a, mir-27a, and mir-17-5p, that are regulators 
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of these Sp repressors.  Interestingly, curcumin is also showing promise as a sensitizing 

agent to ionizing radiation in Burkitt lymphoma and non-Hodgkin lymphoma 53,54. The 

natural agents Resveratrol and Quercetin in combination (RQ) have also shown a similar 

downregulation of Sp proteins and their targets, including survivin 55.  Interestingly, the 

authors  cite  RQ’s  antioxidant  capabilities  (as  opposed  to  curcumin’s  generation  of  

reactive oxygen species) as the potential reason for this observed repression of Sp protein 

and their transcriptional targets such as survivin.  These data further support the need for 

continued efforts to develop therapeutic approaches to cancer that include disruption of 

survivin transcriptional activation. 

 

The Multifunctional Transcriptional Factor Yin Yang-1 

Yin Yang-1 (YY1) is a 65-kDa ubiquitous multifunction transcription factor that 

is a member of the GLI-Kruppel family of nuclear proteins 56-58.  This family of proteins 

plays roles in development and exerts much of its function through cell cycle regulation.   

YY1 is a relatively unique transcription factor in that it can act by repressing some genes 

and activate others by binding to the specific DNA  sequence  5’-CGCCATNTT-3’  57,59.  

This phenomenon was noted first when it was shown that YY1, in the presence of the 

adenovirus-derived protein called E1A, represses the AAV P5 promoter 60.  When E1A is 

not present, YY1 then activates transcription 61. 

Reports suggest that YY1 is required for cell survival, as complete ablation of 

YY1 results in lethality 62.  Furthermore, array data suggests that YY1 has roles in cell 

cycle, cell adhesion, and other markers of disease aggressiveness 63,64.  As is true for 

survivin, YY1 is increasingly found to be involved in cell death regulation via NF-κB.  

Within the serum amyloid A gene, there is a binding site for NF-κB that was found to 
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overlap with a YY1 binding motif.  Lu et al. showed that YY1 binding was able to 

abrogate NF-κB binding and transcriptional activity.  A similar binding site overlap was 

observed in a cytomegalovirus promoter 65.  This offers some indirect evidence of YY1 

involvement in cell death, but more direct evidence is also emerging.  Evidence suggests 

that YY1 transcriptionally represses Fas, which in turn means that YY1 is a significant 

factor in resistance to Fas-induced apoptosis 66.  YY1 also appears to have a direct role in 

resistance to tumor necrosis factor-related apoptosis inducing ligand (TRAIL).  Recent 

findings show a direct role for YY1 negatively regulating transcription of death receptor 

5 (DR5), meaning YY1 is also a resistance factor for TRAIL-induced apoptosis 67. 

 

YY1’s  Role  in  Human Cancer 

 YY1 is gaining increasing interest as a cancer-related transcription factor.  

The oncogenic role of YY1 has been reviewed numerous times 68-70, yet many questions 

remain.  Consistent with its variable role as a transcription factor depending on a 

multitude of cellular and molecular conditions, it appears to have a variable role in cancer 

depending  on  what  type  of  cancer  is  being  studied.    Intriguingly,  YY1’s  role in some 

cancers appears to promote longer patient survival, whereas in others it correlates with 

poorer outcomes and shorter survival.  Table 2 summarizes current findings regarding 

YY1’s  role  in  various  cancer  types.    A  computational  analysis  of  YY1  expression in 

numerous data sets that looked at a broad array of cancer types indicates a relative 

increase in YY1 expression compared to expression in normal tissue.  Seligson et al. have 

shown that YY1 protein levels are higher in metastatic prostate cancer tissue than in 

primary tumor.  However, they also found a correlation with lower YY1 protein levels 

and survival, suggesting that lower YY1 levels may lend a survival advantage to 
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metastatic cells 71.  Further supporting a role for YY1 in prostate cancer formation, Deng 

et al. found that in prostate cancer YY1 interacts with androgen receptor (AR) to promote 

PSA transcription 72.   

 A similar association of YY1 with disease progression has been noted in 

intraepithelial neoplasms and cervical cancer.  YY1 expression in high-grade squamous 

intraepithelial lesions is higher than in low-grade squamous intraepithelial lesions, a 

finding also consistent with the observation that high expression correlates with the 

presence of Human Papilloma Virus infection 73. 

There are also many reports of a direct role for YY1 in aberrant cell cycle in 

cancer.  Numerous studies show that YY1 is involved in tumorigenesis via interactions 

with the tumor suppressor p53.  The general mechanism it appears to do this by is 

interference of p53-dependent transcription of its target genes by competing for binding 

to the ACAT sequence of promoters 74.  Also, YY1 has been shown to be essential for 

optimal interaction of MDM-2 and p53, which is required for MDM-2 ubiquitination of 

p53 75.  The importance of this finding cannot be overstated, as an estimated 50% of all 

tumors have p53-inactivating mutations 76. 
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Table  2:     YY1  expression   in  human  cancers   and   it’s   clinical   relevance   (modified   from  
Castellano et al. 68). 

Tumor Type Methods Clinical relevance of 
YY1 Overexpression Reference 

Prostate cancer IHC 

Positive correlation 
with metastasis and 
inverse relationship 
with poor outcome 

71 

Ovarian cancer Microarray Positive correlation 
with long-term survival 

77 

Ovarian c`ancer 
Microarray, 
IHC, RT-

PCR 

Positive correlation 
with survival and 
response to taxanes 

78 

Cervical 
neoplasms RT-PCR 

Positive correlation 
with disease 
progression 

73 

Osteosarcoma RT-PCR, 
IHC, WB 

Positive correlation 
with more malignant 
phenotype 

79 

Myeloid 
Leukemia RT-PCR Positive correlation 

with t(8;21) 
80 

Non-Hodgkin 
Lymphoma RT-PCR Positive correlation 

with poor outcome 
81 

Follicular 
Lymphoma IHC Positive correlation 

with length of survival 
82 
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Pancreatic Cancer: Toward Improved Combination Therapy 

Pancreatic cancer is the fourth leading cause of cancer-related death (refer to 

Figure 2).  Early detection of localized disease with subsequent surgical resection offers 

virtually the only hope of long-term survival to pancreatic cancer patients.   

Unfortunately, this represents only an estimated 10-20% of all patients.  Because 

chemotherapy has offered very minimal improvements in survival time, efforts to use 

radiation in combination have been explored and been met with some success 83.  Doses 

for radiation therapy are limited, however, by the proximity of other structures that are 

subject to bystander toxicity such as the liver, kidneys, stomach, spinal cord, and small 

intestines.  Proton radiotherapy is a powerful means of treating cancer as it offers the 

advantage of allowing delivery of a given radiation dose at the depth of a tumor, but not 

beyond.  Thus, non-tumor tissue beyond the tumor is spared from radiation and the long-

term complications of such exposure.  If off-target damage can be reduced, the dose of 

radiation used on the tumor can be increased to improve efficacy of the treatment.  

Unfortunately, tumors can develop radioresistance due to changes in molecular 

determinants of cell death.  

Reports suggest that survivin is one factor involved in imparting radioresistance 

to tumors.  In a study of pancreatic duct cell carcinoma (PDC) vs. precancerous 

intraductal papillary-mucinous tumor (IPMT), Satoh et al. found high survivin expression 

in PDC as opposed to very low expression in IPMT, suggesting that survivin is involved 

in the progression to a malignant phenotype in pancreatic cancer 84.   A second facet of 

this dissertation is exploration of combined therapy with gemcitabine and proton therapy.  

Currently, proton therapy is used mostly for prostate, brain, and head and neck cancer. 

This is largely due to ease of targeting these structures.  However, efforts are underway to 
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evaluate the effectiveness of proton therapy for pancreatic cancer.  A Phase II clinical 

trial at Loma Linda University Medical Center is currently exploring the role of proton 

therapy in combination with different chemotherapy regimens in locally advanced 

pancreatic cancer treatment.  In addition to advancing the understanding of potential 

advantages of proton therapy in pancreatic cancer cell death, the work presented in 

Chapter 3 presents evidence that survivin and its IAP family member X-linked IAP 

(XIAP) may be key molecular determinants of apoptosis and radioresistance in pancreatic 

cancer.  If a viable means of modulating survivin and XIAP levels in a clinical setting is 

discovered, this may offer a means of drastically improving response to therapy.   

 

Design of Studies 

The studies presented in the chapters to follow were designed to advance the 

understanding of both basic science aspects of cancer biology and provide data to 

improve the therapeutic approach to pancreatic cancer.  Most effective cancer therapies 

are based on a sound rationale that was developed from basic science research to discover 

molecular and cellular behavior after manipulations, whether they are genetic, medicinal, 

or immunological.  Chapter 2 of this dissertation details a study of transcriptional 

regulation of survivin in attempt to better understand factors involved in survivin 

overexpression in cancer.   To do this we used a luciferase reporter system that allows 

one to study promoter activity in the presence of modifying factors including cellular 

stress and transcription factor overexpression.  Furthermore, we used electrophoretic 

mobility shift assays (EMSA) to determine whether or not YY1 was capable of binding 

directly to the survivin promoter.  This is an important step to try to establish how a 
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transcription factor is affecting target gene expression because it can do so by many 

means aside from direct promoter binding.   

In Chapter 3, the goal was to discover if different doses and timing of a 

combination of gemcitabine and proton therapy could sensitize pancreatic cancer cell to 

enhanced cell death, and to see if this enhanced cell death correlated with survivin 

expression.  To study cell death after each treatment combination, we used propidium 

iodide flow cytometry and western blots to investigate the concomitant survivin 

expression.  We also chose to compare a radiosensitive cell line (MiaPaCa-2) with a 

radioresistant cell line (Panc-1) to better define the usefulness of proton therapy in our 

treatment schemes.   

These studies, done in cell culture models, were designed to establish preclinical 

rationales for later work to be done in animal models, or in the case of Chapter 3, 

patients.  As previously mentioned, efforts to develop therapeutic approaches based on 

transcription factor modulation are already underway, and clinical trials using proton 

therapy for pancreatic cancer are underway as well, including a Phase II clinical trial at 

Loma Linda University Medical Center. 

 

Importance of Studies 

 The advent of molecular biology has given scientists powerful tools to understand 

the mechanisms and architecture involved in cell structure and function, and has helped 

reveal the true complexity of biological systems.  A key feature of this complexity is 

redundancy, a concept that has plagued therapeutic approaches to cancer.  Molecular 

biology has revealed that virtually no cellular processes are without pathway redundancy, 

and cancer cells have perhaps even more redundancy than normal cells to better equip 
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them to evade immune response and death.  Gene expression, such as that of survivin, is 

affected by redundant epigenetic, transcriptional, and post-transcriptional regulation 

factors.  In order to most effectively exploit therapy directed against a target such as 

survivin, it is important to understand the complete picture of how the survivin gene 

works.  This dissertation will detail what we believe is a novel regulator of survivin 

transcription, YY1.  Specifically, YY1 may be a negative regulator of survivin and may 

be the focus of therapeutic approaches to cancer therapy in the near future. 

 In addition to obtaining a more complete understanding of molecular mechanims 

involved in oncogenesis and tumor suppression, it is critical to continue to design new 

therapeutic approaches based on sound reasoning arrived at through basic science 

research.  This dissertation also details the use of combined chemotherapy and proton 

radiation therapy as a means to treating pancreatic cancer.  Since our work began, clinical 

trials utilizing combined gemcitabine and proton therapy have been conducted in Japan, 

and are showing great promise 85.  One of the key limiting factors in radiation treatment 

is organ-related or systemic toxicity.  Proton therapy is an extremely effective means of 

delivery radiation while simultaneously sparing surrounding non-malignant tissue 

compared to standard gamma or x-ray radiation 86,87.  Currently, proton therapy is not 

used as a means of treating pancreatic cancer at Loma Linda Medical Center, but the 

work presented in Chapter 3 provides evidence that may stimulate more thought as to 

whether or not that should change. 
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Abstract 

Survivin is a member of the Inhibitor of Apoptosis (IAP) family of proteins, and 

is highly expressed in all cancers but absent in most non-proliferative normal tissue.  

Expression level correlates with chemo- and radioresistance, as well as poor prognosis in 

cancer patients.  The mechanisms for upregulation of survivin in cells undergoing stress 

associated with tumor development and the tumor microenvironment are not well 

understood.  The putative stress response transcription factors HIF-1D and Yin Yang 1 

(YY1) were hypothesized to contribute to the upregulation of Survivin in tumor cells.  

Examination  of  the  5’  flanking  region  of  human  survivin gene revealed the presence of 

multiple putative stress activated transcription factor binding domains that have 

previously been shown to be associated with HIF-1D and YY1.  In order to study basal 

regulation with luciferase reporter assays, U2OS cells were transfected with a variety of 

constructs of the survivin promoter.  As expected, cells overexpressing HIF-1D showed a 

2-3 fold transactivation of all promoter constructs tested.  Surprisingly, when YY1 is 

overexpressed in this survivin promoter reporter system, luciferase expression was 

repressed 30-40 fold.  YY1 involvement in survivin promoter repression was confirmed 

using siRNA directed against YY1.  These studies showed that knockdown of YY1 

releases the survivin promoter from the observed repression and leads to a 3-5 fold 

increase in promoter activity above basal levels.  A U2OS cell line containing a stable 

YY1 Tet-off system was used to determine whether a temporal increase in YY1 

expression affects Survivin protein levels.  A low to moderate decrease in Survivin 

protein was observed 24 hrs and 48 hrs after Tet removal. Studies also confirmed that 

YY1 is capable of directly binding to the survivin promoter.  Collectively, these findings 
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identify novel basal transcriptional requirements of survivin gene expression.  While 

HIF-1D may be in part responsible for the increased expression of survivin in tumor 

tissue, YY1 may also be induced under stressful conditions to negatively regulate 

survivin, suggesting that it is the balance of these transcription factors, and likely others, 

that may play an important role in the development of cancer and resistance to its 

treatment. 

 

Introduction 

Survivin, a unique mammalian inhibitor of apoptosis (IAP) protein, controls stress 

from the microenvironment through diverse functions within the cell including 

surveillance checkpoints, suppression of cell death, regulation of mitosis, and adaptation 

to unfavorable environments 2-4.  Unlike all other IAP family members, survivin is unique 

in that it has important regulatory roles in both apoptosis suppression and cell cycle 

progression regulation 88.  Survivin has been observed expressed in most common human 

cancers and present during embryonic and fetal development 10.  Its aberrant, high protein 

expression in cancer cells and concomitantly low expression in most normal tissues 

makes survivin an important anticancer target 11.  Strategies have been successfully 

investigated against survivin, including molecular antagonists such as antisense oligos, 

RNA inhibition, ribozymes, dominant negative mutants, survivin-specific cytolytic T 

cells, a nonphosphorylatable survivin mutant Thr34�Ala (T34A), triplex DNA formation 

and most recently, binding interface mimetics 12-19,89-92. 

Epigenetic, genetic and post-translational mechanisms for survivin gene 

regulation have been described in many malignant cell types 42 with various transcription 
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factors including Stat3 41, HIF-1α  30, Rb-E2F1 93, Dec1 94, Sp1 36, c-myc 95 and KLF5 37 

affecting its transcriptional upregulation.  In addition, the tumor suppressor p53 and Rb-

E2F2 have been shown to repress survivin transcription by direct binding to the survivin 

promoter in a lung adenocarcinoma cell line 96 and in normal human melanocytes 42.  

Survivin’s promoter has been recorded to be differentially methylated in ovarian cancers 

as compared to normal ovarian tissues.  An interesting polymorphism has also been 

described at a CDE/CHR repressor element in the survivin promoter that correlates with 

increased survivin mRNA and protein in cancer cell lines and not in normal cell line 

controls 97. 

The transcription factor YY1 is known to have a fundamental role in normal 

biologic processes such as embryogenesis, differentiation, replication, and cellular 

proliferation 61.  YY1 exerts its effects on genes involved in these processes via its ability 

to initiate, activate, or repress transcription depending upon the context or recruited 

cofactors in which it binds 98,99.  One such family of cofactors are the histone 

deacetylases which have been shown to bind YY1 and repress transcription when 

targeted to promoters 100.  YY1 has been shown to interact with p300, PCAF and CBP, all 

which posses the histone acetyltransferase (HAT) activity 100.  YY1 may thus activate 

transcription by its recruitment of HAT proteins and repress trancription by recruiting 

HDACs. 

Poor oxygenation (hypoxia), owing to an inadequate blood supply, is a common 

feature of most solid human tumors and is associated with increased malignancy, 

resistance to therapy and distant metastasis 101.  Hypoxia inducible factor-1α  (HIF-1α),  a  

member of basic helix-loop-helix-PAS protein family 102,103, is usually increased under 



24 

hypoxic conditions, and can activate transcription of many genes that are critical for 

cellular function under hypoxic conditions 102. Previous studies have found that down-

regulation of HIF-1α  could  significantly  decrease  the  levels  of  survivin  expression  in  

BxPc-3 pancreatic cancer cells 29 and breast cancer cells 30.  HIF-1α  was  also  

demonstrated to directly bind to the survivin promoter, which strongly suggests that 

survivin gene expression is indeed mediated by HIF-1α  under  normoxic  conditions  30. 

In the present study, we examined the transcriptional affect of YY1 and HIF-

1D�on survivin in an osteosarcoma cell line derived from human bone osteosarcoma 

(U2OS). We found that when YY1 and HIF-1D were overexpressed in U2OS cells, 

survivin mRNA and protein were repressed by YY1 and induced by HIF-1D.  By 

analyzing the survivin promoter activity, we further found that YY1 was a transcriptional 

repressor of the survivin gene while HIF-1α  was a transcriptional activator.  We also 

show, for the first time, that YY1 is capable of binding directly to the survivin core 

promoter and thus is acting as a transcription factor rather than an corepressor.   

 

Results 

Identification of Survivin Promoter Sites Involved in Transcriptional 
Regulation by HIF-1D and YY1 

  HIF-1D has previously been shown to be a transcriptional regulator of survivin 28,30,31. 

To determine possible bindings sites for YY1, using a computer-based approach the 

survivin promoter was scanned for putative HIF-1D and YY1 binding sites using the 

online tool TFSearch (www.cbrc.jp/research/db/TFSEARCH.html) and previously 

published consensus sequences 104.  Figure 1 shows the locations of all identified HIF-1D 

and YY1 consensus sites in the first 6280 bp of the survivin promoter.  Using Survivin 
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promoter nested deletions in a luciferase reporter system (previously described by Li and 

Altieri 105), the ability of YY1 and HIF-1 to activate or repress survivin promoter activity 

was tested (Fig 2. A).  The survivin promoter nested deletions were utilized to assist in 

identification of regions of the promoter that are essential to regulation of the survivin 

promoter by each transcription factor tested.  Therefore constructs ranging from 230 bp 

upstream of the surviving start site up to 6280 bp upstream of the start site were utilized. 

When HIF-1D was overexpressed in U2OS cells, an induction of 2-3 fold was seen in all 

constructs tested except +230 bp and +6280 bp.  However, when YY1 was 

overexpressed, contrary to our initial hypothesis, there was a 30-40 fold repression of 

survivin promoter activity in all constructs tested.  To further examine these findings, we 

evaluated endogenous survivin transcript levels after overexpression of HIF-1D and YY1 

in U2OS cells (Fig. 2B).  The results were consistent with survivin transcriptional 

upregulation by HIF-1D as seen in the previous reporter experiments, and downregulation 

of survivin after YY1 overexpression.   
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Figure 1.   Proximal survivin promoter schematic.  Using previously published putative 
DNA binding sites for YY1, HIF-1, and TFSearch, the survivin promoter was scanned for 
the presence of each of these putative binding sites.  Analysis revealed the presence of 
multiple putative YY1 binding sites, noted by bolded segments.  Similarly, analysis of the 
survivin promoter revealed several putative HIF-1 binding sites (noted as the boxed 
segments).  For reference, putative SP1 sites are also denoted as underlined segments. 
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Figure 2.  Effect of HIF-1 and YY1 overexpression on survivin  promoter activity and 
transcript levels.  (A) Luciferase reporter assays were performed using survivin promoter 
constructs in the pGL3Basic vector ranging in length from +6280 bp to +230 bp.  U2OS 
cells were transiently cotransfected with survivin construct DNA of the indicated length, 
and either YY1, HIF-1, or their respective empty vector for baseline promoter activity.  
Controls indicate relative values of expression when empty pGL3 was contranfected with 
empty transcription factor expression vector (Control 1) or empty pGL3 contransfection 
with the indicated transcription factor (Control 2).  Error bars represent the standard 
deviation of duplicate luminescence measurement.  Results are representative of repeat 
experiments.  (B) RT-PCR analysis of survivin expression following overexpression of 
YY1 and HIF-1. A (-) indicates that cells were transfected with the corresponding empty 
vector for each transcription factor. Beta actin is shown for reference as a loading control. 
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siRNA-mediated Knockdown of YY1 

Due to the unexpected and robust findings for YY1, it was chosen for further 

studies.  To provide further evidence for the ability of YY1 to affect basal survivin 

promoter activity, YY1 knockdown was performed (Fig. 3 A and B).  Because previous 

experiments showed survivin promoter activity repression across all constructs tested, 

pLuc1430, 393, and 281 were chosen for this experiment.  In U2OS (Fig. 3A) and Panc-1 

(Fig. 3B) cells alike, siRNA knockdown of YY1 relieved the survivin promoter of basal 

promoter activity repression, indicated by an increased in luciferase reporter activity of 

approximately 3-4 fold in each construct tested.  The overexpression of YY1 again 

repressed promoter activity to nearly undetectable levels, a finding consistent with 

previously described experiments.   
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Figure 3.  YY1 siRNA relieves the survivin promoter from transcriptional repression.  
Luciferase reporter assays were performed after YY1 overexpression and siRNA 
knockdown in (A) U2OS and (B) Panc-1 cells.  Three survivin promoter reporter 
constructs were tested (pluc1430, pLuc 393, and pLuc 281).  Relative expression 
indicates promoter activity relative to luciferase activity in the presence of empty pGL3 
vector and background pRL-tk activity.  Error bars represent the standard deviation of 
duplicate luminence measurements.  Results are representative of repeated experiments.   
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Protein Expression of Survivin is Modulated by YY1 Overexpression 

To investigate whether YY1 expression can affect survivin expression at the 

protein level, Western blot analysis was done using a U2OS YY1 tet-off cell line 

(previously described by Sui et al. 75).  Twenty-four hours after tet removal, a significant 

YY1 overexpression was seen (Figure 4).  Survivin protein levels remained unchanged at 

24 hours.  However, after 48 hours of incubation in tet-free media, a modest reduction in 

Survivin protein expression was seen. 

 

Site-directed Mutagenesis of Putative YY1 Bindings Sites in the 
Survivin Promoter 

Repression of survivin promoter activity in our luciferase reporter system was 

seen in all constructs tested, including the shortest construct containing 230 bp of the 

promoter, which has previously been shown to be the core promoter for survivin.  Fig. 1 

illustrates two putative YY1 binding sites within the first 230 bp of the survivin 

promoter, and we therefore wanted to investigate the involvement of these two sites as 

key areas involved in repression of basal survivin transcription by YY1.  Site-directed 

mutagenesis was employed to define the role of these two sites in survivin transcription.  

Fig. 5A illustrates the mutation of each CAT region of the putative YY1 sites to GGG.  

This region was chosen for mutation based on previous studies indicating that the core 

sequence preferred by YY1 is CCAT or ACAT 104.  When both putative YY1 binding 

sites were mutated, neither overexpression or knockdown of YY1 are able to alter the 

basal survivin promoter activity (Fig. 5B).  Furthermore, the basal survivin promoter 

activity (pcDNA empty vector only) was increased relative to non-mutated promoter 
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activity.  These data support a role for these putative YY1 binding sites in basal survivin 

transcriptional activity. 
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Figure 4.  Survivin expression decreases after 48 hours of YY1 overexpression.  Western 
blot analysis of survivin expression after YY1 overexpressionin via tet-off U2OS cells 
was analyzed.  A)  U2OS cells that stably express a YY1 overexpression vector under the 
control of a tetracycline responsive promoter were cultured to 70-80% confluency in the 
presence of 0.1 mg doxycycline.  They were then washed 7-8 times in tet-free media and 
cultured for either 24 or 48 hours in tet free media.  They were then lysed and protein was 
extracted for western blot analysis.  +/- indicates the presence or absence, respectively, of 
tet in the culture media.  (B)  Densitometric analysis of Western blot bands.  Bars 
represent density of YY1 (light bars) or survivin (dark bars) normalized to beta actin 
band density.  
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Figure 5.  Mutation of two putative YY1 binding sites in the proximal survivin promoter 
alters promoter activity  (A) The two most proximal putative YY1 binding sites 
(contained within pLuc230 construct)  were mutated from the core YY1 recognition site 
CAT to GGG.  (B) Luciferase reporter assay. U2OS cells were transfected with either (1) 
pLuc230, the standard pGL3 vector containing 230 unmutated bp of the survivin 
promoter, or (2) pLucMut in which the two putative YY1 binding sites were mutated 
from CAT to GGG.  Each vector was cotransfected with either empty pcDNA, YY1, or 
YY1 siRNA as well as pRL-tk for transfection efficiency internal control.  Error bars 
represent standard deviation of duplicate luminescence measurement, and results are 
representative of multiple experiments. 
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YY1’s  Interaction  with  the  Core  Survivin  Promoter 

YY1 can exert transcriptional changes via direct DNA binding or through protein-

protein interaction.  In order to determine if the survivin repression seen in reporter 

assays, RT-PCR, and Western blotting is through direct binding of YY1 to the survivin 

promoter at locations identified in Fig. 1, electrophoretic mobility shift assay was 

performed.  Two putative YY1 binding sites located in the survivin core promoter (Fig. 

6A) were studied.  To validate the study, a YY1 consensus sequence was used (Santa 

Cruz Biotechnology, Santa Cruz, CA).  Strong YY-1 binding to the consensus sequence 

was seen (lane 1, arrow).  Supershift (lane 2, asterisk) and cold competition (lane 3) 

confirmed the identity and specificity of the YY1 band.  When a probe for Site 1 was 

used, no binding or supershift was seen (lanes 4-5), indicating that it is not involved in 

YY1’s  regulation  of  survivin.    When  a  probe  for  Site  2  was  used,  a  double  band  was  seen  

at the appropriate location, possibly representing two different binding complexes 

involving YY1.  These bands were supershifted with the addition of YY1 antibody, and 

cold competition confirmed the specificity of the results.  Binding was enhanced by use 

of a probe containing both putative YY1 binding sites (lane 10).  Supershift and cold 

competitive again confirmed the specificity of the binding (lanes 11-12).   These results 

indicate that the most proximal putative YY1 binding site located on the survivin 

promoter is a target of YY1 binding and regulation, but binding to this site is increased 

with the inclusion of the second YY1 recognition site.     
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Figure 6: YY1 directly interacts with the survivin promoter.  (A) Schematic of survivin 
promoter representing regions investigated for YY1 binding.  (B) Electrophoretic 
mobility shift assay.  Nuclear extract was prepared from U2OS cells.  32p labelled probes 
(C) were incubated with nuclear extracts either alone (Lanes 1,4,7, 10), with anti-YY1 
antibody (lanes 2, 5, 8, 11) or cold competitor (CC) probes in 100x excess (lanes 3, 6, 9, 
12).  Arrow indicates YY1 bound to probe.  * indicates supershift.  (C) Probes used in 
EMSA, with underlined segments representing putative YY1 binding sites.  Result is 
representative of two experiments showing similar results. 
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Discussion 

 YY1 is increasingly recognized as a transcription factor that plays an important 

role in cancer, although there is a great deal of controversy as to whether YY1 promotes 

or inhibits cancer development and progression.  While many studies have focused on 

YY1 expression levels in tissue samples and the correlation of YY1 levels with clinical 

outcomes, metastasis free intervals, and response to therapy, far fewer studies have 

identified molecular mechanisms by which this multifunctional transcription factor is 

contributing to cancer pathology. We believe that this work shows, for the first time, a 

direct role for YY1 in survivin transcription, and that YY1 contributes to reduced basal 

expression levels of survivin.  However, in the current study the osteosarcoma cell line 

U2OS was utilized, and it is therefore unclear if this observed transcriptional repression 

of survivin by YY1 is generalizable to a broad array of cancer types.  Zhang et al. studied 

the role of YY1 on anti-apoptotic factors in colorectal carcinoma and found that siRNA-

mediated knockdown of YY1 in HCT116 and LOVO cell lines resulted in a decrease in 

survivin protein levels and increased levels of apoptosis 106.  This is also consistent with 

clinical findings of a correlation between high YY1 levels and increased disease 

aggressiveness in various cancer types.  Indeed de Nigris et al. found that in patients with 

osteosarcoma, YY1 overexpression correlated with increased metastasis and poor clinical 

outocome 107.  They also found that deletion of YY1 in the osteosarcoma cell line SaOS-2 

lead to decreased cellular invasion and metastasis, possibly related to VEGF and CXCR4 

regulation 108.  Other work has found that YY1 levels correlate with longer survival and 

decreased invasive potential.  In follicular lymphoma biopsy samples, higher expression 

levels of YY1 correlated with longer patient survivial 82. Wang et al. (2007) found that 

YY1 contributed to the increased expression of the tumor suppressor HLJ1 and related 
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decreased in in vitro cancer cell invasiveness.  The transcriptional and post-

transcriptional network regulation survivin expression is complex (reviewed by Zhang et 

al. 109),  and  it  is  therefore  possible  that  downstream  of  YY1’s  downregulation  of  survivin  

transcription other factors are significantly involved in determining the ultimate 

expression of survivin and the clinical sequelae that result.  It is also important to note 

that while our work demonstrates robust surivivin promoter activity reduction via 

reporter assay, the resulting reduction in mRNA and protein is more modest.  The extent 

to which YY1-mediated reduction of survivin expression results in increased apoptosis, 

alterations in cell cycle progression, or modulation of other hallmarks of cancer 

progression is currently under investigation in our laboratory.       

Work by Affar et al. 63 previously showed that in an mouse YY1 knockdown 

model, survivin (BIRC5) levels were decreased.  This lead us to initially hypothesize that 

YY1 overexpression in our hands would show a positive correlation with survivin 

expression.  We observed instead a robust negative correlation between YY1 

overexpression and survivin promoter activity that was also seen, although more 

modestly, at the protein level.  Interestingly, when the human survivin core promoter 

sequence is compared to the mouse survivin core promoter, of note is a lack of homology 

at both putative YY1 sites investigated in this study with site-directed mutagenesis (Fig. 

7).  This may, at least in part, explain why YY1 appears to negatively regulate survivin 

transcription in our cell culture model, whereas in mice it may positively regulation 

survivin expression. 
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Figure 7.  Comparison of human and mouse survivin promoter sequences.  Boxed 
segments represent the 2 putative YY1 binding segments of the survivin promoter 
contained within the pLuc230 construct that were mutated in previous experiments.  
There is lack of homology between mouse and human at both putative YY1 binding sites 
found in the first 230 bp of the survivin promoter.    HIF-1α  and  Sp1  bindings  sites  are  
shown for reference.   
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We provide several lines of evidence that YY1 represses survivin promoter 

activity in U2OS cells.  YY1 can regulate targets genes through a host of mechanisms 

including protein-protein interactions that allow it to act as a coactivator or corepressor 

and by direct DNA binding.  In the present study we identified a sequence of the survivin 

core promoter containing a putative YY1 binding and went on to show that YY1 is 

capable of binding directly to the most proximal of these putative binding sites.  Binding 

affinity for the survivin promoter was lower than for a consensus sequence known to 

efficiently bind YY1 110, and we believe that this likely represents a technical limitation 

owing to the extremely high GC content (70-80%) of the survivin promoter.  Because of 

the highly complicated nature of transcriptional regulatory networks, it is also possible 

that a proper scaffold is required for optimal binding.  Although YY1 binding occurs at 

the most proximal site on the survivin promoter (Site 2), binding is improved by 

inclusion of a second putative YY1 binding site (Site 1) that by itself does not appear to 

facilitate YY1 binding (see Fig. 6).      

There are many proposed models for how YY1 exerts its activating or repressing 

effects on promoters (reviewed by Gordon et al. 70), including displacement of 

transcriptional activators.  Sp1, a known activator of survivin transcription, is also known 

to physically interact with YY1 111,112.  Known Sp1 binding sites are located in close 

proximity to the YY1 binding sites examined in the current study, so it would therefore 

be valuable to design future studies to explore the role of Sp1 in YY1-mediates survivin 

repression.  Also, the known repressor of survivin transcription p53 96,113 is itself 

negatively regulated by YY1 75.  Therefore future studies should also examine the 

interplay of p53 and YY1 expression in survivin transcriptional regulation.   
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It was previously believed that targeting of transcription factors as means of 

cancer therapy was not practical owing to the complexity of transcriptional networks.  

However, it is increasingly believed that drug or small molecule inhibitor-mediated 

interruption of transcription factor binding represents an important approach to cancer 

therapeutics.  The small molecule inhibitor YM155 is currently in phase II clinical trials 

for several types of cancer including diffuse large B-cell lymphoma 46, prostate cancer 47, 

melanoma 48, and non-small cell lung cancer 49 due  to  it’s  previously  observed  ability  to  

induced apoptosis and reduce tumor bulk in various in vitro and in vivo models 50.  

Reduction in survivin transcription after YM155 treatment has been reported 114 and is 

believed to be a key mechanism for the apparent sensitization of tumors to cell death that 

has been observed. 

Our discovery of a novel transcriptional repressor of survivin may provide new 

ways of understanding survivin expression in the context of cellular stress resulting from 

chemo- and radiotherapy.  We also provide evidence for a possible positive role in YY1 

overexpression in human cancer.  The clinical significance of this finding across different 

cancer types has yet to be determined. 

 

Materials and Methods 

Antibodies and DNA Vectors 

All antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, 

USA) unless otherwise indicated.  The plasmid expressing YY1 protein, pcDNA3/YY1 

as well as the U6/yy1 siRNA and control U6/scrambled were kind gifts of Dr. Sui, Wake 

Forest and were described previously 75.  Survivin nested deletion constructs were 
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previously described 36 and were a kind gift from Dr. Li, Roswell Park Memorial 

Institute. 

 

Cell Culture and Transfection 

The U2OS human osteosarcoma cell line was obtained from ATCC.  U2OS cells with 

stable Tet-off YY1 were a kind gift from Dr. Sui, Wake Forest and were previously 

described 75.  Both cell lines were maintained under an atmosphere of 5% CO2 at 37°C in 

McCoys 5A media supplemented with 10% fetal bovine serum, 2 mmol/L of l-glutamine, 

and penicillin-streptomycin.  The Tet-off cells were additionally maintained in G418, 

hygromycin B, and the tetracycline analogue doxycycline (50 ng/mL).  YY1 expression 

was induced by transferring the cells to Tet-off medium, which is the same as control 

(Tet-on) medium except for the lack of doxycycline 75. 

 

Transient Transfection and Reporter Assays 

U2OS cells were seeded in 12-well plates and grown to 60 - 80% confluence.  A total 0.4 

ug of the various survivin promoter-luciferase reporter plasmids were cotransfected with 

either 0.6 µg of pcDNA/YY1 or empty vector expression plasmids and 0.01 ug of pRL-tk 

using FuGENE 6 (Roche, Indianapolis, IN). Approximately 24h after transfection, cells 

were lysed and assayed for luciferase activity by luminometer (Turner Design Systems, 

Sunnyvale, CA). Luciferase activity measurement was accomplished according to 

manufacturer’s  instructions, with the noted modifications.  Briefly, cells were washed in 

PBS, pH 7.4, solubilized in 1 x lysis buffer (Promega, Madison, WI) and scraped with a 

rubber policeman, then a 5 uL aliquot of the supernatant was mixed with 20 uL of Dual-

Glo® Luciferase Reagent (Promega, Madison, WI) and analysed on a Lumat 
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luminometer.  20 uL of Dual-Glo® Stop & Glo® Reagent was then added and a second 

reading on the Lumat luminometer was taken.  A ratio of luminescence of the first 

measurement (pGL3-survivin) to the second measurement (constitutively active pRL-tk) 

was calculated and reported for each vector and transcription factor combination tested.  

The pLuc230 vector containing CAToGGG mutation used for reporter experiments was 

purchased from Origene, Rockville, MD. 

 

Western Blots 

Cells were solubilized, proteins (20–40 Pg) separated using 12 % Bis-Tris 

polyacrylamide gels, transferred onto polyvinylidene difluoride membranes (Millipore) 

and probed using the following antibodies:  mouse monoclonal anti-YY1 (Santa Cruz 

Biotechnology, Inc., Santa Cruz, CA), and rabbit polyclonal anti-survivin (Novus, 

Littleton, CO).  Secondary antibodies (IR-Dye-conjugated) were goat anti-rabbit and goat 

anti-mouse immunoglobulin (LICOR, Lincoln, Nebraska).  Immunoreactive bands were 

detected using the Odyssey imaging system (LICOR) and quantified using ImageQuant 

software. 

 

Reverse Transcriptase-PCR 

Total RNA was extracted from cells at various time intervals using TRI-Reagent (Sigma, 

St. Louis, MO) and reverse-transcribed with SuperScript™  II  RNase  H- Reverse 

Transcriptase  (Invitrogen™,  Carlsbad, CA), as described by the manufacturer and 

amplified with survivin-specific primers. One hundred nanograms of the resulting first-

strand cDNA was used as template and amplified by PCR.  Sequences of the 



45 

oligonucleotide primer sets used for reverse transcription-PCR  analysis  are  as  follows:  5′-

GCA TGG CTG CCC CGA CGT TG -3′  (sense)  and  5′-GCT CCG GCC AGA GGC 

CTC AA -3′  (antisense)  for  survivin,  5′-GCT TCG AGG ATC AGA TTC TCA TCC -3′  

(sense)  and  5′- GAC TAC ATT GAA CAA ACG CTG GTC -3′  (antisense)  for  YY1,  5′- 

GCC AGA TCT CGG CGA AGT AAA -3′  (sense)  and  5′- ATA TCC AGG CTG TGT 

CGA CTG -3′  (antisense)  for  HIF1,  5′- ATG ACT CGC GAT TTC AAA CCT -3′  (sense)  

and  5′- CTT TGA AGT CGA GAA TCC ATT -3′  (antisense)  for  p75/LEDGF,  and,  5′-

CTCATGACCACAGTCCATGC-3′  (sense)  and  5′-TTACTCCTTGGAGGCCATGT-3′  

(antisense) for beta actin.  Products were visualized on ethidium bromide-stained agarose 

gels.  Amplification of beta actin served as an internal control. 

 

Electrophoretic Mobility Shift Assay 

Nuclear extracts were prepared as previously described 115, with the only modification 

that that N-N-(L-3- trans-carboxyoxirane-2-carbonyl)-L-leucyl-agmatine (E64) and 4-(2-

Aminoethyl)-benzolsulfonyl  ̄ourid  (`Pefabloc  SC')  were  included  as  protease  inhibitors  in  

concentrations suggested by the manufacturer (Boehringer, Mannheim, Germany). 

Protein concentration in nuclear extracts was determined using the BCA assay (Pierce) 

according to the manufacturers instructions.  Oligos used were as follows:  Two YY1 

sites  (YY1  sites  underlined):    5’- GC GCT CCC GAC ATG CCC CGC GGC GCG 

CCA TTA ACC GCC A -3’;;  YY1  Site  1    5’- TG CGC TCC CGA CAT GCC CCG CG -

3’;;  YY1  Site  2  CGC GGC GCG CCA TTA ACC GCC A -3’  YY1  Consensus  5’-CGC 

TCC CCG GCC ATC TTG GCG GCT GGT-3’.    All  oligos  were  annealed  by  incubating  

at 95% for 2 min, then cooling to room temperature slowly.  The DNA-protein binding 

reaction was performed in 20 ul reaction mixtures including 10% glycerol, 12 mM 
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HEPES ph 7.9, 4 mM TrisHCl ph 8.0, 1 mM EDTA, and 3 ug BSA.  Binding reactions 

were incubated at room temperature for 30 minutes, then for an addition 60 minutes at 4 

degrees C with anti-YY1 antibody (Santa Cruz Biotechnology, Santa Cruz, CA sc-281) 

added to the appropriate reactions. The DNA-protein complexes were resolved on 5.5% 

non-denaturating polyacrylamidgel (29 : 1 cross-linking ratio), dried and exposed using 

the Storm 860 Phosphoimager (Amersham Biosciences). 

 

Statistical Analysis 

All data in reporter assay and semiquantitative PCR are presented as means r standard 

deviation.  
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Abstract 

OBJECTIVES:  This study evaluates the efficacy of combining proton irradiation 

with gemcitabine and the role the inhibitor of apoptosis proteins (IAP) survivin & XIAP 

play in the radiosensitive vs. radioresistant status of pancreatic cancer.  METHODS:  The 

radioresistant (PANC-1) and radiosensitive (MIA PaCa-2) pancreatic carcinoma cells 

response to combined gemcitabine and proton irradiation was compared.  Cells were 

treated with 0.1 - 500 PM gemcitabine and 0 - 15 Gy proton irradiation after which 

Trypan blue and flow cytometry were utilized to determine changes in the cell cycle and 

apoptosis.  Expression levels of survivin were measured using Western blotting.  

Combination therapy with 24 h gemcitabine followed by 10-Gy proton irradiation proved 

most effective.  RESULTS:  Gemcitabine and proton irradiation, resulted in increased 

survivin levels, with little apoptosis.  However, combination therapy resulted in robust 

apoptotic induction with a concomitant survivin & XIAP reduction in the MIA PaCa-2 

cells with little effect in the PANC-1 cells.  siRNA studies confirmed a role for XIAP in 

the radioresistance of PANC-1 cells.  CONCLUSIONS:  Our data demonstrate that 

combining gemcitabine and proton irradiation enhances apoptosis in human pancreatic 

cancer cells when XIAP levels decrease. Therefore, XIAP may play an important role in 

human pancreatic cancer proton radioresistance. 

 

Introduction 

Pancreatic cancer is the fourth most common cause of cancer death in men and 

women in the United States, with 5-year survival for all stages of disease less than 5% 116.  

Pancreatic cancer has no clear early warning signs or symptoms and is usually silent until 
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the disease is well advanced.  Patients have a median survival of 4-8 months after 

diagnosis due in part to the advanced stage the disease has already attained by the time it 

is discovered and treatment has begun.  Risk factors include age with diagnosis occurring 

in people ages 65-79, smoking, sex, and possibly diets high in fat 117.  Currently, if 

diagnosed early, surgical resection remains the only viable cure.  However, only 20% of 

pancreatic cancer patients meet these criteria 118.  It is therefore necessary to discover 

new therapies or therapeutic combinations in order to significantly impact this deadly 

disease.  The anti-metabolite agent gemcitabine is currently being employed to treat 

pancreatic cancer 119. While gemcitabine has shown significant benefit in clinical 

applications, its ability to more than modestly impact pancreatic cancer is limited.  It has 

been speculated that combinatory treatments using gemcitabine and other 

chemotherapeutics or radiotherapeutics could improve survival rates 120,121.  Proton 

radiotherapy has been investigated for a number of cancer types including cancers of the 

prostate, head & neck and brain 122-124.  Protocols are also currently in progress or 

development for treating a variety of additional cancer types including: carcinoma of the 

nasopharynx, paranasal sinus carcinoma, non-small-cell lung carcinoma, hepatocellular 

carcinoma and pancreatic cancer 125.  Pancreatic cancers though inherently resistant to 

photon radiation may be safely treated using protons.  Proton therapy allows dose 

escalation to improve local tumor control in anatomic sites and histologies where local 

control is suboptimal with photons 124.  This improved dose localization reduces normal-

tissue doses resulting in lower acute and late toxicity. 

Survivin, a member of the inhibitor of apoptosis protein (IAP) family has 

previously been shown to be a prognostic marker for pancreatic cancer patients 84,126,127 
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and has also been implicated in cancer cell radio- and chemotherapy resistance 88.  Many 

recent reports have demonstrated that inhibiting survivin expression by antisense 

oligonucleotides 128, dominant negative mutation 14,129, and ribozyme 130 can reduce 

cancer cell radio- and chemoresistance and may be important to resensitize these tumors 

to therapy. 

The goal of this study was to examine the combined affect of gemcitabine and 

proton irradiation on the pancreatic cell lines PANC-1 (photon radioresistant) and MIA 

PaCa-2 (photon radiosensitive) and to determine whether the same survivin involvement 

in proton radiation resistance would be observed129,131,132. 

 

Materials and Methods 

Cell Cultures 

Pancreatic carcinoma (Panc-1 & MIA Paca-2) cells were obtained from the 

American Type Culture Collection (ATCC) and maintained in DMEM supplemented 

with 100 units of penicillin, 100 Pg/ml streptomycin, 300 Pg of L-glutamine and 10% 

heat inactivated FBS (ATCC).  MIA PaCa-2 media also included 2.5% horse serum 

(ATCC). Cells were grown at 37 °C in a humidified atmosphere of 95% air, 5% CO2.  

Gemcitabine or Gemzar� (Eli Lilly and Company, Indianapolis, Indiana) was dissolved 

in water and added to cells for the duration of 24 hours prior, simultaneously or 24 hours 

after radiation exposure.  Post treatment, the cells were returned to the incubator for an 

additional 24, 48, or 72 h.  All radiation procedures were accomplished in the Loma 

Linda University Radiobiology Proton Treatment Facility, now the James M. Slater, 

MD, Proton Treatment and Research Center.  Cells were exposed in vitro to 250 MeV 
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protons with doses ranging from 0 to 15 Gy at four different dose rates: a low dose rate 

of 2.5 Gy/h, an intermediate dose rate of 5 Gy/h and two high dose rates of 10 and 15 

Gy/h.  Cells are treated as shown in Figure 1. 

 

Apoptosis and Cell Cycle Analysis 

Subconfluent cultures of the various cell lines were incubated with vehicle 

(water), gemcitabine (0 to 500 PM) or exposed to proton irradiation (0 to 15 Gy/h) for 0, 

24, 48, and 72 hours at 37°C or combinations of gemcitabine and proton irradiation 

described above.  Cells were harvested, prepared, and analyzed for DNA content as 

described previously 133.  DNA content was analyzed using a Becton Dickinson FACScan 

flow cytometer (Becton Dickinson, San Jose, CA).  The distribution of cells in the 

different phases of the cell cycle was analyzed from DNA histograms using BD 

CellQuest software (Becton Dickinson and Company, San Jose, CA) and FlowJo software 

(Tree Star, Ashland, OR). 

 

Western Blot Analysis 

Cells were solubilized, proteins (20–40 Pg) separated using 12 or 15% Bis-Tris 

polyacrylamide gels, proteins transferred onto nitrocellulose membranes (Bio-Rad) and 

probed using the following antibodies: rabbit polyclonal anti-survivin (Novus, Littleton, 

CO) and GAPDH (Cell Signaling Technologies, Beverly, MA), and polyclonal E-actin 

(Abcam, Cambridge, MA).  Secondary antibodies (IR-Dye-conjugated) were goat anti-

rabbit immunoglobulin (LICOR, Lincoln, Nebraska).  Immunoreactive bands were 

detected using the Odyssey imaging system (LICOR) and quantified using ImageQuant 
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software.  Protein quantifications presented in this report were normalized with respect to 

GAPDH or E-actin as indicated. 

 

siRNA Knockdown   

siRNA oligos were obtained for Survivin and XIAP knockdown (Santa Cruz 

Biotechnology, Santa Cruz, CA).  In addition, a scramble siRNA was purchased for 

control.  Amaxa Nucleofection technology was employed for transfection of PANC-1 

cells.  PANC-1 cells were cultured as described above and passaged 3 days before 

transfection.  Nucleofection Kit R was used.  PANC-1 cells were trypsinized, counted, 

and aliquoted into 1x106 cells per tube.  Cells were spun down and resuspended in 100 uL 

of nucleofection solution.  To this 1.5 ug of siRNA was added, the suspension was 

transferred to a nucleofection cuvette, and the suggested program was applied..  

Immediately after program completion, 500 uL of fresh media was added and the cells 

were aliquoted equally into 6-well plates for further culture and treatment.  Cells were 

cultured for 3 days after transfection to allow for gene knockdown.  After this time, the 

appropriate treatments were applied. 

 

Statistical Analysis 

Statistical analysis was performed using a two-way analysis of variance 

(ANOVA) with the aid of JMP statistical software (Cary, NC).  A paired t test was used 

for group analysis. 
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Results 

Gemcitabine-Induced Survivin Protein is Associated with Growth 
Inhibition and Cytotoxicity in Pancreatic Cancer Cells 

Treatment of PANC-1 or MIA PaCa-2 cells with various concentrations (100 µM, 

10 µM and 1.0 µM) of gemcitabine resulted in a modest G0/G1 phase cell cycle arrest at 

24 h, followed by the progressive appearance of apoptosis over the 48-72 h time interval 

(Figure 2A).  Dose escalation of gemcitabine was insignificant, as 1 PM was as effective 

as 100 PM in inducing cell cycle arrest as well as apoptotic cell death in both cell lines.  

Between cell lines, the more radiosensitive MIA PaCa-2 cells were also more sensitive to 

gemcitabine than the radioresistant PANC-1 cells.  Both cell lines in their non-treated 

resting state exhibited between a 10 and 20%  

polyploid fraction (cells containing greater then 4N DNA).  Interestingly, after cells were 

gemcitabine treated, this polyploid fraction disappeared in both cell lines (Figure 2A). 
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Figure 1.  Treatment schematic. Gemcitabine and protons were given at time = 0.  
Combination treatment of gemcitabine followed by proton radiation was treated with 
gemcitabine given at -24 hrs and then followed by proton irradiation at time = 0  (Gem  →  
Proton).  Simultaneous treatment was accomplished with both modalities being given at 
time = 0 (Proton + Gem). Proton irradiation was administered 24 hrs before gemcitabine 
treatment  at  time  =  24  (Proton  →  Gem).    All  cells  were  harvested  24,  48,  and 72 hrs after 
its final treatment was administered. 
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Figure 2A.  Gemcitabine treatment of PANC-1 and MIA PaCa-2 cell lines.   Cells were 
treated using 0 PM,1 PM, 10 PM, and 100 PM gemcitabine after which they were 
harvested and analyzed for DNA content by propidium iodide staining and flow 
cytometry at 24 hr, 48 hr, and 72 hr. Percentages of apoptotic cells with hypodiploid 
(sub-G1) DNA content as well as those in G0/G1, S, G2/M and polyploid are indicated per 
each condition tested. Data are the mean r SD of three independent experiments 
(*p<0.01, **p<0.001).  
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Figure 2B. Detergent-solubilized extracts of pancreatic cells treated with gemcitabine 
were analyzed at the indicated time intervals for reactivity with antibodies for survivin 
and GAPDH (loading control), by Western blotting.  Molecular-weight (Mr) markers in 
kilodaltons are shown on the left. 
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Treatment of both PANC-1 and MIA PaCa-2 cell lines for 24 h with gemcitabine 

resulted in a dose-dependent reduction in survivin levels by Western blot analysis (Figure 

2B).  Further gemcitabine incubation of 48 h and 72 h resulted in survivin protein levels 

being enhanced or unchanged at doses of 1 and 10 PM in both cell lines, a result that is 

most likely due to drug-induced stress 134.  As a dose of 10 PM gemcitabine induced a 

time dependent G0/G1 arrest, enhanced cytotoxicity and 24 h reduction in survivin, this 

dose was chosen for all further experiments with MIA PaCa-2 cells.  However, PANC-1 

cells were treated with 100 PM gemcitabine due to their resistance to gemcitabine-

induced cell death. 

Treatment of PANC-1 or MIA PaCa-2 cells with various concentrations (0, 2.5, 5, 

10, and 15 Gy) of proton irradiation resulted in significant cell cycle arrest in both the 

radiosensitive MIA PaCa-2 as well as the radioresistant PANC-1 pancreatic cell lines in a 

dose-dependent manner (Figure 3A).  Unlike the results of gemcitabine in these two cell 

lines, only the radiation sensitive MIA PaCa-2 cells were induced to undergo notable 

levels of apoptosis.  MIA PaCa-2 cells experienced a time and dose-dependent apoptosis 

with the G2/M arrested cells being the most sensitive as it is from this population of cells 

that the highest level of time-dependent death is recorded.  Photon radioresistant PANC-1 

cells were also resistant to proton radiation (Figure 3A) even though these cells also 

experienced a dose-dependent cell cycle arrest.  In both cell lines, proton radiation 

induced a dose-dependent increase in polyploid cells from the 10% observed in the 

untreated controls to almost 30% in those treated with 15 Gy (Figure 3A). 
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Figure 3A.  Proton irradiation of PANC-1 and MIA PaCa-2 cell lines.  Cells were treated 
using 0, 5, 10 or 15 Gy of proton radiation after which they were harvested and analyzed 
for DNA content by propidium iodide staining and flow cytometry at 24 hr, 48 hr, and 72 
hr. Percentages of apoptotic cells with hypodiploid (sub-G1) DNA content as well as 
those in G0/G1, S, G2/M and polyploid are indicated per each condition tested. Data are 
the mean r SD of three independent experiments (*p<0.01, **p<0.001). 
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Figure 3B. Detergent-solubilized extracts of pancreatic cells treated with proton radiation 
were analyzed at the indicated time intervals for reactivity with antibodies for survivin 
and E-actin (loading control), by Western blotting.  Molecular-weight (Mr) markers in 
kilodaltons are shown on the left.  
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Treatment of both MIA PaCa-2 and PANC-1 cells lines with proton radiation 

resulted in a dose-dependent increase in survivin protein as defined by Western blot 

analysis (Figure 3B).  This increase in survivin protein concomitant with the observed 

G2/M arrest is expected as survivin has been previously shown to be expressed during 

cell division in a cell cycle-dependent manner 134. 

 

Sequential Treatment of Pancreatic Cancer Cells with Gemcitabine 
and Proton Irradiation Enhances the Effect of Single Agent Treatment 

in only MIA PaCa-2 Cells 

Treatment of MIA PaCa-2 cells with 10 PM gemcitabine (Figure 2A) and 10 Gy 

proton radiation (Figure 3A) resulted in modest levels of apoptosis, cell cycle arrest and 

survivin modulation in both cell lines with the most prominent killing effect in MIA 

PaCa-2 cells.  We therefore combined the two modalities as shown in Figure 1. 

Treatment of MIA PaCa-2 cells (Figure 4A) with 10 PM gemcitabine or 10 Gy 

proton irradiation resulted in cell cycle arrest at G0/G1 and G2/M respectively.  For 

sequential treatments that include gemcitabine as the first modality in the treatment 

regimen, G0/G1 arrest was also the prominent phenotypic cell cycle change and likewise a 

G2/M arrest resulted from sequential treatments that used proton irradiation as the first 

modality in the treatment regime.  Cell cycle arrest was followed by the progressive 

appearance of apoptosis over the 72 h time interval.  However, sequential treatments 

where gemcitabine lead proton irradiation resulted in an enhanced apoptosis by 48 h, a 

trend that increased further by 72 h.  An interesting observation first made with the single 

agent treatment experiments (Figure 2 & 3) is that gemcitabine treatment does not result 

in significant numbers of cells having greater than 4N DNA (polyploidy) while proton 
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irradiation results in a progressive accumulation of polyploid cells.  This is also observed 

in the sequential treatments where proton irradiation leads gemcitabine treatment.  

However, where gemcitabine and proton are given concurrently, little enhancement of 

this polyploid fraction is recorded and where gemcitabine leads the proton irradiation, an 

unremarkable number of polyploid cells are recorded (Figure 4A). 

Like MIA PaCa-2 cells, treatment of PANC-1 cells (Figure 4B) with 100 PM 

gemcitabine or 10 Gy proton irradiation alone or those combinations that lead with 

gemcitabine or proton irradiation also resulted in cell cycle arrest in G0/G1 and G2/M 

respectively.  However, unlike MIA PaCa-2 cells, sequential treatments did not result in 

the progressive appearance of apoptotic cells, even though 10 fold higher concentration 

of gemcitabine was used.  In fact, after 72 h of treatment, no significant changes are 

observed from those recorded after only 24 h of treatment.  Polyploidy does however, 

match what was observed in the MIA PaCa-2 cells (Figure 4A). 
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Figure 4A.  Combination Gemcitabine and Proton Radiation in PANC-1 and MIA PaCa-
2 cell lines. (A) PANC-1 and (B) MIA PaCa-2 cells were treated using 10 Gy of proton 
radiation and 10 PM gemcitabine after which they were harvested and analyzed for DNA 
content by propidium iodide staining and flow cytometry at 24 hr, 48 hr, and 72 hr.  
Percentages of apoptotic cells with hypodiploid (sub-G1) DNA content as well as those 
in G0/G1, S, G2/M and polyploid are indicated per each condition tested. Data are the 
mean r SD of three independent experiments (*p<0.01). 
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Figure 4B.  Combination Gemcitabine and Proton Radiation in PANC-1 and MIA PaCa-
2 cell lines. (A) PANC-1 and (B) MIA PaCa-2 cells were treated using 10 Gy of proton 
radiation and 10 PM gemcitabine after which they were harvested and analyzed for DNA 
content by propidium iodide staining and flow cytometry at 24 hr, 48 hr, and 72 hr.  
Percentages of apoptotic cells with hypodiploid (sub-G1) DNA content as well as those 
in G0/G1, S, G2/M and polyploid are indicated per each condition tested. Data are the 
mean r SD of three independent experiments (*p<0.01). 
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Modulation of Survivin Protein Expression by Combining 
Gemcitabine and Proton Irradiation in Pancreatic Cancer Cell Lines 

To determine the potential relevance of targeting survivin for tumor cell apoptosis 

in sequential gemcitabine and proton irradiation treatments, survivin levels were analyzed 

by Western blotting in PANC-1 and MIA PaCa-2 cells treated with gemcitabine or proton 

irradiation alone or with the sequential combinations described previously at 48 h post 

treatment (Figure 1).  Treatment of PANC-1 cells with gemcitabine or protons resulted in 

a 2 and 4 fold increase in survivin expression respectively (Figure 4C). 
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Figure 4 C & D. Detergent-solubilized extracts of (C) PANC-1 and (D) MIA PaCa-2 
cells treated with 10 Gy of proton radiation and 10 PM gemcitabine were analyzed at 48h 
for reactivity with antibodies for survivin and E-actin or GAPDH (loading control), by 
Western blotting. 
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Figure 4 E & F: (E) PANC-1 and (F) MIA PaCa-2 membranes were stripped and 
reprobed with antibodies for XIAP after which densitometric fold changes for each were 
indicated below.  Molecular-weight (Mr) markers in kilodaltons are shown on the left. 
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In contrast, treatment of MIA PaCa-2 cells only showed a 2 to 3 fold increase in 

those cells treated with protons.  Gemcitabine treatment for 48 h resulted in a down 

regulation of survivin protein (Figure 4D).  Both cell lines exhibited very little change in 

survivin protein expression from that of the control in the sequential combination 

treatments (Figure 4C, D).  XIAP has been known to interact more directly with the 

apoptotic pathway machinery than survivin 135.  Both cell lines also exhibited very little 

change in XIAP protein expression compared to control, with the noticeable exception of 

gemcitabine  →  proton  treatment  (Figure  4E,  F).    This  sequential  treatment  showed  a  

marked decrease in XIAP protein expression, which may be responsible for the MIA 

PaCa-2 cells being more susceptible to the combination of gemcitabine and proton 

irradiation then the PANC-1 cells. 

 

siRNA Knockdown of XIAP Further Potentiates Cell Death After 
Gemcitabine and Proton Combination Therapy 

To further investigate the role survivin and XIAP may play in proton radiation 

resistance of the PANC-1 cells, siRNA knockdown experiments were completed.  Three 

days after transfection with the siRNAs (described in Materials and Methods), cells were 

analyzed for the presence of Survivin and XIAP knockdown.  PCR analysis indicated that 

survivin and XIAP knockdown was successful (Figure 5A), with approximately 75% 

knockdown of XIAP and 40% knockdown of Survivin.  
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Figure 5.  Knockdown of the inhibitor of apoptosis proteins survivin and XIAP, using 
siRNA, increases drug and radiation killing of PANC-1 pancreatic cancer cells.  (A) 
Knockdown of survivin and XIAP expression.  PANC-1 cells were transfected with 
either Scrambled siRNA or siRNA designed to knockdown survivin or XIAP. 
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Furthermore, after 72h IAP knockdown, cells were treated with either gemcitabine, 

proton radiation, or 24h gemcitabine followed by proton radiation (Figure 1).  Forty-eight 

hours after treatment, cells were harvested for propidium iodide flow cytometric analysis.  

As hypothesized, the addition of the XIAP siRNA to the PANC-1 cells resulted in a 

marked increase in gemcitabine/proton-induced apoptosis compared to that recorded in 

the cells having survivin knockdown or those of the control (Figure 5B). 
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Figure 5B. (B) PANC-1 cells were first transfected with siRNA against either survivin or 
XIAP for 12 h after which they were treated using 10 Gy of proton radiation and 10 PM 
gemcitabine.  Cells were harvested and analyzed for DNA content by propidium iodide 
staining and flow cytometry at 48 hr.  Percentages of apoptotic cells with hypodiploid 
(sub-G1) DNA content as well as the polyploid are indicated per each condition tested. 
Data are the mean r SD of two independent experiments. 
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Discussion 

There has been little success in developing effective systemic therapies for the 

treatment of patients with locally advanced or metastatic pancreatic cancer.  

Chemotherapy was first combined with radiotherapy in the treatment of pancreatic cancer 

when clinicians at the Mayo Clinic in 1969 added 5-Fluorouracil (5-FU) to external beam 

radiotherapy.  The result was an improved mean survival of 10.4 months for the 

combination therapy compared to 6.3 months for those patients receiving radiotherapy 

alone 136,137.  As a result, this combination has been considered standard therapy for 

locally advanced pancreatic cancer 137 and though multiagent regimens which include 5-

FU have sought to improve upon this combination, randomized phase III trials have 

failed to confirm survival advantage over that with 5-FU alone 138.  More recently, the 

nucleoside analog gemcitabine provided encouraging results in both antitumor effects and 

its impact on parameters of clinical benefit for patients with pancreatic cancer such as, 

decreased pain severity, decreased requirement for opioid analgesics, increased appetite 

and weight gain 138.  In direct comparison on locally advanced pancreatic cancer and 

metastatic pancreatic cancer, gemcitabine treatment resulted in a 5.56 month overall 

survival compared to a 4.41 month overall survival using 5-FU.  In combination with 

conventional radiotherapy gemcitabine extended overall survival to 11.3 months 

compared to 5-FU extending it by 10.4 months 137,138.  As a result, gemcitabine has 

become widely accepted for unresectable pancreatic cancer. 

As pancreatic tumors are well advanced before detection, with survival reduced 

due to high rates of distant metastases, the continued use of conventional radiation-based 

therapies has been brought into question.  As tumor loads increase, superfluous radiation 

delivered to surrounding normal tissue leads to increasing treatment morbidity.  As a 
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result, better control of dose distribution and localization are necessary.  Proton 

radiotherapy allows for both.  Where local control is suboptimal with conventional 

photon radiotherapy, proton radiotherapy provides improved physical dose distribution, 

and improved localization to anatomic sites and histologies.  The resulting improvements 

to both dose distribution and localization will ultimately lead to dose escalation for 

anatomical sites where local control with conventional radiation dose has been 

suboptimal such as in advanced pancreatic disease 125,139. 

The aim of the current work was to define the involvement of survivin following 

chemotherapy and radiation therapy and to determine if proton irradiation followed 

classical radiation treatment observations.  Our data shows that proton irradiation alone 

exhibited similar results as has been reported in photon radiation treatment.  However, 

sequential treatment using gemcitabine before proton irradiation induced significant 

apoptotic cell death.  While survivin seems to be minimally involved in the mechanism of 

radioresistance, our work provides evidence that XIAP down regulation may be involved 

in the sensitization of MIA PaCa-2 cells and the concomitant radioresistance of PANC-1 

cells.  It has been demonstrated that RNAi-mediated knockdown of XIAP as well as 

small molecule inhibitors of XIAP sensitize pancreatic cancer cells to apoptosis via 

activation of caspases 2, 3, 8 and 9, and loss of mitochondrial membrane polarization 140.  

Furthermore, XIAP small molecule inhibitors have been shown to synergize the effects of 

radiation and gemcitabine alone 141.   

An important finding of these studies was the treatment of PANC-1 and MIA 

PaCa-2 cells with proton irradiation caused a significant number of the cells to become 

polyploid.  Polyploidy is a state in which cells possess more than two sets of homologous 
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chromosomes.  It is commonly believed that polyploid cells arise after cellular stress, 

ageing, and in various diseases, perhaps because polyploidy confers a metabolic benefit 

142-144.  Polyploid cells have been shown to be genetically unstable and can be the 

intermediates where aneuploid cells become cancerous 144.  In our hands, treatment of the 

pancreatic cancer cells lines with proton irradiation alone or before being combined with 

gemcitabine resulted in a significant enhanced polyploid fraction of cells (Figure 4).  The 

cells treated with gemcitabine alone or with gemcitabine followed by proton irradiation 

prohibited this polyploidy.  These findings suggest that proton irradiation-resistant 

pancreatic cells may gain enhanced genetic instability and ultimately a more aggressive 

tumor phenotype.  However, administering gemcitabine as a pretreatment to proton 

irradiation may reduce this genetic instability and ultimately allow the proton irradiation 

to result in a more effective killing of the tumor.  Furthermore, as polyploidy is a state of 

having more than two sets of chromosomes, survivin is a chromosomal passenger protein, 

and its deregulation in cancer promotes tetraploidy or aneuploidy, we strongly believe 

that by better understanding the role of gemcitabine and proton irradiation biology in 

regard to survivin expression modulation will provide useful data for the combining of 

therapies for the killing of radioresistant pancreatic cancer. 

XIAP, a unique and best-characterized member of the inhibitor of apoptosis (IAP) 

family, has been identified as a central regulator of caspase-dependent apoptosis.  

Whether the activation of apoptosis is initiated by events that perturb the mitochondria 

(via caspase-9) or progress directly from cell surface receptors (via caspase-8), the ability 

of XIAP to inhibit the downstream executioner caspases-3 and -7 makes it a potent and 

broad inhibitor of cell death145 and important target for therapy.  XIAP reduction has 
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been reported in cells treated with protons and hypoxia in three kinds of cancers: lung, 

hepatoma and leukemia146.  However, pancreatic cancers were not investigated.  A 

broadened search to include photon and UV radiation revealed that much work has been 

accomplished investigating radiation-induced downregulation of XIAP and the 

mechanisms whereby this happens.  A recent study describes UVB-induced sensitization 

coinciding with XIAP degradation which then allows for functional caspase 3-induced 

apoptosis147.  Furthermore, the loss of XIAP was shown to be the result of UVB-

enhanced Ikappa B alpha degradation, resulting in NF-kappaB-dependent transcriptional 

repression of XIAP147.  Future  studies  will  explore  XIAP’s  involvement  in  the  sequential  

chemo- and  radiosensitization  of  pancreatic  cancer  as  well  as  survivin’s  role  in  XIAP  

stabilization and the possibility of shifting the survival phenotype to apoptosis by 

interfering with this union. 
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CHAPTER FOUR 

DISCUSSION 
  

This work demonstrates a role for YY1 in the transcriptional regulation of 

survivin, an important target in cancer therapeutics.  Contrary to our initial hypothesis, 

YY1 was shown to downregulate survivin promoter activity.  The second part of this 

work shows that, at least in principle, decreased expression of IAPs such as survivin and 

XIAP through a combination of chemotherapy with proton radiotherapy may increase the 

sensitivity of tumors to cell death.  While the latter aspect of the dissertation has a clear 

implication in cancer therapy, the former aspect may draw criticism from the cancer 

biology community owing to its lack of application to the specific approaches to cancer 

treatment.  In the past this criticism may have been more relevant, but current approaches 

to cancer therapy are beginning to include transcription factors as very valid targets of 

cancer therapy.  As previously mentioned, Hanahan and Weinberg have produced 

seminal work summarizing the hallmarks of cancer 148.  These hallmarks include (1) 

evasion of programmed cell death, (2) insensitivity to growth-inhibitory signals, (3) 

limitless replicative potential, (4) sustained angiogenesis, (5) self-sufficiency in growth 

signals, and (6) tissue invasion and metastatic spread.  They more recently proposed two 

emerging hallmarks that include 1) evasion of immune destruction and 2) deregulation of 

cellular energetics 149.  A review by Mees et al. has eloquently summarized how a variety 

of transcription factors play direct roles in each of these hallmarks of cancer in hopes of 

furthering a shift in thinking that embraces targeting of transcription factors in cancer 
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therapy 150.  Among the many transcription factors discussed, several are worth noting in 

greater detail here given their relevance to survivin and YY1.  Table 3 summarizes 

several transcription factors with specific relevance to survivin and YY1. 
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Table 3:  Transcription Factors Involvement in Hallmarks of Cancer and Their 
Relationship to Survivin and YY1 (adapted from Mees et al. 150). 

Transcription Factor/Target Hallmark of Cancer Rationale 

NF-NB Sufficiency in growth 
signals 

Constiutively active in 
many cancers.  Positively 
regulates survivin 
transcription. 

Androgen receptor  Sufficiency in growth 
signals 

YY1 directly interacts with 
AR and enhances AR 
interaction with PSA 
promoter. 

Myc Insensitivity to growth-
inhibitory signals 

YY1 activates c-myc 
promoter 

p53 Evasion of programmed cell 
death 

Survivin downregulated by 
p53.  YY1 downregulates 
p53.   

HIF-1D Sustained angiogenesis Positively regulates survivin 
transcription 

Sp-1 Sustained 
angiogenesis/evasion of 
programmed cell death 

Transcriptional activator of 
survivin.  Interruption of 
Sp-1 binding to survivin 
promoter induces cell death 
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Therapeutic Potential of YY1 in Cancer Therapy 

The role of survivin in therapeutic approaches to cancer remains promising, as 

there are ongoing efforts to target it in new and innovative ways.  Although the role of 

YY1 in cancer has been known for a while now, efforts to exploit it for therapy are in 

their relative infancy.  Just as the role of YY1 in cancer biology is controversial, so is its 

value in therapeutic approaches to cancer.  In ovarian cancer patients, one group found a 

positive correlation between YY1 expression and response to taxane therapy.  In this 

study, YY1 knockdown lead to a significant reduction in cell proliferation and 

anchorage-independent growth as well as increased effectiveness of the drug paclitaxel 78.  

This is postulated to be because of positive regulation of genes involved in microtubule 

stabilizing activity.  TRAIL is a promising ligand for inducing cell death in clinical 

applications because it has been shown to induce anti-tumor activity while sparing 

nonmalignant tissue 151.  TRAIL induces cell death by binding to death receptors DR4 or 

DR5 with subsequent activation of caspases.  Baritaki et al. 152 showed that siRNA-

mediated knockdown of YY1 results in increased DR5 expression and sensitization to 

TRAIL-mediated apoptosis.  YY1 is capable of directly binding to the DR5 promoter to 

downregulate its expression 153.  They also show that treatment of prostate cancer cells 

(PC3) with the nitric oxide donor DETANONOate sensitizes cells to TRAIL-induced cell 

death by downregulating NF.B and downstream of that YY1.  The same group has 

shown that inhibition of the anti-apoptotic factor BCLXL is also involved, but it is 

unknown if this is via regulation of BCLXL by YY1.  This represents another line of 

evidence that interruption of YY1 activity has potential for sensitization of tumors to 

chemotherapy and other treatment modalities.  Given  the  controversy  as  to  YY1’s  role  in  
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cancer, this will result in significant challenges in understanding how to approach 

individual types of cancer therapy as it relates to inhibition of YY1.  This will require that 

targeting of YY1 be highly cancer specific to avoid dysregulation of YY1 in normal 

tissue. 

 

YY1 and Survivin: Beyond Transcriptional Regulation 

Tumor metastasis is the most common cause of death in cancer patients. It is a 

remarkably complex process with several several steps described by Hanahan and 

Weinberg that are required for a malignant cell to fully metastasize 148.  The first step is 

invasion, which involves the loss of cell adhesion molecules.  Without loss of surface 

adhesion molecules it is not possible for a cell to begin migration into neighboring tissue.  

The second step involves intravasation of the invading malignant cells into the blood or 

lymphatic system.  The third step, which only a small percent of intravasated cells are 

though to be able to accomplish, is extravasation through capillaries at a site distant to the 

primary tumor.  Once extravasated, cells must then regain adhesion molecules that allow 

the cell to establish the ability to survive in the new environment.  In carcinomas, the 

metastatic process is thought to consist of a number of distinct steps.  The complex 

mechanisms required to accomplish each of these steps are the subject of intense 

research. 

Epithelial-to-Mesenchymal Transition (EMT) is a proposed mechanism by which 

malignant cells initiate the need for a loss of adhesion molecules so that invasion can take 

place.  EMT is characterized by a loss of E-cadherin  and  β-catenin, and a gain in N-

cadherin and vimentin expression (reviewed by Huber et al. 154).  The transcription 

factors Twist, Snail, and Slug have been identified as the major regulators of these 
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adhesion molecules 155-157.  Research from our laboratory indicates that survivin is 

involved in the invasion step of metastasis 158.   

Survivin is overexpressed in primary tumors in addition to distant metastatic cells, 

however no direct involvement in the mechanism of metastasis has been identified.  Our 

lab has recently found a novel means by which survivin promotes cell invasion.  

Extracellular survivin is able to promote invasion of HeLa cells through a collagen 

matrix, and antibody depletion of survivin abrogates this increased cell invasion 158.  

Studies are ongoing to identify mechanisms behind this observation.  Very recently Yie et 

al. 159 found that patients with survivin-expressing circulating non-small cell lung cancer 

cells had a higher instance of cancer recurrence and increased follow-up lymph node 

involvement.  Other studies have shown that survivin is able to delineate node positive 

from node negative rectal cancer 160.  In small cell adencarcinoma of the lung, patients 

with histological evidence of high survivin expression had more evidence of veinous 

invasion of malignant cells, and overall patients with high survivin expression had 

decreased survival 161.  In squamous cell carcinomas, survivin expression correlates with 

high grade, poorly differentiated tumors and with increased lymph node metastasis 162.  A 

common theme in these studies is the presence of almost entirely correlative data with 

little or no mechanistic information.   

Among the many target genes of YY1 being discovered, some involved in 

metastasis are now being identified.  A report in 2005 hypothesized that cooperation of 

YY1 and AP-1 may increase the repression of the galactocerebrosidase (GALC) gene.  

GALC is an enzyme that is overexpressed on the surface of cancer cells.  Suppression of 

this enzyme leads to an accumulation of galactocerebroside, which results in a decrease 
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in cellular adhesion and inhibition of apoptosis.  This in turn leads to increased cell 

proliferation and migration 163.  This observation, although it was largely conjecture, was 

the first evidence that YY1 may be involved in cancer invasion and metastasis.  However, 

in the search to identify new genes involved in metastasis suppression, Wang et al. (2005) 

discovered that HLJ1, a metastasis suppressor, is positively regulated by YY1 164.  High 

levels of YY1 expression correlated with HLJ1 expression , and promoter reporter assays 

indicated that YY1 was acting directly on transcription of HLJ1.  Subsequent studies 

found that a synergistic relationship between YY1 and AP1 lead to a 5 times higher 

activation of HLJ1 and much more potent in vitro cancer cell invasion 165.  Using the 

osteosarcoma cell line SaOS-2, de Negris et al.64 found that deletion of YY1 leads to a 

decrease in cell invasion in vitro and decrease metastasis in vivo.  Deletion of YY1 also 

correlated with a decrease in vascular endothelial growth factor (VEGF) and 

angiogenesis.  They also identified a host of genes involved in cell motility, cell cycle, 

cell adhesion, angiogenesis, and signal transduction that exhibited significant changes 

when YY1 was deleted 64.  One report suggested that YY1 is a regulator of Snail, one of 

the key transcription factors responsible for regulation of EMT, a key feature of 

metastasis 166.  Together these  data  detail  the  complicated  nature  of  YY1’s  involvement  

in cancer metastasis, as it appears that in some types of cancer it may inhibit metastasis, 

while in others such as osteosarcoma it may promote metastasis and aggressiveness of the 

disease. 

 

Future Directions 

The work presented here illustrates a role for YY1 in survivin transcriptional 

repression in the osteosarcoma cell line U2OS.  However, the role of YY1 in 
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transcription of survivin in other cancer types has yet to be thoroughly investigated.  

Preliminary  evidence  from  our  laboratory  indicates  a  similar  repressive  role  for  YY1’s  

observed repression of survivin in the pancreatic cancer cell line Panc-1.  In Chapter 3, 

data was presented that indicated an important role for survivin expression levels in Panc-

1 radioresistance, but it suggested an even larger role for the inhibitor of apoptosis XIAP 

in the radioresistance of PANC-1 cells.  Therefore, future studies should broaden the 

investigation of cancer-specific YY1 regulation of survivin transcription and be expanded 

to investigation of transcriptional regulation of IAPs such as XIAP.   

 The work presented in Chapter 2 shows multiple avenues of evidence for the 

involvement of YY1 involvement in basal survivin transcription, but future efforts should 

attempt to identify the role of YY1 in cellular response to stresses in the form of 

chemotherapeutics, radiotherapy, or natural agent exposure.  HIF-1D’s  role  in  survivin  

transcriptional upregulation is now well established 30,31.  While YY1 is not clearly 

established as a stress-response transcriptional factor per se, several studies have 

indicated that is involved in unfolded protein response and resulting ER stress 167 and 

may even inhibit the function of p53 in response to genotoxic stress 168. 

 In  keeping  with  the  need  to  better  understand  YY1’s  role  in survivin-mediated 

cellular stress response, it is also critical for future studies to measure functional 

outcomes as a consequence of survivin transcriptional modulation.  Preliminary evidence 

in our lab indicates that YY1 overexpression in U2OS tet-off cells may be involved in 

enhanced cellular proliferation as measured by the Ki-67 assay (unpublished data).  

However, it is unknown the extent to which YY1 overexpression is specifically involved 

in this enhanced proliferation or if it is indeed mediated by survivin or by one of the other 
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numerous transcriptional targets of YY1.  The reporter data presented in Chapter 2 

indicates very robust repression of survivin promoter activity when YY1 is 

overexpressed, but much more moderate reduction in protein expression.  A recent study 

was able to show a role for YY1 in mammary cell proliferation, migration, clonogenicity, 

invasion, and tumor formation, and they identified YY1-mediated p27 degradation as a 

likely mechanism behind this 169.  In a similar fashion, future work should elucidate 

whether YY1 is able to modulate cellular invasion, migration, proliferation, and other 

outcomes through its regulation of survivin.  These studies will be critical to further 

efforts to establish new therapeutic approaches based on survivin targeting.    

Our lab has recently described a novel pool of survivin existing in the 

extracellular space 158.  Current studies are exploring ways in which this pool of survivin 

may contribute to disease in the normal neighboring cells in the tumor microenvironment.  

Antibody depletion of this extracellular pool of survivin may prove to be a valid 

therapeutic approach for solid tumors.  However, at this point the mechanism for export 

of survivin in unknown and under investigation.  If YY1 is indeed a modulator of 

survivin transcription, it stands to reason that YY1 overexpression or knockdown may 

alter the amount of survivin that is exported to the extracellular space.   

 

Summary and Conclusion 

Cancer is a disease that is increasingly being understood to be a constellation of 

hundreds if not thousands of different diseases.  This is likely why, despite a multitude of 

significant advances in our understanding of cancer, current therapies leave much to be 

desired in terms of patient health and well being.  The future of cancer therapy will 

hopefully include personalized approaches to individual disease, but this will require a 
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more complete understanding of the underlying factors involved in cancer development 

and advancement.  The work described in this dissertation will serve as a small, but 

perhaps important, addition to the body of knowledge regarding survivin transcription 

and the role of survivin and other IAPs in resistance to death induction by presently used 

chemotherapeutics and radiotherapy techniques.   
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