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ABSTRACT OF THE DISSERTATION 
 

Performance of Number of Factors Procedures in Higher Order Analysis:  
A comparative study 

by 

Marc Thomas Porritt 

Doctor of Philosophy, Graduate Program in Clinical Psychology 
Loma Linda University, December 2012 

Dr. Kendal C. Boyd, Chairperson 
 

Exploratory Factor Analysis (EFA) is one of the primary statistical tools available 

for the verification of the structure of a psychological measure.  In the case of a nested 

test the structure of the higher levels is verified by performing EFA on the factor scores 

of the lower levels, a process known as higher order factor analysis (HOFA).  One of the 

most significant decisions made during the EFA process is how many factors to extract.  

A number of methods have been developed to empirically answer this question.  These 

methods have been proven highly accurate under normal circumstances.  Since HOFA is 

an EFA of factor scores, the number of items per factor is typically very limited.  

Research indicates that the established methods lose accuracy when the number of 

variables per factor is low, the situation created by HOFA.  Alternate methods such as 

Factor replication and Salient loading criteria do not show these tendencies.  The current 

study compared the accuracy and consistency of the Kaiser Rule, scree plot, multi level 

scree plot, Traditional Minimum Average Partial, Forth-Power Minimum Average 

Partial, Traditional Parallel Analysis, 95th Percentile Parallel Analysis, Factor 

Replication, and Salient Loading Criteria while performing higher order factor analysis.  

It was hypothesized that traditional methods (Kaiser Rule, Traditional Minimum Average 

Partial, Forth-Power Minimum Average Partial, Traditional Parallel Analysis, and 95th 



 

xi 

Percentile Parallel Analysis) would be less accurate than alternatives (scree plot, multi-

level scree plot, Factor Replication, and Salient Loading Criteria).  In order to more 

accurately represent the complexities of the experimental setting, respondent generated 

data was used.  Procedural solutions were compared to known solutions, established in 

the research literature.  Accuracy of each procedure was assessed in terms of percent 

correct solutions and mean difference from correct solution.  Consistency was measured 

in terms of variation in the mean difference estimate.  Both versions of PA maintained 

their accuracy and both versions of MAP failed in HOFA conditions.  Salient loadings 

and the Kaiser rule were the only alternatives that were more accurate than MAP.  
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CHAPTER ONE 

INTRODUCTION 

 
Often it is desirable to create a test with several levels of scales; higher order 

scales and the subscales of which they are comprised.  A common example is the Child 

Behavior Checklist, which consists of an Internalizing Symptoms Scale and an 

Externalizing Symptoms Scale.  Each of these higher order scales is composed of smaller 

subscales, such as the withdrawal/depression scale.  This technique allows psychologists 

to describe behavior in general and specific terms without performing any new tests.  One 

of the primary methods used to determine this structure of subscales and higher order 

scales is Exploratory Factor Analysis (EFA).  When the scales of a test are nested, each 

level must be independently verified.  This is accomplished by carrying out an initial 

factor analysis to extract the primary factors, or subscales, and then executing a second 

factor analysis on factor scores from the initial analysis.  The factor analysis of factor 

scores is a special case called higher order factor analysis (HOFA).  Because higher order 

factor analysis is performed on derived factors, instead of variables, the number of 

“variables” in the HOFA will always be significantly smaller than the number of 

variables in the preliminary.  As a result, the ratio of variables to factors in HOFA is 

always smaller.  Little research has been done examining the specific situation of HOFA. 

However, HOFA is a special case of primary EFA therefore basic EFA research is 

applicable to the special case of HOFA. This primary EFA research indicates that a low 

variables to factor ratio (the special case of HOFA) poses a threat to the validity of some 

of the techniques used to determine the number of factors to extract (Velicer, Eaton, & 

Fava, 2000; Zwick & Velicer, 1986). 
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Empirical Evidence regarding Under- and Over- Extraction of 

Factors 

The decision of how many factors to extract is one of the most important 

decisions a researcher makes during EFA.  Empirical evidence from Monte Carlo Studies 

suggests that there is an ideal number of factors.  Furthermore, this evidence suggests that 

under- and over-extraction present their own unique threats to the construct validity of a 

measure.  These negative effects of under- and over- extraction are worse when the 

number of factors is low (Fava & Velicer, 1992, 1996).  Understanding that the number 

of factors is almost always low in HOFA, one could extrapolate that the results of miss 

extraction would be especially detrimental. 

Under-extraction is generally agreed to be the most severe case of miss-extraction 

(Cattell, 1978; Gorsuch, 1983; Thurstone, 1947).  The ideal factor consists of a group of 

highly correlated items measuring a single and specific construct.  Under-extraction 

creates hybrid factors that are really collections of loosely associated items representing a 

number of different constructs. Again this would  pose a significant threat to the construct 

validity of a factor.  

Under extraction also threatens a factors accuracy and utility.  Increased factor 

error weakens a model’s fit and decreases its utility in larger models.  Wood, Tataryn, 

and Gorsuch (1996) examined the effects of under- and over- extract using Monte Carlo 

data.  Error in factor loadings, defined as deviation from true factor loading, increased 

significantly with each factor that was under-extracted.  Fava and Velicer (1996) also 

used Monte Carlo data to examine the effects of under-extraction.  They found that factor 
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scores significantly changed when factors were under-extracted, especially when the 

number of factors was low, as it is in the special case of HOFA. 

Over-extraction also poses a threat to the clarity and validity of EFA results.  

Over-extraction splinters factors, and while this leaves the true factors relatively 

unaffected, it creates factors that are redundant or, worse, fail to represent a true 

construct.  Wood, Tataryn, and Gorsuch (1996) found that factor loadings were relatively 

unaffected by over extraction, except when there was only one true factor in the data.  In 

which case, the difference between true factor loading and calculated factor loading 

significantly increased.  This suggests that in most situations over-extraction has no 

influence over individual item’s relation to a factor, and therefore a researcher’s 

conceptualization of that factor.  However, over-extraction can be harmful in other ways. 

Fava and Velicer (1992) found that over-extraction significantly lowered factor scores 

when the sample size was low or the number of factors small, as it is in the case of most 

HOFA.  Lowered factor scores decrease one’s ability to capture all the variance within a 

factor, thus decreasing the factors reliability and its usefulness as a component in a larger 

model.  

Fava and Velicer (1992) also discovered that the impact of over-extraction was 

moderated by the strength of the factor structure in the population.  A strong factor has 

high correlation between its items and very low correlations between its items and other 

items.  The stronger the factor structure, the more robust the factors are to the effects of 

over-extraction.  Factor structure strength is operationalized as saturation, a number 

derived from the strength of the item loadings on a factor.  In Monte Carlo data the 

saturation is a predetermined setting and the data is created so each item in a factor loads 
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at the saturation point.  In respondent-generated data a comparable rating can be derived 

by taking the average of the loadings of each item on each factor.  Like factor loadings 

this number will vary from zero to one.  Respondent-generated data seldom produces 

factor saturations as high as Velicer and Fava used to represent their high saturation 

condition, .8.  Respondent-generated data is more often slightly above the range Velicer 

and Fava called low saturation, .4.  

Both Wood, Tataryn, and Gorsuch (1996) and Fava and Velicer (1992) used 

Monte Carlo data with unambiguous loadings and highly saturated factors; thus, the 

effects of over-factoring may have been underestimated.  Fava and Velicer themselves 

noted that over-extraction is likely to have a more negative impact when the factor 

structure is more complex, with variables that load on different factors and correlate with 

variables on other factors.  This is a common condition in respondent-generated data; an 

examination of over-extraction with respondent-generated data is necessary.  For this 

reason, Monte Carlo data will not be used in this study.  

 

Established Number of Factor Procedures 

Due to the significant impact of extracting an inappropriate number of factors, 

several different methods for determining the proper number of factors have been 

established and studied.  Minimum Average Partial, and Parallel Analysis (Velicer, et al., 

2000; Zwick & Velicer, 1982, 1986) are the most established and accurate methods.  

Several studies have examined the accuracy and consistency of these methods when used 

in general EFA.  However, no research appears to test the use of these procedures in 

HOFA.  The current evidence from primary EFA studies suggests that the performance of 
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these techniques may suffer under the reduced variables and reduced factor conditions of 

HOFA.  

 

Minimum Average Partial (MAP) 

The MAP procedure (Velicer, 1976) is based on the theory that the proper number 

of factors will explain the most systematic variance in a correlation matrix.  Removing 

systematic variance removes the co-variance among items, thus decreasing the 

correlations among items.  Once all the systematic variance has been extracted, removing 

further variance eliminates noise in the data, causing correlations to increase. Therefore, 

removing the proper number of factors from a correlation matrix produces the lowest 

possible correlations in the set of possible correlation matrices that are derived from 

partialing out factors.  Accordingly, Velicer (1960) recommended that the cut-off for the 

proper number of factors be the number of factors which produced the smallest average 

squared partial correlation. Velicer, et al. (2000) provide a more in-depth explanation of 

the mathematical theory behind MAP. 

Zwick and Velicer (1982, 1986) demonstrated that the mean difference of MAP 

solutions from true solutions was consistently smaller than the mean difference for the 

Kaiser Rule and Scree test, making it the most accurate of the three.  When it was 

incorrect, MAP tended to under-estimate the number of factors, especially when sample 

size was small or when the number of items per factor was low, a particularly troubling 

finding when one extrapolates these findings to restricted number of items per factor in 

the case of HOFA.  
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Velicer Eaton and Fava. (2000) have attempted to improve the accuracy of the 

MAP procedure by using partial correlations raised to the fourth power instead of squared 

partial correlations (MAP4).  The original MAP procedure was accurate 95.2% of the 

time, while the MAP4 matched the accuracy of Parallel analysis at 99.6%.  Despite its 

accuracy, MAP4 is not currently available as an option in any statistical software 

package.  However, O'Connor (2000) has provided SPSS and SAS syntax that will 

reliably and proficiently perform the MAP procedures.  With slight modification, this 

syntax will perform MAP4. Due to the potential of the new MAP procedure, this study 

will examine both traditional MAP and MAP4. 

 

Parallel Analysis (PA) 

Parallel Analysis is a variation of the Kaiser Rule.  Horn (1965) noted that 

sampling introduces error that inflates eigenvalues which requires a corrected cut off.  

Classic PA corrects for error by deriving a cut off from the averages of eigenvalues 

derived from random data.  The investigator randomly generates at least three datasets of 

similar dimensions (number of variables and sample size) to the data set that is to be 

analyzed.  The average is calculated for each eigenvalue, and only factors that have 

eigenvalues larger than the average of randomly generated eigenvalues are considered 

significant.  

Classic mean eigenvalue cut-off PA has been shown to be superior to all other 

methods (Humphreys & Montanelli, 1975; Zwick & Velicer, 1986).  Zwick and Velicer 

(1986) found it accurate 99.6% of the time when factor saturation was .8 and 84.2% of 

the time at .5 saturation.  This was superior to traditional MAP (97.1% at .8 saturation 
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and 67.5% at .5 saturation) and Scree (71.2% at .8 saturation and 47.7% at .5 saturation).  

Problems occurred most often when the number of variables per factor was low, sample 

size was small, or factor saturation was low. Like MAP, this procedure’s weakness is the 

special conditions most common in HOFA.  

It has been noted that using the mean of random eigenvalues as the cut-off allows 

for a 50% chance that a random value could be considered significant.  This was 

empirically ratified when nearly two-thirds of the misses in Zwick and Velicer (1986) 

study were due to over-extraction.  Accordingly, several authors have called for a more 

conservative cut-off point. Since it is above the mean and corresponds to an alpha level of 

.05, the 95th percentile of the randomly generated eigenvalues is the most commonly 

recommended cut score (Buja & Eyuboglu, 1992; Glorfeld, 1995; Longman, Cota, 

Holden, & Fekken, 1989). Turner (1998) notes that this method leads to under-extraction 

and that a more accurate method is to recreate the cut-off for each factor. Accordingly, 

the common procedure has now been to take the average of each eigenvalue in the 

random data  Significant factors are those that produce eigenvalues greater than the 

average 95th percentile of the random eigenvalues, referred to in this study as PA95. 

While there has been a good deal of theoretical discussion on these variations of PA95, 

no study has empirically compared them to the original PA.  

Throughout the years several alternatives to randomly generating multiple data 

sets have been developed.  A number of different regression techniques have been  

created  to estimate the mean (Allen & Hubbard, 1986; Lautenschlager, Lance, & 

Flaherty, 1989) and 95th percentile (Longman, et al., 1989) of randomly generated 

eigenvalues.  There are also a number of tables that have been produced for extrapolating 
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mean (1989) and 95th percentile (Buja & Eyuboglu, 1992; Cota, Longman, Holden, & 

Fekken, 1993) eigenvalues.  Velicer Eaton and Fava (2000) found that these alternatives 

were less accurate than randomly generated eigenvalues and had a limited application.  

While there is currently no computer software that performs PA by default, simple SPSS 

and SAS syntax for PA and PA95 have been published (Hayton, Allen, & Scarpello, 

2004; O'Connor, 2000).  Whatever advantages alternate implementations of PA may offer 

pale when one considers the relative ease with which the most accurate and applicable 

implementation of PA, random data generation, can now be performed.  As a result, the 

present investigation will only compare the random data generation versions PA and 

PA95. 

 

Alternatives to the Established Procedures 

Throughout the years several alternate answers to the number of factors question 

have been developed and explored. Some of these alternate methods may prove useful in 

the conditions of reduced variable to factor ratio that is common in  HOFA.   

 

Kaiser Rule 

The Kaiser Rule (Kaiser, 1960), based on Guttman’s (1954) work, recommends 

that any factor with an eigenvalue greater than one be considered significant. Numerous 

studies have shown this method to consistently over-factor by as many as three to six 

factors (Gorsuch, 1980; Horn, 1965; Lee & Comrey, 1979; Velicer, et al., 2000; Zwick & 

Velicer, 1982, 1986).  Due to the overwhelming evidence of its inaccuracy and the 

availability of reasonably easy and far more accurate alternatives, it use cannot be 
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recommended.  Despite this, the Kaiser Rule remains the most commonly used procedure 

for determining the number of factors to extract, and the default in many computer 

programs (Fabrigar, Wegener, MacCallum, & Strahan, 1999; Hayton, et al., 2004).  

 

Figure 1. Scree Plot Example  

 

Scree Plot 

Unlike other procedures, the scree test provides an easy-to-understand visual 

approach to determining the number of factors.  Catell (1966) noted that significant 

factors were evident in plots of eigenvalues.  Factors that explain random and therefore 
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similar amounts of variance have very similar eigenvalues that create a straight horizontal 

line when graphed. Conversely, factors that explain unique systematic variance tend to 

have larger eigenvalues that rise above the horizontal line created by the random factors, 

see Figure 1 for an example.  All the factors one could draw a line through, going from 

right to left, are considered inconsequential, and those that are above the line are 

considered significant.  Cattell (1978) provides an in-depth explanation of this procedure, 

including solutions to ambiguous graphs.  

Standard statistical software that performs factor analysis will print a scree graph.  

The scree test is more accurate than all the other “easy” alternatives (Cattell & 

Vogelmann, 1977; Cliff & Hamburger, 1967; Hakstian, Rogers, & Cattell, 1982).  The 

relatively more labor intensive Parallel Analysis and Minimum Average Partial are the 

only procedures that have been shown to be more accurate (Velicer, et al., 2000; Zwick & 

Velicer, 1982, 1986).   

The scree test is not without weakness; it tends to overestimate the number of 

factors. Overestimations occur especially when the sample size is small, there are a large 

number of factors, or the factor pattern is simple (no significant cross loading or a large 

number of factors) (Hakstian, Rogers, & Cattell, 1982).  However, these situations are the 

opposite of the special HOFA conditions (low number of variables per factor, low 

number of factors), indicating that it may be a good alternative for HOFA.  

Unfortunately, the greatest weakness of the scree test is that it is particularly subjective 

and may lead to a confirmation bias (Crawford & Koopman, 1979); this weakness would 

also apply to HOFA. Velicer, Eaton, and Fava (2000)  have recommended that the scree 

test only be used as an adjunct to more objective and accurate procedures.  Due to the 
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scree test’s subjectivity, it would be prudent to apply this cautionary advice to HOFA, 

never-the-less the procedure may maintain some utility in the HOFA situation. 

Cattell (1978) has noted that there may be several breaks, or scree, in a single 

scree plot. Anecdotal evidence suggests this may be caused by differing levels of factors.  

The first group might be the primary factors and the second group found after the first 

break might be the secondary factors, and so on and so on.  Thus, by examining the 

various breaks one may be able to identify both the secondary and primary factors by 

examining one scree plot.  Porritt and Boyd (2010) performed a pilot study of these 

methods, in which the higher multi level methods were able to identify the factor 

structure in 3 of 4 data sets.  In addition to studying traditional scree methods this study 

will further examine the potential of multi-level scree methods. 

 

Factor Replication (FR) 

 Everett (1983) proposed that the proper number of factors was the number that 

best replicated across different samples.  He determined this using the coefficient of 

comparability (Nunnally, 1978), which he notes is comparable to the coefficient of 

invariance (Pinneau & Newhouse, 1964) for the special case of repeated variables and 

different subjects.  This procedure begins with executing an exploratory factor analysis 

on random splits of the data set.  The factor scores from each half of the data set are than 

correlated.  The correct number of factors is the number for which all factors correlate 

across subsamples above .9.  

McCrae and Costa (1987) successfully used the Everett procedure’s to identify 

the five factors in their NEO inventory.  However, Lanning (1994) experienced 
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difficulties when using the Everett procedure to identify factors in the California Adult Q 

test.  

Walkey and McCormick (1985b) have also used the logic of replicating factors 

across subsamples of data.  They judged the replicability of factors using Catell’s s index 

(Cattell, Balcar, Horn, & Nesselroade, 1969) because it provided different estimates for 

hyperplane cutoffs.  They derived the s index using their own FACTOREP computer 

program (Walkey & McCormick, 1985a) and successfully identified a three factor 

structure in their data.   

As a result of his difficulties with the Q sort Lanning (1996) performed a study 

comparing MAP and Everett’s Factor Replication.  Hefound that MAP and factor 

replication provided comparable results until the subject to item ratio reached 10:1, at 

which point factor replication began to grossly over-estimate the number of factors.  

Based on these findings Lanning asserts that replicability is different from 

dimensionality. He concluded that the problematic FR ought to be dropped in favor of 

MAP.  However, one must ask what the point of finding non-replicable dimensionality is.  

Dimensionality may be statistically significant in a given sample but it fails to have any 

practical significance if it does not replicate across other samples or subsamples of the 

same data.  A stricter standard like replication may safeguard against dimensionality that 

is merely an artifact of a given sample, sentiments that have been echoed by Loehlin 

(2004). Lanning’s primary assertion is that FR should be abandoned for MAP, a measure 

of dimensionality that is not susceptible to sample size.  However, MAP tends to select 

too few factors when the subject to item ratio is low, as it is in HOFA. On the other hand, 
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FR is likely to perform well under HOFA conditions because subject to item ratios in 

HOFA will seldom, if ever, reach 10:1  

It is also possible that Everett’s original criterion of correlations above .9 is not 

strict enough. A given factor can correlate highly with more than one other factor in this 

case a smaller number of factors would be more appropriate since it combines the highly 

correlated factors multiple factors into one cohesive factor. To this end, Boyd (reference 

needed) has recommended a modified criterion of accepting only factors that correlate 

across subsamples above .9 and have off-diagonal factors that do not come within .08 of 

the diagonal correlation. It may well be that this improved version of FR is better suited 

to HOFA conditions than is MAP.  

 

Salient Loadings Criteria (SL) 

Wrigley (1960) has proposed that the number of factors be determined by 

examining how the variables load on each factor.  The proper solution is the one in which 

every extracted and rotated factor contains at least two variables that load highest on that 

particular factor.  This is derived through a series of factor analysis that begins with an 

intentional over-extraction and ends when the proper solution is found.  Howard & 

Gordon (1963) have provided an applied example of this procedure.  While little 

empirical research has been done in regards to this method, it has great potential because 

it provides a good balance between the judgment of the researcher and a hard 

mathematical rule.  Gorsuch (1997) has noted this potential and recommended use of this 

procedure, especially in item analysis.  
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Hypothesis 

 Determining the number of factors in HOFA is particularly problematic 

since the only techniques validated by the empirical research, MAP and PA (Velicer, et 

al., 2000), are affected by decreases in the ratio of  variables to factors (Turner, 1998; 

Zwick & Velicer, 1986).  It is predicted that traditional methods such as PA and MAP 

will  drop below 90% accuracy under HOFA conditions, while non-traditional methods 

such as scree plots, factor replication and salient loadings will continue to correctly 

identify the proper number of factors in at least 90% of the datasets. 
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CHAPTER TWO 

METHOD 

 
Data 

Monte Carlo data often contains clearer factors that do not fully capture the 

nuances and complexities of respondent-generated data (Zwick & Velicer, 1986).  In an 

attempt to more realistically apply these techniques this study used respondent-generated 

data from tests with previously verified factor structures.  Five established tests with three 

different sizes of higher-order factor structures were used.  Small factor structures, 

defined as tests that only have one higher order factor, were represented by the Outcome 

Questionnaire-45 (OQ-45), and the Wechsler Adult Intelligence Scale – Third Edition 

(WAIS-III). Medium factor structures, with more than one but less than four higher order 

factors, were represented by the Child Behavior Checklist/6-18 (CBCL).  Large 

structures, with four or more higher-order factors, are represented by the International 

Personality Item Pool NEO (IPIP-NEO), and the 16PF.  All analyses were performed on 

the pre-established primary factor scores created by following the scoring directions in 

the manual for each test.   

 

Outcome Questionnaire 45 

The Outcome Questionnaire 45 (OQ-45) is a 45 item, 5-point Likert, symptom 

inventory designed to measure outpatient psychotherapy outcomes.  The factor structure 

of three subscales and one general scale has been repeatedly replicated across different 

cultures (Coco et al., 2008; de Jong et al., 2007).  A data set of 4,516 participants 
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collected from counseling center clients seen by 527 therapists working at 40 university 

counseling centers throughout the United States was used.   

 

Wechsler Adult Intelligence Scale 

The Wechsler Adult Intelligence Scale – Third Edition (WAIS III) is one of the 

most established and widely used measures of intelligence, with 14 subtests of items 

administered verbally to individual respondents.  Its factor structure and invariance, of 

four primary factors and one higher order factor, has been well established (Bowden, 

Weiss, Holdnack, & Lloyd, 2006; Taub, McGrew, & Witta, 2004).  A 1,250-subject 

subsample of the WAIS-III normative sample (The Psychological Corporation, 1997) 

was obtained.  

 

Child Behavior Check List/ 6-18 

The Child Behavior Check List/ 6-18 (CBCL) is a 140 Likert item questionnaire 

designed to measure psychological symptoms in children.  It classifies symptoms into 

eight narrow-band syndromes and two higher categories, internalizing and externalizing. 

Three of the primary subscales were dropped from the HOFA because they crossload too 

strongly on both factors.  The results are two higher order factors derived from five 

primary factors.  This factor structure has been replicated with children who have serious 

emotional disturbances (Dedrick, Greenbaum, Friedman, & Wetherington, 1997), group 

care workers (Albrecht, Veerman, Damen, & Kroes, 2001) and across 30 different 

cultures (Ivanova et al., 2007).   A sample of 4,994 subjects from the normative sample 

was purchased.  
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The International Personality Item Pool NEO 

The International Personality Item Pool NEO (IPIP-NEO) is a public measure of 

personality derived from the International Personality Item Pool, a free to the public pool 

of items designed to measure personality traits.  The IPIP-NEO is meant to measure the 

same five personality factors as the NEO-PI: Extraversion, Agreeableness, 

Conscientiousness, Neuroticism, and Openness to Experience (Goldberg, 1999).  

Mimicking the NEO-PI, each of the traits is comprised of six facets.  Thus there are 30 

primary factors and 5 higher order factors. The Higher order factor structure has been 

replicated across culture (Mlacic & Goldberg, 2007), gender and ethnicity (Ehrhart, 

Roesch, Ehrhart, & Kilian, 2008), and sexual preference (Zheng et al., 2008).  The 

primary factors have not been empirically verified, but have been theoretically derived to 

match those of the NEO-PI.  A sample of 20,993 internet respondents (Johnson, 2005) 

was used. 

 

16PF 

The 16PF is one of the most widely used nonclinical measures of personality.  It 

was one of the first tests to be created using factor analytic procedures, and its sixteen 

primary and five secondary factor structure has been well established (Aluja, Blanch, & 

García, 2005; Bonaguidi, Trivella, Michelassi, & Carpeggiani, 1994; Byravan & 

Ramanaiah, 1995; Cattell & Cattell, 1995).  A data set of parceled items from 4,405 

respondents was generously loaned by IPAT Inc. for this study.  
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Sample Creation 

In the interest of creating as many replications as possible while maintaining 

sufficient power, the larger data sets were divided into smaller data sets by randomly 

sampling enough participants to establish a ratio of items to participants that was close to 

1:10.  Since there are only 14 subtests on the WAIS, that data set was split into samples 

of 200 participants. Saturations for each subsample were obtained by averaging the 

significant factor loadings across all the factors.  Significant factor loadings were defined 

as items that load above .3 on a given factor and do not have loadings on any other factor 

that come within .08 of the significant loading.  Table 1 shows the average statistics for 

each group of subsamples.  

 

Table 1 

Descriptive statistics for subsamples. 

Size  I:P ratio  Saturation 

   Mean  SD  Mean  SD  Mean   SD 
# of 

Samples

OQ‐45  452  18.95  1:10  0.00  0.84  0.12  10 

WAIS III  208  15.13  1:14  0.00  0.89  0.01  6 

CBCL  1,249  20.66  1:11  0.00  0.79  0.01  4 

IPIP‐NEO  2,999  42.18  1:09  0.00  0.64  0.03  7 

16pf  1,697  28.00  1:08  0.00  0.67  0.00  3 

 

 

Procedures 

 Basic descriptions of procedures are provided here; see Appendix A for more 

detailed instructions regarding implementation of procedures in SPSS. The original 

Minimum Average Partial was carried out using the syntax provided by O’Conner 
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(2000). Fourth-Power Minimum Average Partial (MAP4) followed the same procedure 

with O’Conner (2000) syntax altered to raise the trace of the matrix to the fourth-power 

instead of squaring it. 

Parallel analysis and PA95 were performed by obtaining fiftieth percentile and 

95th percentile cut-off eigenvalues using O’Connor’s (2000) syntax with 100 random data 

sets as recommended by Velicer, Eaton, and Fava (2000). These eigenvalues were than 

compared to the eigenvalues derived from each dataset. The Kaiser Rule was 

implemented using the SPSS roots > 1 option. This procedure is the default in SPSS and 

automatically extracts all factors with eigenvalues greater than one.  

Scree plots were produced from the scree plot option of the Factor Analysis 

procedure in SPSS. Tradition scree plots were produced from a factor analysis of the 

calculated factor scores from each subsample and mulit-level scree plots were produced 

from the raw data of each subsample. Following the procedures from the pilot study 

(Porritt & Boyd, 2010),  plots of the first 50 eigenvalues were used for scales with more 

than 50 questions. Both types of scree plots were rated by two independent Judges who 

had received instruction in a graduate level psychometrics course and read a tutorial by 

Catell  (1978). Inter rater reliability was r=.96 for traditional scree and r=.4 for multi 

level scree. Disagreements were settled by a third judge.  

Factor replication was carried out by randomly splitting the data using the uniform 

function in SPSS. Each subsample was then subjected to a series of EFA’s using principal 

axes extraction with promax (3) rotation and a number of factors decrementing by one, 

beginning with twice the known number of factors.  The factor scores from both 

subsample factor analyses were saved in the combined sample, and a correlation matrix 
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was created.  According to Boyd’s rules (Boyd, 2001) replicating factor correlated across 

the subsamples at .7 or higher, and had no other correlation within.08.  

For salient loading criteria the data were exposed to a series of Factor Analysis 

using principal axis extraction with Varimax rotation.  The series began by extracting 

twice the known number of factors, and continued with the number of factors being 

iteratively reduced by one until the analysis yielded a satisfactory structure.  Satisfactory 

structures were defined as a set of factors each of which contained at least two items 

loading more than .5, or three items loading more than .4 with none of the salient items 

loading on another factor within .13. 

 

Evaluation Criteria 

For the sake of consistency of the literature, the results were evaluated using the 

same criteria as Velicer, Eaton, and Fava (2000): percent correct, mean difference and 

standard deviation of the difference.  These measures adequately capture overall 

accuracy, amount of discrepancy, and consistency of each technique. 

 Percent correct indicates the overall accuracy of a technique. Solutions were 

considered correct when they identified the known number of factors and incorrect when 

they failed to do so.  The percent correct was determined by dividing the number of 

correct solutions by the number of the data sets. 

Mean difference examines the amount of discrepancy in a technique as defined by 

how far off the technique estimates on average.  The amount of discrepancy for each 

number of factor solutions is determined by subtracting the known number of factors 

from the proposed number of factors.  Negative values indicate under-extraction, positive 
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values indicate over-extraction and values of zero indicate a correct answer.  The mean 

difference is the mean of all of these estimates across a set of samples. Technique 

consistency was measured using the standard deviation of these difference scores.  
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CHAPTER THREE 

RESULTS 

 
Most analyses for the study were conducted in SPSS version 17.0. Primary factor 

scores from the subscales were calculated using the instructions found in the manual for 

each test. Factor analysis was then performed on these scores, using the various number-

of-factor methods.  

 

Percent Correct 

Table 2 displays the calculated percent correct for each method.  Parallel analysis 

was the most accurate; each version had overall accuracies of 90% or more.  The Kaiser 

rule, both versions of MAP, and salient loadings criteria were all accurate in 77% of the 

samples and traditional Scree was slightly less accurate at 63%.  Multilevel scree and 

factor replication were the least accurate with percent correct values at or below 30%.  

The OQ-45 and WAIS represented small factor structures as defined by a number 

primary factors converging into a single general factor.  Every method identified these 

structures with the exception of factor replication and both versions of the scree plot.  

Traditional Scree was the most accurate of the methods that failed to perfectly identify 

the structures at this level; identifying the OQ-45’s structure 100% of the time and the 

WAIS’s structure 83%.  Multi-level scree was relatively accurate in the WAIS 

subsamples and inaccurate in the OQ-45 subsamples.  Factor replication correctly 

identified the OQ-45 structure 90% and failed to correctly identify the WAIS-III structure 

in any of the subsamples. 
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Table 2 

Percent correct. 

 Test  
# of 

Samples MAP MAP4 PA PA95 Kaiser Scree 
ML 

Scree FR SL 
           
Overall  30 77 77 93 97 77 63 23 30 77 
 
OQ-45  

 
10 100 100 100 100 100 100 20 90 100 

 
WAIS-III  

 
6 100 100 100 100 100 83 83 0 100 

 
CBCL  

 
4 0 0 75 75 100 75 0 0 100 

 
IPIP-NEO  

 
7 100 100 100 100 43 0 0 0 43 

 
16pf  

 
3 0 0 67 100 0 0 0 0 0 
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The mid-sized factor structures, identified as structures with two to four higher 

order factors, was represented by the CBCL.  The Kaiser Rule and salient loadings 

criteria successfully identified the proper number of factors for all of the CBCL 

subsamples.  Traditional scree and both versions of PA only miss-identified the CBCL 

factor structure in one of the subsamples, for an accuracy of seventy five percent.  

Multilevel scree, factor replication and both versions of MAP failed to correctly identify 

the number of factors in any of the subsamples. 

The IPIP-NEO and 16pf represented large factor structure defined as structures 

with five or more higher-order-factors.  Both versions of MAP and both versions of PA 

were able to correctly identify the number of factors in 100% of the IPIP-NEO 

subsamples.  Both versions of MAP failed to correctly identify the number of factors in 

any of the 16pf data sets; ninety-fifth percentile PA produced correct solutions for 100% 

of them and traditional PA only miss-identified one subsample.  The Kaiser rule and 

Salient ladings criteria accurately identified the IPIP-NEO structure in 43% of the 

subsamples but failed to identify the correct number of factors in any of the 16pf 

subsamples.  Factor replication and both versions of scree plots failed to properly identify 

the number of factors in any of the subsamples with large factor structures. 

 

Mean Difference 

Table 3 presents the calculated mean differences. Overall traditional PA did not 

have a mean difference.  Ninety-fifth percentile PA and Salient Loadings criteria both 

slightly under extracted and both versions of MAP moderately under-extracted.  The 
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Kaiser rule moderately over-extracted.  Factor replication and both versions of the scree 

severely over-extracted, each with a mean difference of at least one factor. 

With an under extraction for one of the WAIS III subsets, multi-level scree was 

the only method to under-extract at the small factor structure level (OQ-45 and WAIS 

III).  Factor Replication and multi-level scree were the only two methods to over-extract 

by an average of one factor at the uncomplicated level.  All of the other methods either 

had a perfect accuracy or slightly over-extracted.  Most methods under extracted the  

mid-sized factor structure of the CBCL subsamples.  The only methods that over-

extracted for the CBCL subsamples were the traditional scree and Factor replication.  

Factor Replication and both versions of MAP were the only methods to miss by one or 

more on average.  Every method that was inaccurate for the IPIP-NEO  over-extracted.  

Likewise, every inaccurate method over-extracted for the 16PF with the exception of the 

salient loadings criteria and both versions of MAP which under-extracted by an average 

of two factors.  
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Table 3 

Mean difference.  

  MAP MAP4 PA PA95 Kaiser Scree 
ML 

Scree FR SL 
 
Overall -0.33 -0.33 0.00 -0.03 0.23 1.47 1.23 1.33 -0.07 
 
OQ-45 0.00 0.00 0.00 0.00 0.00 0.00 1.60 0.10 0.00 
 
WAIS III 0.00 0.00 0.00 0.00 0.00 0.17 -0.17 1.16 0.00 
 
CBCL -1.00 -1.00 -0.25 -0.25 0.00 0.25 -0.50 1.50 0.00 
 
IPIP-NEO 0.00 0.00 0.00 0.00 0.57 4.86 3.29 2.86 0.57 
 
16pf -2.00 -2.00 0.33 0.00 1.00 0.33 0.33 2.00 -2.00 
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Standard Deviation of the Difference 

The calculated standard deviations of the difference scores are in Table 4.  Both 

version of PA had the smallest overall variance in deviations.  The Kaiser rule, salient 

loadings criteria, and both versions of MAP had moderate levels of variation.  Multi-level 

scree and factor replication had overall standard deviation over one, and both versions of 

the scree plot had the most variance with an overall standard deviation larger than two. 

When factor structures were small (OQ and WAIS) standard deviations of errors for 

techniques with less than perfect accuracy were below 0.5 with the exception of 

multilevel scree, which had a standard deviation of larger than 1.5 within the OQ-45 

samples alone.  All less than perfect standard deviations for subsamples of mid-sized 

factor structure (CBCL) were near 0.5 except for multi level scree which had a standard 

deviation of one.  In the subsamples with large factor structures (IPIP-NEO, 16PF) all 

less than perfect standard deviations for the 16pf were between 0.5 and one with the 

exception of multi-level scree and factor replication, which had standard deviations over 

two. Deviations among IPIP-NEO subsamples were much higher.  Traditional PA was 

the only method without perfect accuracy to have a standard deviation under 1.  PA95 

had offsetting errors and produced a deviation of zero.  Despite producing the incorrect 

solution every time, the Kaiser rule and salient loadings criteria were consistent without 

any standard deviation in difference scores for the IPIP-NEO subsamples.  All other 

methods had standard deviations of one or greater, both versions of the scree plot had 

standard deviations over two.  
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Table 4 

Standard deviation of difference.  

  MAP MAP4 PA PA95 Kaiser Scree 
ML 

Scree FR SL 
 
Overall 0.71 0.71 0.26 0.18 0.43 2.16 1.94 1.24 0.74 
 
OQ-45 0.00 0.00 0.00 0.00 0.00 0.00 1.51 0.32 0.00 
 
WAIS III 0.00 0.00 0.00 0.00 0.00 0.41 0.41 0.41 0.00 
 
CBCL 0.00 0.00 0.50 -0.50 0.00 0.50 1.00 0.58 0.00 
 
IPIP-NEO 0.00 0.00 0.00 0.00 0.53 0.69 1.70 1.07 0.54 
 
16pf 1.00 1.00 0.58 0.00 0.00 2.08 2.31 1.00 0.00 
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In order to provide a clearer picture of overall technique consistency and 

accuracy, Table 5 provides a breakdown of the percentage of each method’s deviation as 

a fixed value from the correct number of factors.  Both version of PA were accurate and 

consistent, they were correct over 90% of the time and never missed by more than one 

factor.  The Kaiser Rule and salient loadings criteria were moderately accurate (correct at 

least 70% of the time) and consistent (never off by more than one factor).  Both versions 

of MAP were moderately accurate (correct at least 70% of the time) and inconsistent 

(missed by more than one factor at least once).  Factor replication and both versions of 

scree plots were neither accurate nor consistent; they were correct less than 70% of the 

time and had miss extracted three or more factors at least once.  
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Table 5 

Percentage of deviations as a fixed value from the correct solution. 

  
 

MAP MAP4 PA PA95 Kaiser Scree 
ML 

Scree FR SL 
+>3  0 0 0 0 0 27 13 7 0 
  +3  0 0 0 0 0 0 7 13 0 
  +2  0 0 0 0 0 3 20 17 0 
  +1  0 0 3 0 23 10 17 33 13 
    0  77 77 95 97 77 60 23 30 77 
   -1  17 17 3 3 0 0 20 0 10 
   -2  3 3 0 0 0 0 0 0 0 
   -3  3 3 0 0 0 0 0 0 0 
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CHAPTER FOUR 

DISCUSSION 

 
The primary hypothesis that traditional techniques will break down under HOFA 

conditions was partially supported by the data.  Both Versions of MAP were accurate in 

three sets of subsamples, but inaccurate with the smallest item to factor ratios, the CBCL 

and the 16pf. Likewise, the only errors committed by the two PA methods were in these 

two sets of subsamples.  Of the alternative methods, only two showed promise.  The 

Kaiser rule and salient loading criteria were able to correctly identify the number of 

factors in all of the CBCL subsamples, something none of the other methods managed to 

do.  However, these methods cannot be viewed as perfect HOFA alternatives.  While they 

were 100%  accurate in the three simpler sets of subsets, they lost all accuracy in the tests 

with a larger number of primary factors.  Despite this weakness, they may serve as a 

useful substitute or concordant methods when both the item to factor ratio and the 

number of primary factors (or items) are low.  

This study was unable to replicate Velicer, Eaton, and Fava’s (2000) findings that 

MAP4 was more accurate than MAP.  Rather the two methods had identical 

performances.  This may be due to the limited range of the data used in this study.  

Perhaps, both methods are equally susceptible to limited item to factor ratios.  Had a 

broader range of conditions and data types been used a difference may have emerged.  

Further examination is needed before any certain conclusions are drawn about MAP4.  

While this study has exposed a weakness of MAP it has not disproved the technique’s 

utility.  MAP remains the second most accurate and consistent method when working in 
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data that does not have small item to factor ratio’s, and it use in these situations should in 

no way be impacted by the results of the current study.  

There does appear to be a difference between the two versions of PA.  In 

accordance with theory and research PA95 appears to be more accurate but have a 

tendency to under extract when it is wrong.  However, the current study does not have 

enough replications to draw any solid conclusions.  Prior to making any firm claims 

further research will need to be conducted with a larger number of replications.  PA and 

PA95 were the only procedures capable of identifying the number of factors in the 16pf 

sample.  Despite weakness when the number of items is low, PA methods remain the 

most accurate methods over all.  Their continued use in all situations is recommended.  

However, when the number of items is low, it may be useful to supplement the PA 

findings with those of the Kaiser rule and salient loading criteria.   

It is surprising that the Kaiser rule performed so well in these situations.  While 

the limitations of the current data make it impossible to draw causal conclusions with any 

certainty, one may venture a hypothesis as to its unexpected success.  The transition from 

eigenvalues greater than one to smaller than one was more pronounced in the data with 

smaller factor structures.  As the number of factors increased this transition became more 

subtle.  It is likely that the noise in data with smaller numbers of factors is less present.  

This favors the simplicity of the Kaiser and simultaneously puts the PA methods at the 

disadvantage of overcorrecting for error that is not there.  This would explain the under 

extraction of the PA methods when number of factors is low.  Further work may reveal a 

threshold of the number of factors bellow which PA overcorrects and the Kaiser rule is 

more accurate. 
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It would seem that the clear jump in eigenvalues has contributed to the accuracy 

of the scree plot, which remained essentially unchanged under the HOFA conditions.  

However, this marked decline in HOFA eigenvalues is most likely due to the fact that 

most HOFA factor structures are non-complex factor structures.  Past research (Hakstian, 

et al., 1982) has established that the scree plot is less accurate when identifying non-

complex factor structures.  It is likely that this liability counter set the advantages thus 

resulting in an unchanged accuracy of the scree plot. 

Despite promising preliminary research (Porritt & Boyd, 2010) the multi-level 

scree techniques appears to be problematic.  It was the least accurate and least consistent 

method of all those examined.  This could be in large part due to the simpler factor 

structures in the current data.  It could also be that the addition of identifying multiple 

scree as opposed to one introduces too much ambiguity and subjectivity in a process that 

is already ambiguous and subjective. Baring further development the use of multilevel 

scree cannot be recommended at this time. 

Next to multi-level scree the factor replication method was the least accurate and 

least consistent method.  This may in large part be due to the large item to factor ratio.  

Past research has shown that the correlation method of factor replication tends to break 

down when item to factor ratio approaches 10:1 (Lanning, 1996).  Since all of the errors 

were over factor errors and these errors tend to occur when the number of items is high, it 

would appear that with high power the correlation method is too sensitive and selects 

insignificant factors.  This may be corrected with some sort of a weight or adjustment to 

the size of the data.  Perhaps correlation is the improper approach to factor replication in 

large data set.  Alternate factor replication criteria may produce better results.  It is 
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important to state that the failure of the current factor replication method does not 

disprove the theory of using factor replication to determine the number of factors.  It may 

be a perfectly tenable idea with an improper implementation.  Empirical methods for 

determining factor t invariance are still experimental.  It may just be a matter of 

developing and perfecting the correct factor replication standard before factor replication 

techniques can be applied to determining the proper number of factors.  

At this point, it is difficult to make a hypothesis as to what is driving the 

inaccuracy of the salient loadings criteria.  It consistently over factored for the IPIP-NEO 

and constantly under factored for the 16pf.  A larger study with more conditions is 

needed to ascertain exactly how the salient loadings criteria malfunction in exactly which 

situations.  Until than it appears that the salient loadings criteria is a useful method in 

cases where there are fewer than 5 higher order factors. 

The primary limitations of this study revolve around the use of respondent 

generated data.  Because of this choice, there were a number of variables (i.e. saturation 

and factor patter complexity) that were not directly controlled.  As a result, causal 

conclusions cannot be made with any degree of certainty.  All of the conclusions and 

observations of this study should be considered tentative until they can be verified in a 

more closely controlled experiment using Monte Carlo data.  What can be said with 

certainty is that current methods of answering the number of factors question do appear to 

have certain inconstancies, which have been observed in an applied setting with 

respondent generated data.  
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APPENDIX A 

DETAILED DESCRIPTION OF METHODS 

 
Kaiser Rule 

The Kaiser rule was implemented using the roots greater than option in SPSS. 

From the primary factor analysis window select extraction options. This will open the 

“Extraction Options” window as seen in Figure 2. Locate the roots greater than dialog 

box and enter a one, this will extract all factors with an eigenvalue grater than 1. It should 

be noted that this is the default option in SPSS.  

 

 

Figure 2. Extraction options in SPSS release 17.  
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Figure 3. Mulit-Level Scree Plot Example.  

 

Scree Plot 

SPSS will automatically produce scree plots for any factor analysis. Simply check 

the scree plot box in the extraction options window and a scree plot will be shown in the 

output window along with the other results from the analysis. A straight edge is then used 

to determine which points create a line and which points jump over the line. The initial 

point that departs from this line is the first one counted. Every other point after that is 

than counted as a significant factor, see Figure 3. In Multi-Level Scree one follows the 

same procedures for obtaining the scree plot and finding the first scree. The second scree 

is determined by using the first counted dot, which is the first dot that departs from the 

first scree, as the first dot in the new scree. Starting from this dot all subsequent dots that 

can be connected by a straight line form the new scree. Each scree must consist of at least 
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three dots.   This procedure is continued until the researcher can no longer find scree 

consisting of at least three dots that do not belong to any of the previous scree.  

 

Minimum Average Partial: Traditional and 4th Power 

 Despite its accuracy, Minimum Average Partial (MAP) is not currently available 

as an option in SPSS. However, O'Connor (2000) has provided syntax that will reliably 

and proficiently perform the MAP procedure (Figure 4). This syntax provides a print out 

of the average squared partial correlations for each iteration, identifies the lowest 

average, and prints out the proper number of factors.  Prior to running the syntax the 

researcher needs to change the underlined text on lines 1 and 2 to specify the proper list 

of variables for the analysis. Variables can be listed one by one, however, if the variables 

are located sequentially in the file without a break the researcher can use the name of the 

first variable the “to” command and the name of the last variable as is shown in this 

example. The researcher will also need to change the italicized text on lines 1 and 2 to 

specify a file location on their computer. This file name will correspond to a working file 

the program creates as it runs. The working file is used solely for internal processes of the 

syntax; the researcher will never need to look at the contents of these files and may 

choose to delete them after analysis. After making the appropriate changes to the syntax 

the researcher can than run the syntax, which will than print the results to the most 

recently used output window. 

 A sample of the O’Connor results print out can be seen in figure 5. The printed 

results begin with the eigenvaules of every possible factor, located under the heading 

“eigenvalues”. After the eigenvalues the researcher will find two columns under the 
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heading of  “Velicer’s Average Squared Correlations”. The first column indentifies the 

number of factors that have been partiled out of the matrix, the second column displays 

the average squared correlation of that particular partial correlation matrix.  The next  

 

  1   correlation var1 to var25 / matrix out ('C:\data.cor ') / missing = listwise. 
  2   factor var= var1 to var25 / matrix out (cor = 'C:\data.cor'). 
  3   matrix. 
  4   mget /type= corr /file='C:\data.cor' . 
  5   call eigen (cr,eigvect,eigval). 
  6   compute loadings = eigvect * sqrt(mdiag(eigval)). 
  7   compute fm = make(nrow(cr),2,‐9999). 
  8   compute fm(1,2) = (mssq(cr) ‐ ncol(cr)) / (ncol(cr)*(ncol(cr)‐1)))*(mssq(cr) -   
       ncol(cr)) / (ncol(cr)*(ncol(cr)-1)). 
  9   Loop #m = 1 to ncol(cr) ‐ 1. 
10  compute a = loadings(:,1:#m). 
11  compute partcov = cr ‐ (a * t(a)). 
12  compute d = mdiag( 1 / (sqrt(diag(partcov))) ). 
13  compute pr = d * partcov * d. 
14  compute fm(#m+1,2) = (mssq(pr) ‐ ncol(cr)) / (ncol(cr)*(ncol(cr)‐ 
       1)))*(mssq(cr) - ncol(cr)) / (ncol(cr)*(ncol(cr)-1)). 
15  end loop. 
15  * identifying the smallest fm value & its location (= the # of factors). 
16  compute minfm = fm(1,2). 
17  compute nfactors = 0. 
18  loop #s = 1 to nrow(fm). 
19  compute fm(#s,1) = #s ‐1. 
20  do if ( fm(#s,2) < minfm ). 
21  compute minfm = fm(#s,2). 
22  compute nfactors = #s ‐ 1. 
23  end if. 
24  end loop. 
25  print eigval /title="Eigenvalues". 
26  print fm /title="Velicer’s Average Squared Correlations". 
27  print minfm /title="The smallest average squared correlation is". 
28  print nfactors /title="The number of components is". 
29  end matrix. 

Figure 4. O’Conner, 2000 syntax for MAP procedure. 
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section, titled “The smallest average squared correlation is”, identifies the smallest of 

these average squared correlations in scientific notation. The number of factors 

corresponding to the smallest average squared correlation is printed under the title “The 

number of components is”. This final number is the answer to the number of factors 

question. All the researcher needs to do is make the proper alterations to the syntax, run 

the syntax and locate the number of components identified at the bottom of the output. 

After this number is ascertained the researcher may enter it into the fixed factors box in 

the extraction options window of SPSS(seen in Figure 2.) and their analysis’s will extract 

the allotted number of factors as determined by the MAP method.   Fourth Power 

Minimum Average Partial (MAP4) is executed in the exact same manner with slight 

alteration to the syntax. In order to perform calculations on correlations raised to the 

fourth power the researcher will need to multiply the squared correlations by themselves 

by making the alterations noted in bold on line 8 and 14.  Once these alterations have 

been made the procedure is carried out in exactly the same manner. 

 

Parallel Analysis and 95th Percentile Parallel Analysis 

There is currently no computer software that performs PA by default. However, 

since PA is a simple comparison of eigenvalues all one needs is a list of the proper 

randomly generated eigenvalues and a list of actual eigenvalues. Different version of 

SPSS syntax for the derivations of random eigenvalues have been published (Hayton, et 

al., 2004; O'Connor, 2000).  For this study the authors used the O’conner (2000) syntax 

as seen in Figure 6. Use of the O’Conner syntax requires the following alterations: the 
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bold text in line 4 needs to be changed to the number of cases in the current study and the 

bold text on line 5 needs to be changed to the number of variables in the current study.  

 

   Eigenvalues 

   3.990288544 
   2.618306738 
   1.656190431 
   1.538148488 
   1.056969062 
   1.025629138 
    .683235654 
    .638534459 
    .583514587 
    .537030801 
    .445813178 
    .423757352 
    .404280227 
    .386375541 
    .349172087 
    .338362996 
    .324390717 
 
Velicer’s Average Squared Correlations 
     .00000000     .05732359 
    1.00000000     .03775144 
    2.00000000     .02971211 
    3.00000000     .03065861 
    4.00000000     .03001044 
    5.00000000     .03589372 
    6.00000000     .04112202 
    7.00000000     .04975222 
    8.00000000     .06449293 
    9.00000000     .07960920 
   10.00000000     .10000192 
   11.00000000     .12936699 
   12.00000000     .16247694 
   13.00000000     .21542073 
   14.00000000     .29840434 
   15.00000000     .47179249 
   16.00000000    1.00000000 
 
The smallest average squared correlation is 
  10 ** -2   X 
   2.971210863 
 
The number of components is 
  2 
 
------ END MATRIX ----- 
 
Figure 5. Sample output of O’Conner’s MAP syntax. 
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1  set mxloops=9000 length=none printback=none width=80 seed = 1953125. 
2  matrix. 
3  * enter your specifications here. 
4  Compute Ncases = XXX. 
5  compute Nvars = XX. 
6  compute Ndatsets = 100. 
7  compute percent = 95. 
8 
9  * computing random data correlation matrices & eigenvalues. 
10  compute evals = make(nvars,ndatsets,-9999). 
11 compute nm1 = 1 / (ncases-1). 
12 
13 L oop #nds = 1 to ndatsets. 
14 *print / #nds /rlables= "nds". 
15 compute x = sqrt(2 * (ln(uniform(ncases,nvars)) * -1) ) &* 
16 cos(6.283185 * uniform(ncases,nvars) ). 
17 compute vcv = nm1 * (sscp(x) - ((t(csum(x))*csum(x))/ncases)). 
18 compute d = inv(mdiag(sqrt(diag(vcv)))). 
19 compute evals(:,#nds) = eval(d * vcv * d). 
20 end loop. 
21 * identifying the eigenvalues corresponding to the desired percentile. 
22 compute num = rnd((percent*ndatsets)/100). 
23 compute results = { t(1:nvars), t(1:nvars), t(1:nvars) } 
24 loop #root = 1 to nvars. 
25 *Print/ #root /rlabels="root". 
26 compute ranks = rnkorder(evals(#root,:)). 
27 loop #col = 1 to ndatsets. 
28 do if (ranks(1,#col) = num). 
29 compute results(#root,3) = evals(#root,#col). 
30 break. 
31 end if. 
32 end loop. 
33 end loop. 
34 compute results(:,2) = rsum(evals) / ndatsets. 
35 compute specifs = {ncases; nvars; ndatsets; percent}. 
36 print specifs /title="Specifications for this Run:" 
37 /rlabels="Ncases" "Nvars" "Ndatsets" "Percent". 
38 print results /title="Random Data Eigenvalues" 
39 /clabels="Root" "Means" "Prcntyle". 
40 end matrix. 
 
Figure 6. O’Connor (2000) syntax for PA.  
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If the researcher desires to change the number of random data sets computed they can 

alter the number on line 6. The syntax will automatically print out the mean and 95th 

percentile of the random eigenvalues. The researcher can select the percentile of 

eignevalues by changing the number on line 7.  

Once run the syntax will print out a three column report, as shown in figure 7.  

The information at the beginning verifies the specifications that have been made for this 

particular sample of eigenvalues including number of variables, number of cases, and 

number of random datasets. The following three columns present the pertinent 

information: the first column corresponds to the number of factors extracted, the second 

column is a list of the mean for random eiganvalues for number of extracted factors noted 

to the left, and the third column is eigenvalue at the chosen percentile. 

This output will need to be compared to the actual eiganvalues derived from your 

data.  Researchers can locate the derived eiganvalues in the SPSS output of any factor 

analysis of their data. Eigenvalues are presented in the box titled “Total Variance 

Explained” in the column titled “Total” under the heading “Initial eigenvalues” as 

highlighted in Figure 8.  The column directly to the left of the eignavalues provides the 

number of factors. After dirriving the random values using the O’Connor Syntax and the 

actual eignavlues using SPSS, the researcher compares the corresponding derived 

eiganvalue to the randomly generated eiganvlue. The derived eiganvalue for one factor is 

compared to random mean or percentile eiganvalue for one factor, and the derived 

eiganvalue for two factors is compared to random mean or percentile eiganvalue for two 

factors and so on. The proper number of factors is the number at which the random 

eigenvalues are larger than the derived eigenvalues.  
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Figure 7. Sample output from O’Conner (200) PA syntax. 
 
 

 
 
Figure 8. SPSS release 17 output with eigenvalues highlighted  
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Factor Replication 
 

There are numerous ways to determine the invariance or replication of factors 

across datasets including coefficients of invariance, coefficients of factor similarity, 

coefficient of congruence, and simple correlation(Cattell, et al., 1969; Derogatis, Serio, & 

Cleary, 1972; James E. Everett & Entrekin, 1980; Pinneau & Newhouse, 1964). For this 

study the authors used the simple correlation method. This method is based on the visual 

examination of the correlations between factor scores derived from identical factor 

analysis performed on random splits of the data. The proper solution is the number of 

factors that produces a correlation matrix in which every row and column has a 

correlation greater than .7 and does not have any other correlations in that row or column 

within .08.  

The first step in performing this type of analysis is to randomly split the data, this 

can be done by creating a randomly generated filter variable using the uniform function 

in SPSS. Once this randomly generated filter variable is created it can be used in a split 

file command to create two random subsets of the data. Analysis begins by performing an 

EFA , using principal axis extraction and promax rotation, that extracts twice the 

hypothesized number of factors from one of the random splits and saving the calculated 

factor scores. Factor scores can be saved in the form of new variables appended to the 

data set by checking the save factor scores option in SPSS. The same procedure is than 

replicated in the other half the data, being sure to save the factor scores. The saved factor 

scores from each split in the data are then correlated using the correlate function in SPSS. 

The resulting correlation matrix between the factors of the opposite data halves is then 

visually examined to see if it meets the proper criteria that every column has a correlation 
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greater than .7 and does not have any other correlations in that row or column that are 

within .08. It is expected that the first analysis will not produce a satisfactory correlation 

matrix. If it does not the researcher will decrement the number of factors extracted by one 

and replicate the procedure, until a satisfactory matrix is created. The number of factors 

that produces the first satisfactory matrix is the proper number of factors to extract. If the 

initial analysis produces a satisfactory matrix the researcher will increment the number of 

factors extracted by one and reproduce the process until an unsatisfactory matrix is 

produced. The number of factors extracted that produced the last acceptable matrix is the 

proper number of factors to extract.  

 

Salient Loading Criteria 
 

Salient loading criteria is based on a visual examination of the actual factor 

loadings of each individual variable. A satisfactory structure is defined as a set of factors 

ware each factor consists of at least one item loading more than .6,  two items loading 

more than .5, or three items loading more than .4. None of the salient items can have a 

loading on another factor that is higher than or within .13 of loading that would make a 

factor significant. Currently the only way to perform this procedure is to visually examine 

the rotated components matrix and identify these specific qualities.  Similar to Factor 

replication, the researcher will need to begin by performing an EFA, using principal axis 

extraction and varimax rotation, and extract more than the hypothesized number of 

factors; twice the hypothesized number is a good start but there is no concrete rule of 

thumb. The varimax-rotated factor matrix will than need the examined in order to 

determine if it meets the previously mentioned criteria. If it does not, the researcher will 
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decrease the number of factors extracted by one and replicate the procedure, until a 

satisfactory matrix is created. The number of factors that produces the first satisfactory 

matrix is the proper number of factors to extract. If the initial analysis produces a 

satisfactory matrix the researcher will increase the number of factors extracted by one 

and reproduce the process until an unsatisfactory matrix is produced. The number of 

factors extracted that produced the last acceptable matrix is the proper number of factors 

to extract.  
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