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ABSTRACT OF THE DISSERTATION 

 

Comparative Biology of Sympatric Red Diamond and 
Southern Pacific Rattlesnakes in Southern California  

by 

ERIC ALLEN DUGAN 
 

Doctor of Philosophy, Graduate Program in Biology 
Loma Linda University, March 2011 
Dr. William K. Hayes, Chairperson 

 

 I compared the biology of two sympatric rattlesnakes within the context of 

resource use and niche partitioning. Using radio-telemetry and mark-recapture involving 

passive integrated transponders (PIT) tags, I studied Red Diamond (Crotalus ruber) and 

Southern Pacific (C. oreganus helleri) Rattlesnakes in Chino Hills State Park, California, 

from March 2003 through March 2010. 

The first of three studies compared the two species in terms of home range size, 

movements, and mating phenology. Crotalus o. helleri occupied larger home ranges than 

C. ruber, and exhibited 1.9–2.8-fold greater movement distances (depending on year) 

than C. ruber. Mating phenology also varied, with C. ruber mating only in spring, and C. 

o. helleri exhibiting a spring and fall bi-modal mating system. 

The second study examined interspecific differential resource use. I compared 

both species along all four major niche axes (spatial, temporal, thermal, and diet) to test 

the general notion that sympatric vipers partition primarily macrohabitat, which contrasts 

with the general pattern in snakes of partitioning diet. Pianka's and Czekanowski's indices 

of niche overlap revealed modest overlap in macrohabitat and low overlap in diet; 
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however, diet may be influenced by macrohabitat and body size differences. The two 

species exhibited broad overlap of microhabitat, thermal, and temporal (seasonal and 

circadian) resources. Null model tests using Monte Carlo simulations indicated that only 

diet (prey size) overlap was significantly less than expected.  

My third study examined and described the diet of C. ruber throughout the 

species' range (C. o. helleri’s diet had been examined previously) based on trophic data 

collected from museum specimens, live animals from my Chino Hills study site, road-

killed snakes, opportunistic field observations, and existing literature. The diet of C. 

ruber consisted primarily of mammals (91.6%), but also included occasional lizards 

(7.5%) and birds, with no ontogenetic shift in prey type. Males averaged larger than 

females. Coastal snakes averaged larger and consumed a higher proportion of rodents and 

prey of larger body size than snakes from desert populations. Feeding occurred 

occasionally during winter, even at the northern extreme of its range. 

 This dissertation provides the most detailed and complete analysis of resource use 

and niche separation by sympatric North American viper species. If niche partitioning 

exists among the rattlesnakes studied, I suggest it occurs subtly along more than one axis 

and has resulted largely from non-competitive interactions. I was unable to detect 

significant habitat partitioning using contemporary methodologies. These findings call 

into question the generality of habitat partitioning by vipers (Luiselli, 2006a, 2006b: 

Luiselli et al., 2007), and suggest the need for further study. 
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CHAPTER ONE 

INTRODUCTION TO SNAKE RESOURCE USE AND NICHE 

PARTITIONING 

  
 In this dissertation, I use a comparative approach to examine resource use and 

niche partitioning among two sympatric rattlesnake species in southern California. This 

chapter introduces and reviews the concepts of niche, niche theory, and niche partitioning 

by vipers. I then discuss the primary niche axes (spatial, temporal, thermal, and diet) 

specific to snake communities, and place them within the context of general snake 

biology. I then provide an overview of my studies of the movements, home range size, 

mating phenology, resource use, and niche separation of red diamond (Crotalus ruber) 

and southern Pacific (C. oreganus helleri) rattlesnakes in Chino Hills State Park, 

California.   

Niche Theory 

 Developed in the early 1900's, the concepts of "niche" and "niche theory" were 

introduced to help explain interspecific patterns and relationships in nature. Interpreted 

today, niche refers to both a species' unique set of characteristics related to its biological 

functions within a community, as well as to the physical area it occupies. Development of 

mathematical indices (e.g., Pianka's and Czekanowski's) to measure niche overlap 

(Feinsinger et al., 1981; Pianka, 1981) has provided a framework for ecologists to 

examine niche theory within the context of the structure of biological communities. 
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 Competition for resources is a fundamental structuring agent of most natural 

communities. Traditionally, biologists have suggested differential resource use (niche 

partitioning) as the mechanism allowing for ecologically similar species to co-exist under 

conditions of limited resources (Schoener, 1974). Niche shifts often occur where 

competitors coexist, whereas in the absence of competitors a species may occupy a 

broader niche (Pianka, 1981). Without such mechanisms in play, the results of 

competition can be intense, with extreme cases resulting in character displacement (e.g., 

Darwin's finches; Grant and Grant, 2006) or local extirpation of the less-fit species (e.g., 

freshwater mussels: Ricciardi et al., 1998; sympatric snakes: Metzger et al., 2009). In his 

landmark publication, Gause (1934) combined the ideas of natural selection, competition, 

and niche in his development of the competitive exclusion principle (Gause's Law). 

Gause's Law contends that two species competing for the same resources cannot stably 

coexist. Although developed more than six decades ago, his principle remains widely 

accepted in modern biological theory and pertinent to current research (e.g., Pfennig et 

al., 2006; Pearman et al., 2007; Metzger et al., 2009). 

 Ecologists now recognize that mechanisms other than niche partitioning and 

character displacement can promote coexistence of similar species. Chesson (2000) 

viewed coexistence mechanisms as either stabilizing or equalizing. Stabilizing 

mechanisms involve species differences that reduce niche overlap to minimize fitness 

inequalities in competitive interactions (i.e., niche partitioning and character 

displacement). Equalizing mechanisms invoke similar responses of species to 

environmental conditions (i.e., fitness equivalency, or neutrality), such as dispersal and 

recruitment limitation (Hurtt and Pacala, 1995; Hubbell, 2005), that reduce competitive 
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exclusion and allow coexistence from weak stabilizing mechanisms. Following 

publication of Hubbell’s (2001) monograph on neutrality, controversy erupted over the 

importance of niche and neutral processes to coexistence, though evidence supporting 

neutral processes has been elusive (e.g., Adler et al., 2007; Cadotte, 2007). More 

recently, these differences have been treated as a neutrality-niche continuum (Vergnon et 

al., 2009). 

 Taking the concept of niche further, one must consider the difference between the 

"potential” or “fundamental niche" and the "realized niche" (Vandermeer, 1972; Pearman 

et al., 2007). The realized niche is typically a subset of the fundamental niche. 

Competition and contact with interspecifics often result in some degree of specialization 

(e.g., habitat selection or food preference). Ultimately, it is this specialization or niche 

shift that narrows the fundamental niche into the realized niche. As complete interspecific 

niche overlap is uncommon and the number of niche dimensions can be substantial, 

ecosystems can support great diversity even among ecologically similar species (Pianka, 

1974; M'Closkey, 1978). 

 The four primary niche axes are considered to be spatial (micro- and 

macrohabitat), temporal (diel or seasonal activity patterns), thermal, and dietary resources 

(Schoener, 1974; Saint-Girons, 1975; Goodyear and Pianka, 2008). Modest niche 

partitioning along one or two axes appears to provide sufficient separation to allow the 

sympatric coexistence of competitors. Unfortunately, the majority of efforts to 

characterize niche use among sympatric species have only focused on one or two of the 

major axes. The ectothermic and generally sedentary nature of vipers offers great 

potential to examine all four axes. 
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Niche Partitioning by Vipers 

 As increasingly popular models for studies of ecology (Shine and Bonnet, 2000), 

vipers have been the subjects of many classical studies. However, efforts to examine and 

detail interspecific resources are surprisingly few. Members of the European genus 

Vipera have yielded the most significant insights into how vipers use environments in the 

presence of a closely-related interspecific competitor (Saint-Girons, 1975; Monney, 

1996; Brito and Crespo, 2002; De Lina, 2006; Martinez et al., 2006; Luiselli et al., 2007). 

Two robust reviews of resource partitioning among snakes (Toft, 1985; Luiselli, 

2006) have deduced several general patterns and provided a framework for interpretation 

of observations within the group. Toft (1985) established that sympatric snakes were 

atypical among vertebrates in that they partition food resources, rather than habitat, a 

trend supported by recent research (e.g., Goodyear and Pianka, 2008). More recently, 

Luiselli's review (2006) summarized general trends of interspecific competition and 

resource partitioning in snake communities on a global scale. Summarizing Luiselli 

(2006), aquatic snakes from temperate regions primarily partition food types and exhibit 

broad overlap in habitat use, terrestrial snakes in temperate regions show no generalized 

pattern, and tropical snakes which face strong interspecific competition partition food 

resources. Most importantly for my studies, he noted that sympatric vipers are atypical 

among snakes in that they most often partition habitats, rather than food resources.  

 North American rattlesnakes (genus Crotalus) are amongst the most extensively 

studied snakes (Beaman and Hayes, 2008); however, very little is known about the 

comparative biology of sympatric species. The ranges of many species overlap broadly, 

particularly in the arid and semi-arid regions of southwest North America, where species 

richness is highest (Klauber, 1972). In his study of sympatric Crotalus atrox, C. 
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molossus, and C. tigris in southern Arizona, Beck (1995) described significant 

differences along the spatial axis, but all three species broadly overlapped along the 

thermal and temporal axes. Other studies of sympatric rattlesnakes described differences 

in habitat associations (Pough, 1966; Mendelson and Jennings, 1992; Waldron et al., 

2006; Steen et al., 2007). Further details of these studies are provided in the sections that 

follow. 

Space Use 

 Physical space represents the most basic of all resources. Space use is affected 

largely by the distribution of vital resources (food, shelter, and mates), predator-prey 

relationships, and especially in the case of reptiles, thermal constraints. Studies of space 

use have focused largely on characterizing space use in terms of home range size and 

microhabitat and macrohabitat selection. Such studies of snakes have documented species 

(Laurent and Kingsbury, 2003; Shine et al., 2003; Luiselli et al., 2007; Wasko and Sasa, 

2010) and age- or sex-specific groups (Reinert; 1984; Roth, 2005; Blouin-Demers et al., 

2007) using or selecting habitats out of proportion to their availability. Species-, age-, and 

sex-specific preferences highlight the potential for both intraspecific and interspecific 

habitat specialization within a given landscape.  

 In terms of interspecific space use, the manner in which sympatric species divide 

space directly relates to mechanisms of competition (Schoener, 1974), niche separation 

(Toft, 1985; Luiselli et al., 2006), and resource availability (Willson et al., 2006). 

Sympatric European Vipera partition space resources by occupying habitats at slightly 

different elevations (Brito and Crespo, 2002; Luiselli et al., 2007), whereas sympatric 

North American rattlesnakes (Crotalus) select macrohabitats differentially during the 
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active season (Pough, 1966; Mendelson and Jennings, 1992; Waldron et al., 2006; Steen 

et al., 2007). Additionally, the large sympatric vipers Bitis gabonica and B. nasicornis 

occupy different macrohabitats in Nigeria, to the degree that densities of the two species 

are inversely related (Luiselli, 2006). 

Temporal Resources 

 Competitors frequently exhibit variable patterns of resource use in the presence of 

one another (Toft, 1985; Jones et al., 2001; Luiselli, 2003). In such settings, temporal 

partitioning of resources provides a platform for short- and long-term coexistence 

(Carother, 1984; Kotler et al., 1993; Kronfield-Schor and Dayan, 1999) while 

theoretically reducing interspecific competition (Toft, 1985; Martinez-Freiria et al., 

2010). In addition to competition, predator avoidance (Kozlowski et al., 2008; Webb et 

al., 2009), physiological factors (Reinert, 1984; Huey, 1991; Roth, 2008), and 

environmental conditions (Wiest, 1981; Brito, 2003; Willson et al., 2006) also influence 

temporal use of resources. One of the best examples of temporal variation of resource use 

is that of anurans breeding in temporary ponds. Studies of sympatric anuran larva 

revealed that partitioning the timing of use of ponds was the single greatest measure of 

niche separation among sympatric tadpole species (Heyer, 1973; Wiest, 1981; Toft, 

1985).  

 Many aspects of snake ecology are defined by temporal variation. Most notably, 

movements (Shine et al., 2003; Diffendorfer et al., 2005; Dugan et al., 2008), diet 

(Hartmann and Marques, 2005; Luiselli, 2003), foraging (Martins et al., 2002; Mori et al., 

2002; Sun et al., 2001; Sorrell, 2009), and sexual activities (Shine and Madsen, 1997; 

Aldridge and Duvall, 2002; Schuett et al., 2005; Duvall et al., 1992) vary significantly 
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across daily, seasonal, and annual time frames. Martinez-Freiria et al. (2010), for 

example, noted temporal differences in the feeding periods, microhabitat use, and activity 

patterns of sympatric Mediterranean Vipera species in the Iberian Peninsula. The general 

plasticity of many snake traits (feeding, activity, and reproduction) and the ability to take 

advantage of temporally variable resources is just has allowed for their successful 

radiation and survival in some of the most extreme environments on earth (Luiselli et al., 

2002; Willson et al., 2006).  

Thermal Resources 

 Reliance upon thermal resources is a critical aspect of the life history of 

ectothermic organisms. Many fundamental physiological processes, including food 

acquisition and digestion, locomotion, and reproduction, require microhabitats that 

provide sufficient opportunities to thermoregulate. Thermal gradients vary significantly 

both among and within habitat features of most macrohabitats. Understanding the 

interaction of thermal resource availability and behavior is vital to understanding the 

ecology of reptiles. 

Lizards, particularly anoles (Anolis sp.), have featured extensively in studies of 

thermal biology as it relates to habitat and niche partitioning among sympatric species 

(Schoener and Gorman, 1968; Schettino et al., 2010). In their study of 11 sympatric 

Anolis species on Cuba, Schettino et al. (2010), for example, documented significant 

differences among the thermal environments occupied by the various species. Niche 

partitioning of the thermal, spatial, and temporal axes compensates for the speciose 

nature of that lizard community.  
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 Unfortunately, studies of the thermal ecology of sympatric snakes lag far behind 

those of lizards. While many efforts have been made to characterize thermal resource use 

of individual snake species, few have examined more than a single species at a time. 

Intraspecific variation of thermal requirements is well documented among snakes, with 

gravid or pregnant females exhibiting unique patterns of temperature selection (Reinert, 

1993; Charland, 1995; Gardner-Santana and Beaupre, 2009; Harvey and Weatherhead, 

2010). While variation of thermal resource use within a species is largely related to 

reproductive condition, interspecific variation appears to be more complex. In terms of 

western rattlesnake species, thermal resources do not appear to play a vital role in 

structuring of sympatric populations. Beck (1995) found no differences in the body 

temperatures of active Crotalus atrox, C. tigris, and C. molossus inhabiting the Sonoran 

Desert of southern Arizona. Similarly, Pough (1966) did not detect a difference in 

temperatures at the time of collection of C. atrox and C. scutulatus along Portal Road in 

southeastern Arizona. However, in cooler environs where thermal resources are limited, 

partitioning along the thermal axis may play a greater role in both intraspecific and 

interspecific behavior (Reinert, 1984). 

Diet 

 The evolution and biodiversity of snakes is strongly linked to the feeding ecology 

and general plasticity of their diets (Seigel, 1993). As top predators in nearly all 

ecosystems, understanding dietary preferences provides insight into behavior, predator-

prey relationships, movements, habitat selection, and niche occupancy. Efforts to 

describe snake diets across a wide range of taxa have revealed non-random preferences, 

in terms of both prey composition and prey size (Holycross et al., 2002; Shetty and Shine, 
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2002; Halstead et al., 2008). It also appears that many snakes partition food resources in 

the presence of competitors (Toft, 1985; Luiselli, 2006). Feeding specialization and 

intraspecific niche shifts along the diet axis are generally interpreted as evolutionary 

responses to competition, often referred to as "the ghost of competition past" (Conell, 

1980). Among species within the same feeding guild, niche shifts ultimately serve to 

reduce competition and provide increased fitness via mechanisms of niche partitioning. 

Therefore, efforts to characterize interspecific niche partitioning along the diet axis 

should focus on closely related species within the same feeding guild.  

 Studies of snake diet are plentiful and have focused on diverse taxa from across 

the globe. The resulting body of literature has yielded significant knowledge about how 

snakes find and secure prey, and how diets relate to the overall ecology of snakes. 

Among snakes, sympatric vipers frequently occupy similar fundamental niches and 

provide ideal opportunities to use comparative approaches to examine diet. A review of 

the literature reveals that many snake species exhibit intraspecific variation, with 

differences among age classes (e.g., Mackessy, 1988; Taylor, 2001; Avila-Villegas et al., 

2007; Lin and Tu, 2008) and sexes (e.g., Houston and Shine, 1993; Daltry et al., 1998; 

Shetty and Shine, 2002; Glaudas et al., 2008; Lin and Tu, 2008) being common. Among 

vipers, sexual differences are more unusual than ontogenetic differences; prior to our 

work (Dugan and Hayes, under review; Chapter 4), for example, none had been found 

among rattlesnakes. Although some wide-ranging species show little geographic variation 

in diet (Spencer, 2003), most species exhibit significant variation across their range 

(Daltry et al., 1998; Clark, 2002; Creer et al., 2002; Santos et al., 2008; Dugan and 

Hayes, in review). In addition, some viper diets exhibit seasonal variation (Holycross et 
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al., 2002; Glaudas et al., 2008; Santos et al., 2008), with prey availability suggested as a 

causal factor. 

 Although snake diets have been well-studied, dietary information regarding 

interspecific variation between and among sympatric vipers, and western vipers in 

particular, is nearly non-existent. What little has been written stems largely from the 

work of Luca Luiselli and his colleagues. Luiselli et al. (2007) recorded significantly 

different diets among two sympatric species of Vipera in Italy. Conversely, diets of 

sympatric Bitis species were largely similar in southern Nigeria (Luiselli and Akani, 

2003). In North America, dietary differences clearly exist among sympatric species of 

very different body sizes (e.g., C. atrox versus C. cerastes in southwestern deserts; C. 

adamanteus versus Sistrurus miliarius in southeastern forests; Klauber, 1972), but the 

extent of differences among those of similar body size warrants closer scrutiny. Dietary 

differences could result from either prey preference or differential habitat use, since prey 

availability also differs among habitats. Several studies have demonstrated that snakes 

opportunistically consume prey species available in the habitats they occupy (Reynolds 

and Scott, 1982; Hirai, 2004; Hartmann and Marques, 2005). Thus, distinguishing 

between habitat use and diet as a basis for niche partitioning can prove difficult. 

Niche Partitioning by Red Diamond and Southern Pacific 
Rattlesnakes 

 The purpose of my studies was to detail and compare resource use and niche 

partitioning among sympatric populations of the red diamond rattlesnake (C. ruber) and 

southern Pacific Rattlesnake (C. oreganus helleri) in southern California. Efforts to 

examine resource partitioning among vipers, particularly North American vipers, are 
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surprisingly scant in the literature (Toft, 1985; Luiselli, 2006). In conducting these 

studies, I sought to fill this void. 

 In Chapter 2, I compare the home range size, movements, and mating phenology 

of sympatric C. ruber and C. o. helleri in Chino Hills State Park. In this study, I consider 

two measurements of space use: home range size and mean daily movement. I compared 

home range size across species and seasons (two active seasons and one winter) using 

both minimum convex polygons (MCP) and fixed-kernel (FK) home range estimators. 

Mean daily movements were assessed at three temporal levels: daily, monthly, and 

seasonal. The phenology (seasonal timing) of sexual activities was also compared 

between the two species. I discuss results in the context of competitive mechanisms and 

niche partitioning. 

 In Chapter 3, I provide the single most extensive examination of comparative 

resource use among sympatric North American vipers to date. In this study, I compared 

the rattlesnakes C. ruber and C. o. helleri along all four major niche axes (space, 

temporal, diet, thermal) using radio-telemetry and mark-recapture data collected from my 

Chino Hills State Park study site.  

 Spatial resources were analyzed in terms of both macrohabitat and microhabitat. I 

identified five major macrohabitats at the site: cactus, coastal sage-scrub (CSS), non-

native grassland, riparian, and oak woodland (Sampson, 1985). Analysis of macrohabitat 

use involved both compositional analysis (Aebischer et al., 1993) and logistic regression 

(Mertler and Vannatta, 2004). Microhabitat use (underground, above-ground, or arboreal) 

was also considered in terms of underground, aboveground, and arboreal use.  
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 Thermal resources were analyzed using three temperature measurements (ambient 

air, ground in the shade, ground in the sun) taken at each fix when the snake was above-

ground. I also compared the three temperature measurements among the five 

macrohabitats to address potential differences of thermal resource availability. 

 I further evaluated species differences in temporal resource use. Activity 

(immobile, locomoting, or sexual) was considered in terms of frequency, and seasonal 

differences in activity was examined across three periods (spring, summer, and fall) of 

the active season. Circadian activity was also assessed during the active season. 

 I examined use of dietary resources via scat samples and feeding observations 

procured in the field. Dietary data were used to investigate the following three 

hypotheses: (1) The two species differ in proportions of prey genera consumed; (2) 

Differences in diet composition corresponds to differences in preferred habitat of the 

snakes, and (3) Based on a larger gape size, C. ruber consumes larger prey species more 

often than C. o. helleri. 

 I calculated interspecific niche overlap using the symmetric formulas of Pianka 

and Czekanowski niche overlap indices. Overlap indices were obtained for all of the 

major niche axes, including macrohabitat use, microhabitat use, thermal resources, 

seasonal and circadian movements, and food type and size. I then used null models to test 

whether niche overlap values were significantly less than expected by chance. 

 In Chapter 4, I provide a detailed description of the diet of the red diamond 

rattlesnake (C. ruber). The diet of C. o. helleri was studied in detail previously 

(Mackessy, 1988), but no comparable study had been undertaken for C. ruber. Samples 

were obtained from museum specimens, fecal samples from live specimens at my study 
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site, opportunistic field observations, published accounts, and data collected from road-

killed specimens. Dietary data for C. ruber were collected from across the species' range, 

including southern California (USA) and Baja Norte and Baja Sur (Mexico). Thus, the 

rangewide description allowed for broader comparisons with C. o. helleri that extended 

beyond my study site. Intraspecific variation of diet was analyzed in terms of ontogenetic 

change and sexual and geographic differences. 

 In Chapter 5, I draw general conclusions from my research and discuss the 

findings in the context of current theory.    
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Abstract 

Although many sympatric snake species partition food to reduce interspecific 

competition, rattlesnakes and other vipers, like most vertebrates, typically partition the 

habitat. To evaluate this generality, we used radiotelemetry to study the home range sizes, 

movements, and mating phenology of sympatric adult male red diamond (Crotalus ruber) 

and southern Pacific (C. oreganus helleri) Rattlesnakes in a coastal valley of southern 

California. Mean home range sizes and mean daily movements were substantially greater 

in C. ruber than in C. o. helleri. Both species occupied much larger home ranges during 

the two active seasons (March-November) compared to the winter season. Mating 

seasons differed between the two species, with C. ruber engaging in accompaniment, 

courtship, and copulation exclusively in the spring and C. o. helleri exhibiting 

reproductive behavior during both late summer/fall and spring. Annual movements by C. 

o. helleri spiked in both spring and late summer/fall, whereas movements of C. ruber 

spiked also in spring but less dramatically in late summer/fall. Spatial use and movement 

differences between the two species likely resulted from distribution of preferred habitat 

at the study site (limited Opuntia cactus patches for C. ruber, widespread non-native 

grassland and riparian habitats for C. o. helleri) and differences in mating phenology (C. 

o. helleri males searching for mates in two seasons versus one for C. ruber). Thus, these 

two species, like other sympatric rattlesnakes and vipers studied to date, appear to 

partition habitat. However, unlike other sympatric rattlesnakes studied to date, C. ruber 

and C. o. helleri also differ in their use of spatial and temporal resources, though 

probably not as a direct result of competitive mechanisms.  
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Introduction 

Niche Theory predicts that closely-related sympatric species should partition 

resources to avoid or reduce interspecific competition (Pianka, 1981; Walter, 1991). 

Niche separation can be achieved via differences in food (type or size) or in use of spatial 

(macrohabitat or microhabitat), temporal (diel or seasonal activity patterns), or thermal 

resources (Saint Girons, 1978; Schoener, 1974). Snakes have been considered atypical 

among vertebrates because sympatric species usually partition food rather than habitat 

(Luiselli, 2006a; Toft, 1985; Vitt, 1987;). However, sympatric viper species apparently 

adhere to the typical vertebrate pattern, primarily partitioning habitat (Luiselli, 2006a,b; 

Luiselli et al., 2007). 

Rattlesnakes (genera Crotalus and Sistrurus) represent an ideal group for 

exploring niche separation in vipers. The ranges of many species often overlap broadly, 

particularly in the arid and semi-arid regions of southwest North America, where species 

richness is highest (Beaman and Hayes, this volume; Klauber, 1972;). The few studies of 

this group support the view that sympatric rattlesnake species primarily partition habitat. 

Pough (1966), Reynolds and Scott (1982), and Mendelson and Jennings (1992) 

demonstrated differences in habitat use of Crotalus atrox, C. molossus, and C. scutulatus 

in the Sonoran Desert of southeast Arizona, southwest New Mexico, and northern 

Chihuahua, Mexico. Beck (1995) determined that sympatric C. atrox, C. molossus, and 

C. tigris in southeast Arizona use different habitats, but otherwise exhibit similar home 

range sizes, activity patterns, thermal ecology, and annual food intake. Waldron et al. 

(2006b) found that sympatric C. adamanteus and C. horridus in coastal South Carolina 

prefer different habitats, but occupy similar home range sizes. Steen et al. (2007) also 
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showed that sympatric C. adamanteus and C. horridus in coastal Georgia use different 

habitats. Reinert (1984) determined that C. horridus and another sympatric viper, 

Agkistrodon contortrix mokeson, prefer different habitats in eastern Pennsylvania. 

 Differences in space use and movements by sympatric rattlesnakes could be 

expected for many reasons apart from competitive mechanisms. The distribution and 

abundance of critical resources greatly influence the movement patterns of snakes 

(Gregory et al., 1987). Critical resources for rattlesnakes include required habitat, food, 

access to potential mates, protection from predators, and suitable thermoregulation and 

overwintering sites (e.g., Duvall and Schuett, 1997; Reinert and Zappalorti, 1988; Secor, 

1992). Temporal variation in resources and needs also influences movements by snakes 

(Seigel and Pilgrim, 2002). Some crotaline snakes, for example, mate only in spring, 

some mate only in late summer/fall, and others exhibit a bimodal mating phenology, with 

copulations occurring during both late summer/fall and spring (i.e., interrupted by 

hibernation; Aldridge and Duvall, 2002; Schuett et al., 2002). During mating season, 

males frequently undertake extensive searches for mates (e.g., Aldridge and Brown, 

1995; Ashton, 2003; Brown et al., this volume; Cardwell, 2008; Duvall et al., 1992; 

Goode et al., this volume; Jellen et al., 2007; Marshall et. al, 2006; Prival et al., 2002; 

Sealy, 2002; Secor, 1992; Waldron et al., 2006a ). Rattlesnake activity also shifts 

dramatically with seasonal changes in temperature and rainfall (e.g., Goode et al., this 

volume; Prival et al., 2002). Thus, differences in space use and movements by sympatric 

rattlesnakes could result from differences in preferred habitats and species-specific eco-

physiological constraints.  
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The red diamond rattlesnake (C. ruber) is a large-bodied pitviper distributed from 

southern California southward throughout the Baja peninsula and several of its associated 

islands (Grismer, 2002). Crotalus ruber can be found from the desert slopes to the 

coastline, and preys predominately on rodents (Dugan, unpubl. data; Klauber, 1972). The 

red diamond rattlesnake is currently listed as a species of special concern by the State of 

California (Jennings and Hayes, 1994). To date, no published accounts exist detailing the 

biology of this species (Beaman and Dugan, 2006); however, recent research has begun 

to address this void in our knowledge (Brown et al, this volume; Greenberg, 2002; 

Halama et al., this volume). 

The southern Pacific rattlesnake (C. oreganus helleri; Ashton and De Queiroz, 

2001) is another large-bodied pitviper, distributed from central California southward into 

northern Baja (Grismer, 2002). This snake is considered a habitat generalist (Stebbins, 

2003), as it inhabits a wide range of habitats from montane coniferous forests to coastal 

sage scrub along the coast. The western rattlesnake complex (C. viridis + C. oreganus + 

C. cerberus) is one of the most extensively studied group of snakes (Beaman and Hayes, 

this volume; Diller and Wallace, 2002). However, no quantitative data have been 

published on movements and habitat use of C. o. helleri. 

The close phylogenetic relationship and extensive overlap of the ranges, habitat, 

and general life histories makes these two species ideal candidates for studies of niche 

separation and interspecific variation in natural history. In California, coastal populations 

of both species coexist in a rapidly-fragmenting environment, placing many remaining 

populations in danger of genetic isolation and local extirpation (Halama et al., this 

volume). Accordingly, we need a better understanding of the ecology of these two 
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broadly sympatric species, not just for behavioral and ecological theory, but also for 

conservation concerns. The data presented herein address the following questions as they 

relate to potential niche separation. 1) Do home ranges of sympatric C. ruber and C. o. 

helleri differ in area and by season? 2) Do movements of sympatric C. ruber and C. o. 

helleri differ in magnitude and by season? And finally, 3) does the phenology of 

reproductive activity differ between C. ruber and C. o. helleri? Additional data collected 

during this study on habitat use, diet, and survival will be presented in a separate 

manuscript. 

Materials and Methods 

Study Site 

The study site encompassed ca. 30 ha in the southeastern portion of Chino Hills 

State Park (CHSP), California (3354' N, 11742' W). A north-south running canyon 

with a small semi-perennial creek dominates the site’s topography. The CHSP system 

comprises ca. 5,039 ha in Los Angeles, Orange, Riverside, and San Bernardino counties, 

and ranges in elevation from 131 to 543 m (Keller, 1992; Goodman, 1997; 

http://www.stateparks.com/chino_hills.html). 

We identified five major habitats at the study site: cactus, coastal sage scrub 

(CSS), non-native grassland, riparian, and oak woodland. Cactus patches of coastal 

pricklypear (Opuntia littoralis) were found exclusively on south-facing slopes and 

represented the habitat with the smallest distribution at our site. The distribution of CSS 

was patchy, primarily on south-facing slopes. Non-native grassland was the most 

widespread, occurring on both hillsides and in canyon bottoms. The riparian system was 

largely confined to the creek channel, but penetrated into damper drainages of the 
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grassland. Oak woodland was found primarily on north-facing slopes, but was not used 

by any of the telemetered snakes in this study. The study site was devoid of rock 

outcroppings, as the soil is predominately clay. Sampson (1985) provides further details 

on relative abundance and species composition of these plant communities. 

The site experiences a Mediterranean climate. Average annual precipitation 

ranges from 35–46 cm, with the majority of rainfall occurring during the winter and 

spring months (Sampson, 1985). Winters are mild (average daily low in January = 5.6°C) 

and summers hot and dry (average daily high in July = 31.7 °C), with temperatures 

occasionally exceeding 38°C. 

Radio-Telemetry 

We began collecting, marking, and implanting snakes with radio-transmitters in 

March 2003. Individuals were tracked from March 2003 through December 2004. Visual 

searches and road surveys were used to obtain snakes of both species. Snakes were 

anesthetized with sevoflurane (Halocarbon Products Corp., River Edge, New Jersey, 

USA) while restrained within clear plastic tubes (Hardy and Greene, 1999) to allow 

collection of various measurement data. We recorded snout-vent length (SVL), total 

length, mass, rattle number, number of subcaudal scales, and sex for each snake. Adult 

snakes were sexed using Neosporin-lubricated sexing probes. All individuals were 

marked with a passive integrative transponder (PIT) tag (AVID Identification Systems, 

Inc., Norco, California, USA). PIT tags allowed us to permanently identify individuals as 

part of a long-term mark-recapture effort. 

We used SI-2T temperature-sensitive transmitters (Holohil Systems Ltd., Ontario, 

Canada) to monitor up to six males of each species simultaneously. Transmitters weighed 
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9 g and always represented <5% of an individual’s body mass (Hardy and Greene, 1999). 

Surgical procedures followed the guidelines and methods described by Reinert and 

Cundall (1982) and Hardy and Greene (1999). Snakes were released at their collection 

site 24–36 hr post-surgery. Minimizing time in captivity has been shown to increase post-

surgical survival (Hardy and Greene, 1999). Sampling effort varied seasonally as snake 

activity patterns changed. Individuals were located 1–4 times/wk throughout the active 

season (March–November) and less often (bi-monthly) during the winter period 

(December–February). Telemetered snakes were relocated using a Telonics TR2 receiver 

(Telonics, Mesa, Arizona, USA) and a hand-held four-element yagi antenna. Upon each 

relocation, we visually located each snake if possible and recorded the universal 

transverse mercator (UTM) coordinates with a handheld GPS unit (Garmin GPS Plus III; 

Garmin Ltd., George Town, Cayman Islands). When snakes were located in dense, 

impenetrable cactus patches, coordinates were taken at the closest location possible 

(within 5 m of presumed location).  

Data presented herein were collected from nine adult male C. o. helleri (84–103 

cm SVL) and seven adult male C. ruber (98–156 cm SVL). Snakes were lost (predation, 

transmitter battery failure) or added opportunistically throughout the study, resulting in 

variable tracking periods (202–905 d) for different individuals. 

Home Range Size and Movements  

 Based on location data, we computed two estimates of home range size, one 

estimate for autocorrelation, and one movement variable (see below). We compared each 

of these dependent measures for the two species and for three seasons: active season 
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(March–November) 2003, winter season (December–February) 2003–2004, and active 

season (March–November) 2004. 

We computed seasonal home range sizes using both minimum convex polygons 

(MCP) and fixed-kernel (FK) methods. We used Calhome 1.0 (Kie et al., 1994) and 

HomeRanger 1.5 (Hovey, 1999) to obtain 100% MCP and 95% FK, respectively. We 

used all fixes obtained from each individual for our analyses and software defaults, 

including least-squares cross-validation as the smoothing factor for FK. Although FK 

estimates are increasingly preferred (Powell, 2000), MCP estimates continue to be 

reported and are more available in the literature for comparisons between studies. Both 

estimates are sensitive to sample size, with MCP increasing asymptotically and FK 

decreasing asymptotically with increasing number of fixes (Seaman et al., 1999). 

Opinions remain contentious as to which estimate (MCP vs. FK) performs better (e.g., 

Row and Blouin-Demers, 2006; Laver and Kelly, 2008). HomeRanger also computed 

autocorrelation (t2/r2) for each snake, a measure of temporal independence between 

successive fixes. When autocorrelation exists (t2/r2 < 2), the distance moved between 

consecutive observations decreases, resulting in underestimates of FK (Swihart and 

Slade, 1985). 

We considered movements at three time levels: daily, monthly, and seasonal. We 

used the mean distance moved per day as our fundamental unit of measurement for 

individual snakes. This was computed from the distance moved between each two 

consecutive fixes divided by the number of days between the two fixes (Gregory et al., 

1987). To obtain mean daily movements per month, we calculated the mean of all such 

measurements procured within a given month for each snake. To avoid bias from uneven 
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sampling across months, mean daily movements per season were computed as the 

average of all monthly estimates (rather than the mean from all fixes) for those months 

within a given season. 

Mating Phenology 

Data were collected opportunistically from both telemetered and non-telemetered 

snakes throughout the duration of the study. We recorded two types of sexual activities: 

accompaniment (pairs coiled next to or within 0.5 m of each other, often with males chin-

rubbing and/or pursuing females in courtship; c.f. Duvall et al., 1992; Duvall and Schuett, 

1997) and copulations. Non-sexual accompaniment during the winter months 

(overwintering at same site, November–February) was excluded. We also gleaned 

additional observations from the existing literature on C. ruber and C. o. helleri. 

Statistical Analyses  

Our primary interest was to examine the effects of species and season on spatial 

use and movements. For home range and movement data, we subjected each of the four 

dependent variables (100% MCP and 95% FK estimates of home range size, mean daily 

movements, and autocorrelation values) to three analyses. 

First, to evaluate species and season simultaneously, we conducted 2 × 3 analyses 

of variance (ANOVAs; Mertler and Vannatta, 2004), treating species (two levels) as a 

between-subjects factor and season (three levels) as a within-subjects factor. Because 

some telemetered snakes were lost during the study (one of the initial six C. ruber 

became ill; three of the initial six C. o. helleri were predated) and then replaced by others, 

only five C. ruber and three C. o. helleri were tracked continuously over the three 
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seasons, rendering a small sample size. Effect sizes from the ANOVAs were obtained as 

partial η2 values (Cohen, 1988), indicating the approximate proportion of variance in the 

dependent variable explained by each independent variable or interaction, with values 

>0.25 generally considered large. When multiple effect sizes within a model summed to 

>1, we adjusted the values by dividing each partial η2 by the sum of all partial η2 values. 

Second, we conducted independent-samples t-tests to compare the two species for each of 

the three seasons, and computed Cohen’s d (Cohen, 1988) for effect sizes using pooled 

standard deviation. Cohen’s d values >0.8 are generally considered large effects. This 

within-season paired-comparison approach utilized all of the available subjects, 

increasing the sample size for the two active seasons (n = 6 for each species). Third, we 

used Pearson correlation coefficients to examine associations among the home range 

estimators (MCP and FK), number of fixes, autocorrelation, and movements. 

Data used in these analyses were examined to determine whether parametric 

assumptions were met, and the fit was found to be acceptable in all cases. We also 

conducted non-parametric equivalents of t-tests and Pearson coefficients, but because the 

conclusions were identical, we report only the parametric outcomes. 

Frequency data for sexual behavior were compared between the two species for 

the spring and late summer/fall seasons. The resulting 2 × 2 contingency table had too 

few cells with expected frequency ≥5 to use Chi-square tests. Thus, we evaluated the 

strength of asymmetry between species and seasons using Cramer’s V (Conover, 1999).  

Analyses were conducted using SPSS 12.0 for Windows (SPSS, 2003) with alpha 

set at 0.05. 
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Results 

Home Range Size 

The two estimates of home range size (100% MCP and 95% FK) are summarized 

in Table 2-1 for each snake during each of the three seasons (the FK estimate for CR2 in 

the active season 2004 was deleted from analysis as an obvious outlier). Individual home 

range estimates varied from 0.15–23.02 ha during the active season and from 0.01–0.26 

ha during the winter. Comparisons between species and seasons are depicted in Fig. 2-1. 

The main effect of species in the ANOVA model was not significant for either MCP or 

FK (both P ≥ 0.16 and partial η2 ≤ 0.32; Table 2-2). However, the main effect of season 

was significant for both MCP and FK (P = 0.041 and 0.033, respectively), with each 

measure having a large effect size (partial η2 = 0.47 and 0.43, respectively; Table 2-2). 

As expected, the snakes occupied much smaller home ranges during the winter, with C. 

ruber and C. o. helleri averaging 3.6% and 1.8% of their active-season home ranges, 

respectively (computed using species means in Table 2-1, with active-season home range 

calculated as the average for the two estimators, and averaged again for the two active 

seasons). No interactions between season and species were detected (both P > 0.20 and 

partial η2 = 0.25; Table 2-2). Given the relatively large effect sizes (Cohen, 1988) for 

species and for interaction of species × season, larger samples may well have yielded 

significance. When the two species were compared for each season by t-tests, no species 

differences were detected in any season (all P ≥ 0.056). However, the effect sizes 

(Cohen’s d) were large (active 2003: MCP, d = 1.25, FK, d = 0.85; winter 2003–2004: 

MCP, d = 0.14, FK, d = 0.58; active 2004: MCP, d = 0.76, FK, d = 0.85), especially 

during the active seasons, further suggesting that C. o helleri occupied larger home  
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TABLE 2-1. Summary of number of locations (fixes), home range estimates (100% minimum convex polygon, MCP; 95% fixed 
kernel, FK; in hectares), mean daily movements (m/d), and Schoener’s autocorrelation (t2/r2) per each of three seasons for individual 
male Red Diamond (Crotalus ruber, CR) and Southern Pacific (C. oreganus helleri, CH) Rattlesnakes.  

 

a Regarded as an outlier and excluded from analyses. 

Species-
Snake 

Active Season 2003 Winter Season 2003–2004 Active Season 2004 
Fixes MCP FK m/d t2/r2 Fixes MCP FK m/d t2/r2 Fixes MCP FK m/d t2/r2 

CR1 29 4.05 7.53 9.42 1.02 11 0.17 0.20 0.85 2.59 29 3.72 1.62 5.40 0.62 
CR2 32 3.80 1.77 5.45 0.67 8 0.01 0.05 1.07 2.76 6 4.50 127.02a 16.46 0.89 
CR8 27 1.26 0.73 6.02 1.89 6 0.06 0.03 1.58 1.21 7 0.63 0.52 26.06 2.46 
CR12 23 2.36 1.57 6.22 1.46 10 0.10 0.02 2.21 2.67 40 3.58 1.11 9.50 1.52 
CR13 23 1.58 0.60 5.76 1.95 9 0.02 0.03 1.04 0.87 39 1.96 1.16 11.96 1.45 
CR19 23 0.34 0.15 2.93 1.59 - - - - - - - - - - 
CR36 - - - - - - - - - - 13 0.93 0.61 5.39 1.47 
Mean 
   ± 
1 SE 

26.2 
± 

1.6 

2.23 
± 

0.60 

2.06 
± 

1.12 

5.97 
± 

0.85 

1.43 
± 

0.20 

8.8 
± 0.9 

0.07 
± 

0.03 

0.07 
± 

0.03 

1.35 
± 

0.25 

2.02 
± 

0.40 

22.3 
± 

6.4 

2.55 
± 

0.66 

1.00 
± 

0.20 

12.46 
± 

3.21 

1.40 
± 

0.26 

CH1 10 3.22 2.90 12.18 0.86 - - - - - - - - - - 
CH2 27 4.82 0.92 13.23 2.07 - - - - - - - - - - 
CH3 34 3.46 2.14 14.13 1.32 - - - - - - - - - - 
CH5 25 1.98 2.81 4.70 1.16 10 0.01 0.06 0.88 2.80 10 6.10 0.22 25.83 1.94 
CH7 23 8.53 15.28 21.79 1.80 10 0.19 0.26 3.69 1.06 37 23.02 9.73 17.39 1.26 
CH8 24 6.13 12.38 34.70 1.71 10 0.05 0.05 3.40 1.47 12 4.45 16.39 37.18 2.47 
CH33 - - - - - - - - - - 8 0.90 2.60 21.78 1.44 
CH39 - - - - - - - - - - 19 3.54 0.17 27.06 0.80 
CH42 - - - - - - - - - - 32 3.70 0.84 14.28 1.49 
Mean 
   ± 
1 SE 

23.8 
± 

3.2 

4.69 
± 

0.96 

6.07 
± 

2.50 

16.79 
± 

4.21 

1.49 
± 

0.18 

10.0 
± 

0.0 

0.08 
± 

0.05 

0.12 
± 

0.07 

2.66 
± 

0.89 

1.78 
± 

0.53 

19.7 
± 

5.0 

6.95 
± 

3.29 

5.00 
± 

2.72 

23.92 
± 

3.31 

1.57 
± 

0.24 
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ranges than C. ruber. Mean home range estimates were two- to five-fold greater for C. o. 

helleri (Table 2-1)  

The 100% MCP and 95% FK estimates from individual snakes were positively 

correlated during the first two seasons (active 2003: n = 12, r2 = 0.74, P < 0.001; winter 

2003–2004: n = 8, r2 = 0.70, P = 0.009), but not during the third (active 2004: n = 11, r2 

= 0.22, P = 0.15). Although individual MCP estimates were usually larger than 

corresponding FK estimates during the active season (73.9% of 23 estimates), the FK 

estimates were more often larger during the inactive season (62.5% of 8 estimates, 

excluding one tie). In all seasons, the MCP (all r2 < 0.26 and P ≥ 0.20) and FK (all r2 < 

0.27 and P ≥ 0.19) estimates were independent of number of fixes. 

 
 
 

 

        
 
FIG. 2-1. Mean (+ 1 SE) 95% fixed kernel estimates of home range size for 
adult male Red Diamond Rattlesnakes (Crotalus ruber) and Southern Pacific 
Rattlesnakes (C. oreganus helleri) during three seasons at Chino Hills State 
Park, California. Sample sizes for each mean are within parentheses. 
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Autocorrelation  

Autocorrelation values (Schoener’s t2/r2 statistic) varied from 0.62 to 2.80 for 

individual home range estimates, with means for the six cells (2 species × 3 seasons) 

ranging from 1.40 to 2.02 (Table 2-1). Schoener values substantially <2.0 are indicative 

of time dependence between successive relocations (Swihart and Slade, 1985). The 

ANOVA showed that autocorrelation values were similar for the two species and three 

seasons, with no interaction (all P ≥ 0.52; all partial η2 < 0.13; Table 2-2). Likewise, 

independent t-tests for each of the three seasons revealed no species differences (all P ≥ 

0.65) and effect sizes were small (all Cohen’s d ≤ 0.27). Autocorrelation values during 

each of the three seasons were independent of both MCP (all r2 < 0.02, P ≥ 0.65) and FK 

(all r2 < 0.14, P ≥ 0.26) and number of fixes (all r2 < 0.10, P ≥ 0.32). 

Movements  

Mean daily movements of individual snakes varied from 2.93–37.18 m/d during 

the active season to 0.85–3.69 m/d during the winter (Table 2-1). From the ANOVA, the 

significant main effect of species (P = 0.037, partial η2 = 0.39) indicated that C. o. helleri 

moved greater distances on average than C. ruber (Table 2-2). The differences were most 

evident during the active seasons, with C. o. helleri moving 2.8-fold further in 2003 and 

1.9-fold further in 2004 (using species means in Table 2-1). The main effect of season 

was also significant (P = 0.001, partial η2 = 0.41), with snakes moving considerably less 

during the winter compared to the active seasons (C. ruber = 14.7% and C. o. helleri = 

13.1% of their respective active-season movements, calculated from species means in 

Table 2-1 averaged for the two active seasons). There was no interaction between season 

and species (Table 2-2). When the two species were compared for each season by t-tests, 
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mean daily movements differed for each of the two active seasons (active 2003: t10 = 

2.52, P = 0.031, Cohen’s d = 1.45; active 2004: t10 = 2.48, P = 0.032, Cohen’s d = 1.43), 

but not for the winter season (P = 0.12), though the effect size was substantial (Cohen’s d 

= 1.13). 

 

              
FIG. 2-2. Mean daily movements per month (numbered January–December) of 
adult male Red Diamond Rattlesnakes (Crotalus ruber; dashed lines) and Southern 
Pacific Rattlesnakes (C. oreganus helleri; solid lines) during each of two years. For 
each mean, n = 2–6. 
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Movements were positively correlated with MCP in one season (active 2003: r2 = 

0.62, P = 0.002), but not in the others (both r2 < 0.18 and P ≥ 0.30). Movements were 

similarly associated with FK in one season (active 2003: r2 = 0.64, P = 0.002), but not in 

the others (both r2 < 0.26 and P ≥ 0.11). Movements were independent of number of fixes 

in all seasons (all r2 < 0.26 and P ≥ 0.09), but were weakly positively associated with 

autocorrelation in one season (active 2004: r2 = 0.33, P = 0.049; other seasons: r2 < 0.21 

and P ≥ 0.25). Although not amenable to statistical analysis, monthly patterns of activity 

(Fig. 2-2) revealed peaks in both spring and late summer/fall, with relatively less activity 

occurring during the summer months. 

Individuals of both species moved on occasion during the winter, demonstrating a 

lack of overwintering single-site fidelity. Neither species used communal hibernacula. 
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TABLE 2-2. Summary of analysis of variance (ANOVA) results for home range estimates (100% minimum convex polygon, 
MCP; 95% fixed kernel, FK), mean daily movements, and autocorrelation (t2/r2) for two species of rattlesnake over three seasons 
(see Table 2-1). Results include degrees of freedom (df), F-value, probability (P), and effect size (adjusted partial η2). 

 
Dependent 
Variable 

Season Species Interaction 
df F P η2 df F P η2 df F P η2 

MCP 2,8 8.89 0.041 0.47 1,4 2.08 0.223 0.29 2,8 1.66 0.250 0.25 
FK 2,8 5.39 0.033 0.43 1,4 2.96 0.160 0.32 2,8 1.97 0.201 0.25 
Movements 2,12 15.35 0.001 0.41 1,6 7.14 0.037 0.39 2,12 2.18 0.156 0.20 
t2/r2 2,8 0.51 0.621 0.11 1,4 0.49 0.524 0.11 2,8 0.62 0.562 0.13 
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Mating Phenology  

At our study site, we observed distinctly different use of mating seasons in the 

two species (Table 2-3). Crotalus ruber exhibited accompaniment, courtship, and 

copulation only during spring (2 February–7 April), whereas C. o. helleri exhibited 

sexual behaviors during both spring (16 February–24 April) and late summer/fall (11 

September–3 October). For total observations (accompaniment and copulations), the 

asymmetry between species and season was significant (Cramer’s V = 0.41, P = 0.013). 

When additional data from existing literature were added to our observations (Table 2-3), 

the asymmetry was even stronger (Cramer’s V = 0.53, P < 0.001). 

 
 
 
TABLE 2-3. Number of sexual interactions observed in Red Diamond (Crotalus ruber) 
and Southern Pacific (C. oreganus helleri) Rattlesnakes, including male-female pairs 
interacting (accompaniment, sometimes including courtship) or copulating at our study 
site during spring and late summer/fall. Numbers in parentheses represent sum of our 
observations and reports from existing literature.a 
 
Sexual 
Interactions 

Spring Late Summer/Fall 
C. ruber C. o. helleri C. ruber C. o. helleri 

Accompaniment 10 (19) 8 (8) 0 (0) 3 (3) 
Copulation 9 (27) 5 (6) 0 (0) 2 (5) 
Totals 19 (46) 13 (14) 0 (0) 5 (8) 
 

a Sources: Linsdale (1932), Armstrong and Murphy (1979), Klauber (1972), Grismer 
(2002), Brown et al. (this volume). 
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Discussion 

We expected to see seasonal differences in home range size and movements, with 

both species occupying larger home ranges and moving greater distances during the 

active season than during the winter. However, we had no a priori expectations of finding 

the species differences that were detected. In the sections that follow, we emphasize these 

species differences, but also render comparisons to other studies when relevant. 

Home Range Size  

Although we did not detect a statistical difference in home range size between the 

two species, effect sizes were large enough to suggest that a disparity exists, with C. o. 

helleri occupying two- to five-fold larger home ranges than C. ruber at our study site. 

Unfortunately, the relatively small sample size resulting from high levels of predation on 

C. o. helleri (see Methods) reduced the power of our statistical analyses, but practical 

significance (effect size) is often more meaningful, as it can be interpreted apart from 

sample size effects (Cohen, 1988). During winter, the two species likely occupy 

similarly-sized home ranges, and these are much smaller than those used during the 

active season. Although we did not track females during this study, C. ruber females use 

significantly smaller home ranges than males (Brown et al., this volume; Greenberg, 

2002;). We attribute species differences in home range size to the different preferred 

habitats, as discussed in the next section. 

A comparison of 100% MCP estimates from three locations in southern California 

suggests that coastal populations of C. ruber occupy smaller home ranges than those of 

desert populations. At our coastal site, the seven adult males averaged 2.4 ha, with 
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individuals occupying 0.3–4.5 ha (based on 6–40 fixes during the 9-month active season 

over 2 yr; Table 2-1). Five telemetered adult males at a coastal San Diego County 

location averaged 2.8 ha, with individuals ranging from 1.1–4.4 ha (based on 18–79 

unique fixes during up to a 4-yr duration; Brown et al., this volume). In contrast to 

coastal populations, five telemetered adult males at a desert location in Riverside County 

averaged 25.8 ha, with individuals ranging from 7.2–52.5 ha (based on an unknown 

number of fixes over 381–1,000 d; Greenberg, 2002). Intraspecific variation in home 

range size could be attributed to differential availability and distribution of resources in 

coastal and desert environments (Gregory et al., 1987). One might expect that reliance on 

communal hibernacula would increase home range size, with snakes often dispersing 

great distances during the active season to reduce interspecific competition (Brown, 

1993; Jørgensen et al., this volume; Martin, 1992; Reinert and Zappalorti, 1988; see 

further comments below). However, whereas snakes at our site and at the desert 

Riverside County location (Greenberg, 2002) did not use communal overwintering sites, 

those at the coastal San Diego County site did so, and their home ranges were relatively 

small (Brown et al., this volume). Unfortunately, we cannot compare our results from C. 

o. helleri to other locations due to the absence of such studies. 

In our study, MCP and FK estimates showed close correspondence (with CR2 

being the one exception in Table 2-1). Although both home range estimators are sample 

size-dependent (MCP increasing and FK decreasing with increasing sample size; Seaman 

et al., 1999) and FK estimates are especially sensitive to autocorrelation (Powell, 2000), 

we found no overt influence of number of fixes or autocorrelation on our estimates. The 

consequences of autocorrelation are frequently ignored in studies of home range size, 
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though the sedentary nature of snakes, and reptiles in general, can often result in 

autocorrelation (Figueroa et al., this volume; Row and Blouin-Demers, 2006). 

Movements and Mating Phenology  

Crotalus ruber not only used a smaller home range size than C. o. helleri, but also 

moved significantly less. We hypothesize two aspects of the biology of each species that 

likely contributed to the differences observed in active-season movements: habitat use 

and the timing and frequency of mating seasons. 

The availability and distribution of preferred habitat have been shown to affect 

both annual (Reinert, 1993) and seasonal (Marshall et al., 2006) movements of 

rattlesnakes. At our site, C. ruber and C. o. helleri exhibited significant differences in 

habitat use (Dugan and Hayes, 2005, unpubl. data). Preferred habitat of C. ruber at our 

site—cactus primarily, and chaparral—is sparsely distributed and restricted to a series of 

south-facing hillsides. Movements of C. ruber throughout the study period were 

primarily confined to moves between and within clusters of Opuntia cactus patches. 

Several individuals spent virtually an entire active season within a single cactus patch. In 

contrast, preferred habitat of C. o. helleri—grassland and riparian—is widely and more 

continuously distributed throughout the site. The greater mean distances moved annually 

by C. o. helleri may be associated with the less-restricted abundance of grassland and 

riparian habitats. 

Reproductive condition also dramatically affects the movements of both male and 

female rattlesnakes. During mating season, male rattlesnakes search extensively for 

females to mate (e.g., Aldridge and Brown, 1995; Ashton, 2003; Brown et al., this 

volume; Cardwell, 2008; Duvall et al., 1992; Goode et al., this volume; Jellen et al., 
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2007; Marshall et. al, 2006; Prival et al., 2002; Sealy, 2002; Secor, 1992; Waldron et al., 

2006a). Female rattlesnakes, in contrast, do not actively search for mates (Duvall and 

Schuett, 1997), and typically exhibit smaller home ranges and reduced movements, with 

gravid individuals being most sedentary. At our study site, male C. o. helleri moved 

significantly greater distances than male C. ruber. The difference may result, in part, 

from the different mating phenology of the two species. Crotalus ruber at our site 

appears to mate exclusively in the spring (Table 2-3). A comprehensive review of the 

literature suggests that this is a range-wide phenomenon (Aldridge and Duvall, 2002; 

Brown et al., this volume; Campbell and Lamar, 2004; Goldberg, 1999; Greenberg, 2002; 

Grismer, 2002; Klauber, 1972), as we were unable to locate any published records of 

reproductive activity in C. ruber outside of the well-documented spring mating period. 

Crotalus o. helleri, in contrast, mates during both spring and late summer/fall at our site 

(Table 2-3), and probably does so throughout its range (Aldridge, 2002). Males of both 

species at our study site exhibited increased movements during the spring mating season, 

but late summer/fall movements by C. o. helleri appeared to be greater than those of C. 

ruber (Fig. 2-2). Thus, the finding that C. o. helleri moves significantly greater distances 

than C. ruber during the active season may reflect the additional late summer/fall mating 

season of C. o. helleri. 

The reason for the marked difference between C. ruber and C. o. helleri in the 

timing and frequency of mating seasons remains unclear. A similar disparity exists for 

sympatric C. atrox (late summer/fall and spring mating) and C. molossus (spring mating) 

in Arizona, with C. atrox exhibiting two corresponding peaks in testosterone and C. 

molossus only one (Schuett et al., 2005). Thus, the differences may be physiologically 



 

43 

based if the behaviors are hormonally dependent, but clearly do not derive from ambient 

environmental factors (e.g., photoperiod, temperature, precipitation) and more likely 

relate to evolutionary history (Aldridge and Duvall, 2002; Schuett et al., 2002, 2005). 

However, because reproductive isolation between sympatric rattlesnakes almost certainly 

results from pheromone differentiation (Shine et al., 2002, 2004), and the costs borne by 

males to locate females by following pheromone trails can be high (Aldridge and Brown, 

1995; Aldridge and Duvall, 2002; McGowan and Madison, this volume), temporal 

segregation of mating seasons may have originated from competitive mechanisms if the 

costs for discriminating conspecific from heterospecific female pheromone trails are 

high. Such costs might be expected to be higher during the late summer/fall mating 

season, as both C. ruber and C. o. helleri at our study site often overwinter in relatively 

close proximity on south-facing slopes, where mate location would be facilitated in 

spring (Dugan and Hayes, unpubl. data).  

The annual movements of rattlesnakes vary substantially across species and may 

relate to intraspecific competition. Some populations are clearly migratory, typically 

moving substantial distances between their communal hibernaculas and their active-

season home ranges (e.g., Brown, 1993; Duvall and Schuett, 1997; Jørgensen et al., this 

volume; Macartney et al., 1988). Migratory populations generally inhabit regions that 

experience extreme winter temperatures with limited suitable overwintering sites (for an 

exception, see Harvey and Weatherhead, 2006). However, rattlesnake populations in 

milder climates, such as those at our study site, frequently hibernate solitarily without 

strong site fidelity and lack annual unidirectional movements (e.g., Greenberg, 2002; 

Secor, 1992). Home range size may also be smaller in non-migratory populations. We 
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concur with Greenberg (2002) that differences in movements and spatial use by 

individuals in these populations likely arise from differences in competition. Snakes at 

communal hibernacula face higher levels of intraspecific (and often interspecific) 

competition and, therefore, must disperse to a greater extent than snakes that hibernate 

solitarily. 

Niche Partitioning  

Niche separation between closely-related sympatric species can be achieved via 

differences in food (type or size) or in use of spatial (macrohabitat or microhabitat), 

temporal (diel or seasonal activity patterns), or thermal resources (Saint Girons, 1978; 

Schoener, 1974). Our findings suggest that sympatric populations of C. ruber and C. o. 

helleri, like other sympatric rattlesnakes (Beck, 1995; Mendelson and Jennings, 1992; 

Pough, 1966; Reynolds and Scott, 1982; Steen et al., 2007; Waldron et al., 2006b) and 

vipers (Luiselli, 2006a,b; Luiselli et al., 2007; Reinert, 1984) studied to date, primarily 

partition the habitat to reduce interspecific competition. However, unlike other sympatric 

rattlesnakes investigated thus far, C. ruber and C. o. helleri also differ in their use of 

spatial and temporal resources, though probably not as a direct result of competitive 

mechanisms. Although diet may vary among sympatric rattlesnakes (e.g., Clark, 2002; 

Holycross et al., 2002), including between C. ruber and C. o. helleri at our study site 

(Dugan, unpubl. data), rattlesnakes are often opportunistic feeders (within broader 

categories of preferred prey types, such as lizards and mammals; e.g., Avila-Villegas et 

al., 2007; Campbell and Lamar, 2004; Clark, 2002; Holycross et al., 2002; Klauber, 

1972), and dietary differences may relate primarily to prey availability in the different 

preferred habitats and, secondarily, to size differences (gape-limited constraints) between 
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adults (Reynolds and Scott, 1982). We imagine that diet might be partitioned more so 

than habitat among some sympatric rattlesnakes that differ substantially in adult size and 

coexist in environments with limited habitat variability (e.g., C. atrox and C. cerastes in 

creosote [Larrea tridentata] desert flats). Apart from differences in mating seasons, we 

found no evidence that C. ruber and C. o. helleri further partition temporal resources. In 

terms of diel activity, we found both species active primarily during morning and evening 

hours, with some shift to nocturnal activity during hot weather (Dugan, unpubl. data). In 

terms of seasonal activity, we found C. ruber to be relatively sedentary compared to C. o. 

helleri, but the timing and duration of the active season were similar. Although we have 

not yet examined body temperature data, we are doubtful that thermal resources are 

partitioned between these two species. Perhaps further study of other sympatric 

rattlesnakes will reveal examples wherein food, temporal, or thermal resources are 

substantially partitioned to facilitate coexistence. 
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Abstract 

 As a major selective force of ecological divergence and speciation, interspecific 

competition often influences the behavior and ecology of sympatric organisms, and can 

lead to partitioning of resources. Sympatric snake species appear to partition primarily 

trophic resources; however, sympatric viper species, similar to most other vertebrates, 

tend to partition habitats rather than food resources. We examined resource use by two 

sympatric species, the Red Diamond (Crotalus ruber) and Southern Pacific (C. oreganus 

helleri) Rattlesnakes, in Chino Hills State Park, California. Using radio-telemetry and 

mark-recapture from March 2003 through March 2010, we obtained data from 83 C. 

ruber and 110 C. o. helleri on all four major niche axes, including space use 

(macrohabitat and microhabitat), thermal attributes of microhabitat use, temporal aspects 

of resource use (seasonal and circadian activity), and diet (prey species and size). 

Compositional and logistic regression analyses revealed differential and non-random use 

of macrohabitats (vegetation communities) by the two species. Additional multivariate 

and contingency analyses revealed similar use of microhabitat (below/above ground, 

arboreal), seasonal, and circadian resources (seasonal and daily patterns were similar, 

though C. o. helleri engaged in higher levels of locomotion and sexual activity), but 

differential use of thermal (C. ruber warmer) and dietary (both prey species and size) 

resources. Pianka's and Czekanowski's indices revealed low niche overlap for prey 

species, moderate overlap of macrohabitat, and broad overlap of microhabitat, thermal 

and temporal (seasonal and circadian) resources, and prey size. However, Monte Carlo 

simulations suggested that only two niche features differed significantly from random: 

thermal resources (greater overlap than expected, presumably due to physiological 
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constraints) and prey size (less overlap than expected, possibly due to body size 

differences between snake species and differential prey availability in preferred 

macrohabitats). We conclude that niche partitioning is minimal or absent between these 

species, and needs closer examination among other sympatric viper species. 

 

Introduction 

As a major selective force of ecological divergence and speciation (Schluter, 

2000; Ackermann and Doebeli, 2004; Pearman et al., 2007), interspecific competition 

often influences the behavior and ecology of sympatric organisms (Goodyear and Pianka, 

2008; Schettino et al., 2010). Although often difficult to measure (Reichenbach and 

Dalrymple, 1980; Toft, 1985), competition among species occupying similar niche guilds 

can become intense as organisms compete for access to limited resources such as food 

and space (e.g., Schoener, 1974; Gerstell and Bednarz, 1999; Kozlowski et al., 2008). 

Niche partitioning resulting from differential resource use allows ecologically 

similar species to coexist (Gause, 1934; Schoener, 1974; Luiselli, 2006a; Pfennig et al., 

2006; Desbiez et al., 2009). Niche theory predicts that, in cases of interspecific 

competitive coexistence, either one or both species will alter their niche to a degree that 

allows cohabitation of a given environ, thereby reducing the intensity of competition 

(Gause, 1934; Pianka, 1981; Walter, 1991; Arjo et al., 2002; Cadotte, 2007; Luiselli et 

al., 2007; Pearman et al., 2007). In cases where niche differentiation is precluded by 

biological settings, competition can result in decreased fitness (i.e., growth, fecundity, or 

survivorship) of the weaker species (Reichenbach and Dalrymple, 1980; Townsend et al., 

2008). Niche separation can be achieved along four major niche axes: spatial separation 
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(via microhabitat or macrohabitat use), temporal avoidance (diel or seasonal), dietary 

differences (type or size), or use of thermal resources (Schoener, 1974; Saint Girons, 

1978; Luiselli, 2006a). 

Considered excellent models for ecological studies (Shine and Bonnet, 2000), 

snakes are ideally suited for studies of interspecific competition (Luiselli, 2006a). In 

recent decades, studies of snake communities have revealed various aspects of snake 

biology that are apparently affected by the presence of competitors, including diet (e.g., 

Luiselli, 2003; Luiselli and Akani, 2003; Hartmann and Marques, 2005; Edgehouse, 

2008; Halstead et al., 2008) and habitat use (e.g., Beck, 1995; Laurent and Kingsbury, 

2003; Luiselli et al., 2007). In his review of resource partitioning among amphibians and 

reptiles, Toft (1985) suggested that sympatric snakes primarily partition food resources, a 

form of niche partitioning atypical among vertebrates. A more recent review by Luiselli 

(2006a) supported Toft's findings for several families and habitat scenarios, but 

contrasted with Toft in showing that sympatric viperids usually partition space. This 

conclusion suggests that food may not be a limited resource among most vipers, and thus 

not a source of exploitive interspecific competition (Reichenbach and Dalrymple, 1980). 

Studies of resource partitioning among North American viperids, although 

limited, have been interpreted as support for Luiselli’s (2006a) conclusion of habitat 

partitioning. Differential habitat use was documented among sympatric populations of the 

rattlesnakes Crotalus atrox, C. molossus, and C. scutulatus in the Sonoran Desert of 

southeast Arizona and southwestern New Mexico (USA) and Chihuahua (Mexico; 

Pough, 1966; Reynolds and Scott, 1982; Mendelson and Jennings, 1992). Similarly, Beck 

(1995) showed use of different habitats by sympatric C. atrox, C. molossus, and C. tigris 
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in Arizona. Sympatric eastern species also appear to partition habitat, including the 

rattlesnakes C. horridus and C. adamanteus (Waldron et al., 2006; Steen et al., 2007), 

and C. horridus and the copperhead Agkistrodon contortrix (Reinert, 1984). To date, no 

evidence for niche separation among other axes (temporal, diet, or thermal resources) has 

been found among North American viperids. However, two sympatric species of 

European Vipera partition dietary resources (Luiselli et al., 2007), as do two sympatric 

species of African Bitis (Luiselli and Akani, 2003; Luiselli, 2006b). 

A major shortcoming of prior studies, particularly from North America, is that 

conclusions regarding possible niche partitioning were based solely on statistical 

differences in resource use between two or more species, and usually on a single resource 

axis. Differences in resource use could arise from a variety of sources, including 

competitive interactions, phylogenetic divergence, physiological constraints, and random 

processes. Finding species differences in resource use is not sufficient to demonstrate 

niche partitioning (Connell, 1980). Niche indices (MacArthur and Levins, 1967; Pianka, 

1973; Feinsinger et al., 1981) and null models (Gotelli and Graves, 1996) have been 

developed to better understand the causes of differential resource use. The null models 

generate “pseudo-communities” based on resource use data from real life closely-related 

sympatric species and test whether the amount of niche overlap differs significantly from 

random. 

In southwestern North America, multiple rattlesnake species frequently overlap 

widely (Klauber, 1972; Stebbins, 1985; Grismer, 2002; Campbell and Lamar, 2004). As 

one example, the red diamond (Crotalus ruber) and southern Pacific (C. oreganus 

helleri) rattlesnakes occupy sympatric ranges throughout large portions of southern 
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California (USA) and Baja California Norte (Mexico; Grismer, 2002; Beaman and 

Dugan, 2006). The close phylogenetic relationship (Murphy et al., 2002) and extensive 

overlap of ranges, habitat, and general life histories (seasonal activity and feeding 

ecologies) render these two species ideal candidates for exploring potential niche 

separation and interspecific competition (Dugan et al., 2008). 

In this study, we examined resource use for each of the major niche axes of 

sympatric C. ruber and C. o. helleri in a coastal canyon of southern California. Our 

purposes were to compare differential use of 1) space (macrohabitat and microhabitat), 2) 

thermal resources, 3) temporal resources (seasonal and circadian activity), and 4) diet by 

the two species. We also examined 5) whether patterns of niche overlap in resource use 

could be attributed to niche partitioning or non-competitive processes.  

Material and Methods 

Study Species 

The red diamond rattlesnake (C. ruber) ranges from San Bernardino County, 

California, USA, south to the tip of the Baja Peninsula, Baja California Sur, Mexico. 

Insular populations exist on the Gulf of California islands of Angel de la Guarda, 

Dazante, Monserrate, Pond, San Jose, and San Marcos (Grismer, 2002), as well as the 

Pacific Islands of Cedros and Santa Margarita (Wong, 1997). Crotalus ruber attains a 

large adult size (ca. 1200 mm snout-vent length, SVL) and occupies a wide range of 

habitats, including desert slopes, rocky canyons, and coastal foothills (Grismer, 2002). 

Habitat loss (Noss and Peters, 1995; Halama et al., 2008) and a restricted range within the 

United States (Beaman and Dugan, 2006) has resulted in C. ruber being listed as a 

Species of Special Concern by the state of California (Jennings and Hayes, 1994). 
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 The southern Pacific rattlesnake (C. o. helleri) ranges from central California 

south into northern Baja California, Mexico (Grismer, 2002). Attaining an adult size (ca. 

1050 mm SVL) similar to C. ruber, C. o. helleri is a habitat generalist, occupying 

environs ranging from pine forests above 3,000 m to beaches and sand dunes at sea-level 

(Stebbins, 1985). Both C. ruber and C. o. helleri are relatively understudied compared to 

other rattlesnake species.  

Study Site 

We conducted our study in the southeast portion of Chino Hills State Park 

(CHSP), which spans portions of Los Angeles, Orange, Riverside, and San Bernardino 

counties, California (33˚54' N, 117˚42' W). A north-south running canyon with a small 

perennial creek dominates the topography of the 156-ha area in which the study was 

confined. Dugan et al. (2008) and Figueroa et al. (2008) described the climate and 

general habitat features of the site.  

We identified five major habitats (hereafter, macrohabitats) at the study site (Fig. 

3-1): cactus, coastal sage-scrub (CSS), non-native grassland, riparian, and oak woodland 

(Sampson, 1985). Cactus patches of coastal pricklypear (Opuntia littoralis) were found 

exclusively on south-facing slopes. The distribution of CSS was patchy, primarily on 

south-facing slopes, and was usually adjacent to cactus stands. Non-native grassland was 

the most widespread macrohabitat, occurring extensively on hillsides and in canyon 

bottoms. The riparian system was largely confined to the creek channel, but penetrated 

into damp drainages of the grassland. Oak woodland was found primarily on north-facing 

slopes. The study site was almost entirely devoid of rock outcroppings, as the soil is  
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FIG. 3-1. Satellite image of study area in Chino Hills State Park, southern California, 
illustrating the heterogeneous distribution of the five macrohabitats. Cactus, riparian, and 
oak can be identified in the image, with the remainder consisting of introduced grassland 
and coastal sage scrub. Steep ridges are evident from shadows. Two dirt roads transect 
the site. Inset: study site in relation to southern California counties. 
 

 

predominately clay. Sampson (1985) provided further details on relative abundance and 

species composition of these plant communities at CHSP. 

Radiotelemetry and Mark-Recapture 

We began collecting, individually marking, and implanting snakes with radio-

transmitters in March 2003. All snakes captured were marked with a passive integrative 
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transponder (PIT) tag (AVID Identification Systems, Inc., Norco, California, USA). Our 

complete sample included 83 C. ruber (1 male, 1 female, 1 unknown-sex juveniles; 34 

male, 22 female, 6 unknown-sex adults; 18 uncategorized snakes) and 110 C. o. helleri 

(12 male, 11 female, 8 unknown-sex juveniles; 33 male, 13 female, 6 unknown-sex 

adults; 27 uncategorized snakes). We implanted SI-2T transmitters (9 g, <5% of snake 

body weight; Holohil Systems Ltd., Ontario, Canada) into nine adult male C. o. helleri 

(84–103 cm snout-vent length, SVL) and nine adult male C. ruber (98–156 cm SVL), as 

described previously (Dugan et al., 2008; Chapter 2). Snakes were released at their 

collection site 24–36 h post-surgery. We conducted radio-tracking through March 2008 

and mark-recapture through 2010. Sampling effort varied seasonally as snake activity 

patterns changed. Radio-tracked individuals were located 1–4 times/wk throughout the 

active season (March–November), and less often (bi-weekly) during the winter period 

(December–February). Radio-tracked snakes were lost (predation, transmitter battery 

failure) and replaced throughout the study, resulting in variable tracking periods (202–

1762 d) for different individuals. 

Macrohabitat Use 

We employed two methods for analysis of macrohabitat use: compositional 

analysis (Aebischer et al., 1993) and logistic regression (Mertler and Vannatta, 2004). 

Because species differences in macrohabitat usage potentially vary seasonally, we 

distinguished between the active season (March–November) and the winter period 

(December–February; Dugan et al., 2008). Rattlesnakes at the study site retreat non-

communally to burrows during much of the winter, but often emerge during warm spells, 

when they sometimes consume food (Dugan et al., under review; Chapter 4). 
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We conducted compositional analysis separately for each species to determine 

whether proportional usage of macrohabitat types varied from availability. This analysis 

used only transmittered snakes. For each snake location (or “fix”), we identified the 

macrohabitat occupied as cactus, coastal sage-scrub, non-native grassland, riparian, or 

oak woodland. To quantify availability, we recorded macrohabitat during a ground 

survey at each of 250 points defined by the intersections of a 25 × 25 m grid over the 

156-ha study site. This area was defined by the outermost movements of all transmittered 

snakes. All snakes captured opportunistically were also found within this area. 

Compositional analysis was conducted using Adehabitat for R software 2.11.0, with 

alpha set at 0.05 (Calenge, 2006). 

We used logistic regression to further test for species differences in macrohabitat 

use. Logistic regression allowed us to test the probability that we could predict which 

snake species occupied a given location based solely on the measured distance to the 

different macrohabitat types. For our models, we used five predictor variables that 

consisted of the measured distance (meters), obtained by measuring wheel (Fast Back, 

Komelon Corporation, Waukesha, Wisconsin, USA) or pacing, to each macrohabitat type 

(grassland, cactus, riparian, oak woodland, and CSS). This analysis allowed us to use a 

much larger sample of snakes, including all age classes, both sexes, and both radio-

telemetered and opportunistically-collected snakes. To avoid pseudoreplication, mean 

distances were computed for each individual having multiple fixes. These and all 

statistical tests described hereafter were carried out using SPSS 13.0 for Windows (SPSS, 

2003) with alpha set at 0.05. 
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Microhabitat Use 

For each fix, we recorded occurrence in one of three microhabitats: underground 

(within a burrow), above-ground (on the surface), or arboreal (above the ground in 

vegetation). Microhabitat use varied daily (and at the same location) as much as 

seasonally, so we did not distinguish between seasons in our analyses. Because data were 

categorical (i.e., proportional), we analyzed data only from telemetered snakes that 

provided ≥7 fixes. For each snake, we computed the proportion of total fixes in each 

microhabitat, which reflected relative time spent in a given microhabitat but not 

necessarily discrete decisions about microhabitat use, since snakes often remained at one 

location for extended periods with multiple observations resulting at that location 

(Figueroa et al., 2008). Data (after arcsin transformation to better meet parametric 

assumptions) were subjected to a 2 × 3 (species × microhabitat type) mixed analysis of 

variance (ANOVA; Mertler and Vannatta, 2004), with species treated as a between-

subjects factor and microhabitat as a within-subjects factor. Because of non-sphericity (a 

multivariate assumption), Greenhouse-Geisser adjustments were applied to the degrees-

of-freedom (Mertler and Vannatta, 2004). Partial eta-squared (η2) was computed for 

effect size, with values of ~0.01 regarded small, ~0.06 medium, and ≥0.14 large (Cohen, 

1988). 

Thermal Resources 

As ectotherms, snakes generally select preferred temperatures within a given 

microhabitat, so we recorded three temperature measurements at each fix when the snake 

was above-ground: air (Ta, 1 m above ground in shade), using a Kestrel 3000 (Nielsen-

Kellerman Inc., Boothwyn, Pennsylvania, USA); shaded ground adjacent to the snake 
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(Tg-shade, nearest shade within 2 m unless absent), using a laser thermometer (PM Plus, 

Raytek Corporation, Santa Cruz, California, USA); and sun-exposed ground adjacent to 

the snake (Tg-sun, nearest sun exposure within 2 m unless absent) via the laser 

thermometer. We recorded both sets of ground temperatures because snakes usually had 

the option of choosing either. We relied on logistic regression to compare the two 

species, using the three temperatures obtained from all telemetered and opportunistically-

encountered snakes. To avoid pseudoreplication, mean values were entered for snakes 

having multiple observations. 

We compared the three temperatures among the five macrohabitats using a 3 × 5 

(temperature measures × macrohabitat) mixed ANOVA, with temperature treated as a 

within-subjects factor and macrohabitat as a between-subjects factor. This analysis 

included data from all snake fixes. Greenhouse-Geisser adjustments were applied due to 

lack of sphericity. We also compared the temperature differential between Tg-shade and Tg-

sun among the five macrohabitats using a one-way ANOVA (treating macrohabitat as a 

between-subjects factor). This analysis, which similarly used data from all fixes, allowed 

us to examine the range of proximate temperatures that a snake had access to by shuttling 

between sun and shade. 

To further examine the snake’s response to its thermal environment, we recorded 

the proportion (nearest 0.10) of the snake’s body exposed to direct sunlight each time a 

snake was located above ground (c.f. Ashton 1998). We used mean values from all 

telemetered and opportunistically-encountered snakes. We compared the two species 

using an independent t-test (Zar, 1996) of arcsin-transformed data. We also computed 

Cohen’s d as a measure of effect size (Cohen, 1988). 
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Activity and Temporal Resource Use 

We calculated the frequencies of three behaviors recorded for each snake upon 

each fix: immobile (coiled and stationary), locomoting, and sexual activity (engaged in 

active courtship or copulation). Because data were categorical (i.e., proportional), we 

analyzed data only from telemetered snakes that provided ≥7 fixes. After arcsin 

transformation, data were subjected to a 2 × 3 (species × behavior) mixed ANOVA, with 

species treated as a between-subjects factor and behavior as a within-subjects factor. 

Greenhouse-Geisser adjustments were applied due to lack of sphericity. 

To examine seasonal differences in activity, we computed mean daily movements 

of snakes on a monthly basis, as described by Dugan et al. (2008). These were compared 

across three periods of the active season corresponding to the spring mating season of 

both species (March–April), the summer period (May–August), and the fall mating 

season of C. o. helleri (September–October), as documented by Dugan et al. (2008). 

Crotalus ruber has only one mating season annually (spring). This analysis included only 

snakes radio-tracked during 2003–2004, when the high intensity of tracking effort 

resulted in adequate multiple fixes each month. Mean seasonal values were computed 

from the monthly means of each snake (i.e., there was no pseudoreplication). These 

seasonal values were subjected to a 2 × 3 (species × season) mixed ANOVA (after rank 

transformation), with species treated as a between-subjects factor and season as a within-

subjects factor. The model met the assumption of sphericity. Because partial η2 values for 

the main effects and interaction summed to >1.0, we adjusted these by dividing each 

partial η2 by the sum of all partial η2 values (Dugan et al., 2008). 
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We also assessed the circadian activity of transmittered snakes during the active 

season. Snake activity was dichotomized as inactive (immobile) or active (locomoting or 

sexual activity), and time of day was categorized as morning (0600–1059 hr), mid-day 

(1100–1659 hr), or evening (1700–2159 hr). We analyzed frequency of activity (without 

transformation) for each time period using a 2 × 3 (species by time period) mixed 

ANOVA with Greenhouse-Geisser adjustments.  

Diet 

We opportunistically collected dietary data from free-ranging C. ruber and C. o. 

helleri at our study site during the period 2003 to 2009. Diet was determined from scat 

samples and feeding observations, as described in Dugan and Hayes (under review; 

Chapter 4). Snakes containing food boli were not palpated or forced to regurgitate food 

items (c.f., Macartney, 1989).  

We compared the diet of the two rattlesnake species to test three hypotheses. 

First, we hypothesized that the two species differ in the proportions of various prey 

genera consumed. Second, we hypothesized that any difference in diet composition 

corresponds to differences in preferred habitat of the snakes, as reflected by predation 

disproportionately upon prey genera occurring in their preferred habitats. Third, because 

rattlesnakes are gape-limited predators (Shine, 1991a; Rodriguez-Robles et al., 1999), we 

hypothesized that C. ruber, as the larger species, has access to and more often consumes 

larger prey than C. o. helleri. We categorized prey genera as small (1–75 g), medium 

(76–275 g), or large (276–950 g). Actual prey mass was unknown, so we used the adult 

mass for each genus from the literature (Jameson and Peeters, 1988), as commonly done 

in studies of snake diets. For several genera with multiple species occurring at the study 
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site, we used the average mass for those species. Habitat preferences of prey genera were 

gleaned from the literature (M'Closkey, 1972; Meserve, 1974, 1976; Heske et al., 1984; 

Gillihan and Foresman, 2004). We subjected dietary data to Chi-square (χ²) tests (when 

expected counts were adequate) and tests of asymmetry (either Phi [φ] for 2×2 or 

Cramer’s V for larger contingency tables; Conover, 1999). Phi and Cramer’s V can be 

interpreted as effect size, with values of ~0.1 deemed small, ~0.3 moderate, and ≥0.5 

large (Cohen, 1988). Following Nakagawa (2004), we did not apply Bonferroni 

adjustments of alpha to multiple tests. 

Niche Overlap 

We computed Pianka’s (1973) and Czekanowski’s (Feinsinger et al., 1981) niche 

overlap indices for the major niche axes using EcoSim 7.71 (Gotelli and Entsminger, 

2001). Each of these indices yields a symmetric measure of niche overlap ranging from 0 

(no resources in common) to 1 (complete niche overlap). In general, low, moderate, and 

high niche overlap correspond to values of <0.4, 0.4–0.6, and >0.6. Using EcoSim’s null 

model tests, we also computed tail probabilities from randomly-assembled pseudo-

communities using randomization algorithms RA2, RA3, and RA4 (Winemiller and 

Pianka, 1990) with 3 × 106 iterations to avoid algorithm bias (Lehsten and Harmand, 

2006). We assumed equiprobable resource use for all analyses, since the two species had 

ready access to all resources in the relatively small study area. Interspecific competition 

can be inferred when niche overlap values are significantly less than expected (Gotelli 

and Graves, 1996). Abiotic constraints, by contrast, can impose similar patterns of 

resource use, resulting in niche overlap values being significantly greater than expected 

(Albrecht and Gotelli, 2001). 
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We obtained Pianka’s and Czekanowski’s indices for all of the major niche axes 

(Schoener, 1974; Saint Girons, 1978), including: macrohabitat use (five categories, from 

usage data as well as distances to macrohabitats); microhabitat use (three categories); 

thermal resources (three categories); seasonal and circadian movements (three categories 

each); food type (11 categories); and food size (three categories). With the exception of 

macrohabitat distances and diet, we restricted analysis of niche overlap to data from 

telemetered male snakes. Analysis of macrohabitat and dietary data included both 

telemetered and opportunistically-captured snakes of each species. 

Results 

Macrohabitat Use 

We obtained data for compositional analysis from radio-tracked adult male C. 

ruber (n = 9 snakes, 357 fixes) and C. o. helleri (n = 9 snakes, 301 fixes). We had 

sufficient samples only for the active season. Figure 3-2 compares habitat use versus 

availability for the two species during the active season. Macrohabitat availability at the 

study site (based on 250 locations) consisted of 61.6% grassland, 11.6% riparian, 11.2% 

cactus, 10.8% coastal sage scrub, and 4.8% oak woodland. Habitat use by C. ruber 

differed significantly from random (Wilks’ lambda = 0.101, df = 4, P < 0.001), with 

rank-order habitat use being cactus > CSS > grassland > riparian > oak woodland. This 

species used cactus and CSS in much greater proportion than their availability. Habitat 

use of C. o . helleri similarly differed significantly from random (Wilks’ lambda = 0.133, 

df = 4, P = 0.001), with rank-order habitat use being riparian > cactus > grassland > CSS 

> oak woodland. Riparian was used in far greater proportion than its availability. Both 

species used oak woodland less than its availability. 
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FIG. 3-2. Spatial axis: Macrohabitat availability versus macrohabitat use (mean 
percentage ± 1 SE) by radio-telemetered adult male Crotalus ruber (n = 9) and C. o. 
helleri (n = 9) during the active season (March–November).  
 

 

 To compare species differences by logistic regression, we obtained macrohabitat 

data (distances to each macrohabitat type) from 57 C. ruber (n = 9 transmittered and 48 

opportunistically-encountered) and 70 C. o. helleri (n = 9 and 61, respectively) during the 

active season, and from 13 C. ruber (n = 5 and 8, respectively) and 12 C. o. helleri (n = 4 

and 8, respectively) during the winter period. Many of the opportunistically-encountered 

snakes were recorded more than once, and included snakes of both sexes and size classes. 

The number of fixes per animal used to compute average values varied from one (64.8% 

of all snakes) to 63 in the active season, and from one (50.0% of all snakes) to 16 during 
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winter. Logistic regression confirmed that C. ruber and C. o. helleri used different 

macrohabitats during the active season (χ² = 90.88, df = 5, P < 0.001, -2 log likelihood = 

83.85, Nagelkerke R2 = 0.68; Fig. 3-3). The model successfully predicted the correct snake 

species for 87.4% of all locations (C. ruber = 87.7%; C. o. helleri = 87.1%). Distances to 

cactus and grassland were the only two significant predictors of differences between the 

two species (P = 0.021 and 0.002, respectively; log-odds ratios = 0.95 and 1.13, 

respectively), with C. ruber averaging closer to cactus and C. o. helleri closer to 

grassland. The two species also used different macrohabitats during the winter period (χ² 

= 24.58, df = 5, P < 0.001, -2 log likelihood = 10.03, Nagelkerke R2 = 0.84), with the 

model successfully predicting snake species for 92.0% of all locations (C. ruber = 

100.0%; C. o. helleri = 83.3%). Because of the smaller sample size, no single predictor 

proved to be significant, though the log-odds ratio (i.e., effect size) was largest for 

distance to grassland (1.32; compare with the active season model above). Macrohabitat 

use within species was similar during the active and winter seasons, but because our 

samples included both independent and related data, we did not compare seasonal usage 

statistically. 
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FIG. 3-3. Spatial axis: Macrohabitat characteristics (distances to nearest macrohabitat 
type, mean ± 1 SE) of individual locations used by radio-telemetered and 
opportunistically encountered Crotalus ruber (n = 57) and C. o. helleri (n = 70) during 
the (A) active season (March–November) and (B) winter (December–February). 
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Microhabitat Use 

For proportional data on snake location relative to the ground surface, we 

analyzed data only from telemetered subjects (C. ruber: n = 9 adult males, 17–99 fixes 

per snake; C. o. helleri: n = 7 adult males; 20–103 fixes per snake). Repeated-measures 

ANOVA indicated that microhabitat use was similar for the two species (F1.0,14.2 = 0.21, 

P = 0.65, partial η2 = 0.01) and that no interaction existed between species and 

microhabitat type, though the effect size was moderate (F1.0,14.2 = 1.73, P = 0.21, partial 

η2 = 0.11). However, snake use differed significantly among the three microhabitats 

(F1.0,14.2 = 43.89, P < 0.001, partial η2 = 0.76). Bonferroni pairwise comparisons 

confirmed similar percentages (mean ± 1 SE pooled for both species) of below-ground 

(53.1 ± 3.9%) and above-ground (46.4 ± 4.0) usage, and these significantly exceeded 

arboreal use (0.4 ± 0.3%). Including snakes of all sizes in the present study, we observed 

snakes in arboreal positions on just four of 1,121 fixes with microhabitat data; these 

involved one adult C. ruber and three adult C. o. helleri (c.f., Figueroa et al., 2008). 

Thermal Resources 

For thermal attributes of positions occupied by snakes, we obtained data from 49 

(n = 9 transmittered and 40 opportunistically-encountered) C. ruber and 78 C. o. helleri 

(n = 9 and 66, respectively). Logistic regression using mean values for individual snakes 

revealed that C. ruber and C. o. helleri occupied locations which differed significantly in 

their thermal attributes (χ² = 15.26, df = 3, P = 0.002, -2 log likelihood = 154.12, 

Nagelkerke R2 = 0.15; Fig. 3-4). The model successfully predicted the correct snake 

species for 65.4% of all locations (C. ruber = 34.7%; C. o. helleri = 84.6%), with fixes 
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predicted with much better success for C. o. helleri. Ground temperature in the sun (Tg-

sun) was the single significant predictor of differences between the two species (P = 

0.002; log-odds ratio = 1.11). Microhabitats occupied by C. ruber had warmer ground 

available from solar radiation than those occupied by C. o. helleri (Fig. 3-4). 

 

 

 
 
FIG. 3-4. Thermal axis: thermal attributes (mean ± 1 SE) of locations occupied by radio- 
telemetered and opportunistically encountered Crotalus ruber (n = 49) and C. o. helleri 
(n = 78), as measured by temperature of the ground in the sun (Tg-sun), ground in the 
shade (Tg-shade), and ambient air temperature (Tair). 
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Differences among the three temperatures varied among the five macrohabitats (n = 316 

cactus, 123 CSS, 234 grassland, 93 riparian, and 11 oak woodland), as reflected in the 

weak but significant interaction of the 3 × 5 (temperature measures × macrohabitat) 

ANOVA (F5.5,1063.7 = 8.40, P < 0.001, partial η2 = 0.04). This effect resulted because the 

largest difference between Tg-sun and other temperatures (Ta, Tg-shade) was 9.4–12.8°C in 

all macrohabitats except oak woodland, for which the difference was only 2.3°C. Thus, 

snake locations in oak woodland had much more even temperatures, presumably due to 

the overhead canopy blocking direct sunlight. 

The majority of fixes (79.6% of 794 records) showed a difference in temperature 

between Tg-sun and Tg-shade. The mean temperature difference of 10.5°C indicated the 

remarkable ease with which snakes could thermoregulate via minor movements (<1–2 m) 

and/or postural adjustments (see below) to alter body exposure to solar radiation. The 

one-way ANOVA revealed differences in the ground temperature differential among the 

five macrohabitats (F4,772 = 9.13, P < 0.001, η2 = 0.05), with the cactus differential being 

greatest (12.3 ± 0.5°C) and oak least (2.3 ± 1.0°C). 

 The two species differed in the percentage of body exposed to direct sunlight (t = 

2.24, df = 1, P = 0.027, Cohen’s d = 0.49), with C. ruber (41.3% ± 4.1%, n = 74) 

exhibiting greater exposure than C. o. helleri (23.6% ± 4.0%, n = 83). Among all snake 

locations recorded (n = 749, both species pooled), 28.7% consisted of snakes in partial 

sunlight (i.e., 10–90% of body). 

Activity and Temporal Resource Use 

To compare general levels of activity between species, we analyzed proportional 

data for immobile, locomoting, and sexual behaviors only from transmittered C. ruber (n 
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= 8; 9–60 fixes per individual) and C. o. helleri (n = 9; 7–60 fixes per individual). 

Repeated-measures ANOVA showed a significant interaction between species and 

behavior (F1.1, 16.1 = 5.86, P = 0.026, partial η2 = 0.28). Among the three behaviors, C. 

ruber was inactive 1.2-fold more frequently than C. o. helleri, whereas C. o. helleri 

engaged in locomotion 1.7-fold and sexual activity 2.3-fold more frequently than C. 

ruber (Fig. 3-5). 

 

 

 
 
FIG. 3-5. Temporal axis: Comparison of activities exhibited (percentage of observations, 
mean ± 1 SE) by radio-telemetered adult male Crotalus ruber (n = 8) and C. o. helleri (n 
= 9). 
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 Transmittered snakes with sufficient mean daily movement data (six C. ruber and 

six C. o. helleri) revealed significant differences between species (F1,10 = 12.99, P = 

0.005, adjusted partial η2 = 0.51) and in seasonality of activity (F2,20 = 11.67, P < 0.001, 

adjusted partial η2 = 0.48), with no interaction between these variables (F2,20 = 0.12, P = 

0.89, adjusted partial η2 = 0.01). Crotalus o. helleri exhibited higher levels of activity 

than C. ruber in all three seasons, and both species were more than two-fold more active 

in spring than during summer (Fig. 3-6). However, the lack of an interaction confirmed 

similar seasonal levels of activity, and presumably similar seasonal use of resources, by 

the two species. 

 

 
 
FIG. 3-6. Temporal axis: Seasonal variation of movements (mean ± 1 SE) by radio-
telemetered adult male Crotalus ruber (n = 6) and C. o. helleri (n = 6). 
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 Transmittered snakes with adequate observations of circadian activity during the 

active season (eight C. ruber and nine C. o. helleri) showed no differences between 

species (F1,15 = 1.39, P = 0.26, partial η2 = 0.09) or among the morning, mid-day, and 

evening time periods (F1.4,20.5 = 0.72, P = 0.45, partial η2 = 0.05; Fig. 3-7). The lack of an 

interaction (F1.4,20.5 = 0.55, P = 0.52, partial η2 = 0.04) confirmed similar circadian 

patterns of activity by the two species. 

 

 
 
FIG. 3-7. Temporal axis: Circadian activity (percent of observations, mean ± 1 SE) of 
radio-telemetered and opportunistically encountered C. ruber (n = 8) and C. o. helleri (n 
= 9) in Chino Hills State Park. 
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Diet 

Of the 83 individual C. ruber marked at our site, 14 (18.1%) yielded 21 prey 

items identifiable to genus (Table 3-1). These were from 10 male and four female adults 

(735–1090 mm SLV; one neonate containing an unidentified rodent was excluded). We 

obtained nineteen (90.5%) prey records from fecal contents and two (9.5%) from 

observations of snakes feeding in the field. Four snakes contained multiple prey items 

(26.7%), with two containing two mammals of different species and two containing three 

mammals of different species. Identifying multiple prey was possible from feces only if 

two or more different prey species were found, leading to underestimation of snakes 

containing multiple prey. Among the prey items of C. ruber, we identified 21 mammals 

(100%) and no reptiles (c.f., Dugan and Hayes, under review; Chapter 4). The 21 

mammals, all identifiable to genus, were distributed among six genera (Table 3-1): 

Microtus (4.8%); Neotoma (52.4%); Onychomys (4.8%); Otospermophilus (4.8%); 

Peromyscus (14.2%); and Sylvilagus (19.0%).  
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TABLE 3-1. Number of prey items per taxon (mass from Jameson and Peeters, 1988) 
consumed by sympatric Crotalus ruber and C. oreganus helleri in Chino Hills State Park, 
California, including frequency (n), Phi test of asymmetry (P-value) for snake species 
differences, and habitat preferences of prey. 
 

Prey Taxon (mass) 
C. ruber 

 N 
C. o. helleri 

Na 
P Preferred Habitat 

Mammals     
  Chaetodipus (15 g) 0 7 (5) 0.019 Grasslandsf 
  Microtus (60 g) 1 1  Grasslandsc 
  Neotoma (275 g) 11 1 <0.001 Coastal sage scrub, cactusd,f  
  Onychomys (23 g) 1 0  Not determined 
  Otospermophilus (475 g) 1 7 0.081 Grasslands, ripariang 
  Peromyscus (28 g) 3 5 (2) 0.86 No preferencee 
  Reithrodontomys (12 g) 0 2 (1)  Grasslandsd,f 
  Sorex (12 g) 0 2 (1)  Grasslandsb 
  Sylvilagus (950 g) 4 2 0.16 No preferenceg 
  Thomomys (154 g) 0 3  No preferenceg 

Reptiles     
  Uta stansburiana (8 g) 0 1  No preferenceg 
Totals 21 31   
 
a Values in parentheses for adult snakes only (after exclusion of prey from neonate C. o. helleri); 

significance was similar after retesting. 
b Gillihan and Foresman, 2004 
c Heske et al., 1984 
d M’Closeky, 1972 
e Meserve, 1974 
f Meserve, 1976 
g Dugan and Hayes, pers. obs. 

  

 Of the 110 C. o. helleri we marked at our site, 24 (21.8%) yielded 31 partially 

identifiable prey (Table 3-1). These were from three male, one female, and two unknown-

sex neonates (298–320 mm SVL), and from 11 male, 1 female, and 5 unknown-sex adults 

(570–930 mm SVL). The higher proportion of dietary items from juveniles of C. o. 

helleri compared to C. ruber was significant (22.6% and 0%, respectively; φ = 0.33, P = 

0.019), requiring consideration of this bias in the analyses that follow. We procured 29 

(93.5%) prey records from fecal samples and two (6.5%) from observations of snakes 

feeding in the field. Seven snakes contained multiple prey items (29.2%), with six having 
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consumed two mammals of different species, and one containing a mammal and a lizard. 

Among the 31 prey items identified, 30 (96.8%) were mammals and one (3.2%) was a 

lizard. The mammals were widely distributed among nine genera: Chaetodipus (22.6%); 

Microtus (3.2%); Neotoma (3.2%); Peromyscus (16.2 %); Reithrodontomys (6.5%); 

Otospermophilus (22.6%); Sorex (6.5%); Sylvilagus (6.5%); and Thomomys (9.7%). All 

six neonates contained mammal food (seven items in all), which was surprising since 

younger snakes generally feed on lizards (LaBonte, 2008; Mackessy, 1988), and lizards 

abound at the study site (Figueroa et al., 2008). The single lizard record was a Uta 

stansburiana in a 605 mm SVL male.  

 For the five prey species represented by N ≥ 5 samples, C. ruber and C. o. helleri 

differed significantly in diet composition (χ2 = 20.89, df = 4, P < 0.001, Cramer’s V = 

0.71; see Table 3-1). The difference corresponded to habitat preferences of the two 

species. Crotalus ruber preyed significantly more often than C. o. helleri on wood rats 

(Neotoma spp.; φ = 0.57, P < 0.001), which occur primarily in C. ruber’s preferred 

habitat of cactus and CSS. Crotalus o. helleri preyed more often than C. ruber on pocket 

mice (Chaetodipus spp.; φ = 0.33, P = 0.019) and California ground squirrels 

(Otospermophilus beecheyi; φ = 0.24, P = 0.081), which occur primarily in C. o. helleri’s 

preferred grassland habitat. Both rattlesnake species consumed cottontail rabbits 

(Sylvilagus spp.; φ = 0.19, P = 0.16) and deer mice (Peromyscus spp.; φ = 0.03, P = 

0.86), which occupy a broad range of habitats, with similar frequency. The significance 

of differences was unchanged when data were reanalyzed after excluding neonate C. o. 

helleri. Diet breadth was greater for C. o. helleri (nine mammal and one reptile genera) 

than C. ruber (six mammal genera). 
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 Prey size class (small, medium, and large) also differed significantly among the 

two snake species (χ2 = 10.21, d.f. = 2, P = 0.006, Cramer’s V = 0.44; Fig. 3-8). Crotalus 

ruber most often procured medium-sized prey species, whereas C. o. helleri most 

frequently consumed smaller prey species. Neonates of C. o. helleri consumed only small 

rodents (Chaetodipus, Peromyscus, Reithrodontomys, Sorex), which contributed to the 

prey size disparity. However, the prey size class difference between species remained 

significant even after excluding the neonates (χ2 = 6.48, df = 2, P = 0.039, Cramer’s V = 

0.38). Large prey species were consumed in similar proportions by both snake species, 

representing approximately 25% of each predator’s diet. However, the primary source of 

large prey records differed for each species, with C. ruber preying more often on rabbits, 

and C. o. helleri consuming California ground squirrels with greater frequency. 

Niche Overlap 

We evaluated 11 data sets for niche overlap, including: year-round macrohabitat 

use (proportional data from all transmittered snakes: nine C. ruber, nine C. o. helleri) and 

distances to macrohabitats during active and winter seasons (mean values for all 

transmittered and opportunistically-encountered snakes); microhabitat use (species means 

from all transmittered snakes); thermal resources (species means of all transmittered 

snakes); seasonality of movements (species means of most transmittered snakes: six C. 

ruber, six C. o. helleri); circadian activity (species means of most transmittered snakes: 

eight C. ruber, nine C. o. helleri); food type and food size (from 15 C. ruber, 24 C. o. 

helleri specimens). Because of age-class bias in dietary samples, we computed additional 

indices after excluding from analysis the prey obtained from neonate C. o. helleri. 
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FIG. 3-8. Dietary axis: Prey size class utilization by radio-telemetered, opportunistically 
encountered, and road-killed Crotalus ruber and C. o. helleri. Prey size classes are based 
on the adult size of prey species (see Methods).  
 
 

The three algorithms used for the Monte Carlo simulations of randomly-

assembled communities gave very similar results, particularly RA3 and RA4. Compared 

to the others, RA2 produced larger differences between observed and expected values for 

macrohabitat (proportional usage), macrohabitat (distances for Czekanowski’s index), 

thermal, temporal, and prey type niche axes, and smaller differences for macrohabitat 

(distances for Pianka’s), microhabitat, and prey size niche axes. We report only RA3 

results in Table 3-2, which conserves niche breadth for both species in contrast to RA2, 

and is more likely to detect non-random niche overlap than RA4 (Winemiller and Pianka, 
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1990). In our analyses, the RA3 results provided conclusions consistent with those 

derived from the other algorithms.  

Pianka’s and Czekanowski’s indices yielded different interpretations for two 

niche comparisons. Pianka’s index was more likely to find non-randomness for thermal 

resources and for prey size when all snakes were included, whereas Czekanowski’s 

detected non-randomness only for prey size when analysis was restricted to adult snakes 

(Table 3-2). Czekanowski’s index also showed a bias toward moderate values relative to 

Pianka’s index. 

Niche overlap varied substantially among the niche axes, with lowest values for 

diet (food type: 0.28–0.32), moderate overlap for macrohabitat (year-round usage: 0.48–

0.56), and high overlap for all other resources (Table 3-2). However, the only evidence 

for niche partitioning between the two snake species was in prey size (P < 0.001), for 

which observed index values were significantly less than expected in the null model 

pseudo-communities. Index values for temperature were greater than expected (P < 

0.001; the P-value for less than expected is shown in Table 3-2), suggesting that abiotic 

constraints impose similarity in thermal niche use by the two species. 
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TABLE 3-2. Pianka’s and Czekanowski’s niche overlap values for major niche axes 
resulting from pairwise comparisons between sympatric Crotalus ruber and C. oreganus 
helleri. 
 
Niche Axis Pianka’s Index b Czekanowski’s Index b 

Obs Exp Pobs<exp Obs Exp Pobs<exp 
Space: macrohabitat (% usage) 0.56 0.58 0.564 0.48 0.53 0.468 
Space: macrohabitat (distances, 
active season) 

0.76 0.70 0.586 0.62 0.59 0.565 

Space: macrohabitat (distances, 
winter season) 

0.79 0.65 0.724 0.62 0.53 0.730 

Space: microhabitat 0.96 0.64 0.836 0.85 0.58 0.836 
Temperature 1.00 0.97 >0.999 1.00 0.91 0.832 
Temporal: seasonal movements 0.91 0.88 0.497 0.81 0.77 0.499 
Temporal: circadian activity 0.94 0.94 0.666 0.83 0.84 0.504 
Diet: prey type, all snakes 0.28  0.40 0.307 0.32  0.37 0.323 
Diet: prey type, adults only a 0.28 0.38 0.348 0.30 0.36 0.234 
Diet: prey size, all snakes 0.67 0.81 <0.001 0.61 0.72 0.335 
Diet: prey size, adults only a 0.75 0.87 0.327 0.64 0.76 <0.001 
 
a Values after exclusion of prey from neonate C. o. helleri. 
b Expected values based on Monte Carlo simulations of randomly-assembled communities (3 x 

104 iterations) using randomization algorithm 3 (RA3); bold font indicates significant non-
random structure, with Pobs<exp ≤ 0.05 indicting niche partitioning greater than expected, and 
Pobs<exp ≥ 0.95 indicating biological properties that impose similarity.  

 
 

Discussion 

Niche separation between closely-related sympatric species can be achieved via 

differences in food (type or size) or in use of spatial (macrohabitat or microhabitat), 

temporal (diel or seasonal activity patterns), or thermal resources (Schoener, 1974; Saint 

Girons, 1978). The present study uncovered significant quantitative differences between 

the sympatric rattlesnakes C. ruber and C. o. helleri in most of the niche aspects we 

measured. The two species differed in their use of space at the macrohabitat (but not 

microhabitat) level, use of thermal resources, activity level,  phenology of reproduction 

(the latter analyzed in more detail by Dugan et al., 2008), and diet (both composition and 

prey size). However, null models examining overlap in the use of these resources 
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suggested that niche partitioning exists only for the dietary axis, and this was apparent 

only for prey size. Here, we argue that niche separation between these two rattlesnake 

taxa has probably resulted largely from non-competitive mechanisms. If niche 

partitioning exists, we believe it occurs subtly along more than one niche axis, but 

probably more so via differential habitat use than other axes. We suggest that dietary 

differences reflect habitat preference and body size-dependent differences between the 

two snake species. Although these sympatric rattlesnakes may be similar to other vipers 

and most vertebrates in partitioning habitat (Luiselli, 2006a,b; Luiselli et al., 2007), the 

evidence for demonstrating this remains elusive. 

In the sections that follow, we discuss the relative importance of each axis for 

niche separation between these two rattlesnake species. Although we have not 

demonstrated the existence or consequences of interspecific competition, we assume that 

food (rodent) availability—a limited resource exploited by both species—limits the 

population of each species. Accumulating evidence suggests that reproduction by 

rattlesnakes is constrained by food availability (Beaupre, 2008; Nowak et al. 2008; 

Taylor and DeNardo, 2010). We also acknowledge that equalizing or neutral 

mechanisms, rather than or in addition to niche or stabilizing mechanisms (i.e., niche 

partitioning), can promote coexistence of similar species (e.g., Adler et al., 2007; 

Cadotte, 2007; Chesson, 2000; Vergnon et al., 2009).  

Macrohabitat Use 

We found significant differences between the two species in use of macrohabitats, 

consistent with studies of sympatric vipers in western (Pough, 1966; Reynolds and Scott, 

1982; Mendelson and Jennings, 1992; Beck, 1995) and eastern (Reinert, 1984; Waldron 
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et al., 2006; Steen et al., 2007) North America, and in Europe (Monney, 1996; Saint 

Girons, 1975; Luiselli et al., 2007), Africa (Luiselli et al., 2006b), and tropical Asia 

(Orlov, 1997; Luiselli, 2006a). Our study site comprised a heterogeneous mosaic of 

macrohabitats. Comparisons of the two species revealed several general trends at our site. 

First, C. ruber clearly selected cactus and CSS habitats relative to availability. These 

dense macrohabitats were almost exclusively located on warm south-facing slopes. 

Second, C. o helleri preferentially selected riparian (compositional analysis of usage) and 

grassland (logistic regression of distances) habitats, but also used cactus greater than 

availability (compositional analysis). The majority of riparian sites were in low-lying flat 

areas of the study site, while grasslands were present on both south- and north-facing 

slopes. Third, both species appeared to avoid oak woodlands, using it at a much lower 

frequency than availability. Because oak woodlands contain ample prey resources (e.g., 

Neotoma sp., Otospermophilus, and Peromyscus californicus; M'Closkey, 1972; 

Meserve, 1974, 1976; Dugan, pers. obs.), we were surprised that neither species used the 

oak woodland with any regularity. The ability to thermoregulate may lead snakes to avoid 

oak habitat, where the temperature differential at above-ground locations is least 

conducive to behavioral thermoregulation. Finally, we found no difference in habitat 

preferences between the active season and winter, suggesting consistent habitat use year-

round. Our analyses based on both radiotracked snakes (compositional analysis, using 

adult males only) and all snakes encountered (logistic regression) suggest that the habitat 

use differences between species can be generalized to both sexes and all age classes. 

Klauber (1972:540,544) provided habitat association data with encounters of C. 

ruber and C. o. helleri on roads primarily within San Diego County, California. For seven 



 

86 

habitat categories (excluding captures on the desert slope where C. o. helleri is absent), 

we computed Pianka and Czekanowski's index values (0.60 and 0.49, respectively) that 

were very similar to those obtained at our study site (0.56 and 0.48, respectively). Like 

our overlap values, the differences from expected values, determined by pseudo-

community simulations, were not significant. Klauber found C. ruber primarily in heavy 

brush-chaparral and rocky areas (50.8% of 23.7% of 59 records, respectively), and C. o. 

helleri mostly in agricultural (including orchards), grassland, and heavy brush-chaparral 

areas (17.6%, 36.3%, and 20.9% of 91 records, respectively). Halama et al. (2008), using 

a GIS model for occurrence, similarly found preference of C. ruber for rocky habitats. 

Rocks were essentially absent from our study site, but our findings suggest that cactus 

has been overlooked as a preferred habitat of C. ruber (but see Brown et al., 2008). 

Nevertheless, we conclude that differences in macrohabitat preferences between these 

two species likely occur on a broad geospatial scale. 

We saw no evidence of interspecific interference competition (aggression or 

predation), as this is absent to extremely rare among rattlesnakes (cannibalism has been 

reported; Klauber, 1972; Mociño-Deloya, 2009). Indeed, we occasionally observed close 

spatial tolerance of the two species (within 2–3 m of each other). We suspect that 

rattlesnakes rely heavily on chemosensory cues for locating appropriate habitat 

(Bevelander et al., 2006; Theodoratus and Chiszar, 2000), and they might incorporate 

both conspecific and heterospecific odors in their decision-making. Laboratory 

experiments could shed light on this possibility. 

Finally, we suggest that the cactus macrohabitat at our site afforded a selective 

advantage to C. ruber in terms of protection from predators. Mortality rates of 
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telemetered snakes differed for the two species, with a higher level of predation on 

transmittered adult C. o. helleri compared to C. ruber (Dugan et al., unpubl. data). 

Although C. o. helleri frequently used cactus, all of the predation events we recorded for 

the species occurred in either grassland or riparian macrohabitats.  

Microhabitat Use 

We found substantial niche overlap in microhabitat use between adult male C. 

ruber and C. o. helleri, with indices of 0.85–0.96. Both rattlesnake species used above-

ground and subterranean microhabitats similarly, often moving between the two 

microhabitats within a 24-h period. Arboreal habitat use was infrequent by both species 

(0.4% of all observations). Although rare in adult rattlesnakes (Klauber, 1972), arboreal 

behavior has been recorded in numerous species, including C. catalinensis (Grismer, 

2002; Martins et al., 2008), C. durissus (Santos et al., 2010), C. horridus (Rudolph et al., 

2004; Sajdak and Bartz, 2004), C. lepidus klauberi (Rossi and Feldner, 1993), C. o. 

helleri (Figureoa et al., 2008), C. tigris (Pavlik, 2007), and C. w. willardi (Rossi and 

Feldner, 1993). However, use of arboreal microhabitats appears to be more common in 

juvenile and subadult rattlesnakes (Rudolph et al., 2004; Cobb et al., 2005; Figueroa et 

al., 2008). Radiotracked neonate C. o. helleri at our study site used arboreal habitat much 

more frequently (10.4% of observations) than adults (Figueroa et al., 2008). We 

suggested this difference relates to the ontogenetic change in foraging behavior of this 

species (Figueroa et al., 2008), as young C. o. helleri prey largely on lizards and 

transition to mammalian prey as adults (Mackessey, 1988; LaBonte, 2008). We 

frequently observe lizards using arboreal microhabitats at our study site. However, 

neonate C. o. helleri at our study site frequently consume rodents, which also ascend into 
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the vegetation (Laakkonen, 2003). Arboreality in neonates might also confer 

antipredatory benefits. 

Thermal Resources 

We found broad thermal niche overlap between the two rattlesnake species. 

Although C. ruber occupied microhabitats with slightly warmer ground temperatures in 

the sun than C. o. helleri, other temperatures (air and shaded ground) were similar. The 

two species showed complete niche overlap of thermal resources, with index values of 

1.00. Because our sample included both sexes and all age classes, the results can be 

generalized at the species level. Intraspecifically, however, we would expect gravid 

females to select warmer temperatures than males (Charland and Gergory, 1990; Reinert 

and Zappalorti. 1988; Reinert, 1993; Gardner-Santana and Beaupre, 2009; Harvey and 

Weatherhead, 2010). 

The different habitats at our site presented similar thermal resources, with the 

exception of oak woodlands offering cooler thermal conditions and less temperature 

differential, presumably due to shade from the canopy. Considering the broad range of 

temperatures available to a snake in close proximity to its position (often a 10°C 

difference between moving into nearby sun or shade), and the ease of thermoregulation 

by positioning a variable portion of its body in direct sunlight (i.e., regional 

heterothermy; Dorcas and Peterson, 1997; Dorcas and Roark, 2000; Ashton, 1998), it 

seems highly unlikely that the two species would reduce competition by partitioning 

thermal resources to any extent. Nevertheless, some sympatric non-viperid snake species 

do appear to partition thermal resources (Fukada, 1992; Mushinsky et al., 1980; Tanaka 

and Ota, 2002). 
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Among all snake locations recorded, a large percentage (28.7%) consisted of 

snakes in partial sunlight (i.e., 10–90% of body), suggesting a major role of regional 

heterothermy in thermoregulation. The significant difference between the two species in 

sunlight exposure suggests that C. ruber may utilize this strategy (regional heterothermy) 

to a greater extent than C. o. helleri. However, the difference may reflect instead the 

larger body size of C. ruber (with a portion of body more likely to be in partial sunlight) 

or differential habitat use (with more partial sunlight available in its preferred habitat). 

Temporal Resources 

Competitors often limit the effects of competition by accessing or utilizing 

common resources at different times or seasons. Adult male C. o. helleri undertook more 

extensive movements than C. ruber during all seasons, and exhibited more frequent 

locomoting and sexual behaviors. We attribute these differences to C. o. helleri having a 

bi-modal mating season (both spring and fall) compared to the spring-only mating season 

of C. ruber (Dugan et al., 2008). Male rattlesnakes routinely undertake prolonged mate 

searches during periods of breeding (Duvall et al., 1992; Aldridge et al., 2002). In spite of 

the quantitative differences, the patterns of seasonal and circadian activity were similar 

for the two species, with index values (0.81–0.94) revealing extensive niche overlap. 

Luiselli (2006a) concluded that sympatric snakes rarely partition the temporal niche axis.  

Dietary Resources 

Attributes of trophic resources such as prey class (e.g., reptile versus mammal), 

body size, diversity, abundance, and seasonal availability impact snake resource use 

(Halstead et al., 2008; Nowak et al., 2008), and therefore both intraspecific and 



 

90 

interspecific competition (Luiselli et al., 2002). Niche overlap indices from our study site 

suggest that the two rattlesnake species potentially partition trophic resources by both 

prey type (0.28–0.31) and prey size (0.61–0.67). Although these index values were much 

lower than those for macrohabitat use, suggesting a greater level of possible partitioning, 

the relationship between macrohabitat use and prey consumption warrants careful 

consideration. Could the snakes be opportunistically feeding on prey items that differ in 

availability among the habitats used by the snakes? 

Most rattlesnakes, like many (but not all) viperids, are opportunistic predators. 

Crotalus ruber and C. o. helleri are no exceptions. Although C. ruber relies heavily on 

rodents at all life stages (Dugan and Hayes, in review), and C. o. helleri prefers lizards 

when young and shifts to rodents as adults (Mackessy, 1988; LaBonte, 2008), both 

species consume a diversity of prey items within these categories. Indeed, C. o. helleri 

consumed virtually every rodent genera found at our study site (LSA Associates, Inc., 

2005). Differences in prey items consumed by the two snake species corresponded 

largely to prey availability in the different habitats used by the snakes. Crotalus ruber, for 

example, consumed large numbers of wood rats (Neotoma spp.), which occur primarily in 

C. ruber’s preferred habitat of cactus and CSS. Crotalus o. helleri, in contrast, preyed 

more often on pocket mice (Chaetodipus spp.) and California ground squirrels 

(Otospermophilus beecheyi), which occur primarily in C. o. helleri’s preferred grassland 

habitat. Both rattlesnake species consumed similar numbers of cottontail rabbits 

(Sylvilagus spp.) and deer mice (Peromyscus spp.), which occupy a broad range of 

habitats. Prey size disparity between the rattlesnake species could also result from habitat 

bias in prey availability (e.g., C. o. helleri feeding more on the small grassland rodents), 
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though body size differences may also contribute, with C. o. helleri averaging smaller in 

size and represented in our sample by more food items procured from neonates. As gape-

limited predators (Arnold, 1997; Glaudas et al., 2008; Rodriguez-Robles et al., 1999; 

Shine, 1991), snakes are constrained by body size in the food items they consume. Thus, 

we conclude that differential use of macrohabitat could result in reduced overlap, but not 

necessarily partitioning, of trophic resources. Our findings underscore the difficulty in 

interpreting niche separation when two or more niche axes covary. 

It seems legitimate to contemplate whether innate habitat preferences lead to diet 

differentiation, or whether innate food preferences lead to habitat differentiation. Niche 

separation could have an ontogenetic component, with food differing between the 

younger snakes of the two species, and macrohabitat differing between older snakes. 

Whereas C. o. helleri neonates feed largely on lizard prey (Mackessy, 1988) and 

preferentially attend to lizard-derived odors in the environment (LaBonte, 2008), C. ruber 

neonates feed largely on rodent prey (Dugan and Hayes, in review). However, all of the 

C. o. helleri neonates are our study site were found with rodent remains, which suggests 

that an ontogenetic shift in niche separation is unlikely at our study site. Behavioral 

choice experiments (similar to Bevelander et al., 2006, and Theodoratus and Chiszar, 

2000) would be informative for elucidating whether niche separation has an ontogenetic 

component. 

Niche Overlap 

To determine whether niche overlap values were significantly less than expected 

by chance, we subjected them to null models and Monte Carlo simulations. The only 

evidence for niche partitioning between the two snake species was in prey size, for which 
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observed index values were significantly less than expected in the null model pseudo-

communities. Again, these differences could relate to habitat-specific prey distribution 

among the different macrohabitats potentially partitioned by the snakes. Index values for 

temperature were also greater than expected, suggesting that abiotic constraints impose 

similarity in thermal niche use by the two species. These unexpected results suggest that 

niche separation between these two rattlesnake taxa has probably resulted largely from 

non-competitive mechanisms. If niche partitioning exists, we believe it occurs subtly 

along more than one niche axis, but probably more so via differential habitat use than 

other axes. If the rattlesnakes we studied partition habitat, we were unable to show this 

from using contemporary methodology. These findings, therefore, call into question the 

generality of habitat partitioning by vipers (Luiselli, 2006a, 2006b; Luiselli et al. 2007), 

and suggest the need for further study. 
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Abstract 

Studies of diet are central to our understanding of organismal biology. We 

describe the diet of the red diamond rattlesnake (Crotalus ruber) using data collected 

from museum specimens, live specimens from a field study, road kills, opportunistic 

behavioral observations, and existing literature. Dietary samples were collected from 

across the species’ range, including southern California (USA) and Baja Norte and Baja 

Sur (Mexico). Examination of 265 individuals resulted in 227 prey items recorded from 

219 snakes. The diet of C. ruber consisted largely of mammals (91.6%), but also included 

lizards (7.5%) and birds (0.9%). No ontogenetic shift in prey type was evident, with 

mammals consumed by all snake size classes. However, adults fed on larger prey than 

juveniles. Sexual dimorphism existed in snake length, with adult males averaging longer 

than adult females. Juvenile males consumed larger prey than females, but no sexual 

differences in prey mass existed for adults when controlling for snake body length. 

Snakes from coastal populations averaged longer in body length than snakes from desert 

populations. Coastal snakes consumed a higher proportion of rodents, and prey of larger 

body mass when controlling for snake length, than snakes from desert populations. The 

presence of prey was independent of snake collection month, suggesting year-round 

feeding, as supported by observations of occasional feeding by radio-tracked snakes in 

California. Although C. ruber may scavenge food opportunistically, behavioral 

observations suggest it relies heavily on ambushing mammal prey.  
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Introduction 

  Studies of diet embody organismal biology, offering insights into the broader 

ecology of a species, including distribution patterns (Greene, 1993) and evolutionary 

divergence (Darwin, 1859; Creer et al., 2002; Zelanis et al., 2008). Considered 

exceptional model systems for studies of diet (Shine and Bonnet, 2000), snakes provide 

opportunities to examine organisms with unique adaptations for feeding and foraging 

(Greene, 1997). As such, diets are considered driving forces of snake evolution (Greene, 

1983), and have broad implications for habitat use (Lillywhite et al., 2008; Shine and Li-

Xin, 2002), movements (Clark, 2006), interspecific competition (Luiselli, 2006), and the 

development of conservation strategies for predators and/or prey (Holycross et al., 2002b; 

Lewis et al., 2010).  

 Ontogenetic variation in diet is well documented among vipers (e.g., Hartmann et 

al., 2005; Jadin, 2007; Martins et al., 2001; Zelanis et al., 2008), and rattlesnakes in 

particular (e.g., Glaudas, et al., 2008; Holycross and Mackessy, 2002; LaBonte, 2008; 

Mackessy, 1988; Taylor, 2001). As gape-limited predators, snakes utilize prey bases 

determined to a great extent by prey diameter (Arnold, 1997; Glaudas et al., 2008; 

Rodriguez-Robles et al., 1999; Shine, 1991a). Most species shift from smaller 

ectothermic prey as juveniles to larger endothermic prey as adults. However, not all 

rattlesnakes demonstrate this transition (da Graça Salomão et al., 1995). Understanding 

ontogenetic shifts in diet helps explain predator-prey relationships (Diller and Wallace, 

1996), age-dependent habitat use and foraging tactics (Figueroa et al., 2008; LaBonte et 

al., 2008), optimal foraging strategies (Costa et al., 2008), and functional constraints on 

prey acquisition, venom use, and venom composition (Hayes, 2008; Herbert and Hayes, 

2008; Mackessy, 1988; Mackessy et al., 2003). 
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Most snake species exhibit sexual dimorphism in body size, with females larger 

than males (Fitch, 1981). However, most rattlesnakes, particularly the larger species, 

exhibit male-larger sexual size dimorphism (Taylor and DeNardo, 2008). Sexual head 

size dimorphism has also been documented in rattlesnakes (Glaudas et al., 2008; Klauber, 

1972), and may be associated with sexual differences in diet (Glaudas et al., 2008; 

Vincent et al., 2004), though no such differences have been reported for rattlesnakes. 

Widespread snake species often exhibit geographic variation in diet (Creer et al., 

2003, Hartmann et al., 2005). Several rattlesnakes demonstrate this variation (Clark, 

2002; Glaudas et al., 2008; Holycross and Mackessy, 2002), whereas others utilize a 

similar diet throughout their range (Holycross et al., 2002a; Spencer, 2003). 

Understanding geographic variation in diet can benefit our knowledge of venom 

composition (Barlow et al., 2009; Creer et al., 2003; Daltry et al., 1996) and, potentially, 

trophic morphology (Pleguezuelos et al., 2007; Vincent et al., 2009). Most temperate 

snakes feed primarily during the warm “active” season. However, thermal constraints 

may be different for rattlesnakes in warmer climates, permitting occasional winter or 

even year-round feeding (e.g., Martin and Means, 2000), with concomitant fitness 

benefits such as more rapid growth and more frequent reproduction (Taylor and 

DeNardo, 2008).  

The red diamond rattlesnake (Crotalus ruber) is a large-bodied snake, reaching an 

adult size of ca. 1200 mm SVL. It ranges from San Bernardino County, California, USA, 

south to the tip of the Baja Peninsula, Baja California Sur, Mexico. In Mexico, insular 

populations exist on the Pacific Islands of Cedros and Santa Margarita (Wong, 1997), and 
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on the Gulf Islands of Angel de la Guarda, Dazante, Monserrate, Pond, San Jose, and San 

Marcos (Grismer, 2002).  

The species occupies a wide range of habitats, including desert slopes, rocky 

canyons, and coastal foothills (Grismer, 2002). Within the United States, C. ruber 

inhabits a relatively restricted range (Beaman and Dugan, 2006). Coastal populations in 

California are under immense pressure from urbanization and development (Brown et al., 

2008; Halama et al., 2008). According to some estimates, the distribution of coastal sage-

scrub ecosystems in California has declined by as much as 90% from historical levels 

(Noss and Peters, 1995), prompting the state to list C. ruber as a Species of Special 

Concern (Jennings and Hayes, 1994).  

 As a large-bodied rattlesnake that occupies a moderately large range and inhabits 

a wide array of habitats, C. ruber represents an excellent species to examine potential 

ontogenetic and geographic variation in diet. Herein, we describe the diet of this 

understudied species.  

Materials and Methods 

Sources of Prey Items 

Using an integrated approach (Saviozzi and Zuffi, 1997), we obtained dietary data 

from museum specimens, live specimens from a field study, roadkills, opportunistic 

behavioral observations, and existing literature. 

 We examined 145 specimens of C. ruber from the following institutional 

collections: Los Angeles County Museum of Natural History (LACM, n = 110), San 

Diego Natural History Museum (SDNHM, n = 29), and Anza Borrego Desert State Park 

(ABDSP, n = 6; Appendix 4-1). Institutional codes follow Leviton et al. (1985). For 



 

108 

preserved specimens, a mid-ventral incision was made to determine presence/absence of 

food items in stomach contents and fecal matter. Fragile specimens, those maintained in 

captivity for extensive periods, and those whose collection data indicated compromised 

diets and/or prey items (e.g., domesticated mice, Mus musculus, presumably from captive 

feeding) were omitted. For each snake, we recorded SVL, sex, collection locality, and 

number and identity of prey items. Snake mass was not recorded given the inaccuracy of 

weight measurements associated with preserved specimens.  

We collected 22 fecal samples opportunistically from live snakes in Chino Hills 

State Park, California, USA, as part of a larger radio-telemetry study of C. ruber biology 

from 2003–2009 (Dugan et al., 2008). Snakes containing food boli were not palpated or 

forced to regurgitate food items (Macartney, 1989). However, snakes occasionally 

defecated while being held for processing and/or radio-transmitter implantation. 

We also located 70 published records (Grismer, 2002; Klauber, 1972; Patten and 

Banta, 1980; Tevis, 1943), which often consisted of only the prey species, and therefore 

lacked additional data. Another 22 records were represented by direct observations of live 

or road-killed animals, some shared by trusted colleagues.  

 Our combined sample included C. ruber collected in Imperial County (USA, n = 

1), Riverside County (USA, n = 66), San Bernardino County (USA, n = 23), San Diego 

County (USA, n = 75), Orange County (USA, n = 10), Baja Norte, Mexico (MX, n = 22), 

Baja Sur, Mexico (MX, n = 10), Baja region in general (MX, n = 28), and unknown 

location (n = 36). 
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Identification of Prey Items 

 Prey items and stomach, gut, and fecal contents were stored individually in sealed 

glass vials containing 70% ethanol. Prey items were classified as lizards, birds, or 

mammals. To identify mammal prey to genus or species, dorsal guard hairs were cut in 

half at the widest point and soaked in xylene 24 hr to allow maximum penetration of the 

medulla (Moore et al., 1974). Resulting hairs were mounted on glass slides using TBS 

Shur/Mount toluene-based liquid mounting media (Triangle Biomedical Sciences, Inc., 

Durham, NC, USA), and allowed to set for a minimum of 4 hr using a glass cover slip. 

Samples were identified to the lowest possible taxonomic level by comparison to known 

dorsal guard hair patterns observed under a light microscope (Moore et al., 1974). On 

occasion, bone, teeth, nails, and skulls were recovered in addition to hair. When possible, 

multiple diagnostics (e.g., teeth and dorsal guard hair pattern) were used to identify prey 

items, drawing from the mammal collection at Loma Linda University. Lizards were 

identified using diagnostic scale characteristics of sympatric species (Stebbins, 1985). 

The single intact bird was identified by a photograph of the remains (K. R. Beaman and 

K. L. Garrett, personal communication). We often used the known distribution of prey 

species (i.e., allopatric ranges) to reach species-level identification (Jameson and Peeters, 

1988). 
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FIG. 4-1.—Locations of red diamond rattlesnake (Crotalus ruber) specimens yielding 
prey items from coastal (unfilled circles) and desert (filled circles) populations in 
California (USA) and the two states of Baja California (Mexico). Numbers of specimens 
having only regional locality data are indicated within parentheses; habitat types were not 
assigned to these. 
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Sources of Dietary Variation 

 To assess ontogenetic variation and possible shifts in diet, snakes were classified 

as juveniles (≤ 600 mm SVL) or adults (>600 mm SVL) based on minimum reproductive 

size (Goldberg, 1999), although the sexes attain sexual maturity at slightly different sizes. 

We also used absolute snake length. Because most prey items were of unknown size, we 

assigned to all items an average adult mass obtained from the literature for each reptile 

(Aspidoscelis and Sceloporus: Bonine and Garland, 1999; Ctenosaura: Carothers, 1983), 

bird (Sibley, 2000), and mammal (Jameson and Peeters, 1988) species; many prior 

studies have used this approach. For these analyses, snakes with multiple prey items of 

different species were excluded to avoid pseudoreplication. To assess sexual variation, 

we determined sex by probing for hemepenes and/or relative tail length. To assess 

geographic variation, we coded individual snakes into one of two groups: desert or 

coastal. The desert group contained snakes whose collection localities were characterized 

by summer-dominated rainfall, and the coastal group included those that originated from 

a Mediterranean climate of winter-dominated rainfall (c.f. Schoenherr, 1992; Fig. 4-1). 

To assess temporal variation, we considered month of collection as well as two seasons 

of activity: active (March–November) and winter (December–February; Dugan et al., 

2008). 

Analyses 

 We relied on parametric tests when assumptions were met (Zar, 1996), including 

the independent-samples t-test, Pearson’s correlation (r), and analysis of covariance 

(ANCOVA). We also employed non-parametric tests for categorical data (Zar, 1996), 

including the Chi-square test (χ2) and Spearman’s rank correlation (rs). Following 
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Nakagawa (2004), we chose not to adjust alpha for multiple tests. We further computed 

effect sizes, which are independent of sample size (in contrast to statistical significance) 

and more readily compared among different data sets and different studies. For pairwise 

comparisons (t-tests), we relied on Cohen’s d using pooled standard deviation (Hojat and 

Xu, 2004), for which values of ~0.5 are generally considered moderate and ≥0.8 large 

(Cohen, 1988). For ANCOVA, we computed partial eta-squared (η2), with values of 

~0.06 regarded moderate and ≥0.14 large (Cohen, 1988). For tests of proportions (χ2), we 

computed Phi (φ) for 2×2 and Cramer’s V for 2×3 contingency tables, with values of ~0.3 

deemed moderate and ≥0.5 large (Cohen, 1988). Finally, we expressed bivariate 

correlations (Pearson’s r) as coefficients of determination (r2), with values of ~0.9 

considered moderate and ≥0.25 large (Cohen, 1988). With the exception of Cohen’s d, 

these effect size estimators roughly indicate the approximate proportion of variance 

explained. The terms “moderate” and “large” are used loosely. Statistical tests were 

conducted using SPSS 13.0 for Windows (Statistical Package for the Social Sciences, 

Inc., Chicago, 2004), with alpha = 0.05. 

Results 

Prey Items 

 Of the 265 C. ruber individuals in the database, 219 (82.6%) snakes yielded 227 

prey items that were at least partially identifiable (Table 4-1). Eighty-two (36.1%) prey 

records were recorded from fecal contents, 61 (26.9%) from stomach contents, 55 

(24.2%) from literature sources, and 29 (12.8%) from snakes observed feeding in the 

field. Seven snakes contained multiple prey items (3.2%); of these, one was observed 

consuming three prey (all mammals), and six contained two mammals. Identifying 
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multiple prey was possible from gut contents and feces only if two different species were 

found, leading to underestimation. Ninety-four of 141 (66.7%) museum specimens 

contained 100 identifiable prey items, 39 from stomach contents and 61 from gut 

contents. 

The proportion of snakes containing food items varied regionally due to variation 

in sampling methods: Imperial County, 0% of 1 specimen; Riverside County, 59.1% of 

66 specimens; San Bernardino County, 100% of 23 (primarily fecal samples); San Diego 

County, 92.0% of 75 (primarily selected museum records); Orange County, 60.0% of 10; 

Baja Norte, 54.5% of 22; Baja Sur, 60.0% of 10; Baja region, 100% of 28 (primarily 

literature records); and unknown location, 100% of 36 (entirely literature records). 

Among the 227 prey items (Table 4-1), we identified remains of 208 (91.6%) 

mammals, 17 (7.5%) lizards, and two (0.9%) birds. The 114 mammal remains 

identifiable to genus were widely distributed among 12 genera: Ammospermophilus 

(4.4%); Chaetodipus (15.1%); Dipodomys (15.1%); Microtus (2.5%); Neotoma (21.0%); 

Onychomys (5.0%); Otospermophilus (8.4%); Peromyscus (15.1%); presumably feral 

Rattus (0.8%); Reithrodontomys (0.8%); Spilogale (0.8%); Sylvilagus (10.1%); and 

Thomomys (0.8%). The 12 lizards identifiable to genus comprised three genera, including 

whiptail lizards (Aspidoscelis, 66.7%), an adult Ctenosaura hemilopha iguana (8.3%) 

consumed by a 1155 mm snake from Baja California Sur, and Sceloporus (25.0%).  

Remains of the only identifiable bird (Pipilo crissalis) were voluntarily regurgitated from 

a 915 mm snake collected along the coast. 
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TABLE 4-1.—Prey consumed by Crotalus ruber, including frequency (n), proportion of 
total items, and proportion of identifiable items within classes Aves, Mammalia, and 
Reptilia. See Methods for literature sources of prey mass.         

 
Prey taxon (adult mass, g) 

 
n 

% of total 
(% of 

identified) 

 
Source 

Aves 2 0.9  
  Pipilo crissalis (44 g) 1 0.4 (100.0) This study 
  Unidentified Bird 1 0.4 (0.0) Klauber, 1972 
    
Mammalia 208 91.6  
  Ammospermophilus leucurus (90 g) 5 2.2 (4.4) Tevis, 1943; this study 
  Dipodomys agilis (73 g) 3 1.3 (2.5) This study 
  Dipodomys deserti (110 g) 1 0.4 (0.8) Patten and Banta, 1980 
  Dipodomys merriami (65 g) 4 1.8 (3.4) Tevis 1943; this study 
  Dipodomys spp (85 g) 10 4.4 (8.4) This study 
  Microtus californicus (60 g) 3 1.3 (2.5) This study 
  Neotoma fuscipes (275 g) 16 7.0 (13.4) This study 
  Neotoma lepida (145 g) 3 1.3 (2.5) Klauber, 1972; this study 
  Neotoma spp. (210 g) 6 2.6 (5.0) This study 
  Onychomys torridus (23 g) 6 2.6 (5.0) This study 
  Chaetodipus californicus (19 g) 1 0.4 (0.8) This study 
  Chaetodipus fallux (17 g) 1 0.4 (0.8) This study 
  Chaetodipus longimembris (9 g) 1 0.4 (0.8) This study 
  Chaetodipus spp. (15 g) 15 6.6 (12.6) This study 
  Peromyscus californicus (45 g) 3 1.3 (2.5) This study 
  Peromyscus crinitus (15 g) 3 1.3 (2.5) This study 
  Peromyscus eremicus (24 g) 3 1.3 (2.5) This study 
  Peromyscus spp. (28 g) 9 4.0 (7.6) This study 
  Rattus spp. (275 g) 1 0.4 (0.8) This study 
  Reithrodontomys megalotis (12 g) 1 0.4 (0.8) This study 
  Otospermophilus californicus (475 g) 10 4.4 (8.4) This study 
  Spilogale gracilis (750 g) 1 0.4 (0.8) Klauber, 1972 
  Sylvilagus audubonii (950 g) 11 4.8 (9.2) Klauber, 1972; this study 
  Sylvilagus bachmani (795 g) 1 0.4 (0.8)  
  Thomomys bottae (154 g) 1 0.4 (0.8) This study 
  Unidentified Mammal 89 39.2 This study 
    
Reptilia  17 7.5  
  Aspidoscelis tigris (17 g) 6 2.6 (50.0) Grismer, 2002; Klauber, 

1972;  this study 
  Aspidoscelis spp. (17 g) 2 0.9 (16.7) This study 
  Ctenosaura hemilopha (300 g ) 1 0.4 (8.3) Grismer, 2002. 
  Sceloporus magister (32 g) 1 0.4 (8.3) This study 
  Sceloporus orcutti (32 g) 1 0.4 (8.3) This study 
  Sceloporus zosteromus (32 g) 1 0.4 (8.3) This study 
  Unidentified Lizard 5 1.8 Klauber, 1972 
    
Totals 227 100.0  
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Predator Size Distribution 

 Dietary items were obtained from 42 juveniles (260–600 mm SVL; 19.2% of 

sample with prey), 118 adults (610–1180 mm SVL; 53.9% of sample with prey), and 59 

of unknown body size (26.9% of sample with prey). Among juveniles with known SVL, 

one sample was available from a snake <300 mm SVL, four from snakes 300–399 mm, 

17 from snakes 400–499 mm, and 15 from snakes 500–599 mm. Among adults, male 

body length (mean ± 1 SE: 939 ± 27 mm SVL; n = 28) averaged 12.9% longer than that 

of females (832 ± 29 mm; n = 16), with the difference significant and the effect size large 

(t = 2.57, df = 42, P = 0.014, 95% CI of difference = 23–191 mm SVL, Cohen’s d = 

0.81). Adult snakes from coastal populations (904 ± 17 mm SVL; n = 73) averaged 

11.7% larger than those from desert populations (809 ± 21 mm; n = 41), which was 

significant (t = 3.49, df = 112, P < 0.001, 95% CI of difference = 41–149 mm SVL, 

Cohen’s d = 0.68).   

Ontogenetic Variation 

 Juvenile (93.3% of 45 specimens) and adult snakes (94.4% of 125 specimens) 

were equally likely to contain food items (χ2 5= 0.07, df = 1, P = 0.79, φ = 0.02). Prey 

size (excluding multiple prey items), however, was positively associated with predator 

SVL (r2 = 0.18, P < 0.001, n = 112; Fig. 4-2). Prey size also differed significantly 

between the two snake age classes (t = 3.57, df = 119, P = 0.001, 95% CI of difference = 

89–311 g, Cohen’s d = 0.74), with adult snakes consuming larger prey (mean ± 1 SE: 268 

± 32 g; n = 90) than juveniles (68 ± 20 g; n = 31). This snake age-class difference was 

probably greater since juveniles were less likely than adults to consume the adult prey 
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whose mass, derived from the literature, was used for the analysis. Only adult 

rattlesnakes consumed the largest prey items (western spotted skunk, Spilogale gracilis; 

cottontail rabbit, Sylvilagus spp.), including adults of these prey species. 

 Prey class (analyzed for reptiles and mammals only) was independent of predator 

age class, with similar proportions of mammals consumed by juvenile (90.7%, n = 43) 

and adult snakes (94.8%, n = 116; χ2 = 0.91, df = 1, P = 0.34, φ = 0.08). Snakes that ate 

lizards averaged slightly longer in SVL (864 ± 78 mm SVL, n = 7) than those that ate 

mammals (760 ± 18 mm SVL, n = 143), but the difference was not significant (t = 1.28, 

df = 148, P = 0.20, 95% CI of difference = -57–267 mm SVL, Cohen’s d = 0.50). Among 

juvenile snakes with identifiable prey and known body size, the one individual <300 mm 

SVL consumed a rodent, all four individuals 300–399 mm consumed rodents, and 96.9% 

of 32 individuals 400–599 cm SVL consumed rodents. Thus, both juvenile and adult age 

classes consumed a near-exclusive mammal diet. 



 

117 

 
 
FIG. 4-2.—Predator-prey size relationships for three major food types of the red diamond 
rattlesnake (Crotalus ruber). Note the significant positive relationship between snake 
length and prey mass, and the consumption primarily of mammals by all size classes of 
snake. 
  

Sex Differences 

 Among museum specimens, males (100% of 16 specimens) and females (92,3% 

of 13 specimens) were equally likely to contain prey items (χ2 = 1.28, df = 1, P = 0.26, φ 

= 0.21). However, the two sexes appeared to consume prey of different sizes. Controlling 

for body length among the 25 male and 12 female snakes with adequate data, the effect of 

sex on prey mass was significant (ANCOVA using log10- transformed prey mass: F1, 33 = 

6.12, P = 0.019, partial η2 = 0.16), with males consuming larger prey items than females  
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FIG. 4-3.—Comparison of predator-prey size relationships between male and female red 
diamond rattlesnakes (Crotalus ruber). Note the consumption of relatively larger prey by 
males, particularly when small. Males also attain a larger body size than females. 
 
 

(Fig. 3). The effect of snake length in this ANCOVA model was also highly significant 

(F1,33 = 24.92, P < 0.001, partial η2 = 0.43). The near-significant interaction between 

snake length and sex (F1,33 = 4.10, P = 0.051, partial η2 = 0.11) suggested that the 

difference in prey size between sexes was more pronounced for smaller compared to 

larger snakes (Fig. 3). When we limited analysis only to adult snakes (20 males, 7 

females), neither sex (F1,24 = 0.70, P = 0.41, partial η2 = 0.03) nor snake length (F1,24 = 

0.83, P = 0.37, partial η2 = 0.03) remained significant (the non-significant interaction 

term was removed from the final model). With analysis restricted to the five juveniles of 
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each sex, statistical power was too low to put confidence in the non-significant 

ANCOVA effects, but a t-test (of log10-transformed mass) confirmed the larger prey mass 

of juvenile male snakes relative to females (54.8 ± 14.9 g and 16.4 ± 3.1 g, respectively; t 

= 2.65, df = 8, P = 0.029, 95% CI of difference = 0.06–7.2 g, Cohen’s d = 1.59). 

Geographic Variation 

 Specimens from coastal (60.6% of 33 specimens) and desert (56.3% of 64 

specimens) populations were equally likely to contain prey when analysis was restricted 

to LACM specimens (for this analysis only) to avoid the aforementioned geographic bias 

in sampling (χ2 = 0.17, df = 1, P = 0.68, φ = 0.04). Prey class, however, was significantly 

related to predator geographic location, with snakes from coastal populations (1.2% of 82 

specimens) consuming lizards less often than those originating from desert localities 

(9.8% of 92 specimens; χ2 = 5.87, df = 1, P = 0.015, φ = 0.18; note the small effect size). 

Snakes from coastal populations also consumed larger prey (304 ± 39 g) than those from 

desert locations (103 ± 26 g), even when controlling for body size (ANCOVA using 

log10-transformed prey mass: F1, 105 = 8.86, P = 0.004, partial η2 = 0.08; the non-

significant interaction term was removed from the final model). Again, the effect of 

snake size in this ANCOVA model was significant (F1,105 = 7.04, P = 0.009, partial η2 = 

0.06). We assumed the effects of sex and geographic location were independent, since the 

ratio of males to females from the two regions was statistically similar (χ2 = 1.05, df = 1, 

P = 0.31, φ = 0.16, n = 40; note the small effect size). Because of incomplete data for 

many individual snakes, the inclusion of both sex and geographic location in the same 

ANCOVA model would have prohibitively reduced sample size and statistical power. 
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Seasonal Variation 

 Food items were identified for all months represented by specimens (February 

through December; Fig. 4-4), including the winter. Seasonal differences (analyzed for 

museum specimens only) were compared by month-pairs (pairing was necessary to 

collapse categories: Mar + Apr, May + Jun, Jul + Aug, Sep + Oct, Nov + Feb) and by 

season (spring, fall). The presence versus absence of prey was independent of predator 

collection month-pair (χ2 = 4.33, df = 4, P = 0.36, Cramer’s V = 0.18, n = 135) and 

season (χ2 = 3.32, df = 1, P = 0.069, φ = 0.16, n = 135), and effect sizes were relatively 

small. One winter meal was recorded from Baja and five at the northern periphery of the 

range in California, all involving mammal species ranging in size from Peromyscus (45 

g) to Otospermophilus (475 g) and Sylvilagus (950 g). These winter records were all 

based on fecal samples, although large bulges representing unknown prey species were 

occasionally observed during winter in radio-tracked snakes. 

 Prey class consumed appeared to be consistent for the two seasons (χ2 = 0.30, df = 

1, P = 0.58, φ = 0.05). Mammals comprised the majority of the snake’s diet during both 

the active (95.2% of 145 items) and inactive (100% of six items) seasons. Prey size was 

also similar for the active (169 ± 23 g, n = 100) and inactive seasons (379 ± 216 g, n = 4; 

t = 1.76, df = 102, P = 0.082, 95% CI of difference = -447–27 g, Cohen’s d = 0.90), but 

the large effect size suggested that large meals are more often acquired during winter (or 

that the remains of large meals persist longer in the digestive tract). 

Discussion 

 Our data revealed that C. ruber specializes on mammalian prey (91.6% of all prey 

items), supporting the general consensus of anecdotal reports found in the literature 
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(Campbell and Lamar, 2004; Klauber, 1972). Terrestrial rodents constituted the primary 

prey source. Wood rats (Neotoma spp., 21.0%) were the most abundant prey species, 

followed by kangaroo rats (Dipodomys spp.), pocket mice (Chaetodipus spp.), and deer 

mice (Peromyscus spp.) equally represented in the diet (15.1% for each). 

Comparable reliance on mammalian prey bases has been reported for most 

medium- to large-bodied rattlesnake species, including C. atrox (>80%; Beavers, 1976; 

Reynolds and Scott, 1982; Spencer, 2003), C. catalinensis (70.7%; Avila-Villegas et al., 

2007), C. durissus (>99%; da Graça Salomão et al., 1995; Sant’Anna and Abe, 2007), C.  

 
 

 

 
FIG. 4-4.—Percentage of red diamond rattlesnakes (Crotalus ruber) containing food 
items during each month (no data were available for January). Note the consumption of 
food items year-round. 
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horridus (95.8%; Clark, 2002), C. molossus (83.3%; Reynolds and Scott, 1982), most C. 

oreganus subspecies (>74%; Diller and Johnson, 1988; Diller and Wallace, 1996; Fitch 

and Twinning, 1946; Glaudas et al., 2008; Labonte, 2008; Macartney, 1989; Mackessy, 

1988; Wallace and Diller, 1990; Weaver and Lahti, 2005), C. viridis abyssus (82.6%;  

Reed and Douglas, 2002), and C. scutulatus (>86%; M. D. Cardwell, personal 

communication; Reynolds and Scott, 1982; but see Salazar and Lieb, 2003). This 

contrasts with the trend toward greater reliance on ectothermic prey by medium- and 

small-bodied rattlesnake species, including C. enyo (39.7%; Taylor, 2001), C. lepidus (ca. 

69%; Beaupre, 1995; Holycross et al., 2002a), C. o. concolor (up to 64%; Mackessy et 

al., 2003; Parker and Anderson, 2007), C. pricei (>70%; Prival et al., 2002), C. willardi 

(55.8%; Holycross et al., 2002b), and Sistrurus catenatus (up to 68.5%; Holycross and 

Mackessy, 2002; but see Keenlyne and Beer, 1973). However, seasonal, habitat, 

phylogenetic, and other influences may contribute to or override the effects of body size 

on dietary tendencies. 

 Some rattlesnake species exhibit ontogenetic shifts in diet, with juveniles feeding 

largely on lizards or other ectotherms, and adults transitioning to rodent prey as adults 

(e.g., Glaudas, et al., 2008; Holycross and Mackessy, 2002; LaBonte, 2008; Mackessy, 

1988; Taylor, 2001). Although lizards are occasionally taken by C. ruber (cf. Grismer, 

2002), we found that lizards represent only a small portion of the diet. Thus, C. ruber 

consumes primarily rodents during all life stages. Although snakes consume increasingly 

larger prey as they grow, even the largest adults continue to prey on the smallest prey 

species (Fig. 4-2). Some rattlesnake species drop smaller prey from their diet as they 

grow (e.g., Glaudas et al., 2008), whereas others do not (e.g., Clark, 2002; Sant’Anna and 
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Abe, 2007; Weatherhead et al., 2009).Interestingly, the closely-related insular C. 

catalinensis preys on lizards at nearly three times the rate as C. ruber; however, rodents 

still constitute 70.7% of the diet of C. catalinensis (Avila-Villegas et al., 2007).  

 Sexual differences in diet exist among many sexually dimorphic snakes, but in 

rattlesnakes these differences relate to mere size disparity between males and females 

(Glaudas et al., 2008), or to frequency of feeding, with gravid females often refraining 

from meals (Keenlyne, 1972; Klauber, 1972; Prival et al., 2002). Although most snake 

species exhibit female-larger sexual size dimorphism (Shine, 1991b), the majority of 

rattlesnakes, particularly larger species, exhibit male-larger sexual size dimorphism 

(Taylor and DeNardo, 2008). Our data confirmed that adult C. ruber males averaged 

larger than females. Sexual head size dimorphism has also been documented in several 

rattlesnake species. Females of female-larger C. cerastes have relatively larger heads than 

males (Klauber, 1972), and males of male-larger C. oreganus lutosus have relatively 

larger heads than females (Glaudas et al., 2008). Klauber (1972) looked for but did not 

detect head size dimorphism in C. ruber, so we did not expect to see differences in prey 

size consumed by males and females of a given body size. When controlling for body 

length, males appeared to consume larger prey than females, but supplemental analyses 

confirmed that this sex difference was limited to juveniles only, and could represent an 

artifact of the small sample size for juveniles. The difference could also have resulted 

from using adult prey mass for analyses, with the juvenile males eating more young of 

the larger prey species rather than actually consuming larger prey. 

Our data suggest that C. ruber exhibits geographic variation in both body size and 

diet, as coastal snakes averaged longer in body length and consumed a higher proportion 
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of rodents and prey of proportionally larger body mass than snakes from desert 

populations. This trend offers tentative support for the diet-alteration hypothesis, which 

predicts that snakes will be larger when larger types of prey are available (Boback, 2003; 

Forsman, 1991). Differences in prey consumption presumably reflect differences in prey 

availability in this opportunistic predator, but we are unaware of data addressing 

differences in prey availability between coastal and desert locations. The differences in 

prey mass could also reflect our unavoidable reliance on literature values for adult prey 

mass. Similar to our findings, adult C. atrox in Arizona attain larger body size in cool, 

moist environments than in warm, dry environments, which contrasts with the general 

pattern in squamate reptiles but may also relate to prey availability (Amarello et al., 

2010). Several rattlesnakes demonstrate geographic variation in diet (Beaupre, 1995; 

Clark, 2002; Glaudas et al., 2008; Holycross and Mackessy, 2002), whereas others utilize 

a similar diet throughout their range (Holycross et al., 2002a; Spencer, 2003). Some 

evidence suggests that geographic variation in diet contributes to adaptive venom 

variation among rattlesnakes (Gibbs and Mackessy, 2009; Salazar and Lieb, 2003). 

Rattlesnakes, like most vipers, rely heavily on ambush tactics (Clark, 2006; 

Reinert et al., 1984), although they also search for ambush sites and for nests and 

nestlings. Radio-telemetered C. ruber at our Chino Hills study site (coastal population; 

Dugan et al., 2008) took up ambush positions and localities that unambiguously targeted 

rodents (i.e., positions adjacent to burrows and runways). Similar observations have been 

made during video monitoring of hunting C. ruber in San Diego County (coastal 

population; Rulon Clark, personal communication). Foraging tactics used for capturing 

lizard prey are less well understood for rattlesnakes. If lizard capture similarly involves 



 

125 

ambush, it would be difficult to distinguish tactics used to acquire lizard and rodent prey. 

Accumulating evidence suggests that rattlesnakes, including C. ruber, consume carrion 

when opportunistically encountered (Devault and Krochmal, 2002). The occasional loss 

of envenomated prey potentially creates an opportunity for locating carrion and recovery 

of the lost prey item (Diller, 1990; Hayes, 2008). We found no evidence of carrion 

ingestion in our data set; however, the only means of confirming it would be through 

direct observation, which is exceptionally rare, 

In contrast to most vipers in temperate regions, C. ruber occasionally feeds during 

the winter months. Collection month and season (active and winter) were not 

significantly associated with the presence of prey items and feeding. However, the food 

items in winter from the dietary records were all documented from fecal samples, which 

may not have represented recently acquired prey. We do not know whether gut contents 

are completely cleared prior to overwintering, and the remains of large meals (rodent 

hairs in particular) may persist longer in the gut than those from smaller meals. 

Nevertheless, we occasionally observed telemetered adult C. ruber on the surface 

digesting large food items during the cool winter months at our Chino Hills field site 

(Dugan, unpub. data), where mean daily high temperature during the winter is 20 C 

(compared to 32 C in the summer). Smaller meals, less easily detected, are also likely 

consumed during winter. Mild winters throughout large portions of the range of C. ruber 

probably facilitate opportunistic winter feedings, as noted in a few other vipers in 

relatively mild climates (Martin and Means, 2000; Mori et al., 2002). The biological 

implications of year-round feeding are obvious, presenting snakes in such environs an 

advantage in terms of resource access and fitness. This advantage should be most 
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important to females, whose reproduction is severely constrained by energy reserves 

(Beaupre, 2008; Bonnet et al., 2001; Taylor et al., 2005; Taylor and DeNardo, 2008), and 

to post-parturient females in particular, which are often in poor body condition. 

Beck (1995) estimated that an adult rattlesnake in Arizona needs to consume a 

cumulative prey mass equivalent to 93% of its own body weight to meet annual energy 

requirements. Based on this estimation and the body weights of C. ruber prey items in 

Table 1, a 1000 mm adult C. ruber, which can be expected to weigh 577 g (Klauber, 

1937:42), would require a single adult rabbit (Sylvilagus, 795–950 g), two adult ground 

squirrels (Otospermophilus, 475 g), three to four adult wood rats (Neotoma, 145–210 g), 

five to nine adult kangaroo rats (Dipodomys, 65–110 g), 12–60 adult mice (Chaetodipus 

or Peromyscus, 9–45 g), or some combination of these prey types. A 1250 mm snake 

weighing 1205 g and a 1500 mm snake weighing 2199 g (Klauber, 1937:42) would 

require 2.1- and 3.8-fold more prey mass than a 1000 mm individual. Thus, an adult C. 

ruber would clearly benefit by feeding on the largest prey items available, but should 

consume smaller, presumably more abundant prey as well. 
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Appendix  

Specimens Examined 

 

Crotalus ruber: ABDSP 4211, 4214, 4216, 4224, 4263, 4295. LACM 2965, 3037, 3038, 
3039, 3040, 3041, 3042, 3044, 3047, 3051, 3052, 3053, 3054, 3055, 3056, 20008, 20011, 
20014, 20015, 20016, 20018, 20019, 20020, 25079, 25080, 28020, 28021, 28022, 28023, 
51860, 52559, 52560, 52561, 52562, 52563, 63445, 76290, 76291, 104997, 104998, 
104999, 105000, 105001, 105002, 105003, 105004, 105005, 105006, 105007, 105008, 
105009, 105010, 105011, 105012, 105013, 105014, 105015, 105016, 105017, 105018, 
105019, 105020, 105021, 105022, 105023, 105024, 105025, 105026, 105027, 105028, 
105029, 105030, 105032, 105033, 105034, 105035, 105036, 105037, 105038, 105039, 
105041, 105042, 105043, 105044, 105045, 105046, 105047, 105053, 105054, 116019, 
116020, 116021, 116022, 116023, 122109, 122110, 125999, 126080, 126225, 128280, 
134041, 143738, 143739, 146112, 146129, 152326, 152522, 152525, 152527, 152528. 
SDNHM 2265, 2695, 17594, 18060, 18732, 20043, 28371, 31328, 31329, 31330, 32536, 
32654, 32834, 32845, 33229, 33251, 33341, 33808, 34506, 35764, 35877, 36058, 36059, 
36168, 36667, 37633, 38183, 38930, 43548. 
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CHAPTER FIVE 

CONCLUSIONS AND DISCUSSION 

 
 In this dissertation, I examined resource use by two sympatric rattlesnake species 

(Crotalus ruber and C. o. helleri) within the context of niche partitioning. My efforts 

represent the most extensive examination of resource use that has been conducted on 

North American viperids. In this chapter, I will touch on the primary conclusions from 

each of my studies. 

 In Chapter 2, I assessed potential interspecific differences in two measures of 

movement ecology and space use: mean daily movement and home range size. In 

addition, I compared data on the reproductive ecology of each species. 

 Considering these two measurements of space use, C. ruber proved to be largely 

sedentary when compared to C. o. helleri. On average, the home range size of C. o. 

helleri was two- to five-fold larger than that of C. ruber. Similarly, C. o. helleri exhibited 

mean daily movements two-fold greater than C. ruber. Reproductive ecology of the two 

species differed dramatically as well. I observed a unimodal mating season (exclusively 

in spring) in C. ruber, whereas C. o. helleri exhibited a bi-modal mating season (spring 

and late summer/fall). Because male rattlesnakes exhibit prolonged mate searching, the 

observed variation in mating phenology indirectly results in partitioning of temporal 

resources in the fall. Thus, this chapter suggests the partitioning of resources along the 

spatial and temporal axes.  
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 In Chapter 3, I provided the single most extensive examination of comparative 

resource use among sympatric North American vipers to date. I compared C. ruber and 

C. o. helleri along all four major niche axes (space, temporal, diet, thermal) using radio-

telemetry and mark-recapture data collected from my Chino Hills State Park study site. 

Spatial resources were analyzed in terms of both macrohabitat and microhabitat.  

 Compositional analysis and logistic regression revealed that C. ruber and C. o. 

helleri used different macrohabitats throughout the year (both active and winter seasons). 

Analysis of microhabitat use relative to the ground surface (above-ground, below ground, 

arboreal) detected no species differences, with neither species using arboreal habitats 

often. Thus, niche overlap indices (Pianka’s and Czekanowski’s) confirmed that 

macrohabitat overlap was narrow between the species, and microhabitat overlap was 

broad. 

Thermal resource use of microhabitats also differed significantly, with C. ruber 

occupying microhabitats with significantly warmer ground temperature than those 

occupied by C. o. helleri. Similarly, C. ruber was observed with significantly greater 

body-exposure to the sun (i.e., regional heterothermy). However, the niche overlap 

indices indicated that thermal resource overlap was very broad. 

 Behavior and seasonality of movements also differed significantly between the 

two species. In terms of movements, both species were more active during the spring than 

in other seasons. Crotalus o. helleri exhibited higher levels of activity than C. ruber in all 

three seasons, with C. o. helleri engaging in locomotion 1.7-fold more often and sexual 

activities 2.3-fold more frequently than C. ruber. However, the patterns of usage were 

similar, with the indices indicating broad overlap in temporal use of resources. 
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 Diet composition differed significantly between C. ruber and C. o. helleri, but the 

differences reflected the prey types that occurred within their preferred macrohabitats. I 

identified 21 mammal items representing six genera in the exclusively mammalian diet of 

C. ruber, with wood rats (Neotoma spp.), which prefer the same cactus habitats as C. 

ruber, representing the most common prey item. The diet of C. o. helleri included 30 

mammal items distributed across 9 genera and a single lizard species, with pocket mice 

(Chaetodipus ssp.) and California ground squirrels (Otospermophilus beecheyi), which 

occupy the same grassland habitats preferred by C. o. helleri, being the most common 

prey recorded. Prey size class also differed between the two snake species. Crotaus ruber 

most often procured medium-sized prey species, whereas C. o. helleri most frequently 

consumed small prey species. Niche overlap indices revealed narrow overlap in diet, 

more so for prey type than prey size. However, because both species appear to be 

opportunistic predators, consuming a broad range of prey types, I concluded that dietary 

differences likely reflected the habitat-specific prey distribution among the different 

macrohabitats potentially partitioned by the snakes. Thus, this study underscores the 

difficulty in deciphering niche partitioning when niche axes covary, as can happen with 

spatial and trophic resources. 

 To determine whether niche overlap values were significantly less than expected 

by chance, I subjected them to null models and Monte Carlo simulations. The only 

evidence for niche partitioning between the two snake species was in prey size, for which 

observed index values were significantly less than expected in the null model pseudo-

communities. Again, these differences could relate to habitat-specific prey distribution 

among the different macrohabitats potentially partitioned by the snakes. Index values for 
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temperature were also greater than expected, suggesting that abiotic constraints impose 

similarity in thermal niche use by the two species.  

I conclude that niche separation between these two rattlesnake taxa has probably 

resulted largely from non-competitive mechanisms. If niche partitioning exists, I believe 

it occurs subtly along more than one niche axis, but probably more so via differential 

habitat use than other axes. I suggest that dietary differences reflect habitat preference 

and body size-dependent differences between the two snake species. Although these 

sympatric rattlesnakes may be similar to other vipers and most vertebrates in partitioning 

habitat (Luiselli, 2006a,b; Luiselli et al., 2007), the evidence for demonstrating this 

remains elusive. 

 In Chapter 4, I provided a detailed description of the diet of the red diamond 

rattlesnake (C. ruber) based on museum specimens, fecal samples from live specimens at 

my study site, opportunistic field observations, published accounts, and data collected 

from road-killed specimens. This rangewide description allowed for comparison to a 

prior study of diet in C. o. helleri. Dietary data for C. ruber were collected from across 

the species' range, including southern California (USA) and Baja Norte and Baja Sur 

(Mexico). The diet of C. ruber consisted primarily of mammals in all age classes, 

although it also included lizards and birds to a lesser extent. Interestingly, C. ruber did 

not exhibit an ontogenetic shift in diet from ectothermic prey (primarily lizards) to 

endothermic prey (primarily rodents), as has been noted for many other rattlesnake 

species (Glaudas et al., 2008), including sympatric C. o. helleri (Mackessy, 1988). Males 

consumed larger prey than females, even when controlling for male-larger dimorphism in 

body size, and adult snakes fed on larger prey than juveniles. Snakes from coastal 
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populations, which averaged larger than those from desert populations, consumed a 

higher proportion of rodents, as well as larger prey species, compared to those from the 

desert. The presence of prey was independent of snake collection month, indicating year-

round feeding, even at the northern part of the range. In general, C. ruber is an ambush 

predator of mammalian prey, relying to a lesser extent on lizards, birds, and scavenging 

to meet annual food resource requirements. 

 Collectively, these studies add much to our understanding of viper ecology, and 

build a much-needed data base for two snake species that increasingly conflict with 

human population growth in southern California. 
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