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ABSTRACT OF THE DISSERTATION 
 

Geographic Variation of Proteomic Profiles and Toxicity in the Venom of the 
Rattlesnakes Crotalus oreganus oreganus and Crotalus oreganus helleri 

 

by 

Eric Conrad Kyle Gren 

Doctor of Philosophy, Graduate Program in Biology 
Loma Linda University, March 2015 
Dr. William K. Hayes, Chairperson 

 

I investigated the extent of variation of venom protein composition (venome) and 

neurotoxicity in the Northern Pacific (Crotalus oreganus oreganus) and Southern Pacific 

(C. o. helleri) rattlesnakes, with special emphasis on geographic variation across the 

species’ California range. In the first of three empirical studies, I used reversed-phase 

liquid chromatography and mass spectrometry to examine the venome of four C. o. 

helleri populations. Substantial geographic variation existed, with small basic peptides 

(myotoxic β-defensins) expressed in large amounts by all populations, metalloproteinases 

abundant in two populations but only moderate and trace amounts in the other two 

populations, and a potent presynaptic neurotoxic phospholipase A2 present in just one 

population. The second study comprised a more thorough analysis of venome variation 

and neurotoxicity among C. oreganus individuals at 40 sampling locations across their 

California range. In this study, I tested for associations between venom composition and 

three potential factors that contribute to venome variation: geographic distance, genetic 

relatedness, and environmental variation. Again, venom profiles and neurotoxicity varied 

substantially across the species’ California distribution. Environmental variables had the 



 

xvi 

strongest and most consistent association with venom composition among statistical 

models, but geographic distance and genetic distance were also significant in several 

models. The third study examined diet and ontogeny as possible sources of venom 

variation in two populations of C. o. helleri having highly divergent venoms. For this 

study, I analyzed the gut contents and venomes of juvenile and adult snakes from a 

coastal population, Santa Catalina Island, and a high-elevation montane population, Mt. 

San Jacinto. I found no significant difference in diet composition (lizard versus mice) 

between the two populations. Differences in venom profiles between snake age classes 

were limited to three protein families in the Mt. San Jacinto populations and one in the 

Santa Catalina Island population, but effect sizes for overall ontogenetic change in venom 

was similar for the two populations. Collectively, these findings document the 

considerable extent of variation in venom composition and toxicity among populations 

within the species and support the emerging consensus that such variation is driven by a 

combination of environmental, geographic, and phlyogenetic factors. 
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CHAPTER ONE 

INTRODUCTION 

 
Venom: Definition, Phylogenetic Distribution, and Functional Roles 

 Venom has been defined as any biologically-produced substance that causes 

pathophysiological change in the recipient and is delivered to the tissues (or cells) via 

mechanical injury (Nelsen et al., 2014). Mode of delivery distinguishes venom from other 

classes of biological toxins. Poisons, for example, must be introduced through ingestion, 

inhalation, or absorption. Since venom toxins are injected directly into the recipient’s 

tissue, their functionality is not constrained by molecular size as are posions and 

toxungens, whose delivery depends on passive absorption (Nelsen et al., 2014). Thus, 

many venoms contain large proteins and enzymes with highly specific mechanisms of 

action.  

Although venom use is widely recognized among many animal groups, organisms 

that meet the criteria for being venomous are widely represented among diverse life 

forms. Bacteriophages infect bacteria by attaching to the recipient cell's exterior and 

inject their genome into the host cytoplasm using a hypodermic needle-like apparatus 

(González-Huici, 2004; Rossman et al., 2004). Certain bacteria employ a needle-like 

structure called a type-III secretion system (T3SSs), which spans their inner and outer 

membranes and projects externally, to deliver their toxins into nematode, insect, plant, or 

animal targets. The T3SSs docks with target cell surfaces to form a conduit by which 

toxin may be delivered to the cytosol or cytosol surface of the target (Cornelis, 2010; 

Erhardt et al., 2010; Chatterjee et al., 2013). The ciliate Dileptus gigas discharges 

harpoon-like organelles called toxicysts when pursuing prey. These toxin-filled 
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projectiles rupture the victim’s cell membrane and expel their venom content, resulting in 

paralysis or death of the target (Visscher, 1923; Miller, 1968). Phytopathogenic fungi 

enter plants by using appressoria, which are specialized cells that form a minute peg and 

penetrate the cuticle of the plant via turgor pressure (Möbius and Hertweck, 2009). As the 

hyphae penetrate, they secrete toxins that destroy the plant’s cells to derive nutrition from 

the dead cells and to protect against the host’s defense (Möbius and Hertweck, 2009). 

Plants from at least four families (Thurston and Lersten, 1969), including the Urticaceae 

(nettles), are equipped with sharply-pointed hair-like structures called trichomes. When 

an animal brushes against one of these plants, the hollow, hypodermic needle-like, 

silicified upper end of the trichomes penetrate and break off in the animal’s skin, 

releasing toxins including acetylcholine, histamine, and serotonin, which cause intense 

immediate pain (Kulze and Greaves, 1988), and oxalic acid and tartaric acid, which 

produce longer lasting pain (Fu et al., 2006), itching, tingling, burning, piloerection, 

arterial dilation, local sweating, rash development, and even neuropathy (Kulze and 

Greaves, 1988; Hurley, 2000; Hammond-Tooke et al., 2007; Schmitt et al., 2013).  

The remarkable variety of delivery mechanisms and specific toxins employed by 

venomous taxa reflect the specific ecological needs of the various species. Venom 

typically functions for defense or prey acquisition. However, as Nelsen et al. (2014) 

discussed, venom may also be used for a range of other purposes. Male Duck-billed 

Platypuses (Ornithorhyncus anatinus), for example, use their toxins and delivery 

apparatus primarily for mate competition, using it against male conspecifics during 

mating and territorial disputes (Torres et al., 2000). Certain corals and anemones use 

venom for predation and defense, but also possess specialized tentacles to attack other 
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nearby colonies, thereby protecting and expanding their own territory against 

intraspecific and interspecific competitors (Williams, 1991). In addition to the use of 

venom for self and/or colony defense (generally by injection), some hymenopterans also 

spray their "venom" to keep their broods free of parasites in the context of hygiene (Oi 

and Pereira, 1993), and some ants spray the same secretion that is used as a venom for 

trail marking in the context of communication (Blum, 1966; Mashaly et al. 2010).  

 

Venom Variation and Its Importance 

Because of the essential utility venom serves for organisms that employ it, its 

composition is often finely tuned by selection to meet specific ecological needs. Widow 

spider (Latrodectus spp.) venoms, for example, contain individual toxins specific to prey 

and predator taxa, including several insect-specific "insectotoxins" (Rohou et al., 2007), a 

crustacean-specific "crustatoxin" (Bettini, 1971), and a vertebrate-specific neurotoxin 

(Frontali and Grasso, 1964). The venom of several species of Echis and Vipera snakes is 

tailored to their arthropod diet, in contrast to congeners who primarily prey on mammals 

and whose venom exhibits pronounced mammalian toxicity (Barlow et al., 2009). 

Cone snails (genus Conus) provide perhaps the most dramatic illustration of the 

interplay between venom composition and behavioral and ecological requirements. 

Certain Conus species prey almost exclusively on fish. Because the snails are much 

slower and less agile than their prey, their venom must act rapidly to incapacitate the fish 

before their prey can escape. Such swift immobilization is achieved via small, highly 

specific neurotoxic peptides which diffuse through the target tissue more efficiently than 

the larger toxins common in other venoms. In addition to prey acquisition, cone snails 
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must also use their venom to defend against a wide variety of predators and competitors. 

Due to the extreme receptor specificity of conotoxins, individual toxins may vary widely 

in their effectiveness against various target taxa. Thus, to cope with the complex and 

shifting allospecific assemblages in their marine habitats, Conus species have evolved 

rapid hypermutation mechanisms to accelerate development of novel venom peptides 

(Olivera, 1997) and snails that feed on a broader spectrum of prey species exhibit more 

diverse toxin-encoding genes (Chang et al., 2015).  

 

Snake Venom Variation 

Snake venom composition varies widely among taxa. The factors that influence 

venom composition are complex, and exert their impact at various stages of venom 

production. At its most fundamental level, snake venom protein composition is first 

dependent on toxin-encoding genes within a snake’s genome. Until recently, these venom 

genes, often referred to collectively as the snake’s venome (Fry, 2005), were generally 

understood to have originated as duplicated, relatively non-toxic body genes that were 

subsequently recruited to the venom gland, whereupon they experienced 

neofunctionalization under natural selection to alter the toxicity and function of their 

products (Casewell et al., 2012, 2013; Fry et al., 2005, 2006, 2009, 2012; Fujimi et al., 2003; 

Ivanov, 1981; Ivanov and Ivanov, 1979; Kwong et al., 2009; Lynch, 2007; Margres et al., 

2013; Vonk et al. 2013). This improbable scenario, however, has been challenged, with 

recent whole-body and comparative transcriptomic and genomic analyses suggesting, 

instead, that snake venom evolves via the duplication and subfunctionalization of genes 

encoding existing salivary proteins (Hargreaves et al., 2014; Reyes-Velasco et al., 2014). As 

a consequence of this process, venom profiles differ among lineages in ways that are 
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broadly characteristic of snake families and genera (Fry, 2005; Mackessy 2002, 2010a; 

Mackessy et al. 2006). Venom composition also varies among species, as well as 

intraspecifically among populations (Boldrini-França et al., 2010; Fry et al., 2002; Fry et 

al., 2003; Castro et al., 2013; Daltry et al., 1996a,b; Forstner et al.,1997; French et al., 

2004; Mackessy, 2010b; Salazar et al., 2009; Wilkinson et al.,1991), between sexes 

(Daltry et al., 1996a,b; Menezes et al., 2006), and ontogenetically within individuals 

(Calvete et al., 2009b; Daltry et al., 1996a,b; Lopez-Lozano et al., 2002; Mackessy, 

1988). Variation in the regulation of gene transcription and RNA translation, as well as 

post-translational modifications of gene products, generates considerable variation even 

among closely related snakes with similar venomes (e.g., Fox and Serrano, 2008; 

Casewell et al., 2014).  

Intraspecific venom variation often correlates to geographic location, with 

members of a given population exhibiting greater venom similarity than individuals from 

more distant localities. Jiménez-Porras (1964) reported, for instance, that venom profiles 

of the Jumping Viper (Atropoides nummifer) from specific geographic localities were so 

distinct that venom composition could be used to predict where a venom sample was 

collected. The underlying causes of geographic variation in venom have been the subject 

of considerable debate. Daltry et al. (1996a,b, 1997, 1998) tested associations of 

geographic proximity, phylogenetic relatedness, and diet with venom composition in the 

Malayan Pitviper (Calloselasma rhodostoma), and found only diet to be significantly 

correlated with venom content. More recent studies support the interpretation that diet 

and habitat are major drivers of venom evolution (e.g., Chijiwa et al., 2000; Barlow et al., 

2009). Mackessy et al. (2003) suggested that local climate may also influence venom 
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composition, with cool or highly variable climates conferring an adaptive advantage on 

snakes with venom components capable of accelerating meal digestion at lower 

temperatures. Others studies implicate phylogeny as the main source of venom variation 

(e.g., Jones, 1976; Boche et al., 1981; Gregory-Dwyer et al., 1986; Chippaux et al., 1991; 

Williams et al., 1988). The emerging consensus seems to be that phylogeny, geographic 

distance, environment, and other factors act in concert to influence venom composition. 

Even when diet seems to exert only minimal influence on venom, such as in the North 

American Agkistrodon pitviper complex (Lomonte, 2014), venom is increasingly viewed 

as a labile trophic adaptation shaped by ecological pressures. 

 

Biomedical Implications of Snake Venom Variation 

The toxins of snake venoms often pose serious health risks, so an improved 

understanding of venom composition and extent of variation has important implications 

for advances in the clinical treatment of envenomation. Perhaps equally important, the 

incredible spectrum of toxins also represents a treasure trove of biologically active 

compounds which perform their functions with incredible specificity and efficiency, and 

therefore offer enormous potential for novel pharmaceutical applications.  

 Venomous snakes possess several unique characteristics that make them excellent 

models for venom investigation by toxinologists. In contrast to many venomous animals, 

snakes generally secrete high volumes of venom. Although snake venom toxins vary 

widely in their toxicity—some being lethal even in tiny volumes while others are less 

so—the amount of venom typically injected, together with snakes’ frequent encounters 

with people, ensure that snake venom research has direct medical applications. Generous 
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venom yield has proven valuable in the laboratory, allowing convenient sample collection 

in sufficient quantities for multiple experiments, eliminating the need to pool samples 

from multiple extractions. The wide distribution of venomous snake species across a 

multitude of habitats and ecological niches has resulted in a diverse assortment of 

venoms, each varying both in their protein toxin components and in the relative 

abundance of individual toxins. The venoms produced by different snakes have a long 

and unique history of interacting with the physiology of other organisms, and therefore 

possess properties that can be tapped for biotechnology and pharmaceutical applications 

(Teichert and Olivera, 2010; Zhu et al., 2011, 2012; Vonk, 2012; Alves and Albuquerque, 

2013). Thus, snake venoms can provide not only critical insights into the biological and 

ecological role of animal toxins and the factors that shape their evolution, but also can 

benefit humanity. 

 

Venom Variation among Rattlesnakes 

 Rattlesnakes (genera Crotalus and Sistrurus) comprise the most studied group of 

all snakes (Beaman and Hayes, 2008). All of the 80 recognized taxa (Beaman and Hayes, 

2008) possess relatively complex venom, with numerous toxins identified (Table 1). 

Many of these toxins exhibit pronounced geographic variation. Mojave toxin and its 

homologs, for example, are phospholipase A2 (PLA2) β-neurotoxins comprised of non-

covalently linked heterodimers of acidic and basic subunits, which presynaptically block 

neuromuscular activity by inhibiting release of acetocholine neurotransmitter. To date, 

this toxin has been described in a number of rattlesnakes species (Table 2). However, in a 
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Table 1. Common components of rattlesnake venoms and general characteristics (from 
Mackessy, 2008). 
 

 
Component Name 

Approximate 
Mass (kDa) 

 
Function 

 
Biological Activity 

 
References 

 
Enzymes 

    

Phosphodiesterase 94-140 Hydrolysis of nucleic 
acids and 
nucleotides 

Depletion of cyclic, 
di- and tri-
nucleotides; 
hypotension/shock 
(?) 

Mackessy, 
1998; Aird, 
2002 

5’-nucleotidase  53-82 Hydrolysis of 5’-
nucleotides 

Nucleoside 
liberation 

Rael, 1998; 
Aird, 2002 

Alkaline 
phosphomonoesterase 

90-110 Hydrolysis of 
phosphomonoester 
bonds 

Uncertain Rael, 1998 

Hyaluronidase 73 Hydrolysis of 
interstitial hyaluronan 

Decreased 
interstitial viscosity – 
diffusion of venom 
components 

Tu and Kudo, 
2001 

L-amino acid oxidase 
(homodimer) 

85-150 Oxidative 
deamination of L-
amino acids 

Induction of 
apoptosis, cell 
damage 

Tan, 1998 

Snake venom 
metalloproteases:  
M12 reprolysins 
     P-IV 
     P-III 
     P-II 
     P-I 

 
 

48-85 
43-60 
25-30 
20-24 

 
 
Hydrolysis of many 
structural proteins, 
including basal 
lamina components, 
fibrinogen, etc. 

 
 
Hemorrhage, 
myonecrosis, prey 
digestion 

 
 
Fox and 
Serrano, 2005 

Serine proteases     
     Thrombin-like 31-36 Catalysis of 

fibrinogen hydrolysis 
Rapid depletion of 
fibrinogen; 
hemostasis 
disruption  

Markland, 
1998; Swensen 
and Markland, 
2005 

     Kallikrein-like 27-34 Release of 
bradykinin from 
HMW kininogen; 
hydrolysis of 
angiotensin 

Induces rapid fall in 
blood pressure; prey 
immobilization  

Nikai and 
Komori, 1998 

     “Arginine esterase” 25-36 Peptidase and 
esterase activity 

Uncertain; 
predigestion of prey 
(?) 

Schwartz and 
Bieber, 1985 

Phospholipase A2 
enzymes 

13-15 Ca2+-dependent 
hydrolysis of 2-acyl 
groups in 3-sn-
phosphoglycerides 

Myotoxicity, 
myonecrosis, lipid 
membrane damage 

Kini, 1997, 
2003 

 
Non-enzymatic 
proteins/peptides 

    

Cysteine-rich 
secretory proteins 
(CRiSPs)/helveprins 

21-29 Possibly block cNTP-
gated channels 

Induced 
hypothermia; prey 
immobilization (?) 

Yamazaki and 
Morita, 2004 

PLA2-based 
presynaptic 
neurotoxins (2 
subunits, acidic and 
basic) 

24 Blocks release of 
acetylcholine from 
axon terminus 

Potent neurotoxicity; 
prey immobilization 

Aird et al., 
1985; 
Ducancel et al., 
1988; Faure et 
al., 1994 

C-type lectins 27-29 Binds to platelet and 
collagen receptor 

Anticoagulant, 
platelet-modulator 

Leduc and 
Bon, 1998 
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Disintegrins 5.2-15 Inhibit binding of 
integrins to receptors 

Platelet inhibition; 
promotes 
hemorrhage 

Calvete et al., 
2005 

Myotoxins – non-PLA2 4-5.3 Modifies voltage-
sensitive Na 
channels; interacts 
with lipid membranes 

Myonecrosis, 
analgesia; prey 
immobilization 

Laure, 1975; 
Fox et al., 
1979; Bieber 
and Nedelhov, 
1997 

 
Smaller peptides 

    

Bradykinin-potentiating 
peptides 

1.0-1.5 Increases potency of 
bradykinin 

Pain, hypotension; 
prey immobilization 

Wermelinger et 
al., 2005 

Tripeptide inhibitors 0.43-0.4 Inhibit venom 
metalloproteases and 
other enzymes 

Stabilization of 
venom components 

Francis and 
Kaiser, 1993; 
Munekiyo and 
Mackessy, 
2005 

 
Smaller organic 
compounds 

    

Purines and 
pyrimidines (AMP, 
Hypoxanthine, 
Inosine) 

AMP = 0.347 Broad effects on 
multiple cell types (?) 

Hypotension, 
paralysis, apoptosis, 
necrosis (?); prey 
immobilization 
 

Aird, 2002, 
2005 

Citrate 0.192 Inhibition of venom 
enzymes 

Stabilization of 
venom 

Francis et al., 
1992; Freitas 
et al., 1992 

 
Mass in kilodaltons (kDa). Note that this list is not all-inclusive and that masses, functions, and activities do not apply 
to all compounds isolated from all rattlesnake venoms. Specific rattlesnake venoms may not contain all components. (?) 
indicates hypothetical function and/or activity.
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Table 2. Taxonomic distribution of heterodimeric presynaptic neurotoxin complexes in 
venoms among rattlesnakes (from Werman, 2008). Taxonomic names conform to 
Campbell and Lamar (2004). 
 
Taxon     Neurotoxic complex  Reference 

 

Crotalus basiliscus   Crotoxin-like  Chen et al., 2004 
Crotalus durissus cascavella  Crotoxin homolog Santoro et. al 1999 
Crotalus durissus collilineatus  Crotoxin homolog Santoro et al. 1999; 
        Toyama et al., 2005 
Crotalus durissus cumanesis  Crotoxin homolog Chen et al. 2004 
Crotalus durissus ruruima  Crotoxin homolog Dos-Santos et al. 2005 
Crotalus durissus terrificus  Crotoxin  Aird S. D. et al. 1985 
Crotalus durissus vegrandis  Vegrandis toxin  Kaiser and Aird, 1987 
Crotalus horridus atricaudatus  Canebrake toxin Hawgood, 1982 
Crotalus lepidus klauberi  Mojave toxin  Rael et al., 1992;  

Powell et al., 2008 
Crotalus mitchellii mitchellii  Crotoxin-like  Chen et al., 2004 
Crotalus oreganus concolor  Concolor toxin  Pool and Bieber, 1981 
Crotalus oreganus helleri  Mojave toxin  French et al., 2004 
Crotalus scutulatus scutulatus Mojave toxin  Hagwood, 1982;  

Wooldridge et al., 2001 
Crotalus simus simus    Crotoxin homolog Gutierrez et al. 1991;  

Chen et al., 2004 
Crotalus tigris    Mojave toxin  Powell et al., 2004 
Crotalus viridis viridis   Mojave toxin/  Glenn and Straight, 1990 
     Concolor toxin 
Sistrurus catenatus catenatus  Sistruxin   Sanz et al. 2006 
Sistrurus catenatus tergeminus Sistruxin  Chen et al., 2004;  

   Sanz et al., 2006  

 

 

number of taxa, expression of the toxin varies geographically. Mojave toxin is common 

among C. scutulatus scutulatus populations, for instance, but is absent in certain localities 

(Glenn et al., 1983; Glenn and Straight, 1989; Massey et al., 2012; Borja et al., 2014). By 

contrast, C. o. helleri and C. viridis viridis typically lack PLA2 neurotoxins but have been 

documented to express them in localized populations (French et al., 2004; Glenn and 

Straight, 1990; Sunagar et al., 2014). In snake venoms, potent neurotoxicity and 

pronounced metalloproteolytic activity appear incompatible with one another. Snake 

venoms, then, can generally be classified as either predominately neurotoxic or 
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predominately proteolytic (Mackessy et al., 2003). The distribution of neurotoxic and 

proteolytic venoms shows no clear phylogenetic pattern in rattlesnakes and has therefore 

been interpreted as influenced mainly by local adaptation (Mackessy, 2008). 

 

Venom Variation in Pacific Rattlesnakes 

California populations of C. oreganus provide an excellent model for 

investigating environmental influences on intraspecific venom variation. The two 

subspecies share similar venom profiles that can be readily distinguished from those of 

other crotaline snakes. However, significant intraspecific venomic variation occurs 

among the various populations (Sunagar et al., 2014). The Northern Pacific Rattlesnake 

(C. o. oreganus) is found from the Canadian province of British Columbia south through 

Oregon and California to the Tehachappi Mountains of southern California. The Southern 

Pacific Rattlesnake (C. o. helleri) ranges from southern California, USA, southward into 

Baja California Norte, Mexico, and also occurs on the Pacific island of Santa Catalina 

(Los Angeles County, California; Klauber, 1997). The two taxa potentially overlap across 

a fairly narrow region along the northern edge of the Transverse Mountain Range 

(Klauber, 1997:52). Substantial environmental variation across the species’ range, likely 

the result of pronounced geologic activity in the region (see Schoenherr, 1992), results in 

marked habitat variation. Recent urbanization has fragmented the species’ distribution in 

some areas, potentially diminishing gene flow (c.f. Bolger et al., 1997; Riley et al., 2003). 

Pacific Rattlesnakes thrive in many of these habitat types, from sea level coastal valleys 

to grasslands, scrubby foothills, and montane forests up to 3000 m (Klauber, 1997). 



 

12 

As ecological generalists, C. o. oreganus and C. o. helleri utilize diverse prey 

types encountered across their distribution (Table 3). Pacific Rattlesnakes are also 

vulnerable to a wide range of antagonists (e.g., ungulates; Klauber, 1997) and predators 

(e.g., ophiophagous snakes, Roadrunners [Geococcyx californianus] and raptors [hawks 

and owls], mammalian carnivores; Klauber, 1997). Various animals  

 

Table 3. Reported prey of adult Crotalus oreganus oreganus and C. o. helleri. 
 

Prey Type 
Region 
Observed 

Reported 
by 

Preferred Habitat 

    Insects       

Jerusalem Cricket El Segundo, CA 
Von Bloeker, 
1942 

Damp soils 

    Amphibians       

Western Spadefoot Toad 
(Scaphiopus hammondii) 

Madera Co., CA 
Fitch & Twining, 
1946 

Grassland, scrub, chaparral, oak 
woodlands 

    Reptiles       

Western Skink (Eumeces 
skiltonianus) 

Northern Idaho 
Wallace & 
Diller, 1990 

Pinyon-juniper forest, grassland, desert 
shrub, rocks 

Checkered Whiptail 
(Cnemidophorus tesselatus) 

Madera Co., CA 
Fitch & Twining, 
1946 

Arid woodlands, shrublands, grasslands 

Gilbert's Skink (Plestiodon 
gilberti, formerly Eumeces 
gilbert) 

Madera Co., CA 
Fitch & Twining, 
1946 

Grassland, chaparral, open pine forest 

Western Side-blotched 
Lizard (Uta stansburiana) 

Madera Co., CA 
Fitch & Twining, 
1946 

Arid and semi-arid well-drained scrubland 

Western Fence Lizard 
(Sceloporus occidentalis) 

Madera Co., CA; 
Los Angeles Co., 
CA 

Fitch & Twining, 
1946; 
Cunningham, 
1959 

Grassland, chaparral, sagebrush, conifer 

Unidentified lizard 
Santa Catalina 
Island, CA; San 
Jacinto Mts., CA 

Gren et al., 
2014 

------ 

    Birds       

Vesper Sparrow 
(Passerculus 
sandwichensis) 

British Columbia 
Macartney, 
1989 

Tundra, grassland, marsh, farmland 

White-crowned Sparrow 
(Zonotrichia leucophrys) 

British Columbia 
Macartney, 
1989 

Mixed brush/grassland 

American Robin (Turdus 
migratorius) 

Pateros, 
Washington 

Klauber, 1997 Forests, tundra, urban areas 

Song Sparrow (Melospiza 
melodia) 

Northern Idaho 
Wallace & 
Diller, 1990 

Brushland, marsh, general 

Unidentified bird eggs Napa, California Klauber, 1997 --- 

Doves (Zenaida spp.) 
Arbuckle, CA; 
Pasadena, CA  

Klauber, 1997 Open land with scattered cover 
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Downy Woodpecker 
(Dryobates pubescens) 

Mariposa Co., CA 
Cunningham, 
1959 

Forests, especially deciduous 

California Quail (Callipepla 
californica, fomerly 
Lophortyx californica) 

Madera Co., CA 
Fitch & Twining, 
1946 

Shrubland, open woodland 

Canyon Towhee (Melozone 
fusca, formerly Pipilo 
fuscus) 

Madera Co., CA 
Fitch & Twining, 
1946 

Brushland, chaparral 

Roadrunner (Geococcyx 
californicus) 

Descanso, CA Klauber, 1997 Deserts, scrublands 

    Mammals       

Bushy-tailed Woodrat 
(Neotoma cinerea) 

British Columbia 
Macartney, 
1989 

Generalist 

Cinereus Shrew (Sorex 
cinereus) 

British Columbia 
Macartney, 
1989 

Northern grassland and forests, tundra 

Dusky Grouse 
(Dendragapus obscurus) 

British Columbia 
Macartney, 
1989; Klauber, 
1997 

Conifer forest 

Meadow Vole (Microtus 
pennsylvanicus) 

British Columbia 
Macartney, 
1989 

Northern grasslands and forests 

Muskrat (Ondatra zibethica) British Columbia 
Macartney, 
1989 

Wetlands 

Northwestern Chipmunk 
(Eutamias amoenus) 

British Columbia 
Macartney, 
1989 

Mountain forests 

Red Squirrel (Tamiasciurus 
hudsonicus) 

British Columbia 
Macartney, 
1989 

Conifer forest 

Yellow-bellied Marmot 
(Marmota flaviventris) 

British Columbia 
Macartney, 
1989 

Steppes, meadows, talus, forests above 
6,500 ft. 

Northern Pocket Gopher 
(Thomomys talpoides) 

British Columbia; N. 
Idaho 

Macartney, 
1989; Wallace 
& Diller, 1990 

Lowland and mountain riparian  

Great Basin Pocket Mouse 
(Perognathus parvus) 

British Columbia; 
SW Idaho 

Macartney, 
1989; Diller & 
Johnson, 1988 

Sagebrush, arid and semi-arid shrub and 
woods 

Montane Vole (Microtus 
montanus) 

British Columbia; 
SW Idaho 

Macartney, 
1989; Diller & 
Johnson, 1988 

High-elevation grassland, riparian, cropland 

Deer Mouse (Peromyscus 
maniculatus) 

British Columbia; N 
Idaho; SW Idaho; 
Madera Co., CA; 
Santa Catalina 
Island, CA 

Macartney, 
1989; Wallace 
& Diller, 1990; 
Diller & 
Johnson, 1988; 
Fitch & Twining, 
1946; Gren et 
al., 2014 

Generalist 

Mountain Cottontail 
(Sylvilagus nuttallii) 

N Idaho; SW Idaho 

Wallace & 
Diller, 1990; 
Diller & 
Johnson, 1988 

High-elevation sagebrush and forest 

Harvest Mouse 
(Reithrodontomys 
megalotis) 

Northern Idaho 
Wallace & 
Diller, 1990 

Grasslands, riparian, marsh 

Vagrant Shrew (Sorex 
vagrans) 

Northern Idaho 
Wallace & 
Diller, 1990 

Tundra, wet grassland, swamp, coniferous 
forest 

Voles (Microtus sp.) Northern Idaho 
Wallace & 
Diller, 1990 

Various grasslands 

Yellow-pine Chipmunk 
(Tamia amoenus) 

Northern Idaho 
Wallace & 
Diller, 1990 

Mixed conifer forest, shrub 

House Mouse (Mus 
musculus) 

Southwestern Idaho 
Diller & 
Johnson, 1988 

Commensal with humans 
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Ord Kangaroo Rat 
(Dipodomys ordii) 

Southwestern Idaho 
Diller & 
Johnson, 1988 

Semi-arid open shrubland, grassland, 
sagebrush 

Townsend Ground Squirrel 
(Spermophilus townsendii) 

Southwestern Idaho 
Diller & 
Johnson, 1988 

Arid grassland, open shrubland 

Snowshoe Hare (Lepus 
americanus) 

Ukiah, Oregon Klauber, 1997 Conifer and mixed forests 

Pika (Ochotona princeps) Mariposa Co.  
Cunningham, 
1959 

Talus fields, usually high-elevation 

Botta’s Pocket Gopher 
(Thomomys bottae) 

Madera Co., CA 
Fitch & Twining, 
1946 

Woodland, chaparral, scrubland, 
agricultural 

California Vole (Microtus 
californicus) 

Madera Co., CA; 
San Jacinto Mts., 
CA 

Fitch & Twining, 
1946; Gren et 
al., 2014 

Various grasslands 

Desert Cottontail (Sylvilagus 
audubonii) 

Madera Co., CA; 
San Diego Co, CA 

Fitch & Twining, 
1946; Klauber, 
1997 

Arid grassland, pinyon-juniper forest 

Dusky-footed Woodrat 
(Neotoma fuscipes) 

Madera Co., CA 
Fitch & Twining, 
1946 

Dense chaparral, hardwood, conifer, 
riparian 

Heermann's Kangaroo Rat 
(Dipodomys heermanni) 

Madera Co., CA 
Fitch & Twining, 
1946 

Dry gravel grasslands, open chaparral 

Pocket mice (Perognathus 
sp.) 

Madera Co., CA 
Fitch & Twining, 
1946 

Arid grasslands 

Unidentified mouse Madera Co., CA 
Fitch & Twining, 
1946 

------ 

California Ground Squirrel 
(Otospermophilus beecheyi, 
formerly Citellus beecheyi) 

Madera Co., CA; 
San Bernardino Co., 
CA; Santa Catalina 
Island, CA 

Fitch & Twining, 
1946; 
Cunningham, 
1959; Gren et 
al., 2014 

Open, well-drained grasslands 

Brush Rabbit (Sylvilagus 
bachmani) 

Los Angeles Co., 
CA; San Luis 
Obispo Co., CA 

Cunningham, 
1959; Klauber, 
1997 

Dense chaparral, aok, conifer, brush, 
grassland 

Brown Rat (Rattus 
norvegicus) 

Santa Catalina 
Island, CA 

Gren et al., 
2014 

Commensal with humans 

Ornate Shrew (Sorex 
ornatus) 

Santa Catalina 
Island, CA 

Gren et al., 
2014 

Marshes, uplands near water 

Desert Kangaroo rat 
(Dipodomys deserti) 

San Jacinto Mts., 
CA 

Gren et al., 
2014 

Creosote, desert grasslands, cacti 

Pinyon Mouse (Peromyscus 
truei) 

San Jacinto Mts., 
CA 

Gren et al., 
2014 

Rocky pinyon-juniper forest 

California Shrew-mole 
(Neurotrichus gibbsii 
hyacinthinus) 

Terminal Island, Los 
Angeles Co., CA 

Klauber, 1997 Damp forests or brush with deep, loose soil 

Trade Rat (Neotoma 
albigula) 

Riverside Co., CA Klauber, 1997 Scrubland, forests, and deserts 

 

 

have been known to prey on rattlesnakes opportunistically, though none feed on 

rattlesnakes exclusively. Useful predation statistics are elusive but Klauber (1997) 

mentions rattlesnake predation by badgers, raptors, roadrunners, kingsnakes and racers, 
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peccaries, coyotes, foxes, raccoons, weasels, minks, bears, turkeys, ravens, and even fish. 

Klauber also reported rattlesnake mortality caused by deer, antelope, sheep, goats, horses, 

cattle, ground squirrels, rabbits, and woodpeckers. Taken together, their wide geographic 

distribution, diverse habitats, fragmented populations, varied prey and predator species 

encountered make C. o. oreganus and C. o. helleri excellent models in which to 

investigate the influences of geographic distance, phylogenetic relatedness, and 

environmental influences on venom variation.  

Medical records along with field, and laboratory observations indicate that, 

whereas most C. o. oreganus and C. o. helleri venoms exhibit proteolytic toxicity, certain 

populations induce severe neurotoxic or myotoxic effects in mammals upon 

envenomation. French et al. (2004) reported the presence of Mojave toxin, a 

phospholipase A2 (PLA2) heterodimeric presynaptic β-neurotoxin first discovered in the 

venom of the Mojave rattlesnake (C. scutulatus), in the venom of several C. o. helleri 

using MT-specific antibodies. Neurotoxicity has also been noted after envenomation by 

snakes from populations shown not to express Mojave toxin, suggesting the presence of 

other neurotoxins that have yet to be identified (Bush and Siedenburg, 1999; French et 

al., 2004). 

 

Study Objectives 

The overall objectives of my research were: 1) to document the extent of 

geographic variation in venom composition among Pacific Rattlesnakes in California, 

and 2) to gain insight into factors contributing to the observed venom variation. 
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The purpose of my first study was to evaluate the extent of variation in venom 

protein expression among C. o. helleri populations in southern California. Venom 

samples from insular, coastal valley, high desert, and alpine populations were separated 

by reversed-phase liquid chromatography and the constituent proteins identified by mass 

spectrometry. Both Mojave toxin subunits were expressed and metalloproteinases were 

conspicuously absent in venom samples from the mountain population. Conversely, 

metalloproteinases were secreted in large amounts in all other populations, while PLA2 

neurotoxins were not detected. Metalloproteinases were most diverse in the high desert 

samples while the island population exhibited lower complexity but a much higher 

relative expression level.  

In my second study, I assessed the influence of phylogeny, geographic distance, 

and habitat on venom composition and neurotoxicity in C. o. oreganus and C. o. helleri 

across California. Venom samples from 24 populations were subjected to proteomic 

analysis as in the previous study and multivariate analyses used to compare venom 

composition with genetic relatedness, geographic distance, and environmental variables. 

Habitat showed the strongest associations with venom composition, followed by 

phylogeny, and geographic distance.  

My third study sought to compare the influence of ontogeny and diet on protein 

composition of neurotoxic and proteolytic venom profiles in C. o. helleri. We analyzed 

juvenile and adult C. o. helleri venom from an insular population exhibiting typical C. o. 

helleri venom profiles and an alpine population noted for its pronounced expression of 

neurotoxins and low metalloproteinase content. We also examined stomach contents and 

fecal matter from juvenile and adult snakes from each locality to identify consumed prey 
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types. Venom composition differed substantially between populations. Snakes in both 

populations also showed fairly substantial changes in venom composition during 

ontogeny, with similar effect sizes. Snakes from both populations consumed mainly 

lizards when young and incorporated more rodents as adults.  
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CHAPTER TWO 

GEOGRAPHIC VARIATION OF VENOM PROTEIN COMPOSITION IN THE 

SOUTHERN PACIFIC RATTLESNAKE (CROTALUS OREGANUS HELLERI) 

 
This report is adapted and modified from the following published paper: 

 

Kartik Sunagar, Eivind A. B. Undheim, Holger Scheib, Eric C. K. Gren, Chip Cochran, 
Carl E. Person, Ivan Koludarov, Wayne Kelln, William K. Hayes, Glenn F. King, 
Agosthino Antunes, and Bryan G. Fry. 2014. Clinical and biodiscovery implications of 
intra-specific venom variation in the medically important Southern Pacific Rattlesnake 
(Crotalus oreganus helleri). Journal of Proteomics 99:68–83. 
 

This report includes only the portions of the paper that I contributed to, 

and provides a much expanded Introduction and Discussion 

 

  

Abstract 

Due to substantial toxin variation in the venom of the Southern Pacific 

Rattlesnake (Crotalus oreganus helleri), management and treatment of envenomation by 

this species, one of the most medically significant snakes in all of North America, has 

been a clinical challenge. This taxon has also been the subject of sensational news stories 

regarding supposed rapid (within the last few decades) evolution of its venom toward 

supertoxicity. Research reported in this chapter demonstrates for the first time that 

variable evolutionary selective pressures have sculpted the intraspecific molecular 

diversity of C. o. helleri venom components. We show that myotoxic β-defensin peptides 

(i.e., crotamines and small basic myotoxic peptides) are secreted in large amounts by all 

four examined populations. Hemorrhagic and tissue-destroying snake venom 

metalloproteinases (SVMPs) were secreted in large amounts by the Catalina Island and 

Phelan rattlesnake populations, in moderate amounts by snakes in the Loma Linda 
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population and in only trace levels by the Idyllwild population. Only the Idyllwild 

population in the San Jacinto Mountains contained a potent presynaptic neurotoxic 

phospholipase A2 complex characteristic of certain populations of the Mohave 

Rattlesnake (C. scutulatus) and Neotropical Rattlesnake (C. durissus terrificus).  

We not only highlight the tremendous biochemical diversity in the venom-arsenal 

of C. o. helleri, but we also show that it experiences remarkably variable strengths of 

evolutionary selective pressures, influencing gene expression within each toxin class 

among populations and among toxin classes within each population. Mapping of 

geographical venom variation not only provides additional information regarding venom 

evolution, but also has direct medical implications by allowing prediction of the clinical 

effects of rattlesnake bites from different regions. Such information also points to these 

highly variable venoms as a rich source of novel toxins, which may ultimately prove 

useful in drug design and development.  

 

Introduction 

Snake venoms are complex secretions composed of various enzymes, toxins, 

peptides, small organic molecules, and inorganic compounds that elicit diverse 

physiological effects upon envenomation (Chippaux et al., 1991; Anaya et al., 1992; 

Heatwole et al., 1995; Chiszar et al., 1999; Bush et al., 2002; Mackessy and Baxter, 2006; 

Owings and Coss, 2008; Jansa and Voss, 2011; Casewell et al., 2012; Fry et al., 2012; 

Massey et al., 2012) facilitating both prey acquisition and snake defense (Anaya et al., 

1992; Bush et al., 2002; Casewell et al., 2012; Fry et al., 2012; Mackessy and Baxter, 

2006). Recent technological and methodological innovations, particularly in mass 
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spectrometry (Fry et al., 2002; Fry et al., 2003a,b; Calvete et al., 2007a,b, 2009a,b; 

Georgieva et al., 2008; Gutierrez et al., 2008; Gutierrez et al., 2009; Boldrini-França et 

al., 2010; Calvete, 2010; Calvete, 2011; Calvete et al., 2012; Ali et al., 2013) and 

transcriptomics (Ching et al., 2006; Fry et al., 2006, 2009, 2010, 2012, 2013; Wagstaff et 

al., 2006, 2009; Casewell et al., 2009; Rokyta et al., 2012, 2013) have significantly 

accelerated investigation in the field of animal venomics. As our knowledge of venoms 

has increased, so has our appreciation for their incredible complexity and variation. 

Venom variation occurs among snake species within the same genus (van der Weyden et 

al., 2000; Fry et al., 2002, 2003, 2008; Sanz et al., 2006; Calvete et al., 2007; Gutierrez et 

al., 2008; Angulo et al., 2008; Lomonte et al., 2008; Tashima et al., 2008; Wagstaff et al., 

2009) and among individuals within the same species, with intraspecific differences 

found among geographic locales (Wilkinson et al.,1991; Daltry et al., 1996a,b; Forstner 

et al.,1997; Fry et al., 2002, 2003; French et al., 2004; Salazar et al., 2009; Boldrini-

França et al., 2010; Mackessy, 2010; Castro et al., 2013), between sexes (Daltry et al., 

1996a,b; Menezes et al., 2006), among age groups (Mackessy, 1988; Daltry et al., 

1996a,b; Lopez-Lozano et al., 2002; Calvete et al., 2009b), and even between the venom 

glands of a single individual (Johnson et al., 1987). 

 Much of the venom variation observed within species or subspecies is associated 

with geographic location. Members of a given population generally exhibit a higher 

degree of venom similarity than individuals from distant localities. Jiménez-Porras 

(1964) reported, for example, that venom profiles of the Jumping Viper (Atropoides 

nummifera) from specific geographic localities were so distinct that venom composition 

could be used to identify where a venom sample was collected. Studies such as those by 



 

32 

Tsai et al. (2004) and Creer et al. (2003) suggest that major compositional variation of 

venom among populations may be the result of environmental selection pressures, such 

as geological isolation and prey ecology, or of discrete founder effects rather than simply 

through neutral genetic mutations.  

Chippaux et al. (1991) argued that geographic variation drives venom evolution 

based on at least two distinct situations. The first occurs among nearby or sympatric 

populations and is typified by a divergent population of Mojave Rattlesnakes (Crotalus 

scutulatus scutulatus) in northeast Arizona. This population’s venom exhibits 

unexpectedly high LD50 values (low toxicity) in the absence of any other discernable 

morphological differences (Glenn and Straight, 1978; Glenn et al., 1983; Rael et al., 

1984). The difference in toxicity was due to the absence of Mojave toxin, a pre-synaptic 

divalent neurotoxin found through much of the remaining range of the species. Evidence 

suggests that the neurotoxic and non-neurotoxic populations were once reproductively 

isolated, but are now free to interbreed and are forming an intergrade zone (Glenn and 

Straight, 1989). Chippaux mentioned a similar pattern of variability of Mojave toxin 

expression seen in sympatric Western Diamondback (Crotalus atrox) populations, 

suggesting a possible common ancestor of C. scutulatus and C. atrox followed by 

subsequent parallel evolution of the venome under similar evolutionary pressures 

(Chippaux et al., 1991), though subsequent studies indicated that only the basic subunit of 

the dimeric neurotoxin is expressed in C. atrox venom (Wooldridge et al., 2001; 

Werman, 2008). 

The second type of geographic variation occurs among populations that are 

currently isolated. A typical example is the morphologically indistinguishable island 
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populations of the Japanese Habu Pitviper (Trimeresurus flavoviridis). Isolation and 

shared evolutionary pressures have allowed homogenization of venom within 

populations, whereas genetic drift causes heterogeneity of minor venom components 

among localities with only the most biologically crucial components being conserved 

(Chijiwa et al., 2000). Heterogeneity of venom composition is approximately correlated 

to time since population divergence (Chippaux et al., 1991). These observations are 

consistent with the concept suggested by Mebs and Kornalik (1984) that genetic variation 

influences those venom components with only minor biological roles, whereas other 

proteins, more vital to the overall functionality of the venom, remain characteristic of the 

species. Intraspecific variability of components vital to venom toxicity is not 

unprecedented, though (Glenn and Straight, 1977; Sadahiro and Omori-Satoh, 1980), and 

provides interesting insights into the processes influencing venom evolution.  

The inherent limiting effects of physical separation on the circulation of alleles, 

either historical or contemporary, and homogenization of venom composition among 

populations, fail to fully explain all examples of venom variation in widely distributed 

species. Environmental factors specific to geographic location may also represent an 

important influence on venom protein expression. Just as ontogenetic shifts in dietary 

preferences have been shown to correlate with shifts in venom composition, 

environmental factors such as habitat type, elevation, and annual temperature and 

precipitation extremes may exert similar influence on venom composition through their 

effects on prey type availability and exposure to predation (e.g., Mackessy, 2008). In 

North America, a positive correlation between mammalian-specific venom toxicity and 

the proportion of mammalian prey in the diet of Sistrurus rattlesnake species (Gibbs and 
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Mackessy, 2009). In South America, populations of Bothrops pitvipers that continue to 

rely on ectothermic prey into adulthood retain their metalloproteinase-dominated juvenile 

venoms rather than shifting to the more complex venoms typical of populations where 

suitable mammalian prey are available (Núñez et al., 2009; Alape-Giron et al., 2008). An 

increasing number of studies have suggested similar correlations between geographic 

variation in diet and venom, including several rattlesnake species (e.g., Salazar and Lieb, 

2003; Gibbs et al., 2009). Even localized differences in prey behavioral ecology and 

physiology can apparently influence snake venom composition, as illustrated by the 

increased mammalian toxicity in the venom of rattlesnakes living near ground squirrel 

colonies exhibiting increased anti-snake aggression and venom resistance (Poran et al., 

1987; Biardi, 2008). 

 The Southern Pacific Rattlesnake (Crotalus oreganus helleri) is an excellent 

model for investigation of environmental influences on venom variation. A habitat 

generalist ranging from Baja California northward through southern California, and the 

Pacific islands of Santa Catalina (Los Angeles County, California) and Coronado Del Sur 

(Tijuana, Mexico) (Klauber, 1997), C. o. helleri thrives in sea level coastal valleys, 

grasslands, scrubby foothills, and montane forests up to 3000 m. Pronounced tectonic 

activity in the region has produced considerable variation in available habitat 

(Schoenherr, 1992), and prey species are therefore highly varied. Crotalus. o. helleri 

occurs frequently close proximity to humans and domestic animals, and the species 

accounts for the majority of reported snake envenomations in southern California (Bush 

et al. 2002; Wasserberger et al. 2006). Thus, any new information on the venom can 

potentially have immediate clinical implications.  
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Material presented in this chapter is adapted from a larger study of the diversity of 

toxins present in C. o. helleri, across its geographic range, using a combined proteomic–

transcriptomic approach. The goal was to determine the relative molecular evolution and 

diversification rates within a given toxin type, and the relative expression levels of 

particular toxins among populations. This chapter, however, will focus primarily on the 

proteomic aspects of the project, as they constituted the author’s contribution to the 

study. The transcriptomic work was performed by our collaborators at the University of 

Queensland. 

 

Materials and Methods 

Sampling 

We sampled four southern California populations of C. o. helleri from areas with 

pronounced geological, elevational, and vegetative differences (Fig. 1). Envenomations 

by snakes in these regions have exhibited symptoms ranging from hemorrhage, to muscle 

fasciculations, and paralysis (Bush and Seidenburg, 1999; Richardson et al., 2007; 

Hoggan et al., 2011; Bush et al., 2014). We chose to study four populations. (1) Catalina 

Island, dominated by coastal sage scrub and interspersed with chaparral and oak 

woodland, has never been connected to the mainland (Schoenherr, 1992) and has 

supported an isolated rattlesnake population since at least the Pleistocene. (2) Idyllwild, 

in the San Jacinto Mountains, has high altitude pine and cedar montane forests (elevation 

~1600 m). (3) Loma Linda, at lower elevation between major mountain ranges consists of 

low rolling hills covered with grasses and, on north facing slopes, Salvia mellifera and 

other shrubs. (4) Lastly, Phelan comprises a transition zone   
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Figure 1. Crotalus oreganus helleri populations investigated in this study. Shading denotes 
species range. 
 
 

between High Desert (Mohave) and coastal mountain scrub. We sampled one snake from 

each region for transcriptome sequencing. We used the same snake for proteome analysis 

of the Phelan and Loma Linda populations, and a separate individual of the same sex and 

size from the exact same locality for the other two locations. To account for potential 

venom variation among individuals within each population, we subjected venom samples 

from two additional Catalina Island, Phelan, and Idyllwild snakes to proteomic analysis. 

Because C. o. helleri is scarce in the Loma Linda area, we were only able to collect one 
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additional venom sample from that population. We used only adult specimens for venom 

analysis due to potential ontogenetic shifts in venom composition (Mackessy 2008).  

 

HPLC 

Lyophilized crude venom was diluted to a concentration of 3 mg/mL in Buffer A 

(0.065% TFA, 2% acetonitrile in Nanopure water) and centrifuged at 15,000 × g for 10 

min. The supernatant (100 uL) was fractionated on an ÄKTAmicro high-pressure liquid 

chromatography (HPLC) system (GE Healthcare Life Sciences, Piscataway, NJ, USA) 

fitted with two reversed-phase (RP) columns (SOURCE 5RPC ST polystyrene/divinyl 

benzene, 4.6 150 mm; GE Healthcare) run in series at a flow rate of 0.5 mL/min, using a 

linear gradient of 0–100% Buffer B (0.05% TFA, 80% acetonitrile in Nanopure water) 

over 40 column volumes. Protein elution was monitored at 214 nm using Unicorn 5.0 

(GE Healthcare Lifesciences) software, and fractions were collected manually.  

 

LC-MS 

Each fraction was subjected to reduction and alkylation prior to enzymatic 

digestion using dithiothreitol and iodoacetamide, respectively, following the protocol 

outlined by Matsudaira (1993). Proteins were then digested with proteomics-grade 

porcine pancreatic trypsin (Sigma-Aldrich, St. Louis, MO, USA). We desalted samples 

using C18 ZipTips (EMD Millipore, Billerica, MA, USA) according to the manufacturer’s 

protocol. We analyzed the desalted tryptic peptides with a ThermoFinnigan LCQ Deca 

XP spectrometer (ThermoFinnigan, Waltham, MA, USA) equipped with a PicoView 500 

nanospray apparatus using Xcalibur software (ver. 1.3; ThermoFinnigan, Waltham, MA, 



 

38 

USA) for instrument control and data acquisition. Separation was performed on a 10-cm 

x 75-m-i.d. C18 Biobasic bead column (New Objective, Woburn, MA, USA) by injecting 

20-uL samples. Mobile phase B consisted of 98% acetonitrile, 2% water, and 0.1% 

formic acid. The gradient program was: 0% B at 0.18 mL/min for 7.5 min; 0% B at 0.35 

mL/min for 0.5 min; linear gradient to 20% B at 15 min at 0.35 mL/min; linear gradient 

to 75% B at 55 min at 0.3 mL/min (flow rate constant for remainder of program); linear 

gradient to 90% B at 60 min; hold at 90% B until 85 min; linear gradient to 0% B at 90 

min; hold at 0% B until 120 min. Spectra were acquired in positive ion mode with a scan 

range of 300–1500 m/z. We converted MS/MS data into peak list files using Extractmsn 

implemented in Bioworks (version 3.1; ThermoFinnigan) with the following parameters: 

peptide molecular weight range 300–3,500, threshold 100,000, precursor mass tolerance 

1.4, minimum ion count 35. We conducted MS/MS database searches using Mascot 

(licensed, version 2.2, Matrix Science, Boston, MA, USA) against the National Center for 

Biotechnology Information non-redundant (NCBInr) database within Metazoa. A parent 

tolerance of 1.20 Da, fragment tolerance of 0.60 Da, and two missed trypsin cleavages 

were allowed. We specified carbamidomethylation of cysteine and oxidation of 

methionine in MASCOT as fixed and variable modifications, respectively. 

  

MALDI ToF MS and MALDI ToF/ToF MS/MS 

RP-HPLC fractions were submitted to the Institute for Integrated Research in 

Materials, Environments and Society at California State University, Long Beach, to 

determine whole protein molecular masses and protein identification/similarity. For 

MALDI ToF/ToF MS/MS analysis, tryptic peptides were mixed with -cyano-4-hydroxy 
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cinnamic acid (CHCA) matrix and directly spotted onto MALDI plates. MS spectra were 

collected using 1000 laser shots/spectrum, and MS/MS spectra from 3000 

shots/spectrum. Peptides with signal-to-noise ratio above 15 in MS mode were selected 

for MS/MS analysis, with a maximum of 15 MS/MS spectra allowed per spot. Internal 

calibration was achieved using ToF/ToF Calibration Mixture (AB SCIEX). We searched 

MS/MS data against the NCBInr database within Metazoa using GPS Explorer, running 

Mascot (version 2.1) search engine with a peptide tolerance of 300 ppm, MS/MS 

tolerance of 0.8 Da, and one missed cleavage allowed. We specified 

carbamidomethylation of cysteine as a fixed modification, and the following as variable 

modifications: carbamyl, Gln‡pyro-Glu (Nterm Q), and Glu‡ pyro-Glu (N-term E). 

 

Statistical Analyses 

To confirm that population differences existed among the 11 snakes with the 

quantitative RP-HPLC data, we subjected the percent protein present in each of the 11 

toxin families (area under the peaks) to a 4 × 11 (population × toxin family) analysis of 

variance (ANOVA [Green and Salkind, 2005]), treating population as a between-subjects 

factor and toxin family as a within-subjects factor. We rank-transformed the data to avoid 

analysis of percentage data that summed to 100 for each individual. Although our 

samples were small and data were somewhat non-normally distributed and 

heteroscedastic, general linear models generally handle data well that fail to meet 

parametric assumptions and the results were extremely robust. We also ran a non-

parametric Kruskal-Wallis ANOVA for each toxin family to compare the populations, 

allowing us to confirm results from the parametric ANOVA; this latter test requires no 
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assumptions about data distribution (Green and Salkind, 2005). We computed effect sizes 

(approximate variance explained) as adjusted partial eta-squared (η2) for the parametric 

ANOVA and as η2 (computed as χ2 / [total N − 1]) for the Kruskal-Wallis ANOVAs 

(Green and Salkind, 2005; Cohen, 1988). Eta-squared values ≥ 0.14 are generally deemed 

large (Nakagawa, 2004). We conducted these analyses using SPSS 13.0 for Windows, 

with alpha = 0.05. Following Nakagawa (2004), we did not apply Bonferroni adjustments 

to multiple tests. 

 

Results 

 Our proteomic analyses revealed significant differences in the venoms of the four 

populations (Fig. 2), with venom RP-HPLC profiles within a population largely  

congruent among individuals (Fig. 3; note: only two Loma Linda specimens were able  

to be analyzed due to the rarity of C. o. helleri in this locality). Proteomic and 

transcriptomic data for individual toxin constituents are summarized in Table 4. The 

parametric ANOVA yielded a highly significant interaction between population and toxin 

family (F9.8,22.9 = 13.15, p < 0.001, adjusted partial η2 = 0.31; Greenhouse-Geisser 

adjustment of degrees-of-freedom applied), indicating that the distribution of toxins 

among the protein families differed significantly among the populations. The Kruskal- 

Wallis ANOVAs confirmed that toxin quantity varied significantly among populations 

for some (nerve growth factor, cysteine-rich secretory protein [CRiSP], lectin; all p = 

0.21–0.35, η2 = 0.86–0.97) but not all toxin families. Five additional toxins (BPP, β- 

defensin, kallikrein, PLA2, SVMP) approached significance (p < 0.10) with large effect 

sizes (η2 > 0.63). Thus, the ANOVAs confirmed population differences despite the small 
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Figure 2. LC-MS/MS-annotated RP-HPLC chromatograms of the four Crotalus o. helleri 
populations analyzed. Colored regions represent dominant protein families only. β-
Definsins include crotamine and other small basic peptides; CRiSPs = cysteine-rich 
secretory proteins; kallikreins are a subset of serine proteases). 
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Figure 3. RP-HPLC chromatograms of crude venom from individuals analyzed in each 
population. 
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Table 4. Crotalus o. helleri intraspecific proteomic and transcriptomic toxin presence (✔ ) 
or absence (✖). Adapted from Sunagar et al. (2014). 
 

Toxin molecular 
scaffold type 

       Catalina Island               Idyllwild          Loma Linda                 Phelan 

       P T          P T       P T        P T 

β-Defensin Large amounts, 
medium 
complexity 

✔  Large amounts, 
medium 
complexity 

✔  Large amounts, 
medium 
complexity 

✔  Large amounts, 
medium 
complexity 

✔  

Bradykinin-
potentiating 
peptide/ Natriuretic 
peptide (BPP-NP) 

Medium 
amounts, low 
complexity 

✔  Small amounts, 
low complexity 

✔  Large amounts, 
low complexity 

✔  Large amounts, 
low complexity 

✔  

Cysteine-rich 
secretory protein 
(CRiSP) 

Large amounts, 
medium 
complexity 

✔  ✖ ✔  Medium 
amounts, low 
complexity 

✔  Medium 
amounts, 
medium 
complexity 

✖ 

Hyaluronidase ✖ ✔  ✖ ✔  ✖ ✔  ✖ ✔  

Kallikrein (SVSP) Medium 
amounts, low 
complexity 

✔  Medium 
amounts, high 
complexity 

✔  Large amounts, 
high complexity 

✔  Large amounts, 
high complexity 

✔  

Kunitz (serine 
protease inhibitor) 

✖ ✔  ✖ ✔  ✖ ✔  ✖ ✔  

L-Amino acid 
oxidase (LAAO) 

Medium 
amounts, low 
complexity 

✔  Medium 
amounts, low 
complexity 

✔  Medium 
amounts, low 
complexity 

✔  Medium 
amounts, low 
complexity 

✔  

Lectin Large amounts, 
low complexity 

✔  ✖ ✖ ✖ ✔  Low amounts, 
low complexity 

✔  

Nerve growth 
factor (NGF) 

Low amounts, 
low complexity 

✔  ✖ ✔  Low amounts, 
low complexity 

✔  ✖ ✖ 

Phospholipase A2 
(PLA2) 

Medium 
amounts, 
medium 
complexity 

✔  Large amounts, 
high complexity 

✔  Low amounts, 
low complexity 

✔  Low amounts, 
low complexity 

✔  

Snake venom 
metalloprotease 
(SVMP) 

Large amounts, 
medium 
complexity 

✔  Not detected ✔  Medium 
amounts, high 
complexity 

✔  Large amounts, 
high complexity 

✔  

Vascular 
endothelial growth 
factor (VEGF) 

✖ ✔  ✖ ✔  Low amounts, 
low complexity 

✔  Low amounts, 
low complexity 

✔  

Vespryn ✖ ✔  ✖ ✔  ✖ ✔  ✖ ✔  

P = Proteome 
T = Transcriptome 
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 sample sizes.  

Consistent with the proteomic results of this study, and a previously published 

study of San Jacinto Mountain specimens (French et al, 2004), only the Idyllwild 

population contained both the acidic and basic subunits of the neurotoxic PLA2 complex 

type, with both chains showing virtually identical coding sequences to the well-

characterized potent presynaptic neurotoxins from C. d. terrificus and C. s. scutulatus. 

The Idyllwild population also secreted the lowest amount of SVMPs (Fig. 2), with only a 

single isoform obtained in the transcriptome and expression only being detectable at trace 

levels in the proteome. In contrast, the other populations secreted SVMPs in large 

amounts, with the Phelan samples showing the greatest complexity while the Catalina 

Island population exhibited lower complexity but a much higher relative expression level. 

Proteomic profiles were similar among individuals within each locality (N = 3; except 

Loma Linda population, where these animals are scarce) compared to among populations 

differences. Thus, we are confident that the venom-gland transcriptomics of 

randomly selected animals closely reflect the overall venomics of the representative 

population.  

 

Discussion 

Sources of Observed Venom Variation 

 While the present study confirms the general patterns of geographic variation in 

venom composition previously described in C. o. helleri (e.g., French et al., 2004; 

Salazar, 2009), our findings provide unprecedented insight into variation of whole venom 

composition in the species, and which toxin families appear most variable. The most 
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striking disparity among the sampled populations is the reduced SVMP expression in 

venoms containing functional neurotoxin (Idyllwild population). This pattern is 

consistent with the inverse relationship between the relative composition of neurotoxic 

PLA2 and hemorrhagic SVMP observed in C. s. scutulatus venom (Massey et al., 2012; 

Glenn and Straight, 1978; Glenn and Straight, 1983). Fragmentation due to anthropogenic 

development and habitat alteration is widespread throughout the range of C. o. helleri. 

However, geographic barriers alone fail to fully explain observed venom variation in the 

species as even relatively nearby populations with no known geographic barriers between 

them can exhibit strikingly different venom profiles. It seems likely that local 

environmental factors are exerting directional selective pressures on the snakes, thereby 

shaping venom profiles.  

Diet is only one of the various factors shaping snake venom composition and its 

influence apparently varies. Chippaux et al. (1991) reported in their influential review 

that no relationship between snake venom composition and diet or habitat had been 

demonstrated, despite investigations of geographic variation in Agkistrodon spp. (Jones, 

1976), Bitis and Naja spp. (Boche et al., 1981), or Crotalus spp. (Gregory-Dwyer et al., 

1986). These and other early studies largely relied on gel electrophoresis and enzymatic 

activity to assess venom profiles, while diet analysis was limited. However, even detailed 

chromatographic analysis by Williams et al. (1988), specifically investigating the 

influence of natural prey type availability, failed to produce evidence of a dietary effect 

on venom produced by tiger snakes (Notechis ater niger and Notechis scutatus).  

Daltry et al. (1996a,b), however, described a significant association between 

geographic location and venom composition. She and her colleagues subjected venom 
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samples from 36 distinct populations of the Malayan Pitviper to isoelctric focusing. They 

then used partial Mantel tests to assess the degree of correlation between gel band 

profiles and geographic proximity, phylogenetic relatedness, and diet. The statistical 

analyses rejected both contemporary gene flow and patristic relatedness as major 

influences on geographic variation of venom profiles, and only diet was significantly 

correlated with venom composition. They proposed that selection pressures related to 

local prey type availability, such as the need for more rapid lethality or digestion of larger 

prey items, may constitute the primary drivers of venom variability among localities. 

Various subsequent studies have lent further credence to dietary affects on venom. 

Chijiwa et al. (2000) presented an especially compelling case in their investigation of the 

Habu pitviper (Trimeresurus flavoviridis) on several islands off the coast of Japan. 

Ancestral T. flavoviridis on the former Okinawa land mass expressed genes coding for 

two highly homologous myotoxic PLA2 isoenzymes (BPI and BPII) prior to rises in sea 

level which split Okinawa into separate islands. Following this eustatic isolation event, 

alteration of the tandom BPI and BPII genes produced a new pseudogene in T. 

flavoviridis on the new Okinawa island. The myotoxin genes were apparently unaffected 

in populations on the islands of Amami-Oshima and Tokunoshima. Chijiwa and 

colleagues noted that such genetic disruptions are not uncommon among highly 

homologous gene families and the fact that inactivation of the BPI and BPII genes only 

occurred in Okinawan T. flavoviridis suggests the myotoxins serve a more essential 

ecological role in the other populations.  

The toxicity of T. flavoviridis venom on Okinawa is greatly reduced due to the 

loss of BPI, BPII, and a defective hemorrhagic metalloprotease, HR1b. Deficiency of 



 

47 

these three highly toxic venom constituents, the researchers suggest, would represent a 

significant adaptive disadvantage to Okinawan T. flavoviridis unless local ecological 

pressures there differ from those on Amami-Oshima and Tokunoshima. They further 

suggested that Okinawan T. flavoviridis, which relies heavily on amphibian prey (90% in 

some areas), may no longer need the level of venom toxicity utilized by populations on 

Amami-Oshima and Tokunoshima, which feed largely on mammals (86% rats, 14% 

birds/reptiles/amphibians). This loss of gene function seems to fit a theme seen among 

island populations in which specific traits are lost when selective pressure to maintain 

them is removed (McNab, 1994; Blumstein and Daniel, 2005; Zuk et al., 2006). 

The emerging consensus seems to be that phylogeny, geographic distance, and 

ecological factors act in concert to influence venom composition. Even when diet seems 

to exert only minimal influence on venom, such as in the North American Agkistrodon 

pitviper complex (Lomonte, 2014), venom is increasingly viewed as a labile trophic 

adaptation shaped by ecological pressures. The relative homogenization of venom 

profiles among Agkistrodon species, for example, has been proposed to reflect shared 

generalist diets across the complex rather than a lack of dietary influence on venom. The 

notable variation in venom profiles even among C. o. helleri populations separated by 

minimal patristic distance (Chapter 3 andunpublished data) or geographic distance 

suggest diet is an important determinate of venom composition in this species. The 

relationship between venom composition and habitat (a correlate of prey availability) 

presented in this study is largely descriptive. As Sasa (1999b) pointed out in his critique 

of Daltry et al. (1996), interpretation of the effect of diet on venom is most appropriate 

within the context of a toxin’s ecological function. Subsequent investigation, using more 
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integrative, multi-faceted methods are needed, such as those employed by Barlow et al. 

(2009) to experimentally test relationships among venom composition, phylogeny, diet, 

and venom effectiveness in various prey types. Barlow et al. (2009) compared prey type 

consumed between Echis clades and found that species that preyed more heavily on 

arthropod prey expressed venom more toxic to scorpions. These results were mapped 

onto an Echis phylogeny and revealed coevolution of venom toxicity and diet in two 

independent episodes.  

 

Clinical and Pharmaceutical Implications 

The observed variability of neurotoxic, hemotoxic, and myotoxic venom-

components in C. o. helleri greatly complicates clinical treatment of bite victims, not only 

by eliciting highly variable clinical effects, but also as a consequence the reciprocal 

variability in the efficacy of antivenom binding. We hope that improved documentation 

of region-specific toxicity profiles will improve clinical treatment of envenomation by 

enabling physicians to anticipate symptoms and utilize more tailored treatment strategies 

based on where the snake was encountered. Improved understanding of the correlation 

between specific venom protein profiles and clinical symptoms ineffectively ameliorated 

by current antivenoms should also facilitate development of more effective antivenom.  

Naturally-occurring molecules that perform desired biological effects are often 

used as lead structures from which powerful pharmaceutical applications are developed 

(Klebe, 2013). However, the process of optimization for therapeutic use is often tedious 

and costly. Animal venoms represent tremendously diverse sources of bioactive natural 

products with myriad activities of clinical interest. Selective pressures have already 
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sculpted the evolution of structure and function in venom components to the point that 

incredibly precise pharmaceutical selectivity and potency can be achieved with less 

optimization than other leads. Pharmaceutically-productive species tend to cluster 

phylogentically, and the majority of novel drugs are derived from known drug-productive 

families (Zhu, 2012). Snakes feature prominently among such drug-productive families, 

with Viperidae representing the second most productive family within Metazoa, behind 

Hominidae (Zhu, 2011). Proteomic investigation of snake venoms, then, offers significant 

potential for discovery of novel pharmaceutical applications, particularly in species such 

as C. o. helleri, which display especially complex and variable protein profiles.  

The present study demonstrates dramatic variation in venom protein content and 

presumed toxicity among populations within a relatively small geographic area. Although 

the populations investigated here were selected for their unique habitat types and may 

therefore exaggerate the degree of venom heterogeneity within the species, a more 

comprehensive range-wide investigation of populations is warranted. Toxicity assays to 

assess the physiological implications of the observed geographic venome variation are 

warranted.  
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Abstract 

 Snake venoms comprise complex secretions composed of numerous enzymes, 

peptides, small organic molecules, and inorganic components which, upon injection, 

induce a broad range of physiological effects determined by their toxin constituents. 

Snake venom composition varies dramatically among genera and species, and substantial 

intraspecific variation also occurs in many species. Clinicians report variability in 

symptomology and in efficacy of antivenom treatment following envenomation by the 

Northern Pacific and Southern Pacific Rattlesnakes (Crotalus oreganus oreganus and C. 

o. helleri). This study documents substantial geographic variation in venom protein 

composition and presence of neurotoxicity among C. oreganus specimens sampled across 

California, USA. We used multivariate statistics to assess associations of venom 

composition with phylogenetic distance, geographic distance, and environmental 

variables (vegetation index, precipitation, and temperature). Environmental factors 

showed the strongest correlation with venom composition, followed by genetic 

relatedness, and geographic distance. The findings have direct implications for improved 

clinical treatment of snakebite, and, potentially, for novel pharmaceutical applications of 

toxins. 

 

Introduction 

Factors Influencing Venom Composition 

Snake venoms are complex secretions of numerous peptides, enzymes, and 

inorganic compounds that cumulatively produce a variety of toxic physiological effects 

upon envenomation (Mackessy and Baxter, 2006; Mackessy, 2009; Casewell et al., 2012; 
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Fry et al., 2012a; ). Venom is primarily used by snakes to facilitate prey acquisition and 

defense against predators and antagonists (Chippaux et al., 1991; Heatwole et al., 1995; 

Chiszar et al., 1999; Owings and Coss, 2008; Casewell et al., 2012). The factors that 

influence venom composition are complex and varied, and exert their impact at various 

stages of venom production. At its most fundamental level, snake venom protein 

composition is first dependent on toxin-encoding genes within a snake’s genome. These 

venom genes, often referred to collectively as the snake’s venome (Fry, 2005), probably 

originated via the duplication and subfunctionalization of genes encoding existing salivary 

proteins (Hargreaves et al., 2014; Reyes-Velasco et al., 2014). As a consequence of genetic 

drift and/or selection, venom profiles differ among snake lineages in ways that are broadly 

characteristic of snake families and genera (Fry, 2005). Further variation of venom 

protein composition occurs among species and intraspecifically among populations 

(Boldrini-França et al., 2010; Fry et al., 2002, 2003; Castro et al., 2013; Daltry et al., 

1996a,b; Forstner et al.,1997; French et al., 2004; Mackessy, 2010; Salazar et al., 2009; 

Wilkinson et al.,1991), between the sexes (Daltry et al., 1996a,b; Menezes et al., 2006), 

and ontogenetically within individuals (Calvete et al., 2009b; Daltry et al., 1996a,b; 

Lopez-Lozano et al., 2002; Mackessy, 1988). Variable regulation of gene transcription, 

RNA translation, and post-translational modifications of gene products, also exert 

significant influences on venom composition, producing considerable variation even 

among closely related snakes with similar venomes (e.g., Fox and Serrano, 2008; 

Casewell et al., 2014).  

Much of the venom variation observed within snake species or subspecies 

correlates to geographic location, with members of a given population generally 

exhibiting a higher degree of venom similarity than individuals from distant localities. 
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Jiménez-Porras (1964) reported, for instance, that venom profiles from specific 

geographic localities were so similar that venom composition could be used to predict 

where a venom sample was collected. The underlying causes of geographic variation in 

venom have been the subject of considerable debate, and the emerging consensus is that 

genetic drift and environmental factors act in concert to shape venom profiles. Until 

Daltry et al. (1996a,b) demonstrated significant associations between venom composition 

and diet, prevailing thought was that geographic variation in adult snake venom profiles 

was driven mainly by phylogeny (e.g., Jones, 1976; Boche et al., 1981; Gregory-Dwyer 

et al., 1986; Williams et al.,1988; Chippaux et al. 1991). Subsequent studies, such as 

those by Creer et al. (2003), Tsai et al. (2004), and Barlow et al. (2009), provided 

additional evidence that variation of essential venom constituents between populations 

may be the result of natural selection acting through environmental factors, or of discrete 

founder effects rather than genetic drift. Given the primary ecological functions of venom 

in facilitating prey acquisition and defense, selection pressures exerted by environmental 

factors, such as local prey and predator types, seem plausible. However, this idea has 

received opposition from some who claim the role of local selection has been 

exaggerated (e.g., Sasa, 1999ab). The emerging view, nonetheless, suggests that venom 

composition is, indeed, a fairly labile evolutionary trait and that natural selection acting 

through factors such as diet variation shape snake venom composition, though this 

influence varies among taxa (Lomonte et al., 2013; Gibbs et al., 2013). 

Multivariate analyses are ideally suited for investigating the potential factors that 

influence venom variation, as they can control for multiple variables simultaneously. 

Studies that examine intraspecific variation in venom have considered phylogenetic 
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relationships, geographic distance, and diet (Thorpe et al., 1995; Daltry et al., 1996ab; 

Gibbs and Chiucchi, 2011). The individual influences of each of these variables can be 

examined using Mantel and partial Mantel tests. Other than the well-established link 

between diet and venom, analyses of other potential environmental influences on venom 

composition have been conspicuously absent. Variables such as temperature, 

precipitation, and altitude affect the morphology, physiology, and ecology of snakes in 

myriad ways (e.g., Huey, 1991; Ricklefs, 1994; Beaupre, 1995; Filippi et al., 2005; 

Pizzatto et al., 2007; Gartner et al., 2010; Clusella-Trullas et al., 2011), and potentially 

contribute to venom variation as well. Cool climate, for example, has been hypothesized 

to influence venom composition in rattlesnakes by conferring an adaptive advantage to 

snakes with venom components capable of speeding meal digestion at lower temperatures 

(Mackessy, 2003). Many snakes, including viperids (e.g., Macartney, 1989; Brown, 1990; 

Wallace and Diller, 1990), are opportunistic predators with fairly broad diets, and their 

diets, therefore, reflect to a large extent the prey items available in their particular prey 

community. Prey community composition, in turn, is shaped to a large extent by 

environmental features, including temperature, precipitation, elevation, and vegetation. 

Clearly, disentangling the independent and interacting effects of multiple variables poses 

a substantial challenge for understanding the factors that shape venom variation. 

Investigating associations of fundamental habitat characteristics such as temperature, 

precipitation, elevation, and vegetation with venom variation therefore seems an 

appropriate place to begin to elucidate the complex details of the interplay between 

venom and environment. 
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 Various studies (including our own prior work; Sunagar et al. 2014 and Chapter 

2) have shown that the strength and direction of selective pressures acting on venom 

proteins often vary dramatically among protein families within a population, as well as 

among populations within protein families (e.g., Brust et al., 2013; Pineda et al., 2014). 

We suspect that generalist species, especially, are likely subject to rugged fitness 

landscapes with multiple fitness optima (adaptive peaks) and fitness minima (adaptive 

valleys; Wright, 1932; Whitlock et al., 1995; McCandish, 2011) reflecting the varied 

applications of their venoms, so that no one adaptive peak represents maximum overall 

utility to the species. It has been suggested that retention of complex venom phenotypes 

may be more selectively advantageous than optimization toward a simpler venom profile 

(Casewell et al., 2011).  

 

Pacific Rattlesnakes 

The Northern Pacific Rattlesnake (Crotalus oreganus oreganus) and Southern 

Pacific Rattlesnake (C. o. helleri) are well-suited for investigation of environmental 

influences on intraspecific venom variation. These taxa share similar venom protein 

profiles which are fairly distinct from those of other Crotaline snakes (Mackessy, 2008; 

Hayes and Gren , unpublished data). However, significant intraspecific venomic variation 

occurs among the various populations (French et al., 2004; Jurado et al., 2007; Sunagar et 

al., 2014), with higher levels of variation between populations than within populations 

(Sunagar et al., 2014). In these and other rattlesnakes, nearby populations may possess 

dramatically different venom in the presence or absence of apparent barriers to gene flow 

(e.g., Forstner, 2007; Massey et al., 2012), surpassing differences among populations 
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separated by much greater distances (Glenn and Straight, 1990; French et al., 2004; Gren 

et al., this study).  

 The Southern Pacific Rattlesnake ranges from southern California southward into 

Baja California Norte, and also occurs on the Pacific island of Santa Catalina (Los 

Angeles County, California; Klauber, 1997). The Northern Pacific Rattlesnake is found 

from the Canadian province of British Columbia south through Oregon and California to 

the Tehachappi Mountains of southern California. The two taxa potentially overlap across 

a fairly narrow region along the northern edge of the Transverse Mountain Range 

(Klauber, 1997). Pronounced geologic activity has produced considerable variation in 

habitat, prey availability, and predator species across the landscape (Schoenherr, 1992). 

As ecological generalists, C. o. helleri and C. o. oreganus thrive in many of the habitat 

types encountered across their range, from sea level beaches to valley grasslands, scrubby 

foothills, and montane forests up to 3000 m (Klauber, 1997). Recent urbanization has 

likely fragmented the species’ distribution in some areas, diminishing gene flow and 

resulting in isolated "island" populations (c.f. Bolger et al., 1997; Riley et al., 2003). 

Taken together, the wide geographic distribution, diverse habitats occupied, varied prey 

and predator species encountered, and fragmented populations provide an excellent 

opportunity to investigate the influences of geographic distance, phylogenetic 

relatedness, and environmental variation on venom composition. 

  

Clinical and Pharmaceutical Implications 

Their wide distribution and use of diverse habitat types places C. o. oreganus and 

C. o. helleri in frequent close proximity to humans and domestic animals. These taxa 
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account for the majority of human envenomations in California (Bush et al., 2002; 

Wasserberger et al., 2006). Moreover, our recent findings suggest that this range of 

utilized habitat types is associated with pronounced variation in venom profiles, and, 

presumably, a corresponding range of toxicities (Sunagar et al., 2014). Indeed, physicians 

report variable symptomology in envenomated patients and variable responses to 

antivenom administration, resulting in serious clinical challenges to treatment (e.g., Bush 

and Siedenberg, 1999; Richardson et al., 2007).  

Crotalus oreganus venom has generally been considered proteolytic in nature, 

inducing severe, though often localized, tissue damage upon envenomation (Russell, 

1983; Mackessy et al., 2003; Norris, 2004; Hoggan et al., 2011; Sprenger and Bailey, 

1986). In 1999, Bush and Siedenburg reported the presentation of severe neurotoxic 

symptoms in a patient following C. o. helleri envenomation. Subsequent investigation by 

French et al. (2004) identified a Mojave toxin (MT) homolog in the venom of several C. 

o. helleri individuals using MT-specific antibodies. Mojave toxin is a well-known 

phospholipase A2 (PLA2) heterodimeric presynaptic β-neurotoxin first described in the 

venom of the Mojave rattlesnake (C. scutulatus; Cate and Bieber, 1978). However, all 

MT-expressing individuals in their study came from a single population some 70 miles 

southeast of where the neurotoxic bite occurred, suggesting the presence of non-MT 

neurotoxins in the venom of some C. o. helleri. Additional sampling could potentially 

reveal a broader distribution of MT in C. oreganus. 

Currently, two snake antivenoms are approved for human use in the United States. 

Antivenin Crotalidae Polyvalent (Wyeth Labs) is a polyvalent equine serum containing 

whole immunoglobulin raised against the venom of Eastern Diamondback (Crotalus 
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adamanteus), Eestern Diamondback (C. atrox), Tropical Rattlesnake (C. durissus 

terrificus), and Lancehead Pitviper (Bothrops atrox). CroFab (Protherics) is a monoclonal 

polyvalent bovine serum composed of antibodies raised against the venoms of C. 

adamanteus, C. atrox, Mohave rattlesnake (C. scutulatus), and cottonmouth (Agkistrodon 

piscivorus). The observed complexity and variability of C. o. helleri and C. o. oreganus 

venom profiles and toxicities challenge the assumption that the venoms used in current 

antivenom production collectively serve as sufficient representatives to be used in 

treatment of all North American pitviper bites. Antibodies against the specific toxins in 

C. oreganus venom may be absent or present at insufficient concentrations for effective 

venom neutralization. Mapping of the geographic distribution of venom composition and 

toxicity may one day facilitate movement away from the current generalized "shotgun" 

approach toward development of more effective region-specific treatment. 

An equally important implication of venom research is the potential for 

biodiscovery. Countless pharmaceuticals have been inspired by naturally-occurring 

toxins, of which more than 20 have been developed from snake venoms (Zhu, 2011). 

Occasional reports have documented muscle fasciculation following C. oreganus bites 

Bush and Seidenburg, 1999; Richardson et al., 2007). Although the protein responsible 

has yet to be identified, these muscle tremors resemble those induced by fasciculins, 

small neurotoxic members of the three-fingered toxins (3Ftx) protein family, found in the 

venom of certain elapid species (Kini and Doley, 1996). Three-fingered toxins are of high 

pharmaceutical value because their small size and structural simplicity allow for ease of 

synthesis and delivery to target tissues, while their natural extreme binding-site 

specificity drastically reduces drug side effects. Crotamine has been implicated in causing 
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similar muscle tremors (Chang et al., 1983; Ranawaka et al., 2013), and it may be that 

some of the other myotoxins common in rattlesnake venoms may elicit similar activity. 

 

Purpose of the Study 

In the present study, we document the extent of variation of venom protein 

composition and neurotoxicity among Californian C. o. oreganus and C. o. helleri 

populations. We also evaluate the associations of geographic distance, phylogenetic 

relatedness, temperature, precipitation, elevation, and vegetation density with venom 

composition. Our dataset included venom samples from 69 individuals collected from 40 

locations across the range of these taxa in California.  

 

Materials and Methods 

Venom Acquisition 

We collected venom from 34 C. o. oreganus from 16 locations and 35 C. o. 

helleri from 24 locations representing eight major biogeographical regions of California, 

USA (Fig. 4). All samples were from adult snakes (≥60 cm) to avoid potential 

confounding of geographic variation with ontogenetic variation. We procured the 

samples via manual venom collection, in which snakes were allowed to bite through a 

membrane-covered container. To allow for adequate regeneration of venom components, 

samples were collected a minimum of 14 days after snake feeding. Crude venom was 

lyophilized and stored on Drierite at -20– -80° C until analysis. 
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Figure 4.  Collection sites for the 69 Pacific rattlesnakes (Crotalus oreganus ssp.) 
sampled. Biogeographic regions adapted from Schoenherr, 1992. 
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RP-HPLC, Mass Spectrometry, and Venom Composition Differences 

Following the methods outlined by Sunagar et al. (2014), we used reversed-phase 

high-pressure liquid chromatography (RP-HPLC) to fractionate each venom sample and 

generate a protein profile (chromatogram). The RP-HPLC fractions from the venoms of 

four individuals from four geographic locations were subjected to proteomic analyses 

(LC-MS and MALDI-ToF/ToF MS/MS) to identify the toxins present. The results, 

reported elsewhere (Chapter 2 and Sunagar et al., 2014), were used to establish 11 

arbitrary RP-HPLC elution regions, each of which included one or more proteins 

identified to 13 major proteins and protein families (Fig. 5; Table 5). For each 

 
 
  

 
 

Figure 5.  Representative composite chromatogram for Pacific rattlesnake (Crotalus 

oreganus ssp.) venom illustrating the toxin families associated with the 11 elution 
regions. 
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Table 5. RP-HPLC elution regions (Fig. 5) and the proteins and/or protein families identified by mass spectrometry (LC-MS and 
MALDI) from peaks within these regions for Southern Pacific Rattlesnake (Crotalus oreganus helleri) venom samples from four 
representative populations. Protein identifications documented in Sunagar et al. (2014). 
 

Elution Region Primary Content 
Idyllwild 

(ID-2) 
Phelan 
(PH-1) 

Loma Linda 
(LL-4) 

Catalina Island 
(CI-3) 

1 (35–56 mL) BIP/NP/Disintegrin BIP BIP BIP BIP 
   Disintegrin Disintegrin Disintegrin   
       Myotoxin (SBP)   
       Unknown   
2 (56–61 mL) Crotamine/SBP Crotamine (SBP) Crotamine (SBP) Crotamine (SBP) Crotamine (SBP) 
       BPP BPP 
         Myotoxin (SBP) 
3 (61–78 mL) Other SBP/Disintegrin Myotoxin (SBP) Myotoxin (SBP) Myotoxin (SBP) Myotoxin (SBP) 
   Complement C3 homolog Disintegrin Disintegrin   
4 (78–87 ML) MTA/Growth Factors/SVMP 

Disintegrins 
MTA NGF NGF NGF 

       SVMP-disintegrin SVMP-disintegrin 
5 (87–95 mL) MTB/Growth Factors/SVMP 

Disintegrins 
PLA2 (MTB) EGF SVMP-disintegrin NGF 

       VEGF   
6 (95–97 mL) CRiSP/PLA2 CRiSP CRiSP CRiSP CRiSP 
   PLA2       
7 (97–105 mL) SVSP/ PLA2 SVSP SVSP SVSP SVSP 
     PLA2 PLA2   
8 (105–109 mL) PLA2/SVSP PLA2 PLA2 PLA2 PLA2 
   SVSP SVSP SVSP SVSP 
9 (109–11 mL) Lectin/ PLA2/SVSP/CRiSP  PLA2 Lectin   Lectin 
   SVSP   SVSP 
         CRiSP 
10 (111–123 mL) LAAO/ PLA2/SVMP-Disintegrin/ 

Lectin/SVSP/CRiSP/NP 
LAAO LAAO LAAO LAAO 

 PLA2 PLA2 PLA2 CRiSP 
 SVMP-disintegrin SVMP-disintegrin SVMP-disintegrin SVMP-disintegrin 
       SVSP SVMP-other 
       Lectin Lectin 
         NP 
11 (123–end mL) SVMP-disintegrin   SVMP-disintegrin SVMP-disintegrin SVMP-disintegrin 
     VEGF Unknown PLA2 
         Lectin 
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chromatogram, we integrated the area under the absorbance trace to determine the 

percent of total protein for each elution region (i.e., sum of the area of all peaks in each 

region relative to total area). We did this after minor visual alignment of individual 

chromatograms. 

 Compositional data sets comprised of relative abundance data are subject to the 

constant-sum constraint when all variables sum to 100%. Individual variables cannot vary 

independently of one another since variation in the proportion of one component adjusts 

the abundance of the other components proportionally. This induced association violates 

the assumptions of independence of most multivarate tests (Ranganathan and Borges, 

2011) and often hides meaningful relationships among variables (Kucera and Malmgren, 

1998). To address this, we performed a centered-log ratio (CLR) transformation of our 

data following Aitchison (1986). Because CLR transformation requires that the data set 

contain only non-zero values, we first replaced all zero values using Aitchison’s formula 

(pp. 266–267). Once transformed, our data satisfied standard assumptions for 

multivariate analyses. 

For analyses, we used both the full data set of 11 elution regions and a reduced 

data set from principle component analysis (PCA; Mertler and Vannatta, 2010). This 

procedure, accomplished via SPSS 20.0 for Mac (Statistical Package for the Social 

Sciences, Inc., Chicago, 2011), recombines variables while taking into account shared 

variance such that the first few variables (i.e., principle components) of the reconstructed 

data set account for the majority of variance in the data set. We also created matrices of 

pairwise differences (or "distances") among all 69 snakes for each of the 11 elution 

ranges and for each of the principle components. 
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Geographic Distances 

 We constructed a matrix of pairwise geographic distances (nearest 0.1 km) among 

all 69 snakes. Linear distances between GPS coordinates of snake capture locations were 

entered into the matrix.  

 

Genetic Distances 

 To compile matrices of pairwise genetic distances among all snakes, we collected 

DNA samples from either blood or shed skins following the extraction protocol described 

by Fetzner (1999). We amplified mitochondrial cytochrome-b (cyt-b) using conventional 

DNA primers (Carl Person to supply details). Polymerase chain reaction (PCR) 

amplification was performed using Fermentas HOT START Master mix (Thermo Fisher 

Scientific, Pittsburg, PA, USA) following the manufacturer’s protocol. Amplified 

samples were sequenced by Macrogen USA (Rockville, MD, USA). We downloaded the 

DNA sequence for C. viridis cerberus cytochrome b (Af147859) from the NCBI database 

to serve as an outgroup for the Pacific Rattlesnake clade (Pook et al., 2000; Douglass et 

al., 2002). We obtained 48 useable cyt-b sequences. These were imported into Geneious 

R6 (Biomatters Ltd. 2006-2012) and aligned with ClustalW (Larkin et al., 2007). 

Phylogenetic trees and Bayesian distances were generated using Mr. Bayes (Huelsenbeck 

and Ronquist, 2001). Bayesian distances were entered into separate matrices for each of 

the mtDNA data sets. 
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Environmental Variation  

We created additional distance matrices among snakes for two environmental 

variables. These variables were based on principle components extracted by PCA from 

four environmental variables: elevation, temperature, precipitation, and normalized 

difference vegetation index (NDVI). Differences between PC scores of individual snakes 

were entered as distance values in the matrices. 

We extracted elevation data for each snake location from the Gtopo digital 

elevation (United States Geological Survey, 1996) We obtained temperature and 

precipitation from normalized 30-year (1981–2010) temperature and precipitation data 

through the PRISM Climate Group (University of Oregon, http://prism.oregonstate.edu). 

Raster data from PRISM (800-m pixels projected in WGS 84) were re-projected into 

NAD 83 UTM zone 11 using Arc Map 10.2 before extracting point values. 

To create a high resolution representation of vegetative “greenness,” we obtained 

five high-resolution (30-m pixel size) images of the southern portion of our study area 

from the OLI/TIRS sensors on the LANDSAT 8 satellite. The images were captured on 

three separate dates (April 11, 18, and 20, 2013), with time of day varying by only 13 

minutes among the images. All images contained similar sun azimuth and sun elevation 

values, indicating that irradiance would vary little due to solar declination. Cloud cover 

was prominent in the image of Catalina Island, but most of the cloud cover was located 

above the ocean, and none intruded upon any of the buffer zones for snake locations (see 

below). The five images were joined to form a mosaic, and were geometrically rectified 

using ERDAS Imagine 2013 software. We then created a normalized difference 

vegetative index (NDVI) image using the near-infrared and visible light red bands. Each 
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pixel in the resulting gray-scale image represents a value between -1 and +1, where 

values <0 indicate areas with no vegetation and values >0 indicate vegetative “greenness” 

of increasing density. Using Arc Map 10.2, we created buffer zones with 500-m radii 

around each snake collection point to extract NDVI values (see Erbas-White, 2014, for 

detailed methodology). We were unable to create a matching NDVI for the northern 

portion of our study because the available images of central and northern California were 

not orthorectified, so were much less geospatially accurate than the southern California 

image mosaic. Vegetation values associated with the northern images were also stretched 

so that they did not align with those from the southern California locations. 

 To reduce attribute space, we subjected the environmental variables (elevation, 

temperature, precipitation, NDVI) to PCA. Because NDVI was available only for the 

southern snakes, we ran two PCAs, one for all snakes (N = 69) that omitted NDVI, and 

another including NDVI for only the southern snakes (N = 38). 

 

Chick Biventer Cervicis Assay for Neurotoxicity 

We tested a representative subset of the venom samples (N = 16) for neurotoxic 

activity using the chick biventer cervicis nerve-muscle assay. Our methods followed 

those of Fernandez et al. (2014). Each venom sample was tested with 3–4 replicates. 

Results from the replicates were generalized for three measures: excitatory activity 

(initial contraction, followed by a gradual decrease in twitch strength), β-neurotoxic 

activity (substantial decrease in twitch response that can be reversed with addition of 

exogenous acetylcholine and cholinesterase), and myotoxic activity (inhibited twitch 

response to exogenous potassium chloride). Relative strength of these measures was 
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recorded as mild, moderate, or strong toxicity, or no toxicity. We also recorded the time 

(nearest minute) until there was a 50% reduction of original twitch intensity (t50), though 

this was achieved for only a portion of venom samples.  

 

Analyses 

We conducted four major sets of analyses. First, we sought to identify major 

venom composition differences among populations at a broad geographic scale. Second, 

we examined how geographic distance, genetic relatedness, and habitat variation 

potentially influence venom composition, as assessed by associations among these 

variables. Third, we evaluated how venom composition related to excitatory activity, β-

neurotoxic activity, and myotoxic activity. Finally, we tested for correlations of relative 

abundance for elution regions representing several major toxin constituents. 

 

Venom Composition Variation Among Geographic Regions 

We explored regional differences in venom composition at two levels. First, we 

used one-way analysis of variance (ANOVA; Mertler and Vannatta, 2010) models using 

SPSS to compare the percentage representation (after CLR-transformation) of each of the 

11 venom components (elution regions) in the whole venom sample among seven 

geographic regions (Fig. 4). We omitted the single specimen from the Mojave Desert 

region from this analysis. We computed eta-squared (ɳ2) as a measure of effect size, with 

values of ~0.01, ~0.06 and ≥0.14 loosely considered small, medium and large, 

respectively (Cohen, 1988). Second, we used discriminant function analysis (DFA; 

Mertler and Vannatta, 2010) to examine the extent to which overall venom composition 
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varied among the seven geographic regions. This approach included all venom 

components in a single analysis that allowed us to assess similarity among the geographic 

regions and to determine which venom components provided the best discrimination. We 

conducted the DFA using SPSS, with program defaults and equal group sizes for prior 

probabilities. We also used leave-one-out classification, a jackknife procedure, to better 

accommodate classification bias arising from small samples (Lance et al., 2000) and to 

cross-validate accuracy of group assignments. Sample sizes for each region ranged from 

N = 4–17. 

 

Associations among Venom Composition, Geographic Distance, Genetic 

Relatedness, and Environmental Variables 

We used Mantel and partial Mantel tests (Mantel, 1967; Manly, 1986) to identify 

associations among venom composition and three major factors that potentially influence 

venom composition at the population level (geographic distance, genetic relatedness, and 

environmental variation). Unlike the simple Mantel test, which can only compare two 

matrices at a time, the partial Mantel test compares two matrices while simultaneously 

holding up to eight other matrices constant as controls. Partial Mantel analysis has proven 

to be a powerful tool in elucidating the complex interplay of factors influencing venom 

composition (Daltry et al., 1996a,b; Gibbs and Chiucchi, 2011), yet remains under-

utilized in venom research.  We subjected the aforementioned matrices containing venom 

composition, geographic, genetic, and environmental distances to both simple and partial 

Mantel analyses using PASSaGE v2 software (Rosenberg and Anderson, 2011). Each test 

used one of the venom matrices (either an elution region or PC) as the dependent variable 
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and one of the other matrix sets (geographic distances, genetic distances, environmental 

variables) as the independent variable. For the partial Mantel tests, all remaining 

variables were held constant as controls. 

Given the complexity of our data set, we incorporated multiple permutations in 

our analyses to gauge congruence among the different approaches and to give us 

confidence in our conclusions. The permutations included two groups of snakes (all 69 

snakes and a subset of only 38 southern snakes), two levels of association (Mantel tests 

for bivariate matrix associations and partial Mantel tests for bivariate matrix associations 

while controlling additional variables), and two data sets for venom components (all 11 

elution regions and four PCs for the reduced set of toxins). Although strict reliance on 

principle components might be preferred to reduce the overall number of tests and 

experimentwise error, we elected to present both sets of results for comparative purposes. 

These analyses can only identify associations among variables, but this approach 

comprises a reasonable first step in identifying potential causal relationships. 

 

Venom Components Associated with Excitatory, Neurotoxic, and 

Myotoxic Activities 

 Because of the small sample size for the chick biventer cervicis assays, we used 

stepwise binomial logistic regression (Mertler and Vannatta, 2010) to explore potential 

associations between venom principle components (preferred due to the smaller number 

of variables) and the presence or absence of each of three measures from the assays: 

excitatory activity, neurotoxicity, and muscular activity. These analyses were conducted  
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Correlations Among Venom Components 

 Previous studies have shown significant negative correlations between 

metalloprotease and neurotoxin venom components in rattlesnake venoms (e.g., 

Mackessy, 2008; Calvete, 2012). To assess the extent of this association in Pacific 

rattlesnake venom, we subjected ER11 (predominantly SVMPs) and ER4 (predominantly 

MTA/GF) abundance data for all 69 snakes to bivariate correlation analyses in SPSS 20.0 

for Macintosh. To see whether a similar negative association exists between 

metalloprotease and myotoxin expression, we also tested for correlation between ER11 

and ER2 (predominantly crotamine), and between ER11 and ER3 (predominantly non-

crotamine small basic peptides). 

 

Results 

Venom Composition Variation Among Geographic Regions 

The ANOVA results (Table 6) revealed significant variation among geographic 

regions for seven of the 11 elution regions. Elution region 1 (predominantly bradykinin-

inhibitor peptide) showed the highest level of variation (i.e., the largest effect size), with 

snakes from the adjacent Penninsular Ranges and San Jacinto Mountains exhibiting much 

lower levels than snakes from other regions. Although protein concentration in ER2 

(predominantly crotamine) was similar among the geographic regions, ER3 

(predominantly non-crotamine SBPs) occurred at much higher levels in snakes from 

southern regions compared to those from northern regions. Protein content within ER4  
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Table 6.  Percent composition (mean ± 1 S.E., and range in parentheses) of reversed-phase HPLC elution regions (ER) from Pacific 
Rattlesnake (Crotalus oreganus ssp.) venom by region. Analysis of Variance (ANOVA) results compare all populations except for the 
Mojave Desert. 
 

Region N ER1 ER2 ER3 ER4 ER5 ER6 ER7 ER8 ER9 ER10 ER11 

NORTHERN REGIONS 

Coastal 
Ranges 

5 
10.5±1.1 

(7.0-
13.5) 

15.7±4.7 
(3.9-
31.2) 

6.8±1.4 
(2.9-11.9) 

0.3±0.2 
(0.0-0.9) 

3.3±1.0 
(0.8-5.8) 

9.2±3.5 
(0.4-
17.6) 

11.7±1.6 
(7.9-15.7) 

5.9±1.9 
(2.1-
12.9) 

2.4±0.6 
(1.5-4.6) 

14.0±0.7 
(12.7-
16.5) 

20.0±7.0 
(6.9-45.8) 

Great 
Central 
Valley 

14 
8.4±0.8 

(3.6-
12.1) 

13.5±2.3 
(1.4-
33.5) 

8.0±1.1 
(0.3-14.1) 

0.6±0.2 
(0.0-3.0) 

3.2±1.4 
(0.3-
18.4) 

3.1±0.7 
(0.0-
10.0) 

14.9±1.4 
(7.5-27.9) 

14.3±1.9 
(6.2-
35.0) 

3.0±1.2 
(0.0-
16.1) 

15.9±1.9 
(5.9-28.8) 

15.1±2.9 
(0.7-35.1) 

Sierra 
Nevada 

15 
9.5±0.6 

(5.6-
15.2) 

10.7±2.0 
(0.5-
28.1) 

7.0±0.7 
(3.6-12.1) 

0.3±0.2 
(0.0-2.5) 

3.6±0.8 
(0.6-
10.5) 

5.6±1.0 
(0.0-
11.4) 

12.7±0.9 
(8.6-20.9) 

8.7±1.4 
(3.0-
22.2) 

2.8±0.5 
(0.0-6.3) 

12.6±0.4 
(10.1-
15.8) 

26.0±2.3 
(2.7-43.4) 

SOUTHERN REGIONS 

Transverse 
Ranges 

17 
7.8±0.7 

(0.8-
12.5) 

7.6±1.4 
(0.7-
18.8) 

16.7±2.1 
(5.2-29.6) 

0.5±0.3 
(0.0-5.3) 

0.3±0.1 
(0.0-1.2) 

1.5±0.3 
(0.0-3.9) 

9.3±0.9 
(3.6-17.1) 

8.5±0.9 
(1.6-
13.2) 

2.7±0.8 
(0.0-9.4) 

20.0±2.9 
(6.7-56.4) 

25.0±3.7 
(2.0-56.6) 

Mojave 
Desert 

1 6.1 16.1 25.4 0.0 0.2 3.0 11.8 12.7 0.3 12.2 11.8 

Penninsular 
Ranges 

4 
6.5±1.3 
(3.3-9.5) 

12.0±2.8 
(4.2-
16.1) 

36.4±4.5 
(26.0-
44.8) 

0.1±0.1 
(0.0-0.5) 

0.6±0.2 
(0.0-1.1) 

2.5±0.4 
(1.6-3.5) 

9.7±2.2 
(5.3-15.7) 

12.9±2.6 
(6.9-
17.6) 

0.2±0.1 
(0.0-0.6) 

14.2±1.5 
(9.9-16.5) 

4.4±2.2 
(2.0-10.9) 

Catalina 
Island 

4 
5.7±1.7 
(1.5-9.0) 

3.7±1.8 
(1.3-9.1) 

21.7±2.9 
(13.8-
27.8) 

0.1±0.1 
(0.0-0.4) 

0.3±0.2 
(0.0-0.7) 

1.1±0.6 
(0.0-2.4) 

12.5±1.4 
(10.0-
16.3) 

12.3±1.8 
(8.5-
15.8) 

3.0±2.6 
(0.0-
10.6) 

17.7±1.5 
(15.2-
22.0) 

21.6±2.5 
(15.7-
27.9) 

San Jacinto 
Mountains 

9 
3.6±0.6 
(0.9-6.6) 

7.1±1.6 
(2.0-
18.6) 

37.0±5.8 
(10.3-
57.3) 

6.3±0.9 
(3.3-
12.7) 

12.2±1.4 
(7.7-
20.5) 

2.0±0.5 
(0.0-4.4) 

12.5±0.9 
(9.9-17.1) 

5.7±1.4 
(0.0-
13.1) 

4.0±0.5 
(0.3-5.6) 

8.8±1.8 
(2.9-17.2) 

0.6±0.4 
(0.0-3.5) 

F6,61  4.17 1.22 12.68 5.71 11.37 1.42 1.90 4.27 1.60 7.76 40.57 
P  < 0.001 0.311 <0.001 <0.001 <0.001 0.220 0.096 0.001 0.161 <0.001 <0.001 
ɳ2  0.29 0.11 0.56 0.36 0.53 0.12 0.16 0.30 0.14 0.43 0.80 

  
Protein contents of individual elution regions are provided in Table 5.
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and ER5 (predominantly MTA/GF, and MTB/GF,respectively) was substantially higher 

in the San Jacinto Mountains than elsewhere. Two elution regions, ER1 (predominantly 

bradykinin-inhibitor peptide) and ER10 (predominantly LAAOs), were substantially 

reduced in the San Jacinto Mountains compared to other regions. Elution region 8 

(predominantly phospholipases A2 and SVSPs) showed a complex trend, with relatively 

low levels in the disjunct Coastal Ranges and San Jacinto Mountains.  

 The DFA used to determine whether overall venom composition differed by 

geographic region generated a significant model (Wilks’ Λ = 0.023, χ2
60 = 220.95, N = 

68, p < 0.001) with six functions. Separation of the populations on the first two functions 

is depicted in Fig. 6. Classification results indicated that 73.5% of the venom samples 

were assigned correctly to the original geographic region. Leave-one-out classification 

was less successful at 51.5%, but still far greater than that expected from random for the 

seven groups (14.3%). Accuracy for each geographic region (with leave-one-out results  

in parentheses) was Catalina Island 100% (25.0%), Central Valley 64.3% (42.9%), Coast 

Ranges 100% (40.0%), Penninsular Ranges 100% (50.0%), San Jacinto Mountains 77.8% 

(77.8%), Sierra Nevada 80.0% (66.7%), and Transverse Ranges 52.9% (41.2%).  

 

Associations Among Venom Composition, Geographic Distances, Genetic 

Distances, and Environmental Variation  

The PCA of venom composition (for the 11 elution regions) yielded four 

components, which collectively accounted for 73.4% of the variance. Venom PC1  

(32.2%) was comprised of (in order of loading) ER11, ER1, ER8, and ER10 with positive  
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Figure 6.  Canonical plots of discriminant scores for venom components (area under the 
curve of 11 RP-HPLC elution regions) of individual Pacific rattlesnakes (Crotalus 

oreganus ssp.) from seven geographic regions depicted in Fig. 4 (the single Mojave Desert 
sample is excluded). Group centroids are also shown. The first function (57.3% of 
variance) consisted largely of ER11 and ER1 with negative loadings, which separated 
snakes of the San Jacinto Mountains with minute quantities of these proteins from those of 
other regions having greater quantities. The second function (33.2% of variance) consisted 
largely of ER3 with positive loadings, which separated the northern snakes with smaller 
quantities of proteins eluting in this region (Coast Ranges, Great Central Valley, and Sierra 
Nevada) from the southern snakes with higher quantities (Catalina Island, Penninsular 
Ranges, San Jacinto Mountains, Transverse Ranges). An additional DFA (results not 
provided) that included the Mojave Desert specimen placed it within the canonical space 
of specimens from the Transverse Ranges.
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loadings, and ER4 and ER5 with negative loadings. Venom PC2 (17.3%) consisted of 

ER7 and ER3 with positive loadings. Venom PC3 (13.5%) was composed of ER6 with a 

positive loading and ER9 with a negative loading. Venom PC4 (10.5%) consisted of ER2 

with a positive loading.  

 The PCA of environmental data for all snakes omitted NDVI, and produced a 

single component that explained 68.1% of the variance. This component, PC1 (hereafter 

Environmental PC), consisted of elevation and precipitation with positive loadings, and 

temperature with a negative loading. The PCA for the southern snakes included NDVI, 

and yielded two components. PC1, essentially identical to that of the PCA for all snakes, 

and therefore also labeled Environmental PC, explained 68.1% of the variance and was 

similarly composed of elevation and precipitation with positive loadings, and temperature 

with a negative loading. PC2 (hereafter Vegetation PC) explained 22.4% of the variance 

and consisted of NDVI with a positive loading. 

 Consensus results for partial Mantel tests of the 11 components (Table 7) found 

some support for associations between venom components and geographic distance. Of 

the five venom components with significant associations, three associations were 

relatively small and two were moderate, though minor differences existed between the 

tests for all snakes and the tests for just southern snakes. Two associations were negative 

and three were positive. In some cases, the direction of association differed between the  

Mantel tests and the partial Mantel tests, suggesting likely covariation between 

geographic distance and other variables. 
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 Consensus results for partial Mantel tests of the 11 components (Table 7) yielded 

stronger support for associations between venom components and genetic distances. Of 

the six venom components with significant associations, one association was relatively 

small, two were moderate, and three were large. Two associations were negative and four 

 

Table 7. Consensus from partial Mantel tests of associations between relative protein 
content of toxins and toxin families of Pacific rattlesnake (Crotalus oreganus ssp., 
N = 69) venom and other factors. Associations are shown as negative (-) or positive 
(+), and relative strength as small (-/+), moderate (- -/++), or large (- - -/+++). 
 

Elution 
Region 

Geographic 
Distance 

Associations 

Genetic Distance 
Associations 

Environmental Associations 

Enviro PC Veg PC 

1  ++ - - 
2   - -  
3 - - - -  + 
4 - - - - - + +++ 
5   +++ +++ 
6   - + 
7     
8 + ++ - - - - 
9 +  +++  

10  + - - - - - 
11 ++ +++ - - - - - - 

Significant 
associations 

5 6 9 8 

 
Associations were tested among matrices of pairwise distances for venom components and 
matrices of pairwise distances or differences for three other major factors that potentially 
influence venom composition: geographic distance, genetic distance (for the mtDNA markers 
cyt-b), and environmental variation (see below).  
 
Two environmental variables consisting of principle components (PC) from a principle 
component analysis were tested, including (with negative or positive association with PC : 1) 
environmental PC (Enviro PC), comprised largely of elevation(+), precipitation (+), and 
temperature (-); and 2) Vegetation PC (Veg PC), comprised largely of a normalized difference 
vegetative index (NDVI). Detailed results from the tests are provided in Appendices 1 and 2. 
 
Protein contents of individual elution regions are provided in Table 5. 
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were positive. Associations were consistent between the full sample of all snakes and the 

subset of southern snakes with one exception: a relatively small association for ER10 

existed for the southern snakes, but was absent from the test of all snakes (Appendix 1). 

Mantel and partial Mantel tests were largely congruent, except that the Mantel tests for 

ER5 showed a significant negative association that was absent from the partial Mantel 

tests (Appendix 1), suggesting likely covariation between genetic distance and other 

variables. 

 Consensus results for partial Mantel tests of the 11 components (Table 7) 

provided the strongest support for associations between venom components and 

environmental variables. Of the nine venom components significantly associated with 

Environmental PC (elevation, precipitation, temperature), three associations were 

relatively small, three were moderate, and three were large. Six associations were 

negative and three were positive. Associations were largely consistent between the full 

sample of all snakes and the subset of southern snakes (with two minor exceptions; 

Appendix 1) and between the Mantel and partial Mantel tests (with one minor exception; 

Appendix 1). Of the eight venom components significantly associated with Vegetation 

PC, three were relatively small, one was moderate, and four were strong. Four were 

negative and four were positive. These tests were conducted only for southern snakes, but 

results were identical for Mantel and partial Mantel tests. 

 Partial Mantel tests using Venom PCs (Appendix 2) were generally congruent 

with those using the 11 venom components individually (Appendix 1), but some notable 

differences existed. Venom PC1 was positively associated with geographic distance, 

which was consistent for most but not all of the six elution regions analyzed individually; 
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it was positively associated with genetic distance, which was consistent for all but one 

elution region analyzed individually; and it was negatively associated with both 

Environmental PC and Vegetation PC, which was consistent with all six elution regions 

analyzed individually. Venom PC2 showed no association with geographic distance, 

which was consistent with both of the elution regions analyzed individually; it was 

negatively associated with genetic distance, which was consistent with one of the two 

elution regions analyzed individually; and it showed no association with environmental 

variables, though associations existed for both venom components analyzed individually. 

Venom PC3 yielded no associations at all, though associations with geographic distance, 

Environmental PC, and Vegetation PC existed for the two elutions regions when 

analyzed individually. Finally, Venom PC4 was significantly associated only with 

Environmental PC, which was fully consistent with the single elution region. The Mantel 

and partial Mantel results were largely congruent, except that the direction of association 

differed for geographic distance, which occurred also with analyses of the 11 elution 

regions. 

  

Distribution of Neurotoxicity 

Twitch height data from the chick biventer cervicis assays varied in intensity and 

in time to inhibition, even among replicate trials of the same venom sample. However, 

broad patterns of twitch response generally agreed among replicates. Consensus results 

for the replicate tests are summarized in Table 8, and their geographic distribution is 

mapped in Fig. 7. No clear pattern of geographic distribution could be discerned. The 

majority of samples (75.0% of 16) elicited an initial increase in twitch response followed 
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by gradual twitch decrease, an effect we termed "excitatory." Similarly, a majority of 

samples (87.5%) also exhibited some level of pre-synaptic, or beta, neurotoxicity, as 

indicated by substantial inhibition of stimulated twitches, but retention of sensitivity to 

exogenous ACh and CCh. Such inhibition of twitch height by toxins is commonly 

reported as either t90 or t50 (time required for toxin to inhibit original twitch height by 

90% or 50%, respectively; Hodgson and Wickramaratna, 2002). Here, t50 values are 

reported since some venom samples failed to achieve 90% inhibition within the 

timeframe of the assay. In many trials, the toxins’ excitatory effects complicated 

detection of β-neurotoxicity, as 50% inhibition was not achieved within the time duration 

 

Table 8. Consensus of replicate tests (N = 3 or 4) of chick biventer cervicis assays for 
neurotoxicity in crude venom of the Pacific Rattlesnake (Crotalus oreganus ssp.). Sample 
locations are arranged from north to south, with county abbreviations in parentheses. 
Results are also mapped across the geographic range in Fig. 7. 
 
Snake Excitatory b-Neurotoxic Myotoxic t50 (min) 

Alameda 1 (ALA) +++ + — N/A 

Modesto 1 (STA)  ++ ++ +++ 138 

Bear Springs 1 (KER)  — + + N/A 

Valencia (LA)  +++ + ++ N/A 

Santa Monica (LA)  — — ++ N/A 

Cajon Pass 1 (SBD)  — + +++ N/A 

Loma Linda 3 (SBD)  + + + N/A 

Loma Linda 4 (SBD)  + + — N/A 

Snow Creek 1 (RIV)  + ++ ++ 73 

Idyllwild 2 (RIV)  ++ ++ — 44 

Idyllwild 4 (RIV)  — — + N/A 

Pinyon Pines (RIV)  +++ +++ — 40 

Bautista Canyon (RIV)  + + +++ N/A 

Carlsbad 1 (SD)  +++ +++ — 88 

Carlsbad 2 (SD)   +++ +++ ++ 88 

Ramona (SD)   ++ + +++ N/A 

 
— = No toxicity; + = Mild; ++ = Moderate; +++ = Strong; N/A = 50% reduction of original twitch 
intensity not achieved within trial duration
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Figure 7.  Geographic distribution of excitatory activity, β-neurotoxicity, and 
myotoxicity of Pacific Rattlesnake (Crotalus oreganus ssp.) venom as indicated 
by replicate (n = 3 or 4) chick biventer cervicis assays. Only a subset of 16 of the 
69 snakes were tested in this exploratory toxicity investigation.  
 
 

of the run despite decreases in twitch response which were far too pronounced to reflect 

muscle fatigue. Many samples (68.8%) also showed myotoxic activity, as indicated by 

inhibition of muscle fiber response to exogenous KCl. 

 The stepwise logistic regression results reflected the general absence of 

associations between venom composition and excitatory, neurotoxic, and myotoxic 

activities. None of the three stepwise models tested provided a significant model.  
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Bivariate Relationships among Venom Components 

Bivariate correlation analysis indicated a significant negative association between 

ER4 (predominantly MTA/GFs) and ER11 (predominantly SVMPs; r67 = -0.571, p < 

0.001). A significant negative correlation was also detected between ER3 (predominantly 

non-croatmine SBPs) and ER11 (r67 = -0.254, p = 0.035), but no association existed 

between ER2 (predominantly crotamine) and ER11. 

 

Discussion 

Venom Composition Variation among Geographic Regions 

Our results revealed substantial geographic variation in the relative abundance of 

numerous protein components (area under the curve for the 11 RP-HPLC elution regions) 

of C. oreganus venom. Discriminant analyses indicated a substantial distinction between 

venoms of northern (C. o. oreganus) and southern (C. o. helleri) populations, which 

underscores the subspecific differentiation of these snakes. Most notably, southern snakes 

had consistently higher expression of non-croatmine small basic peptides (Other SBPs; 

ER3) in their venom compared to northern snakes. Snakes from the San Jacinto 

Mountains (including Idyllwild) also possessed a highly distinctive venom composition, 

which included relatively high levels of Mojave toxin (MTA and MTB; ER4 and ER5), 

as documented previously (French et al., 2004; Sunagar et al., 2014), and relatively low 

levels of BIP/NP (ER2), LAAOs (ER10), and SVMPs (ER11). Although other 

populations had measurable levels of proteins within ER4 and ER5, the protein material 

undoubtedly represented other proteins such growth factors (GF; Sunagar et al., 2014, 

and Table 5). Thus, we have no reason to believe that intact Mojave toxin occurred in any 
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samples other than those from the San Jacinto Mountains. Mojave toxin, or its various 

homologs, occurs in numerous rattlesnake taxa (Table 2), and often only within a limited 

geographic range of a given species (Werman, 2008; Powell et al., 2008). Mojave toxin 

also occurs in the subspecies C. oreganus concolor (Pool and Bieber, 1981; Aird and 

Kaiser, 1985; Bieber et al., 1990), so it would not be surprising if further sampling 

reveals additional populations of C. oreganus that possess MT. 

 

Associations Among Venom Composition, Geographic Distances, Genetic 

Distances, and Environmental Variation 

Our Mantel analyses suggest that geographic distance, genetic relatedness, and 

environmental variation all exert some level of influence on venom composition. These 

three influences, of course, are not independent; however, our use of partial Mantel tests 

allowed us to test each one independently while controlling for the others. Environmental 

variation, measured in terms of elevation, temperature, precipitation, and relative 

vegetation density, appeared to have the strongest associations with venom composition.  

 The relatively strong association between venom composition and environmental 

variation adds to the growing body of evidence that selection can shape the pool of toxins 

within a snake population. Our previous transcriptomic study suggested that C. o. helleri 

venom-encoding genes have experienced differential evolutionary selection pressures 

both among toxin types within a population, and within the same toxin type among 

populations (Sunagar et al., 2014). For three toxins having sufficient full-length 

transcriptome sequences for analysis, we showed that: (1) positive selection is driving 

rapid evolution of serine proteases across populations but that the number of positively 
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selected amino acid sites varied widely among populations; (2) significant positive 

selection appears to be driving rapid evolution in lectins except in the Catalina Island 

population, where they are experiencing strong negative selection instead; and (3) β-

defensins in all four populations appeared to be subject only to weak positive selection. 

However, because secreted regions were highly conserved, we suspect that evolutionary 

constraints favor the preservation of those amino acid residues required for toxicity. 

Given their apparent rapid rates of evolution, the failure of serine proteases and lectins to 

explain much of the venom variation in the present study may be a function of their 

relatively low abundance in the venom profiles. Our current findings that environment 

and phylogeny substantially influence venom composition coincide well with the concept 

of significant but highly variable selective pressures acting on individual venom 

constituents among Pacific rattlesnake populations.  

If other toxins are experiencing strong selection similar to those documented for 

serine proteases and lectins, and if their expression is consistently correlated with 

environment and genetic distance, it seems likely that these proteins may play a key role 

in adaptation of venom profiles in response to regional selective pressures. Our data 

support previous studies documenting associations between venom components and 

environmental factors such as habitat type, elevation, annual temperature and 

precipitation extremes, diet, and exposure to predation (e.g., Mackessy, 2003, 2008). 

Crotalus viridis viridis, which ranges far north and experiences a short active season and 

extreme daily and seasonal temperature fluctuations, exhibits exceptionally high venom 

concentrations of metalloproteinases (Gleason et al., 1983; Ownby and Colberg, 1987), 

which Mackessy suggests can benefit digestive activity when processing large and bulky 
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meals. Similar evidence of the interplay between ecological pressures and venom 

composition is illustrated by increases in venom proteolytic activity following 

ontogenetic shifts in diet from lizard to rodent prey, but retention of more toxic venom in 

populations which continue to rely on reptile prey (Fiero et al., 1972; Mackessy, 1988, 

1993; Mackessy et al., 2003). Gibbs and Mackessy (2009) demonstrated a positive 

correlation between mammalian-specific venom toxicity and extent of incorporation of 

mammalian prey in the diet of Sistrurus rattlesnake species. In South America, 

populations of Bothrops pitvipers that continue to rely on ectothermic prey into adulthood 

retain their metalloproteinase-dominated juvenile venoms rather than shifting to the more 

complex venoms typical of populations where suitable mammalian prey are available 

(Núñez et al., 2009; Alape-Giron et al., 2008). Additional studies have suggested similar 

correlations between geographic variation in diet and venom in snakes (e.g., Salazar and 

Lieb, 2003; Gibbs et al., 2009). Even very localized differences in prey behavioral 

ecology and physiology can apparently influence snake venom evolution, as illustrated by 

the increased mammalian toxicity in the venom of rattlesnakes living near ground squirrel 

colonies exhibiting increased anti-snake aggression and venom resistance (Poran et al., 

1987; Biardi, 2008). It is interesting to note that whole venom electrophoresis profiles 

(e.g., Mackessy, 2008) often exhibit greater complexity in more xeric species, such as C. 

tigris (six bands), C. durissus terrificus (seven bands), and Sistrurus catenatus edwardsii 

(nine bands), often have less complex venom profiles, whereas mesic species such as C. 

h. horridus (14 bands), C. polystictus (14 bands), and C. pusillus (15 bands) often possess 

more complex venom profiles. This pattern is imperfect, however, as illustrated by the 

complex venom profiles of some xeric species such as C. mitchellii pyrrhus (14 bands) 
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and C. ruber (15 bands). Perhaps the diversity of prey types available in mesic 

environments often preserves more diverse venom profiles, whereas less varied prey 

assemblages in xeric habitats allow a thinning of venom constituents. 

 The influence of environmental pressures and diet on venom composition have 

been contested by some (e.g., Jones, 1976; Boche et al., 1981; Gregory-Dwyer et al., 

1986; Williams et al., 1988; Chippaux et al., 1991), and are certainly not the only factors 

driving venom variation. The predigestion hypothesis (Mackessy et al., 2003), for 

example, would predict that the Mt. San Jacinto snakes in our study collected at over 

1600 m, should express especially high levels of metalloproteinase. And given the 

inverse correlation between neurotoxicity and proteolytic activity (Mackessy, 2008), we 

might expect snakes in the San Jacinto Mountains to lack significant expression of 

neurotoxins. Both predictions fail, however, as venoms in the San Jacinto Mountains are 

nearly void of metalloproteases (the single most abundant toxin family in most C. o. 

helleri venoms; Tables 5 and 6) and exhibit neurotoxicity unmatched among all tested 

populations. In the absence of a distinct diet (see Chapter 4), we suspect that the unique 

venom composition of C. o. helleri in the San Jacinto Mountains may reflect a population 

founder effect or some other past genetic bottleneck event. We question whether there is 

anything unique about the diet or predators of these snakes that would favor a more toxic 

and less digestive venom. Further study is needed to determine whether the venom 

composition represents an alternative adaptive peak.  

We incorporated multiple permutations in our Mantel analyses to gauge 

congruence among the different approaches, maximize our use of environmental 

information, and give us confidence in our conclusions. The permutations included two 
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groups of snakes (all 69 snakes and a subset of only 38 southern snakes having NDVI 

data), two levels of association (Mantel tests for bivariate matrix associations and partial 

Mantel tests for bivariate matrix associations while controlling additional variables), and 

two data sets for venom components (all 11 elution regions and four PCs for the reduced 

set of toxins). Although this approach resulted in a large number of statistical tests with 

high experimentwise error, the percentage of significant tests (e.g., 64.9% of 154 tests 

involving venom elution ranges, and 37.5% of 56 tests involving venom principle 

components) greatly exceeded that expected by chance (5% of all tests), which provides 

compelling evidence that real associations exist. General agreement between the full 

sample of 69 snakes and the subset of 38 southern snakes suggests that smaller data sets 

of future studies may be sufficient to identify associations. General agreement between 

the Mantel and partial Mantel tests underscores the strength of some associations, while 

occasional disagreement, particularly for associations between venom composition and 

geographic distance, suggests substantial covariance between geographic distance and 

other variables (genetic distance and environmental variation). General agreement 

between analyses of venom protein elution regions and venom principle components 

validates both approaches, but occasional disagreement emphasizes the greater resolution 

derived from analysis of individual venom components. 

 

Distribution of Neurotoxicity 

Neurotoxins may act either pre-synaptically or post-synaptically. Pre-synaptic 

neurotoxins infiltrate the synaptic nerve terminal and block the release of acetylcholine 

(ACh) from the vesicles into the synaptic cleft. Thus, following inhibition of twitches by 
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venom exposure, a contractile response after addition of exogenous ACh and its analog 

carbachol (CCh), indicates venom pre-synaptic neurotoxicity since the nerve fiber’s 

motor end plate remains responsive. Post-synaptic neurotoxins act by binding to 

acetylcholine receptors on the motor end plate, inhibiting the effect of acetylcholine 

released from the motor neuron axon across the synaptic cleft. Therefore, a decrease in 

response to exogenous ACh and CCh after treatment with venom indicates the presence 

of post-synaptic toxicity in the venom. Potassium chloride (KCl) elicits muscle 

contraction via a separate receptor, and is therefore unaffected by either pre- or post-

synaptic neurotoxins. Accordingly, decreased muscle response to KCl at the conclusion 

of the experiment indicates either fatigue of the muscle tissue or myotoxic activity in the 

venom.  

 Results of nerve-muscle assays for neurotoxicity vary among mammalian, avian, 

or reptilian/amphibian tissue preparations. Although extrapolations between in vitro 

results and clinical observations are imperfect, mammalian tissues reasonably 

approximate the physiological effects of human envenomation due to general homology 

of nicotinic receptors (Hodgson and Wickramaratna, 2002). Avian tissues differ 

somewhat from mammalian tissues in their receptor morphology and response to toxins, 

but their multiply innervated muscle fibers afford a key advantage for preliminary 

analysis of venom toxicity by facilitating the simultaneous identification of post-synaptic 

and pre-synaptic toxicity as well as myotoxicity. The chick biventer cervicis nerve-

muscle assay, therefore, serves as an appropriate method for initial survey of snake 

populations exhibiting unknown neurotoxic or myotoxic activity (Hart et al., 2013).  
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Variability among trials is typical in the chick biventer assay due to differences 

among individual tissue samples, sample preparation, and electrode placement, so 

standard protocol requires a minimum of three replicate trials per venom sample. 

Interpretation of our dataset is further complicated by the observed excitatory activity, 

which often increased twitch response far beyond initial levels. This prevented inhibition 

of twitch intensity to 50% within the time duration of the assays, despite twitch reduction 

too rapid to be explained by muscle fatigue, and accounts for the apparent discrepancies 

between reported β-neurotoxicity and t50 data.  

Interestingly, only two of the four Mt. San Jacinto-area venom samples analyzed 

exhibited pre-synaptic neurotoxicity, despite all four containing substantial protein 

concentration in the elution regions dominated by the acidic and basic subunits of Mojave 

toxin. However, the Mt. San Jacinto samples that did exhibit neurotoxicity showed the 

most potent twitch inhibition of any samples tested, with the next most potent sample 

collected nearby at the base of the same mountain. It is possible that post-translational 

modifications may explain the reduced toxicity of the remaining San Jacinto-area venoms 

through inactivation of one or both of the Mojave toxin subunits.  

Small basic peptides have been shown to exhibit myotoxic activity (Cameron and 

Tu, 1977; Maeda et. al., 1978; Fox et al., 1979; Bieber et al., 1987; Samejima et al., 1991; 

dos Santos et al., 1993; Allen et al., 1996; Ownby, 1998). Thus, given their prominent 

expression in the majority of venom samples analyzed, the wide distribution of 

myotoxicity observed is unsurprising. The observed excitatory activity, by contrast, was 

unexpected. To our knowledge, such excitatory activity is unusual in snake venoms but 

closely resembles activity sometimes observed in arachnid venoms (e.g., Rash et al., 
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2000). We suspect this could be a result of the direct potentiation of sodium or potassium 

channels in the muscle, but it remains unknown which particular toxin(s) may be 

involved. This, together with observed pre-synaptic neurotoxicity in venom profiles 

lacking Mojave toxin subunits, underscores the need for further investigation of 

neurotoxicity in the species. 

 Although the chick biventer assay offers the important advantages for intitial 

analysis of unknown neurotoxins, the assay imperfectly reflects toxicity in mammalian 

tissue. It would be ideal to expand on our preliminary findings by subjecting all 

remaining populations to chick biventer analysis, as well as performing parallel rat 

phrenic nerve assays on corresponding venom samples to gain improved insight into 

mammalian toxicity. 

 

Acknowledgments 

 
We thank Joel Almquist, Jim Bass, Kent Beaman, Erick Briggs, Aaron Corbit, 

Karin Greenwood, Todd and Heidi Hoggan, Jeremy Manriquez, and Jeff Mintz for 

providing access to snakes for collection of venom and tissue samples. We also thank Dr. 

Richard Straight for his valuable insight over the course of this study. 

 
 
  



 

99 

References 

 
Aird SD, Kaiser II. 1985. Comparative studies on three rattlesnake toxins. Toxicon 

23:361–374. 
 
Alape-Girón A, Sanz L, Escolano J, Flores-Díaz M, Madrigal M, Sasa M, Calvete  

JJ. 2008. Snake venomics of the Lancehead Pitviper Bothrops asper: geographic, 
individual, and ontogenetic variations. J Proteome Res 7(8)3556–3571. 

 
Allen HR, Merchant ML, Tucker RK, Fox JW, Geren CR. 1996. Characterization and 

chemical modification of E toxin isolated from timber rattlesnake (Crotalus 

horridus horridus) venom. J Nat Toxins 5 409–427. 
 
Anaya M, Rael ED, Lieb CS, Perez JC, Salo RJ. 1992. Antibody detection of venom  

protein variation within a population of the rattlesnake Crotalus v. viridis. J 
Herpetol 26:473–82. 

 
Barlow A, Pook CE, Harrison RA, Wüster W. 2009. Coevolution of diet and prey-

specific venom activity supports the role of selection in snake venom evolution. 
Proc R Soc B 276:2443–9. 

 
Beaupre SJ. 1995. Effects of geographically variable thermal environment on 

bioenergetics of mottled rock rattlesnakes. Ecology: 1655–1665. 
 
Biardi, J. E. 2008. The ecological and evolutionary context of mammalian resistance to 

rattlesnake venoms. In: Hayes WK, Cardwell MD, Beaman KR, Bush SP, editors. 
Biology of the Rattlesnakes. Loma Linda: Loma Linda University Press. pp. 557–
568. 

 
Bieber AL, McParland RH, Becker RR. 1987. Amino acid sequences of myotoxins from 

Crotalus viridis concolor venom. Toxicon 25 677–680. 
 
Bieber AL, Mills JP, Ziolkowski C, Harris J. 1990. Rattlesnake neurotoxins: biochemical 

and biological aspects. J Toxin Rev 9(2):285–306. 
 
Boche J, Chippaux JP, Courtois B. 1981. Biochemical variations of West African snake 

venoms. Bull Soc Pathol Exot Filiales 74(3):356–66. 
 
Boldrini-França J, Corrêa-Netto C, Silva MM, Rodrigues RS, De La Torre P,  

Peréz A, Soares AM, Zingali RB, Nogueira RA, Rodrigues VM, Sanz L, Calvete 
JJ. 2010. Snake venomics and antivenomics of Crotalus durissus subspecies from 
Brazil: assessment of geographic variation and its implication on snakebite 
management. J Proteomics 73:1758–76. 

 



 

100 

Bolger DT, Alberts AC, Sauvajot RM, Potenza P, McCalvin C, Tran D, Mazzoni S. 
Soulé ME. 1997. Response of rodents to habitat fragmentation in coastal southern 
California. Ecol Appl 7(2):552–563. 

 
Brown, D. G. 1990. Observation of a Prairie Rattlesnake (Crotalus viridis) consuming 

neonatal Cottontail Rabbits (Sylvilagus nuttalli), with defense of the young 
cottontails by adult conspecifics. Bull Chicago herpetol Soc 25:24–26. 

 
Brust A, Sunagar K, Undheim EAB, Vetter I, Yang DC, Casewell NR, Jackson TNW, 

Koludarov I, Alewood PF, Hodgson WC, Lewis RJ, King GF,Antunes A, 
Hendrikx I, Fry BG. 2013. Differential evolution and neofunctionalization of 
snake venom metalloprotease domains. Mol Cell Proteomics 12:651–663. 

 
Bush SP, Green SM, Moynihan JA, Hayes WK, Cardwell MD. 2002. Crotalidae  

polyvalent immune fab (ovine) antivenom is efficacious for envenomations by 
Southern Pacific rattlesnakes (Crotalus helleri). Ann Emerg Med 40:619–24. 

 
Bush SP, Siedenburg E. 1999. Neurotoxicity associated with suspected southern Pacific 

rattlesnake (Crotalus viridis helleri) envenomation. Wilderness Environ Med 
10:247–249. 

 
Calvete JJ, Sanz L, Cid P, de la Torre P, Flores-Díaz M, dos Santos MC, Borges A, 

Bremo A, Angulo Y, Lomonte B, Alape-Girón A, Gutiérrez JM. 2009. Snake 
venomics of the Central American rattlesnake Crotalus simus and the South 
American Crotalus durissus complex points to neurotoxicity as an adaptive 
paedomorphic trend along Crotalus dispersal in South America. J Proteome Res 
9:528–44.  

 
Calvete JJ, Pérez A, Lomonte B, Sánchez EE, Sanz L. 2012. Snake venomics of Crotalus 

tigris: the minimalist toxin arsenal of the deadliest Neartic rattlesnake venom. 
Evolutionary clues for generating a pan-specific antivenom against crotalid type II 
venoms. J Proteome Res 11:1382–90. 

 
Cameron DL, Tu AT. 1977. Characterization of myotoxin a from the venom of prairie 

rattlesnake (Crotalus viridis viridis). Biochemistry 16:2546–2553. 
 
Casewell NR, Harrison RA, Wüster W, Wagstaff SC. 2009. Comparative venom gland 

transcriptome surveys of the saw-scaled vipers (Viperidae: Echis) reveal 
substantial intra-family gene diversity and novel venom transcripts. BMC 
Genomics 10:564.  

 
Casewell, NR, Wagstaff SC, Harrison RA, Renjifo C, Wüster W. 2011. Domain loss 

facilitates accelerated evolution and neofunctionalization of duplicate snake 
venom metalloproteinase toxin genes. Mol Biol Evol 28:2637–2649. 

 



 

101 

Casewell NR, Wüster W, Vonk FJ, Harrison RA, and Fry BG. 2013. Complex cocktails: 
the evolutionary novelty of venoms. Trends Ecol Evol 28(4):219–229.  

 
Casewell NR, Wagstaff SC, Wüster W, Cook DAN, Bolton FMS, King SI, Pla D, Sanz 

L, Calvete JJ, Harrison RA. 2014. Medically important differences in snake 
venom composition are dictated by distinct postgenomic mechanisms. PNAS 
111(25):9205–9210.  

 
Castro EN, Lomonte B, Del Carmen Gutiérrez M, Alagón A, Gutiérrez JM. 2013 

Intraspecies variation in the venom of the rattlesnake Crotalus simus from 
Mexico: different expression of crotoxin results in highly variable toxicity in the 
venoms of three subspecies. J Proteomics 87:103–121. 

 
Cate RL and Bieber AL. 1978. Purification and characterization of mojave (Crotalus 

scutulatus scutulatus) toxin and its subunits. Arch Biochem Biophys 189(2):397–
408. 

 
Chang CC, Hong SJ, Su MJ. A study on the membrane depolarization of skeletal muscles 

caused by a scorpion toxin, sea anemone toxin II and crotamine and the 
interaction between toxins. Br J Pharmacol 79(3): 673–680. 

 
Chijiwa T, Deshimaru M, Nobuhisa I, Nakai M, Ogawa T, Oda N, Nakashima K, 

Fukumaki Y, Shimohigashi Y, Hattori S, Ohno M. 2000. Regional evolution of 
venom-gland phospholipase A2 isoenzymes of Trimeresurus flavoviridis snakes 
in the southwestern islands of Japan. Biochem J 347: 491–499. 

 
Chippaux J-P, Williams V, White J. 1991. Snake venom variability: methods of study, 

results and interpretation. Toxicon 29:1279–303. 
 
Chiszar DA, Walters A, Urbaniak J, Smith HM, Mackessy SP. 1999. Discrimination 

between envenomated and non-envenomated prey by western diamondback 
rattlesnakes (Crotalus atrox): chemosensory consequences of venom. Copeia 
1999:640–8. 

 
Clusella-Trullas S, Blackburn TM, Chown SL. Climatic predictors of temperature 

performance curve parameters in ectotherms imply complex responses to climate 
change. Amer Nat 177(6):738–751. 

 
Creer S, Malhotra A, Thorpe RS, Stöcklin R, Favreau P, Chou WH. 2003. Genetic and 

ecological correlates of intraspecific variation in pitviper venom composition 
detected using matrix-assisted laser desorption time-of-flight mass spectrometry 
(MALDI-TOF-MS) and isoelectric focusing. J Mol Evol 56:317–29. 

 
Daltry JC, Ponnudurai G, Shin CK, Tan NH, Thorpe RS, Wüster W. 1996. 

Electrophoretic profiles and biological activities: intraspecific variation in the 
venom of the Malayan pit viper (Calloselasma rhodostoma). Toxicon 34:67–79.  



 

102 

 
Daltry JC, Wüster W, Thorpe RS. 1996. Diet and snake venom evolution. Nature 

379:537–40.  
 
Daltry, JC, Wüster W, Thorpe RS. 1997. The role of ecology in determining venom 

variation in the Malayan pit viper. In: Thorpe RS, Wüster W, and Malhotra A, 
editors. Venomous Snakes: Ecology, Evolution and Snakebite. Symposia of the 
Zoological Society of London 70. Oxford: Clarendon Press. pp. 155–171.  

 
Daltry JC, Wüster W, Thorpe RS. 1998. Intraspecific variation in the feeding ecology of 

the crotaline snake Calloselasma rhodostoma in Southeast Asia. J Herpetol 
32(5):198–205. 

 
Douglas ME, Douglas MR, Schuett GW, Porras LW, Holycross AT. 2002 

Phylogeography of the western rattlesnake (Crotalus viridis) complex, with 
emphasis on the Colorado Plateau. In: Schuett GW, Höggren MH, Douglas ME, 
Greene HW, editors. Biology of the Vipers. Sandy, Utah: Eagle Mountain 
Publishing. pp. 11-50. 

 
dos Santos MC, Morhy L, Ferreira LCL, Oliveira EB. 1993. Purification and properties 

of a crotamine analog from Crotalus durissus ruruima venom. Toxicon 31:166. 
 
Dugan EA, Figueroa A, Hayes WK. 2008. Home range size, movements, and mating 

phenology of sympatric Red Diamond (Crotalus ruber) and Southern Pacific (C. 

oreganus helleri) Rattlesnakes in southern California”. In: Hayes WK, Cardwell 
MD, Beaman KR, Bush SP, editors. Biology of the Rattlesnakes. Loma Linda: 
Loma Linda University Press. pp. 353–363. 

 
Erbas-White K. 2014. Using satellite imagery to examine and predict habitat niche 

differences between two sympatric species of rattlesnake in southern California. 
Masters thesis, California State University, Fullerton, USA. 

 
Erdas 2014. ErdasImagine 2013. Geospatial Intergraph.  
 
ESRI 2014. ArcGIS Desktop: Release 10.2 Redlands, CA: Environmental Systems 

Research Institute. 
 
Fernandez S, Hodgson W, Chaisakul J, Kornhauser R, Konstantakopoulos N, Smith AI, 

Kuruppu S. 2014. In vitro toxic effects of Puff Adder (Bitis arietans) venom, and 
their neutralization by antivenom. Toxins 6(5):1586–1597. 

 
Fetzner Jr, JW. 1999. Extracting high-quality DNA from shed reptile skins: a simplified 

method. BioTechniques 26:1052–1054 
 
Fiero MK, Siefert MW, Weaver TJ, and Bonilla CA. 1972. Comparative study of juvenile 

and adult prairie rattlesnake (Crotalus viridis viridis) venoms. Toxicon 10:81–82. 



 

103 

 
Filippi E, Rugiero L, Capula M, Capizzi D, Luiselli L. 2005. Comparative food habits 

and body size of five populations of Elaphe quatuorlineata: the effects of habitat 
variation, and the consequences of intersexual body size dimorphism on diet 
divergence. Copeia 2005(3):517–525. 

 
Forstner M, Hilsenbeck R, Scudday J. 1997. Geographic variation in whole venom 

profiles from the mottled rock rattlesnake (Crotalus lepidus lepidus) in Texas. J 
Herpetol 277–87.  

 
Fox JW, Elzinga M, Tu AT. 1979. Amino acid sequence and disulfide bond assignment 

of myotoxin a isolated from the venom of prairie rattlesnake (Crotalus viridis 

viridis). Biochemistry 18:678–684. 
 
Fox JW, Serrano SMT. 2008. Insights into and speculations about snake venom 

metalloproteinase (SVMP) synthesis, folding and disulfide bond formation and 
their contribution to venom complexity. FEBS Journal 275:3016–3030. 

 
French WJ, Hayes WK, Bush SP, Cardwell MD, Bader JO, Rael ED. 2004. Mojave toxin 

in venom of Crotalus helleri (Southern Pacific Rattlesnake): molecular and 
geographic characterization. Toxicon 44:781–91.  

 
Fry BG. 2005. From genome to ‘venome’: molecular origin and evolution of the snake 

venom proteome inferred from phylogenetic analysis of toxin sequences and 
related body proteins. Genome Res 15:403–420. 

 
Fry BG, Wickramaratna JC, Hodgson WC, Alewood PF, Kini RM, Ho H, Wüster W. 

2002. Electrospray liquid chromatography/mass spectrometry fingerprinting of 
Acanthophis (death adder) venoms: taxonomic and toxinological implications. 
Rapid Commun Mass Spectrom 16:600–8.  

 
Fry BG, Lumsden NG, Wüster W, Wickramaratna JC, Hodgson WC, Kini RM. 2003. 

Isolation of a neurotoxin (alpha-colubritoxin) from a nonvenomous colubrid: 
evidence for early origin of venom in snakes. J Mol Evol 57:446–52.  

 
Fry BG, Casewell NR, Wüster W, Vidal N, Young B, Jackson TN. 2012. The structural 

and functional diversification of the Toxicofera reptile venom system. Toxicon 
60:434–48. 

 
Fry BG, Scheib H, Junqueira de Azevedo ILM, Silva DA, Casewell NR. 2012. Novel 

transcripts in the maxillary venom glands of advanced snakes. Toxicon 59:696–
708.  

 
Gartner GEA, Hicks JW, Manzani PR, Andrade DV, Abe AS, Wang T, Secor SM, 

Garland Jr T. 2010. Phylogeny, ecology, and heart position in snakes. Physiol 
Biochem Zool 83(1): 43–54. 



 

104 

 
Gibbs HL, Mackessy SP. 2009. Functional basis of a molecular adaptation: prey-specific 

toxic effects of venom from Sistrurus rattlesnakes. Toxicon 53(6):672–679. 
 
Gibbs HL, Sanz L, Calvete JJ. 2009. Snake population venomics: proteomics-based 

analyses of individual variation reveals significant gene regulation effects on 
venom protein expression in Sistrurus rattlesnakes. J Mol Evol 68(2):113–125. 

 
Gibbs HL, Chiucchi JE. 2011. Deconstructing a complex molecular phenotype: 

population-level variation in individual venom proteins in Eastern Massasauga 
rattlesnakes (Sistrurus c. catenatus). Journal of molecular evolution 72(4): 383–

397. 
 
Glenn JL, Straight R. 1977. The midget faded rattlesnake (Crotalus Viridis Concolor) 

venom: lethal toxicity and individual variability. Toxicon 15(2):129–132. 
 
Glenn JL, Straight R. 1978. Mojave rattlesnake Crotalus scutulatus scutulatus venom: 

variation in toxicity with geographical origin. Toxicon 16:81–84. 
 
Glenn JL, Straight RC, Wolfe MC, Hardy DL. 1983. Geographical variation in Crotalus 

scutulatus scutulatus (Mojave Rattlesnake) venom proteins. Toxicon 21:119–130. 
 
Glenn JL, Straight RC. 1989. Intergradation of two different venom populations of the 

Mojave Rattlesnake (Crotalus scutulatus scutulatus) in Arizona. Toxicon 27:411–

18. 
 
Gregory-Dwyer VM, Egen NB, Bianchi Bosisio A, Richetti PG, Russell FE. 1986. An 

isoelectric focusing study of seasonal variation in rattlesnake venom proteins. 
Toxicon 24:995–1000. 

 
Hayes WK and Mackessy SP. 2010. Sensationalistic journalism and tales of snakebite: 

are rattlesnakes rapidly evolving more toxic venom? Wilderness Environ Med 
21:35–45. 

 
Heatwole H, Poran NS. 1995. Resistances of sympatric and allopatric eels to sea-snake 

venoms. Copeia 1995:136–47. 
 
Hoggan SR, Carr A, and Sausman KA. 2011. Mojave toxin-type ascending flaccid 

paralysis after an envenomation by a Southern Pacific Rattlesnake in a dog. J Vet 
Emerg Crit Care 21(5):558–564. 

 
Huelsenbeck JP and Ronquist F. 2001. MRBAYES: Bayesian inference of phylogeny. 

Bioinformatics 17:754–755. 
 
Huey RB. 1991. Physiological consequences of habitat selection. Amer Nat: 91-115. 
 



 

105 

Jansa SA, Voss RS. 2011. Adaptive evolution of the venom-targeted vWF protein in 
opossums that eat pitvipers. PLoS One 6(6): e20997. 

 
Jiménez-Porras JM. 1964. Intraspecific variations in composition of venom of the 

Jumping Viper, Bothrops nummifera. Toxicon 2:187–90. 
 
Jones JM. 1976. Variations of venom proteins in Agkistrodon snakes from North 

America. Copeia 1976:558–562. 
 
Jorge da Silva N Jr, Aird SD. 2001. Prey specificity, comparative lethality and 

compositional differences of coral snake venoms. Comp Biochem Physiol C 
Toxicol Pharmacol 128:425–456. 

 
Jurado JD, Rael ED, Lieb CS, Nakayasu E, Hayes WK, Bush SP, Ross JA. 2007. 

Complement inactivating proteins and intraspecies venom variation in Crotalus 

oreganus helleri. Toxicon 49:339–350. 
 
Klauber LM. Rattlesnakes: Their habits, life histories, and influence on mankind. 

Berkeley: University of California Press; 1997. 
 
Kini RM, and Doley R. 2010. Structure, function and evolution of three-finger toxins: 

Mini proteins with multiple targets. Toxicon 56(6):855–867. 
 
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, 

Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ and 
Higgins DG. 2007. ClustalW and ClustalX version 2. Bioinformatics 23(21): 
2947–2948. 

 
Lomonte B, Tsai W, Ureña-Diaza JM, Sanz L, Mora-Obando D, Sánchez EE, Fry BG, 

Gutiérreza JM, Gibbs HL, Sovic MG, Calvete JJ. 2014. Venomics of New World 
pit vipers: genus-wide comparisons of venom proteomes across Agkistrodon. J 
Proteomics 96:103–116. 

 
López-Lozano JL, de Sousa MV, Ricart CAO, Chávez-Olortegui C, Sanchez EF, Muniz 

EG, Bührnheim PF, Morhy L. 2002. Ontogenetic variation of metalloproteinases 
and plasma coagulant activity in venoms of wild Bothrops atrox specimens from 
Amazonian rain forest. Toxicon 40:997–1006.  

 
Macartney JM. 1989. Diet of the Northern Pacific Rattlesnake, Crotalus viridis oreganus, 

in British Columbia. Herpetol 45:299–304. 
 
Mackessy SP. 1988. Venom ontogeny in the Pacific rattlesnakes Crotalus viridis helleri 

and C. v. oreganus. Copeia 1988:92–101.  
 
Mackessy SP, Baxter LM. 2006. Bioweapons synthesis and storage: the venom gland of 

front-fanged snakes. Zool Anz 245:147–59. 



 

106 

 
Mackessy, S. P. 2008. Venom composition in rattlesnakes: trends and biological 

significance. In: Hayes WK, Cardwell MD, Beaman KR, Bush SP, editors. 
Biology of the Rattlesnakes. Loma Linda: Loma Linda University Press. pp. 155–
68. 

 
Mackessy SP. 2010. Evolutionary trends in venom composition in the Western 

Rattlesnakes (Crotalus viridis sensu lato): toxicity vs. tenderizers. Toxicon 
55:1463–74.  

 
Maeda N, Tamiya N, Pattabhiraman TR, Russel FE. 1978. Some chemical properties of 

the venom of rattlesnake Crotalus viridis helleri. Toxicon 16:431–441. 
 
Manly BF. 1986. Randomization and regression methods for testing associations with 

geographical, environmental and biological distances between populations. 
Journal of Res Popul Ecol 28:201–218 

 
Mantel N. 1967. The detection of disease clustering and a generalized regression 

approach. Cancer Res 27:209–220. 
 
Massey DJ, Calvete JJ, Sánchez EE, Sanz L, Richards K, Curtis R, Boesen K. 2012. 

Venom variability and envenoming severity outcomes of the Crotalus scutulatus 

scutulatus (Mojave Rattlesnake) from Southern Arizona. J Proteomics 
75(9):2576–87. 

 
McCandlish, David M. 2011. Visualizing fitness landscapes. Evolution 65(60): 1544-

1558. 
 
Mebs D, Kornalik F. 1984. Intraspecific variation in content of a basic toxin in Eastern 

Diamondback Rattlesnake (Crotalus adamanteus) venom. Toxicon 22:831–833. 
 
Menezes MC, Furtado MF, Travaglia-Cardoso SR, Camargo AC, Serrano SM. 2006. 

Sex-based individual variation of snake venom proteome among eighteen 
Bothrops jararaca siblings. Toxicon 47:304–12.  

 
Mertler CA, Vannatta RA. Advanced and Multivariate Statistical Methods: Practical 

Application and Interpretation, fourth ed. Los Angeles: Pyrczak Publishing; 2010. 
 
NASA Land Processes Distributed Active Archive Center (LP DAAC) Products. 

LANDSAT 8. 
 
Norris R. 2004. Venom poisoning by North American reptiles. In: Campbell JA and 

Lamar WW, editors. The Venomous Reptiles of the Western Hemisphere. Vol. 2. 
Cornell University Press, Ithaca, New York. pp. 683–708. 

 



 

107 

Núñez V, Cid P, Sanz L, De La Torre P, Angulo Y, Lomonte B, Gutiérrez JM, Calvete 
JJ. 2009. Snake venomics and antivenomics of Bothrops atrox venoms from 
Colombia and the Amazon regions of Brazil, Perú and Ecuador suggest the 
occurrence of geographic variation of venom phenotype by a trend towards 
paedomorphism. J Proteomics 73(1):57–78. 

 
Owings D, Coss R. 2008. Hunting California ground squirrels: constraints and 

opportunities for Northern Pacific Rattlesnakes. In: Hayes WK, Cardwell MD, 
Beaman KR, Bush SP, editors. Biology of the Rattlesnakes. Loma Linda: Loma 
Linda University Press. pp. 155–168. 

 
Ownby C. 1998. Structure, function and biophysical aspects of the myotoxins from snake 

venoms. J Toxicol Toxin Rev 17:213–238. 
 
Pizzatto L, Almeida-Santos SM, Shine R. 2007. Life-history adaptations to arboreality in 

snakes. Ecology 88(2): 359–366. 
 
Pineda SS, Sollod BL, Wilson D, Darling A, Sunagar K, Undheim EAB, Kely L, Antunes 

A, Fry BG, King GF. 2014. Diversification of a single ancestral gene into a 
successful toxin superfamily in highly venomous Australian Funnel-web Spiders. 
BMC Genomics 15:177–194. 

 
PRISM Climate Group, Oregon State University, http://prism.oregonstate.edu, created 4 

Feb 2004. 
 
Pook CE, Wüster W, Thorpe RS. 2000. Historical biogeography of the Western 

Rattlesnake (Serpentes: Viperidae: Crotalus viridis), inferred from mitochondrial 
DNA sequence information." Mol Phylogenet Evol 15(2): 269-282. 

 
Pool WR and Bieber AL. 1981. Fractionation of Midget Faded Rattlesnake (Crotalus 

viridis concolor) venom: lethal fractions and enzymatic activities. Toxicon 
19:517–527. 

 
Poran NS, Coss RG, Benjamini ELI. 1987. Resistance of California Ground Squirrels 

(Spermophilus Beecheyi) to the venom of the northern Pacific rattlesnake 
(Crotalus Viridis Oreganus): a study of adaptive variation. Toxicon 25(7):767–
777. 

 
Powell RL, Lieb CS, Rael ED. 2008. Geographic distribution of Mojave toxin and 

Mojave toxin subunits among selected Crotalus species. In: Hayes WK, Cardwell 
MD, Beaman KR, Bush SP, editors. Biology of the Rattlesnakes. Loma Linda: 
Loma Linda University Press. pp. 537–550. 

 
Rael ED, Knight RA, Zepeda H. 1984. Electrophoretic variants of Mojave Rattlesnake 

(Crotalus scutulatus scutulatus) venoms and migration differences of Mojave 
toxin. Toxicon 22:980–84. 



 

108 

 
Ranawaka UK, Lalloo DG, de Silva HJ. Neurotoxicity in snakebite—the limits of our 

knowledge. PLoS Negl Trop Dis 7(10): e2302. 
 
Rash LD, Birinyl-Strachan LC, Nicholson GM, and Hodgson WC. 2000. Neurotoxic 

activity of venom from the Australian Eastern Mouse Spider (Missulena bradleyi) 
involves modulation of sodium channel gating. Br J Pharmacol 130(8): 1817–
1824. 

 
Reyes-Velasco, J, Card DC, Andrew AL, Shaney KJ, Adams RH, Schield DR, Casewell 

NR, Mackessy SP, Castoe TA. 2014. Expression of venom gene homologs in 
diverse python tissues suggests a new model for the evolution of snake venom. 
Mol Biol Evol 32 (1): 173–183. 

 
Richardson WH, Goto CS, Gutglass DL, Williams SR, and Clark RF. 2007. Rattlesnake 

envenomation with neurotoxicity refractory to treatment with crotaline Fab 
antivenom. Clin Toxicol 45(5):472–475. 

 
Ricklefs RE, Miles DB. 1994. Ecological and evolutionary inferences from morphology: 

an ecological perspective. In: Wainwright PC, Reily SM, editors. Ecological 
morphology: integrative organismal biology. Chicago: University of Chicago 
Press. pp. 13–41. 

 
Riley SP, Sauvajot RM, Fuller TK, York EC, Kamradt DA, Bromley C, Wayne RK. 

2003. Effects of urbanization and habitat fragmentation on bobcats and coyotes in 
southern California. Conserv Biol 17(2):566–576. 

 
Rosenberg MS, Anderson CD. 2011. PASSaGE: pattern analysis, spatial statistics and 

geographic exegesis. Version 2. Methods Ecol Evol 2(3):229–232. 
 
Russell FE. Snake Venom Poisoning. Great Neck, New York: Scholium International 

Inc; 1983. 
 
Sadahiro S, Omori-Satoh T. 1980. Lack of a hemorrhagic principle in Habu snake 

venom, Trimeresurus flavoviridis, from the Okinawa Islands. Toxicon 18(3):366–
368. 

 
Salazar JD, Lieb CS. 2003. Geographic diet variation of Mojave rattlesnake (Crotalus 

scutulatus). Undergraduate thesis, Border Bridges to the Baccalaureate Program, 
University of Texas at El Paso and El Paso Community College, USA. 

 
Salazar AM, Guerrero B, Cantu B. Cantu E, Rodríguez-Acosta A, Pérez JC, Galán JA, 

Tao A, and Sánchez EE. 2008. Venom variation in hemostasis of the Southern 
Pacific Rattlesnake (Crotalus oreganus helleri): Isolation of Hellerase. Comp 
Biochem Physiol C Toxicol Pharmacol 149(3):307–316.  

 



 

109 

Salazar AM, Guerrero B, Cantu B, Cantu E, Rodríguez-Acosta A, Pérez JC, Galán JA, 
Tao A, Sánchez EE. 2009. Venom variation in hemostasis of the Southern Pacific 
Rattlesnake (Crotalus oreganus helleri): isolation of hellerase. Comp Biochem 
Physiol C: Toxicol Pharmacol 149:307–16.  

 
Samejima Y, Aoki Y, Mebs D. 1991. Amino acid sequence of a myotoxin from venom of 

the eastern diamondback rattlesnake (Crotalus adamanteus). Toxicon 29:461–
468. 

 
Sasa M. 1999. Diet and snake venom evolution: can local selection alone explain 

intraspecific venom variation? Toxicon 37:249–252. 
 
Schoenherr AA. A Natural History of California. Berkeley: University of California 

Press; 1992. 
 
Sprenger TR and Bailey WJ. 1986. Snakebite Treatment in the United States. Int J 

Dermatol 25(8):479–484. 
 
Sunagar K, Undheim EAB, Scheib H, Person C, Gren ECK, Cochran C, Jackson TNW, 

Koludarov I, Kelln W, Hayes WK, King GF, Antunes A, Fry BG. 2014. 
Intraspecific venom variation in the medically significant Southern Pacific 
Rattlesnake (Crotalus oreganus helleri): Biodiscovery, clinical, and evolutionary 
implications. J Prot. 99:68–83. 

 
Thorpe RS, Malhotra A, Black H, Daltry JC, Wüster W. 1995. Relating geographic 

pattern to phylogenetic process. Philos Trans R Soc Lond B Biol Sci 
349(1327):61–68. 

 
Tsai I, Wang Y, Chen Y, Tsai T, Tu M. 2004. Venom phospholipases A2 of Bamboo 

Viper (Trimeresurus stejnegeri): molecular characterization, geographic 
variations and evidence of multiple ancestries. Biochem J 377:215–223. 

 
Wallace RL, Diller LV. 1990. Feeding ecology of the rattlesnake, Crotalus viridis 

oreganus, in northern Idaho. J Herpetol 24:246–253. 
 
Wasserberger J, Ordog G, Merkin TE. 2006. Southern Pacific Rattlesnake bite: a unique 

clinical challenge. J Emerg Med 31:263–266. 
 
Werman, SD. 2008. Phylogeny and the evolution of ß-neurotoxic phospholipases A2 

(PLA2) in the venoms of rattlesnakes, Crotalus and Sistrurus (Serpentes: 

Viperidae). In: Hayes WK, Cardwell MD, Beaman KR, Bush SP, editors. Biology 
of the Rattlesnakes. Loma Linda: Loma Linda University Press. pp. 511–536. 

 
Whitlock MC., Phillips PC, Moore FBG, Tonsor SJ. 1995. Multiple fitness peaks and 

epistasis. Annu Rev Ecol Syst: 601–629. 
 



 

110 

Wilkinson JA, Glenn JL, Straight RC, Sites Jr JW. 1991. Distribution and genetic 
variation in venom A and B populations of the Mojave Rattlesnake (Crotalus 

scutulatus scutulatus) in Arizona. Herpetol 54–68.  
 
Williams V, White J, Schwaner TD, Sparrow A. 1988. Variation in venom properties 

from isolated populations of tiger snakes (Notechis ater niger, N. scutatus) in 
South Australia. Toxicon 26:1067–1075. 

 
Wooldridge BJ, Pineda G, Banuelas-Ornelas JJ, Dagda RK, Gasanov SE, Rael ED, Lieb 

CS. 2001. Mojave Rattlesnakes (Crotalus scutulatus scutulatus) lacking the acidic 
subunit DNA sequence lack Mojave toxin in their venom. Comp Biochem Physiol 
130B:169–179. 

 
Wright, Sewall. 1932. The roles of mutation, inbreeding, crossbreeding, and selection in 

evolution. Proc 6th Int Congr Genet.1:356–366. 
 
Zhu F, Qin C, Tao L, Liu X, Shi Z, Ma X, Jia J, Tan Y, Cui C, Lin J, Tan C, Jiang Y, 

Chen Y. 2011. Clustered patterns of species origins of nature-derived drugs and 
clues for future bioprospecting. Proc Natl Acad Sci USA 108(31):12943–12948. 



 

 

111 

 

 

 

 

Appendix 1. Results of simple and partial Mantel analyses of associations among centered-log ratio Pacific Rattlesnake (Crotalus 

oreganus ssp.) venom protein concentrations (corresponding to elution regions, ER) and geographic distance, genetic relatedness, and 
environmental principal components. Matrices held constant as controls are indicated within parentheses. 
 

 ER1 ER2 ER3 ER4 ER5 ER6 ER7 ER8 ER9 ER10 ER11 

All Snakes: Simple Mantel (N = 69) 

GeogDist -0.07 -0.03 0.13** 0.01 0.03 -0.10 0.07 -0.13** 0.15* 0.05 -0.11** 

GenDist-cyt-b 0.23*** 0.03 -0.44*** -0.28*** -0.08* 0.05 -0.03 0.16*** -0.07 0.02 0.43*** 

Enviro PC -0.12** -0.14*** 0.07* 0.17*** 0.32*** -0.03 -0.04 -0.26*** 0.15*** -0.29*** -0.34*** 

All Snakes: Partial Mantel (N = 69) 

GeogDist (x Enviro PC x GenDist-cyt-b) 0.02 0.03 -0.15*** -0.16** 0.00 -0.05 0.02 -0.07 0.14* 0.06 0.12** 

GenDist-cyt-b (x Enviro PC x GeogDist) 0.21*** 0.03 -0.46*** -0.31*** -0.06 0.02 -0.01 0.09** 0.02 0.03 0.44*** 

Enviro PC (x GenDist-cyt-b x GeogDist) -0.12* -0.16*** 0.04 0.18*** 0.32*** -0.02 -0.04 -0.25*** 0.15** -0.30*** -0.37*** 

South Snakes: Simple Mantel (N = 38) 

GeogDist -0.12* -0.07 0.34*** 0.15** 0.13* -0.04 0.02 -0.09* 0.00 -0.09 -0.23*** 

GenDist-cyt-b 0.32*** 0.07 -0.50*** -0.42*** -0.20** -0.03 0.05 0.25*** -0.04 0.22** 0.51*** 

Enviro PC -0.06 -0.18* 0.11 0.17** 0.30*** -0.15* 0.06 -0.16* 0.30*** -0.20*** -0.40*** 

Veg PC -0.18* -0.11 0.17** 0.21*** 0.36*** 0.16* -0.05 -0.28*** -0.01 -0.23*** -0.40*** 

South Snakes: Partial Mantel (N = 38) 

GeogDist (x Enviro PC x Veg PC x GenDist-cyt-b) 0.08 0.00 -0.04 -0.17** 0.02 -0.05 0.00 0.12* -0.04 0.06 0.18** 

GenDist-cyt-b (x Enviro PC x Veg PC x GeogDist) 0.27** 0.02 -0.40*** -0.40*** -0.09 -0.05 0.04 0.24*** -0.04 0.17* 0.50*** 

Enviro PC (x GenDist-cyt-b x GeogDist x Veg PC) -0.04 -0.19** 0.07 0.16* 0.30*** -0.16* 0.06 -0.16** 0.32*** -0.19** -0.44*** 

Veg PC (x GenDist-cyt-b x GeogDist x Enviro PC) -0.17* -0.10 0.13* 0.20*** 0.36*** 0.16* -0.04 -0.27*** 0.00 -0.23*** -0.44*** 

 

*p < 0.05; **p < 0.01; ***p < 0.001 
 
Protein contents of individual elution regions (ER) are provided in Table 5.  
 

GeogDist = Geographic distance between snake locations 
 

Genetic distances are computed from mtDNA gene cyt-b (GenDist-cyt-b) 
 

Environment principle components correspond to the following factors (with negative or positive association with PC indicated parenthetically): Environmental PC (EnvironPc) elevation(+), 
precipitation(+), temperature(-); Vegetation PC (VegPC, for southern snakes only) = normalized difference vegetation index, NDVI(+). 
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Appendix 2. Results of simple and partial Mantel analyses of associations among Pacific 
Rattlesnake (Crotalus oreganus ssp.) venom principal components (PCs) and geographic 
distance, genetic relatedness, and environmental principal components. Matrices held 
constant as controls are indicated within parentheses. 
 

 
Venom 

PC1 
Venom 

PC2 
Venom 

PC3 
Venom 

PC4 

All Snakes: Simple Mantel (N = 69)     

GeogDist -0.11* 0.09 -0.11 0.00 
GenDist-cyt-b 0.36*** -0.29*** 0.02 0.04 
Enviro PC -0.34*** 0.02 0.03 -0.11** 
All Snakes: Partial Mantel (N = 69)     
GeogDist (x Enviro PC x GenDist-cyt-b) 0.07 -0.10 -0.10 0.07 
GenDist-cyt-b (x Enviro PC x GeogDist) 0.36*** -0.30*** -0.03 0.06 
Enviro PC (x GenDist-cyt-b x GeogDist) -0.36*** 0.01 0.05 -0.14** 
South Snakes: Simple Mantel (N = 38)     
GeogDist -0.25** 0.05 0.13* 0.04 

GenDist-cyt-b 0.52*** -0.03 -0.14 -0.09 
Enviro PC  -0.33*** 0.12* -0.11 -0.12 
Veg PC -0.41*** -0.12 0.15* -0.02 
South Snakes: Partial Mantel (N = 38)     
GeogDist (x Enviro PC x Veg PC x GenDist-cyt-b) 0.16** -0.01 0.02 -0.01 

GenDist-cyt-b (x Enviro PC x Veg PC x GeogDist) 0.48*** -0.03 -0.08 -0.09 
Enviro PC (x GenDist-cyt-b x GeogDist x Veg PC)  -0.37*** 0.13 -0.14 -0.14* 
Veg PC (x GenDist-cyt-b x GeogDist x Enviro PC) -0.44*** -0.12 0.12 -0.02 

 
*p < 0.05; **p < 0.01; ***p < 0.001 
 
Venom principle components correspond to the following elution regions (ER) named in Appendix 1 
(negative or positive association with Venom PC is indicated parenthetically): PC1 = ER11(+), ER1(+), 
ER8(+), ER10(+), ER4(-), ER5(-); PC2 = ER7 (+), ER3(+); PC3 = ER6(+), ER9(-); PC4 = ER2(-). Protein 
contents of individual elution regions are provided in Table 5. 
 
GeogDist = Geographic distance between snake locations 
 
Genetic distances are computed from mtDNA gene cyt-b (GenDist-cyt-b) 
 
Environment principle components correspond to the following factors (with negative or positive association 
with PC indicated parenthetically): Environmental PC (EnvironPc) = elevation(+), precipitation(+), 
temperature(-); Vegetation PC (VegPC, for southern snakes only) = normalized difference vegetation index, 
NDVI(+). 
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Abstract 

As one of the most medically significant snake species in North America, the 

southern Pacific rattlesnake (Crotalus oreganus helleri) exhibits unusually pronounced 

geographic variation in venom composition. Ontogenetic variation in lethality and 

enzyme activities has also been documented in the taxon. Transition from the more toxic, 

less proteolytic venom of juveniles to the less toxic, more proteolytic venom of adults has 

been associated with a shift from lizard to rodent prey as the snake grows. However, 

detailed analyses of diet and venom composition at the population level are lacking. In 

this study, we compared the diet and venom composition of two age classes of C. o. 

helleri from two populations occurring in distinctly different environments and having 

very distinctive venoms. Adult C. o. helleri on Santa Catalina Island express proteolytic 

venom typical of the species, whereas adults in the San Jacinto Mountains possess 

neurotoxic venom that has been interpreted as paedomorphic—the retention of a juvenile 

characteristic (highly toxic venom) into adulthood. We hypothesized that 1) if diet 

influences venom composition, then diet ontogeny will differ substantially between the 

proteolytic and neurotoxic populations, and 2) that venom of the neurotoxic population 

will exhibit less ontogenetic change between juvenile and adult snakes than that of the 

proteolytic population. Stomach and fecal samples indicated that snakes from the insular 

population (Santa Catalina Island) and the montane population (San Jacinto Mountains) 

had similar diets, consuming mainly lizards when young and incorporating more rodents 

as adults. Reversed-phase HPLC chromatograms confirmed that venom composition 

differed substantially between populations, with both juvenile and adult Santa Catalina 

Island snakes expressing high levels of metalloproteinases and no PLA2 neurotoxins, 
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whereas trace amounts of metalloproteinases and substantial expression of Mojave toxin 

were seen in both age classes in the San Jacinto Mountains population. Snakes in both 

populations also showed fairly substantial changes in venom composition during 

ontogeny, but with similar effect sizes. High toxicity (expression of PLA2 neurotoxins) in 

the venom of both juvenile and adult rattlesnakes has been interpreted as 

paedomorphism. However, we question this interpretation because the overall level of 

ontogenetic change in venom was similar in the two populations. The question remains 

whether venom paedomorphism should be interpreted on the basis of ontogenetic 

changes in overall venom composition, or ontogenetic changes in venom function 

(relative toxicity and proteolytic activity). 

 

Introduction 

 Pitvipers rely on venom for both prey acquisition and defense against predators. 

These essential ecological functions have allowed selection to shape pit viper venoms 

into complex cocktails of toxins that can be fine-tuned to the snakes’ specific predatory 

or defensive needs. On a broad scale, venom composition of viperid snakes is strongly 

influenced by phylogeny (e.g., Tan and Ponnadurai, 1990, 1991). Nevertheless, 

intraspecific venom variation occurs among geographic localities (Glenn et al., 1983; 

Alape-Girón et al., 2008; Núñez et al., 2009), between sexes (Marsh and Glatston, 1974; 

Mebs and Kornalik, 1984; Menezes et al., 2006), and within individuals over time 

(Mackessy, 1985, 1988, 1993a,b; Mackessy et al., 2003; Alape-Girón et al., 2008; 

Calvete et al., 2010, Gao et al., 2013).  

 Snake venom proteins exhibit variable effects and toxicities upon injection into 
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different animal taxa (e.g., Heatwole et al., 1995, 1998; Daltry et al., 1996b; Mackessy et 

al., 2006; Barlow et al., 2009; Gibbs and Mackessy, 2009). Venom composition, 

therefore, can be optimized for primary prey types, and prey type availability has been 

proposed as a primary driver of venom variation (e.g., Daltry et al, 1996a,b, Barlow et al., 

2009). Rattlesnakes, like many other snakes, often exhibit an ontogenetic shift from 

preying predominantly on small ectotherms as juveniles, toward larger endothermic prey 

as adults (e.g., Mackessy, 1988; Taylor, 2001; Hollycross and Mackessy, 2002; 

Mackessy et al., 2003; LaBonte, 2008; Glaudas, et al., 2008). In type I rattlesnakes, 

juveniles possess highly toxic venom profiles thought to be especially effective in 

immobilizing ectothermic prey, whereas adult venoms are dominated by metalloproteases 

and serine proteases which may facilitate venom distribution and pre-digestion of larger 

prey items (Mackessy, 2003). The ontogenetic shift in venom generally commences a 

short time after the ontogenetic shift in prey preference (Mackessy, 2003). Type II 

rattlesnakes express highly toxic venoms both as juveniles and as adults. This 

phenomenon, has been interpreted as paedomorphosis—the retention of juvenile 

characteristics into adulthood (Mackessy et al., 2003). 

 As one of the most medically significant snake species in North America (Parrish 

et al., 1964; Wingert and Chan, 1988; Bush et al., 2002; Seifert et al., 2009), the southern 

Pacific Rattlesnake (Crotalus oreganus helleri) ranges from southern California (USA) 

southward to Baja California Norte (Mexico). An isolated population also occurs on the 

Pacific Ocean island of Santa Catalina (Los Angeles County, California; Klauber, 1997), 

approximately 35 km offshore. Although some rattlesnake species within the region lack 

an ontogenetic shift in diet (Dugan and Hayes, 2011), a shift from lizards to rodents with 
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snake growth has been documented in C. o. helleri for specimens collected from the 

mainland (Mackessy, 1988). Prior studies have also revealed ontogenetic changes in 

toxicity, enzymatic activity, and relative expression of key proteins in this and several 

other C. oreganus subspecies (Mackessy, 1988, 1993, 1996). More recent work has 

shown substantial geographic variation in the venoms of adult C. o. helleri (Sunagar, 

2014). However, no detailed whole venom protein profiles have been described for 

juveniles in the species.  

 In this study, we compared the diet and venom composition of two age classes of 

C. o. helleri from two populations (Fig. 8) experiencing very different climates and 

having highly distinctive venoms. Snakes from Santa Catalina Island live in a 

Mediterranean climate dominated by coastal sage scrub interspersed with chaparral and 

oak woodland (Schoenherr, 1992). They also average smaller body size than conspecifics 

on the mainland (Carl Person et al., unpubl. data). Although the island has never been 

connected to the mainland, fossil evidence from nearby islands suggests that rattlesnakes 

have been present since the Pleistocene (Guthrie, 1993). Venom composition of adult 

snakes resembles that of type I viperid venoms with relatively high metalloprotease 

activity and low toxicity (LD50 >1 µg/g mouse body weight; Sunagar et al., 2014). 

Mainland snakes from the San Jacinto Mountains (Riverside County, California), in 

contrast, live at much higher elevation (1,000-3,000+ m) in a highly variable thermal 

environment (hot summers, cold winters) where the habitat consists of chaparral and oak 

forest at lower elevations and coniferous forest at higher elevations (Schoenherr, 1992). 

Venom composition of adult snakes from the San Jacinto Mountains (including the 

Idyllwild area) matches that of type II viperid venoms with low metalloprotease activity
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Figure 8.  Southern California range map of Crotalus oreganus helleri showing the two 
populations investigated. Shading denotes species range.  
 
 
and higher toxicity (LD50 <1.0 μg/g mouse body weight; French et al., 2004; Sunagar et 

al., 2014). Like other rattlesnakes having type II venoms, they produce a phospholipase 

A2 (type IIA; Davidson and Dennis, 1990) heterodimeric ß-neurotoxin in their venom 

(French et al., 2004). 

 We tested two hypotheses that derive from the profound ecological and venom 

composition differences between these snake populations. First, we hypothesized that C. 

o. helleri from Santa Catalina Island feeds largely on lizards throughout their life, 

whereas those from the San Jacinto Mountains shift their diet from lizard to rodent prey 

as they grow in size. Heretofore, no study has examined the diet of snakes from either of 

these two populations. However, C. o. caliginis on nearby Isla Coronado Del Sur (Baja 



 

119 

California Norte, Mexico), only 136 km from Santa Catalina Island, feeds primarily on 

lizards, even as adults (Klauber, 1949, 1997). Given the similarities in climate (offshore 

islands often enshrouded in mist), prey base (ample lizards and rodents present), and 

small body size, it seemed reasonable that the two insular populations would have a 

similar diet that differed from that of mainland snakes. Second, we hypothesized that the 

venom differences between juvenile and adult snakes would be greater for the type I 

venoms from Santa Catalina Island than those of the type II venoms from the San Jacinto 

Mountains.  

 

Materials and Methods 

Diet Sampling 

 We used an integrated approach (Saviozzi and Zuffi, 1997) to collect diet 

information from preserved museum specimens and from live specimens collected in the 

field. We obtained 11 samples from Santa Catalina Island snakes, including 10 items 

from 17 preserved specimens at the Los Angeles County Museum of Natural History 

(LACM; institutional codes follow Leviton et al., 1985), and another from one of two 

road-killed specimens donated to us by the Catalina Island Conservancy (Catalina Island, 

California, USA). We procured 17 fecal samples from 19 live snakes captured in the San 

Jacinto Mountains. We gently palpated fecal material (from the lower abdomen) through 

the cloaca of snakes restrained within clear plastic tubes (Hardy and Greene, 1999) and 

anesthetized with sevoflurane (Halocarbon Products Corp., River Edge, New Jersey, 

USA). Several snakes, however, simply defecated when brought into the lab. We 

recorded the snout-vent length (SVL), sex, collection locality, and number and identity of 
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prey items for each snake. We did not record snake mass since those of preserved 

specimens were considered unreliable. We stored all diet samples in 70% ethanol. 

 All prey items were either lizards or mammals. Although lizard scales generally 

could not be identified to species, we determined the identity of mammal dorsal guard 

hairs to the lowest taxonomic level possible. We mounted the hairs on glass slides with a 

cover slip using clear nail polish, and viewed the slides under a light microscope. We 

compared these with images from published sources (Mayer, 1952; Moore et al., 1974) 

and with reference samples similarly prepared from a museum teaching collection at 

Loma Linda University. We used regional faunal lists to ensure consideration of all 

potential prey items. 

 

Venom Sampling 

 We collected venom via voluntary expulsion (Glenn and Straight, 1982) from two 

juvenile (28–39 cm SVL) and five adult (60–74.5 cm SVL) C. o. helleri from Santa 

Catalina Island, and from seven juvenile (26–45 cm SVL) and six adult (68–109 cm 

SVL) snakes from the San Jacinto Mountains. Most of the latter snakes were captured in 

the Idyllwild area, which is approximately 1600 m above sea level and surrounded by 

high altitude pine and cedar montane forests. We considered snakes <60 cm snout-vent 

length (SVL) to be juveniles, and those ≥60 cm to be adults (c.f. Aldridge, 2002). 

 

RP-HPLC Analysis and Mass Spectrometry 

 Following the methods of Sunagar et al. (2014; Chapter 2 of this dissertation), we 

used reversed-phase high-pressure liquid chromatography (RP-HPLC) to fractionate each 
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venom sample and generate a protein profile (chromatogram). The RP-HPLC fractions 

from the venoms of four individuals from four geographic locations were subjected to 

proteomic analyses (LC-MS and MALDI-ToF/ToF MS/MS) to identify the toxins 

present. The results, reported elsewhere (Chapter 2 and Sunagar et al., 2014), were used 

to establish 11 arbitrary RP-HPLC elution regions that corresponded reasonably well (but 

imperfectly) to 13 major toxins and toxin families identified by mass spectrometry (Fig. 

5; Table 5). For each chromatogram, we integrated the area under the absorbance trace to 

determine the percent of total protein for each elution region (i.e., sum of the area of all 

peaks in each region relative to total area of the entire chromatogram). We did this after 

minor visual alignment of individual chromatograms. 

 

Analyses 

 We used binomial logistic regression to compare diet composition (lizards versus 

mammals) between the two populations while simultaneously assessing snake body size. 

The sample size (N = 28 prey items) was certainly adequate for this test, but we consider 

the analysis to be preliminary, as we plan to acquire additional diet samples in the next 

field season and achieve greater statistical power. We conducted this and all other 

analyses using SPSS 20.0 for Macintosh (Statistical Package for the Social Sciences, Inc., 

Chicago, 2011), with alpha = 0.05.  

 To assess the influence of population and age on venom composition, we 

subjected protein concentration (integrated peak area) for each of 11 elution ranges to a 2 

× 2 × 11 (population × age × elution range) analysis of variance model (ANOVA; Green 

and Salkind, 2005), treating population and age class as between-subjects factors and 
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protein family as a within-subjects factor. We rank-transformed the data to avoid analysis 

of percentage data that summed to 100 for each individual. We also ran all tests using 

log10-transformed data, but the ranks better met normality and homoscedasticity, and 

results were essentially identical (the one difference is mentioned in Results). The 

omnibus three-way ANOVA yielded a prohibitively complex three-way interaction. We 

therefore chose to perform a 2 × 2 (population × age class) ANOVA for each of the 11 

elution ranges individually. Data were again rank transformed, but within each elution 

range individually. Resulting ranks were homoscedastic for every elution range. To 

examine simple main effects, we conducted independent-samples t-tests (Green and 

Salkind, 2005) of the rank-transformed data for pairwise comparisons of age within each 

population. Following Nakagawa (2004), we chose not to apply Bonferroni adjustments 

to multiple tests. 

 Finally, to compare the relative amount of ontogenetic change in each population, 

we computed the effect size (Cohen's d; Cohen, 1988; Nakagawa and Cuthill, 2007) of 

age for each of the 11 elution regions separately for each population (using the rank-

transformed data). Effect sizes of ~0.2, ~0.5, and ≥0.8 can be loosely interpreted as small, 

medium, and large, respectively (Cohen, 1988). We then compared these effect sizes (for 

all 11 elution ranges) between populations using a paired t-test (Green and Salkind, 

2005). In contrast to statistical significance, measures of effect size are independent of 

sample size and are especially appropriate here because sample size differed between the 

two populations. Comparing the number of elution regions having significant age 

differences could give a misleading comparison of the two populations.  
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Results 

Snake Diet 

Rattlesnakes from both Santa Catalina Island and the San Jacinto Mountains 

consumed a diverse diet that included both lizard and mammal prey (Table 9). The 

logistic regression model was non-significant (χ2
3 = 0.13, N = 28, p = 0.13, Nagelkerke 

R2 = 0.20), despite the relatively large effect size (R2 value; Cohen, 1988), modest 

success in predicting prey type of individual snakes (69.4%), and an effect of snake size 

that approached significance (Wald = 2.93, df = 1, p = 0.087, odds ratio = 1.037, 95 C.I. 

of odds ratio = 0.995–1.081). Thus, no difference existed between the two populations in 

primary prey type (p = 0.22), as both populations had similar proportions of lizard and 

mammalian prey (63.6% and 58.8% mammals for Santa Catalina Island and San Jacinto 

Mountains, respectively; Table 9). Although a larger data set might show an ontogenetic  

shift in the diet from lizards to mammals, individuals of both juvenile and adult size 

classes consumed mammals (Fig. 9). 

The species of mammals preyed upon differed between the two populations, 

which reflected availability. However, mice from the genus Peromyscus comprised a 

high proportion of mammalian prey in both populations (57.1%, Santa Catalina Island;  

60.0%, San Jacinto Mountains; Table 9). 

 

Venom Composition 

Substantial differences in venom composition existed between the two 

populations. Dominant protein families identified by mass spectrometry in each elution 

region are presented on representative chromatograms in Figure 10. Chromatograms of  
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Table 9. Prey items obtained from two populations of the southern Pacific rattlesnake 
(Crotalus oreganus helleri). 
 
Prey species Catalina Island San Jacinto Mountains 

Reptilia   
   Unidentified lizard 4 7 
Mammalia   
   Microtus californicus  1 
   Otospermophilus beecheyi 1  
   Peromyscus californicus  1 
   Peromyscus maniculatus 4  
   Peromyscus truei  5 
   Rattus sp. 1  
   Sciurus griseus  1 
   Sorex ornatus 1  
   Unidentified rodent  2 

Total Reptilia 4 (36.4%) 7 (41.2%) 
Total Mammalia 7 (63.6%) 10 (58.8%) 
Total items 11 17 
Total snakes 11 16 

 

 
additional individuals are shown in Figure 11. Analysis of variance results indicated 

significant differences between either populations or age groups for nine of the 11 elution 

regions (Fig. 12). Significant interactions existed between population and age for three 

elution regions, suggesting contrasting ontogenetic trajectories for the corresponding 

toxin families within the two populations. Cysteine-rich secretory proteins (CRiSPs) were 

relatively more prominent in adult venoms from Idyllwild and in juvenile venoms from 

Santa Catalina Island (F1,16 = 6.45, p = 0.022, partial η2 = 0.29). Phospholipases A2 

(PLA2) were relatively more abundant in juvenile venoms from Idyllwild and in adult 

venoms from Santa Catalina Island (F1,16 = 6.99, p = 0.018, partial η2 = 0.31). L-amino 

acid oxidases (LAAO) were also relatively better represented in juvenile venoms from 

Idyllwild and in adult venoms from Santa Catalina Island (F1,16 = 14.64, p = 0.001, partial 

η2 = 0.48). The population x age interaction approached significance for crotamine (F1,16 

= 4.24, p = 0.056, partial η2 = 0.21), with the toxin possibly more prominent in adult  
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Figure 9. Relationships between prey item types (lizards versus mammals) and body size 
(snout-vent length) of southern Pacific rattlesnakes (Crotalus oreganus helleri) from two 
populations. 
 

venoms from Idyllwild and in juvenile venoms from Santa Catalina Island. Significant 

population differences existed among five elution regions (Fig. 12) corresponding largely 

to bradykinin-potentiating peptides/natriuretic peptide (BIPNP; F1,16 = 5.04, p = 0.039, 

partial η2 = 0.24), non-crotamine small basic peptides (SBP; F1,16 = 14.38, p = 0.002, 

partial η2 = 0.47), Mojave toxin-A (MT-A; F1,16 = 29.10, p < 0.001, partial η2 = 0.65), 

Mojave toxin-B (MT-B; F1,16 = 35.69, p < 0.001, partial η2 = 0.70), and snake venom 
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Figure 10. Annotated RP-HPLC chromatograms of samples subjected to LC-MS/MS 
analysis. Colored regions represent dominant protein families identified: bradykinin-
potentiating peptide/natriuretic peptide (35-56 mL), crotamine (56-61 mL), small basic 
peptides other than crotamine (61-78 mL), Mojave toxin A subunit/growth factors (78-87 
mL), Mojave toxin B (87-95 mL), cysteine-rich secretory proteins (95-97 mL), snake 
venom serine proteases (97-105 mL), phospholipases A2 (105-109 mL), lectins (109-111 
mL), L-amino acid oxidases (111-123 mL), and snake venom metalloproteases (123-end 
mL).  
 

metalloproteases (SVMP; F1,16 = 63.40, p < 0.001, partial η2 = 0.80). Most notably, 

Idyllwild snakes produced substantial MT (both MT-A and MT-B subunits) and minute 

quantities of SVMPs, whereas Santa Catalina Island snakes exhibited only trace amounts 

of protein in the MT elution region (which likely belonged to other toxin families) but 

produced amounts of substantial SVMPs. The Santa Catalina population had greater 

quantities of BIPNP, whereas the Idyllwild population exhibited more SBP. 

The ANOVA models yielded one significant main effect of age, and this was for 

the elution region corresponding to snake venom serine proteases (SVSPs; F1,16 = 12.77, 
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p = 0.003, partial η2 = 0.44). Adults of both populations had significantly greater 

quantities than juveniles. Based on t-tests within each population, three elution regions 

differed between age groups in Idyllwild, with fractions corresponding to SBP (t11 = 3.76, 

p = 0.003) and CRiSP (t11 = 2.66, p = 0.027) increasing and LAAO decreasing (t11 = 

4.24, p < 0.001) with age (Fig. 12). Two elution regions differed between age groups for 

Santa Catalina Island, with fractions corresponding to crotamine decreasing (t5 = 2.89, p 

= 0.034) and SVSP increasing (t5 = 2.89, p = 0.034) with age (Fig. 12).  

 No significant main effects or interactions of population and age were found for 

the elution regions corresponding largely to crotamine and lectins. However, a significant 

main effect of age for the MT-B fraction was detected with log10-transformed data, 

constituting the only observed difference between rank- and log10-transformed data. This 

latter result suggested that MT-B was present in greater quantities in juvenile snakes of 

both populations, but protein in this elution region for the Santa Catalina population 

likely belonged to other toxin families. 

 Effect sizes (Cohen's d) for age groups among the 11 elution regions are provided 

for each of the two populations in Table 10. Effect sizes were large (>0.80) for six of the 

11 elution regions in each population. A paired t-test comparing effect sizes between the 

two populations for all elution regions suggested that the magnitude of ontogenetic 

change in overall venom composition was similar for the two populations (t = 0.72, p = 

0.49, Cohen's d = 0.31; note the small effect size). 
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Figure 11. Representative RP-HPLC chromatograms of crude venom from each 
population and age class sampled (only two Catalina Island juveniles were sampled).  
 
. 
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Figure 12. Mean (± 1 SE) protein composition of juvenile and adult Crotalus o. helleri 
venom from two populations (Idyllwild, in the San Jacinto Mountains: N = 7 and 6, 
respectively; Catalina Island: N = 2 and 5, respectively), as indicated by integration of RP-
HPLC peak areas among 11 RP-HPLC elution regions (ER). Dominant protein constituents 
for each elution region are presented in Table 5. Crosses reveal significant interactions 
between age class and population (based on ANOVAs); chevrons indicate significant 
variation between populations (based on ANOVAs); and stars denote significant variation 
between age classes (based on t-tests).  
  

 
Discussion 

Diet Composition 

Our data fail to support our first hypothesis, that Santa Catalina Island C. o. 

helleri feed largely on lizards throughout their lives, whereas those from San Jacinto 

Mountains shift their diet from lizard to rodent prey as they grow. We observed reptile 

and mammal prey in similar proportions among all snakes, though this may have been 

influenced by our relatively small sample size. The effect of snake size on diet, which 

approached significance, suggested that smaller snakes relied more heavily on reptiles 

than adult snakes, supporting the results of previous studies (e.g., Mackessy, 1988;  
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Table 10. Cohen's d effect sizes for venom components (rank-transformed percentages of 
11 RP-HPLC elution regions [ER] corresponding to major toxins and toxin families) of 
two age classes (juvenile vs. adult) of Southern Pacific Rattlesnakes (Crotalus oreganus 

helleri) from two populations. 
 

Elution Region Santa Catalina San Jacinto Mountains 

ER-1 1.01 0.00 

ER-2 2.42 0.35 

ER-3 0.00 1.81 

ER-4 0.15 0.00 

ER-5 1.63 1.05 

ER-6 1.06 1.52 

ER-7 2.42 1.17 

ER-8 1.01 1.17 

ER-9 1.53 0.56 

ER-10 1.01 2.69 

ER-11 0.00 0.00 

Mean ± 1 SE 1.20 ± 0.24 0.94 ± 0.26 

 
See Table 5 for elution region protein constitutents. Paired t-test to compare effect sizes 
for overall ontogenetic change between Idyllwild and Santa Catalina Island, California, 
populations: t = 0.72, p = 0.49, Cohen's d = 0.31. 
 
 

LaBonte, 2008), but this shift was similar in both populations. We intend to obtain more 

data to achieve greater statistical power. 

 

Population Differences in Venom 

Our study confirmed the previously identified differences in venom composition 

between these populations (Sunagar et al., 2014). Most notably, Idyllwild snakes 

produced substantial quantities of both MT-A and MT-B subunits, and only minute 

quantities of SVMPs, whereas Santa Catalina Island snakes exhibited only trace amounts 
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of protein in the MT elution region (which likely belonged to other toxin families) but 

produced substantial SVMPs. The Santa Catalina population had greater quantities of 

BIPNP, whereas the Idyllwild population exhibited more SBP. When both are expressed, 

MT-A and MT-B subunits form the fully functional Mojave toxin dimer and produce 

pronounced pre-synaptic neurotoxicity upon envenomation. Introduction of SVMPs into 

mammalian tissue elicits hemorrhage and proteolysis, resulting in destruction of recipient 

tissue (e.g. Gutiérrez et al., 2005; Ramos and Selistre-de-Araujo, 2006; Fox and Serrano, 

2009; Sajevic et al., 2013; Bernardoni et al., 2014). The two dominant peaks in the 

BIPNP elution region correspond to non-enzymatic disintegrins crotatroxin 1 and 2, 

which were previously demonstrated to serve as relocator proteins which allow 

rattlesnakes to relocate prey following envenomation and release (Saviola, 2014). It 

would be interesting to learn whether these venom composition differences relate to 

functional differences in venom effectiveness for securing lizard versus rodent prey.  

 Similar intraspecific variation in expression of proteolytic (type I) or neurotoxic 

(type II) venom profiles has also been described in other pitviper taxa including C. 

scutulatus (Glenn and Straight, 1978; Glenn et al., 1983; Massey et al., 2012), C. 

mitchellii subspecies (Glenn and Straight, 1983, 1985), C. oreganus concolor (Mackessy, 

2003), C. lepidus (Borja et al., 2013), Sistrurus subspecies (Sanz et al., 2006), C. 

horridus atricaudatus (Minton, 1967; Glenn et al., 1994), C. durissus (Calvete et al., 

2009b) and Bothrops atrox (Núñez et al., 2009; Calvete et al., 2011). Such cases are often 

interpreted as paedomorphism (e. g. Mackessy, 2003), possibly resulting from geographic 

dispersal into areas where venom neurotoxicity confers a selective advantage, such as 
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through more effective immobilization of new or variable prey types (Calvete et al., 

2009b; Núñez et al., 2009; Calvete et al., 2011). 

 

Ontogenetic Differences 

The data failed to support our hypothesis that the venom differences between 

juvenile and adult snakes would be greater for the type I venoms from Santa Catalina 

Island than those of the type II venoms from the San Jacinto Mountains. Snakes in both 

populations showed fairly substantial changes in venom composition during ontogeny, 

but the overall change in venom composition between age classes was similar for the two 

populations. Three elution regions differed significantly between age groups for Idyllwild 

snakes and two for Santa Catalina Island snakes. The difference in significant elution 

regions may be explained, however, by the larger sample size for the San Jacinto 

Mountains snakes, which provided greater statistical power. More importantly, the effect 

sizes, which are independent of sample size, indicated that both Idyllwild and Santa 

Catalina venoms exhibited similar levels of overall ontogenetic change in venom. This 

finding suggests that population differentiation likely has a greater influence on adult 

venom type than ontogenetic change. 

Ontogenetic shifts in venom composition are widely documented across various 

snake taxa. Among pitvipers, classic examples include shifts from highly toxic venom 

profiles in juvenile Crotalus simus (Calvete et al., 2010), Bothrops atrox (Guércio et al., 

2006), B. asper (Alape-Girón et al., 2008), and B. jararaca (Zelanis et al., 2011) to less 

toxic venom in adults. Such shifts in venom composition often follow ontogenetic shifts 

in prey preference, supporting claims of the influence of diet on venom.  
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Statistical Inferences 

Our analyses of venom composition involved a high number of statistical tests, of 

which 5% (based on alpha of 0.05) would be expected to be significant by chance alone. 

Following Nakagawa (2004), we chose not to control for experimentwise error because 

doing so overemphasizes the importance of null hypothesis testing when effect size is 

more meaningful, and unacceptably increases the probability of making type II errors 

(i.e., the hyper-Red Queen phenomenon: the more research one does, the lower the 

probability that a significant result will be found; Moran, 2003). In spite of the high 

experimentwise error, we feel that our conclusions are robust for each of the two major 

sets of analyses (ANOVAs of age class × population, and t-tests of age within 

populations). For the 11 ANOVA models (one for each elution region), three (27.3%) 

showed interaction between age class and population, which far exceeded that expected 

by chance, and five (45.5%) showed significant variation between populations. Three 

(27.3%) of the 11 t-tests for the effect of age class were significant for Idyllwild snakes, 

and two (18.2%) were significant for the Santa Catalina Island snakes. 

 

Defining Paedomorphism 

Our data raise the question, what constitutes a paedomorphic phenotype in snake 

venom? Should we define venom paedomorphism as the relative lack of overall venom 

composition change, or as a change in the function of venom (e.g., its toxicity or 

digestive capacity)? In our study, the venoms of both populations changed to a similar 

degree, with neither showing full retention of juvenile venom composition into 

adulthood.  
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Zelanis et al. (2011) demonstrated that N-deglycosylation resolves differences 

between 2D electrophoretic profiles of juvenile and adult venoms, indicating that N-

glycosylation can be a key source of ontogenetic changes in venom. Such post-

translational modifications may not be readily detected by standard proteomic techniques. 

Functional activity, which will presumably reflect even minor alterations in protein 

structure, may therefore constitute more reliable criteria for the designation of venom 

“types.” As such, the purely proteomic data presented in the current study may be 

insufficient to test whether Idyllwild C. o. helleri venom profiles represent a 

paedomorphic phenotype or simply populational variation. The present study may 

therefore benefit from the addition of toxicity data to yield a more comprehensive 

investigation such as those by Mackessy (2003) and Calvete (2011).  

 

Conclusions 

 Our study confirmed the previously identified differences in venom composition 

between Idyllwild and Santa Catalina Island C. o. helleri populations but failed to show 

significant population differences in diet. The possible role of diet as a driving force for 

venom differences warrants further study in this group, and a larger diet sample would be 

informative. Idyllwild snakes produced substantial quantities of both MT-A and MT-B 

subunits and only minute quantities of SVMPs, whereas Santa Catalina Island snakes 

exhibited only trace amounts of protein in the MT elution region (which likely belonged 

to other toxin families), but produced substantial SVMPs. The Santa Catalina population 

had greater quantities of BIPNP, whereas the Idyllwild population exhibited more SBP. 

Snakes in both populations also showed fairly substantial changes in venom composition 
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during ontogeny, with similar effect sizes. Designation of paedomorphic venom 

phenotypes based solely on proteomic analysis in the absence of functional data is 

tenuous due to the substantial influence of post-translational modifications of protein 

structure to ontogenetic venom variation. Further investigation of the enzymatic activity 

and general toxicity of the venom samples is, therefore, required in order to establish with 

certainty whether Idyllwild C. o. helleri venoms are a result of paedomorphism or 

populational variation. 
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CHAPTER FIVE 

 

CONCLUSIONS 

 
In this dissertation, I examined the extent of venom variation and neurotoxicity in 

the Pacific rattlesnakes (Crotalus oreganus oreganus and C. o. helleri), and assessed 

factors influencing the observed variation. Together, these studies represent the most 

thorough investigation of venom composition and variation in the species conducted to 

date. In this chapter, I will briefly review the principal conclusions drawn from each of 

my studies and suggest directions for future research.  

In Chapter 2, I assessed intraspecific variation of venom protein composition 

among four populations of the southern Pacific rattlesnake, Crotalus oreganus helleri. 

These analyses constituted the proteomics portion of a proteomic/transcriptomic 

collaboration we conducted with researchers at the University of Queensland, Australia.  

As expected, venom profiles varied substantially among the four populations but 

variation among individual snakes within each population were minor. The most striking 

disparity in venom composition among the sampled populations was the reduced SVMP 

expression and expression of large amounts of functional neurotoxin in the San Jacinto 

mountains population. We documented strong selective pressures acting on all venom 

protein families tested, yet the strength and direction of these pressures varied 

dramatically among protein families within a population, as well as among populations 

within protein families. 

These results support those of previous studies. Salazar et al. (2009) documented 

substantial geographic variation of venom enzymatic activity among Crotalus oreganus 

helleri populations in Southern California which correlate well with the venom 
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composition we saw in nearby populations. Although precise location data for the snakes 

were not provided, their map suggests that four of their snakes were collected near 

populations we investigated in Chapter 2. A snake collected near Loma Linda exhibited 

pronounced coagulation and fibrinolytic activity, potent lethality, and a notable lack of 

hemorrhagic activity, consistent with the low metalloproteinase, high serine proteinase, 

high crotamine expression we noted in our Loma Linda snakes. Similarly, a snake from 

the high desert near Phelan showed pronounced hemolytic and hemorrhagic activity, and 

a lack lack of thrombin-like activity and clotting, in line with the phospholipase A2 

content, abundant and varied metalloproteinase expression, and serine protease 

expression that, although similar in abundance to other populations, was less diverse in 

terms of the number of peaks. The high serine protease, low metalloproteinase content, 

and high expression of both Mojave Toxin subunits we saw in our Idyllwild snakes 

coincide well with the pronounced coagulation, low hemorrhagic activity, and potent 

lethality Salazar et al. noted in a nearby snake, as well as with the venom composition 

findings of French et al. (2004). 

The ecological significance of the noted variation in venom composition among 

C. o. helleri populations remains unclear but the strong selective pressues we saw suggest 

that contemporary adaptation does seem to be a factor. Phylogeny undoubtedly also plays 

a role, so it is likely that not every disparity in venom composition among populations 

will have a clear ecological application. Nevertheless, further investigation of specific 

toxins’ ecological functions, such as toxicity assays in local prey species as suggested by 

Sasa (1999), are warranted. It would be interesting, for example, to see whether the serine 

proteases missing from our Phelan venom profiles but present in the other populations are 
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responsibible for thrombin-like activity or clotting and whether crotamine explains 

neurotoxicity in snakes lacking Mojave Toxin.  

In Chapter 3, I conducted a more thorough examination of intraspecific variation 

of venom composition and neurotoxicity among C. o. helleri and C. o. oreganus across 

their ranges in California. Our results revealed substantial geographic variation in the 

relative abundance of numerous toxin components in C. oreganus venom. Southern 

snakes had consistently higher content of small basic peptides other than crotamine 

(Other SBPs) in their venom compared to northern snakes. Snakes from the San Jacinto 

Mountains also possessed a highly distinctive venom composition, which included 

relatively high levels of Mojave toxin and relatively low levels of BIP/NP, LAAOs, and 

SVMPs. We showed that environmental factors exert the greatest influence on venom 

composition, followed by genetic relatedness, and geographic distance, and 

environmental factors. The results of our bioassay for neurotoxicity varied among the 

replicates for each sample, failing to consistently identify neurotoxicity even in samples 

confirmed to contain both Mojave Toxin subunits, and should therefore be considered 

preliminary.  

The observed north-south sorting of venom profiles in this study resembles 

patterns of venom variation seen in other taxa including the Mojave Rattlesnake, 

Crotalus scutulatus scutulatus (Glenn and Straight, 1978; Glenn et al., 1983; Massey et 

al., 2012), Tamaulipan Rock Rattlesnake, Crotalus lepidus morulus (Borja et al., 2013), 

and South American Rattlesnake, Crotalus durissus spp. (Boldrini-França et al., 2010). 

Calvete et al. (2012) suggest these trends appear to correlate with the dispersal of 

rattlesnakes north and south (Klauber, 1997; Campbell and Lamar, 2004) from their 
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origin in the Sierra Madre Occidental in north-central Mexico Plateau (Place and 

Abramson, 2004). The development of neurotoxicity in adult venoms has been 

interpreted as a paedomorphic trend characterized by increased expression of crotoxin 

along the axis of Crotalus radiation in South America (Calvete et al., 2010; Boldrini-

França et al., 2010) and of the closely-related Mojave toxin from Mexico northward 

(Werman, 2008). A lack of phylogenetic clustering among rattlesnakes with neurotoxin 

PLA2 molecules in their venoms has been cited as evidence that phylogeny is not a key 

factor in the development of rattlesnake type II venoms (Powell et al., 2008). Instead, the 

evolution of neurotoxic venom profiles have been suggested to represent local adaptation 

to novel prey bases (Powell and Lieb, 2008).  

While our results do suggest that environment has a greater effect on venom 

composition in Pacific Rattlesnakes than phylogeny, and showed no clear geographical 

pattern in the distribution of neurotoxicity, these data should be considered preliminary 

and require further investigation. It is possible, for example, that analysis of all 

populations for neurotoxicity may reveal a trend that was indiscernable in our initial 

limited data set. Importantly, certain snake venom toxins are known to function 

differently in avian and mammalian tissues so, although the chick biventer cervicis assay 

is appropriate for initial analysis of unknown neurotoxins (see Chapter 4 Discussion), 

parallel trials with the alternative rat phrenic nerve assay may be warranted.  

Remote sensing is a powerful tool that has been used extensively for at least four 

decades to assess distribution of vegetation (Rouse et al., 1974) and, more recently, 

animal populations on broad spatial extents outside the scope of field-based investigation 

(Kerr and Ostrovsky, 2003; Turner et al., 2003). Recent advances in the field have made 
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more fine-scale analyses feasible; accurate assessments of plant-animal associations on 

even a 2 m scale have been performed (see, for example, Machault et al., 2014). 

However, to our knowledge, remote sensing remains under-utilized in fine-scale analysis 

of snake habitats (see Erbas-White, 2014). This may represent skepticism in the method’s 

reliability and ecologically relevancy. Verification of our habitat analysis by ground-

truthing at each location site may confir greater confidence in our data and contribute to 

the increasing acceptance of the use of remote sensing in the field. 

In Chapter 4, I investigated the influence of snake age and diet on the venom of 

individual C. o. helleri in an insular population (Santa Catalina Island) and a high-altitude 

montane population (San Jacinto Mountains). Snakes from both populations had similar 

diets, consuming mainly lizards when young and incorporating more rodents as adults. 

Venom composition differed substantially between populations. Snakes in both 

populations also showed fairly substantial changes in venom composition during 

ontogeny, with similar effect sizes. 

 Venoms high in protease activity and low in toxicity, termed ‘Type I’ venoms, are 

common among adult rattlesnakes, especially in heavy-bodied species. ‘Type II’ venoms, 

by contrast, are low in protease activity and high toxicity (often neurotoxicity), and are 

less common in adult rattlesnake venoms. Most, if not all, rattlesnake venoms exhibit 

ontogenetic change in venom composition, typically from more Type II-like profiles to 

less toxic Type I-like profiles (Minton, 1967; Fiero et al., 1972; Reid and Theakston, 

1978; Lomonte et al., 1983; Minton and Weinstein, 1986; Mackessy, 1988; Gutiérrez et 

al., 1991; Mackessy et al., 2003; Mackessy, 2008). Retention of highly toxic, non-

proteolytic venom in adults, therefore, has been interpreted as a paedomorhpic trait 
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(Mackessy et al., 2003; Mackessy, 2008; Calvete et al., 2010; Boldrini-França et al., 

2010). Type I venoms presumably aid in the digestion of the larger prey items typically 

consumed by adult heavy-bodied snakes, while Type II venoms are suspected to aid in 

the rapid immobilization of small ectothermic prey typically consumed by juveniles and 

smaller adults. These hypotheses seem to be supported by ontogenetic shifts from 

ectotherm-dominated diets in many juvenile rattlesnakes to mammalian-dominated diets 

in adults, which are often followed by subsequent shifts from highly toxic to proteolytic 

venoms. 

Although Mackessy (2008) notes that Type II species do exhibit a degree of 

ontogenetic change in composition, references to paedomorphism have, to our 

knowledge, been limited to the context of Type I species. The lack of obvious Type II-

like venom profiles in juvenile snakes on Catalina Island, together with the substantial 

ontogenetic shift in venom composition in the classic Type II San Jacinto Mountains 

population (nearly equal to that of the Catalina Island venoms), lead us to question the 

validity of the current paedomorphism paradigm. Are all highly toxic rattlesnake venoms 

to be considered ‘juvenile’ and all proteolytic profiles ‘adult?’ Given the high proteinase 

expression in the venom of our juvenile Santa Catalina Island C. o. helleri, and the 

substantial ontogenetic venom shift in the supposed paedomorphic San Jacinto Mountain 

population, we agree with Mackessy (2008) that the current current Type I-Type II model 

drastically oversimplifies the issue.  
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