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ABSTRACT OF THE DISSERTATION 
 

Dietary Intake and Bio-activation of Nitrite and Nitrate in Newborn Infants  

by 

Jesica Ann Jones 

Doctor of Philosophy, Graduate Program in Pharmacology 
Loma Linda University, September 2015 

Dr. Arlin B. Blood, Chairperson 
 

 Nitrate and nitrite are commonly thought of as inert end products of nitric oxide 

(NO) oxidation, possibly carcinogenic food additives, or well-water contaminants. 

However, recent studies have shown that nitrate and nitrite play an important role in 

cardiovascular and gastrointestinal homeostasis through conversion back into NO via a 

physiological system involving enterosalivary recirculation, bacterial nitrate reductases, 

and enzyme-catalyzed or acidic reduction of nitrite to NO. The diet is a key source of 

nitrate in adults; however, infants ingest significantly less nitrate due to low 

concentrations in breast milk. In the mouth, bacteria convert nitrate to nitrite, which has 

gastro-protective effects. However, these nitrate-reducing bacteria are relatively inactive 

in infants. Swallowed nitrite is reduced to NO by acid in the stomach, affecting gastric 

blood flow, mucus production, and the gastric microbiota. These effects are likely 

attenuated in the less acidic neonatal stomach. Systemically, nitrite acts as a reservoir of 

NO bioactivity that can protect against ischemic injury, yet plasma nitrite concentrations 

fall dramatically at birth and remain markedly lower than in adults for the first few weeks 

of life. The physiological importance of the diminished nitrate→nitrite→NO axis in 

infants and its implications in the etiology and treatment of newborn diseases such as 

necrotizing enterocolitis and hypoxic/ischemic injury are yet to be determined. 
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CHAPTER ONE 

INTRODUCTION 

 
 This dissertation shows that nitric oxide bioavailability is markedly lower in 

newborn infants than adults. This is characterized by low dietary nitrate and nitrite 

ingestion, a lack of oral bacterial nitrate reductase activity, enhanced urinary nitrite 

excretion, and a rapid fall in plasma nitrite levels at birth. Nitric oxide (NO), a potent 

vasodilator formed by nitric oxide synthases, is rapidly oxidized to nitrite (NO2
-) and 

nitrate (NO3
-) in the body. Although the biological transformation of NO to nitrite and 

nitrate was previously believed to be unidirectional, recent studies have demonstrated 

pathways by which nitrate is converted to nitrite and nitrite back into NO via a nitrate → 

nitrite → NO axis (1).  

 The key steps in nitrate and nitrite transport and metabolism are shown in Figure 

1 and consist of 1) the introduction of nitrate into the mouth by the diet or active transport 

from plasma into the saliva by the salivary glands, 2) reduction of nitrate to nitrite by oral 

bacteria, 3) ingestion of nitrite, which is either converted to NO in the stomach or 

absorbed into the blood stream, 4) oxidation of nitrite and NO back into nitrate which can 

then again be secreted into the saliva, and 5) oxidation of NO into nitrite in the plasma 

and tissues (2). 
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Figure 1. Simplified schema showing the pathways and interconversions of NO, nitrite, 
and nitrate. 1.) Nitrate enters the mouth from the diet and from the plasma by a 
concentrating action of the salivary glands. 2.) In the mouth nitrate is converted to nitrite 
by commensal bacteria on the tongue (3). 3.) In the acid milieu of the stomach nitrite is 
converted to NO by disproportionation (4) or absorbed into the circulation. Nitrite may 
also be converted to NO in blood and tissues by the action of metalloproteins (2). NO, 
deriving from nitrite or from the conversion of L-arginine to L-citrulline by eNOS, can be 
converted to 4.) nitrate by reaction with oxyhemoglobin (5) or 5.) nitrite by 
ceruloplasmin (6).  
 

 Via this endothelial NO synthase (eNOS)-independent pathway, nitrate and nitrite 

are gaining recognition as potential reservoirs of NO bioactivity. This has important 

physiological implications considering NO’s wide range of actions throughout the body, 

including regulation of vascular homeostasis, neurotransmission, host defense, redox 

signaling, and cellular respiration (1). Under hypoxic and ischemic conditions in the 

circulation and tissues, nitrite is thought to act as a vasodilator via conversion to NO (7-
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10). This is of particular importance in the ischemic heart, for example (11). More than 

20 studies now show that increasing circulating nitrite levels, even only two-fold higher 

than basal levels, protects against ischemic stress in the brain, heart, lungs, liver, and 

kidney (see review by Dezfulian, 2007 (12)). Clearly, nitrite shows promise as a therapy 

in a multitude of vascular pathologies. Indeed, preclinical trials are currently testing 

nitrite as a therapy for pulmonary hypertension (13) and acute myocardial infarction (14). 

Furthermore, in the gastrointestinal tract, nitrite-derived NO kills pathogenic bacteria, 

protects against gastric ulcers, and increases gastric mucus production and local intestinal 

blood flow (15-18). Given these beneficial effects in adults and animals, we asked if 

nitrite would also be protective in premature infants who are at significant risk of 

suffering from hypoxic/ischemic injury due to dysregulation of cerebral blood flow (e.g. 

intraventricular hemorrhage and periventricular leukomalacia) and episodes of inadequate 

systemic oxygenation. We reasoned that low plasma nitrite levels in preterm infants 

could potentially predispose them to the severe effects of hypoxia and ischemia. 

Specifically, we hypothesized that preterm infants would have low plasma nitrite levels 

because of diminished activity of each step of the nitrate → nitrite → NO axis. To 

address our questions, we looked at the dietary intake of nitrate and nitrite, the bacterial 

conversion of salivary nitrate to nitrite, and plasma and urine nitrite levels in preterm and 

term newborn infants.   

 

Dietary Nitrate and Nitrite 

 While about 70% of circulating nitrite comes from eNOS-derived NO oxidation 

(19), dietary intake of nitrate and nitrite also contributes to resting nitrite concentrations. 
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High levels of nitrate and nitrite are found naturally in green-leafy vegetables like 

spinach and beetroot and fruits like strawberries. They are also found in high levels in 

processed meat because they are used as curing agents (20). Consumption of dietary 

nitrate elevates plasma nitrite, as shown by Lundberg and Govoni who found that adults 

who consumed the equivalent of 300 g of spinach1 saw their plasma nitrite levels increase 

from 123 ± 19 nM to 392 ± 68 nM, a striking 4-fold increase, ninety minutes after nitrate 

ingestion (21). Two further studies highlight the importance of dietary intake by showing 

that plasma nitrite and nitrate concentrations drop by nearly 50% in rats given diets low 

in nitrite and nitrate (22-23). Accumulating evidence now indicates that dietary nitrate 

ingestion, and subsequent elevation in plasma nitrite, has significant cardiovascular 

effects. Increasing dietary nitrate, even at relatively low doses 2(24), has consistently 

been shown to decrease blood pressure in healthy normotensive people (24-26) and now 

recently in patients with chronic obstructive pulmonary disease (27) and high blood 

pressure (28). Furthermore, it protects against ischemia-reperfusion-induced endothelial 

dysfunction, decreases platelet aggregation (25), decreases the oxygen cost of exercise, 

and improves exercise tolerance (29). It is now proposed that the high nitrate content in 

vegetables is one reason why the Mediterranean and Dietary Approaches to Stop 

Hypertension (DASH) diets are thought to be so cardioprotective (20). Considering the 

important gastro- and cardioprotective effects of nitrate and nitrite ingestion in adults, we 

saw the importance of measuring the levels of nitrate and nitrite in the diet of newborn 

infants. Given the close link between plasma nitrite and nitrite/nitrate ingestion, we 

                                                 
1 The dose of nitrate used was 10 mg/ml. 
2 Administration of 100 g of beetroot juice produces a significant drop in systolic and diastolic blood 
pressures. 
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hypothesized that diminished nitrite/nitrate ingestion in premature infants would lead to 

low plasma nitrite levels. 

 The second chapter of this dissertation describes our work of measuring dietary 

nitrite and nitrate ingestion in newborn infants. To estimate the amount of nitrate and 

nitrite infants ingest daily, we measured nitrite and nitrate concentrations in breast milk, 

formula, and parenteral nutrition. In addition, we looked at how clinical practices, such as 

freezing and thawing breast milk, effect the concentrations of nitrite and nitrate.  

 

Salivary Nitrate and Nitrite 

 The third chapter of this dissertation describes our studies of the oral component 

of the nitrate → nitrite → NO axis in infants. In adults, the salivary glands concentrate 

twenty five percent of circulating nitrate into the saliva, leading to nearly ten-fold higher 

concentrations in fasting saliva (~200 µM in saliva versus ~20-40 µM in the plasma) 

(21). Twenty percent of this nitrate, together with nitrate from the diet, is reduced to 

nitrite by the normal microflora on the tongue. Although nitrate ingestion plays an 

important role in determining plasma nitrite levels, it is critically dependent on this 

bacterial reduction of salivary nitrate to nitrite. Adults who consume a high nitrate meal 

while using antibacterial mouth rinse do not have the corresponding postprandial rise in 

plasma nitrite (30). Moreover, if subjects refrain from swallowing saliva after a dietary 

nitrate load or are given antibacterial mouthwash to decrease bacterial nitrate-reducing 

activity, the hypotensive effects of nitrate are attenuated and there is no inhibition of 

platelet aggregation (25, 31). Thus, the many beneficial effects of increasing dietary 

nitrate are only seen when there is bacterial activation of nitrate to nitrite.  
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 Due to the importance of these bacteria in the nitrate → nitrite → NO axis in 

adults, we sought to measure their activity in newborn infants. Conventional wisdom is 

that the fetus is sterile3 and then acquires bacteria during birth and in the following weeks 

from the mother’s skin and breast milk and the surrounding environment (33). However, 

it was unknown when infants acquire nitrate reducing bacteria and are able to reduce 

salivary nitrate effectively. Furthermore, it was unknown if premature infants, who often 

receive broad-spectrum antibiotics that would impact bacterial growth (34), have delayed 

colonization compared to term infants. Thus, we measured the activity of the specific oral 

nitrate-reducing bacteria in both term and preterm infants, in outpatient and intensive-

care settings. We also address whether infants are able to concentrate nitrate from the 

blood into the saliva and how this impacts their salivary nitrate and nitrite concentrations 

and subsequent ingestion.  Additionally, we show how a lack of oral nitrate reducing 

bacteria influences plasma nitrite levels in adults. 

 

Plasma and Urine Nitrite 

 Plasma nitrite concentrations of healthy term newborns are measured to be 0.18 ± 

0.03 µM (35). These are ~30% lower than the concentrations of adults, which typically 

range from 50 to 300 nM (2). Given that elevated nitrite levels protect against ischemic 

injury, the reverse is also potentially true: a deficiency in nitrite would enhance risk of 

injury. Thus, a significant reduction in plasma nitrite may put newborn infants, and 

                                                 
3 Intriguing new data suggest that the fetus is not, in fact, sterile and receives bacterial colonization from 
the placenta (32). Interestingly, the microbiome of the placenta is strikingly similar to that of the mother’s 
oral flora and could potentially include these nitrate-reducing bacteria (32), although this remains to be 
determined. 
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particularly those born prematurely, at an even higher risk for diseases that involve 

ischemic injury such as necrotizing enterocolitis (NEC).  

  As the most common gastrointestinal disease among premature infants, NEC 

affects approximately 5-14% of infants born weighing less than 1500 grams (36-38). 

Despite over thirty years of clinical management, mortality rates in patients with NEC 

remain as high as 20% and the underlying cause remains largely unknown (36, 39). 

Premature birth is a prominent risk factor. Consensus is emerging that NEC results from 

epithelial mucosal injury secondary to prematurity, feeding substrate, weakened immune 

resistance to bacteria, and impaired response to stressors such as ischemia (40, 41). 

Considering nitrite’s protective effects in the gastrointestinal tract and in animal models 

of ischemia, we hypothesized that preterm infants who are diagnosed with NEC have 

lower plasma nitrite levels in the days preceding diagnosis compared to other preterm 

infants, term infants, and adults. As discussed in chapter four, we tested this hypothesis 

by collecting plasma from preterm infants at risk for NEC for the first three weeks of life. 

We also measured the nitrite concentration in urine to determine whether NEC, and any 

associated changes in plasma nitrite levels, may impact nitrite excretion in these infants.   

 In addition to measuring plasma nitrite levels in infants at risk for NEC, we also 

attempted to address whether dietary nitrite supplementation would prevent NEC in a 

newborn rat pup model of the disease. However, due challenges with this animal model, 

we were unable to adequately test our hypothesis. A more thorough explanation of these 

experiments and the challenges we encountered appears in the discussion of this 

dissertation.   
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Summary 

 The studies described herein characterize the nitrate → nitrite → NO axis in 

newborn infants. Specifically, we measured the levels of nitrate and nitrite in breast milk, 

formula, and parenteral nutrition (Chapter 2), the oral bacterial nitrate reducing activity 

(Chapter 3), and the plasma and urinary nitrite levels in preterm infants at risk for NEC 

(Chapter 4). This work reveals that newborn infants differ greatly from adults due to low 

nitrate and nitrite ingestion, negligible bacterial nitrate reduction in the oral cavity, high 

urinary nitrite excretion, and diminished plasma nitrite levels. These findings give us a 

baseline of nitrate and nitrite bioactivity in newborn infants and help us to begin to 

address the possibility of using nitrite supplementation as a therapeutic intervention 

against hypoxic and ischemic pathologies common to newborn infants.   
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CHAPTER TWO 

NITRITE AND NITRATE CONCENTRATIONS AND METABOLISM IN 

BREAST MILK, INFANT FORMULA, AND PARENTERAL NUTRITION 

 

Abstract 

 Dietary nitrate and nitrite are sources of gastric NO, which modulates blood flow, 

mucus production, and microbial flora. However, the intake and importance of these 

anions in infants is largely unknown. Nitrate and nitrite levels were measured in breast 

milk of mothers of preterm and term infants, infant formulas, and parenteral nutrition. 

Nitrite metabolism in breast milk was measured after freeze-thawing, at different 

temperatures, varying oxygen tensions, and after inhibition of potential nitrite-

metabolizing enzymes. Nitrite concentrations averaged 0.07 ± 0.01 μM in milk of 

mothers of preterm infants, less than that of term infants (0.13 ± 0.02 μM) (P < .01). 

Nitrate concentrations averaged 13.6 ± 3.7 μM and 12.7 ± 4.9 μM, respectively. Nitrite 

and nitrate concentrations in infant formulas varied from undetectable to many-fold more 

than breast milk. Concentrations in parenteral nutrition were equivalent to or lower than 

those of breast milk. Freeze-thawing decreased nitrite concentration ~64%, falling with a 

half-life of 32 minutes at 37 C. The disappearance of nitrite was oxygen-dependent and 

prevented by ferricyanide and three inhibitors of lactoperoxidase. Nitrite concentrations 

in breast milk decrease with storage and freeze-thawing, a decline likely mediated by 

lactoperoxidase. Compared to adults, infants ingest relatively little nitrite and nitrate, 

which may be of importance in the modulation of blood flow and the bacterial flora of the 

infant GI tract, especially given the protective effects of swallowed nitrite. 
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Introduction 

 Since being established as a potent vasodilator, nitric oxide (NO) has been one of 

the most intensely studied compounds in biology and is now considered to be an essential 

signaling molecule in a diverse set of pathways. Endogenous NO is produced 

predominantly through the conversion of L-arginine to L-citrulline by NO synthase 

enzymes. Through reactions with metal-containing proteins and oxygen, endogenous NO 

is rapidly oxidized to nitrite (NO2
-) and nitrate (NO3

-). Although these anions were once 

thought to be inert at physiological concentrations, more recent evidence indicates that 

nitrite plays a significant role in cardiovascular homeostasis (1) and protects against 

hypoxic and ischemic stress in the brain, (2,3) heart, (4,5)  lungs, (6) and kidney (7). 

Thus, there is growing interest in factors that contribute to the concentrations of nitrite in 

the body. 

 A large portion of plasma nitrite is derived from the oxidation of NO produced by 

endothelial NO synthases (8). However, plasma nitrite concentrations are also influenced 

by the ingestion of nitrite and nitrate, the latter being converted to nitrite in the mouth by 

commensal bacteria present on the dorsal surface of the tongue (9). The oral conversion 

of nitrate to nitrite is enhanced by active secretion of nitrate from the blood into the 

saliva. Once swallowed, the salivary nitrite can contribute to plasma nitrite 

concentrations, (10) or it can be protonated to nitrous acid resulting in a cascade of 

reactions leading to several bioactive products including nitrotyrosines, nitrosothiols, and 

nitrated lipids (see review by Rocha et al (11)). Although the chemistry of nitrite in the 

acidic gastric milieu is not fully characterized, it likely plays a role in the observed effects 
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of ingested nitrite in the adult rat. These include increased gastric blood flow (12,13) and 

mucus production (13) and protection against ulcers (12,14). 

 In the newborn period, breast milk and artificial breast milk substitutes (referred 

to herein as “infant formulas”) are the sole dietary sources of nitrate and nitrite. As will 

be discussed in chapter three, the nitrate-nitrite-NO pathway of adults does not similarly 

function in newborn infants due to diminished bacterial conversion of nitrate to nitrite in 

the mouth, (15) making the diet a particularly important source of nitrite. Indeed, plasma 

nitrite levels are lower in newborn infants in the neonatal intensive care unit (NICU) than 

in adults, (16) but the contribution of dietary nitrite and nitrate is not known. 

Concentrations of nitrate and nitrite in human breast milk have previously been reported 

in milk from mothers of healthy term infants (17,18). However, the effect of preterm 

birth and of common manipulations such as freeze-thaw cycles and storage on these 

concentrations have not been reported. 

 In this study we hypothesized that the freeze-thaw and storage of breast milk 

results in significant reductions in the dietary intake of nitrate and nitrite of newborns. 

We further hypothesized that nitrite and nitrate intake would be significantly reduced in 

infants receiving infant formula or intravenous parenteral nutrition (PN) compared to 

infants receiving fresh breast milk. We report that the levels of nitrate and nitrite change 

in the handling and storage of breast milk and describe potential mechanisms by which 

these levels change, including an examination of the roles of various key milk proteins 

that may contribute to nitrite metabolism. 
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Methods 

 The experimental protocols were approved by the Institutional Review Board of 

Loma Linda University. All chemicals were purchased from Sigma Aldrich (St Louis, 

MO) unless otherwise specified. 

 

Breast Milk and Formula Collection and Processing 

 Fresh breast milk was collected from 11 mothers of term infants and 13 mothers 

of preterm infants. The demographics of these mothers and their infants are provided in 

Table 1.  

 

Table 1. Demographics of breast milk study participants 

 
Characteristic 

Term 
(>36 weeks) 

Preterm 
(>35 weeks) 

Number of women, n 11 13 
Maternal age, years 28.4 ± 2.4 28.9 ± 2.0 
Parity, n 2.0 ± 0.7 3.5 ± 0.7 
Times breast pumped before donation, n 4.2 ± 0.6 3.8 ± 0.4 
Number of infants, n 11 13 
Gestational age, weeks 39.4 ± 0.3 30.8 ± 0.7 
Birth weight, grams 3158 ± 323 1390 ± 180 
Infant age at time of collection, days 24.3 ± 8.7 18.9 ± 3.9 
 

 

Feeding, breast pumping, and milk collection routines were not changed by participation 

in the study. After milk had been expressed for the first two minutes of pumping, a 3 mL 

sample of newly expressed milk was collected in a polyurethane bottle, then divided into 

500 µL aliquots and placed on ice. A portion of these aliquots was then immediately 

placed in a −20 C freezer, while the remainder was assayed for nitrite and nitrate 

concentrations within 30 minutes of collection. To measure the effect of freeze-thawing, 
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frozen samples were thawed on ice ~48 hours after collection and then assayed for nitrite 

and nitrate. 

 Nitrite concentrations of colostrum (milk expressed days 1-3), transition milk 

(expressed days 4-7), and mature milk (expressed days >7) (18) were measured to follow 

changes during the first 3 weeks after giving birth. Samples were collected daily from 12 

lactating women and immediately stored at −20 C until assay. Nitrite and nitrate 

concentrations were also analyzed in a number of infant formulas used in the NICU of 

the Loma Linda University Children’s Hospital (LLUCH). These included: Enfamil® 

Premature Lipil (Mead Johnson Nutritionals, Evansville, IN); Enfamil® Lacto Free Lipil, 

Enfamil® ProSobee® Lipil, Enfamil® EnfaCare® 22, Enfamil® Premium Infant, 

Similac® Special Care (Abbott Nutrition, Columbus, OH); Similac NeoSure®, Similac 

Advance EarlyShield®, Pregestimil® Lipil (Mead Johnson Nutritionals); and Nestlé® 

Good Start® (Nestlé Infant Nutrition, Florham Park, NJ). Assays were performed in 3 

samples from 2 different lots of each formula. The nitrite concentrations were also 

measured in 5 samples of starter parental nutrition (sPN) and 14 samples of parenteral 

nutrition (PN) used for infants unable to receive milk or formula feeds. 

 

Nitrite Metabolism in Breast Milk 

 The metabolism of nitrite in breast milk was assessed in a series of experiments in 

which nitrite was added to freeze-thawed samples of breast milk to initial concentrations 

of ~12 μM. The milk was then incubated at 37 C (unless otherwise stated) and changes in 

nitrite concentrations were measured over a 5-hour time course. 
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 To determine the effect of temperature on the metabolism of nitrite in breast milk, 

samples were incubated at 0, 10, 25, and 37 C. In a separate study, aliquots of milk were 

boiled for 5 minutes to denature proteins prior to incubation at 37 C. To test whether 

nitrite was being oxidized to nitrate, nitrite was added to 6 samples of milk and both 

nitrite and nitrate concentrations were measured over a 5-hour time course. In a separate 

experiment, additional nitrite was added to breast milk samples for final concentrations 

ranging from 10 μM to 160 μM and the increase in nitrate was measured after 5 hours. 

The increase in the nitrate concentration in a control sample of milk was subtracted from 

the rise in nitrate measured in the nitrite supplemented samples and plotted versus the 

initial nitrite concentration. 

 To assess the role of lipids in the stability of nitrite in breast milk, lipids were 

removed from 10 samples of milk by either chemical or centrifugation methods. The 

chemical method utilized an adaptation of a method for the delipidation of plasma, (19) 

while the centrifugation method involved centrifuging the milk twice at 13,400 rpm for 

90 seconds. The lipid content was measured before and after the delipidation procedures 

using a Calais Human Milk Analyzer, a midrange infrared spectrophotometer (Metron 

Instruments, Inc, Solon, OH). 

 To measure whether nitrite is reduced to NO in breast milk, nitrite was added to 

breast milk and then 100 μL of sample was immediately injected into buffered saline 

solution (pH = 7.4) in a purge vessel being continuously sparged with argon in line with a 

chemiluminescence NO detector. The presence of NO formation was detected over a 

period of 20 minutes (model 280i NO analyzer, Sievers Instruments, Boulder, CO). The 

lower limit of NO detection by this method was 20 nM. The possibility of a flux of nitrite 
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reduction to NO that could subsequently be oxidized back into nitrite was examined by 

incubating milk samples with the NO scavenger 2-4-carboxyphenyl-4,4,5,5-

tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) (final concentration 200 µM). 

 Additionally, to address the possibility that nitrite was being reduced to NO and 

then combining with thiols to produce s-nitrosothiols, nitrosothiol concentrations were 

measured in 6 samples of breast milk over a 3-hour period following the addition of 

nitrite using a method described previously (20). The possible role of thiols was also 

assessed by measuring the effect of addition of 2 mM N-ethylmaleimide (NEM) (21) on 

the rate of nitrite metabolism. To assess whether nitrite metabolism was dependent on 

enzymes with oxidizable transition metals, experiments were performed after addition of 

10 mM ferricyanide (FeCN). 

 To determine the role of dissolved oxygen in nitrite metabolism in breast milk, 6 

samples of milk were equilibrated with gas phases of various mixtures of nitrogen and 

oxygen. The oxygen tension of the samples were adjusted to approximately <5, 7, 37, 73, 

or >600 mmHg by measuring the partial pressure of oxygen (PO2) in the sample 

(Radiometer, model ABL5, Copenhagen, Denmark). The rate of nitrite metabolism was 

determined by measuring the magnitude of decrease in nitrite concentrations after 

incubation for 60 minutes at 37 C. 

 To test the possibility that xanthine oxidase was involved in the metabolism of 

nitrite, experiments were conducted following the addition of 100 µM of the selective 

antagonist allopurinol. A possible role for the enzyme lactoperoxidase (LPO) was studied 

by adding 1 of 3 selective inhibitors of LPO to samples of breast milk. First, to inactivate 

the heme center of LPO, 10 µM of 2-mercaptio-1-methylimidazole (2-MMI) was added 
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to breast milk. As a second test, 4 mM 3-amino-1,2,4-triazole (3-AT), a compound that 

inhibits LPO by covalent binding to the polypeptide chain of LPO rather than the heme, 

(22) was added to a separate set of samples. In a third set of samples, the LPO inhibitor 

dapson was added to a concentration of 0.6 mmol/L. Optimal concentrations for each 

inhibitor were chosen in accordance with those used in the literature (22-25). To assess 

whether addition of exogenous LPO would accelerate the loss of nitrite, 10 µL of 1.33 

mM LPO from bovine milk was added to 5 mL of breast milk for a final LPO 

concentration of 500 nM. Nitrite was added to the sample immediately before 1 mM 

hydrogen peroxide was added to initiate the reaction. Control samples lacked hydrogen 

peroxide. The samples were incubated at 37 C and the nitrite concentrations were 

measured after 10 seconds and 1, 2, 3, 30, and 60 minutes. 

 

Nitrite and Nitrate Assays 

 Nitrite concentrations were measured by triiodide chemiluminescence as 

described by Pelletier et al, (26) enabling quantification above 10 nM with a precision of 

±5 nM. Nitrate concentrations were measured by triiodide chemiluminescence after 

reduction to nitrite with a nitrate reducing enzyme as previously described (15). 

 

Data Analysis 

 Data are presented as mean ± standard error. Differences between study groups 

were detected using a t-test when the tested hypothesis involved only two sample groups 

and a 1-way ANOVA followed by Bonferroni post hoc analysis when three or more 

sample groups were involved. One-way ANOVA with repeated measures was used to 
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detect significant changes from baseline measurements in time-course experiments. Two-

way ANOVA followed by Bonferroni post hoc analysis was used to detect significant 

differences between groups in time-course experiments. The overall rate of nitrite 

metabolism in breast milk was determined by fitting nitrite disappearance curves to a 

monoexponential equation. Where indicated, the initial rate of nitrite metabolism was 

determined as the amount of nitrite consumed during the first 60 minutes following 

addition of nitrite. Statistical analyses were performed using Prism 5 for Mac OS X 

(Graphpad Software, Inc, La Jolla, CA). 

 

Results 

Nitrite and Nitrate Concentrations in Breast Milk and Formula 

 The nitrite concentrations of fresh and freeze-thawed breast milk from mothers of 

term and preterm infants are shown in Figure 2A. Nitrite concentrations in the milk of the 

mothers of preterm infants were significantly less than in milk from the mothers of term 

infants (0.07 ± 0.01 µM vs 0.13 ± 0.02 µM, respectively, P < .01). After freeze-thawing, 

nitrite concentrations were significantly decreased in the milk of mothers of both preterm 

and term infants (0.03 ± 0.01 µM and 0.04 ± 0.01 µM, respectively, P < .05 compared to 

fresh milk). 

 Nitrate concentrations averaged about 100-fold higher than the nitrite levels in 

breast milk, as shown in Figure 2B. Nitrate in the milk of the mothers of preterm infants 

(13.6 ± 3.7 µM) did not differ significantly from nitrate concentrations in the milk from 

mothers of term infants (12.7 ± 4.9 µM). Nitrate concentrations tended to increase 

following freeze-thawing, but this change did not reach statistical significance. 
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Figure 2. Comparison of nitrite (A) and nitrate (B) concentrations in breast milk of 
mothers of term and preterm infants and after freeze-thawing. C) Nitrite concentrations 
are higher in colostrum than transition (**p<0.01) or mature milk (***p<0.001).  
 

 

 To examine changes in nitrite concentrations in milk in the days following birth, 

samples were collected from 12 lactating mothers during the first 21 days postpartum 

(Figure 2C). In the first 3 days after birth, the nitrite concentration averaged 0.12 ± 0.03 

µM. Nitrite concentrations decreased significantly over time following parturition, falling 

to 0.05 ± 0.01 µM in days four through seven (1-way ANOVA, P < .01) and 0.01 ± 0.005 

µM in days eight through twenty one (P < .001). 

 In a convenience sample of commercially available infant formulas used 

commonly in the Loma Linda University Children’s Hospital (LLUCH) NICU, nitrite 

and nitrate concentrations averaged 0.28 ± 0.1 µM and 43 ± 5.8 µM, respectively 

(Figures 3A, 3B). The nitrite concentrations were also measured in sPN and PN. Nitrite 

concentrations averaged 0.02 ± 0.008 µM in sPN and 0.08 ± 0.03 µM in PN. Nitrate 

concentrations averaged 4.6 ± 0.2 µM in sPN and 9.5 ± 0.8 µM in PN. Figures 4A, 4B 
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include the nitrite and nitrate concentrations of the PN samples alongside the mean 

concentrations in breast milk, colostrum, and formula.  

 

 
Figure 3. Nitrite concentrations (A) and nitrate (B) concentrations in a variety of 
formulas used in neonatal intensive care units. Nitrite levels vary widely, ranging from 
barely detectable to more than 13-fold higher than breast milk. 
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Figure 4. Summary nitrite (A) and nitrate (B) concentrations in all forms of nutrition 
provided to newborns in an intensive care setting. The nitrite and nitrate concentrations in 
starter PN and PN samples are similar to those found in breast milk. 
 

 

Nitrite Metabolism in Breast Milk 

 The lower concentrations in the freeze-thawed milk compared to fresh samples 

indicated a time-dependent metabolism of nitrite. This was confirmed by measuring the 
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disappearance of 12 µM nitrite added to freeze-thawed milk and incubated at 37 C. Under 

these conditions, nitrite concentrations decreased in a manner approximating first-order 

kinetics, with a rate constant of 0.020 ± 0.003 min–1 and an effective half-life of 32 

minutes. The initial rates of nitrite metabolism of breast milk incubated at the different 

temperatures are shown in Figure 5A. An Arrhenius plot of the nitrite concentrations and 

temperature, shown in Figure 5B, revealed an activation energy of 6551 cal•mol–1 and a 

Q10 of 1.5.  

 

 
 

Figure 5. A) Nitrite metabolism rates under various temperature conditions. B) Arrhenius 
plot of nitrite metabolism and temperature. C) Nitrate and nitrite concentrations in six 
samples of breast milk incubated over five hours. D) Relationship between initial nitrite 
concentration and nitrate production. 
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As shown in Figure 6, this rate of disappearance was temperature dependent, with rate 

constants of 0.010 ± 0.001 min–1, 0.007 ± 0.001 min–1, and 0.005 ± 0.002 min–1 at 21, 

10, and 0 C. When the milk was boiled for 5 minutes to denature proteins, the nitrite 

concentrations remained stable when incubated at 37 C (data not shown). 

 

 
Figure 6. Time-course of nitrite disappearance in samples of milk incubated under 
different temperatures, 37 C (▼), 21 C (Δ), 10 C (■), or left on ice (○). Nitrite decreased 
in a mono-exponential fashion with apparent half-lives of ~31, ~54, ~75 min, and ~100 
min, respectively.  
 

 To examine the possibility that nitrite was being oxidized to nitrate, we made 

measurements of nitrite and nitrate concentrations following addition of nitrite to an 

initial concentration of 12.5 µM in breast milk. We observed an increase in nitrate 

concentrations that was comparable in magnitude to the decrease in nitrite concentrations 

(Figure 5C), consistent with a pathway of oxidation of nitrite to nitrate. To confirm these 

results, additional nitrite was added to a second set of breast milk samples for final 

concentrations ranging from 10 to 160 μM. The increase in the nitrate concentration in a 
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control sample of milk was subtracted from the rise in nitrate in the nitrite supplemented 

samples and plotted vs. the initial nitrite concentration (Figure 5D). 

 We next examined a number of different possible mechanisms for the 

disappearance of nitrite including its reaction with lipids, oxidation/reduction, and 

enzymatic catalysis by key milk proteins. 

 The role of lipids was assessed by measuring nitrite metabolism before and after 

delipidation of breast milk samples from mothers of term infants. Fat content in these 

samples averaged 2.6 ± 0.1 g/dl and decreased to 1.1 ± 0.2 g/dl after delipification for 

samples that were delipified via the chemical process. The extent of delipification was 

similar for the centrifugation method, with the starting fat content averaging 3.2 ± 0.4 

g/dl and the ending amount averaging 0.8 ± 0.1 g/dl after delipification (P = .31). 

However, lipid removal, by either a combination of chemical delipification and 

centrifugation or centrifugation only, had no effect on the rate of metabolism of nitrite, as 

shown in Figure 7A, and thus the role of lipids could be discounted. 
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Figure 7. Initial rates of nitrite metabolism in breast milk after removal of lipids (A), 
treatment with the NO scavenger, 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-
oxyl-3-oxide (B), incubation with N-ethylmaleimide or ferricyanide (C), or at different 
partial pressures of oxygen (D). 
 

 We were unable to detect any free NO in breast milk following addition of nitrite, 

indicating no reduction of nitrite to NO. We also considered the possibility of a rapid flux 

of nitrite reduction to NO with subsequent oxidation of the NO back into nitrite. If so, the 

removal of NO being produced would be anticipated to speed the metabolic loss of nitrite 

by mass action. However, addition of the NO scavenger, cPTIO, did not change the rate 

of nitrite metabolism (Figure 7B). Alternatively, any NO produced might have 

immediately reacted with cysteine residues to produce nitroso compounds, including s-

nitrosothiols (SNO). However, we did not detect measurable amounts of SNO production 
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in any of the milk samples. The combination of these results speaks against a reductive 

process that might have converted nitrite to NO. 

 

 

Figure 8. Time course of nitrite disappearance in samples of milk treated with PBS (○), 
N-ethylmaleimide (NEM) [2mM] (▼), or ferricyanide (FeCN) [10mM] (□). The 
metabolic loss of nitrite was blocked by incubation with FeCN, suggesting the 
involvement of an oxidizable transition metal. 
 

 We also investigated the potential roles of catalytic proteins in the metabolism of 

nitrite. The prevention of nitrite metabolism after boiling milk is consistent with an 

enzyme-mediated metabolism of nitrite. The metabolic loss of nitrite was halted by the 

addition of 10 mM ferricyanide, suggesting the involvement of a protein containing an 

oxidizable transition metal (Figure 7C and Figure 8). Other experiments tested the 

possible binding of nitrite or its metabolic byproducts to thiol groups. Again, the rate of 

nitrite disappearance was not affected by the presence of 2 mM NEM used to block 

available thiol groups (Figure 7C and Figure 8).  
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 The role of oxygen in nitrite metabolism was tested by measuring rates of nitrite 

disappearance in breast milk samples after equilibration with various concentrations of 

oxygen. We found the initial rate of nitrite disappearance to be directly related to oxygen 

tensions (Figure 7D). These results are consistent with an oxygen-dependent oxidation of 

nitrite to nitrate. In further support of this mechanism, nitrate production was observed to 

increase in approximate proportion to the magnitude of nitrite disappearance, as shown in 

Figures 5C, 5D. 

 The blockade of xanthine oxidase, an enzyme previously reported to metabolize 

nitrite to NO in breast milk, (27) by addition of allopurinol had no effect on the rate of 

nitrite disappearance (Figure 9 and Figure 11A). 

 

 

Figure 9. Time course of nitrite in samples of milk treated with either PBS (▲) or with 
the xanthine oxidase inhibitor allopurinol (100 μM final concentration) (Δ). Xanthine 
oxidase appears not to be responsible for the nitrite metabolism measured in breast milk. 
   

 Lactoperoxidase, an enzyme previously reported to be present in breast milk, (28) 

has been shown to contribute to oxidative mechanisms in milk, (29) in addition to 
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catalyzing the oxidation of nitrite in vitro (30). Inhibition of LPO’s iodide-binding site 

with 2-mercaptio-1-methylimidazole resulted in the blockade of nitrite metabolism. 

Similarly, inhibiting the polypeptide chain of LPO with 3-AT resulted in the complete 

inactivation of enzymatic activity, corresponding with a lack of nitrite metabolism 

(Figure 10 and 11B). Treating milk samples with excess dapson, a potent inhibitor of 

LPO activity, also effectively prevented the loss of nitrite over time. The nitrite 

metabolism curves for milk treated with the LPO inhibitors are shown in Figure 10. The 

addition of exogenous LPO (final concentration, 500 nM) also accelerated the loss of 

nitrite, shortening the half-life from ~30 to ~16 min (Figure 11C). 

 

 
 

Figure 10. Time course of nitrite in five samples of milk treated with PBS (▼) or one of 
three inhibitors of lactoperoxidase activity: 2-mercaptio-1-methylimidazole (2-MMI) (□), 
3-amino-1,2,4-triazole (3-AT) (Δ), or Dapson (○). Inhibition of lactoperoxidase activity 
effectively blocked the metabolism of nitrite in breast milk. 
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Figure 11. Initial rates of nitrite metabolism in breast milk after treatment with the 
xanthine oxidase inhibitor allopurinol (A), inhibition of lactoperoxidase by 2-mercaptio-
1-methylimidazole, 3-amino-1,2,4-triazole, or Dapson (B), or addition of purified 
lactoperoxidase enzyme (C). 
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Discussion 

 These studies sought to determine whether the dietary intake of nitrite and nitrate 

is limited for term and preterm infants in the NICU compared to normal infants. We find 

that the dietary intake of nitrate and nitrite is significantly lower in infants receiving 

freeze-thawed breast milk or breast milk from mothers of preterm infants or in infants 

receiving PN. In addition, the intake of nitrate and nitrite of infants receiving infant 

formulas range from less than to more than that of infants receiving fresh breast milk, 

depending on the brand of formula. Finally, the findings of the current experiments also 

add a novel breast milk component to the nitrate-nitrite-NO system, with nitrite being 

oxidized to nitrate by LPO, as shown in Figure 12. 
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Figure 12. Simplified schema showing the nitrate-nitrite-NO axis. 
 
 
 We find widely variant concentrations of nitrite and nitrate in the diets of 

newborn infants in the NICU. The lowest levels of nitrite and nitrate measured were 

those in sPN at nearly undetectable concentrations, whereas standard PN had 

concentrations comparable to those of breast milk. Infant formulas, however, were found 

to have levels ranging from undetectable to nearly 100 times those of breast milk. This 

suggests that the manufacturers of commonly used infant formulas do not tightly control 

for nitrite and nitrate concentrations, especially as levels were found to vary significantly 

across different lots of the same formula. 
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 With regard to breast milk, our results show that nitrite intake is limited for 

preterm infants in the NICU compared to term infants. The milk of the mothers of 

preterm infants has significantly less nitrite than the milk of the mothers of term infants, a 

finding in line with studies that have shown that the breast milk of mothers of term and 

preterm infants differ with respect to a number of components (31-34). Consistent with 

reports that the composition of milk changes in the days postpartum, (18, 34) we find that 

nitrite concentrations decrease from relatively high levels in colostrum to lower levels in 

the days and weeks after birth. The physiological importance of this progression is not 

known, but it is worth noting that it is not matched in the care of newborns in the NICU 

where initial feeds may be delayed and concentrations in sPN are well below those of 

breast milk. 

 

Nitrite Metabolism in Breast Milk 

 In all samples of breast milk analyzed, nitrite concentrations fell after freeze-

thawing. Our experiments indicate that the mechanism for this fall involves the 

metabolism of nitrite by LPO. In support of this idea, we demonstrate that nitrite 

metabolism is oxygen-dependent, blocked by the presence of FeCN to oxidize the heme 

moiety of LPO, and is blocked by 3 different selective antagonists of LPO activity. We 

also demonstrate that the metabolism of nitrite in breast milk is accelerated by the 

addition of exogenous LPO. This idea is consistent with previous reports that LPO is 

known to contribute to oxidative mechanisms in milk (29) and to metabolize nitrite in 

vitro (30). 
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 In contrast to previous reports that nitrite is reduced to NO by xanthine oxidase in 

breast milk,(35) we observed no change in the rate of nitrite metabolism following 

addition of allopurinol to block xanthine oxidase activity. Likewise, addition of the NO 

scavenger cPTIO also had no effect. Finally, the rate of nitrite metabolism was observed 

to be directly proportional to oxygen concentrations, in contrast to the inverse 

relationship that would be expected from the reduction of nitrite by xanthine oxidase 

(36). 

 The observation that FeCN prevented nitrite metabolism, together with evidence 

of the involvement of oxygen, suggested the involvement of an oxidative process 

involving a heme-containing protein. Lactoperoxidase falls into this category and is 

known both to contribute to oxidative mechanisms in milk (38) and to metabolize nitrite 

in vitro (30). Our finding that each of the three LPO antagonists studied abolished nitrite 

disappearance strongly indicates a role for LPO in the metabolism of nitrite in breast 

milk. Further supporting the role of LPO in the metabolism of nitrite, we found that 

adding purified LPO enhanced the conversion of nitrite to nitrate by approximately 2-

fold. 

 

Neonatal Nitrite and Nitrate Ingestion 

 Based on the values reported in this study, we have estimated the daily intake of 

nitrate in newborns in the NICU and compared this to adults. Assuming a representative 

milk intake of 150 ml•kg–1•day–1 and based on the nitrite and nitrate concentrations 

measured in our study, infants consuming fresh breast milk would ingest 0.0007 mg•kg–

1•day–1 of nitrite and 0.12 mg•kg–1•day–1 of nitrate. This may be compared to adult 



 

37 

ingestion of nitrite of ~0.109 mg•kg–1•day–1 and ~2.65 mg•kg–1•day–1 of nitrate, based on 

an average of seven studies summarized by Pennington (39). Thus, on a per kg body 

weight basis, neonatal intake of nitrite and nitrate are only ~0.6% and ~5% of the adult, 

respectively. In addition, nitrite intake would decrease another 50%-75% if the milk is 

freeze-thawed prior to ingestion and by another 50% if the milk came from the mother of 

a preterm infant. For infants who are fed infant formula instead of breast milk, nitrite and 

nitrate intake may range from markedly lower to several-fold above that of breast milk–

fed infants, and all formulas provide less nitrite and nitrate than the average adult diet. 

The amount of nitrite and nitrate being administered to infants receiving PN is 50%-80% 

less than that ingested by term infants receiving fresh breast milk. To date, we are 

unaware of any adult studies examining the effects of chronically low intake of nitrate 

and nitrite similar to that of infants. Consequently, the physiological effects of this 

deficiency in newborns cannot be compared to similar deficiencies in adults. 

 

Relation to Plasma Nitrite Levels 

 We have recently shown that plasma levels of nitrite in infants in the NICU 

average only 35%-55% of the levels of adults (16). One potential explanation is the 

current finding that infants ingest far lower amounts of nitrite and nitrate relative to 

adults. Demonstrating this effect, two recent studies showed a nearly 50% reduction in 

plasma nitrite and nitrate concentrations in rats given diets low in nitrite and nitrate 

(40,41). However, it remains to be determined whether reduced plasma nitrite levels in 

newborn infants is beneficial or detrimental and thus optimal levels of nitrate and nitrite 

in the diet of infants are as yet unknown. 



 

38 

 It is important to consider that until recently, these anions were solely considered 

to be toxic by-products of NO metabolism because of their potential ability to form 

carcinogenic N-nitrosamines and methemoglobin (MetHb) (42). Cases of 

methemoglobinemia have contributed to the idea that nitrate and nitrite ingestion must be 

carefully regulated for infants less than three months of age. However, even the high 

nitrate and nitrite levels we measured in infant formulas are well below concentrations 

known to cause methemoglobinemia, so we can assume that there is a wide range of safe 

nitrite and nitrate concentrations in the nutritional sources of newborn infants used today. 

Moreover, infants exposed to nitrate intakes as high as 700 mg/day maintained nontoxic 

MetHb levels (43) and even when MetHb levels are artificially inflated in newborn cord 

blood, there is sufficient MetHb reductase activity such that the half-life of MetHb is only 

~3.5 hours (44). 

 

Clinical Implications 

 The current findings inform speculation on the relationship between ingested 

nitrate and nitrite and the occurrence of newborn necrotizing enterocolitis (NEC), a 

disease that is characterized by a combination of decreased gastrointestinal blood flow, 

breakdown of the mucus barrier lining the lumen of the gut, and invasion by pathogenic 

bacteria (45). Nitric oxide, which can be derived from swallowed nitrite, has been shown 

to counteract all three of these factors in adult animal models (13,14,46,47). It is clear 

that the dietary intake of nitrite and nitrate is significantly lower in infants compared to 

adults, whether an infant is receiving fresh breast milk, freeze-thawed breast milk, infant 

formula, or PN. We demonstrate in chapter three that the endogenous reduction of nitrate 
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to nitrite is markedly diminished in the newborn infants due to a lack of oral nitrate-

reducing bacteria and significantly reduced saliva production (15). As a result, the impact 

of adding nitrate to the diet may be limited. Alternatively, addition of nitrite may provide 

an important source of NO to support the integrity of the gut lining by promoting enteric 

blood flow and mucus production. Although our results do not support the recent 

postulate that formula-fed infants are predisposed to NEC because of deficient nitrate or 

nitrite intake (48) since the concentrations in most formulas for preterm infants we 

measured were well above those of breast milk, given the protective effects of nitrite in 

the gastrointestinal tract, it is reasonable to propose that a deficiency of circulating nitrite 

could potentially predispose infants to NEC. We explore this hypothesis further in our 

work discussed in chapter four.  

 One possible consequence of low plasma nitrite concentrations would be a 

diminished capacity of this anion to function as a reservoir of NO bioactivity, a pathway 

thought to be important in protecting tissues against ischemic stress (2-7) (also see recent 

review by Weitzberg and Lundberg (50)). Animal studies from multiple laboratories, 

species, and disease models now support the idea that increasing plasma nitrite levels, in 

some cases by as little as 2- to 3-fold, may protect against hypoxic/ischemic stress (see 

review by Dezfulian et al (49)). Interestingly, plasma nitrite concentrations of healthy 

term newborns are ~30% lower than those of adults and increase by ~2-fold with no 

known adverse effects during administration of inhaled NO (20 ppm) to infants with 

pulmonary hypertension (16). However, there are not yet any clinical reports on the 

therapeutic effects or safety of exogenous nitrite to treat ischemia/reperfusion injury, and 

although it may have therapeutic possibilities, there are also inherent risks to consider. 
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For example, in adults, ingestion of nitrate results in a significant decrease in arterial 

blood pressure, (10) which would be undesirable in the care of most premature infants. In 

addition, MetHb production is of particular concern in neonates as they possess low 

levels of MetHb reductase activity, (44) and compared to adults, fetal hemoglobin is 

more rapidly oxidized to methemoglobin by reaction with nitrite (50). Thus, the 

possibility of methemoglobinemia cannot be ignored. 

 In summary, infants in neonatal intensive care units ingest markedly lower levels 

of nitrate and nitrite than adults on a per kg basis, possibly contributing to lower 

circulating concentrations in the plasma. The naturally occurring enzyme lactoperoxidase 

is likely a primary factor in the oxidation of nitrite to nitrate during the handling and 

storage of breast milk and is likely responsible for the ~65% fall in nitrite concentrations 

that occurs through freeze-thawing, potentially exacerbating the effects of the little 

dietary nitrite made available to infants. Whether this limited ingestion puts the newborn 

infant population at risk for gastrointestinal and cardiovascular diseases or whether 

supplementation of these anions in the diet would be beneficial on one hand or safe on 

the other calls for future study.  
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CHAPTER THREE 

NITRATE REDUCTASE ACTIVITY OF BACTERIA IN SALIVA OF TERM 

AND PRETERM INFANTS 

 

Abstract 

 The salivary glands of adults concentrate nitrate from plasma into saliva where it 

is converted to nitrite by bacterial nitrate reductases. Nitrite can play a beneficial role in 

adult gastrointestinal and cardiovascular physiology. When nitrite is swallowed, some of 

it is converted to NO in the stomach and may then exert protective effects in the 

gastrointestinal tract and throughout the body. It has yet to be determined either when 

newborn infants acquire oral nitrate reducing bacteria or what the effects of antimicrobial 

therapy or premature birth may be on the bacterial processing of nitrate to nitrite. We 

measured nitrate and nitrite levels in the saliva of adults and both preterm and term 

human infants in the early weeks of life. We also measured oral bacterial reductase 

activity in the saliva of both infants and adults, and characterized the species of nitrate 

reducing bacteria present. Oral bacterial conversion of nitrate to nitrite in infants was 

either undetectable or markedly lower than the conversion rates of adults. No measurable 

reductase activity was found in infants within the first two weeks of life, despite the 

presence of oral nitrate reducing bacteria such as Actinomyces odontolyticus, Veillonella 

atypica, and Rothia mucilaginosa. We conclude that relatively little nitrite reaches the 

infant gastrointestinal tract due to the lack of oral bacterial nitrate reductase activity. 

Given the importance of the nitrate–nitrite–NO axis in adults, the lack of oral nitrate-
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reducing bacteria in infants may be relevant to the vulnerability of newborns to hypoxic 

stress and gastrointestinal tract pathologies. 

 

Introduction 

 Until recently nitrite and nitrate were thought to be biologically inert at 

physiological concentrations. However, evidence now indicates that these anions play a 

significant role in cardiovascular homeostasis, and in responses to hypoxic and ischemic 

stress (See review by Lundberg et al. (1)). Nitrite has been found to provide protective 

effects in various animal models of ischemia–reperfusion (2–5). Clinical trials are 

currently evaluating the safety and efficacy of nitrite in pulmonary hypertension and 

myocardial infarction. While the mechanism underlying the protective effects of nitrite is 

not yet well understood, a common hypothesis posits that nitrite is reduced to NO, a 

reaction that can either occur spontaneously under acidic conditions such as those found 

in the stomach (6), or which may be catalyzed by a number of metal-containing proteins 

(7). Irrespective of the mechanism, there is growing consensus that nitrite is 

cytoprotective during ischemia–reperfusion insult which has lead to an interest in the 

factors that determine plasma nitrite concentrations.  

 Nitrate, which is inert in mammalian tissues, is converted to nitrite by bacteria 

normally found on the dorsal surface of the adult tongue (1, 8). These microbes act upon 

nitrate that is concentrated in the saliva by the salivary glands or ingested in the diet. 

Dietary nitrate primarily derives from vegetables (9) and from breast milk and formula, 

albeit in significantly lower levels, in the diet of newborns (10). These microbes also act 

on nitrate that is actively transported from plasma into the saliva by the salivary glands 
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(9). The resulting salivary nitrite is swallowed, and can then be converted to NO by 

nonenzymatic disproportionation in the acidic environment of the stomach (11, 12). It can 

also enter the circulation where it may serve as a long-term reservoir of NO-bioactivity 

(1). Increasing dietary nitrate lowers blood pressure (13, 14), improves exercise 

performance (1, 15, 16), and increases plasma nitrite concentrations (14, 17). Disruption 

of the salivary nitrate–nitrite–NO pathway in adults by not swallowing saliva prevents the 

fall in blood pressure associated with ingestion of nitrate (13). Thus, there is strong 

evidence that nitrate-reducing oral bacteria play an important role in determining plasma 

nitrite concentrations and the cardiovascular homeostasis of adults.  

 The bacterial colonization of the mouth and gastrointestinal tract of newborn 

infants begins at birth and progresses over the first few weeks of life (18). This 

progression is almost certainly altered in an intensive care setting where sanitary 

practices and the use of antibiotics may diminish oral bacterial quantity and nitrate 

reducing capacity. The appearance of nitrate-reducing bacteria in the mouths of newborn 

infants, whether in outpatient or intensive care settings, had not yet been characterized.  

 Our previous work has shown that plasma nitrite concentrations are lower in 

newborn infants in the neonatal intensive care unit compared to adults (19). We postulate 

that this is in part due to low oral nitrate reductase activity in newborn infants. The 

current studies were designed to measure the activity of nitrate reducing bacteria in 

saliva, to characterize the type of oral nitrate reducing bacteria in the mouth of newborn 

infants, and to compare newborn and adult salivary nitrite and nitrate concentrations. We 

also tested the hypothesis that elimination of oral nitrate-reducing bacteria leads to 

decreases in circulating nitrite in adults. Given the importance of the nitrate–nitrite–NO 
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axis in adults, the appearance and activity of oral nitrate-reducing bacteria in infants may 

contribute to reduced plasma nitrite levels and may be a significant factor in the course of 

development. 

 

Methods 

 All experimental protocols were approved by the Institutional Review Board of 

Loma Linda University. Newborn study subjects were recruited from the neonatal 

intensive care unit, well-baby nursery, and pediatric outpatient clinic of Loma Linda 

University Children’s Hospital. Infants were considered to be term if born after 36 weeks 

gestation, and to be preterm if born before 35 weeks gestation; they were excluded from 

the study if they were born at 35 or 36 weeks gestation. In addition, infants with 

congenital malformations were excluded from the study. The infants’ gestational age, 

birth weight, type of feeding, and antibiotic therapy were recorded. Adult subjects were 

healthy males and females who, ranged from 24 to 72 years of age, had not used 

antiseptic mouthwash within 24 hours, and had not received antibiotic treatment within 

two weeks prior to the study. Separate cohorts of adults were studied for the salivary 

nitrate and nitrite concentrations and nitrate reductase activity portions of the study.  

 

Salivary Nitrite and Nitrate Concentrations 

 To determine baseline salivary nitrite and nitrate concentrations, samples were 

collected from infants and adults by gently rotating a sterile cotton swab (Kendall Q-Tips, 

Tyco Healthcare Group, Mansfield, MA) against the sublingual posterior aspect of the 

tongue for 90 seconds. Samples were collected at least one hour following meals. The 

cotton end of the swab was removed and immediately transferred to 500 µL of water. The 
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weight of the cotton swab was recorded to the nearest milligram before and after 

placement in the mouth to determine the amount of saliva collected. The amount of nitrite 

and nitrate collected in the swab was determined by comparison with standard curves 

generated from known nitrite or nitrate concentrations in 200 µL of water soaked into 

swabs and prepared on each day samples were assayed. Both nitrite and nitrate standards 

resulted in a linear relationship between the nominal and measured concentrations (nitrite 

R2 = 0.98, nitrate R2 = 0.87). Nitrite levels were consistently found to be below the lower 

limit of assay detection (10 nM) in samples of dry swabs, demonstrating no background 

contamination. There was measurable background contamination of nitrate (60.32 ± 

11.61 µM) in the dry swabs, which was subtracted from the raw nitrate levels by the use 

of the standard curve. 

 

Salivary Nitrate Reductase Activity 

 Salivary samples were collected by rotating a sterile cotton swab in a single 360-

degree twisting motion against the dorsum of the tongue. The volume of saliva collected 

was determined via the weight gain of the swab. The swab tip was immediately 

transferred to 3.0 ml of sterile anaerobic BHI broth (BD bacto™ brain heart infusion; BD 

Bacto™ yeast extract, Becton Dickinson, Franklin Lakes, New Jersey; L-cysteine 

hydrochloride monohydrate, Fisher Scientific, Pittsburg PA; Hemin; Menadione; Sigma, 

St. Louis MO) and then placed in a water bath held at 37 C. Within ten minutes of 

placing the swab in broth, a baseline nitrite measurement was recorded and then 10 mM 

nitrate was added (final concentration 333 µM) to provide substrate for the bacterial 

conversion to nitrite. Nitrite concentrations were then measured at five-minute intervals 
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beginning after the first collection at one minute, and continuing for 30 min. The nitrate 

reductase activity was calculated from the slope of a linear regression fit to the plot of 

increasing nitrite concentrations over time, with the result providing nanomoles of nitrite 

production per minute per milligram of saliva collected. We verified this method of 

measuring oral nitrate reductase activity by treating four adult subjects with six antiseptic 

mouth rinse treatments consisting of 0.12% chlorhexidine solution (Peridex, 3 M ESPE 

Dental, St. Paul, MN) over a period of three days (12-hour intervals). Baseline activities 

were recorded before the mouth rinse treatment, and immediately following the last 

mouth rinse treatment, demonstrating that the subjects no longer had any measurable 

activity (Figure 13). Subsequent measurements at 8, 24, and 48 h after the last treatment 

indicated a return to baseline levels of nitrate reductase activity within 48 h. 

 

 
Figure 13. Effect of antiseptic mouthwash on the assay for oral nitrate-reducing bacteria. 
Following six treatments with antimicrobial mouth rinse at twelve hour intervals, oral 
nitrate reductase activity in four adult subjects was decreased to unmeasurable levels 
compared to baseline values. Nitrate reductase activity returned to normal within 48 h 
following the last antimicrobial mouth rinse treatment. 
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 To verify that nitrate was being metabolized in the broth as nitrite concentrations 

were increasing, we also measured the rate of nitrate disappearance using swab samples 

from five adult subjects. Over the course of the 30-min experiment, the mean rate of 

nitrate disappearance was 103 ± 20 nmol•min-1•mg-1 of saliva, while the mean rate of 

nitrite production was 47 ± 17 nmol•min-1•mg-1 (Figure 14).  

 

 

Figure 14. A) Time course of nitrite production and nitrate reduction by nitrate-reducing 
bacteria cultured from saliva samples of five adults. B) Summary of kinetic results based 
on average rates of change of nitrite and nitrate concentrations with time.  
 

 

Effect of Antimicrobial Mouth Rinse on Blood and Saliva Nitrite and Nitrate 

Concentrations in Adults 

 Twenty-four normal healthy adults received six mouth rinse treatments over a 

period of three days (at 12-h intervals) with either 0.12% chlorhexidine solution (n = 12) 

or saline solution (n = 12) as placebo control. Saliva and venous blood samples were 

collected just prior to the first mouth rinse, and then again one to two hours following the 

final mouth rinse. Blood was immediately added to a nitrite preservation solution (4:1 

v/v) (20), deproteinized by methanol precipitation (1:1 v/v), and stored at 70 C until 

 
 A B 
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assay. Approximately 5 ml of saliva was collected by expectoration of passively secreted 

saliva into a 50 ml tube, which was immediately frozen until assay at a later date. 

Subjects were asked to refrain from eating high-nitrate foods (e.g. beets, radishes, 

hotdogs, and leafy greens) from 24 h prior to the first sample until after the collection of 

the final sample. 

 

Salivary Bacterial Analyses 

 To assess for the presence of bacteria capable of nitrate reductase activity, PCR 

analysis and real-time PCR was performed on bacterial DNA isolated from saliva 

collected from healthy infants in the pediatric outpatient clinic, and from preterm infants 

in the NICU and from healthy adults after six chlorhexidine treatments. We chose to test 

for the presence of the four most prevalent nitrate reducing bacterial species in the adult 

mouth (21): Veillonella atypica, Actinomyces odontolyticus, Rothia mucilaginosa, and 

Staphylococcus epidermidis. Saliva was collected using a Vacutainer™ anaerobic 

specimen collection vial (Becton–Dickinson, Sparks, Maryland) by rotating a sterile 

anaerobic specimen collector swab in one 360-degree rotation against the dorsum of the 

tongue. Swabs were stored in an anaerobic specimen collector for up to 48 h at room 

temperature after which they were placed in 5.0 ml of sterile anaerobic brain heart 

infusion (BHI) broth. The swabs were then incubated overnight at 37 C in an anaerobic 

chamber (0% O2, 99.8% N2, 0.2% H2), until the broth had reached an optical density of 

0.8–1.0 (600 nm). Bacterial DNA was extracted using a Wizard Genomic DNA 

purification kit (Promega Corporation, Madison, WI) following the manufacture’s 

protocol for isolating genomic DNA from gram positive bacteria. For efficient lysis, 60 
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µL of 10 mg/ml lysozyme and 60 µL of 10 mg/ml lysostaphin (Sigma–Aldrich, St. Louis, 

MO) were added to each sample. The DNA was resuspended in 100 µL of rehydration 

solution, quantified using a NanoDrop 2000 (Thermo Scientific, Wilmington, DE) and 

then stored at 70 C. 

 

PCR Analysis 

 Qualitative PCR was performed on the DNA samples initially to confirm the 

accuracy of the primers used for the four bacterial species of interest, and to confirm the 

presence of target bacterial genes in the DNA samples. The primers for PCR analysis are 

listed in Table 1 and were designed using the NCBI primer select program. The reaction 

mixture (50 µL) contained 1 µg of template DNA in the high fidelity PCR master mix 

(Invitrogen, Carlsbad, CA). PCR cycling conditions were 1 cycle of 5 min at 94 C 

followed by 30 cycles of 30 s at 94 C, 30 s at 54 C and 1 min at 68 C with final extension 

of 5 min at 68 C. 

 

Real-time PCR analysis 

 Real time PCR was carried out on 1 µg aliquots of purified DNA using a Smart 

cycler II (Cepheid, Sunnyvale CA). The primers for the real time analysis are listed in 

Table 2. The amplification efficiency of each primer set was determined empirically by 

using DNA template dilutions over four orders of magnitude. The amplification 

efficiency for each primer set varied between 95.1% and 102.5%, showing that the 

amplicons were generated with comparable efficiency. The specificity of the 

amplification was ascertained based on the melting peak generated during each run. 
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Table 2. Primer sequences used for bacterial PCR analysis. 
Bacterial species Target gene primer set 
  1. Veillonella atypica Forward primer- 5’ – 

GTGCTGCAGAGAGTTTGATCCTGGCTCAG -3’ 
Reverse primer-5’- 
CACGGATCCTACGGGTACCTTGTTACGACTT -3’ 

  2. Rothia mucilaginosa Forward primer-5’-AGCCTCAGGG 
ATTGATGGGTTCTT-3’ 
Reverse primer- 5’-TTCTGGTGGTT 
GTACAGGGCGTTA-3’ 

  3. Actinomyces   
      odontolyticus 

Forward primer- 5’- GCGGATTAATT 
CGATGCAACGCGA-3’ 
Reverse primer- 5’ CATTGTAGCAT 
GCGTGAAGCCCAA-3’ 

  4. Staphylococcus  
     epidermidis 

Forward primer- 5’-CTGCCTTTCAA 
TGCGAGTTGGCTT-3’ 
Reverse primer-5’-ACAGCTAAACT 
TGCAGCATGTGGG-3’ 

 
 

The real time-PCR reaction contained 12.5 µL of QuantiTect SYBR Green qPCR master 

mix (Qiagen, Valencia, CA), 0.2 µM of each gene-specific primer and 1 µL of DNA 

template. The cycling conditions were 50 C for 2 min, 95 C for 2 min, then 40 cycles of 

94 C for 15 s, 58 C for 30 s, and 72 C for 30 s. Distilled water was used as a negative 

control in each run. All reactions were carried out in triplicate. A standard curve was 

generated using dilution of the DNA from each species of bacteria plotted against the 

cycle threshold value (Ct). The concentration of DNA was converted to copy number 

using the formula n = NA – m/MW – L where n = the number of target sequence copies 

per microliter, NA = Avagadro’s constant (mol-1), m = mass of the amplicon per 

microliter, MW = mean molecular weight of 1 base pair, and L = amplicon length in base 

pairs. The Ct values obtained were plotted against DNA concentration to generate 

standard curves from which the cutoff Ct for each bacterial species was determined. The 

cutoff Ct value, above which the absence of the bacteria is indicated, was 43 for 
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Veillonella  atypica, 49 for Rothia mucilaginosa, 39 for Actinomyces odontolyticus, and 

47 for Staphylococcus epidermidis. 

 

Nitrite and Nitrate Assays 

 Nitrite concentrations were measured by triiodide chemiluminescence as 

described by Pelletier et al. (20), enabling quantification above 10 nM with a precision of 

±5 nM. Nitrate concentrations were measured by incubation of 205 µL of sample with 5 

µL nitrate reductase enzyme (10 U/ml solvent, Roche, Indianapolis IN) in 10 µL of 1 M 

HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) buffer solution (Fisher 

Scientific, Pittsburgh PA), 10 µL of 0.1 mM flavin adenine dinucleotide disodium salt 

hydrate (Sigma Aldrich, St. Louis, MO), and 20 µL of 1 mM nicotinamide adenine 

dinucleotide phosphate-oxidase tetrasodium salt (Roche, Indianapolis, IN) at 37 C for 45 

min to convert all the nitrate to nitrite, which was then measured by triiodide 

chemiluminescence. Whole blood nitrate concentrations were measured by 

chemiluminescence assay following reduction of nitrate to NO in a purge vessel 

containing vanadium III and HCl at 90 C. 

 

Data Analysis 

 Data are presented as means ± standard error. Differences between study groups 

were detected using Student’s t-test for two group comparisons and one-way ANOVA 

followed by Bonferroni post hoc analysis for comparison of three or more datasets. 

Oneway ANOVA with repeated measures was also used to detect significant changes 

from baseline measurements in time-course experiments. Two-way ANOVA followed by 



 

56 

Bonferroni post hoc analysis was used to detect significant differences between groups in 

time-course experiments. Statistical analysis was performed using Prism 5 for Mac OS X 

(Graphpad Software, Inc, La Jolla, CA). 

 

Results 

Nitrite and Nitrate Concentrations in Saliva 

 Nitrite and nitrate concentrations were measured in saliva collected from ten 

infants and twelve healthy adults. The results are shown in Figure 15 and participant 

demographics are provided in Table 3.  

 

Table 3. Saliva study infant participant demographics. 

 Infants 
Participants, n 10 
Gestational age, weeks 39 ± 0.3 
Birth weight, grams 3662 ± 170 
Age at time of collection, days 3.1 ± 0.3 
Infants receiving antibiotics, n 0 
Breast fed, n 7 
Formula and breast milk fed, n 3 
 

 

Nitrite concentrations in infant saliva averaged 8.2 ± 5.6 µM. These concentrations were 

significantly lower than adult salivary nitrite concentrations which averaged 50 ± 13 µM 

(p = 0.0501) (Figure 15A). Nitrate concentrations were measured in saliva collected from 

ten infants and fourteen adults and averaged 284 ± 83 µM in the saliva of infants and 

were not measurably different than those found in adults (681 ± 184, p = 0.11) (Figure 

15B). The newborn salivary nitrate concentrations were approximately ten-fold greater 
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than previously reported newborn plasma nitrate levels (19,22,23), demonstrating that 

salivary glands are able to concentrate nitrate from the plasma into the saliva of infants, 

and to levels comparable to adults. Notably, the amount of saliva obtained during the 

timed 90-second collection periods from infants (39 ± 8 µL) was less than the amount 

collected from adults (143 ± 15 µL) (p < 0.001). 

 

 

Figure 15. Nitrite and nitrate concentrations in saliva of infants and adults. (A) Nitrite 
concentrations in the saliva of infants (8 ± 5 µM) were less than adult saliva (55 ± 22 µM, 
*= p < 0.01). (B) Salivary nitrate levels were not significantly lower in the saliva of 
infants (328 ± 97 µM) than in the saliva of adults (538 ± 125 µM). 
 
 
 

Conversion of Nitrate to Nitrite in Saliva 

 Oral bacterial nitrate-reducing activity was measured in fresh oral swabs 

immediately after placing them in culture media. Swabs were obtained from 25 infants 

less than five days of age, from 19 infants between 14 and 40 days of age, from 9 infants 

approximately two months old, and from 13 healthy adults. The demographics of the 

infant subjects are shown in Table 4.  
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Table 4. Saliva nitrate reductase study infant participant demographics. 
 
 

NICU 
preterm 
on 
antibiotics 

NICU 
term on 
antibiotics 

NICU 
preterm 

Outpatient 
term 

NICU 
term >2 
weeks old 

NICU 
preterm > 
2 weeks 
old 

Outpatient 
> 2 weeks 
old 

Outpatient 
2 months 

Participants, n 7 6 5 7 5 8 6 9 
Gestational age, 
weeks 

32.1 ±  0.7 38.6  ±  
0.5 

32.6  ±  
0.7 

39.2  ±  
0.5 

38.4  ±  
0.5 

30.8  ±  
1.1 

38.9  ±  
0.7 

39.5  ±  
0.3 

Birth weight, grams 1495  ± 
201 

3322 ±   
86 

1964  ±  
124 

3391 ±   
140 

3350  ±  
235 

1581  ±  
174 

3199  ±  
133 

3425  ±  
127 

Age at time of 
collection, days 

3  ±  0.4 4.2  ±  0.3 4.6  ±  0.2 3.7  ±  0.4 26.6  ±  
5.6 

27.3  ±  
2.9 

17.2  ±  
1.7 

64.6  ±  
1.1 

Breast fed, n 0 2 0 3 1 0 6 7 
Nipple/gavage breast 
milk fed, n 

3 3 2 2 1 7 0 0 

Formula fed only, n 0 0 2 2 3 1 0 2 
Intravenous feeding, 
n 

4 1 1 0 0 0 0 0 

 

 

Swabs collected from infants contained similar amounts of saliva as those collected from 

adults (17 ± 1 vs. 17 ± 3 mg, respectively, p = 0.9). The rate of nitrite production in the 

cultures, normalized to the weight of the saliva collected, was linear during the 30 min 

sampling period, as shown in Figure 16A, with the slope thus providing an index of 

bacterial nitrate reductase activity. In samples taken from adults nitrite was produced at a 

rate of 147 ± 36 nmoles•min-1•mg-1. In marked contrast, however, saliva cultures from 

newborns showed little or no detectable nitrite production. 

 In the cultures collected from preterm (n = 6) and term (n = 6) infants on 

antibiotics, the rates of nitrite production were not significantly different than zero (0.05 

± 0.04 nmoles•min-1•mg-1 saliva and 0.04 ± 0.11 nmoles•min-1•mg-1 saliva, 

respectively). In addition, there was no appreciable nitrite production in the salivary 

cultures taken from preterm infants in the NICU not receiving antibiotics, or from healthy 

term infants less than two weeks of age in the well-baby nursery and outpatient clinic (4 

± 4 nmoles•min-1•mg-1 saliva and 5 ± 3 nmoles•min-1•mg-1 saliva, respectively). Nitrite 

production was detectable in saliva samples collected from healthy infants between 14 



 

59 

and 40 days of age in the outpatient clinic (22 ± 15 nmoles•min-1•mg-1) as well as term 

(23 ± 12 nmoles•min-1•mg-1) and preterm infants in the NICU (28 ± 19 nmoles•min-

1•mg-1), although this activity was still measurably less than that of the adults (p < 0.01). 

Even by two months of age, the rate of nitrite production (23 ± 12 nmoles•min-1•mg-1) 

was significantly lower than that of adults (p < 0.01, Figure 16B).  
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Figure 16. A) Time course of nitrite production by nitrate-reducing bacteria cultured 
from saliva samples. After introduction of nitrate substrate into cultures, nitrite was 
measured in samples from adults (♦), infants greater than two weeks of age (◊), newborn 
infants less than five days old (○), and newborn infants less than five days old receiving 
antibiotics (▲).  B) Summary of kinetic results based on average rates of change of 
nitrite concentration with time, as shown in A. There was no significant nitrite production 
in the saliva of infants <5 days old, regardless of whether they were on antibiotics (abx). 
There was significant nitrite production in the infants older than two weeks (+ = p<0.01), 
and nitrite production was significantly greater in the adult saliva compared to infants 
(*** = p<0.001). 
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PCR Detection of Nitrate Reducing Bacteria 

 To investigate the possibility that the lack of nitrate reducing activity in the 

samples collected from infants was due to the absence of nitrate-reducing bacteria, PCR 

detection was performed on samples collected from five healthy term infants in the 

outpatient clinic and seven preterm infants in the NICU, who were all less than five days 

of age. The specificity of the amplification of target genes was confirmed by 

conventional PCR analysis (data not shown). The quantitative PCR demonstrated the 

presence of Veillonella atypica and Rothia mucilaginosa in all the infants studied. 

Actinomyces odontolyticus was present in four of the five term infants and five of the 

seven preterm infants, and Staphylococcus epidermidis was present in two of the five 

term infants and all of the preterm infants studied (Figure 17). These values suggest that 

the most abundant oral nitrate reducing bacteria in adults are also present in the mouths 

of neonates within a few days after birth. Thus, the lack of nitrate reductase activity in 

infants is more likely to be due to low abundance or activity of these bacteria as opposed 

to lack of inoculation. To assess this possibility further, PCR was also performed on eight 

adult subjects after six treatments with chlorhexidine, which lowers oral nitrate reductase 

activity by our assay to levels comparable to those of infants (see above). We found 

detectable presence of all four bacterial species in all adults studied, with the exception of 

one adult in whom Actinomyces odontolyticus was not detectable, suggesting that 

although chlorhexidine significantly decreases overall oral nitrate reducing activity, it 

does not completely eliminate the presence of nitrate reducing bacteria.  
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Figure 17. Real time PCR detection of nitrate-reducing bacteria. The presence of  
Veillonella atypica, Rothia mucilaginosa, Actinomyces odontolyticus, and Staphylococcus 
epidermidis in bacterial cultures collected from the mouths of term (●) and preterm (○) 
infants and adults () was confirmed using primers specific to the respective bacteria. 
Horizontal gray bars represent the cutoff Ct value, below which the presence of the 
bacteria is confirmed. The data indicate the presence of most of these nitrate reducing 
bacteria in the infant mouth within the first few days of life. 
 

 

Effect of Antimicrobial Mouth Rinse on Blood and Saliva Nitrite and Nitrate 

Concentrations in Adults 

 Changes in blood nitrite were examined in 24 adult subjects after three days of 

treatment with either anti-microbial mouth rinse or placebo. Mean blood nitrite 

concentration decreased by approximately 20% from 0.27 ± 0.01 µM to 0.22 ± 0.01 µM 

following chlorhexidine treatment (p < 0.05), but was not affected by the placebo. As 

shown in Figure 18, blood nitrite concentrations decreased in 9 out of 12 subjects 
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following chlorhexidine mouth rinse treatments, compared to only 5 out of 12 subjects 

with placebo mouth rinses. There were no significant differences in the blood nitrate 

concentrations of the study subjects before or after treatment with chlorhexidine (41 ± 8 

vs. 48 ± 7 µM) or placebo (35 ± 4 vs. 32 ± 6 µM, data not shown). Saliva nitrite 

concentrations fell from 322 ± 70 to 109 ± 35 µM (p < 0.01) following three days of 

antimicrobial mouthwash, and were unchanged (246 ± 54 vs. 284 ± 45 µM) following 

treatment with placebo. Saliva nitrate concentrations increased from 189 ± 39 to 1083 ± 

268 µM (p < 0.01) following the antimicrobial mouthwash, and were again unchanged 

(118 ± 40 vs. 141 ± 37 µM) following treatment with placebo. 

 

 

Figure 18. Effect of antiseptic mouth rinse on adult blood nitrite concentrations. Blood 
nitrite concentrations in healthy adult volunteers were significantly decreased by ~19% 
compared to baseline levels following six treatments with antiseptic mouth rinse 
(chlorhexidine) at 12-hour intervals (*=p<0.04). No significant change was observed in a 
parallel group of placebo (saline) control subjects. 
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Discussion 

 The current studies demonstrate that bacterial nitrate reductase activity in the 

mouth of neonates is minimal compared to that of adults. The low nitrate-reducing 

activity in the newborn persists for at least the first two months of life, and results in 

significantly lower salivary nitrite concentrations. In spite of this reduced activity, PCR 

evidence shows that newborn mouths do contain the major nitrate-reducing bacteria 

found in adults. This suggests that the diminished nitrate-reducing activity of newborns 

may be due to lower numbers of these bacteria, as opposed to a lack of inoculation. Thus, 

this study shows that oral nitrite production, which plays a prominent role in 

cardiovascular and gastrointestinal homeostasis of adults, has less capacity to function in 

neonates during the first few weeks of life.  

 

Impact of Oral Bacteria on Nitrite Ingestion 

 Normally, adults swallow on average 600 ml of saliva per day (24). To our 

knowledge, the quantification of saliva production or ingestion in newborns has not yet 

been accomplished due to obvious technical challenges. However, the newborn mouth is 

relatively dry compared to the adult mouth, as is reflected by significantly lower volumes 

of saliva collected by the oral swabs in the current study. In adults, even when nitrate-

reducing bacteria are present, not swallowing saliva effectively blocks the physiological 

effects of dietary nitrate (13). Thus, it is reasonable to hypothesize that the relatively low 

rate of saliva production in newborns, coupled with a low concentrations of nitrite in the 
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saliva and diet, has a compounded impact upon overall nitrite ingestion by newborn 

infants resulting in significantly decreased nitrite intake compared to adults. 

Linkage between Oral Bacterial Activity and Plasma Nitrite 

 We have recently observed that the blood nitrite concentration of newborn infants 

(1.4 ± 0.5 days of age) is approximately 35–55% lower than that of adults (19). The 

current studies found that a blockade of oral bacterial nitrate reduction activity in adults 

resulted in a 20% reduction in blood nitrite concentrations, demonstrating that oral nitrate 

reductase activity makes a significant contribution to basal plasma nitrite concentrations. 

This finding is consistent with experiments in which increases in plasma nitrite, 

following nitrate ingestion, have been shown to require the activity of oral bacteria (13, 

25). Notably, plasma nitrite concentrations are also heavily influenced by NO derived 

from endothelial nitric oxide synthase (eNOS) activity (26, 27). However, the rate of 

eNOS activity in newborns, relative to adults, has not been determined.  

 

Oral Bacteria 

 A number of specific nitrate-reducing bacteria, most of them facultative 

anaerobes, have been identified in the oral cavity of adult humans (21, 28). Previous 

studies have reported the presence of Veillonella and Actinomyces spp. (29, 30) in infants. 

To our knowledge, however, our work is the first to report both the presence of nitrate 

reducing bacteria and measurement of oral nitrate reducing activity. The significantly 

lower nitrate reductase activity in newborns, despite evidence of their mouths having 

been colonized by these bacteria, may be due to relatively low bacterial abundance at this 

age, a factor not measured in the current study. This idea is supported by our observation 
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of the presence of these bacteria in the mouths of adults following chlorhexidine 

treatment, concomitant with a lack of measurable nitrate reductase activity. The 

significantly lower bacterial nitrate reductase activity observed in infants in both an 

intensive care setting and the home environment, regardless of whether the infants were 

receiving antibiotics, serves as further evidence that the low nitrate reducing activity of 

newborns was not due to a delayed inoculation of these infants with nitrate-reducing 

bacteria.  

 

Study Limitations 

 We observed that salivary nitrite concentrations in adult saliva collected with 

cotton swabs (55 ± 22 µM) were consistently lower than concentrations measured in 

saliva collected by expectoration (284 ± 63 µM) in addition to being lower than most 

previously reported salivary nitrite concentrations which range from 90 to >670 µM. 

Standard curves generated by dipping swabs in small amounts of water with varying 

concentrations of nitrite were highly linear with significant slope. However, we observed 

that nitrite concentrations measured in ten expectorated adult saliva samples were 

significantly higher than concentrations measured from samples collected at the same 

time using swabs (131 ± 32 vs. 45 ± 14 µM, p = 0.024). This suggests that nitrite in saliva 

may bind to the swab itself or to other components of saliva that bind to the swab, 

resulting in an artifact of low absolute nitrite concentrations. Nevertheless, the 

measurement of nitrite in saliva collected in the swabs provides a relative comparison of 

newborn and adult concentrations where collection of expectorated samples from infants 

is not possible. Improved methods of neonatal saliva collection in the future may lead to 
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more precise determinations of absolute concentrations in neonatal saliva. It is also 

important to note that although our findings indicate that nitrate reducing activity is 

markedly less in the mouths of infants compared to adults despite the PCR detection of 

nitrate reducing bacteria, the PCR results cannot be used as a quantifiable comparison of 

bacterial abundance in infant and adult mouths due to the method of sample collection 

and overnight culture prior to DNA isolation. 

 

Clinical Perspective 

 Hypoxia and ischemia play key roles in several diseases of the newborn period. 

Because nitrite is protective against hypoxic and ischemic insults, questions arise as to 

the potential role of nitrite supplementation of the newborn infant. Such treatment may be 

particularly beneficial to premature infants who require prolonged periods of intubation 

and mechanical ventilation which has been demonstrated in adults to result in significant 

depletion of intragastric NO, presumably due to marked decreases in saliva production 

and swallowing (31). Necrotizing enterocolitis, the most common gastrointestinal 

disorder to affect premature infants, likely results from a combination of decreased 

gastrointestinal blood flow, breakdown of the mucus barrier lining the lumen of the gut, 

and invasion by pathogenic bacteria (32). Intragastric nitric oxide derived from non-

enzymatic disproportionation of swallowed salivary nitrite counteracts all three of these 

factors in adult animal models (31, 33, 34). However, the gastric pH of newborn infants 

is relatively high compared to adults (35, 36), leading to diminished NO production, 

which may hinder its gastroprotective effects and compound the effects of low levels of 

nitrite ingestion in newborn infants.  
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 Premature infants are also at significant risk of suffering intraventricular 

hemorrhage and episodes of inadequate systemic oxygenation. Circulating nitrite 

provides protection against cerebral vasospasm following subarachnoid hemorrhage in 

baboons (37), and can also increase cerebral blood flow (38) and decrease oxygen 

consumption during hypoxic stress (39). During reperfusion, nitrite is found to protect 

against oxidative stress and to reduce the generation of harmful reactive oxygen species 

(40). Whether these protective effects of nitrite are diminished in neonates due to the 

attenuation of enterosalivary nitrate–nitrite–NO metabolism calls for future study. 
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CHAPTER FOUR 

CHANGES IN PLASMA AND URINARY NITRITE AFTER BIRTH IN 

PREMATURE INFANTS AT RISK FOR NECROTIZING ENTEROCOLITIS 

 

Abstract 

 Plasma nitrite serves as a reservoir of NO bioactivity. Because nitrite ingestion is 

markedly lower in newborns than adults, we hypothesized plasma nitrite levels would be 

lower in newborns than in adults, and that infants diagnosed with NEC, a disease 

characterized by ischemia and bacterial invasion of intestinal walls, would have lower 

levels of circulating nitrite in the days prior to diagnosis. Single blood and urine samples 

were collected from nine term infants and twelve adults, 72 preterm infants every five 

days for three weeks, and from 13 lambs before and after cord occlusion. Nitrite fell 50% 

relative to cord levels in the first day after birth; and within 15 min after cord occlusion in 

lambs. Urinary nitrite was higher in infants than adults. Plasma and urinary nitrite levels 

in infants who developed NEC were similar to those of preterm control infants on Days 1 

and 5, but significantly elevated at 15 and 20 days after birth.  Plasma nitrite falls 

dramatically at birth while newborn urinary nitrite levels are significantly greater than 

adults. Abnormally low plasma nitrite levels do not appear to predispose infants to NEC. 

Yet, active NEC is associated with elevated plasma and urinary nitrite levels. 
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Introduction 

The free radical molecule nitric oxide (NO) plays a key signaling role in a number 

of physiological processes. NO is produced from L-arginine by the action of NO synthase 

enzymes found throughout the body. NO can diffuse readily through tissues to distances 

several cells away from its site of production. However, its half-life in whole blood is 

<10 ms and thus the range of free NO itself is paracrine in nature (1). As a free radical, 

NO can be metabolized by a number of different biochemical pathways. Many of these 

pathways result in nitrogen oxide species that are stable enough to circulate systemically 

yet retain the bioactivity of NO, such as nitrite and nitrosothiols. Other pathways oxidize 

free NO to nitrate. While nitrate is inert in mammalian cells, it can be secreted in saliva 

and converted to nitrite by oral bacteria (2), although this pathway is markedly 

diminished in the newborn compared to the adult (3). These products of NO metabolism 

make up a humoral source of NO bioactivity (see review by Lundberg and Weitzberg 

(4)). Thus, it is now recognized that the overall level of NO bioactivity in tissues is a 

result of not only local NO synthase activity, but also the concentration of nitrogen oxide 

species which may be delivered from other organs via the blood.  

There is accumulating evidence that nitrite plays a role in the regulation of 

cardiovascular homeostasis and responses to hypoxic/ischemic stress. Numerous studies 

have demonstrated the positive effects of increasing dietary nitrate intake and subsequent 

elevation in plasma nitrite concentrations on exercise performance and lowering blood 

pressure (5). Modest increases in blood nitrite levels also confer protection in animal 

models of ischemia/reperfusion injury in the brain, heart, liver, kidney, and lung (6). The 

bioactivity of nitrite results from its conversion to NO by reaction with a number of 
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metal-containing proteins with nitrite reductase activity (7), a reaction that is favored in 

hypoxic/ischemic tissues.  

Infants born prematurely are at increased risk of systemic hypoxia and 

compromised cardiovascular homeostasis during the first few days of life. This 

dysregulation of tissue oxygen delivery is proposed to contribute to necrotizing 

enterocolitis (NEC), a gastrointestinal disease that affects 5 to 14% of infants born 

weighing less than 1500 grams (8). While premature birth is a prominent risk factor, the 

underlying cause of NEC remains unknown. Although there is little evidence to support 

the idea that NEC is caused by a single acute perinatal ischemic event (9), poor 

splanchnic oxygenation and reduced blood flow are associated with increased incidence 

of NEC (10-12), and histological evidence of ischemia is consistently found (13,14). In 

the adult rodent gastrointestinal tract, swallowed salivary nitrite, derived from the 

reduction of salivary nitrate by oral bacteria, confers protection by increasing mucus 

production, improving local blood flow, killing bacterial pathogens, decreasing 

inflammation, and improving epithelial injury (5). The role that nitrate and nitrite play in 

regulating gastrointestinal blood flow in the newborn has not been studied. 

We have previously demonstrated that newborn infants have lower blood nitrite 

concentrations than adults, possibly due to markedly lower levels of nitrate and nitrite 

ingestion (15). Preterm infants in particular ingest 50% less nitrite than term infants (15), 

leading us to hypothesize that nitrate and nitrite levels would be decreased in preterm 

compared to term infants. Furthermore, given animal evidence for the protective effects 

of nitrite in the gastrointestinal tract, we hypothesized infants diagnosed with NEC would 

have lower levels of circulating nitrite in the days prior to diagnosis. We tested this 
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hypothesis by measuring plasma nitrate and nitrite and urine nitrite concentrations in 

preterm infants over the first three weeks of life and making comparisons between infants 

who developed NEC and those who did not. 

 

Methods 

Human protocols were pre-approved by the Loma Linda University (LLU) 

Institutional Review Board and written informed consent was obtained from a parent or 

legal guardian, or from the study subject (adult group). The animal protocol was pre-

approved by the LLU Institutional Animal Care and Use Committee.  

 

Human Protocol 

 The infants studied in this investigation were patients in the neonatal intensive 

care unit or well baby nursery of LLU Children’s Hospital (Loma Linda, California). 

They fell into two groups: term infants born after 37 weeks and with a birth weight more 

than 2500 grams, and preterm infants born at a gestational age less than 32 weeks. 

Preterm infants weighing less than 800 grams were excluded from the study due to 

limitations in the amount of blood that could be collected. Also excluded were infants 

with congenital malformations or chromosomal abnormalities, those small for gestational 

age, intrauterine growth restricted, anemic (Hgb < 11 g/dL) or septic (positive blood, 

urine, CSF cultures). The infants’ gestational age, birth weight, gender, type of feeding 

(breast milk or formula), antibiotic therapy, whether a PDA ligation had been performed, 

and whether indomethacin or a blood transfusion had been given were noted.  
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Blood and urine samples were obtained from the preterm infants between 12 to 24 

hours, and 5, 10, 15, and 20 days of extrauterine life. Within this 20-day period, if an 

infant developed signs and symptoms of NEC (defined as Bell’s stage 2A (16)) an 

additional sample of blood and urine was collected within 24 hours of diagnosis. Samples 

of placental cord blood were collected from term infants following uncomplicated 

cesarean section. Blood (1 ml) and urine (1 to 3 ml) samples were also collected from 

these term infants in conjunction with standard newborn screening tests at approximately 

24 hours of life. Single blood and urine samples were also collected from healthy adults 

(24 to 72 years of age). 

 

Fetal Sheep Protocol 

 Fetal sheep were delivered via C-section at 124 to 126 days of gestation 

(term=145) as part of another study protocol (17). Venous blood samples were collected 

for plasma nitrite measurement before birth and at 15, 60, 120, and 180 min after ligation 

of the umbilical cord. Samples were immediately centrifuged for 60 seconds at 10,000 

rpm and the plasma was decanted, frozen in liquid nitrogen, and stored at -80 C for 

subsequent measurement of nitrite concentrations. 

 

Sample Collection and Handling 

  Blood samples (1 ml each) from newborn infants were collected from an 

indwelling catheter whenever possible; otherwise by heel stick timed so as to coincide 

with routine clinical care (blood glucose measurements, blood gas measurements, weekly 

nutrition labs, newborn screen). Blood was collected from adults by venipuncture of the 
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antecubital vein. The blood was immediately centrifuged for one minute at 10,000g. The 

plasma was stored at -80 C until assay.  

 Urine samples (1 to 3 ml each) were collected by placing a cotton ball into the 

infant’s diaper before urination. Sodium hydroxide (0.1 M) was added to the urine 

sample in a 1:1 ratio v/v to stabilize nitrite, and the sample was then stored at -80 C for 

subsequent nitrite analysis.  

 

Nitrite and Nitrate Assay 

 Urine and plasma nitrite concentrations were measured by triiodide 

chemiluminescence (18), enabling quantification above 10 nM with a precision of ±5 nM. 

Nitrate concentrations were measured by enzymatic reduction of nitrate to nitrite as 

previously described (19).  

 

Statistical Analysis 

An a priori power analysis was performed using G*Power (Heinrich Heine 

University, Dusseldorf, Germany), and indicated that with an effect size of 50%, p<0.05, 

and 80% power, a total of six patients with NEC would be needed to detect a change in 

plasma and urine nitrite levels over time and compared to preterm controls. Data are 

presented as mean ± SEM. Differences between study groups were detected using one-

way ANOVA. A two-way ANOVA was used to compare samples from preterm infants 

with or without NEC. When ANOVA indicated significance, Bonferroni’s post hoc 

analysis was applied to detect differences between sample pairs. A Kruskal-Wallis test 

was used to compare term, preterm, and adult plasma nitrite and nitrate levels due to a 
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large variation in the small number of samples in the term and adult groups. Outlying 

values, likely due to nitrite or nitrate contamination occurring during sample collection, 

were identified and removed using the ROUT method (20) with a Q value of 0.1% (0.1% 

chance of excluding a valid value). For comparisons between preterm infants with or 

without NEC, two-way ANOVA was applied to the Day 1 and 5 data to test whether 

nitrite levels were lower in infants who would go on to develop NEC, and to Days 10, 15, 

and 20 to test whether nitrite levels were different in infants with developing or active 

NEC. All statistical analyses were performed using Prism 6 for Mac OSX (Graphpad 

Software, Inc, La Jolla, CA), except for two-way ANOVA with unequal sample sizes 

which was performed with R (R Foundation for Statistical Computing, Vienna, Austria).  

 

Results 

Nitrite concentrations were measured in blood and urine collected from 79 

preterm infants, nine healthy term infants, twelve adults and twelve cord blood samples. 

Of the 79 preterm infants, six infants developed Bell’s stage 2A necrotizing enterocolitis. 

The time of NEC diagnosis ranged from 9 to 29 days after birth (mean 17 days). Six 

preterm infants without NEC developed sepsis and were excluded from analysis because 

plasma nitrite and nitrate levels have been shown to be elevated in pediatric and neonatal 

patients with sepsis (21-24). One preterm infant died on the 18th day of life with an 

isolated ileal perforation and was excluded from the analyses. Thus, 66 preterm infants 

without NEC were analyzed. The demographics of the patients are provided in Table 5. 
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Table 5. Plasma and urine study preterm patient demographics 

 
Preterm Preterm with NEC Term 

Participants (n) 66 6 9 
Gestational age 
(weeks) 29.6 ± 0.2 28.1 ± 0.9 38.4 ± 0.3 
Birth weight 
(grams) 1349 ± 41 1224 ± 128 2791 ± 282 
Male (n) 

26 5 4 
Female (n) 

31 1 5 
Mean day of 
diagnosis - 17 - 

 

 

Nitrite and Nitrate Concentrations in Infant Plasma 

 Twelve to 24 hours after birth, nitrite concentrations of preterm infants (0.03 ± 

0.01 μM) were lower than term infants (0.08 ± 0.01 μM; p<0.05), cord blood samples 

(0.18 ± 0.01 μM, p<0.001), and adults (0.16 ± 0.01 μM, p<0.001). Plasma nitrite levels in 

term infants tended to be lower than cord blood and adult levels, but post hoc analysis did 

not indicate statistical significance. Plasma nitrite concentrations of preterm infants 

increased significantly during the 20 days after birth (p<0.001, Figure 19A). 

Plasma nitrate concentrations of term infants (16.4 ± 1.5 μM) 12 to 24 hours after 

birth were lower than those of preterm infants (25.3 ± 1.7 μM, p<0.05), cord blood 

samples (33.1 ± 3.5 μM, p<0.01), and adults (33.4 ± 3.1 μM, p<0.01) (Figure 19B). One-

way ANOVA indicated that there was significant variation in plasma nitrate 

concentrations of preterm infants over the first 20 days after birth (p=0.014).  
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Figure 19. Plasma nitrite and nitrate and urine nitrite concentrations. A) Plasma nitrite 
concentrations were significantly higher in adults, cord blood, and term infants than in 
preterm infants on the first day after birth (*=difference from preterm infants on Day 1, 
p<0.05). Nitrite concentrations increased over the first 20 days after birth, with Days 10, 
15, and 20 greater than Day 1 (**=p<0.01). B) On Day 1, plasma nitrate concentrations 
in term infants were significantly lower than those of adults, cord blood, and preterm 
infants (* =difference from term infants, p<0.05). The variation in preterm nitrate levels 
over the first 20 days after birth was also significant (p<0.01), although post hoc analysis 
did not detect a significant difference between Day 1 and any subsequent time point. C) 
Urine nitrite concentrations in preterm and term infants on Day 1 were significantly 
higher than those of adults (**=p<0.001). Urinary nitrite concentrations of preterm 
infants increased over the first 20 days of life, with concentrations on Days 15 and 20 
being significantly greater than Days 1 and 5 (* =p<0.05). 
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Nitrite Concentrations in Newborn Lambs 

  The markedly lower nitrite concentrations on the first day after birth led us to 

examine the time course of changes in plasma nitrite concentrations in more detail in 13 

newborn lambs. Prior to ligation of the cord, plasma nitrite concentration in umbilical 

arterial blood was 0.16 ± 0.01 μM. Fifteen minutes after birth, nitrite concentrations had 

fallen to 0.06 ± 0.01 μM (p<0.001), and remained low for at least 180 minutes (Figure 

20). 

 
Figure 20. Plasma nitrite concentrations in fetal sheep before and after ligation of the 
umbilical cord and initiation of ventilation. Within 15 min following birth, nitrite 
concentrations had fallen by >60% (*=p<0.001 compared to baseline) and remained 
lower than baseline 60, 120, and 180 minutes after birth. 
 
 

Nitrite Concentrations in Urine 

  On the first day after birth, urinary nitrite concentrations averaged 0.49 ± 0.05 

μM in preterm infants and 0.50 ± 0.05 μM in term infants, values not significantly 

different from one another (Figure 19C). The levels in both preterm and term infants on 
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Day 1 were significantly higher than the levels measured in urine collected from adults 

(0.07 ± 0.01 μM, p<0.001). In preterm infants, the urine nitrite concentrations increased 

significantly over the first 20 days after birth (p<0.01, Figure 19C).  

 

Plasma Nitrite and Nitrate Concentrations in Preterm Infants with and without NEC  

 Plasma nitrite and nitrate concentrations in those preterm infants who developed 

NEC were not significantly different than those of control preterm infants on Days 1 and 

5. On Days 10, 15 and 20, plasma nitrite concentrations were higher in preterm infants 

who developed NEC than in control preterm infants, with post-hoc analysis indicating 

significance between the two groups on Days 15 and 20 (p<0.05, Figure 21A and B). 

Plasma nitrite concentrations of preterm infants with NEC increased over the first 20 

days after birth (p<0.01). Although plasma nitrate concentrations tended to increase in 

infants with NEC, this change did not meet the criteria for significance (p=0.09). 

Individual and mean plasma nitrite and nitrate concentrations on days relative to 

diagnosis with NEC are shown in Figure 22 A-D. 

 

Urine Nitrite Concentrations in Preterm Infants with and without NEC 

  On Days 10, 15, and 20, plasma nitrite concentrations were higher in the preterm 

infants who developed NEC than in control preterm infants, with post hoc analysis 

indicating significance on Days 15 and 20 (p<0.01). Urine nitrite concentrations of 

preterm infants with NEC increased over the first 20 days after birth (p<0.001) (Figure 21 

C). Individual and mean urine nitrite concentrations on days relative to diagnosis with 

NEC are shown in Figure 22 E and F.  
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Figure 21. Plasma and urine nitrite concentrations in preterm infants with or without 
diagnosis of NEC. There were no significant differences between preterm infants with 
NEC (black bars) or without NEC (white bars) with respect to plasma nitrite (A) or 
nitrate (B) concentrations on Days 1 and 5. In contrast, on Days 10, 15, and 20, plasma 
nitrite and nitrate levels were higher in preterm infants diagnosed with NEC compared to 
those without NEC. C) Fifteen and 20 days after birth, urine nitrite concentrations in 
preterm infants who developed NEC were significantly higher than those of control 
preterm infants (*=p<0.001). Nitrite concentrations in urine from the preterm infants with 
NEC increased over the first 20 days after birth, with levels on the day they were 
diagnosed with NEC (mean=Day 17) being significantly higher than the levels measured 
in these infants on Days 1 and 5 (**=p<0.05). (*=difference from non-NEC infants at the 
same time point, p<0.05; †=difference from Day 1, p<0.05). 
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Figure 22. Plasma nitrite and nitrate concentrations and urine nitrite concentrations in 
preterm infants with a diagnosis of NEC. X-axis shows days relative to the day of 
diagnosis with Bell’s Stage II NEC (Day 0). Each curve represents an individual patient 
in figures A, C, and E, where NEC 1 (●), NEC 2 (■), NEC 3 (●), NEC 4 (■), NEC 5 (□), 
and NEC 6 (●). Figures B, D, and F are the mean (± SEM) data from all patients with 
NEC ( ). 
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Discussion 

The current study tested the hypotheses that plasma nitrite levels fall significantly 

at birth, that levels in preterm infants fall below those of term infants, and that infants 

diagnosed with NEC would have lower levels of circulating nitrite in the days prior to 

diagnosis. We found that the plasma nitrite concentrations of preterm infants on the first 

day of life were lower than those of term infants, adults and placental cord blood, a 

difference also observed to appear in newborn lambs within 15 minutes after birth. 

Contrary to our hypothesis, plasma and urine nitrite levels of preterm infants who 

developed NEC were similar to those of their non-NEC counterparts on Days 1 and 5 

after birth. Once NEC became apparent, plasma and urine nitrite concentrations were 

measurably higher than those of non-NEC counterparts 15 and 20 days after birth.  

 

Decrease in Plasma Nitrite and Nitrate Concentrations at Birth 

  Several reasons might account for the marked decrease in plasma nitrite in the 

minutes and hours after birth. Previous studies have shown that up to 70% of plasma 

nitrite is derived from NO produced by eNOS (25). Several studies have assessed the 

effects of development on organ-specific eNOS levels (26, 27), but, to our knowledge 

none have measured whole body eNOS activity in newborns. Preterm infants are 

deficient in arginine which could lead to decreased NO synthesis from eNOS (28). 

Neonates also have two- to threefold higher concentrations of asymmetric 

dimethylarginine (ADMA), an endogenous inhibitor of NOS, compared to adults (29). 

Thus, low L-arginine and increased ADMA concentrations may lead to low eNOS 

activity in newborns, contributing to the fall in plasma nitrite levels after birth. 
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It is also possible that the mother and placental tissue constitute a significant 

source of fetal nitrite that is lost at birth. We have previously reported that nitrite 

concentrations of chronically instrumented fetal sheep are the same as those of the 

mother under normoxic conditions, but become two-fold higher than the ewe following 

long term exposure to moderate hypoxia (18). This finding suggests transport of nitrite 

from the ewe into the fetus, production of nitrite by placental tissue, or an accelerated rate 

of nitrite production in the fetus in response to hypoxia. These possibilities have not been 

evaluated experimentally but could influence the changes that occur soon after birth.  

Although most plasma nitrite is derived from NO oxidation, this reaction is only 

one of a number of competing reactions by which NO is consumed. One of the fastest of 

these competing pathways is the reaction of NO with superoxide to form peroxynitrite. 

This reaction proceeds at a nearly diffusion-limited rate (k = 4.3 to 20 × 10 9 M -1 ∙s-1) (30) 

and can become a significant scavenger of NO if superoxide concentrations are increased 

(31). While we are not aware of reported changes in whole body superoxide levels at 

birth, it is reasonable to hypothesize that the increases in arterial and tissue oxygen 

tensions that occur in the transition from fetus to newborn increase superoxide production 

that, in turn, scavenges NO away from nitrite production. 

Regardless of the mechanism, the fall in nitrite levels at birth appears to be 

consistent with other cardiovascular homeostatic events that facilitate the vascular 

transition from a fetal state characterized by low pressures and high flows to a newborn 

state with higher overall resistance to blood flow. Factors that contribute to the increased 

vascular tone of the newborn include decreases in circulating vasodilators such as 

prostaglandin E2 (32) and adenosine (33), and increases in vasoconstricting 
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catecholamines (34). Given the vasodilatory and NO-like bioactivity ascribed to nitrite 

(see review by Lundberg and Weitzberg (4)), the fall in concentrations within minutes of 

birth raises the possibility that nitrite may also play a role in the transition. 

While circulating nitrate concentrations are of cardiovascular relevance to the 

adult due to its conversion to nitrite (35), the same may not be true for newborns as the 

activity of oral nitrate-reducing bacteria is markedly reduced (3). Plasma nitrate 

concentrations tended to decrease at birth, in parallel with nitrite concentrations, although 

the changes were less pronounced in the preterm infants. This may reflect the 

contribution of non-NO-related influences, such as denitrifying enzymes in the liver (36) 

or decreased renal excretion.  

  

Nitrite Concentration in Urine 

  Although there are numerous reports of combined nitrite/nitrate concentrations in 

newborn urine (see Honold et al for comprehensive measurements (37), we are unaware 

of previous reports of urine nitrite levels in healthy infants. Urinary nitrite concentrations 

are typically less than 5% of the total nitrite/nitrate signal, thus the combined nitrite and 

nitrate level is not a useful indication of nitrite excretion. In fact, in contrast to our 

finding of higher urinary nitrite levels in infants compared to adults, Honold et al. 

reported higher urinary nitrite/nitrate concentrations in adults compared to preterm and 

term infants (37). Using the body weights of our infants and estimates of normal urinary 

output (48 mL·kg-1·day-1), one may calculate a urinary nitrite output for preterm infants 

of 3.6 µg·kg-1·day-1 and for term infants of 5.3 µg·kg-1·day-1. A similar calculation for a 

typical 70 kg adult with a urine output of 12 mL·kg-1·day-1 indicates a urinary nitrite 



 

89 

output of only 0.24 µg·kg-1·day-1, about 5-10% of newborn output. This marked 

difference between newborns and adults cannot be explained by dietary intake, since 

newborns ingest less than 1% as much nitrite as adults when normalized to body weight 

(38). Interestingly, for newborns the urinary excretion of nitrite is significantly higher 

than their estimated dietary intake (~0.7 µg·kg-1·day-1) (38), whereas excretion by adults 

is less than intake (109 µg·kg-1·day-1) (39). This result suggests net endogenous 

production of nitrite by newborns and consumption by adults. Nitrite is actively 

reabsorbed in the kidney of adults via a pathway dependent upon carbonic anhydrase 

activity (40), and a deficiency in this pathway in newborns would also contribute to 

higher urinary nitrite levels, although this possibility remains to be studied. 

 

Possible Role for Nitrite in NEC 

  Various lines of evidence suggest NO and nitrite potentially play a protective role 

against NEC. L-arginine supplementation to promote eNOS activity has been shown to 

reduce the severity and risk of NEC (41, 42). Nitrite, serving as a source of NO, protects 

against ischemia/reperfusion injury in a number of organs and animal models (6). In the 

gastrointestinal tract, NO derived from nitrite also protects against bacterial pathogens 

and supports thickening of the protective mucosal layer, and thus may support the barrier 

function of the gastrointestinal lining (5). Supplemental dietary nitrite is also protective in 

a mouse model of NEC (43). Thus, our hypothesis was that preterm infants with lower 

plasma nitrite levels during the first few days of life would be more likely to develop 

NEC. However, plasma nitrite levels of preterm infants destined to develop NEC were 

similar to healthy preterm controls, indicating that NEC is not caused by plasma nitrite 
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levels that are lower than normal for a preterm infant. Notably, plasma nitrite levels were 

already markedly lower in preterm infants than in term infants and adults, and whether 

supplementation of nitrite would be protective requires further study. 

 In contrast to the proposed beneficial effects of nitrite and NO under 

physiological conditions, it appears that once NEC has reached an acute inflammatory 

stage, it has been postulated that excessive NO production from inducible NOS (iNOS) 

contributes to the disease progression (44). Resected sections of intestine from infants 

with acute NEC have increased levels of iNOS and iNOS knockout mice appear to be 

protected against LPS-induced bacterial translocation (45). Overproduction of NO by 

enhanced iNOS activity leads to toxic levels of reactive nitrogen oxide derivatives, like 

peroxynitrite, that are thought to contribute to the epithelial injury and disruption of 

repair mechanisms that lead to intestinal barrier failure characteristic of NEC (46). 

Consistent with overproduction of NO by iNOS, plasma nitrite and nitrate and urinary 

nitrite levels in infants developing NEC became significantly elevated fifteen and twenty 

days after birth (Figure 21), suggesting that urinary nitrite levels could be a useful non-

invasive biomarker of NEC. However, more rigorous studies need to be done to validate 

nitrite as a reliable marker for NEC. While the cause of this increase cannot be 

determined from the present study, it is worth noting that similar increases in urinary 

nitrite and/or nitrate are found in infants with systemic inflammatory responses (47), 

consistent with markedly increased iNOS activity.  
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Clinical Perspective 

  The current study finds that a marked fall in circulating nitrite concentrations 

occurs at birth. Given increasing evidence that nitrite plays a key role as a circulating 

source of NO, future studies are needed to establish the extent to which changes in nitrite 

concentrations contribute to the cardiovascular transition at birth, and whether 

manipulation of these concentrations might improve outcomes in infants exposed to 

hypoxic/ischemic stress. 
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CHAPTER FIVE 

DISCUSSION 

 The discovery that nitric oxide (NO) is produced endogenously by NO synthases 

initiated a paradigm shift from thinking of NO as a toxic gas to the realization that it is a 

key regulator of vascular homeostasis, amongst many other physiological roles. One of 

the greatest clinical impacts of this discovery has been the use of inhaled NO gas for the 

treatment of persistent pulmonary hypertension in newborns where it has significantly 

reduced the need for extracorporeal oxygenation (1-2). Initially it was thought that the 

effects of inhaled NO would be confined to the lungs, as free NO gas in blood is 

scavenged by reactions with hemoglobin in a few milliseconds (3). However, it is now 

widely reported that inhaled NO has an array of extrapulmonary effects, suggesting that 

one or more of its metabolites serve as reservoirs of NO bioactivity capable of circulating 

from the lungs to peripheral organs. The existence of such an endocrine mediator of NO 

and its effects would be of great physiological relevance and much recent research has 

focused on identifying metabolites of NO that may serve in that role.  

 Nitrate (NO3
-) and nitrite (NO2

-) are the two major end products of NO 

metabolism. Historically, these compounds were considered to be relatively inert at 

physiological concentrations and environmental pollutants that posed potential health 

risks to humans at high concentrations. However, similar to the turnabout course of our 

understating of NO in biology, evidence now indicates that while nitrate and nitrite may 

be toxic at high concentrations, they play an important physiological role as they can be 

converted back into NO via a system involving enterosalivary recirculation, bacterial 

nitrate reductases, and enzyme-catalyzed or acidic reduction of nitrite to NO. This 
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discussion will summarize our current knowledge regarding the bioactivity of nitrate and 

nitrite in adults and will outline known differences in infants (summarized in Figure 23 

and Table 6).  

 
 

Figure 23. Schematic summary showing major differences in the supply and handling of 
nitrite and nitrate by the adult and infant. Multiple deficiencies in the infant lead to 
diminished nitric oxide (NO) bioactivity in the stomach and lower circulating nitrite 
concentrations in the blood. 
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Table 6. Summary of the major differences in the supply and handling of nitrite and 
nitrate in adults and infants 
 Adults Infants References 
Dietary nitrate 
ingestion 

0.88-5.83 mg·kg -
1·day -1 

0.07-2.065 mg·kg -
1·day -1 

4-8 
 

    
Saliva nitrate 
concentrations 

190-1600 µM 
a
 

 
681 ± 184 µM b 

190-1600 µM 
a
 

 
284 ± 83 µM b 

9-13 
 

14 
    
Saliva nitrite 
concentrations 

90-670 µM a 
 

50 ± 13 µM b 

 
 

8.2 ± 5.6 µM b 

9-13 
 

14 
 

Saliva production 43-1728 mL/day 43-58 mL/day 15 
    
Oral bacterial nitrite 
production 

147 ± 36 nmoles·min-

1·mg saliva -1 
20 ± 8 nmoles·min-

1·mg saliva -1 
14 

    
Stomach pH 1.5-3.5 3-6 15-18 
    
Gastric NO 
production 

16.4 ± 5.8 ppm c 
89.4 ± 28.6 ppm d 

 19 

  1.53 ± 3.1 ppm 
 

20 

Plasma nitrite 
concentrations 

0.27 ± 0.01 µM 0.18 ± 0.01 µM 21 

    
Urinary nitrate/mmol 
creatinine 

71 ± 10/75 ± 11 
µmol nitrate/mmol 

creatinine 

150 ± 31/136 ± 28 
µmol nitrate/mmol 

creatinine 

22 

a
Saliva collected via expectoration  

b
Saliva collected via oral swab  

c
Basal  

d
After dietary nitrate load 

 

 

Diet 

Dietary Nitrate and Nitrite 

 Nitrate is the most prevalent nitrogen oxide species in the body. Although some of 

it is derived as an end product of the oxidation of endogenous nitric oxide and nitrite, 

nitrate concentrations are also heavily influenced by dietary intake. Nitrate itself is inert 

in mammalian tissues, but it can be reduced to nitrite by symbiotic bacteria that are part 
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of the normal flora in the mouth and gastrointestinal tract (discussed below). Thus, by the 

action of these bacteria, dietary nitrate contributes to the body’s pool of nitrite. 

Vegetables are the most common source of dietary nitrate with particularly high 

concentrations (>2500 mg/kg) in beets, radishes, celery and green leafy vegetables such 

as lettuce, kale, and spinach. Although daily nitrate ingestion can vary significantly 

dependent upon the types and amount of vegetables eaten, it is estimated that a typical 

adult ingests approximately 0.7 to 3.0 mg/kg body weight of nitrate per day (23). 

 Compared to nitrate, the amount of nitrite ingested in a normal adult diet is 

relatively small. In fact, it is likely that more of the nitrite in the body is derived from the 

bacterial reduction of nitrate and oxidation of endogenously-produced NO than from the 

diet (24, 25). The biggest source of nitrite in the diet is cured and processed meats, where 

it is used as an additive to prevent bacterial growth and enhance the color. A typical adult 

ingests about 0.1 mg/kg body weight of nitrite daily (4). 

 Although there are some discrepancies in the reported concentrations of nitrate 

and nitrite in breast milk and artificial milk (perhaps due to differing assay 

methodologies), we and others have recently shown that newborn infants ingest markedly 

lower amounts of nitrate and nitrite than adults on a per kg body weight basis. This is true 

regardless of whether they are receiving breast milk, artificial milk, or parenteral nutrition 

(7, 26, 27). Based on a breast milk intake of 150 mg•kg-1•day-1 and our measurements of 

nitrate and nitrite concentrations (13 μM and 0.13 μM, respectively), we have estimated 

that infants ingest approximately 0.12 mg•kg-1•day-1 of nitrate and 0.0007 mg•kg-1•day-

1 of nitrite from fresh breast milk, which equates to only 5% and 0.6% of the nitrate and 
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nitrite intake of adults (27). A comparison of the average dietary nitrate intake in 

newborn infants and adults is shown in Figure 24. 

 

                    

 

Figure 24. Dietary nitrate and nitrite levels for newborns and adults. A) Daily dietary 
nitrate ingestion, normalized for body weight, is shown for newborns and adults, based 
on a mean (±SEM) of reported concentrations in breast milk and formula (for newborns) 
(7, 26, 27) and a typical adult diet (Mensinga). B,C) Nitrate and nitrite concentrations in 
total parenteral nutrition (TPN), fresh and freeze-thawed breast milk, freeze-thawed 
colostrum, and a convenience sample of artificial milk formulas. (Figure adapted from 
Jones et al., 2014 (27).) 
 
 
 
 We have also shown that nitrite is oxidized to nitrate in breast milk by an enzyme 

normally present in milk, lactoperoxidase, leading to even lower levels in milk that has 

been allowed to sit at room temperature or which has been freeze-thawed (27). Breast 

milk nitrite concentrations also fall during the first few weeks of life, with the highest 
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levels found in colostrum and decreasing to nearly undetectable amounts in milk 

collected after the third week postpartum (26, 27). The levels of nitrate and nitrite in 

artificial milk vary widely across a range that extends above and below concentrations 

measured in breast milk, averaging 43 μM and 0.3 μM, respectively (27) (Figure 24). The 

recently increased use of nutritional additives for caloric and protein enhancement raises 

the possibility of an additional source of dietary nitrate and nitrite, although to our 

knowledge concentrations in these additives have not yet been reported. Whether the 

newborn deficiency of dietary nitrite and nitrate serves an important physiological role, 

or whether supplementation of breast milk with these anions would be beneficial or 

problematic remains to be studied. 

 Until recently, a majority of research related to dietary nitrate and nitrite was in 

the context of toxicology. It has been known since 1945 that unusually high nitrate 

concentrations in vegetables and drinking water, often due to contamination with 

fertilizer, can cause cyanosis due to oxidation of hemoglobin to methemoglobin by nitrite 

derived from bacterial nitrate reductases, a problem often referred to as “blue baby 

syndrome.” Newborn infants are particularly susceptible to this problem as they have 

~25% lower methemoglobin reductase activity than adults (28). It is also proposed that 

dietary nitrate and nitrite are associated with gastrointestinal cancer due to the formation 

of carcinogenic N-nitroso compounds. Although a definitive causal link between dietary 

nitrate and cancer has not been identified (29), the associations between the intake of 

nitrite-treated meats and gastric cancer are more established (30). This is consistent with 

evidence that nitrite added to meats as a preservative can be converted to harmful N-

nitrosamines in the meat itself before ingestion or in the body after it has been ingested 
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(31). In an effort to protect against toxicity, the Environmental Protection Agency (EPA) 

has set limits on inorganic nitrate and nitrite levels in drinking water and the World 

Health Organization (WHO) has put forward Acceptable Daily Intakes (ADI) for nitrate 

at 3.7 mg/kg of body weight and for nitrite at 0.06 mg/kg of body weight. These levels 

are easily exceeded, however, with a high vegetable diet, and some have called for a 

resetting of these limits based on recent advances in our understanding of the roles of 

dietary nitrate and nitrite (26). The upper limits of toxicity of dietary nitrate in newborns 

have been investigated. Phillips, et al. found that up to 21 mg/kg of nitrate per day was 

well tolerated by seven newborn infants, with six infants showing no increase in 

methemoglobin and the other one only a slight increase, and not enough to produce 

detectable cyanosis. Likewise, no symptoms of cyanosis occurred even when 100 mg 

nitrate •kg-1•day-1 was given to an infant for 8 days (32).  

 In contrast to the evidence of the toxic effects of nitrate and nitrite, the data 

increasingly indicates that a diet rich in nitrate is beneficial to overall cardiovascular 

health. In adults, raising dietary nitrate intake has been shown to improve exercise 

tolerance (30, 33, 34), decrease blood pressure (24, 34), inhibit platelet aggregation (24), 

decrease risk of cardiovascular disease (35), and improve vascular compliance (36) (see 

Weitzberg, 2013 for a comprehensive review) (37). In addition, nitrite supplementation 

ameliorates microvascular inflammation and endothelial dysfunction in mice fed a high-

cholesterol diet (38). Dietary nitrate also appears to have beneficial effects in the 

gastrointestinal tract of adult rats, where it has been shown to protect against non-

steroidal anti-inflammatory drug (NSAID)-induced ulcers (39). Weighing the beneficial 
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effects of increasing dietary nitrate and nitrite (37) against the potential risks of 

methemoglobinemia and carcinogenicity is the focus of ongoing studies. 

 

Saliva 

 In addition to dietary intake of nitrate and nitrite, the levels of these anions in 

swallowed saliva also have a significant impact on the amount of nitrate and nitrite that is 

ingested. As discussed in this section, this appears to be another point of significant 

difference between adults and newborns, thus compounding the effects of low dietary 

nitrate and nitrite ingestion in newborns.  

 

Bacterial Conversion of Salivary Nitrate to Nitrite 

 Fasting nitrate concentrations average about 200 µM in the saliva of adults but 

can reach as high as 10 mM after a nitrate-rich meal (12). These concentrations are 

approximately 10-fold higher than the concentrations measured in plasma due to active 

transport of nitrate from the blood into the saliva by the salivary glands. The transport of 

nitrate has been suggested to be mediated by the enzyme sialin via an ATP-dependent 

electrogenic NO3
-/H+ transport mechanism in the salivary acinar cells (40). The nitrate 

concentration in the saliva of newborns is approximately 200 µM, similar to that of adults 

(14). As in adults, this concentration is many-fold higher than in blood (16-40 µM). Thus 

the active transport mechanisms in the salivary glands of newborn infants are present 

with a concentrating power comparable to that of adults (21, 41). That the body expends 

energy to actively concentrate nitrate into the saliva suggests that nitrate is not just an 

inert end product of NO metabolism, but has potential bioactivity in the body.  
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 Although nitrate itself appears to be inert in mammalian tissues, it is made 

physiologically relevant after reduction to nitrite by bacteria residing in the crypts of the 

dorsal posterior surface of the tongue. These bacteria utilize nitrate as the terminal 

electron acceptor in the respiratory chain, rather than oxygen and reduce about 20% of 

salivary nitrate in adults (30, 42). A true symbiotic relationship between these bacteria 

and the human host exists as humans lack the requisite enzymes to bring about this 

conversion independently but provide nitrate to the bacteria that then perform nitrate 

reduction via respiration. As discussed below, these nitrate-reducing bacteria are critical 

to the beneficial effects of dietary nitrate.  

 The primary bacteria that mediate nitrate reduction in the mouth are obligate 

anaerobes of the Veillonella species and facultative anaerobes of the Actinomyces, 

Rothia, and Staphylococcus species, all of which possess nitrate reductase enzymes that 

allow them to respire nitrate and rapidly produce nitrite (43). Veillonella and Actinomyces 

species have been found in saliva collected from infants in the first two months of life 

and appear to be some of the first bacteria to colonize the mouths of newborns (12, 44-

46). Despite the presence of these bacteria, oral nitrate reductase activity is markedly 

lower in newborn infants when compared to adults, as shown in Figure 25. It is unknown 

whether this difference comes from insufficient numbers of bacteria, whether the bacteria 

do not possess sufficient nitrate-reducing capacity, or whether the mouth of newborns 

lack some cofactor for nitrate reduction or some other necessary element.  
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Figure 25. Nitrate-reducing activity, normalized for saliva weight, in swab samples 
collected from the mouths of preterm (born at <35 wk gestation) and term (born at >36 
wk) infants in the neonatal intensive care unit (NICU) or from healthy infants in an 
outpatient clinic between 2 and 6 wk after birth, or from normal healthy adults. 
Mammalian cells lack the enzymes required for nitrate reduction, but bacteria dwelling in 
crypts of the tongue bring about the reaction. Note that the rate in infants is ~10% of that 
in adults. (Figure adapted from Kanady et al., 2012 (14).) 
 

 By measuring the nitrate-reducing capacity of bacteria in oral swabs collected 

from infants, we have shown that there is essentially no detectable nitrite production from 

nitrate in the first five days of life. While there is measurable nitrate reducing capacity in 

swabs collected from infants at two to eight weeks of age, the rate of nitrite production is 

only ~10% of that of adults (14), as illustrated in Figure 25. Notably, infants also produce 

relatively small volumes of saliva during the first few weeks of life, which may attenuate 

bacterial growth and may also result in less swallowed salivary nitrite compared to the 

adult (14). The developmental time point at which the nitrate reducing capacity of the 

infant mouth becomes comparable to the adult is unknown.  
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 The diminished bacterial nitrate reducing capacity in infants may be of 

physiological relevance because salivary nitrite impacts both gastrointestinal and 

cardiovascular function in adults. Blockade of salivary nitrate secretion by ligation of the 

submandibular gland duct in rats results in decreased gastric nitrate, nitrite, and NO 

concentrations and exacerbates stress-induced gastric ulcers (47). The severity of gastric 

ulcers in these rats is reduced upon supplemental nitrate treatment (47). These 

gastroprotective effects appear to be mediated through the action of increased salivary 

nitrite, as nitrite-rich saliva results in increased gastric mucosal blood flow, a thicker 

mucus layer, and attenuation of the inflammatory response associated with NSAID 

administration in rats (39, 48-49). These effects of nitrite on the stomach are likely due to 

its conversion to NO, as discussed below. 

 In addition to the effects in the gastrointestinal tract, increasing dietary nitrate, 

and concomitant increases in salivary nitrite, have been shown to decrease arterial blood 

pressure, protect against ischemia-reperfusion induced endothelial dysfunction, and 

decrease platelet aggregation (24, 34). The importance of salivary nitrite production by 

oral bacteria is again highlighted by the finding that if subjects refrain from swallowing 

saliva after a dietary nitrate-load or are given antibacterial mouthwash to decrease 

bacterial nitrate-reducing activity, the hypotensive effects of nitrate are attenuated and 

there is no inhibition of platelet aggregation (24, 50). Increasing dietary nitrate also leads 

to increased circulating nitrite concentrations (24), which is associated with a host of 

beneficial effects ranging from improved exercise tolerance to protection against 

ischemia-reperfusion injury (discussed below).  
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 Thus, considering the beneficial gastrointestinal and cardiovascular effects of 

dietary nitrate and subsequent salivary nitrite production by oral nitrate reducing bacteria 

in adults, the lack of the critical bacterial nitrate reduction in infants is noteworthy and 

deserves investigation. Moreover, the lack of bacterial nitrate reducing activity in infants 

will compound the already low levels of nitrate and nitrite in their diet, ultimately leading 

to significantly lower nitrite delivery to the infant stomach. The potential benefit of 

adding a mother’s oral bacteria to an infant’s mouth is untested. 

 

Gastrointestinal tract 

Intragastric Conversion of Nitrite to NO 

 In 1994, two independent studies showed that NO was generated from nitrite in 

the stomach of human adults (51, 52). These studies showed a novel nitric oxide synthase 

(NOS)-independent in-vivo mechanism by which NO could be generated from nitrite. 

Since then, there has been great interest in nitrite as not merely an inert NO metabolite 

but as a physiologically relevant source of NO bioactivity. The chemical reaction by 

which NO is generated in the acidic stomach of adults involves protonation of nitrite to 

form nitrous acid (pKa 3.3), which rapidly decomposes to several highly reactive 

nitrogen oxides, including NO free radical, NO2, N2O3, and peroxynitrite (51, 53). In the 

stomach, these nitrogen oxides can form new stable products through nitration and 

nitrosylation of amines, amides, thiols, and fatty acids. These products have wide-ranging 

bioactivities, which include modulation of inflammatory signaling pathways, inhibition 

of platelet aggregation, vasodilation, mucus production, and bacterial colonization, 

among many other functions (53-56). 
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 Via gastric conversion to NO, ingested nitrite has been shown to kill many 

different enteropathogens including Salmonella, Shigella, H. pylori, E. coli, Yersinia 

enerocolitica, C. difficile and Candida albicans, establishing nitrite as a key player in 

host defense (57-60). In addition to acting as a bactericidal agent, NO plays a key role in 

host defense in the gastrointestinal tract by stimulating mucus and fluid secretion, 

regulating the epithelial barrier, mediating vascular smooth muscle tone, diminishing 

leukocyte adherence to the endothelium, modulating mucosal repair, and influencing the 

release of inflammatory mediators (57,61). While it is now apparent that nitrite-derived 

NO plays many protective roles in the stomach and GI tract, it is important to note that 

nitrite in the stomach (via conversion to nitrous acid and other nitrogen oxides) can also 

act as a nitrosating agent, converting ingested amines into their carcinogenic N-nitroso 

derivatives (30). However, while the nitrosating ability of acidified nitrite is clear, there is 

still no direct evidence that increased ingestion of nitrate, and subsequent conversion to 

salivary nitrite and gastric NO, causes increased risk of gastric cancer (42).  

 NO generation from nitrite in the stomach is highly pH dependent and is 

effectively attenuated with proton pump inhibitors (52). Consequently, the protective 

effects of swallowed nitrite appear to be highly dependent upon gastric acidity as 

increasing the pH above a value of 4 effectively prevents nitrite-induced increases in 

blood flow (48) and reduction in pathogenic bacteria (51, 60), and blocks nitrite’s 

hypotensive effects (62).  

 The pH dependence of nitrite-derived gastric NO is of particular relevance in the 

newborn, as the newborn stomach has a relatively high pH compared to the adult stomach 

(17, 18, 63). Figure 26 illustrates the effect of pH on the rate of NO production from 



 

109 

nitrite using previously calculated rate constants (64). As shown in Figure 26, the less 

acidic environment of the newborn stomach would attenuate the generation of NO from 

nitrite delivered to the stomach, compounding the already low nitrite ingestion from the 

saliva and diet. In fact, non-enzymatic NO production in the stomachs of newborns 

averages 1.53 ± 3.10 ppm (20), as compared to 16.4 ± 5.8 ppm in fasted adults (19) or 

89.4 ± 28.6 ppm after a 2 mmol nitrate load (19).  However, reports vary as to the 

quantitative amount of stomach NO generation in adults, which are also reported as low 

as 0.6 ± 0.1 ppm in fasted adults and 1.64 ± 0.4 ppm after dietary nitrate intake (52). 

Interestingly, peak gastric NO generation is shown to be lower in formula-fed infants 

(2.24 ± 15.71 ppm) versus breastfed infants (6.03 ± 5.73 ppm) (20). Further work should 

be done to explore these intriguing findings.  

 High gastric pH in newborns has been associated with an increased risk of 

necrotizing enterocolitis (NEC) (65, 66), whereas low gastric pH protects against 

bacterial translocation across the gut wall in neonatal rabbit pups (67). Considering that 

acidified nitrite kills bacteria, improves mucus secretion and mucosal blood flow, and is 

protective against ischemia-reperfusion injury (discussed below), it is worth speculating 

that enhancing NO generation from nitrite would be protective against NEC. 
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Figure 26. Nomogram showing the rate of nitric oxide (NO) generation in gastric fluid 
for various pH and nitrite concentrations. The adult and newborn ranges of nitrite 
concentrations are shown as box and whisker (min to max) plots of saliva nitrite 
concentrations (14) and placed at reported typical ranges of gastric pH for adults and 
newborns (18). The infant rate is estimated to be about 100-fold slower than the adult rate 
due to less acidity in the newborn stomach and lower nitrite levels ingested. Curves were 
constructed using rate constants and equations given by Zweier et al. (64). 
 

 

Intestine 

 In contrast to the NOS-independent generation of NO in the stomach, NO 

generation in the colon appears to be mediated by NOS-dependent mechanisms, as 

demonstrated by the finding that rats treated with the NOS inhibitor NG-nitro-L-arginine 

methyl ester (L-NAME), have significantly less NO generation in the colon while NO 

generation in the stomach is unaffected (68). In rats, NO concentrations in the stomach 
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(>4000 ppb) are orders of magnitude higher than in the small intestine (<20 ppb), cecum 

(~200 ppb), or colon (<25 ppb) (68). Interestingly, germ-free rats have markedly lower 

NO generation in all areas of the gastrointestinal (GI) tract, including the stomach, 

indicating an important role for bacteria in NO production throughout the GI tract. Germ-

free rats provide a useful comparison to newborn infants, as diminished gastric NO in 

germ-free rats is thought to be due to the lack of oral nitrate reducing bacteria since 

gastric NO production is dependent on substrate (ingested nitrite) availability (68). In the 

cecum, NO is in part formed via reduction of nitrate and nitrite by strains of Lactobacilli 

and Bifidobacteria (69) and stimulation of the mucosal NOS enzymes by GI bacteria 

(68). NO generation in the intestine, either by Lactobacilli farciminis or by administration 

of an NO-donor, has been demonstrated to have anti-inflammatory effects in an animal 

model of colitis (70), highlighting the potential protective effects of increased NO 

generation in the intestine. 

 Given the beneficial effects of NO derived from ingested nitrite on the 

gastrointestinal microbiota, blood flow and mucus production (described above), we were 

interested in nitrite’s role in the context of NEC. NEC is the most common 

gastrointestinal disease to afflict premature infants. It is a disease characterized by 

intestinal barrier failure (71) most likely subsequent to an ischemic insult. The main 

factors contributing to the regulation of gastrointestinal blood flow in the preterm infant 

are poorly defined, and it is not known whether a deficiency in NO contributes to the 

dysregulation of gastrointestinal blood flow that is thought to precede NEC. Thus, we 

hypothesized that infants with NEC would have lower circulating nitrite levels (and thus 

lower NO bioavailability) in the days preceding the onset of NEC. However, we found 
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that abnormally low plasma nitrite levels do not appear to predispose infants to NEC. 

Yet, active NEC (Bell’s Stage II, diagnosable by radiographic signs (72) is associated 

with elevated plasma and urinary nitrite levels. 

 Translocation of bacteria across the compromised gastrointestinal wall leads to 

activation of an inflammatory response characterized by pronounced up-regulation of NO 

production by inducible NOS (iNOS). In this inflammatory stage of the disease, 

overproduction of NO by iNOS results in toxic levels of peroxynitrite, further damaging 

the integrity of the gut wall by inducing enterocyte apoptosis and necrosis, or by 

disrupting tight junctions and gap junctions that normally maintain epithelial monolayer 

integrity (73, 74). Thus, a vicious cycle characteristic of severe NEC is created by 

bacterial invasion, immune activation, uncontrolled inflammation with production of 

ROS and nitrogen species, vasoconstriction followed by ischemia-reperfusion injury, gut 

barrier failure, intestinal necrosis, sepsis and shock (75). Since NEC is predominantly 

found in preterm infants, and preterm infants have significantly lower plasma nitrite 

levels than term infants (0.03 ± 0.01 μM vs. 0.08 ± 0.01 μM; p<0.05), it would appear 

reasonable to hypothesize that NO plays a dichotomous role in NEC, with deficient levels 

of NO contributing to an increased vascular resistance during the initiating ischemic 

event, and subsequent overproduction of NO during the inflammatory stage of the disease 

leading to propagation of the injury. Interestingly, Yazji et al have recently reported that 

nitrite/nitrate-deficient formula predisposes newborn mice to NEC, and that both the 

incidence and severity of NEC was ameliorated by nitrite/nitrate supplementation to the 

formula to achieve levels comparable to that of breast milk (76). However, the clinical 

relevance of this finding is uncertain given the fact that nitrite and nitrate concentrations 
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of many commercially available formulas are already higher than those found in breast 

milk (27). Whether manipulation of the decreased levels of ingested and circulating 

nitrite in the preterm infant would prevent or alter the course of NEC is an area worthy of 

study.  

  

Nitrite Supplementation for the Prevention of NEC in Newborn Rat Pups 

 To test whether nitrite supplementation would be protective against NEC, we 

utilized a newborn rat pup model of NEC, based on that described by Nadler et al. (77). 

In this model, neonatal rats are removed from their mothers after Caesarian-section, 

placed in a humidity and temperature-controlled incubator, gavage-fed formula in lieu of 

breast milk, and exposed to hypoxia (5% O2, 95% N2) twice daily. Littermate controls are 

placed with a foster dam and allowed to breast feed ad lib and are not exposed to 

hypoxia. Using this model, we sought to test the efficacy of nitrite (0-3mM) in preventing 

intestinal damage by evaluating the ileum for signs of NEC. Tissue sections were given a 

score from 0 (healthy) to 4 (severe NEC), with a score of 2 or greater indicating NEC. 

We also evaluated the tissue for macroscopic evidence of pnuematosis intestinalis and 

bowel discoloration.  

 Although this model is used in multiple labs throughout the country and has been 

helpful in elucidating many of the molecular pathways involved in NEC pathogenesis, its 

clinical relevance is limited given that NEC typically manifests 2-4 weeks after birth, 

rather than in the first 72 hours after birth as designed in this experimental model (78). In 

addition to this inherent problem with the model, we experienced difficulty in being able 

to reliably reproduce histological NEC in the pups, as determined by two independent 
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clinical pathologists blinded to the study conditions. Thus, it was impossible to form 

conclusions about nitrite’s efficacy against NEC since NEC could not be shown to be 

induced.  

 Through the use of this model, however, we found that the mean histological 

score of 34 pups that did not receive supplemental NO2
- (formula-fed (FF) + hypoxia) 

was significantly worse than that of the healthy control group (0.5 ± 0.08 vs. 0.23± 0.03, 

respectively) (p<0.01, ANOVA). The histological scores of the pups that received nitrite 

were not significantly worse than the healthy controls. However, they were not improved 

compared to the FF + hypoxia group (Figure 27). Furthermore, nitrite treatment had no 

effect on the survival rates, weight gain, severity of pneumatosis intestinalis, or intestinal 

discoloration. Based on the histological scores, nitrite may offer some protection against 

the early stages of intestinal damage. However, the other points of evaluation suggest the 

preventative effects of nitrite are minimal. Moreover, the scores for the FF + hypoxia 

(“NEC” positive control) group did not reach the threshold for NEC and thus, nitrite’s 

efficacy in preventing NEC remains untested. 
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Figure 27. Histological scores of ileum samples collected from neonatal rat pups exposed 
to formula feeding (FF) with increasing doses of nitrite (0-3 mM) and hypoxia twice 
daily for 72 hours.  
 

  

Circulation 

Circulating Nitrite 

 Shortly after the discovery that NO is generated from nitrite in the acidic 

environment of the stomach, Zweier and colleagues showed that NO could also be 

generated from nitrite in ischemic heart tissue (79). Nitrite reduction to NO in hypoxic 

tissues appears to be mediated either by acidic disproportionation (similar to the 

mechanism in the acidic stomach) or by the activity of metal-containing proteins with 

nitrite reducing activity. These proteins include the heme-associated globins in their 

deoxygenated state, such as deoxygenated myoglobin, hemoglobin, cytoglobin and 

neuroglobin, as well as mitochondrial enzymes like complex III; molybdenum 



 

116 

metalloenzymes, such as xanthine oxidoreductase (80); cytochrome P450 enzymes; and 

endothelial NOS (see the review by Kim-Shapiro and Gladwin) (81). While the initial 

report by Zweier suggested that nitrite reduction to NO in acidic tissues exacerbates post-

ischemic injury (79), nitrite has since been consistently shown in experimental animals to 

be protective against ischemia-reperfusion (I/R) injury in the heart, brain, liver and 

kidney (82). The mechanism by which nitrite confers protection against I/R injury is not 

well understood, but is thought to involve reduction to NO which modulates the function 

of the mitochondria, leading to more efficient oxygen utilization, decreased reactive 

oxygen species formation, and the inhibition of apoptotic signaling (83). The therapeutic 

potential of nitrite against I/R injury in newborns has not yet been studied. Considering 

that neonates are particularly at risk for hypoxic and ischemic insults, further research is 

needed to address the therapeutic and preventative potential for nitrite supplementation in 

the neonatal population. 

 While nitrite supplementation has yet to be studied in neonatal populations, it has 

been shown that treatment of persistent pulmonary hypertension of the newborn with 

inhaled NO (iNO) increases nitrite levels in the blood at least two-fold (21, 84). Although 

the resulting nitrite concentrations reached only ~300 nM after iNO administration, 

similar increases in circulating nitrite concentrations have been shown to protect mice 

against hepatic infarct (85), increase blood flow in the human forearm (86), and decrease 

systolic blood pressure in adults (24, 34, 87). Thus, increases in circulating nitrite levels 

resulting from iNO treatment may be enough to cause significant systemic effects (21). 

Indeed, there are a number of reports demonstrating protective effects of iNO therapy in a 

mouse model of myocardial infarction (88), adult human liver transplant patients (89), 
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and in children following cardiopulmonary bypass (90). Whether the protective effects of 

iNO are due to elevations in circulating nitrite remains to be determined. 

 Given that nitrite could theoretically improve an infant’s ability to withstand 

ischemic stress, it is important to discuss the mounting evidence that normal newborn 

infants appear to have numerous mechanisms in place that decrease systemic nitrite levels 

during the first few weeks of life. As shown in Figure 23, these mechanisms include low 

dietary nitrite and nitrate intake, the lack of bacterial nitrate reduction in the mouth, a 

relatively high pH in the stomach, enhanced urinary excretion, and a dramatic fall in 

plasma nitrite concentrations at birth.  

 We have shown that circulating nitrite concentrations decrease markedly after 

birth, falling from approximately 0.18 ± 0.02 μM in umbilical cord plasma to 0.08 ± 0.02 

μM in plasma collected from term infants on their first day of life. Interestingly, plasma 

collected from preterm infants has even lower nitrite concentrations (0.03 ± 0.01 μM). 

Plasma nitrite concentrations are significantly lower in infants than those measured in 

adults, which averaged 0.17 ± 0.01 μM in our study and typically range from 50 to 300 

nM (42). Moreover, plasma nitrite appears to remain lower than adult levels for the first 

few weeks of life. These findings are consistent with previous reports that adult plasma 

nitrite levels are significantly higher than those of newborn infants (21), but are similar to 

those in umbilical cord blood (91). The relevance of the dramatic fall in circulating nitrite 

levels immediately after birth is uncertain, but may be an important part of the circulatory 

changes that occur at birth.  

 There are many factors that contribute to plasma nitrite concentrations. In adults, 

a majority of plasma nitrite is derived from the oxidation of NO produced by endothelial 
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NOS (eNOS) (25). This oxidation depends on enzyme-catalyzed reactions in the plasma 

(92), which are significantly attenuated in the newborn (93). In addition, eNOS activity 

may be diminished in newborns due to low levels of L-arginine (94) and increased levels 

of asymmetric dimethylarginine (ADMA), the endogenous inhibitor of NOS (95-97). 

Furthermore, the rapid increase in tissue PO2 that occurs at birth may result in increased 

superoxide levels, particularly in preterm infants who are likely to have low antioxidant 

defenses (98-101). This superoxide can rapidly scavenge NO to produce peroxynitrite 

instead of nitrite. Another potential cause of relatively low plasma nitrite in infants could 

be the lack of significant oral bacterial nitrate reduction, as discussed above and 

illustrated in Figure 25. We have shown that adults given antibacterial mouth rinse have 

significantly reduced plasma nitrite concentrations (14), highlighting the importance of 

the oral nitrate reducing bacteria to the amount of circulating nitrite. Thus, with the 

confluence of all of these factors, it appears that nitrite bioavailability is diminished in the 

newborn by a system of concerted mechanisms, as evidenced by the sharp fall in nitrite 

concentrations at birth. The physiological relevance of this decreased nitrite in newborns 

remains to be elucidated and should be more fully understood before efforts are made to 

study the potentially therapeutic use of nitrite in this patient population. 

 

Summary 

 Before birth nitrate and nitrite concentrations in fetal blood are similar to those in 

maternal blood due to rapid passive exchange of the anions across the placenta. Within 

hours of birth, however, the nitrite concentration in the newborn falls sharply in 

association with increases in blood pressure, increases in pulmonary blood flow, and 
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many other adaptations to increasing oxygen tensions. In the early weeks of life nitrate 

and nitrite levels remain low for several reasons. There is limited ingestion of nitrate and 

nitrite because their concentrations are low in milk and formula. There is little reduction 

of nitrate to the physiologically active nitrite by oral bacteria. There is little generation of 

NO in the newborn stomach because the pH is high.  Finally, there is enhanced urinary 

excretion of nitrite. The net result is that the recirculation of nitrate and nitrite as 

bioactive sources of NO is markedly lower in the newborn than in the adult.  

 In recent decades the many serious concerns that nitrite in the diet would cause 

cancer and methemoglobinemia have lessened and been replaced by new findings of 

cardiovascular benefits. In the newborn period there arises the prospect of protecting the 

GI tract from bacterial invasion by supplementation with nitrite, thereby increasing NO 

bioactivity and its protective actions. However, careful investigation must be done 

weighing the risks against the benefits before supplementation with nitrite can be 

undertaken safely in newborn infants. 

 

Future Directions 

 One of the most exciting things about research is that in trying to answer one 

question, many more questions arise. The continual pursuit of knowledge is what drives 

science forward and it is a humbling honor to have been able to contribute my small piece 

of the puzzle. Our work has raised important questions regarding nitrite and nitrate 

bioactivity in newborn infants and will hopefully lay the groundwork for future studies to 

assess the therapeutic potential of nitrite. Indeed, exciting studies are currently underway 
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in our lab evaluating the protective potential of nitrite against hypoxia in the fetus and 

newborn. 

 It is important that future work explore the physiological effects of diminished 

nitrite and nitrate ingestion in newborn infants. To address the physiological implications 

of chronic low nitrate ingestion, changes could be observed in adults subjected to a low-

nitrate diet. In addition, future work addressing how human milk fortifiers impact the 

nitrate and nitrite levels in breast milk would have important clinical relevance. It would 

also be interesting to see whether maternal consumption of a high nitrate diet could raise 

the nitrate/nitrite content in breast milk and whether this could be beneficial.  

 Every day we learn more about the importance of the symbiotic relationship we 

have with bacteria. Given the importance of oral nitrate-reducing bacteria, future studies 

should identify the age at which oral nitrate reductase activity becomes significant. It 

would also be fascinating to explore how bacterial colonization differs in preterm infants 

in the NICU versus healthy term infants and how early use of broad-spectrum antibiotics 

impact the development of the microbiome. Similarly, studies should be done to 

investigate whether seeding an infant’s mouth with the mother’s saliva would be 

beneficial for normal colonization of flora. In addition, the effects of chronic use of 

antibacterial mouth rinse, in the context of nitrate and nitrite bioactivity, remain untested. 

This has important clinical implications as prophylactic chlorhexidine4 treatment is used 

to prevent the oral complications of leukemia (102), HIV (103), and prolonged intubation 

(104).  

                                                 
4 Chlorhexidine is the antibacterial mouthwash we used to stop nitrate-reducing activity by oral bacteria in 
our studies 
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 In addition to decreased dietary intake and bacterial activation of nitrate, 

decreased gastric NO generation may be another mechanism responsible for the low 

plasma nitrite levels in newborns and the particularly low levels in preterm infants. 

Future studies should explore this important component of the nitrate-nitrite-NO axis in 

newborn infants. As a first step, we collected gastric fluid samples from eleven preterm 

infants (<32 weeks gestation), thirteen infants born between 32-37 weeks gestation (late 

preterm), and seven term infants (>37 weeks gestation). As expected for newborns, the 

average pH of the samples is relatively high (4.4 ± 0.3, preterm; 4.2 ± 0.1, late preterm; 

and 3.9 ± 0.3, term) and is higher than the pKa for nitrite reduction to nitrous acid, which 

is ~3.2. Consistent with the other aspects of the nitrate-nitrite-NO axis, we see that the 

generation of NO from nitrite is greatly diminished due to the high pH of these stomach 

contents. Figure 28 shows the rate of NO generation in gastric residual samples at various 

pHs, highlighting the dramatic decrease in NO production at higher pH.   

 
Figure 28. Rates of NO production from 50 µM nitrite added to gastric residual samples 
(●) and simulated gastric fluid (□) at different pHs. 
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However, we were surprised to find that the nitrite concentrations in these gastric 

residuals are remarkably high in preterm infants (<32 weeks gestation) (10.8 ± 3.6 µM), 

infants born at 32-37 weeks gestation (9.7 ± 2.4 µM), and in term infants (4.5 ± 2.0 µM), 

as shown in Figure 29.  

 

   
Figure 29. Mean nitrite concentrations measured in gastric residual samples collected 
from newborn infants during the first three weeks of life. Each data point represents the 
mean nitrite concentration in all the samples collected from one infant.  
 

These levels are over a 100-fold higher than the plasma and 100-fold higher than 

the levels in breast milk, as shown in Figure 30.  

 One future direction of our work is to explore this exciting finding. We have 

generated a few hypotheses regarding the high nitrite levels in these gastric fluids and 

herein present preliminary results that will be useful for determining future work.  
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Figure 30. Comparison of the nitrite concentration in the plasma, urine, diet, saliva, 
stool, and gastric residuals of infants. Adult values were included when available. 
 

 Possible reasons for high gastric nitrite in infants include: nitrate reduction to 

nitrite by bacteria, accumulation of breakdown products of breast milk proteins, active 

transport across the stomach mucosa, co-transport of nitrite with protons, concentration 

of nitrite after loss of volume, and diminished reduction of nitrite to nitrous acid and NO 

because of the high gastric pH. 

 Nitrate reduction by bacteria seems unlikely because there is no nitrite production 

after nitrate is added in six of the seven gastric samples measured (Figure 31). Similarly, 

breakdown of milk proteins in an acid solution does not cause an increase in the nitrite 

concentration (data not shown).  
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Figure 31. Nitrate reduction in gastric residual samples. A) After additional nitrate (0.3 
mM) was added to seven gastric residuals (represented by individual lines), nitrite 
concentrations were measured over 30 minutes (similar to the oral bacteria experiments 
described in Chapter 3). B) Mean data represented as % of baseline.  
  

 We have promising data from preliminary studies in adult rats testing the 

possibility that the high pH in the stomach of newborns is preventing nitrite in the 

stomach from being converted to nitrous acid and NO. When 4.0 mL of a high pH buffer 

(10mM bicarbonate buffer, pH 8.4), containing 0.02 mg/ml phenol red (a non-absorbable 

marker for stomach volume measurements) and 10 µM nitrite, was infused into the rat 

stomach, the nitrite concentration remained high over the 30 minutes. Conversely, when a 

low pH buffer (1% pepsin in NaCl and HCl, pH 2.0) was infused into the stomach, the 

nitrite concentrations fell rapidly during the 30 minutes (Figure 32). In both groups, we 

did not see an increase in the nitrite concentration over time despite volume loss, 
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indicating that concentration of nitrite because of loss of water is not a likely explanation 

for the high nitrite levels in the stomach. 

 

Figure 32. Nitrite concentrations in stomach fluid collected from rats after infusion of a 
low or high pH buffer into the stomach. 
  

 One intriguing hypothesis is that nitrite is actively pumped into the stomach from 

the plasma. To test this, in our preliminary studies we gave rats intravenous (I.V.) nitrite 

(0.5 mL of 300 µM) and measured the gastric nitrite levels over 30 minutes. As shown in 

Figure 33, when the stomach was filled with saline (pH 5.6) or bicarbonate (pH 8.4), it 

appears that the stomach nitrite concentrations rose as the plasma levels fell. However, 

when the stomach pH was low (pH 2.0), gastric nitrite levels remained below the level of 

detection for the entire 30 minutes. Interestingly, the nitrite concentration in the bile 

significantly increases after a gastric or IV bolus of nitrite, suggesting the liver may play 

an important role in regulating circulating nitrite levels. These preliminary experiments 

provide a starting point for future work that will hopefully shed more light into the 

stomach processing of nitrite when the gastric pH is altered, as it is in newborn infants. 
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Figure 33. Nitrite concentrations in gastric fluid and plasma after 0.5 mL of 300 µM 
nitrite was administered IV.  
 

 The exciting and intriguing finding that the gastric contents of newborn infants 

contain high levels of nitrite deserves to be explored further. As a first step, we have 

ruled out a few hypotheses. It seems unlikely that nitrate reducing bacteria, acid 

breakdown of breast milk proteins, or simple concentration of nitrite due to water loss 

from the stomach, are responsible for high stomach nitrite. However, very preliminary 

work in rats suggest that nitrite may be actively pumped from the plasma into the 

stomach where, at a high pH, it can accumulate and lead to higher concentrations than 

can be explained by dietary intake. I urge the future generations of students in our lab and 

elsewhere to continue to explore this and other potential mechanisms.  
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