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ABSTRACT OF THE DISSERTATION 

Acclimatization to High-Altitude, Long-Term Hypoxia 

Alters BK Channel Structure and Function  

 

Xiaoxiao Tao 

Doctor of Philosophy, Graduate Program in Pharmacology 

Loma Linda University, June 2015 

Dr. David A. Hessinger, Chairperson 

 

We examined the major possible mechanisms for the left shift of the BK channel 

I-V relationship in native basilar artery myocytes from the two LTH groups.  These 

mechanisms included: differential expression of the accessary BK -1 subunit; 

differential phosphorylation of the BK subunit; and splice variation of the BK subunit.  

Using molecular cloning, heterologous expression, and patch-clamp electrophysiology 

techniques, we elucidated a mechanism that, at least in part, contributes to the differences 

we observed between channels from native normoxic and LTH myocytes. 
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CHAPTER ONE 

INTRODUCTION 

BK Channel 

BK Channel Structure  

Large-conductance, calcium-activated potassium channels (BK channels) were 

first functionally observed in snail neurons as a calcium-dependent potassium current 

(47).  Subsequently, they were observed and cloned from various organisms (3,12,13,61). 

BK channels, like many membrane proteins, undergo transcriptional and post-

transcriptional regulation. The BK channel is a tetrameric assembly of both α and β 

subunits. BK channel α subunits are polypeptides of 120-140 kDa encoded by a single 

gene Slo or KCNMA1, which can be spliced at several sites. Unique among potassium 

channels, BK α comprises seven transmembrane domains (S0-S6), placing the smaller N-

terminus extracellularly and the large C-terminus intracellularly. The intracellular domain 

contains four hydrophobic segments (S7-S10), two regulating conductance of potassium 

domains (RCK-high affinity and low affinity), a stretch of aspartate residures are known 

as the calcium bowl (5, 52), and a conserved c type heme binding motif (CKACH) (70) 

(Fig 1).  
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Figure 1. BK α has seven transmembrane domains (S0-S6), and four intracellular 
hydrophobic regions (S7-S10). The pore domain, the calcium bowl and RCK1 H (high 
affinity) and L (low affinity) are also shown. EC, Extracellular; IC, Intracellular. 

 

 

Fig. 2.
Molecular determinants of BK channel responses and adaptation to acute ethanol exposure.
(A) Ethanol action on BK channels results from drug modulation of Ca2+-driven gating.
Cartoon of the BK channel-forming α subunit, where bold traces highlight regions that are
absent in voltage-gated TM6 K+ channels other than BK and control the ethanol sensitivity of
this channel type. The main recognition sensors of divalents are labeled with H (high affinity)
or L (low affinity); predominantly helical segments are shown as numbered cylinders; EC:
extracellular, IC: intracellular. (B) Ethanol modulates Ca2+action after this divalent is
recognized by sites shown above (see main text). Upon the fundamental Ca2+-slo1 subunit-
ethanol interaction, final drug action is regulated by posttranslational modification of slo
(phosphorylation), channel accessory β subunits, and the lipid microenvironment around the
channel, with type-I and type-II lipids respectively facilitating and inhibiting ethanol-induced
potentiation of channel activity. (C) Role of BK channel β4 subunit on acute ethanol tolerance.
At the molecular level, acute ethanol increases α and αβ4 BK channel open probability in
HEK-293 cells and MSNs. However, the activity of α BK channels (left column) returns to
control levels shortly (7 to 8 minutes) after the beginning of drug exposure, indicating the
development of tolerance, while that of αβ4 BK channels (right column) remains potentiated.
At the cellular level, acute ethanol depresses excitability of striatal MSNs through its action
on BK channels. This effect is transient in neurons expressing α, but not αβ4 BK channels.
Behaviorally, in the absence of β4, the changes in locomotor activity following ethanol
injection show acute tolerance, whereas acute tolerance of this behavioral measure is severely
reduced in mice expressing the β4 subunit. Finally, β4 KO mice, exhibited a marked increase
in ethanol consumption, compared to WT mice. Thus, the data at multiple levels of analysis
establish the importance of BK β4 on acute ethanol tolerance, and support a link between acute
tolerance and drinking behavior.

Mulholland et al. Page 18

Alcohol Clin Exp Res. Author manuscript; available in PMC 2009 October 12.

NIH-PA Author M
anuscript

NIH-PA Author M
anuscript

NIH-PA Author M
anuscript
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Auxiliary Subunit 

BK channel β subunits are auxiliary components of BK channels.  They are a 

small group of highly conserved proteins with two transmembrane domains, short 

intracellular N- and C-termini and a large extracellular region and a molecular weight of 

about 25-30 kDa. Expressions of four subtypes have been identified (β1, β2, β3 and β4) 

in various tissue types (4, 30, 48, 74). In general, as an auxiliary subunit, the β subunit 

interacts with the channel-forming α subunit in several ways: interacting with the STREX 

exon (58); and β4 subunits down regulate α subunits (74). The principal action of the β 

subunit is to increase channel burst duration, which results in an apparent increase in 

calcium sensitivity (59). For vascular smooth muscle cells, the major subtype of β subunit 

is β1 (23). Estradiol (estrogen) activates BK channels via the β1 subunit (73) and 

regulates β1 gene expression (53).  

Electrophysiologically, β1 subunit increases the apparent calcium sensitivity of 

the BK α subunit (48). In genetic hypertension, diabetes, and aging, the β1 subunits are 

down regulated in vascular smooth muscle cells (1, 42, 55), so β1 subunit expression may 

protect against some types of hypertension (54). 

 

Regulation of BK Channel 

Posttranslational Modification of BK Channel Protein 

Phosphorylation and glycosylation (17) are the two major forms of BK channel 

post-translational modification. Phosphorylation of ion channels is one of the most 

dynamic regulatory mechanisms for controlling ion channel function under various 

circumstances.  
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One example is that PKA can confer totally different effects on two alternatively 

spliced Slo variants in Aplysia neuron (82). Our lab’s previous finding suggests that 

developmentally regulated BK channel-associated phosphatases and kinases can 

differentially phosphorylate this channel and, thereby, modulate calcium affinity (37, 38, 

39). 

PKA, PKG and PKC all regulate BK channel function by phosphorylating the 

channel protein (71, 75, 83, 84, 85, 86). PKA activates the BK channel, as does PKG (38, 

39). However, PKC inhibits BK channel in rat pituitary tumor (GH3) cells (65), and 

reduces the BK current in rat tail artery smooth muscle cells (62).  

 

Alternative Splicing 

Alternative splicing is a selective, post-transcriptional mechanism by which a 

gene can be translated into isoforms of varied functions. The BK a subunit (BK α) is 

highly alternatively spliced. Alternatively spliced transcripts can be species specific or 

tissue specific. Splice variants show distinct channel properties, including changes in 

conductance, open probability, calcium sensitivity (34), channel kinetics (66). 

Regulators of splicing can be modulated by phosphorylation and nuclear-

cytoplasmic redistribution (45). One of the regulators, PTB, is a RNA binding protein 

that is inversely correlated with specific splicing events (15). PTB levels are high in the 

late embryonic stage and decline with time. Slo splice variants can also alter BKα and 

BKβ surface expression (29, 80, 81). 

Alternative splicing is one of the major mechanisms for generating protein 

diversity in the course of evolution (14). The BK channel, which responds to a wide 
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variety of physiological and environmental stimuli, is a good candidate for this regulatory 

mechanism. Evolutionary convergence of alternative splicing in voltage-gated sodium 

channels, calcium channels, and BK channels occurred independently in different 

lineages despite the fact that they share tandem exon duplications. Splicing makes 

channel modification faster at the post-transcriptional stage and more precise than 

repression of whole genes (9). 

One of the most studied alternatively spliced exons of BK is STREX, which when 

present, is a cysteine rich domain within the C-terminal region (60) that increases the 

voltage sensitivity of the channel. The expression of the STREX insert in BK channels 

can be induced by androgens, and inhibited by glucocorticoids in bovine chromaffin cells 

(35). Testosterone, (43) estrogen, progesterone, pregnancy (87), stress (36, 78, 46), and 

development (41) can regulate the expression of the STREX exon. Hair cells from rat 

(33) and from turtle (25, 26, 27) show the greatest numbers of BK splice variants, which 

are used to tune the frequency the inner ear. 

 

RNA Editing 

RNA editing, unlike alternative splicing, is a more subtle change in protein 

structure, generally involving single nucleotide changes (28). There are growing numbers 

of receptors and ion channels that have been identified as highly edited isoforms (e.g. 

glycine receptors (49), NMDA receptors (24), AMPA receptors, serotonin receptors, 

Na/K ATPase, and squid Kv channels) (63, 64). The major form of RNA editing is A-to-I 

editing (63), which is catalyzed by adenosine deaminases acting on RNA (ADARs). 

ADARs can also modulate siRNA and miRNA pathways. Thus, ADARs can influence 
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gene expression by several distinct pathways and mechanisms (22, 57). Although single-

nucleotide polymorphisms (SNPs) in vascular BK channels have been reported both for α 

and β subunits (31), there is currently no literature suggesting that BK channel RNA is 

edited. SNPs can cause loss- or gain-of-function of the channels. Epigenetic mechanism 

can influence the post-transcriptional expression of BK channels (72), which could 

explain that under LTH conditions, SNPs can be induced or mediated by low oxygen 

levels. Single amino acid mutation may be attributed to the opposing ethanol effects in 

BK channels from vascular smooth muscle cell and neuron. (40) 

 

Transcriptional Control of BK channel Expression 

Work done by Atkinson’s group using Drosophila suggests that tissue-specific 

expression of splice variants are modulated by development using different promoters 

and various transcriptional factors (2, 6, 7, 8). These studies indicate that BK channels are 

alternatively spliced at different developmental stages (79) in conjunction with multiple 

promoters and transcriptional start sites (32), which potentially make the BK channel a 

much more diversified molecule. This property might give rise to different channel 

isoforms even in the same tissue (e.g. vascular smooth muscle), but in different locations 

(e.g. basilar vs. mid cerebral vs. pulmonary arteries) in mammals.  

 

Significance 

Cerebral Circulation, BK Channel and High Altitude Hypoxia 

The brain is the least tolerant of hypoxia of all the organs. Interruption of cerebral 

blood flow for a few seconds causes unconsciousness. Hypoxia persisting for a few 
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minutes will cause irreversible brain damage. The basilar artery, one of the major arteries 

that supply blood to the brain, specifically the brain stem and pons, has a high density of 

large conductance, calcium activated potassium channels (BK channels) in its smooth 

muscle myocytes compared to peripheral vessels e.g. pulmonary artery (unpublished 

findings). BK channels have been reported to be able to sense oxygen indirectly (76). 

During brain hypoxia, either acute or long term, the cerebral vasculature adapts to 

maintain adequate blood flow to the brain. Thus, cerebral vasculature BK channels are 

crucial during hypoxia regulation of the brain circulation. .     

Basilar artery is one of the major arteries that supply oxygen to the brain. The two 

vertebral arteries and the basilar artery are sometimes together called the vertebrobasilar 

system, which supplies blood to the posterior part of circle of Willis and anastomoses 

with blood supplied to the anterior part of the circle of Willis from the carotid arteries 

including brain stem and pons. Ischemia or hemorrhage of the basilar artery can cause 

locked-in syndrome in which a patient is aware and awake, but cannot move or 

communicate verbally due to complete paralysis of nearly all voluntary muscles in the 

body except for the eyes. The more critical condition is that hypoxia and ischemia of the 

brainstem can lead to death.  

Long-term hypoxia, such as occurs in high altitude adaptation by humans, has 

fundamental physiological and clinical implications, especially in perinatal biology. 

Millions of people currently live at altitudes higher than 2500 meters, where oxygen 

supply is limited.  At such high altitude and above, a series of physiological events occur, 

in which cerebral blood flow velocity decreases, in particular, in the basilar artery in 

children and adolescents (19). Research done at Himalayan high-altitudes (4200m) 

http://en.wikipedia.org/wiki/Circle_of_Willis
http://en.wikipedia.org/wiki/Basilar_artery
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showed that cerebral autoregulation becomes critically impaired (21). Research also 

suggested that cerebral vascular responses might be impaired in Andean high altitudes 

dwellers (56). However, little is known about the molecular mechanisms by which the 

developing brain adapts under such hypoxic conditions.  

 

Molecules That Target BK channels 

The BK channel is a major regulatory ion channel in excitable cells, including 

muscle and neurons. In vascular smooth muscle cells, it is a major regulator of vascular 

tone (68). BK channels couple membrane potential and intracellular calcium 

concentration. Once activated by an increase in intracellular calcium, BK channels give 

rise to an efflux of potassium which hyperpolarizes the membrane potential (5). Because 

of its important roles, the BK channel is a highly regulated cellular target. It can be 

directly regulated by heme (70), reactive oxygen species (69), carbon monoxide (20, 77), 

nitric oxide (67) and estrogen (73). Clinically, recombinant BK channels have been used 

to treat erectile dysfunction (50).  Also, BK channel openers have been shown to have 

protective effects in stroke (16).  In addition, BK channels, along with GABA receptors 

(18), glycine receptors (44, 51) and NMDA receptors and other ion channels are 

considered to be pharmacological targets of ethanol (10). BK channels show the highest 

sensitivity to ethanol and all ethanol-resistant mutants of C. elegans have BK channel 

loss-of-function mutations (11). These findings suggest that BK channel is the most 

susceptible target, especially at lower, physiologically relevant levels of ethanol.  
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Hypothesis 

My working hypothesis is that observed functional differences between the BK 

channels of LTH and NX basilar artery smooth muscle cells are due to splice variation of 

the BKα subunit. 
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Abstract 

 Acclimatization to high-altitude, long-term hypoxia (LTH) alters cerebral artery 

contraction-relaxation responses associated with changes in K+ channel activity.  We 

hypothesized that to maintain adequate oxygen perfusion during acclimatization to LTH, 

basilar arteries (BA) in the ovine near-term fetus would show increased smooth myocyte 

large-conductance Ca2+ activated potassium (BK) channel activity.  To measure BK 

channel activity, expression, and cell surface distribution in isolated fetal and adult BA 

myocytes, we used patch-clamp electrophysiology, flow cytometry, and confocal 

microscopy.  Several features distinguished BK channels of LTH acclimatized vessels 

from normoxic controls: 1) BK channel Ca2+ set points for both adult and fetal LTH 

sheep were lower, making LTH channels more sensitive to Ca2+ activation; 2) BK 

channels in LTH myocytes appeared more dephosphorylated; 3) BK channel half-

activating voltages of LTH animals were left shifted ~30 mV independently of 

phosphorylation state; and 4) BK channel dwell times from LTH near-term fetus were 

longer and more sensitive to changes in phosphorylation state. In addition, the LTH fetus 

exhibited increased BK b-1 subunit surface expression. Furthermore, both the LTH and 

normoxic fetuses showed increased BK channel clustering and co-localization to lipid 

rafts compared to adults, making them more sensitive to Ca2+ activation from internal 

stores.  

Key Words:  Development, Ca2+ signaling, high altitude. 

Abbreviations.  Apase, alkaline phosphatase; BA, basilar artery; BK, large-conductance, 

Ca2+–activated K+ channel; Ca0, Ca2+ set point; CBF; cerebral blood flow; ChTx, cholera 

toxin; FGR, fetal growth restricted, LTH, long-term hypoxia; PKA, cAMP-dependent 
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protein kinase; PKG, c-GMP-dependent protein kinase; RT, room temperature; V1/2, 

membrane potential that half activates channels; WGA, wheat germ agglutinin. 
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Introduction 

At high altitude, non-acclimatized adults and the developing fetuses may 

experience dysregulation of cerebral blood flow (CBF). Infants subjected to hypoxia in 

utero or born prematurely may exhibit decreased auto-regulation of CBF resulting in 

intraventricular hemorrhage, germinal matrix hemorrhage, or related problems (16).  

Such developmental complications can result in long-term neurologic sequelae such as 

cerebral palsy, mental retardation, and epilepsy (13, 41, 58, 63). In non-acclimatized 

adults, acute mountain sickness (62) and/or high altitude cerebral edema (18) may result.  

In addition, other clinical disorders feature long-term hypoxia (LTH), including cardiac 

and vascular disease (15, 54), impaired wound healing (5), cancer (11, 21, 40), and 

problems in pregnancy, such as an increased prevalence of preeclampsia (57). Thus, LTH 

can adversely affect fetal and adult health. 

Because of its high metabolic activity and oxygen (O2) requirement, with little or 

no O2 stores, the brain is particularly vulnerable to hypoxia.  The cerebral vasculature 

regulates CBF according to the brain's metabolic needs, and maintenance of adequate 

oxygenated CBF is vital because the brain regulates a myriad of essential physiological 

processes, as well as consciousness and behavior. During acute, short-term hypoxia, the 

cerebral vasculature dilates to increase CBF (24), and may contribute to development of 

cerebral edema and other central neurological disorders associated with high altitude. 

There is conflicting evidence, however, regarding the nature of cerebrovascular 

regulation under conditions of long-term hypoxia.  

In adult humans at high altitude, CBF generally returns to normal following a 

transitional period of increased CBF (25, 56).   In high-altitude, long-term acclimatized 
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sheep, middle cerebral artery vascular segments from both LTH adults and near-term 

fetuses showed significant differences in ex vivo contractility (17, 36).  Arterial 

cerebrovascular segments of LTH adults showed significant increases in Ca2+ sensitivity, 

while those of LTH fetuses showed reduced large-conductance, Ca2+-activated K+ (BK) 

channel-mediated vasorelaxation (14, 35).  Several physiological mechanisms have been 

proposed to account for the acclimatization response of developing cerebrovascular 

smooth muscle to long-term hypoxia, including decreased vascular resistance and 

increased vasodilator release (36).  Regarding the LTH fetus, our previous work has 

suggested that chronic hypoxia may decrease channel density or sensitivity to Ca2+ (14).  

Related to this, A7r5 rat aorta cells cultured under 20-h hypoxia exhibited decreased BK 

channel open probability and mean open dwell times attributable to decreased BK β-1 

subunit mRNA levels, and decreased cell surface BK β-1 expression as measured by flow 

cytometry (39).  These results from LTH fetal sheep and cultured A7r5 rat aorta cells 

were at odds with the observations that CBF in the LTH fetal lambs did not differ from 

normoxic controls (26, 46, 60) and seemed counter-intuitive to our assumption that 

acclimatization of cerebral vasculature to LTH must ensure adequate perfusion to the 

brain.  Because of these disparities between in vitro and in vivo data, we compared the 

intrinsic functional properties of natively expressed cerebrovascular BK channels from 

LTH and normoxic adult and near-term fetal sheep. 

Our previous work with normoxic near-term fetal BA in sheep showed that 

increased BK channel activity was attributable to their higher affinity for Ca2+ ions 

(lower calcium set point, Cao) compared to adult (31).  On this basis, we hypothesized 

that cerebrovascular acclimatization to the demands of LTH will involve increased BK 
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channel activity due to increased channel affinity to Ca2+ compared to normoxic controls.  

In the present study, we show that BK channel activities are increased in both LTH adult 

and fetal BA myocytes due, in part, to increased BK channel Ca2+affinity.  In addition, 

the near-term fetal myocytes exhibit increased BK β-1 subunit surface expression and BK 

channel clustering, allowing these channels to detect intracellular Ca2+ released from 

internal stores.   

 

Methods 

Experimental Animals 

All surgical and experimental procedures were performed within the regulations 

of the Animal Welfare Act, the National Institutes of Health’s Guide for the Care and Use 

of Laboratory Animals, “The Guiding Principles in the Care and use of Animals” 

approved by the Council of the American Physiological Society, and the Animal Care 

and Use Committee of Loma Linda University.  Nonpregnant and time-dated pregnant 

ewes of mixed Western breed were divided between normoxic control (n = 8) and long-

term hypoxic (LTH; n = 8) groups.  All pregnant and nonpregnant ewes originated from 

the Nebeker Ranch (Lancaster, CA; elevation 720 m) where they were maintained at near 

sea level (normoxia) until 30 days gestation.  At this time, some of the pregnant and 

nonpregnant ewes were transported to the Barcroft Laboratory, White Mountain Research 

Station, Bishop, CA (3,801 m; hypoxia; maternal arterial PO2: 60 ± 3 Torr; fetal arterial 

PO2: 19 ± 2 Torr) for the final 110 days of gestation.  At this time, the ewes were 

transported to Loma Linda University (a 6 to 7 hr trip) for study.  After arrival at Loma 

Linda University Medical Center Animal Research Facility (elevation: 346 m), LTH 
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ewes were surgically implanted with arterial and tracheal catheters.  The adult PO2 was 

maintained at approximately 60 Torr by adjusting humidified nitrogen gas flow through 

the tracheal catheter for several hours to days, as previously described (26), until the 

animal was euthanized for surgery.  Normoxic control pregnant and nonpregnant ewes 

were maintained near sea level (~300 m) throughout gestation. 

At the time of study, ewes were sedated with thiopental sodium (10 mg/kg, iv), 

and following intubation, anesthesia was maintained with inhalation of 1% isoflurane in 

O2 throughout surgery.  Following delivery of the fetus by hysterotomy, the fetus and 

ewes were euthanized with an overdose of Euthacol [pentobarbital sodium (100 mg/kg) 

and phenytoin sodium (10 mg, kg), Virbao, Ft. Worth, TX].  Fetal or adult brains were 

removed, placed in iced saline, and basilar arteries were rapidly dissected out.   

 

Artery and Cell Isolation 

Arteries were selected from the same anatomic segments of adult and fetal BA to 

approximate segments of similar function and embryonic origin.  Consequently, the adult 

and fetal arteries were of different diameter (~300 mm vs. 200 mm, respectively).  To 

determine the extent to which arteries of different size within age groups have the same 

current densities, we sampled current densities from proximal and distal segments of both 

adult and fetal basilar arteries.  We observed no significant differences in current 

densities within age groups for arteries of different diameter.  As described previously, 

BA smooth muscle cells were enzymatically dissociated and isolated (31).  
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Whole Cell Current Recordings 

Vascular smooth muscle cells adhering to pre-cleaned glass cover slips were 

mounted in a perfusion chamber containing cell isolation solution for 15 min on the stage 

of an inverted microscope (Axiovert 35M, Carl Zeiss Instruments).  The cell isolation 

solution then was exchanged for the bathing medium.  Normoxic controls and LTH 

smooth myocytes showed characteristic elongated shapes with axial ratios of about 10:1 

for adult, and 5:1 for the fetus.  

Positive outward currents were measured in conventional and perforated-patch 

(23) whole-cell voltage-clamp configurations using an Axopatch 200B amplifier with 

Clampex 8 (Axon Instruments, Foster City CA). Currents were filtered at 1 kHz, using an 

Axopatch 200B internal 4-pole low-pass Bessel filter, and digitized at 2 kHz.  For 

perforated-patch recordings, patch pipettes were back-filled with pipette solution 

containing amphotericin B (see Reagents and solutions, below).  Due to differences in 

adult and fetal cell size, as well as within age groups, whole-cell currents were 

normalized with cell capacitance to obtain current density.  An agar salt-bridge was used 

to minimize the solution junction potential differences. 

 

Single-Channel Recordings 

Single-channel currents were recorded from inside-out membrane patches of 

isolated arterial myocytes (19).  Patch pipettes were fabricated using a programmable 

Flaming-Brown pipette puller and standardized fire polishing procedures.  Because the 

patch pipettes so produced had similar tip resistances (≈15 MΩ), the area of contact with 

each membrane was also similar (51).  Currents were filtered at 2 KHz and digitized at 
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10 KHz. The number of channels present in any given excised patch (N) was estimated 

from all-points histograms.  Channel activity, NPo, was calculated by using equation 1. 

 Equation 1 is ,  

where i is the number of open channels (0 is the number for closed state), and Ai is the 

area associated with each channel state, as determined from curve-fit individual peak 

areas. The single-channel open probability (Po) was then calculated from NPo/N.  The 

values for N were obtained by using high [Ca2+] and/or depolarization to ascertain that 

less than three coincidental open events occurred during long recordings (>20 s) at a Po 

higher than 0.8. Preparations with more than three channels present were discarded. 

 

Dwell-Time Analysis 

Single channel currents were analyzed with QuB software from SUNY, Buffalo 

NY (http://www.qub.buffalo.edu). For idealization, half-amplitude threshold analysis was 

used.  Kinetic modeling of the idealized intervals used the maximum interval likelihood 

method.  Dwell-time data were plotted with a logarithmic time x-axis and a square-root 

y-axis for the number of events in each bin.  Bin density was 50 bins per decade. 

 

Flow Cytometry 

Freshly dissociated basilar myocytes were filtered in polystyrene round-bottom 

tubes fitted with cell-strainer caps (100-µm nylon mesh; Fisher Scientific, Chino, CA).  

Filtration separated the dispersed cells from larger debris and undigested arteries. The 

filtrate was centrifuged at 600 x g for 10 min at 4 °C.  The supernatant was discarded and 

the pellet re-suspended in 300 µl PBS (in mM): NaCl (137), KCl (2.7), Na2HPO4 (10), 

NP i Ai AiO
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KH2PO4 (2), pH 7.4.  To block non-specific binding, 15 µl of 1% intravenous 

immunoglobulin (1% solution of human serum IgG) in PBS was added to 100 µl of cell 

suspension and incubated at 4 0C for 15 min.  After blocking, 1 µl of rabbit primary 

antibody to BKα-1 (1 mg/ml; cat. no. ab 587; Abcam Inc., Cambridge, MA) and 1µl of 

phycoerythrin-conjugated goat anti-rabbit IgG (secondary antibody cat. no. 20303; 

Imgenex Corp., San Diego, CA) were added for 15 min on ice.  Cells were washed in 1 

ml of PBS and centrifuged at 200 x g for 5 min at 4 0C.  The supernatant was aspirated 

and the pellet was re-suspended in 200 µl of 1% paraformaldehyde in PBS and stored at 4 

0C.  Fixed cells were analyzed within three days.  For each experiment, two controls were 

included consisting of untreated, fixed cells and fixed cells treated with secondary 

antibody only.  For cytometric analysis, a FACsCalibur flow cytometer (BD Biosciences, 

Billerica, MA) equipped with the Cellquest Program was used. 

Flow cytometric data were analyzed using FlowJo software (Tree Star, Ashland, 

OR), and image profiles were displayed as relative cell number against the log of 

fluorescence intensity.  Histograms from representative experiments were expressed as 

geometric means ± SEM.  Dead cells and debris were excluded (gated out) according to 

their forward and vertical scattering pattern.  To provide sufficient numbers of cells for 

experiments, cells from two animals were pooled.  For comparisons between adult and 

fetal groups, independent “t” tests were used.  P values of <0.05 were considered to be 

statistically significant.  

 

Confocal Microscopy Protocol and Analysis 

Fresh basilar arteries excised from anesthetized, nonpregnant adult and near-term 
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fetal sheep were flash frozen with liquid nitrogen in OCT compound (Sakura Biotech, 

Torrance, CA) and stored at -80 0C.  Frozen sections (10-mm thick) were cut using a 

cryostat (model CM3050S, Leica Microsystems, Wetzlar, Germany).  Sections were air-

dried at least 30 min, then fixed with ice-cold acetone for 10 min, followed by washing 

with room temperature (RT) PBS for 10 min.   Sections were blocked with 1% BSA and 

2% goat serum in PBS for 1 h, and then incubated with primary anti-BKα antibody 

(1:200; Cat. No. APC-151; Alomone Labs, Jerusalem, Israel) either at RT for 1 h or at 4 

0C overnight (~ 16 h).   Samples were then washed 3 times at RT in PBS for 10 min each.  

Then samples were incubated with goat anti-rabbit secondary antibody (1:300) 

conjugated with Alexa 488 (green; Cat. No. A11008, Life Technologies, Carlsbad, CA) 

at RT for 40 min in the dark.  Sections were either counterstained for 15 min with wheat 

germ agglutinin conjugated to Alexa 594 (AF-594 conjugated WGA; 1:300), a general 

membrane marker, or with recombinant cholera toxin subunit B (ChTx) conjugated to 

Alexa 594 (5 mg/ml), a GM1 marker of lipid rafts (20, 38) (red; Cat. No. W11262 and 

V34777, respectively; Life Technologies) and then with Hoechst dye 33342 (0.01mg/ml; 

blue; Cat. No. H1399; Life Technologies) for 10 min to label cell nuclei.  Coverslips (No. 

1.5, VWR; 161.3 ± 1.25 mm thickness; n = 8) were then applied to samples.  

Prepared slides were viewed and imaged with a LSM710 NLO Confocal system 

(Zeiss, Jena, Germany) equipped with 63x (n.a. 1.40) oil-immersion objective.  Images 

were acquired with Zen software (Zeiss) at 1024 x 1024 pixels, where each pixel was 

0.09 x 0.09 mm.  To reduce background noise the pixel dwell time was 0.50 ms and four 

lines were averaged.  To maximize imaging of intact myocytes, care was taken to image 

from the middle of cut sections.  For cluster analysis, we used the particle analysis 
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function of ImageJ software (49; http://rsb.info.nih.gov/ij) with procedures similar to 

Kirby et al. (27).  To measure BKα and ChTx clusters, we examined fluorescence at 

several incremental intensities above mean levels (52).  Particle intensities were 

examined by converting from gray scale to binary images based on circularity and size 

criteria.  Circularity criterion was set at > 0.1, where circularity (4π Area/Perimeter2) can 

range from 0 (infinitely elongated polygon) to 1 (perfect circle).  Size criterion was set at 

> 0.2 mm.  Intensity data meeting criteria were collected, saved, and analyzed.  Data were 

collected from an area of 20 x 40 mm per section.  BKα and ChTx clusters were based on 

positive staining for BKα -like green and ChTx-like red fluorescence, respectively.  For 

most purposes we used intensities 3.5-fold above mean intensities as the threshold to 

define “cluster” because it was the lowest threshold yielding significant differences 

between fetal and adult intensities.  Statistical analysis used GraphPad Prism 5.0 

(GraphPad Software, Inc., San Diego, CA).  Two-way ANOVA with post hoc test 

comparison and unpaired t test of data sets were performed for each experiment.  

For analysis of co-localization, threshold values were set using automated criteria 

within Coloc_2 software (http://fiji.sc/Coloc_2/), where pixels below threshold had null 

or anti-correlated intensities.  This method gives a Pearson's correlation coefficient (r) of 

zero for the pixels below the threshold.  The correlation coefficients for areas of 

overlapping expression of BK subunits with ChTx-positive fluorescence were then 

measured.  For ChTx clusters, a threshold of 3-fold above mean was used, while for BKα  

clusters 3.5-fold was used.  
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Reagents and Solutions 

Papain was obtained from Worthington Biochemical Corporation (Lakewood, 

NJ).  Calcium standards and Fura-2 were obtained from Molecular Probes (Eugene, OR).  

Free calcium concentrations of patch-clamp solutions were first estimated with Max 

Chelator Sliders software (C. Patton; Stanford University; 45) and adjusted using 

fluorometric measurements with Fura-2 and Fura-6 and Ca2+ standard kits 2 and 3 

(Molecular Probes) for calibration.  All other chemicals were obtained from Sigma (St. 

Louis, MO).  For cell isolation, the cell isolation solution contained (in mM): NaCl (55), 

Na+-glutamate (80), KCl (5.6), MgCl2 (2), glucose (10), and HEPES (10) adjusted to pH 

7.3 with NaOH.  For perforated-patch recording, the bathing solution contained (in mM): 

NaCl (134), KCl (6), MgCl2 (1), glucose (10), CaCl2 (2), and HEPES (10) adjusted to pH 

7.4 with NaOH.   The pipette solution for perforated-patch recordings contained (in mM): 

K+-aspartate (110), KCl (30), NaCl (10), MgCl2 (1), HEPES (10), and EGTA (0.05) 

adjusted to pH 7.2 with KOH, containing 200 mg/ml amphotericin B.  For conventional 

whole-cell recording, the bathing solution contained (in mM): NaCl (140), KCl (5), 

MgCl2 (1), glucose (10), CaCl2 (1.5), and HEPES (10) adjusted to pH 7.4 with NaOH.  

The pipette solution for whole-cell recordings contained (in mM): K+-gluconate (130), 

KCl (30), MgCl2 (1), CaCl2 (0.1), EGTA (0.5), and HEPES (5) adjusted to pH 7.2 with 

KOH.  The single-channel bathing solution contained (in mM): KCl (140), Mg2+ (1), 

HEPES (10), and EGTA (5) adjusted to pH 7.2 with KOH with different free Ca2+ 

concentrations (~0.3, 1, 3, and 10 µM) measured fluorometrically using Fura-2.  The 

single-channel pipette solution had the same composition as the bathing solution with 

~3 µM free Ca2+. 



 

31 

Data Analysis and Statistics 

All values were calculated and displayed as means ± SEM.  In all cases, n refers 

to the number of replicate cells. All statistical comparisons were performed at the 95% 

confidence level using two-sample, unpaired t-tests.  A “P” value of < 0.05 was 

considered to be statistically significant.  We verified all sample populations to be 

normally distributed.  For comparisons of values that were not significantly different, 

power analyses were performed to confirm that statistical power was 0.7 and the 

probability of Type II errors was acceptably small.  Curve fitting was performed with 

GraphPad Prism 5 (GraphPad Software, Inc.). 

 

Results 

Comparison of LTH adult and fetal whole-cell currents.  In conventional whole-

cell preparations, we recorded outward currents from LTH adult and fetal BA myocytes.  

Cell capacitances from LTH adult and fetal myocytes were 15.2 ± 0.9 pF (n = 6) and 8.3 

± 0.4 pF (n = 7), respectively (P < 0.05; Table 1).  We recorded total outward currents 

from cells held at -60 mV followed by a series of depolarizing steps over the range of -60 

to +60 mV.  Because isolated adult myocytes present about 80% more plasma membrane 

surface area to the bathing medium than those of the fetus, we normalized raw whole-cell 

outward currents to membrane capacitance and present current measurements as current 

densities (Fig. 1A and B).  The steady-state outward current density at +60 mV in LTH 

adult (54.2 ± 4.1 pA/pF; n = 7) was about twice that of fetal myocytes (24.8 ± 3.0 pA/pF; 

n = 8; P < 0.01; Fig. 1C; Table 1). 

To determine the contribution of BK current to total whole-cell current density, 
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we applied paxilline (5 x 10-7 M) to inhibit BK current (53).  Paxilline significantly 

reduced whole-cell current density. The paxilline-sensitive (i.e. BK) current density at 

+60 mV constituted about half (adult: 47.1%, P < 0.001 and fetus: 45.2%, P < 0.001) of 

the total outward current densities (Fig. 1C).  Both paxilline-sensitive (Fig. 1D) and 

paxilline-resistant (Fig. 1E) current densities were two-fold greater in LTH adult than in 

fetal myocytes (Fig. 1C).  
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Figure 1. Whole-cell currents from LTH adult and fetal smooth muscle cells. A and B. 
Representative whole-cell outward membrane current density traces elicited by a series of 
10-mV depolarizing steps (-60 to +60 mV) from a holding potential of -60 mV.  Traces 
before (left) and after (right) paxilline application, are shown in typical isolated LTH 
adult (A) and fetal (B) basilar artery myocytes. Whole-cell current density is obtained 
from normalized whole cell currents to membrane capacitance to account for size 
differences between adult and fetal myocytes. C. Averaged steady-state current-voltage 
plot of outward current density in myocytes obtained from LTH adult (n = 6) and fetal (n 
= 7) basilar arteries before and after treatment with 5 x 10-7 M paxilline.  D. Averaged 
steady-state paxilline-sensitive "BK" currents (left) and residual, paxilline-insensitive 
currents (right) obtained from digital subtraction of the individual traces such as in A and 
B.  Asterisks (*) denote significant difference with P < 0.05. 
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Table 1. Summary of conventional and perforated-patch recordings and analyses.  
  

  LTH        NXa 
Adult         Fetus        Adult         Fetus 

Capacitance (pF): 
Conventional whole-cell  15.2 ± 0.9 (6)    8.3 ± 0.4 (7)*      #        # 
Perforated-patch  16.1 ± 1.3 (7)    9.4 ± 1.7 (6)*      15.7 ± 0.6   9.1 ± 0.6** 
 
Current density (pA/pF): 
Conventional whole-cellb  
     Outward current  54.2 ± 4.1 (7)    24.8 ± 3.0 (8)**      #        # 
     BK current  25.7 ± 3.4    11.2 ± 2.2*       #        # 
     Non-BK current  28.8 ± 3.2    13.6 ± 2.3*    ~29a    ~26a 
 
Perforated-patchb  
     Outward current  75.1 ± 5.9 (5)    71.6 ± 13 (6)       37.9 ± 1.8       57.9 ± 6.7* 
     BK current  46.3c     58.0c     10a   29a 
   
BK channel parameters: 
Slope  (mV/log [Ca2+]i)   65.9 ± 3.3   66.8 ± 3.8        67.1 ± 2.5       67.6 ± 2.7 
 
Ca2+ set point (Cao, mM)  3.6    3.0      8.8              4.7 
 
Hill coefficient (rH)  3.3 ± 0.2   3.0 ± 0.3    2.9 ± 0.1         2.9 ± 0.2 
 
Unitary conductance (pS)  215 ± 12   228 ± 7    221 ± 8  229 ± 5      
 
Data are means ± SE, based on a sample size of (n). Conventional (Fig. 1) and perforated-patch (Fig. 9) whole-cell recording 
yield membrane capacitance and current density.  Single-channel recording and analysis (Fig. 2) reveal BK channel parameters 
and properties.  a, from Lin et al. (33); b, measured at +60 mV; c, estimated by subtracting “Non-BK current” from perforated-
patch “Outward current”; #, not measured;.  Compared against adult of same treatment: * P < 0.05; ** P < 0.01. 
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Several factors could account for the difference in BK activities between LTH 

adult and fetal BA myocytes, including differences in channel affinity for Ca2+, 

differential phosphorylation, and differential expression of BK subunits (e.g. α or a). 

Previously, in  normoxic control animals, we showed that higher BK current density in 

the normoxic fetus was attributable to a higher intracellular affinity for Ca2+, as compared 

to that of the adult (31).  Consequently, we hypothesized that higher BK current density 

in LTH adult was due to a higher affinity for intracellular Ca2+. 

Effects of LTH on BK channel Ca2+ affinity.  To compare the Ca2+ affinity of 

adult and fetal BK channels, we determined Ca2+ set points (Ca0), where Ca0 is the Ca2+ 

concentration that half-activates BK channels at 0 mV.  The Ca0 equals the Kd for Ca2+ at 

0 mV (33).  We recorded BK channel activity in inside out, excised patch preparations 

from LTH adult and fetal BA myocyte membranes (Fig. 2A) and plotted BK channel 

open probabilities at different voltages and Ca2+ concentrations (Fig. 2B).  Data were 

fitted to the Boltzmann equation, and the membrane potential required for 50% activation 

of channels (V1/2) and we plotted the V1/2 values against log [Ca2+] (Fig. 2C).  From the 

equation for the line fitted to these data, we estimated the calcium sensitivities from the 

change in V1/2 for a 10-fold change in Ca2+ concentration (∆V1/2) (Table 1).  The calcium 

sensitivities of these two age groups did not differ significantly, nor did they differ 

significantly from their normoxic controls (Table 1).  The Ca0 values estimated by linear 

regression were found to be 3.6 µM for LTH adult and 3.0 µM Ca2+ for fetal BK 

channels.  However, both were lower than their corresponding normoxic controls (Table 

1).  Of note, similar Ca0 values, Hill coefficients, and unitary conductances (Table 1) for 

LTH adult and fetal BK channels could not account for the two-fold difference in their 

whole-cell BK channel current densities. 
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Figure 2. BK channel open probabilities and calcium set points. A. Representative inside-
out patch recordings of BK channel from LTH adult and fetal smooth muscle cells in 
symmetrical 140 mM KCl. In both cases, command potentials were -30 mV making BK 
channels experience +30 mV depolarizations. The bath [Ca2+] was 1.0 µM. Dotted lines 
represent the channels in closed (C) and open (O) states. B. Voltage activation curves at 
different membrane potentials in 10-mV increments for various [Ca2+]i. Data are channel 
open probability (Po) expressed relative to maximum channel open probability (Pomax). 
Solid lines indicate best-fit curves to the Boltzmann equation: Po/Pomax = 1{1+exp[(V1/2-
Vm)/K]}, where V1/2 is the membrane potential (Vm) required for half-maximal activation 
of the channel and K is the logarithmic voltage sensitivity (change in voltage required for 
an e-fold increase in activity). The voltage sensitivities estimated from the fitted curves 
were similar for all concentrations of Ca2+ tested and indicated that channel activity 
increased e-fold (~2.72 times) for 23.5 ± 1.8 mV (n = 4, adult) and 25.0 ± 2.1 mV (n = 4, 
fetus) depolarizations. C. Estimation of changes in V1/2 for a 10-fold change in [Ca2+]i 
(ΔV1/2) and estimation of the Ca2+ axis intercept (calcium set point, Ca0) for both adult 
and fetal BK channels. V1/2 values were obtained from B. The lines represent the best 
linear regression fits. LTH adult and fetal Ca0 values were calculated to be 3.6 µM and 
3.0 µM, respectively. 
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Table 2. Summary of BK V1/2 and differences in V1/2 values in different phosphorylation states.   
       
    LTH                     NX  NX-LTH V1/2 diff 

Phosphorylation state     Adult     Fetus     Adult    Fetus Adult Fetus 
Native 22.0 ± 6.5 (8) 20.5 ± 4.9 (6) 58.4 ± 5.4* (11) 51.5 ± 3.9* (16) 36.4 31.0 
Dephosphorylated 25.3 ± 5.2 (8) 23.6 ± 6.1 (7) 67.3 ± 6.6* (12) 64.1 ± 4.9* (14) 42.0 40.5 
PKA  -32.6 ± 6.2 (8) -35.3 ± 5.6 (6) 3.3 ± 6.5* (14) -1.2 ± 5.0* (15) 35.9 34.1 
PKG -22.8 ± 5.5 (9) -25.9 ± 7.0 (6) 20.6 ± 4.5* (11) 14.9 ± 4.9* (11) 43.4 40.8 
       

Data are means ± SE, based on a sample size of (n). V1/2 values were obtained from BK channel voltage-activation curves at 
each phosphorylation state. Values for Native controls, dephosphorylation, PKA, and PKG phosphorylation states were 
obtained from Figure 3.  NX-LTH V1/2 diff values show BK V1/2 differences between LTH and normoxic (NX) animal 
groups. Compared against LTH counterparts: * P < 0.05. 
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Effects of phosphorylation on BK channel activity.  Under appropriately 

controlled conditions (i.e. identical BKα  isoforms and BKα expression levels), we have 

shown that the Ca0 is a surrogate measure of the extent of channel phosphorylation, with 

lower Ca0 values correlating with greater extents of phosphorylation by either PKA or 

PKG (33).  Because BK channels from LTH animals show similar Ca0 values that are 

lower than those from normoxic controls (Table 1; 31), we hypothesized that LTH adult 

and fetal BK channels are both phosphorylated similarly and to a greater extent than the 

normoxic channels.  To test these hypotheses, we compared BK channel voltage-

activation from different phosphorylation states by applying exogenous alkaline 

phosphatase and protein kinases using inside-out patches.  We plotted single-channel 

open probability, Po/Po max, against membrane potential and fitted the Boltzmann equation 

to data (Fig. 3).   

To compare the voltage-activation of BK channels in the fully dephosphorylated 

state from each group, we added alkaline phosphatase (Apase, 350 U/ml) to the bath on 

the cytoplasmic side of the plasma membrane.  Apase right-shifted normoxic adult and 

fetal BK voltage-activation curves to the same extent (Fig. 3A).  The voltage-activation 

curves of LTH adult and fetal myocytes were also right shifted to the same extent by 

Apase.  However, the shift in their V1/2 values was substantially less and about -40 mV to 

the left (i.e. more negative) relative to normoxic V1/2 values (Fig 3A; Table 2).  Despite 

the difference, BK channel voltage sensitivities did not differ among the four groups of 

myocytes.  Bar graphs in Figure 3A represent Apase-induced changes of V1/2 values 

(ΔV1/2) from their previous endogenous (native) state.  Consistent with our first 

hypothesis, native LTH adult and fetal BK channels were similarly phosphorylated.  
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Unexpectedly, dephosphorylation with Apase right shifted both V1/2 values only by ~ 3 

mV, indicating that LTH BK channels were less phosphorylated relative to normoxic 

controls.  The ΔV1/2 values from native state to dephosphorylated state for both LTH adult 

and fetus were about one-third and one-fourth of normoxic controls, respectively.  Thus, 

compared to normoxic groups, the lower Ca2+ set point values of LTH groups (Table 1) 

are unlikely due to BK channels being more highly phosphorylated. 

Nevertheless, to examine the effects of phosphorylation on BK channel voltage-

activation, we first dephosphorylated the channels with 350 U/ml Apase, followed by 

removing Apase from the bath and exposing BK channels to purified catalytic subunit of 

protein kinase A (cPKA; 30 U/ml) in the presence of KT-5823 (PKG inhibitor, 1 µM), 

okadaic acid (OA, 1 µM), and ATP (0.5 mM).  KT-5823 and OA were used to inhibit the 

endogenous, channel-associated PKG and phosphatase activities, respectively (32). cPKA 

left-shifted the voltage-activation curves of both LTH and normoxic BK channels by ~60 

mV (Fig. 3B), but the V1/2 values for LTH channels were about -35 mV to the left of 

those for normoxic channels (Table 2).   

Similarly, we studied the effect of protein kinase G (PKG) phosphorylation on 

BK channel activity.  Following Apase pre-treatment and subsequent washout, addition 

of exogenous PKG (2000 U/ml), KT-5720 (PKA inhibitor; 0.3 µM), OA, and ATP left 

shifted the voltage-activation curves of both LTH and normoxic BK channels by ~50 mV 

(Fig. 3C), but the V1/2 values for LTH adult and fetal myocytes were about -40 mV to the 

left of that for normoxic myocytes (Table 2).  The bar graphs show that PKA (Fig. 3B) 

and PKG (Fig. 3C) phosphorylation shifted the V1/2 values of BK channels from all four 

groups to a similar extent toward more negative potentials. 
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Figure 3. Effects of exogenous phosphorylation and dephosphorylation on BK channel 
activities. Single BK channel recordings of BK channels from inside-out micro patches 
were obtained in 3 µM free [Ca2+] from the isolated myocytes of the four experimental 
animal groups: LTH (H) and normoxic (N) and adult (A) and fetus (F).  A. Voltage-
activation curves of BK channels with alkaline phosphatase (Apase, 350 U/ml) in the 
bathing medium. Bar graphs summarize the extent to which Apase treatment right shifts 
the activation curves in terms of change in V1/2 values for adult (top) and fetal (bottom) 
groups. B. Voltage activation curves of BK channels in the presence of exogenous PKA. 
After phosphatase pretreatment, purified PKA catalytic subunit (cPKA, 30 U/ml) was 
added in the presence of KT5823, OA, and ATP.  The extent to which PKA left shifts 
V1/2 values is summarized on the bar graphs. C. Voltage activation curves of BK channels 
in the presence of exogenous PKG. Following phosphatase pretreatment, purified PKG 
(2000 U/ml) was added in the presence of KT5720, OA, and ATP. Effect of PKG left-
shift V1/2 values is summarized on the right bar graphs. Solid lines show the best-fit 
curves to the Boltzmann equation from which V1/2 values were calculated.  
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Taken together, inducing changes in phosphorylation status consistently 

segregated voltage-activation curves for both LTH age groups from their comparable 

normoxic controls.  In each of the three defined phosphorylation states, V1/2 values for 

BK channels from LTH myocytes were consistently -35 to -40 mV more negative relative 

to those from normoxic myocytes (Table 2), demonstrating that intrinsic functional 

differences exist between LTH and normoxic BK channels.  

Gating kinetics.  Despite BK channels from LTH adult and fetal myocytes being 

from developmentally different populations, they exhibited similar Ca2+ affinities (Cao; 

Fig. 2C) and voltage-activation (V1/2; Fig. 3).  However, single-channel BK channel 

recordings (Fig. 2A) suggest different gating kinetics. Therefore, we compared gating 

kinetics by measuring open and closed dwell times of LTH and normoxic adult and fetal 

BK channels from single-channel, inside-out preparations.  Figure 4A shows 

representative traces of single BK channel recordings from the four groups in their native 

state (i.e. endogenous controls).  BK channel dwell times were plotted as the square root 

of event fraction versus the logarithmic open or closed dwell times.  The histograms to 

the right were set to 50 bins per decade and the plots were best fitted to 3-component 

exponential functions to display open (Fig. 4B) or closed components (Fig. 4C).  By 

summing the products of the component mean dwell times (τ1, τ2, τ3) and their respective 

weight factors (ω1, ω2, ω3; Figs 4B and 4C shown in parentheses), we calculated the 

weighted mean open (τo) and closed (τc) times, which are represented as τ= (ω1τ1 + 

ω2τ2 + ω3τ3)/( ω1 + ω2 + ω3), where (ω1 + ω2 + ω3) = 1.  The τo and τc of BK channels in 

the native state from LTH fetus were more than three times longer than that of the other 

three groups (Table 3). 
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Table 3. Summary of weighted mean open and closed dwell-times.  

                        O                                                                                                                                C 
   LTH                                  NX                                    LTH                                      NX 

Phosphorylation state   Adult  Fetus Adult  Fetus Adult Fetus Adult Fetus 
Native 3.84 (8) 13.81 (7) 1.84 (5) 2.09 (6) 8.32 27.03 6.64 6.69 
Dephosphorylated 2.77 (6) 9.65 (6) 1.66 (5) 1.63 (6) 8.59 21.07 26.37 19.88 
PKA 1.31 (5) 1.83 (7) 1.73 (6) 1.48 (7) 14.61 4.98 8.71 5.48 
PKG 1.33 (6) 0.92 (5) 1.45 (5) 1.85 (5) 6.19 13.89 2.06 28.83 

Dwell-times were obtained from square-root vs logarithmic time plots (Figs 4B, C) best fitted to an exponential function with three 
components.  Mean time constants ( ) were multiplied by corresponding weighing factor (see Supplement Table 1, including P 
values) and the three products were summed to yield weighted mean open ( o) and closed ( c) times for different phosphorylation 
states: native control; dephosphoryated (alkaline phosphatase, Apase); and phosphorylation by added PKA and PKG following pre-
treatment with Apase.  Sample sizes (n) are shown in parentheses. 
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To determine the extent to which the longer dwell times of LTH fetal BK 

channels may be attributable to differential phosphorylation, we examined the effects of 

BK channel de-phosphorylation and phosphorylation on dwell times.  We treated inside-

out patches in Apase to dephosphorylate or in PKA or in PKG to phosphorylate BK 

channels (identical to the procedures for Fig. 3).  Table 3 summarizes the compiled 

weighted mean open (τo) and closed dwell times (τc) for BK channels from each of four 

animal groups in three defined phosphorylation states: dephosphorylated; PKA-; and 

PKG-phosphorylated.  Changes in phosphorylation state did not influence normoxic BK 

weighted mean open dwell times significantly, while both protein kinases A and G 

decreased open dwell times in LTH groups.  Moreover, dephosphorylation with Apase 

had little effect on LTH BK open or closed dwell times.  Consistent with findings in 

Figure 3, these results indicated that BK channels from LTH adult and fetus in the native 

state were essentially de-phosphorylated compared to native state normoxic controls.  
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Figure 4. BK channel dwell time analysis. A. Representative inside-out patch recordings 
of BK channels from hypoxic (LTH) adult and fetal, and normoxic adult and fetal 
myocytes in symmetrical 140 mM KCl solutions with 3 µM free Ca2+. Recordings were 
done at +60 mV depolarizing potential. B. and C. Plots of open and closed dwell times.  
Channel open and closed dwell times were plotted on a logarithmic time abscissa as a 
function of the square-root of the number of events per bin on the ordinate axis. The bin 
density is 50 bins per decade. Both the open (B) and closed (C) plots were best fitted to 
exponential functions with three components using QuB software (see Methods). The 
lines for the sum and each component exponential fit are shown. The time constants (τ) 
and their relative weight contributions (in parentheses) of each component to the 
composite fit are listed. 
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Table 4. Summary of BKβ and BKα surface densities and BKα clusteriing. 

              LTH                NX 
 Adult Fetus   Adult Fetus 
A. Flow cytometry:      
Geometric mean (FL) 299 ± 17* 546 ± 68  452 ± 27 206 ± 13* 
Mean cell count/sample 1.2 x 104 3 x 104  3 x 104 6.5 x 105 
Relative Surface area (pF)a 16.1 ± 1.3 9.4 ± 1.7  15.7 ± 0.6 9.1 ± 0.6 
BKb-1 Surface density (FL/pF) 18.6 58.1  28.8 22.6 
      
B. Channels per micropatch:      
Mean BK channel per patch 2.1 ± 0.2 2.6 ± 0.3  2.2 ± 0.2 2.6 ± 0.2 
Mean tip resistance (MΩ) 15.2 ± 0.1 15.9 ± 0.1  15.3 ± 0.1 15.5 ± 0.1 
BK per patch, minus empties 2.3 ± 0.2* 3.7 ± 0.3  2.5 ± 0.2 2.6 ± 0.2* 
% patches with no BK channels 8.3 31.7  7.0 1.6 
% patches with 1 BK channel 27.8 7.1  27.9 29.0 
% BK channels clusteredb 33.3 50.0  37.2 53.2 
 
C. BK clustering:      
Total BKα (103)c 9.2 ± 1.1 6.0 ± 1.1  9.8 ± 1.3 5.8 ± 1.1 
BKα surface density (102)d 8.0 ± 1.2 6.6 ± 1.0  7.6 ± 1.0 6.8 ± 0.9 
BKα clusters/total BKα (10-3)e 1.4 ± 0.2* 3.8 ± 0.4  1.4 ± 0.2* 3.4 ± 0.2 
      
D. Cluster co-localization:      
No. BKα clusters (103)f 11.6 ± 2.8 20.0 ± 0.4  12.5 ± 4.3 15.6 ± 4.8 
No. ChTx clusters (102)g 7.5 ± 0.9 9.2 ± 1.9  5.8 ± 1.7 10.0 ± 2.1 
Co-localized clusters (103)h 2.6 ± 1.2* 7.8 ± 1.6  2.8 ± 0.8* 9.0 ± 1.6 
% BKα clusters co-localized 31.9 39.0  32.0 53.8 
 
Values expressed as mean ± SE, as appropriate, with n values indicated in accompanying 
text or Figures. A. Flow cytometry was used to measure BK β-1 surface expression (Fig. 5) 
and calculate relative β-1 surface density. B. Estimated BK channels on excised micro-
patches.  a, measured in perforated-patch mode (Table 1); b, % of channels associated with 3 
or more other channels in patch. C. Extent of BK channel clustering. c, from Fig. 8A; d, 
from Fig. 8B; e, from Fig. 8F. D. Co-localization of BK clusters with clusters of ChTx. f, 
from Fig. 9A; g, from Fig. 9B; h, from Fig. 9F. *, compared to LTH fetus (P < 0.05). 
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Expression of cell surface BK α-1.  Because increases in BK α-1 subunit 

expression have been associated with increases in channel gating kinetics (39), increases 

in channel Ca2+ affinity (i.e. lower Ca0; 48), and left-shifted voltage activation (42), we 

tested the hypothesis that myocyte cell surface BK α-1 subunit expression was up 

regulated in LTH fetal myocytes.  To test this proposition, we used flow cytometry with a 

primary antibody directed against a conserved, extracellular BK α-1 subunit epitope (Fig. 

5).  An epitope-blocking peptide was used as a negative control (Fig. 5E, F).  The 

specificity of the antibody was tested in Western immunoblots, which showed BK α-1 

expression in ovine fetal and adult pulmonary arteries, as previously reported by Resnik 

et al. (50), but not in ovine adult brain, which predominantly expresses the BK β-4 

isoform (data not shown; 6, 7).  To eliminate effects due to variation in cell size and 

surface area, we normalized cell surface BK β-1 expression (fluorescence units, FL) to 

relative surface area based on measured cell capacitances (i.e. pF; Table 1).  We thereby 

converted flow cytometric data (FL) for surface BK β-1 into units of relative surface 

density (i.e. FL/pF; Table 4A).  Our data indicate that BK β-1 surface density on LTH 

fetal myocytes was three times greater than on LTH adult cells and two times greater than 

on either normoxic group.  Based upon this analysis, long-term hypoxia enhances BK β-1 

surface expression on fetal myocytes relative to that of LTH adult myocytes and both 

normoxic control myocytes. 
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Figure 5. Representative flow cytometric distributions of cell surface BK channel β-l 
subunit.  A-D. Isolated, intact basilar artery smooth myocytes were treated with either 
primary anti-BK β-l (blue trace) plus secondary antibody or with secondary antibody alone 
(red trace).  E-F. Primary anti-BK β-l antibody was pre-incubated with 70-fold molar 
excess β-l epitopic peptide overnight on ice.  Isolated, intact basilar artery smooth myocytes 
then were treated with the primary antibody and peptide mixture followed by secondary 
antibody to serve as antibody specificity controls (black trace).  A. LTH adult (n = 8); B. 
LTH near-term fetus (n = 9); C. normoxic adult (n = 13); D. normoxic near-term fetus (n 
= 13); E. normoxic adult (n = 13); and F. normoxic fetus (n = 13). 
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Channel surface density.  Because myocyte BK β-1 surface density was 

significantly greater in the LTH fetus than in the other three groups, we measured the 

corresponding BK channel surface density.  For this purpose, we counted BK channels in 

excised membrane patches from micropipettes of similar tip diameter and resistance (15.5 

± 0.10 MΩ; n = 192) (2, 51). The data show that channel surface densities did not differ 

between treatment groups (Table 4B).  However, frequency histograms of number of 

channels per excised patch (Fig. 6) suggest different patterns of BK surface distribution 

between groups. In the LTH fetus, many patches did not have channels (31.7%), few 

patches contained one channel (7.1%), while the largest percentage of patches had three 

or more BK channels (50.0%). The two adult groups had fewer patches containing three 

or more BK channels (33.3% and 37.2%), while the normoxic fetal group had an 

intermediate percentage (53.2%; Table 4B).  These findings suggest that myocyte BK 

channels of the LTH fetus and the normoxic fetus are more clustered than those of the 

adult.  

BKα  expression and clustering. To further test the hypothesis that BK channels 

are more clustered in the fetal groups, we used confocal microscopy to measure BKα 

channel expression and extent of BKα  clustering. The representative micrographs (Fig. 

7) show that myocytes of the four treatment groups exhibited BKα in both dispersed and 

clustered forms.  Such variation in expression is consistent with our electrophysiological 

recordings of excised patches (Fig. 6).  
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Figure 6. Number of BK channels in excised micro patches.  The number of BK channels 
in inside/out patches was determined at +60 mV in symmetrical KCl solutions with 3 
mM Ca2+ in the bath solution to ensure maximal channel activation.  Patch electrode tip 
resistances averaged 15.5 ± 0.1 MW (n = 192).  Frequency histograms of the number of 
BK channels per patch preparation with distribution curve overlays were displayed.  A. 
LTH adult (n = 39); B. LTH near-term fetus (n = 45); C. normoxic adult (n = 44); and D. 
normoxic near-term fetus (n = 64). 
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Figure 7. Representative confocal microscopic images of arterial myocytes reveal 
presence of dispersed and clustered BK channels. A. Representative color images from 
adult LTH, fetal LTH, adult NX (normoxic), and fetal NX.  Viewed areas measure 20 x 
40 mm.  Green color indicates presence of BK channels.  B. Green channel (BK 
fluorescence) intensities converted to binary image from same areas as above (A) after 
masking out all values below “threshold” (3.5x mean intensity).  BK clusters show as 
black areas of different size and shape. Controls with secondary antibody alone or with 
primary antibody pre-absorbed with antigenic peptide revealed little to no detectable 
BKα fluorescence (data not shown).   
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Myocytes from normoxic and LTH adult groups expressed 35% (P < 0.05) and 

31% (P < 0.05) more total BKα per cross-sectional area than their fetal counterparts, 

respectively (Fig. 8A; Table 4C).  However, when BKα fluorescence was co-localized to 

the cell surface marker, AF-594 conjugated WGA, cell surface expression of BKα did 

not differ among the groups (Fig. 8B; Table 4C).  Again, this is consistent with our 

findings from counting channels in micropatches (Table 4B).   

In contrast to total expression and surface expression, the fetal groups exhibited 

significantly more BKα clusters than their corresponding adult groups across a range of 

intensity thresholds above mean BKα fluorescence (e.g. Fig. 8C-E).  What is more, at 

higher intensity thresholds the ratio of fetal cluster numbers to adult clusters increased 

(Fig. 8E) suggesting that fetal groups have larger clusters than the adult counterparts. 

LTH and normoxic fetal groups expressed 2.7 (P < 0.01) and 2.4 (P < 0.01) times more 

BK clusters, respectively, than their corresponding adult groups (Fig. 8F; Table 4C) after 

normalizing the number of BK clusters (e.g. Fig. 8C) to total BKα fluorescence (Fig. 

8A).  These results confirm our hypothesis that BK channels on fetal myocytes are more 

clustered (Fig. 8F).  

BK channels in vascular myocytes are known to localize on lipid rafts (1, 37). 

Therefore, we hypothesized that BK channel clusters co-localize with lipid rafts and that 

these fetuses would have greater lipid raft associated clusters as compared to adults 

independent of altitude.  To address this hypothesis, we measured BK channel clustering 

by examining cholera toxin B subunit-Alex 594 conjugate (ChTx) as a marker of GM1-

containing lipid rafts (38, 44), such as caveolae (20). Operationally, we defined lipid rafts 

as sites of ChTx clusters and correlated this with BKα fluorescence using the 
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methodology described for Figure 8. Although slightly more ChTx clusters occur in the 

fetal groups than in the adults (Fig. 9), the number of BK clusters that co-localize to 

ChTx clusters is two times higher in the fetal groups than their corresponding adult 

groups (Fig. 9; Table 4D; P < 0.05). 
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Figure 8. Total BK channel density, BK surface density, and BK clustering measured in 
confocal images of intact basilar artery myocytes. A. Total BK fluorescence intensity in 
arbitrary units (AU; mean ± SEM; n = 5), where FH is fetal hypoxic (LTH), FN is fetal 
normoxic, AH is adult hypoxic, and AN is adult normoxic; B. BK co-localized with the 
surrogate surface membrane marker, wheat germ agglutinin (WGA; n = 6); C. Number of 
BK clusters measured at 3.5 times above mean intensity (n = 7); D. Number of BK 
clusters measured at 4.5 times above mean intensity (n = 6); E. Number of BK clusters 
measured at 5.5 times above mean intensity (n = 6); and F. Number of BK clusters at 3.5 
times mean intensity per total BK intensity (n = 6).  Imaged areas measured 20 x 40 mm.  
Number of animals in each group was either 3 or 4. Asterisks (*) denote significant 
difference with P < 0.001 relative to either fetal group.  HX ratio and NX ratio refer to 
FH:AH and FN:AN, respectively. 
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Figure 9. BK channel clusters co-localized to cholera toxin clusters.  A. Number of BK 
clusters measured at 3.5 times above mean intensity (mean ± SEM; n = 5), where FH is 
fetal hypoxic (LTH), FN is fetal normoxic, AH is adult hypoxic, and AN is adult 
normoxic; B. Number of cholera toxin (ChTx) clusters measured at 3.0 times above mean 
intensity (n = 5); and C. Number BK clusters co-localized with ChTx clusters. Imaged 
areas measured 20 x 40 mm.  Number of animals in each group was 3. Asterisks (*) 
denote significant difference with P < 0.05 relative to either fetal group.   
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Perforated-patch whole-cell currents. Because BK clusters co-localize to lipid 

rafts more in both fetal groups than in the adults, we hypothesized that outward currents 

recorded from the two fetal groups would increase more relative to the adult groups while 

recording under conditions that permit spark activity (47). To test our prediction, we 

recorded whole-cell outward currents in perforated-patch mode (Fig. 10), which permits 

Ca2+ spark activity, and compared currents to conventional whole-cell mode (Fig. 1), 

which suppresses Ca2+ sparks. Cell membrane capacitances were similar to those from 

conventional whole-cell mode (Table 1).  As predicted, outward current densities were 

higher in perforated-patch mode (Fig. 10) with LTH adult currents increasing by 38%, 

while LTH fetal currents increased by 189% (Table 1).  In addition, normoxic fetal 

outward currents were higher than normoxic adults (Fig. 10; Table 1).  These results 

suggest that both normoxic and LTH fetal BK channels may be more sensitive to 

endogenous Ca2+ sparks than adults (47, 55). Because of these significant age differences 

in BK co-localization to lipid rafts and channel activities, future work should examine 

sparks and spontaneous transient outward currents between adult and fetus in this ovine 

model.   
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Figure 10. Perforated-patch, whole-cell outward current density recordings. A. and B. 
Representative whole-cell outward membrane current density traces are shown from 
isolated LTH and normoxic (NX) adult (A) and fetal (B) basilar artery myocytes.  
Currents were elicited by a series of 10-mV depolarizing steps (-60 to +60 mV) from a 
holding potential of -60 mV.  Whole-cell current density was used to normalize whole 
cell currents for size differences between adult and fetal myocytes. C. Averaged steady-
state current-voltage plot of outward current density in myocytes obtained from LTH 
(left) adult (n = 5) and fetal (n = 6) and normoxic (right; taken from reference 3) adult (n 
= 4) and fetal (n = 5) basilar arteries. 
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Discussion 

Despite the physiological importance of adequate cerebral blood flow and the role 

of BK channels in its maintenance, few studies have measured directly the effects of 

long-term hypoxia on BK channels of the developing cerebral vasculature.  Our findings 

indicate that basilar artery smooth muscle BK channels in LTH adult and near-term fetus 

are significantly more active than their normoxic counterparts.  This acclimatization to 

high-altitude hypoxia involves lowering the Ca2+ set point independently of channel 

phosphorylation and, in the case of the LTH fetus, up regulating accessory BK β-1subunit 

expression. In addition, our findings indicate that the BK channels of both the LTH and 

normoxic fetuses are more clustered and co-localized to lipid rafts. Under conditions of 

perforated-patch recordings, the fetal channels may be more coupled to endogenous Ca2+ 

sparks than either of the two adult groups.  

LTH increases BK activity independent of age. Several features distinguish LTH 

BK channels from normoxic controls, regardless of age group.  The LTH BK channels 

show: (i) increased Ca2+ affinity (i.e. lower Ca2+ set points; Fig. 2; Table 1); (ii) V1/2 

values shifted -35 to -40 mV more negative in each of three defined phosphorylation 

states (Fig. 3; Table 2); (iii) lower extent of phosphorylation in the endogenous native 

state (Fig. 3A); and (iv) longer weighted mean open dwell times (Fig. 4; Table 3). In 

addition, the nearly dephosphorylated state of native LTH channels suggests that the BK 

channels have additional capacity to further increase Ca2+ affinity and left-shift activation 

curves should either PKA or PKG pathways be activated (32, 33). Together these channel 

features suggest that LTH acclimatization increases BK channel activity, possibly in 

order to lower vascular tone.  This, in turn, would ensure adequate brain perfusion in the 
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face of lowered arterial oxygen levels.  Such modulations during LTH underscore the role 

of cerebral smooth muscle BK channels in regulating vascular tone and CBF (30). 

At high altitude, the physiological challenge of LTH is accentuated in the fetus by 

additional demands of cerebral growth and development and by being in utero at lower 

arterial PO2 values. In response to these additional challenges, fetal acclimatization to 

LTH includes up-regulation of BK β-1 myocyte surface expression (Fig. 5; Table 4A).  

This increased fetal BK β-1 subunit expression may enhance BK channel coupling to 

Ca2+ sparks and increase cerebral blood flow (CBF), because decreased expression of BK 

β-1 uncouples BK channels from Ca2+ sparks, increases vascular tone (8, 34, 47, 55), and 

produces hypertension in mice (2). In comparison to the BK channels of the LTH adult, 

those of the fetus are two-times more clustered (Figs 6 and 8; Table 4C) and two-times 

more co-localized to sites of lipid rafts identified by cholera toxin clustering (Fig. 9). In 

keeping with this, we observed an estimated five-fold increase in BK current density in 

perforated-patch mode over conventional whole-cell mode in the LTH fetus, but less than 

a two-fold increase in the LTH adult (Table 1). 

Previously, our group showed that LTH reduced NS1619-induced BK channel 

activation-mediated vasorelaxation of middle cerebral artery segments (35), which was 

attributed to either decreased BK channel expression or decreased sensitivity to Ca2+ 

(13).  In contrast, the present studies showed that in basilar arteries neither BK channel 

expression (Figs 6 and 8B) nor channel affinity to Ca2+ decreased (Fig. 2; Table 1). Our 

findings are in keeping with others (26, 46, 60), who showed that cerebral blood flow is 

near normal in the LTH fetus.  The findings of Long et al. (29) and Gilbert et al. (14) 

may stem from non-selective effects of NS1619 that can offset the relaxation effects of 
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BK channel activation when used on intact tissues (59). Such non-selective effects 

include inhibition of L-type Ca2+ channels (43) and stimulation of Ca2+ mobilization from 

ryanodine-sensitive Ca2+ stores (29, 64). Alternatively, these differences may arise from 

variations among different cerebrovascular branches. 

Fetal BK activity increases in both treatment groups. Normoxic and LTH fetuses 

exhibit increased BK channel activity compared to their adult counterparts. To ensure 

adequate blood flow to the developing brain, the fetus appears to regulate vascular BK 

channel activity rather than raising the level of BKα expression (Tables 4B and C; Figs 6 

and 8).  In both normoxic and LTH, the fetus increased BK channel activity due to (i) 

increased channel affinity to Ca2+ (Table 1) and (ii) increased channel clustering (Fig. 8) 

on lipid rafts (Fig. 9).  In the normoxic fetus, the increase in BK channel Ca2+ affinity 

(Table 1) was driven by increased channel phosphorylation (32).  In the LTH fetus, where 

the challenge of adequate CBF is more severe, a different strategy was observed: BK 

channel Ca2+ affinity was increased (Table 1), but not due to increased channel 

phosphorylation.  In addition, increased BK channel activity was associated with (i) a 

three-fold up regulation of BK b-1 surface expression (Fig. 5; Table 4A), (ii) a three-fold 

increase in open and closed dwell times (Fig. 4; Table 3), and (iii) a left shift of the 

voltage-activation relationship (Fig. 3; Table 2).  Furthermore, (iv) the LTH fetal 

channels were relatively dephosphorylated (Fig. 3A), which provides the channels with a 

capacity of up to a 10-fold increase in Ca2+ affinity, depending upon extent of PKA or 

PKG signaling pathway stimulation (4, 32).  This suggests that the cerebral arteries of 

LTH fetus may be more relaxed than those of the normoxic fetus, and possibly more 

prone to rupture and produce cerebral hemorrhage. 
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Perspective.  The main branch cerebral arteries, including the basilar, play a 

critical role in regulating and maintaining CBF (22).  During increased flow demand, a 

significant pressure drop from these vessels to smaller cerebral arteries occurs (12), and a 

substantial portion of the change in cerebral vascular pressure results from dilation and 

contraction of these large arteries that supply the brain (28).  Such changes in vessel 

diameter serves to moderate hydrostatic pressure changes in smaller cerebral arteries that 

feed pial arteries and penetrating arterioles that oxygenate and deliver brain nutrients.  

In premature and fetal growth restricted (FGR) puppies (22) and in premature 

lambs (3), however, the large cerebral arteries of may not regulate effectively the CBF, as 

opposed to full-term newborns. Such dysregulation primarily is due to undeveloped 

sympathetic adrenergic innervation that normally provides central control of 

vasoconstriction (10, 61).  Increased risk of cerebral hemorrhage in LTH near-term 

fetuses and premature infants occurs in response to sudden increases in arterial pressure.  

We suggest that neonatal hemorrhagic stroke in LTH newborns may occur due to 

diminished sympathetic vasoconstriction (9) in the face of vasorelaxation stemming from 

increased BK channel activation, as reported here. Thus, the present study underscores 

the important role of the basilar artery in regulating vascular tone and CBF, and suggests 

that failure of these vessels to regulate downstream pressure in smaller cerebral arteries 

may result in their rupture with dire consequences. Our findings of increased 

cerebrovascular BK channel activity in both LTH fetus and adult compared to their 

normoxic counterparts suggest, at least, a partial physiological basis by which sheep 

successfully acclimatize to long-term high altitude; whereas many mammals do not. 
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Abstract 

In cerebral arteries, K+ channels play a major role in modulating membrane 

potential, voltage-gated Ca2+-channel activity, intracellular Ca2+ concentration ([Ca2+]i), 

and vascular tone. We have shown that Ca2+-activated, large-conductance K+ (BK) 

channels and ATP-sensitive (KATP) channels predominate among cerebral K+ channels in 

regulating [Ca2+]i and these channels are more active in the ovine fetus than adult. Protein 

Kinase C (PKC) causes cerebral vasoconstriction, but little is known about the effects of 

PKC on K+ channel activity in cerebral vascular smooth muscle. To measure the effects 

of PKC on cerebrovascular K+ channels of middle cerebral arteries (MCAs) from near-

term fetal (�140 day) and nonpregnant adult sheep, we simultaneously measured 

phorbol 12,13-dibutyrate (PDBu; PKC agonist)-induced responses of vascular tension 

and [Ca2+]i in the absence and presence of selective K+ channel blockade,  PDBu (3×10-6 

M) increased tension in fetal and adult MCA to �20% Kmax and �55% Kmax, 

respectively (P<0.05). Among tested K+ channel blockers (iberiotoxin, glibenclamide, 4-

aminopyridine, and BaCl2), only iberiotoxin, a BK blocker, increased PDBu-induced 

contraction and [Ca2+]i, and this was only in the fetus. Zero extracellular Ca2+ or 

nifedipine (10-5M), an L-type Ca2+-channel blocker, eliminated this effect. We 

hypothesized that in fetal MCA, PKC stimulation by PDBu regulates vascular tone by 

activating BK channels to inhibit Ca2+ influx through the L-type Ca2+-channel and thus 

inhibit [Ca2+]i increase.  In inside-out membrane patches, PKC activated BK channel 

activity. Also, PDBu hyperpolarized the resting membrane potential of fetal, but not 

adult, myocytes. These results are consistent with our hypothesis.  
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Introduction 

 Protein kinase C (PKC) regulates a variety of cell functions, including growth and 

differentiation, gene expression, and membrane activities (27).  In cerebral arteries, PKC 

plays an important role in the regulation of vascular tone under both physiological and 

pathological conditions (10, 23, 38).  In addition to increasing calcium sensitization in 

vascular smooth muscle cells (SMCs; 15, 23, 37), PKC may also affect vascular ion 

channels (26, 33, 35).    

 By modulating membrane potential in vascular smooth muscle, K+ channels 

regulate voltage-gated Ca2+-channel activity, intracellular Ca2+ concentration ([Ca2+]i), 

and vascular tone.  Several types of K+ channel activities occur in cerebral artery SMCs, 

including large-conductance Ca2+-activated (BK), ATP-sensitive (KATP), voltage-

dependent (Kv), and inward rectifier (KIR) (12, 26). Membrane potential, [Ca2+]i, 

cytoplasmic ATP concentrations, protein kinases and phosphatases, and second 

messengers may regulate these channel activities. PKC can modulate vascular 

contractility by acting on different K+ channels, including KATP (5), Kv (4, 8) and KIR (11, 

14) channels.  

 In general, among vascular SMC ion channels, BK channels predominate in 

regulating vascular tone (26). In ovine middle cerebral arteries (MCAs), both BK and 

KATP channels appear to play major roles in the regulation of this tone (20).  PKC inhibits 

BK channel activation in pulmonary (1), coronary (25), and rat tail artery (34) SMCs. 

However, in pulmonary vascular SMCs, PKC activates BK channels via phosphorylation 

of PKG (2). Although PKC activation induces vasoconstriction in cerebral arteries, (23, 

38), there are no studies of which we are aware that have investigated the effects of PKC 
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on K+ channel activity in cerebral vascular SMCs, much less during development. 

Because the BK channels of near-term fetal cerebral arteries have three-fold more 

channel-associated PKG activity than channels from adult (19), we hypothesized that 

PKC activation by PDBu in fetal cerebral vessels will activate BK channels to a greater 

extent than in the adult, and will inhibit Ca2+ influx through L-type Ca2+ channels, 

thereby modulating vascular tone. Our findings from simultaneous measures of vessel 

tension and [Ca2+] and patch-clamp electrophysiology support this hypothesis. 
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Methods 

 Experimental animals and tissues.  For these studies, we used main branch middle 

cerebral arteries from near-term fetal (~140 gestational day) and nonpregnant female 

adult sheep (≤2 yr) obtained from Nebeker Ranch (Lancaster, CA). We obtained isolated 

cerebral artery segments from both the nonpregnant ewes and fetuses after anesthetizing 

and sacrificing ewes with 100 mg/kg intravenous pentobarbital sodium. We have shown 

that this method has no significant effect on vessel reactivity (30).  To avoid the 

involvement of eondothelial-mediated effects, we removed the endothelium by carefully 

inserting a small wire three times (22). Cerebral arteries then were used immediately for 

simultaneous measurements of [Ca2+]i and tension (20, 21).  To confirm endothelium 

removal, we contracted the vessel with 10-5 M 5-hydroxytryptamine and, at the plateau, 

added 10-6 M ADP. Vessels that relaxed >20% after this treatment were rejected from 

further study. Unless otherwise noted, all chemical compounds were purchased from 

Sigma-Aldrich (St. Louis, MO). 

 Contractility and intracellular calcium measurements.  We cut the MCAs into 

rings 2 mm in length and mounted them on two tungsten wires (0.13-mm diameter; A-M 

Systems, Carlsborg, WA). We attached one wire to an isometric force transducer (Kent 

Scientific, Litchfield, CT), and the other to a post attached to a micrometer used to vary 

resting tension in a 5-ml tissue bath mounted on a Jasco CAF-110 intracellular Ca2+ 

analyzer (Jasco, Easton, MD). Briefly, we measured vessel inside diameter, wall 

thickness, length, and KCl (0.12 M)-induced force, and calculated tension, per cross-

sectional area, as previously described (20, 21, 30). MCA rings were equilibrated under 

0.3 g passive tension at 25°C for 40 min before loading with the acetoxymethyl ester of 
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fura 2 [fura 2(AM); Teflabs, Austin, TX], a fluorescent Ca2+ indicator used to measure 

ratiometric changes in [Ca2+]i (13). We measured fura 2 fluorescence ratio (F340/380) and 

force simultaneously at 38°C (21). In tissues such as cerebral arteries, the presentation of 

the ratio is less ambiguous than the transformation of fluorescence into [Ca2+]i (21). 

During all contractility experiments, we continuously digitized, normalized, and recorded 

contractile tensions and the fluorescence ratio using an online computer. For all vessels, 

we expressed the contractile response for tension and fluorescence ratio as percent Kmax. 

 Effects of PKC activation on K+ channels and changes with development.  

Because relatively little is known about the role of PKC in modulating the several K+ 

channels in fetal SMCs, we quantified [Ca2+]i, and vascular tension in the presence of 

selective K+-channel blockers. For all studies, following initial K+ (120 mM) 

depolarization to determine Kmax, we measured responses to the PKC activator, phorbol 

12,13-dibutyrate (PDBu), in the absence or presence of appropriate K+-channel blocker. 

To avoid interactions between different K+-channel blockers, we tested each segment 

with only one type of K+-channel inhibitor. PDBu was dissolved in dimethyl 

sulfoxide (DMSO).  The maximal bath DMSO concentration attained during any 

experiment was less than 0.1%, which had no independent effect on vessel tension. To 

examine the effect of PKC activity on BK channels in fetal and adult cerebral arteries, we 

first stimulated the vessel with 3 x 10-6 M PDBu in one segment to determine the %Kmax.  

Then, on the other segment from the same artery, the vessel was pretreated with 

iberiotoxin (10-9 to 10-6 M IbTX; a highly selective blocker of BK channels) for 15 min, 

and then PDBu was added in the presence of IbTX.  To examine the possible effect of 

PDBu on KATP activity, we pretreated the segments with glibenclamide (a selective 
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blocker of ATP-sensitive K+ channels) for 15 min, and then quantified PDBu-induced 

[Ca2+]i and vascular tone in the presence of glibenclamide.  We also examined the effect 

of different concentrations of glibenclamide (10-9 to 10-4 M) alone. Similarly, to examine 

the potential effect of PKC on Kv or KIR channels, we measured PDBu-induced [Ca2+]i 

and tension after administration of 4-aminopyridine (4-AP) or barium chloride (BaCl2), 

respectively. We also examined the effect of 4-AP (10-8 to 10-2 M) or BaCl2 (10-9 to 10-4 

M) alone. We selected the concentration of PDBu and of each K+-channel blocker used in 

the present study according to previous studies of our laboratory (20, 23).  

 Role of extracellular Ca2+.  To determine the role of extracellular Ca2+ 

concentration in the PDBu-induced responses following BK channel blocker, we 

measured [Ca2+]i and vessel tension in response to IbTX alone or with PDBu after vessels 

had been exposed to nominally calcium-free (1mM EGTA to chelate Ca2+) Krebs buffer 

for 15 min (n = 4). Again, we evaluated the contractile response of tension and 

fluorescence ratio by measuring the maximum peak height and expressing it as percent 

Kmax (21). 

 Current clamp recordings of resting membrane potentials. We used a cell-

attached, whole-cell, current-clamp method (24) to record resting membrane potentials 

from freshly isolated SMCs.  To record membrane potentials, the current was held at 0 

pA. After recording a steady baseline membrane potential for at least 60 s, PDBu (3 x 10-

6 M) was added to the bath. Pipette resistances were between 10–15 MΩ seal resistances 

were between 8–10 GΩ.  Voltages were not corrected for junction potentials.  The pipette 

solution (in mM) was: 150 KCl, 2 EGTA, 2 MgCl2 10 HEPES pH 7.3 with KOH. The 
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bath solution (in mM):  145 NaCl, 5 KCl, 1 CaCl2, 1MgCl2, 10 HEPES, 10 Glucose, pH 

7.35 with NaOH 

Single-channel recordings.  We recorded single-channel currents from inside-out 

membrane patches of isolated arterial myocytes (17).  Patch pipettes were made using a 

programmable Flaming-Brown pipette puller with fire polishing. The area of contact with 

each membrane also was similar because patch pipettes so produced had similar tip 

resistances (≈15 MΩ).  We filtered currents at 2 KHz and digitized at 10 KHz. The 

number of channels in any given excised patch (N) was estimated from all-points 

histograms.  Channel activity, NPo, was calculated by using equation 1. 

,       Equation 1  

where i is the number of open channels (0 is the number for closed state), and Ai is the 

area associated with each channel state, as determined from curve-fit individual peak 

areas. Single-channel open probability (Po) was calculated from NPo/N.  We obtained the 

values for N using high [Ca2+] and/or high depolarization to ensure that no more than 

three coincidental open events occurred during recordings (>20 s) at a Po higher than 0.8. 

We discarded preparations showing more than three channels.  The bath solution 

contained (in mM): KCl (140), Mg2+ (1), HEPES (10), and EGTA (5) adjusted to pH 7.2 

with KOH with free Ca2+ concentrations (~3 µM) measured fluorometrically using Fura-

2.  The single-channel pipette solution was the same as the bath solution with ~3 µM free 

Ca2+. 

 Statistical analysis.  All values were calculated as means ± SE. In all cases, n 

refers to the number of vessel segments, which corresponds to the number of animals 

studied. The n values for the different experiments are given in Table 1. For testing 

NP i Ai AiO
i

N

i

N
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= =∑ ∑0 0
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differences between two groups, we used a simple unpaired Student’s t-test. Comparison 

among multiple groups was made by using one-way ANOVA for multiple comparisons. 

A P value < 0.05 was considered to indicate a significant difference. 

 

Results 

 PDBu increased tension without changing [Ca2+]i. To identify the effects of PKC 

activation on K+ channels in fetal and adult MCA, we measured the effects of 3 x 10-6 M 

PDBu on contractile and [Ca2+]i responses in the absence and presence of various K+ 

channel inhibitors at the doses known to be maximally effective (20).  In fetal MCAs, 

PDBu by itself induced steady-state tension to increase ~20% Kmax within 20 min, at 

which time it remained steady, while [Ca2+]i remained at baseline levels or decreased 

slightly (Fig.1A; Table 1).  In adult MCAs, PDBu induced a significantly greater increase 

in vascular tension, to ~55% Kmax at 40 min, while [Ca2+]i decreased slightly (Fig. 1B, 

Table 1). Fig. 1C summarizes these PDBu-induced responses in both tension and 

fluorescence ratio as percent Kmax.  

 To establish the specificity of PDBu effects on MCA responses, we used 4α-PMA 

(3 x 10-6 M), an inactive chemical homologue of PDBu as a negative control for phorbol 

ester activation of PKC. Administration of 4α-PMA was without significant effect on 

either vessel contractility or [Ca2+]i in either age group (n=3 each; data not shown).   
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Figure 1.  PDBu-induced tension and intracellular Ca2+ concentration (% Kmax) in ovine 
fetal and adult middle cerebral arteries (MCA). A: Time-course of 3 x 10-6 M PDBu -
induced contraction and fluorescence ratio (F340/380) of [Ca2+]i in fetal MCA. B: Time-
course of PDBu-induced contraction and fluorescence ratio (F340/380) of [Ca2+]i in adult 
MCA. C: Bars indicate the average PDBu-induced tension and intracellular Ca2+ 
concentration (% Kmax) in ovine fetal (black) and adult (gray) MCA. Error bars represent 
± SE. *, P<0.01 compared with control 3 x 10-6 M PDBu. The fluorescence ratio ([Ca2+]i) 
shows a slight decrease in response to PDBu treatment in both developmental age groups. 
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BK channel inhibition increased both tension and [Ca2+]i.  To measure the effect 

of BK channel inhibition on the basal vessel tension and [Ca2+]i, we performed dose 

responses of IbTX in half-log doses (10-9 to 10-6 M).  In the fetal artery, 3 x 10-7 M IbTX 

and above increased tension and [Ca2+]i significantly and dose-dependently (Fig. 2A and 

B; Fig. 3A and B). In adult MCA, consistent with the results of our previous studies (20), 

IbTX also increased both tension and [Ca2+]i significantly and dose-dependently, but with 

lower sensitivity and lower maximum effect (Fig. 3A and B).  The dose-response 

relationships of IbTX alone (IbTX-transient) are shown in Figs. 3A and B. The maximum 

IbTX-transient for both tension (Fig. 3A) and [Ca2+]i (Fig. 3B) were significantly greater 

in the fetus than in the adult (P<0.01), as was the pD2 value (negative logarithm of the 

mean effective concentration at half-maximal response) or “sensitivity” to IbTX 

(P<0.05).   

 BK inhibition predisposed PDBu-induced transients in fetus.  To compare the 

contribution of BK channel inhibition in fetal and adult MCAs, we tested the effects of 

IbTX on PDBu-induced tension and fluorescence ratio.  As shown in Figs. 2A-D, in both 

age groups, IbTX alone at 10-8 M was without effect on basal MCA tension or [Ca2+]i.  

However, in fetal MCA, following IbTX incubation for 15 min, the tension induced by 

PDBu in the presence of IbTX increased sharply and transiently within the first 2-3 min 

(referred to as “PDBu-induced transient”) and reaching a maximum at ~32% Kmax.  Then, 

the elevated tension dropped rapidly (within 5 min), but in the following 40 min a steady-

state tension developed and reached ~25% Kmax (Fig. 2A).  Shortly after PDBu 

administration, the fluorescence ratio also increased significantly, within the first 2-3 

min, with the maximum ratio reaching 12% Kmax.  In parallel with the change of vessel 
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tension, the fluorescence ratio quickly fell to baseline level, but in the following 40 min 

steady-state tension increased again to ~10% Kmax (Fig. 2B).  In adult vessels, however, 

in the presence of 10-8 M IbTX, the PDBu did not produce PDBu-induced transient 

increases in tension nor fluorescence ratio, and neither steady-state tension nor 

fluorescence ratio were significantly altered (Figs. 2C and D), as compared to PDBu-

treated only (Fig. 1B) (P<0.05).  
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Figure 2. PDBu-induced tension and intracellular Ca2+ concentration (%Kmax) in ovine 
fetal and adult MCA in the presence of iberiotoxin (IbTX).  Time-course of 3 x 10-6 M 
PDBu-induced contraction (A) and fluorescence ratio (F340/380) of [Ca2+]i (B) in fetal 
MCA in the presence of IbTX (10-8 M).  Time-course of PDBu-induced contraction (C) 
and fluorescence ratio (F340/380) of [Ca2+]i (D) in adult MCA in presence of IbTX (10-8 M).  
Time-course of PDBu-induced contraction (E) and fluorescence ratio (F340/380) of [Ca2+]i 
(F) in fetal MCA in the presence of IbTX (3 x 10-7 M).  Time-course of PDBu-induced 
contraction (G) and fluorescence ratio (F340/380) of [Ca2+]i (H) in adult MCA in the 
presence of IbTX (3 x 10-7 M).  IbTX, iberiotoxin.  
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 To determine the dose effectiveness of BK channel inhibition on the increase of 

PDBu-induced tension and [Ca2+]i, we repeated the above experiments using IbTX from 

10-9 to 10-6 M in half-log doses. The results of 3 x 10-7 M IbTX are shown in Figs. 2E-H, 

and the complete dose responses are shown in Fig. 3.  In fetal MCA, IbTX increased 

vessel tension significantly to about 80% Kmax, after which it returned to the basal level 

within 15 min (Fig. 2E).  After its decrease to near control, PDBu was added in the 

presence of IbTX, which produced a rapid, but transient increase of tension with peak 

height ~70% Kmax, followed by a delayed steady-state or sustained increase to ~30% Kmax 

(Fig. 2E).  In concert with tension changes, the fluorescence ratio increased rapidly 

following IbTX to ~55 % Kmax, after which it returned to the basal level within 15 min 

(Fig. 2F).  When PDBu was added in the presence of IbTX, the fluorescence ratio 

rapidly, but transiently, increased to ~50% Kmax. In the following 40 min, the ratio 

increased gradually to ~15% Kmax (Fig. 2F).  In the adult MCA, the PDBu induced 

increase in tension and fluorescence ratio did not change significantly after higher (3 x 

10-7 M) IbTX treatment, although IbTX alone increased the vessel tension and [Ca2+]i 

significantly (Figs. 2G and H).  

 Figure 3 shows the dose-response relationships of the PDBu-induced responses in 

the presence of IbTX [(PDBu-induced transient (Figs. 3C and D) and PDBu-induced 

steady state (Figs. 3E and F)] in fetal and adult MCAs. The PDBu-induced transient 

responses (Figs. 3C and D) and the PDBu-induced steady-state responses (Figs. 3E and 

F) were IbTX concentration-dependent in fetal, but not adult, MCA.  
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Figure 3. Dose-response relationships of iberiotoxin and of iberiotoxin followed by 3 x 
10-6 M on PDBu-induced tension and fluorescence ratio (% Kmax) in ovine fetal and adult 
MCA. Dose-response relationships of IbTX on IbTX-induced transients in fetal and adult 
MCA contraction (A) and fluorescence ratio (F340/380) of [Ca2+]i (B).  PDBu-induced 
transient contraction (C) and fluorescence ratio (D) responses following different doses 
of IbTX pretreatment.  PDBu-induced steady-state responses of tension (E) and 
fluorescence ratio (F) following different doses of IbTX pretreatment. •, solid line refer 
to, fetus (n=4); Δ, dashed line refer to adult (n=4); NA, not applicable.  
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Figure 4. The effect of iberiotoxin pretreatment on PDBu-induced tension and 
fluorescence ratio (% Kmax) in ovine fetal and adult MCA, under the condition of 
nominally Ca2+-free extracellular medium, or L-type Ca2+ channel blockade by 
nifedipine. Arterial segments were first treated with either EGTA (10-3 M) or nifedipine 
(10-5 M) for 15 min, and then treated with IbTX in the presence of either EGTA or 
nifedipine for another 15 min before adding PDBu (3 x 10-6 M), in the continued presence 
of EGTA (or nifedipine) with IbTX. PDBu-induced contraction (A) and fluorescence 
ratio (F340/380) of [Ca2+]i (B) in fetal MCA in the presence of IbTX under the condition of 
nominally Ca2+-free extracellular medium. Time-course of PDBu-induced contraction (C) 
and fluorescence ratio (F340/380) of [Ca2+]i (D) in adult MCA in the presence of IbTX 
under the condition of nominally Ca2+-free extracellular Ca2+ medium.  PDBu-induced 
contraction (E) and fluorescence ratio (F340/380) of [Ca2+]i (F) in fetal MCA in presence of 
IbTX under the blockade of L-type Ca2+ channel by nifedipine. Time-course of PDBu-
induced contraction (G) and fluorescence ratio (F340/380) of [Ca2+]i (H) in adult MCA in 
presence of IbTX under the blockade of L-type Ca2+ channel by nifedipine. In contrast to 
the responses in the presence of 1.6 mM extracellular Ca2+ (Fig. 2), the increase of 
fluorescence ratio ([Ca2+]i) in the presence of IbTX and IbTX +PDBu in the fetal MCA 
was eliminated by EGTA or nifedipine . IbTX, iberiotoxin. Nif, nifedipine. 
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Figure 5. Average peak responses of tension and fluorescence ratio induced by PDBu 
under various treatment in ovine fetal (A) and adult (B) MCA.  Error bars represent ± SE. 
* P< 0.01 compared with control PDBu (3 x 10-6 M). #, P< 0.01 compared with IbTX 
(10-8 M) + PDBu (3 x 10-6 M).  Numbers in parentheses refer to number of individual 
experiments for each protocol for adult and fetus, as tension and intracellular Ca2+ 
concentration ([Ca2+]i) were measured simultaneously.  The n values (given with tension) 
also apply to corresponding fluorescence ratios.  IbTX, iberiotoxin; Nif, nifedipine (10-5 

M); EGTA (10-3 M).  
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Table 1.  Peak responses of vascular tension and fluorescence ratio to various treatments.  

Fetus  Adult  

ΔMaximum 
tension (g) 

ΔMaximum 
ratio F340/380 

 ΔMaximum 
tension (g) 

ΔMaximum 
ratio F340/380 

Kmax (120 mM) 1.51±0.07 (12) 0.22±0.02  2.51±0.24 (10) 0.19±0.02 

PDBu (3 x 10-6 M) 0.31±0.03 (12) -0.02±0.01  1.64±0.05 (10) -0.03±0.01 

PDBu (3 x 10-6 M) % 

Kmax 

20.16±1.56 (12) -9.46±3.92  55.36±3.95 (10) -18.44±3.19 

IbTX (10-8 M) + 

PDBu 

 32.34±3.65 (6)* 12.27±2.14*  57.49±5.21 (5) -18.27±2.82 

IbTX (3 x 10-7 M) + 

PDBu 

73.08±6.21 (6)* 50.12±5.05*  51.54±5.28 (5) -17.57±2.50 

EGTA (1 mM)  
+ IbTX (3 x 10-7 M) 
+ PDBu 
 

17.91±1.52 (6) -5.88±1.63  53.98±3.19 (3) -9.56±3.63 

Nifedipine (10-5 M)  
+ IbTX (3 x 10-7 M) 
+ PDBu 
  

19.29±1.24 (3) -11.13±2.10  56.48±3.98 (3) -16.02±2.25 

Gli (3 x 10-7 M) + 

PDBu 

18.39±2.29 (7) -9.96±3.51  52.28±5.64 (5) -21.5±2.85 

4-AP (10-3 M) + 

PDBu 

21.34±2.68 (3) -9.75±0.49  57.50±5.57 (3) -19.53±1.88 

BaCl2 (10-5 M) + 

PDBu 

18.93±2.16 (3) -10.09±0.12  52.77±5.15 (3) -18.68±1.19 

Values are means ± SE expressed in absolute terms and as % maximal tension achieved to 120 mM K+ 
(Kmax; see METHODS for details). Tension and intracellular Ca2+ concentration ([Ca2+]i) were measured 
simultaneously; n values given with tension also apply to fluorescence ratio.  Changes in maximum tension 
and in fluorescence ratio, F340/380, from baseline; 4-AP, 4-aminopyridine; Gli, glibenclamide; IbTX, 
iberiotoxin.  Numbers in parentheses, number of individual experiments for each protocol for fetus and 
adult. *P< 0.01 compared with control 3 x 10-6 M PDBu.   See text for exact drug doses and timing. 
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Table 2.  Patch-clamp electrophysiology 

Fetus  Adult  

Before After  Before After 
A. PKC single-

channel: 

     

     V0.5 (mV) 24.40 ± 1.94 

(6) 

4.09 ± 
2.11* 

 

 35.72 ± 2.32 

(5) 

15.17 ± 

2.65* 

     ΔV0.5 (mV) 20.31   20.55  

     Slope  11.28 ± 2.03 11.71 ± 

2.16 

 11.66 ± 1.83 11.06 ± 

2.63 

     Conductance (pS) 323.3 ± 4.8 
 

324.0 ± 
13.2 

 

 326.0 ± 7.4  
 

320.0 ± 8.6 
 

B. PDBu current- 

clamp: 

     

     RMP (mV) at 150s 
 

-41 ± 1.39 

(10) 

-48 ± 

1.66* 

 -53 ± 1.76 (5) -56 ± 1.20 

Values are means ± SE expressed in absolute terms.  Numbers in parentheses are 
number of individual experiments for each protocol of fetus and adult. Data are means 
± SEM. *, P< 0.05 compared with before application of 5 U PKC catalytic subunit and 
3 x 10-6 M PDBu respectively. A. PKC effects on BK single-channel activity.  V0.5, 
potential at which channels are half activated; ΔV0.5, change in half-activating 
potential after addition of 5 U PKC; Slope, voltage sensitivity. B. PDBu effects on 
myocyte resting membrane potentials (RMPs) in current-clamp mode. Potentials 
recorded before and 150 s after addition 3 x 10-6 M PDBu.  
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Fetal PDBu-induced transients required Ca2+ entry. To determine the extent to which 

the PDBu-induced transients of tension and [Ca2+]i in the presence of IbTX were due to 

Ca2+ influx from bathing medium, we suspended the MCAs in nominally Ca2+-free media 

containing 1 mM EGTA for 15 min, and then, added 3 x 10-7 M IbTX for 15 min.  Then, 

PDBu was added in the presence of IbTX in the nominal absence of [Ca2+]o. As shown in 

Fig. 4 and Table 1, under these conditions, in neither fetal nor adult MCA was a 

significant increase in tension or fluorescence ratio observed in response to IbTX alone, 

nor were responses to subsequent addition of PDBu significantly different from responses 

in the absence of IbTX in Ca2+-containing medium (Fig. 1).  

 To determine the extent to which the fetal increase in tension and [Ca2+]i were, in 

fact, secondary to Ca2+ influx through L-type Ca2+ channels, we first administered 

nifedipine (10-5 M) and then, after 15 min, determined the responses to IbTX (3 x 10-7 

M); and another 15 min later, determined the responses to PDBu in the presence of IbTX 

and nifedipine (n=3).  Under these circumstances, in fetal and adult MCA, there was no 

significant increase in either tension or [Ca2+]i in response to either IbTX alone or with 

PDBu (Figs. 4E-H).  Figure 5 summarizes the average peak height responses of both 

tension and fluorescence ratio induced by PDBu under various treatments in fetal (Fig. 

5A) and adult MCA (Fig. 5B).  As is evident, the difference in responses for the two age 

groups is striking. 

PKC increased single-channel BK activity. As judged by the appearance of 

transient tension and [Ca2+]i increases in the presence of IbTX (Figs 2 and 3), PDBu 

appeared to activate BK channel activity, but only in fetal vascular segments.  This 

suggested that PDBu activated fetal BK channels via a PKC-dependent process.  To test 
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this hypothesis, we measured the direct effect of PKC on BK channel activity using 

excised MCA membrane patch preparations in inside-out, single-channel mode under 

voltage-clamp control (Fig. 6A).  PKC activated BK channels from both adult and fetal 

preparations by left-shifting their voltage-activation curves toward more negative 

membrane potentials (i.e. left-shifting; Fig. 6B).  Although PKC left shifted the V0.5 

values of adult and fetal channels to similar extents (DV0.5 = −20 mV; Table 2A), under 

basal conditions (i.e. before addition of the PKC and ATP) the V0.5 values for fetal 

channels were consistently more negative by ~11 mV than adult (P<0.05). Addition of 

either PKC or ATP alone produced negligible effects on channel activity (not shown).  

BK channel voltage sensitivities appeared similar before and after PKC treatment for 

both adult and fetal SMCs (Fig. 6B) and did not differ significantly between age groups, 

as slopes of the fitted curves were not significantly different (Table 2A). 
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Figure 6. Effects of protein kinase C (PKC) on single-channel BK currents.  A. 
Representative inside-out single-channel recordings from BK channels of ovine fetal and 
adult MCA myocytes before and after PKC (5 U/ml) treatment with ATP (5 x 10-4 M) 
present. Recording potential was 30 mV for both fetal and adult myocytes with 3 x 10-6 
M calcium. B. Current/voltage relationship of PKC effects on fetal and adult MCA 
myocytes.  Data are channel activities (Po) expressed relative to maximum channel 
activity (Po max).  Solid lines indicate best-fit curves to the Boltzmann equation: 
Po/Po,max = 1/{1 + exp[(V½ – Vm)/K]}, where V½ is the membrane potential (Vm) required 
for half-maximal activation of the channels and K is the logarithmic voltage sensitivity 
(change in voltage required for an e-fold increase in activity). Data are means ± SEM. 
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PDBu hyperpolarized myocyte resting membrane potentials. Because PDBu 

activates endogenous PKC activity in MCAs, as evidenced by sustained Ca2+-

independent contraction (Figs 1 - 3), and because PKC activates BK channels (Fig. 6), we 

hypothesized that PDBu should hyperpolarize myocyte membrane potentials via 

activation of BK channels.  To test this prediction, we measured resting membrane 

potentials by on-cell current clamp from isolated, intact smooth myocytes before and 

following the addition of 3 x 10-6 M PDBu (Fig. 7).  Resting membrane potentials from 

fetal cells before PDBu were ~+12 mV less polarized than from adult (P < 0.01; Table 

2B), which is consistent with our previous measurements from basilar artery SMCs (17).  

Within 30 sec of adding PDBu the membrane potentials of both adult and fetal cells 

decreased (hyperpolarized).  However, this hyperpolarizing effect of PDBu only persisted 

about 30 s in the adult cells. 
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Figure 7.  Effects of PDBu on myocyte resting membrane potentials.  A. Representative 
continuous recordings of membrane potential (mV) from fetal and adult MCA myocytes 
following exposure to 3 x 10-6 M PDBu.  Rapid initial hyperpolarizations in both groups 
during initial 10 sec were followed by slower returns to baseline in adult cells, while fetal 
hyperpolarizations persisted longer.  B: Resting membrane potentials of fetal and adult 
MCA myocytes before and 30, 60, and 150 s after adding 3 x 10-6 M PDBu. Data are 
means ± SEM. *, P<0.05 difference from baseline before addition of PDBu. 
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Other K+ channel inhibitors did not alter PDBu effects.  Glibenclamide in half-log doses 

(10-9 to 10-6 M) to inhibit KATP channels, 4-AP in half-log doses (10-8 to 10-3 M) to inhibit 

Kv channels, and 10-5 M BaCl2 to inhibit KIR channels showed no effects on tension or 

[Ca2+]i on either adult or fetal MCAs (data not shown).  However, 3 x 10-3 M 4-AP 

slightly increased both tension and [Ca2+]i and 10-2 M 4-AP markedly increased both 

variables in the fetus and adult (data not shown).  To examine further the role of these K+ 

channel inhibitors in PDBu-induced vessel tension and [Ca2+]i, we pretreated MCA 

segments with individual channel inhibitor for 15 min, and then determined the PDBu-

induced vessel responses in the presence of the inhibitor.  Neither tension nor 

fluorescence ratio changed significantly in either fetal or adult MCAs pretreated with 3 x 

10-7 M glibenclamide, 10-3 M 4-AP, or 10-5 M BaCl2, as summarized in Table 1. 
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Discussion 

 Our findings confirmed our previous work (26) that PDBu increases vessel tone 

with no significant increase in [Ca2+]i in both adult and fetal MCA (Fig. 1). In addition, 

we showed that the selective BK channel blocker, IbTX, dose-dependently increases 

vessel tension and [Ca2+]i, and these effects are greater and more sensitive in fetal vessels 

(Fig. 3A and B).  Moreover, IbTX pre-disposed PDBu to induce transient responses in 

fetal MCA tension and [Ca2+]i, but not in adult (Figs 2, 3C and D). Removing 

extracellular Ca2+ or inhibiting L-type Ca2+-channels blocked the IbTX-induced transients 

of the adult and fetus, as well as the fetal PDBu-induced transients in the presence of 

IbTX (Fig. 4).  Other K+ channel inhibitors produced no apparent effects before or after 

application of PDBu.  These results suggest that in fetal MCAs, PDBu-induced PKC 

stimulation activates BK channels to inhibit voltage-dependent Ca2+ channels by 

hyperpolarizing the myocyte membrane.  We verified this hypothesis using patch-clamp 

electrophysiology to show that PDBu produces a sustained hyperpolarization only in fetal 

myocytes (Fig 7).  In addition, we showed that direct application of PKC to the 

cytoplasmic face of inside-out membrane patches activated BK channel currents by left-

shifting the voltage/activation curves of fetal preparations more than adult (Fig. 6). These 

findings are consistent with the Ca2+ and tension effects measured on intact vascular 

segments. 

 PDBu alters contractile and [Ca2+]i responses. The effect of PKC on vascular 

contractility is well documented. PKC can feedback-inhibit phospholipase C to attenuate 

agonist-induced increases in inositol 1,4,5 trisphosphate (Ins(1,4,5)P3), [Ca2+]i, and 

contraction (10).  In addition, PKC activation per se can induce a slow and sustained 
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contraction that is [Ca2+]i independent; possibly due to increased sensitivity of the 

contractile apparatus to Ca2+ (10, 23, 32).  PKC also may modulate vascular smooth 

muscle Ca2+ sensitivity to α-adrenergic and other agonists (29).  

 Phorbol esters, such as PDBu, appear to activate PKC by substituting for 

diacylglycerol (DAG) (31).  At normal basal [Ca2+]i levels, DAG activates PKC by 

increasing its affinity for Ca2+ and phosphatidylserine (28).  In the present study, PDBu 

significantly increased cerebral vascular contractility in both age groups, which is 

consistent with our previous studies (23, 38).  In fetal and adult MCA, PDBu increases 

the maximum amplitudes of vessel tension by ~20% Kmax and ~55% Kmax, respectively. 

To confirm the selectivity of PDBu’s effects, we showed that 4α-PMA, an inactive PDBu 

chemical homologue, had no effect on vessel contractility.  In addition, PDBu either 

produced no change or slightly decreased [Ca2+]i, which is consistent with reports that 

PKC activation stimulates Ca2+ extrusion (6, 7). Our finding that PDBu increases tension 

with little or no increase in fluorescence ratio suggests PKC increases myofilament Ca2+ 

sensitivity in fetal and adult cerebral arteries.  

 PDBu effects in fetus involves BK channels.  K+ channel activity is the major 

determinant of the resting membrane potential.  When K+ channels are activated, the 

associated K+ efflux causes hyperpolarization, which inhibits voltage-gated Ca2+ 

channels, decreases [Ca2+]i, and promotes vascular relaxation (16, 26). Although different 

vascular beds express several classes of K+ channels at varying densities, in most arteries 

BK channels predominate in setting vascular tone and the resting membrane potential 

(26). Because of their large conductance, high density, and localization to sites of Ca2+ 

sparks, BK channels play a key role in regulating the resting membrane potential, and 
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provide an important repolarizing, negative-feedback mechanism to balance voltage-

dependent Ca2+ entry.  BK channel activation produces membrane hyperpolarization and 

subsequent vasorelaxation (26). 

 Several protein kinases modulate BK channel activity.  In general, PKC inhibits 

SMC BK channels, whereas cAMP-dependent protein kinase A (PKA) and cGMP-

dependent protein kinase G (PKG) activate BK channels (18, 33).  Although several 

studies have investigated the effect of PKC on BK channels, in cerebral arterial smooth 

muscle the relationship between PKC and BK channel modulation is relatively unknown.  

In coronary artery smooth muscle, PKC blocks BK channel activation (25).  PKC also 

inhibits BK channels in rat tail artery (34) and in cultured rat mesenteric artery (36).  

Nevertheless, in pulmonary artery, PKC activates BK channels to dampen pulmonary 

vessel contractility (2).  In the present study, application of the highly selective BK 

channel inhibitor, IbTX, elicited vessel contraction and increased [Ca2+]i, suggesting that 

these channels are active under basal conditions and play a key role in maintaining 

normal cerebral vascular tone.   

 From the dose-response relationships of IbTX-transients (Figs 3A and B), the 

maximum IbTX-transients for both tension and [Ca2+]i were significantly greater in the 

fetus than in the adult.  This suggests that BK channels are more active in fetal MCAs 

than in adult, which is consistent with our previous studies in basilar arteries (17).  The 

pD2, an index of tissue “sensitivity”, was also greater in the fetus than in the adult. In 

previous studies, we demonstrated that resting membrane potentials of fetal basilar artery 

myocytes were significantly more depolarized than those of adults (18).  The present 

study confirms this observation in MCA myocytes (Fig. 7).  Because fetal cerebral 
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arteries are more depolarized, our results suggest that lower doses of IbTX are needed to 

activate voltage-gated L-type Ca2+ channels.  It is also possible that the greater sensitivity 

of the fetal BK channels to IbTX is related to the fact that there are more L-type Ca2+ 

channels in fetal vessel SMCs than in the adult (3).  

 In vascular smooth muscle, PKC is coupled directly to plasma membrane L-type 

Ca2+ channels to increase Ca2+ influx or is coupled indirectly by inhibiting BK channels 

that activate the Ca2+ channels (9).  In our study, PDBu produced no increase of [Ca2+]i in 

either developmental age group.  Following 10-8 M IbTX treatment, however, PDBu 

produced transient increases in tension and fluorescence ratio, but only in the fetus.  This 

suggests that PDBu promotes BK channel activation in fetal MCAs. Consistent with this 

hypothesis, we found that PDBu hyperpolarized isolated fetal myocytes in the absence of 

IbTX, but not in adult cells. Furthermore, we have shown that PKC added in inside-out 

membrane preparations activates BK channels. Another finding of the present study was 

that the increase of [Ca2+]i and vascular tension following IbTX, with or without PDBu, 

was eliminated in the presence of zero extracellular Ca2+ or L-type Ca2+ channel 

blockade.  This suggests that the increased [Ca2+]i resulted from Ca2+ influx through 

voltage-gated, L-type Ca2+ channels.  

 BK channel properties change with development.  One possible mechanism to 

account for these age differences relates to BK channel properties with development.  For 

instance, in related studies, we have reported that in basilar artery smooth muscle cells, 

BK channel activity of the fetus was much greater than that of the adult (17).  This 

increased activity was associated with a lower BK channel Ca2+ set point (Ca0), and a 

greater affinity of the channel for Ca2+(18), which allows fetal myocytes to hyperpolarize 
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the cell in response to smaller changes in sub-plasmalemmal [Ca2+] than the adult SMC.  

In this manner, the lower BK channel Ca0 may act as a protective mechanism to govern 

the membrane potential of fetal myocytes, which is already more depolarized than that of 

the adult.  Subsequently, we demonstrated that the Ca0 change during development 

resulted from different levels of BK channel phosphorylation (18).  In fetal cerebral 

artery, BK channel-associated PKG activity is three times greater in BK channels from 

fetal than adult myocytes (19).  

 In pulmonary arterial smooth muscle, PKC indirectly activates BK channels by 

phosphorylating PKG, which suggests a unique signaling mechanism for vasodilatation 

(2).  If PKC activates the BK channel in the present study through PKG-related 

phosphorylation, as in pulmonary arteries, then our observation of PDBu activating BK 

channels in fetal, but not adult, MCAs may be explained by the three-fold higher channel-

associated PKG activity in the fetus (19).  Thus, on the one hand, PKC activation elicits 

vessel contraction in fetal cerebral artery by increasing the myofilament Ca2+ sensitivity 

through a Ca2+-independent pathway (see diagram in Fig. 8).  On the other hand, PKC 

may activate BK channels to facilitate vessel relaxation due to hyperpolarization, while 

stemming Ca2+ influx. The possible opposing effects of PKC in the fetus (Fig. 8) may 

explain why the PDBu-induced tension was ~20% Kmax in fetal MCAs in contrast to 

~55% Kmax in adult.  Our findings suggest that the weaker vasoconstriction effects of 

PKC activation in fetal MCAs may be due, in part, to a combination of PKC activating 

BK channels, as reported here, possibly due to higher levels of channel-associated PKG 

activity (19) and the higher affinity for Ca2+ of fetal BK channels (17, 18).  A hierarchal 

interaction of protein kinases for BK channels invites further study. 
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Conclusions and Perspective 

 During the course of development from fetus to newborn to adult, the cerebral 

blood vessels undergo striking changes, both structurally and functionally. These include 

the levels of specific PKC isozymes and PKC-related mechanisms of contraction.  

Besides the role of PKC in increasing calcium sensitivity in SMCs, its vascular actions 

may, in part, be attributed to effects on K+ channels.  In the present study, based on the 

pharmacological selectivity of the K+-channel inhibitors, we conclude that, while PKC 

produces contraction of cerebral arteries in both fetus and adult, its effect on BK channel 

activity differed significantly between the two age groups.  Figure 8 encapsulates our 

results, which suggest that in fetal, but not adult, cerebral arterial smooth muscle, PDBu-

induced PKC stimulation activates BK channels.  Although the mechanism of PKC’s 

effect on BK channel activity is, as yet, unclear, we speculate that PKC’s activation of 

cerebral artery BK channels may reflect a mechanism to protect fetal vessels from Ca2+ 

overload during PKC-mediated cerebral artery contraction due to its more depolarized 

resting membrane potential (Fig. 7).  Further studies are needed to clarify the role of 

PKC, including the role of PKC isozymes and other protein kinases, on BK channel 

function. 
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Figure 8. Contrasting schematic diagrams of proposed PDBu-induced pathways in fetal 
and adult middle cerebral arteries (MCA).  As depicted, in adult MCA, PDBu activates 
PKC to increase tension via a Ca2+-independent pathway.  In contrast, in fetal MCA, 
PDBu-activated PKC can activate the BK channel to inhibit the L-type Ca2+ channel 
(Cav) via a sustained membrane hyperpolarization to decrease Ca2+ influx and [Ca2+]i, 
and therefore tension, while at the same time stimulating the Ca2+-independent pathway 
and increasing tension as outlined above. 
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CHAPTER FOUR 

INTEGRATIVE DISCUSSION AND CONCLUSION 

Dissertation Findings and Discussion 

We examined the major possible mechanisms for the left shift of the BK channel 

I-V relationship in native basilar artery myocytes from the two LTH groups.  These 

mechanisms included: differential expression of the accessary BK β-1 subunit; 

differential phosphorylation of the BKα subunit; and splice variation of the BKα subunit.  

Using molecular cloning, heterologous expression, and patch-clamp electrophysiology 

techniques, we elucidated a mechanism that, at least in part, contributes to the differences 

we observed between channels from native normoxic and LTH myocytes. 

The results of our molecular cloning revealed a single-nucleotide transversion in 

the BKα transcript at the possible transcription level (mRNA level) in myocytes isolated 

from LTH adult basilar arteries as compared to the normoxic “wild type”. This nucleotide 

transversion occurred in the second codon position; thereby producing a change from a 

hydrophobic to hydrophilic charged amino acid, in which a valine was switched to a 

glutamate at position 86 of the BKa subunit. The resulting amino acid substitution was 

located within the intracellular S0-S1 loop region. In the near-term fetus, however, we 

did not find such switching.  Additional experiments are yet needed to confirm and 

possibly extend this finding in the fetus. 

To examine further the functional consequences of such single amino acid 

substitution, we performed single-channel, voltage-clamp studies on both normoxic and 

LTH BK transcripts. We observed that in transfected HEK293 cells, which normally do 

not express BK channels, the expressed normoxic and LTH adult BK isoforms 
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(transcripts) showed similar functional differences that characterized their counterpart 

channels in native normoxic and LTH myocyte preparations.  Firstly, the LTH isoform 

exhibited a left shifted current/voltage (I-V) relationship toward more negative potentials, 

compared to the expressed normoxic isoform, thereby making the LTH isoform channels 

more voltage sensitive.  This mirrored the I-V left shifting observed in the native LTH 

channels compared to native normoxic channels. Secondly, the LTH isoform channels 

exhibited a lower calcium set point (Ca0) compared with the expressed normoxic isoform 

channels, which was also a distinguishing feature of BK channels between the LTH and 

normoxic myocytes.  By using exogenous alkaline phosphatase alone to de-phosphorylate 

the channels or followed with protein kinase G to phosphorylate the channels, we showed 

that the differences between the LTH and normoxic isoforms were independent of 

channel phosphorylation status, as was the case for the respective native myocytes.  Thus, 

the V87E substitution in the adult’s acclimatization to high-altitude, long-term hypoxia 

(LTH) can account for the major qualitative functional differences between BK channels 

from normoxic and LTH basilar artery smooth muscle.  

That such a relatively small sequence change in BKα could so dramatically affect 

channel function and, in particular, contribute teleologically to increase cerebral blood 

flow in response to “migration” to high-altitude, long-term hypoxia, raises questions of 

whether such channel changes may occur in other hypoxia-tolerant species.  To examine 

this aspect, we undertook a bioinformatics search of GenBank BK channel sequences.  

We found that the presence of threonine in position 86 of BKα occurs infrequently across 

the phylogenetic tree, but when it does occur it is most often occurs in hypoxic-tolerant 

species.  The result of our bioinformatics search is shown in the following listing: 
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Animals sharing T86 within a DEKEETV-like motif in BKα S0-S1 loop: 

 Key: Hypoxia-tolerant  *Hypoxia-intolerant  

High-altitude mammals 

 Fam. Bovidae 

 Sheep (Ovis aries) 

 Goat (Capra hircus) 

 Tibetan antelope (Pantholops hodgsonii) 

 *Cow (Bos taurus) 

Diving mammals (Fam. Ungulata) 

 Walrus (Odobenus rosmarus)     DEKEEAT 

 *African elephant (Loxodonta africana) 

Subterranean mammals 

 Cape golden mole (Chrysoshloris asiatica) 

Diving reptiles 

 Chinese soft shelled turtle (Pelodiscus sinensis) 

 Turtle (Trachemys scripya) 

 Painted turtle (Chrysemys picta bellii) 

 Alligator (Alligator mississippiensis)  DEKEETV 

Marine invertebrates    - - + - -(=) 

 Sea anemone (Aiptasia pallida)      

    + +   +ET- 

      NQDDET- 

      + + - - -(=)  
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Using confocal microscopy, we found that, while the adult myocytes expressed 

slightly more BKα than fetal myocytes, in both normoxic and LTH fetal basilar arteries, 

the BK channels were two to three-fold more clustered on the cell surface than their adult 

counterparts.  We then used fluorescent cholera toxin binding subunit to identify and 

count lipid rafts on basilar artery myocytes.  We found that while the fetal myocytes 

showed slightly more clusters of cholera toxin, the fetuses had more than twice as many 

BK channel clusters co-localized to clustered cholera toxin than the adults. This suggests 

that the BK channels of fetal cerebral myocytes are localized at sites of calcium “sparks” 

(caveolae) where their activation may be more coupled to spark activity.  Further co-

localization and functional experiments are needed to test this hypothesis, however. 

In summary, LTH adults we observed left shifting of the BK channel I-V curve 

and increased affinity for intracellular calcium, independent of phosphorylation status.  

We found that these intrinsic functional differences in channel activity could be 

accounted for by position a V!E switching at position 87.  In the both normoxic and 

LTH fetus, however, we observed that increased BK channel activity, compared to the 

normoxic adult controls was due to, in part, increased BK channel clustering and co-

localization to lipid rafts, which are sites of increased calcium spark activity. 

Understanding such LTH adaptive mechanisms in sheep may help us understand 

mal-adaptive responses to LTH in humans. However, the mechanism by which V!E 

switching in the LTH adult occurs is unknown at the present and begs further 

investigation.  Attempts by us to replicate this process in vitro using cultured vascular 

segments under hypoxic conditions (1% oxygen) failed.  Possible mechanisms of 
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switching may include: RNA editing (HIF; A-I); alternative splicing involving very short 

exons; or genetic predisposition involving SNPs; same switching in SCD).  

 
 

Dissertation Conclusions 

• In adult, LTH-induced V!E switching makes BK channels more active at RMPs and 

more sensitive to [Ca2+]i . This leads to vasodilation and increased cerebral blood flow. 

• In fetus, BK channel clustering in lipid rafts may favor greater coupling to Ca2+ sparks 

to offset more depolarized RMP. This leads to vasodilation and increased cerebral 

blood flow. 

• DEEKEETV motif may be a model for hypoxia-tolerant BKα subunit across a wide 

range of the Animal Kingdom.  Its structure-function relation to the coupling of 

voltage and calcium sensing by BK channels also raises the level of interest of the S0-

S1 loop in relation to the voltage-sensing S4 transmembrane domain.  

Future Directions 

1. To extend our current observations that fetal cerebrovascular BK channels co-localize 

as clusters at lipid rafts, and determine if such rafts are, indeed, sites of calcium spark 

activity and determine if fetal coupling of BK channel activity to spark activity is 

greater than in adults.  This can best be done by measuring both calcium spark 

activity using confocal microscopy while measuring spontaneous transient outward 

currents (STOCs) in perforated-patch, whole-cell preparations. 

2. To study the beta subunit co-localization with alpha subunit using co-

immunoprecipitation or confocal microscopy. 
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3. In vitro cell culture or tissue/organ culture to study the mechanisms of V!E 

switching.  

4. To examine other tissue types to see if they undergo BKα V!E switching. 
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