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ABSTRACT OF THE DISSERTATION 

Existence of Inhibitor of Apoptosis in Tumor Exosomes 

by 

Malyn May Asuncion Valenzuela 

Doctor of Philosophy, Graduate Program in Biochemistry 

Loma Linda University, March 2015 

Dr. Nathan R. Wall, Chairperson 

 

Pancreatic cancer is a deadly and aggressive disease. The only option for 

metastatic pancreatic cancer is chemotherapy where only the antimetabolites gemcitabine 

(Gem) and 5-fluorouracil (5FU) are used clinically. However, resistance to these 

antimetabolites remains a problem highlighting the need to discover and develop new 

antimetabolites that will improve a patient’s overall survival. Cancer is a disease that has 

acquired numerous molecular, biochemical and cellular changes. Resistance to apoptosis 

is one of the characteristics of cancer, of which the inhibitor of apoptosis (IAP) family of 

proteins plays an important role. It has also been shown that cancer cells secrete vesicles 

called tumor exosomes (TEX) which are loaded with bioactive molecules which strongly 

influences the tumor microenvironment. Both protein and mRNA of the IAP Survivin, 

cIAP1, cIAP2 and XIAP are released into the extracellular space by not only the 

pancreatic cancer cell line PANC-1, but also from other cancer and non-cancer cell lines. 

IAP release may play an important role in pancreatic cancer’s lack of response to 

antimetabolite agents and eventual progression to chemoresistance. These findings can be 

used to design and develop novel compounds that can be used in combination with Gem 

or 5FU which are designed to target exosomes, in particular IAP packaging, which may 

make a vital impact in the treatment for metastatic pancreatic cancer. 
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CHAPTER ONE 

INTRODUCTION 

INHIBITOR OF APOPTOSIS (IAPS) IN TUMOR EXOSOMES 

 

Pancreatic Cancer 

 Pancreatic cancer is an aggressive disease that silently attacks. Today, it is the 4
th

 

leading cause of cancer deaths in the United States [1-3]. There are several risk factors 

that lead to the development of pancreatic cancer which include lifestyle factors, such as 

smoking and a diet high in fat and nitrite, diseases such as chronic pancreatitis and 

diabetes, and genetic factors [4] . Symptoms, such as jaundice and back or abdominal 

pain, are usually presented once the disease has progressed to the advanced stages [2]. 

Since there are no screening tests and patients are asymptomatic in the early stages of the 

disease, pancreatic cancer is usually diagnosed in the advanced stages, affecting 

approximately 85% of the patients. At the time of the diagnosis, the survival time given 

to the patients is 4-8 months, where less than 1% survive more than 5 years [5-7]. 

Patients that have metastatic pancreatic adenocarcinoma are treated with the only first-

line FDA approved treatment GEMZAR or gemcitabine (Gem) [8]. Gem is an 

antimetabolite agent that is designed to inhibit replication of DNA and normal cellular 

metabolic processes [9,10], which will be discussed further in the next chapter. At 

present, numerous efforts are being made to improve treatment strategies for metastatic 

pancreatic cancer, such as the search for new antimetabolite drugs, as well as using 

combinations of therapeutic agents. 
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Inhibitor of Apoptosis 

Cancer is a disease that has acquired a number of molecular, biochemical and 

cellular changes, which is common in most, even all types of cancer. These changes 

affect normal cellular physiology, which are essential for malignant growth. The changes 

include independence from growth signals, loss of sensitivity to antigrowth signals, 

resistance to apoptosis, unlimited ability to replicate, angiogenesis maintenance, and 

invasion of tissue and metastasis [11]. Out of these acquired capabilities of cancer cells, 

we are most interested in the resistance to apoptosis. The inhibitor of apoptosis (IAP) 

family of proteins is of special interest, which includes cIAP1, cIAP2, XIAP and 

Survivin.  

IAPs are characterized by an ~70 amino acid baculovirus IAP repeat (BIR) 

domain and a RING domain in the C-terminus of each family member [12,13]. IAPs are 

known to be endogenous caspase inhibitors [14]. Activated caspase-3, -7 and -9 are 

inhibited by cIAP1, cIAP2 and XIAP by directly binding to the caspases using their BIR 

domains [15-18]. Survivin is the smallest IAP family member and is the only IAP that 

has only one BIR domain and no RING domain, making Survivin structurally unique 

among the rest of the family [19]. Another unique feature of Survivin is its 

multifunctional role in various cellular activities, which includes the regulation of 

mitosis, protection from cell death, and adaptation to stressful environments [20,21]. 

Survivin is found to be localized in the cytoplasm, mitochondria and nucleus, with its 

subcellular location determining its function [22,23]. It has been shown that Survivin’s 

role in the regulation of mitosis is carried out by a nuclear Survivin pool [24]. 
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Alternatively, mitochondrial Survivin  is able to suppress cell death in tumor cell lines 

and plays a part in tumorigenesis in immunocompromised mice [25].  

 

Survivin in Cancer & Treatment 

Survivin expression is normally seen during the embryonic and fetal 

developmental stages, but is either low in expression or absent in tissues that are 

terminally differentiated. Survivin has also been shown to be present in highly 

proliferative adult cells, such as thymocytes, CD34
+ 

bone-marrow-derived stem cells, T 

cells, vascular endothelial cells and gastrointestinal tract mucosa. Expression levels of 

Survivin in these cells are significantly lower compared to tumor cells, where there is a 

striking overexpression of this IAP in virtually every cancer type. High levels of Survivin 

expression in cancer cells have been associated with dismal prognosis, disease 

progression, metastatic dissemination, therapy resistance and overall dismal disease 

outcome [21,26,27]. In pancreatic cancer cells, radioresistance was enhanced by 

Survivin, which functioned as an inducible radioresistance factor [28]. Another study has 

shown that both Survivin mRNA and protein levels were higher in Cisplatin-treated 

gastric cancer cells compared to untreated cells [29]. Both these studies give indication 

that Survivin plays an essential role in chemotherapy and radiotherapy resistance, 

increasing the ability of cancer cells to evade apoptosis, thus providing cytoprotection to 

malignant cells [30]. 

To date, Survivin is one of the most tumor specific transcriptome [21], and in 

addition to its presence in both solid tumor and hemapoeitic malignancy, this IAP makes 

an exciting target for anti-cancer treatment. There have been many efforts in recent years 
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to develop novel anti-cancer therapeutics targeting Survivin to both inhibit tumor growth 

as well as increase tumor cells’ sensitivity to conventional chemotherapeutic agents 

[27,31]. Thus far, there are numerous strategies to target Survivin from mRNA to protein 

levels. Small molecule inhibitor YM155 acts by inhibiting transcription of Survivin 

mRNA, while anti-sense oligonucleotides, hammerhead ribozymes and siRNA are 

designed to degrade Survivin mRNA and/or inhibit protein translation. Strategies to 

inhibit Survivin at the protein level include small molecule antagonist Sheperdin, which 

prevents Hsp90/Survivin interaction, as well as expression of two Survivin dominant 

negative mutants Cys84Ala and T34A into tumor cells introduced by plasmid or viral 

vectors [27,31]. 

In recent years, many studies have been done to determine whether 

downregulation of Survivin could reverse chemotheray and radiotherapy resistance in 

cancer cells. Several groups have shown that inhibition of Survivin expression by 

shRNA, RNAi, as well as emodin, a natural compound, resensitizes a variety of cancer 

cells, including squamous cell carcinoma of the tongue [30], osteosarcoma [32], breast 

cancer [33], and pancreatic cancer [34,35] to cisplatin, adriamycin, and gemcitabine.  All 

the Survivin based therapies mentioned previously have shown to be successful in 

decreasing Survivin expression levels, inhibiting further growth of malignant cells and 

increasing sensitivity to chemo,- and radiotherapies.  

 

Existence of Secreted Membrane Vesicles in Cancers 

Tumors are known to shed membrane vesicles [36]. In particular, human and 

mouse tumor cells have been shown to secrete tumor cell-derived  
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exosomes (TEX), constitutively into the extracellular space [37]. The morphology, 

density and certain membrane markers expressed, such as LAMP1, MHC class I, HSP70 

and HSP80, on the released TEX are similar to the dendritic cell-derived exosomes 

(DEX) [38]. Despite similarities to DEX, there are differences in the molecular profiles 

and biological roles of TEXs, both of which give an indication of the cell of origin [39]. 

The specific protein content found on and within exosomes not only reflects their origin, 

but in addition, establishes their functional role [40]. TEX secreted from neoplastic cells 

express diverse tumor antigens, which signifies the type of tumor cells from where TEXs 

were released [41]. In vitro, it has been shown that TEX released from breast carcinoma 

cells contain HER2, while carcinoembryonic antigen (CEA) was found in the exosomes 

secreted from colon carcinoma cells, and proteins MelanA/Mart-1 and gp100 that are 

expressed in melanoma cells are found on the released TEX [38,42]. This phenomenon is 

also evident in vivo, where plasma from cancer patients contain membrane vesicles that 

are characterized by the expression of tumor antigens which reflect the tumor of origin 

[43,44]. 

When immunocompetent and nude mice were pre-treated with murine mammary 

TEX, an accelerated growth of the tumor was observed [45]. This observation led to 

various studies to try to elucidate the role of secreted membrane vesicles in cancer. TEX 

can be described as “multi-purpose carriers” which have important roles in the 

communication, protection, as well as the exchange of genetic information with 

neighboring cells [46]. The production and secretion of TEX is important for the tumor. 

They serve a protective function, have a supportive role in the survival and growth of the 

tumor cells, are involved in the promotion of host tissue invasion and subsequent 
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metastasis, and facilitate evasion from the immune response [47,48]. Acting in a 

paracrine fashion, the diverse function of TEX is speculated to be due to the various 

bioactive molecules found within and on the vesicles having a strong influence on the 

surrounding environment [41,43,44,49]. 

The promotion of angiogenesis is due in part to the upregulation of vascular 

endothelial growth factor (VEGF) [50] and release of matrix metalloproteinases (MMPs) 

in neighboring, even distant endothelial cells, which are brought by TEX containing 

tetraspanin family members [51], epithelial growth factor receptor (EGFR) [52], platelet-

derived tissue factor (TF) [53] or developmental endothelial locus-1 protein [43]. TEX 

has also been implicated in the further growth of tumor by the exchange of genetic 

material. mRNA was detected within exosomes released from glioblastoma cells. 

Neighboring microvascular endothelial cells that take up the exosomes and translate the 

mRNA become liable for further tumor growth leading to the stimulation of angiogenesis 

[50]. In addition, tissue invasion and stromal remodeling can be facilitated by proteases 

and MMP transport and release via exosomes [54,55]. Recent studies have shown that 

TEX provide a protective role to the cancer cells, which can be manifested in different 

ways. Survivin, a member of the inhibitor of apoptosis (IAP) protein family, was found to 

be released from tumor cells via exosomes [56]. The protective role of TEX can be 

attained by the accumulation and packaging of chemotherapeutic drugs or its metabolites 

into the vesicles, thus decreasing cellular levels of the drug, a factor leading to drug 

resistance [57,58]. This phenomenon has been observed in various cancer cells. Cisplatin 

enhanced the shedding of the vesicle from melanoma cells [5], while doxorubicin was 

found in the exosomes released from ovarian carcinoma cells [58]. Despite the beneficial 
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roles of TEX for the tumor cells and the tumor microenvironment, TEX can be a useful 

tool for detecting the malignant condition. Serum levels of exosomes taken from cancer 

patients are significantly increased. These vesicles taken from serum [59], as well as from 

malignant tumor fluids, such as ascites fluids [60], pleural effusions [38] and urine [61] 

positively correlate with the tumor progression. 

 

Constitutive and Inducible Vesicle Secretion in Cancer and Cancer Therapy 

In the tumor microenvironment, various changes are taking place, which could 

have an effect on the release of vesicles, such as exosomes. Environmental changes, such 

as stress induced by chemo- and radio-therapy, can modulate TEX release and the biome 

they contain. This phenomenon may induce the tissues to adapt to changes taking place in 

the microenvironment [62]. Tumor cells that have undergone radiation or chemotherapy 

treatment have been shown to increase the release of TEX [63,64]. Interestingly, when 

treated with chemotherapeutic agents, there is a significantly enhanced membrane vesicle 

secretion in chemoresistant cells compared to chemosensitive cells. This activity may be 

a factor leading to drug resistance [57,58]. TSAP6 is an important cellular component as 

it regulates the secretion of protein via the non-classical pathway or the ER/Golgi-

independent protein secretion pathway needed for the enhanced release of exosomes 

[63,65,66]. Normally, the secretion of exosomes in various cell types happens at a low 

rate. However, when p53 is activated, endosomal compartment activities are activated. 

Simultaneously, there is an increased expression of TSAP6, inducing the release of 

exosomes at a higher rate [67]. It is suggested that following p53 activation, exosomal 

release may act as a ‘detoxifier’ to expel unwanted chemotherapeutic agents [5,57,58,66]. 
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Communication to the microenvironment is the other proposed role of TSAP6 and 

exosomal release after p53 activation, which may act as a warning signal to the 

neighboring cells, the immune system, and the extracellular matrix, that there are 

abnormal intracellular events happening [66,67]. 

TEX can be used as an important biomarker for the disease, which will give 

information not only on the disease progression, but on the tumor type. As previously 

mentioned, TEX express specific tumor antigens which reflect the protein content of the 

tumor, giving an indication of the tumor type. The content of these vesicles can also be 

useful as markers for the aggressiveness of the disease.  

 

Exosomal Survivin 

Survivin is found to be localized in various subcellular locations. Depending on 

its function, this IAP is shown to be in the cytoplasm, mitochondria and nucleus [23,68]. 

Recently, our lab has discovered that Survivin exists in the extracellular space [69], 

which is released by 40-100nm membrane vesicles called exosomes [56]. Various cell 

types, such as B- and T- lymphocytes, dendritic cells, neurons, intestinal epithelia cells as 

well as tumor cells release exosomes [70-72]. In particular, it has been shown that both 

human and mouse tumor cells release tumor cell-derived exosomes (TEX) constitutively 

[37]. Additionally, specific protein content found both on and within TEX gives an 

indication on not only their functional and biological roles, but also on their cell of origin, 

making TEX excellent biomarkers [39,40,73]. Our lab has shown that the extracellular 

pool of Survivin had the ability to cause neighboring cancer cells to become resistant to 

therapy, rapidly proliferate and acquire an increased potential to become invasive [69], 
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providing a protective role to the neighboring tumor cells [74]. The ability of 

extracellular Survivin to cause these effects in the surrounding cancer cells comes to no 

surprise as to why an overexpression of this IAP is seen in virtually every human cancer 

type [21]. TEX as biomarkers can be also used as tools to detect malignant conditions. 

Serum taken from cancer patients had an increased level of TEX [54,59],which had a 

positive correlation with the progression of the tumor [74]. In addition to serum, TEX 

was shown to be isolated from malignant tumor fluids, such as urine [61], ascites fluids 

[75] and pleural effusions [38]. We have recently shown that exosomal Survivin may be a 

useful tool for early detection and diagnosis or even monitoring prostate cancer 

progression. Newly diagnosed and advanced Prostate cancer patients with high or low-

grade cancer had significantly higher levels of exosomal Survivin compared to control 

subjects or patients with pre-inflammatory BPH [76]. 
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Abstract 

Pancreatic cancer is a deadly and aggressive disease. Less than 1% of diagnosed 

patients survive 5 years with an average survival time of only 4 - 8 months. The only 

option for metastatic pancreatic cancer is chemotherapy where only the antimetabolites 

gemcitabine and 5-fluorouracil are used clinically. Unfortunately, efforts to improve 

chemotherapy regimens by combining, 5-fluorouracil or gemcitabine with other drugs, 

such as cisplatin or oxaliplatin, have not increased cell killing or improved patient 

survival. The novel antimetabolite zebularine shows promise, inducing apoptosis and 

arresting cellular growth in various pancreatic cancer cell lines. However, resistance to 

these antimetabolites remains a problem highlighting the need to discover and develop 

new antimetabolites that will improve a patient’s overall survival. 
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Introduction  

In the United States, pancreatic cancer is the 4
th

 leading cause of cancer death 

aggressively and silently attacking the patient [1-3]. Pancreatic cancer is only identified 

in more advanced stages when the patient is symptomatic, as there are no screening tests 

for this disease [4]. At the time of diagnosis, approximately 85% of the patients have 

advanced pancreatic cancer resulting is a short median survival time of 4-8 months where 

less than 1% survive more than 5 years [5, 6]. Currently, the best treatment is surgical 

resection where approximately 20% of patients increase their life span by approximately 

2 years [7]. For metastatic pancreatic adenocarcinoma, chemotherapy using gemcitabine 

(GEMZAR) is currently the only first-line FDA approved treatment [8]. Antimetabolite 

drugs are designed to stop DNA replication and normal cellular metabolic processes by 

different mechanisms and have been investigated for almost 70 years [9, 10]. Currently, 

efforts to improve the treatment for metastatic pancreatic cancer explore using 

combinations of therapeutic agents as well as searching for new antimetabolite drugs. 

This review will discuss the different antimetabolite agents (Table 1) used to treat 

pancreatic cancer, both clinically approved and experimental, their mechanisms of action, 

and therapy resistance. 

 

5-Fluorouracil  

The pyrimidine 5-fluorouracil (5FU) has been under investigation for the 

treatment of human cancers since 1954 when it was observed that uracil is utilized more 

efficiently by tumor cells than normal cells [11]. The knowledge that fluorine 

substitutions of hydrogen in metabolites often resulted in a toxic compound inspired the 



19 

design of 5FU (Figure 1) and testing as a tumor-inhibiting compound [11-13]. Since its 

discovery, 5FU has been used as a treatment for many solid tumors such as colon, breast, 

head and neck cancers, and advanced pancreatic cancer. For 20 years, 5FU was regarded 

as the only effective drug against advanced pancreatic cancer. However, despite 

numerous efforts to improve therapy outcomes, the best response rate was approximately 

20% [12, 14, 15]. 

 

Mechanism of Action 

 Like uracil, 5FU is salvaged to form 5-fluorouridine and then phosphorylated by 

nucleoside and nucleotide kinases as well as reduced by ribonucleotide reductase forming 

three different active metabolites (Figure 2). After incorporation of 5-fluorouridine 

triphosphate (FUTP) into cellular RNA, RNA processing and post-transcriptional 

modification can be inhibited [15, 16]. During DNA synthesis, 5-fluoro-2’-deoxyuridine 

monophosphate (FdUMP) inhibits thymidylate synthase resulting in an imbalanced pool 

of deoxynucleotide triphosphates, particularly decreased deoxythymidine triphosphate 

(dTTP) and increased deoxyuridine triphosphate (dUTP). Absent dTTP, stalled DNA 

polymerases can incorporate 5-fluorodeoxyuridine triphosphate (FdUTP) or dUTP which 

are subsequently recognized as damaged DNA setting up a futile cycle of 

misincorporation and repair [15, 16]. When DNA damage exceeds a cells ability to repair 

misincorporated FdUTP or dUTP, single strand and double strand breaks accumulate 

favoring cell death. Given these cellular actions of 5FU, its toxicity is generally 

considered a function of transport into the cell and metabolism to active metabolites,  
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Table 1. Anti-metabolite Drugs (experimental & clinical) 
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Figure 1 - Structure of 5FU with the fluor group in carbon 5-position. 5FU is a 

pyrimidine analog drug whose mechanism of action is through irreversible inhibition of 

thymidylate synthase (TS).  Clinically is have been used in the treatment of anal, breast, 

colorectal, esophageal, stomach, pancreatic and skin cancers. 
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Figure 2 - Mechanism of 5FU leading to RNA and DNA damage. Thymidylate synthase 

inhibition is the main mechanism of action of 5FU through its active metabolite FdUMP. 

Synthesis of the pyrimidine thymidine, which is required for DNA synthesis, is the result 

of blocking thymidylate synthase.  Thymidylate synthase methylates deoxyuridine 

monophosphate (dUMP) to for thymidine monophosphate (dTMP).  The use of 5FU in 

cancer causes there to be a reduction leading to a scarcity of dTMP so that rapidly 

dividing cancer cells die from a lack of thymine. 
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particularly FdUMP, while resistance occurs when 5FU metabolism is decreased or DNA 

repair is efficient. 

 

Resistance 

One mechanism of 5FU resistance may result from high levels of thymidylate 

synthase expression in pancreatic cancer patients. Head and neck[17] and gastric[18] 

cancer patients with low tumoral thymidylate synthase expression exhibited increased 

sensitivity to 5FU treatment, while a lack of response was seen in advanced colorectal 

patients[19] with high thymidylate synthase expression. Interestingly, the opposite was 

observed where node-positive breast[20] and Dukes’ B and C rectal[21] cancer patients 

with high expression levels of thymidylate synthase responded well to 5FU therapy. It is 

not currently known why this phenomenon was seen, but 5FU therapy-outcome may be 

associated with the tumor type that is being treated or with the biome of stress-associated 

molecules expressed and/or induced. One retrospective study of pancreatic cancer 

patients found that 5FU resulted in longer survival for patients with low thymidylate 

synthase expression [22]. Further translational studies are needed to better understand the 

role of thymidylate synthase expression and therapy outcome [10, 16]. These and other 

studies on the mechanism of resistance continue and may prove instrumental in 

understanding resistance leading to better therapeutic design and combinations.  

An additional mechanism of resistance is decreased expression 5FU transport into 

pancreatic cancer cells. In human pancreatic cancer cell lines, the sensitivity to 5FU 

directly correlated with the expression level of the human equilibrative nucleoside 

transporter 1 (hENT1) [23]. However, increased median survival time in pancreatic 
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cancer patients treated with 5FU was not significantly different [24]. Additional studies 

are needed to understand the differences in resistance to 5FU in cell lines as opposed to 

pancreatic cancer patients. 

 

Gemcitabine 

Gemcitabine (2’, 2’-difluoro-2’deoxycytidine, dFdC) was originally considered as 

an antiviral drug [25], but was later shown to demonstrate anti-cancer activity in both in 

vivo and in vitro models of solid and hematological cancers [14, 25, 26]. Today, 

gemcitabine is the only FDA approved single chemotherapy agent against metastatic 

pancreatic cancer, showing a better 1-year survival rate, median survival, and clinical 

benefit when compared to 5FU [8].  

 

Mechanism of Action 

Gemcitabine is a 2’-deoxycytidine analogue with fluorine substituted for 

hydrogen at the 2’ position of the furanose ring (Figure 3). Gemcitabine is a broad-

spectrum agent, which has different mechanisms of action, depending upon its 

phosphorylation state (Figure 4) [8, 25]. Uptake of Gem into the cell uses both human 

equilibrative nucleoside transporters (hENTs) and human concentrative nucleoside 

transporters (hCNTs) [27, 28]. Inside the cell, gemcitabine is phosphorylated by 

deoxycytidine kinase into gemcitabine monophosphate (dFdCMP), which is further 

converted into its active di- and triphosphate (dFdCDP and dFdCTP) states by nucleotide 

kinases [29]. Ribonucleotide reductase is inhibited by dFdCDP leading to a reduction in 

dCTP levels. Reduced dCTP lessens the negative feedback regulation of deoxycytidine  
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Figure 3 - Gemcitabine is a nucleoside analog in which the hydrogen atoms on the 2’ 

Carbon of deoxycytidine are replaced by fluorine atoms.  Like other analogues of 

pyrimidines, the triphosphate analogue of gemcitabine replaces the important cytidine 

building block of nucleic acids during DNA replication arresting tumor growth and 

resulting in apoptosis.  Gemcitabine has been used to treat various carcinomas including 

lung, pancreatic, bladder and breast cancers.  It is being investigated for the possible use 

against esophageal cancers and lymphomas. 
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Figure 4 - The broad spectrum mechanism of action of Gem, depending on its 

phosphorylation state, can inhibit Riobonucleotide Reductase, Polymerase and 

Deaminase activities.  Once these enzymes are irreversibly inhibited, the cell cannot 

produce the deoxyribonucleotides required for DNA replication and repair and the cell 

dies via apoptosis. 
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kinase and favors the efficient phosphorylation of gemcitabine [30]. The cytotoxic 

activity of gemcitabine leading to apoptosis is mainly the result of its triphosphate form. 

DNA polymerase activity is inhibited when dFdCTP is incorporated into the DNA strand 

leading to a termination of the DNA chain synthesis and single strand breakage[31-33]. 

Consequently, a depletion of dCTP levels, due to inhibition of ribonucleotide reductase 

activity, results in the competition of dFdCTP with dCTP leading to an increased 

incorporation of dFdCTP into the DNA strand [30]. In addition, high intracellular levels 

of dFdCTP also strongly inhibited dCMP deaminase activity, by directly inhibiting the 

deaminase as well as indirectly because of the decreased dCTP:dTTP ratio [34]. 

 

Resistance 

It has been shown in vitro that low levels of hENT1, leading to limited 

gemcitabine intracellular uptake, is a mechanism of chemoresistance[23, 35, 36]. In 

pancreatic cancer patients, the levels of hENT1 were recently observed to correlation 

with overall median survival time, where patients with higher levels of hENT1 have 

better survival rates[24]. Further mechanisms of resistance to gemcitabine observed in 

cell lines from multiple cancer types resulted from decreases in deoxycytidine kinase 

activity and increased ribonucleotide reductase activity [37]. Implications for pancreatic 

cancer patients regarding activity and expression of these enzymes, however, are still 

unknown [38].   

 

Platinum 

Platinum agents are used today in combination therapy regimes with gemcitabine 
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as second line chemotherapy for metastatic pancreatic cancer. Cisplatin (dis-

diamminedichloroplatinum, CDDP, PtCl2(NH3)2) is shown in Figure 5 and is an 

inorganic platinum complex composed of a doubly charged platinum ion, and four 

ligands - two chloride ions and two amines. Cisplatin is a potent chemotherapy drug 

discovered in the 1960’s. It is widely used today against a variety of tumors including  

head and neck, non-small cell lung, stomach and bladder cancers, non-Hodgkin’s 

lymphoma and sarcomas [39, 40].  Oxaliplatin (trans-l-1,2-diaminocyclohexane 

oxalatoplatinum) (Figure 6) is a new platinum agent that is more potent in vitro and has a 

better toxicity profile compared to cisplatin, as it only needs a small number of DNA 

adducts to attain the same cytotoxicity profile as cisplatin. In preclinical studies, 

oxaliplatin shows efficacy in a number of cancer cell lines, which also includes cell lines 

that are cisplatin resistant [41, 42]. This provides hope that with minor modification of 

these platinum compounds, not only will efficacy increase, but resistance will decrease as 

well. 

 

Mechanism of Action 

Once taken up into the cells, the chloride ions are lost and replaced with water 

molecules transforming cisplatin into a reactive species. Loosely bound, the water 

molecules easily fall off, exposing the platinum ion which readily forms bonds with DNA 

bases, forming DNA-DNA cross-links and DNA-protein cross-links. These cross-links 

between bases are usually formed at sites where adenosine and guanine are adjacent on 

the same DNA strand. It has been speculated that the cis-geometry of cisplatin is 

important to its anti-tumor activity, as the trans-isomer of cisplatin, transplatin, is 

inactive [43]. Unlike 5FU, cisplatin chemotherapy arrests cells at the G1, S or G2-M  
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Figure 5 – Cisplatin has two chloride ions and two amine groups attached to the center 

platinum ion.  Cisplatin has been used to treat various cancers which include sarcomas 

carcinomas of the lung and ovary, lymphomas and germ cell tumors and is especially 

effective in treatment of testicular cancer. 
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Figure 6 – Similar to Cisplatin, Oxaliplatin contains a doubly charged platinum ion in the 

center. It, however, contains diamnocyclohexane and carboxylate compounds. These 

platinum complexes bind to and crosslink DNA in vivo which triggers apoptosis. 
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phase of the cell cycle, making this drug efficient in killing cells that are in all stages of 

the cell cycle [39, 44-46]. 

In oxaliplatin, the two amines and two chloride ions of cisplatin are replaced with 

diaminocyclohexane and carboxylate compounds, respectively (Figure 6). Similar to 

cisplatin, once inside the cell, the carboxylate compound is displaced, transforming 

oxaliplatin into a reactive compound that forms DNA intra-strand cross-links, DNA 

interstrand cross-links, and DNA-protein cross-links [45]. DNA lesions induced by 

intrastrand cross-links are formed when the drug binds to two adjacent guanine bases, and 

to a lesser extent, to adjacent adenosine and guanine bases. Binding of the mismatch 

repair protein complex to the DNA becomes more difficult due to the conformation of 

adducts, which may result in poor repair of the lesion. Oxaliplatin has been reported to 

inhibit TS activity, much like 5FU [44, 45].  

 

Resistance 

There are several mechanisms whereby tumor cells become resistant to both 

cisplatin and Oxaliplatin. The toxicity of cisplatin and oxaliplatin is reduced in cells with 

an efficient repair of damaged DNA where enzymes involved in nucleotide excision 

repair remove the platinum-DNA adducts [39]. The relationship between enhanced 

platinum resistance, a decrease in drug sensitivity, and increased DNA repair protein 

levels has been described [39, 47, 48]. Another mechanism is through a decrease in 

intracellular platinum concentration resulting from a reduction in drug uptake and an 

increase of platinum expulsion out of the cell or detoxification by glutathione and 

metallothionein and an increased level of glutathione and metallothionein has been 
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shown in some cases to correlate with cisplatin resistance [49]. This resistance is not due 

to only one mechanism, but on a variety of mechanisms targeting various systems [39, 

44, 45]. The mechanisms of resistance for cisplatin and oxaliplatin differ from the 

mechanisms of resistance for gemcitabine resulting in a benefit from combining these 

agents in a therapeutic regimen.  

 

Combination Therapy with Platinum Agents 

Cisplatin and oxaliplatin are not used as single agents against pancreatic cancer, 

but rather, in combination with either gemcitabine or 5FU when treatment with 

gemcitabine alone has failed. There have been multiple studies on the effects of cisplatin 

used in combination with gemcitabine. One phase III study showed that compared to 

patients treated with gemcitabine alone, the overall median survival and progression-free 

survival of patients on the Gemcitabine-cisplatin combination therapy improved, but did 

not reach statistical significance [50]. Furthermore in another study, comparable results in 

patients treated with Gemcitabine alone or in combination with cisplatin were observed 

[46]. However, they also noted that the combination therapy was more toxic than 

gemcitabine alone. Nevertheless, studies do show favor for a Gem-cisplatin combination, 

where disease progression and the median 1-year event-free survival is encouraging [42]. 

Oxaliplatin has been used in combination with both Gemcitabine and 5FU. One study has 

shown that patients with inoperable pancreatic cancer tolerated the combination of 

Gemcitabine with oxaliplatin well and was recorded to be highly effective[51] while a 

phase II trial showed moderate activity [41]. When in combination with 5FU, clinical 

benefits were recorded and toxicity levels were acceptable [52]. These platinum agents, 
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when combined with Gemcitabine or 5FU, may be a promising treatment regime for 

pancreatic cancer patients.  

 

Zebularine 

Epigenetic changes accompany pancreatic tumorigenesis as well as the 

acquisition of resistance to chemotherapy [53, 54]. Therapeutic agents that alter the 

epigenetic state of pancreatic cancer cells are under investigation as cytotoxic agents as 

well as agents to reverse acquired resistance to first-line agents. Lacking an amino group 

on the C-4 position of the pyrimidine ring, zebularine ((1-β-D-Ribofuranosyl)-2(1H)-

pyrimidinone), a cytidine analogue (Figure 7), was originally developed as a cytidine 

deaminase inhibitor. It is also a novel DNA methytransferase (DNMT) inhibitor and 

unlike other DNMT inhibitors, zebularine is more stable in aqueous solution and is less 

toxic in vitro and in vivo [55-57]. Continuous exposure of numerous cancer cell lines to 

zebularine slowed tumor cell growth as compared to normal human fibroblast cell lines 

indicating its promise as a chemotherapy agent for cancer treatment [58]. 

 

Mechanism of Action 

Once inside cells, zebularine is phosphorylated by uridine-cytidine kinase. 

Nucleotide kinases phosphorylate zebularine monophosphate to form zebularine 

triphosphate, which is then incorporated into DNA. The 2(1H)-pyrimidinone ring is 

important as its incorporation into the DNA strand leads to DNMT1 depletion and DNA 

methylation inhibition. When zebularine replaces cytosine in a CpG dinucleotide and a 

DNA methyltransferase attempts to methylate zebularine, an irreversible covalent  
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Figure 7 – Zebularine’s structure includes a 2(1H)-pyrimidinone ring. It is a nucleoside 

analog of cytidine and works by inhibiting cytidine deaminase by binding to the active 

site as a covalent hydrates.  It has also been shown to inhibit DNA methylation and tumor 

growth in vivo and in vitro.  Though entirely experimental at this time, it has been 

suggested that it could be used as a chemoprevention agent or even in epigenetic therapy. 
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complex is formed thus inhibiting DNA methylation [58]. In a transgenic mouse model of 

breast cancer, zebularine slows tumor growth and induces cell death by both necrosis and 

apoptosis [55]. Other studies show that zebularine decreases levels of DNMT1, 

DNMT3a, and DNMT3b in breast cancer cell lines [59] as well as DNMT1 and partially 

DNMT3b in bladder cancer cells [58]. A reduction in DNMT1 and DNMT3b was also 

shown in the mammary tumors in transgenic mice [55]. The growth inhibition property of 

zebularine may be due to drug incorporation into the DNA. However, the amount of 

zebularine in DNA was low in normal cells and growth was minimally affected, while the 

opposite was seen in cancer cells[58]. Understanding incorporation aspects of this agent 

may prove useful in developing more effective analogues.  

 

Zebularine and Pancreatic Cancer 

Studies have shown that zebularine effectively slows cellular growth in CFPAC-

1, a pancreatic cancer cell line, by inducing the p21 and/or p16 genes [58]. The p21 

protein in response to DNA damage, directly stops DNA replication and arrests cellular 

growth. They have also shown a decrease in DNMT1 through the incorporation of the 

2(1H)-pyrimidinone ring, as stated above [58]. In addition, studies also showed that 

zebularine, as a single agent, induced apoptosis and growth arrest by inhibition of 

DNMT1 in three pancreatic cancer cell lines: YAP C, DAN G and Panc-89 [60]. Though 

there are minimal studies showing the potential use of zebularine in pancreatic cancer, 

initial reports show promise for the use of zebularine in treating pancreatic cancer. More 

studies, however, are needed to fully test the full potential of zebularine in vivo. 
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Conclusion 

The only effective treatment option available for patients with advanced 

metastatic pancreatic adenocarcinoma remains the antimetabolite gemcitabine. Despite 

efforts to improve therapy regimens by using 5FU or Gem in combination with alkylating 

agents, the prognosis for treating metastatic pancreatic cancer remains bleak. Therefore, it 

is imperative to continue studying and developing novel antimetabolite agents, such as 

zebularine, to improve treatment options and improve overall survival rates. 
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Abstract 

 New agent development, mechanistic understanding and combinatorial 

partnerships with known and novel modalities continue to be important in the study of 

pancreatic cancer and its improved treatment.  In this study, known anti-metabolite drugs 

such as Gemcitabine (ribonucleotide reductase inhibitor (RRI)) and 5-fluorouracil 

(thymidylate synthase inhibitor (TSI)) were compared with novel members of these two 

drug families in the treatment of a chemoresistant pancreatic cancer cell line PANC-1.  

Cellular survival data, along with protein and mRNA expression for Survivin, XIAP, 

cIAP1 and cIAP2 were compared from both the cell cytoplasm and from exosomes after 

single modality treatment.  While all anti-metabolite drugs killed PANC-1 cells in a time- 

and dose-dependent manner, neither family significantly altered the cytosolic protein 

level of the four IAPs investigated. Survivin, XIAP, cIAP1 and cIAP2 were found 

localized to exosomes where no significant difference in expression was recorded. This 

inability for significant and long-lasting expression may be a reason why pancreatic 

cancer lacks responsiveness to these and other cancer killing agents.  Continued 

investigation is required to determine the responsibilities of these IAPs in their role in 

chemoresistance in pancreatic adenocarcinoma. 

 

KEYWORDS:  IAPs, exosomes, pancreatic cancer, antimetabolites, Gemcitabine 
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Introduction 

 Pancreatic adenocarcinoma is the 4
th

 leading cause of cancer death [1,2]. Out of 

all diagnosed patients, only 2-5% survive 5 years, and the average survival time is only 4-

6 months [3-6]. There are a number of treatments available for patients, but the option for 

metastatic pancreatic cancer is limited to chemotherapy, of which only the anti-

metabolite drugs gemcitabine (Gem) and 5-fluorouracil (5FU) are clinically used [3,7,8]. 

Anti-metabolite drugs are designed to stop DNA synthesis and replication. Each anti-

metabolite differs from one another in their mechanism of actions, leading to different 

cytotoxic effects. 5FU is converted into its active form FdUMP which then acts as a 

thymidine synthase inhibitor. It inhibits the conversion of dUMP to dTMP by binding to 

thymidine synthase and folate [9,10]. Unlike 5FU, Gem has three mechanisms of action, 

making this anti-metabolite a broad-spectrum agent. Once Gem enters the cell, it is 

subjected to phosphorylation by deoxycytidine kinase into gemcitabine monophosphate. 

Conversion of Gem into its di- and triphosphorylation states by nucleoside kinases 

converts this anti-metabolite into a ribonucleotide reductase and polymerase inhibitor, 

respectively [11-13]. There have been numerous efforts to improve chemotherapy 

treatment regimens by combining these chemotherapies with either 5FU or Gem in 

combination.  Unfortunately, most of these studies have confirmed that combination 

therapy does not show significant improvements [14-16]. In addition to the failure to 

improve treatment regimen, patients face the challenge of chemoresistance. Low response 

rate in patients treated with Gem has been shown to be associated with innate and 

acquired chemoresistance [17]. Additional studies still need to be conducted to 

understand resistance to Gem and 5FU in pancreatic cancer patients.  
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 The inhibitor of apoptosis (IAP) family of proteins includes Survivin, XIAP, 

cIAP1, and cIAP2.  IAPs are characterized by a ~70 amino acid baculovirus IAP repeat 

(BIR) domain and, except for Survivin, a RING domain in the C-terminus of each family 

member [18,19]. XIAP directly binds to activated caspase-3, -7 and -9 using its BIR 

domains, inhibiting the caspases’ function [20-23]. On the other hand, while cIAP1 and 

cIAP2 are weak caspase inhibitors [24], these IAPs act as E3 ubiquitin-protein isopeptide 

ligases on Smac using their RING domains to promote Smac degradation [25]. Survivin, 

the smallest IAP, is both structurally and functionally unique among the rest of the IAP 

family, having a multifunctional role in various cellular activities, which includes the 

regulation of mitosis, protection from cell death, and adaptation to stressful environments 

[26-28] . This IAP is also found to be localized in the cytoplasm, mitochondria and 

nucleus, with its subcellular location determining its function [29,30]. Our lab has shown 

that an extracellular pool of Survivin exists, which causes neighboring cancer cells to 

become resistant to therapy, to rapidly proliferate, and acquire an increased potential to 

be invasive [31]. 

 Recently, our lab has discovered that Survivin is released by small (40-100 nm) 

membrane bound vesicles called exosomes [32]. Tumor cell-derived exosomes (TEX) 

have been shown to be released constitutively into the extracellular space [33], both in 

vitro and in vivo [34,35]. TEX have different molecular profiles and biological roles, 

giving an indication of the cell of origin [36,37]. In addition, specific protein content 

found on and within TEX and exosomes in general establishes their functional role [38]. 

The goal of this study is to examine whether anti-metabolite treatments in PANC-1 cells 

modulate IAP protein and message levels both intracellularly and exosomally. Such IAP 
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modulation may indicate that these chemotherapeutic agents may contribute to 

chemoresistance in pancreatic cancer cells. 

 

Materials and Methods  

Cell Cultures 

 The pancreatic carcinoma (PANC-1) cell line was purchased from the American 

Type Culture Collection (ATCC; Manassas, VA) and maintained in DMEM (ATCC) 

supplemented with 100U penicillin, 100µg/ml streptomycin, 100 µg/ml Normocin 

(Invitrogen; Grand Island, NY), and 10% fetal bovine serum (FBS: CellGro; Manassas, 

VA). The cells were grown in a humidified atmosphere of 37°C in 95% O2 / 5% CO2 

until 60% confluent.  Their conditioned medium (CM) for exosome collection was 

collected after 24 hours treatment with Cladribine (CldA), Gemcitabine (Gem), 

Hydroxyurea (HU), 5-Fluorodeoxyurodine (5FdU) and 5-Fluorouracil (5FU; Sigma, St. 

Louis, MO).  CldA, Gem, HU, 5FdU were kind gifts of Dr. Jonathan Neidigh at Loma 

Linda University. All anti-metabolites were dissolved in water and various concentrations 

were added to cells. For CM collection for exosome isolation, cells were plated 24 hours 

prior to treatment. Media was changed before anti-metabolite treatment to ensure no 

apoptotic bodies were present. PANC-1 cells were treated for 24 hours after which CM 

and cells for Western blots and PCR were harvested. 

 

Apoptosis and Cell Proliferation Analysis 

 Cells at 60% confluency and 37°C were treated with vehicle (water) or various 

doses of anti-metabolites for 24, 48 and 72 hours. Cells were harvested and stained with 



47 

Annexin V and PI (BioLegend; San Diego, CA) per the manufacturer’s directions. 

Apoptosis and cell proliferation studies were performed and analyzed using a MACS 

Quant flow cytometer and FlowJo software (Tree Star; Ashland, OR.). 

 

Exosome Isolation  

 Exosomes were isolated as previously described [39] with the following 

modifications. Briefly, CM was centrifuged three times prior to ultracentrifugation: 400 x 

g for 10 mins to remove cells, 2,000 x g for 20 mins to remove cell debris and 10,000 x g 

for 30 mins to remove nucleic acid and soluble proteins. The supernatant was collected 

and stored in -80°C until needed. Exosomes were isolated from the CM by 

ultracentrifugation on a 30% sucrose cushion at 100,000 x g for 16h. The exosomes in the 

sucrose cushion was extracted and washed once in PBS by ultracentrifugation at 100,000 

x g for 2h. The exosome pellet was resuspended in 100ul PBS or lysis buffer. 

 Exosomes were also isolated using ExoQuick TC™ (Systems Biosciences, 

Mountain View, CA). Briefly, CM was collected from the treated cells and centrifuged at 

3,000 x g for 15 mins. 2ml of ExoQuick TC™ was mixed to 10ml of CM and incubated 

at 4°C overnight. Following incubation, the CM was centrifuged at 1,500 x g for 30 mins 

to pellet exosomes. The exosome pellet was resuspended in the appropriate buffer and 

used for RNA extraction studies. 

 

Exosome Quantification 

 The amount of exosomes released was semi-quantified by assessing the 

acetylcholinesterase activity, as our lab has described previously [39]. Briefly, 40µl of the 
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isolated exosomes were suspended in 110µl PBS. The PBS-diluted exosome fraction was 

equally divided to 3 individual wells on a 96-well flat-bottomed microplate. 1.25mM 

acetylcholine and 0.1mM 5,5’-dithiobis(2-nitrobenzoic acid) were added to the exosomes 

to a total volume of 300µl. The change in absorbance at 412 nm was monitored every 5 

min for 30 min.  

 To determine total exosome number, exosomes were diluted 1:100 in PBS from 

the total isolated exosome sample and analyzed using a NanoSight LM10-HS microscope 

(Wiltshire, UK). Size distribution, and total number of exosomes per milliliter were 

calculated by the nanoparticle tracking analysis software (Wiltshire, UK). 

 

Western Blots 

 For total cell Western blot analysis, cells are harvested and lysed in cell lysis 

buffer (0.5% Triton X-100, 300 mM NaCl, 50 mM Tris/HCl, 1 mM PMSF) with 

sonication. The lysates were centrifuged at 10,000 rpm at 4°C for 20 mins to remove cell 

debris. For exosome Western blot analysis, exosomes were solubilized in lysis buffer. 

Protein concentration was determined using the BCA protein assay (Pierce Chemical; 

Rockford, IL). A total of 50ug cellular protein or 40ug exosomal protein was separated 

using a 7.5-12% SDS polyacrylamide gels and transferred onto nitrocellulose membrane 

(BioRad; Hercules, CA). Blots were immunostained with antibodies against Survivin 

((1:500-2000), NOVUS Biologicals; Littleton, CO), cIAP1, cIAP2 and XIAP ((1:500-

1000), Cell Signaling, Danvers, MA). β-actin ((1:1000), Cell Signaling; Danvers, MA) 

was used as control for cell samples and Lamp-1 ((1:500, BioLegend, San Diego, CA) 

was used as control for exosome samples. Goat anti-rabbit and anti-mouse antibodies (LI-
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COR Biosciences; Lincoln, NE) were used as secondary antibody. The immunoreactive 

bands were visualized using the Odyssey imaging system (LI-COR Biosciences).  

 

PCR 

 Harvested cells and isolated exosomes were resuspended in TRI Reagent® 

(Molecular Research Center; Cincinnati, OH) and stored at -80°C until needed. RNA was 

extracted per manufacturer’s directions. RNA quantification was performed using a 

NanoDrop 2000c (Thermo Fisher Scientific; Waltham, MA). Reverse transcription of 

RNA was performed using the First Strand cDNA Synthesis kit (Syd Labs, Inc.; Malden, 

MA). Genomic DNA was eliminated prior to reverse transcription of RNA into cDNA. A 

total concentration of 100ng/ul cDNA was utilized to perform PCR reactions using 

Phusion® Flash High-Fidelity PCR Master Mix (Finnzymes, Thermo Scientific; 

Pittsburgh, PA). Forward and reverse primers (IDT, San Diego, CA) have been designed 

to detect Survivin, cIAP1, cIAP2 and XIAP genes (Table 1). 

 cDNA was amplified for detection of Survivin, cIAP1, cIAP2, XIAP and GAPDH 

(housekeeping gene) using the LightCycler 1.0 system real-time thermal cycler and the 

LightCycler FastStart DNA Master PLUS SYBR Green kit (Roche Applied Science). The 

assessment of samples as positive for expression was based on 1) observing reproducible 

cycle threshold (CT) values in two replicates of the target gene where the GAPDH 

housekeeping gene showed a CT value of <30 cycles and 2) melting curve analysis 

showing superimposable product in negative control samples. Gene-specific primer pairs 

were designed to span introns using Roche’s Assay Design Center (www.roche-applied-

science.com). Primers were as follows: GAPDH forward, 5’-GAG TCC ACT GGC GTC 

http://www.roche-applied-science.com/
http://www.roche-applied-science.com/
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TTC AC; GAPDH reverse, 5’-GTT CAC ACC CAT GAC GAA CA; Survivin forward, 

5’-ATG GGT GCC CCG ACG TT; Survivin reverse, 5’-TCA ATC CAT GGC AGC 

CAG; XIAP forward, 5’-GAC AGT ATG CAA GAT GAG TCA; XIAP reverse, 5’-GCA 

AAG CTT CTC CTC TTG CAG; cIAP1 forward, 5’-AGC TAG TCT GGG ATC CAC 

CTC; cIAP1 reverse, 5’-GGG GTT AGT CCT CGA TGA AG; cIAP2 forward, 5’-TGG 

AAG CTA CCT CTC AGC CTA C; cIAP2 reverse, 5’-GGA ACT TCT CAT CAA CCG 

AGA. Cycling parameters for all products were initial denaturation of 15 minutes at 95°C 

followed by 50 cycles of 10 seconds at 95°C (denaturing), 5 seconds at 60°C (annealing), 

and 15 seconds at 72°C (elongation). 

 

Statistical Analysis 

 Statistical analysis was performed using a two-way analysis of variance with the 

aid of GraphPad Prism statistical software (La Jolla, CA, USA), with paired t-test used 

for group analysis. Densitometric analysis was conducted using our Licor Odyssey 

Images (Licor, Lincoln, NE, USA). Density of individual bands was divided by β-actin, 

GAPDH or LAMP-1 as the internal controls for cytosolic cellular proteins, block PCR 

mRNA samples, or exosomal proteins, respectively, with each sample then divided by the 

particular baseline control.  

 

Results 

Anti-metabolite Treatments Induce Growth Inhibition and Cell Death in PANC-1 Cells 

 CldA treatment of PANC-1 cells with various doses (50nM, 100nM, 1µM, 20µM) 

showed that lower doses did not inhibit cell growth or show cytotoxic effects (Figs. 1A,  
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Table 1.  Forward and reverse primer dimers for IAP analysis 

Survivin Forward 5'-ACCGCATCTCTACATTCAAGA-3' 

Reverse 5'-TCTGTCCAGTTTCAAAAATTC-3' 

cIAP1 Forward 5'-CACAAAACTGCCTCCCAAAGA-3' 

Reverse 5'-TTAAGAGAGAAATGTACGAACAGT-3' 

cIAP2 Forward 5'-ATGAACATAGTAGAAAACAGCATA-3' 

Reverse 5'-TCATGAAAGAAATGTACGAACTGT-3' 

XIAP Forward 5'-ATGACTTTTAACAGTTTTGAAGGA-'3 

Reverse 5'-TTAAGACATAAAAATTTTTTGCTT-'3 

GAPDH Forward 5'-ACGGATTTGGTCGTATTGGGCG-3' 

Reverse 5'-CTCCTGGAAGATGGTGATGG-3' 
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1B). At 1µM CldA, there was a decrease in cell proliferation but no significant killing, 

unlike treatment at 20µM. Treatment with Gem (1nM, 10nM, 100nM, 1µM, 10µM, 

100µM) showed a time and dose dependent killing effect, while growth inhibition was 

evident at all time points and doses except for 1nM (Figs. 1C, 1D). Increasing the 

concentration of HU (5µM, 50µM, 100µM, 500µM, 1mM) reduced cell proliferation in a 

time and dose dependent manner. However, the drug’s cytotoxic effects were only 

evident with the two highest doses (Figs. 1E, 1F).  Treatment with 5FdU (100pM, 1nM, 

10nM, 100nM, 1µM, 10µM) (Figs. 1G, 1H) and 5FU (100nM, 500nM, 1µM, 5µM, 

50µM) showed similar cytotoxic and growth inhibition profiles (Figs. 1I, 1J). Of interest, 

the killing effects of the drugs were time and dose dependent, while cell proliferation was 

only reduced by the higher doses at all time points (data not shown). 

 

IAPs Expression Levels are not Reduced by Anti-metabolite Treatments and Do Not 

Play a Role in Inhibiting Cell Death in PANC-1 Cells 

To determine whether IAPs play a part in cell death inhibition in PANC-1 cells 

and play a role in chemoresistance, sub-lethal and lethal doses were chosen to stress the 

cells for 24, 48 and 72 hours. Ribonucleotide reductase inhibitors did not significantly 

alter the protein expression of IAPs at 24 and 48 hours (Figs. 2A and 2B). Although not 

significant, modulation of Survivin expression was shown after 72 hours, in particular 

with HU treatment at 500µM  
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Figure 1 - Reduction of cell proliferation in PANC-1 cells treated with 

Ribonucleotide Reductase and Thymidine Synthase inhibitors.  PANC-1 cells were 

treated with various concentrations of Ribonucleotide Reductase inhibitors, (A, B) 

Cladribine,  (C, D) Gemcitabine, (E, F) Hydroxyurea, and Thymidine Synthase 

Inhibitors, (G, H) 5-Fluorodeoxyurodine and (I, J) 5-Fluorouracil for different time 

periods. It was evident that anti-metabolite treatment causes growth inhibition in PANC-1 

cells. To determine the sublethal and lethal doses Annexin/PI assay, along with the cell 

proliferation assay, was performed on cells treated with (B) Cladribine, (D) Gemcitabine, 

(F) Hydroxyurea, (H) 5- Fluorodeoxyurodine and (J) 5-Fluorouracil. Cell death in 

PANC-1 was a time-, and dose-dependent manner. 
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Figure 2 - Modulation of IAPs after treatment of Ribonucleotide Reductase 

inhibitors.  Treatment with sublethal and lethal doses of Ribonucleotide Reductase 

inhibitors did not decrease the levels of IAP proteins at (A) 24h, (B) 48h and (C) 72h, as 

well as IAP mRNA (D) in PANC-1 cells. IAP expression was either maintained or 

increased.  
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(Fig. 2C). In both mRNA (Fig. 2D and S1A) and protein, IAPs expression levels were 

either maintained or increased across the doses of ribonucleotide reductase inhibitors.  

As shown with the ribonucleotide reductase inhibitors, treatments with thymidine 

synthase inhibitors did not significantly alter IAPs protein (Figure 3A-C) or mRNA 

(Figure 3D and S1A) expression levels across all time points and doses. Following the 

same trend as with the other anti-metabolite family, the IAPs protein and mRNA were 

either maintained or modestly increased.  

 

Exosome Amount Released Changes with Treatment 

 To determine whether anti-metabolite drug-treatment stress would affect the 

amount of exosomes released, an AChE assay was performed. There was no significant 

difference in the amount of exosomes released in the untreated cells compared to the 

treated cells (Fig. 4A).  Interestingly, the BCA protein assay showed less total protein 

concentration in the untreated cell sample compared to the treated cells (Fig. 4B). To 

verify the results, exosomes were examined using a NanoSight LM10-HS which 

determines the number of exosomes present per ml. Figure 4C shows that compared to 

the untreated exosome sample, there were more exosomes present in the pooled sample 

of treated exosomes. 
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Figure S1 – Ribonucleotide reductase and thymidine synthase inhibitors do not 

significantly affect cellular (A) or exosomal (B) levels of IAPs.  

Notes: PANC-1 cells were treated for 24hours with the indicated amounts of 

ribonucleotide reductase and thymidine synthase inhibitors. Cell lysates or conditioned 

medium were extracted for exosomes followed by mRNA. Level of IAP mRNA was 

determined by real-time polymerase chain reaction. Relative IAP to GAPDH ratios were 

shown. Data are the mean ± standard deviation of three independent experiments 

(*P<0.001) as compared with the control. 
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Figure 3 - IAP protein and mRNA levels after treatment with Thymidine Synthase 

inhibitors. Intracellular IAP protein and mRNA levels (D) were slightly modulated after 

treatment with sublethal and lethal concentrations of Thymidine Synthase inhibitors at 

(A) 24h, (B) 48h and (C) 72h.  
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Figure 4 - Exosome release in untreated and treated cells. (A) The 

acetylcholinesterase activity assay shows that there was no difference in the amount of 

exosome isolated from conditioned media collected from cells that were treated with 

vehicle and anti-metabolites. (B) Total exosome protein concentration taken from 

isolated exosomes from untreated cells was lower compared to the treated exosomes. (C) 

Total number of exosomes per ml shows that there was more exosomes present in 

conditioned media taken from treated cells compared to the untreated sample.  
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Protein and mRNA Inhibitor of Apoptosis Proteins Released Via Exosomes 

 To further investigate whether IAPs, in addition to Survivin, are released into the 

extracellular space, exosomes were isolated from conditioned media taken from treated 

and non-treated cells after 24 hours. Western blotting was performed to determine the 

presence of IAP proteins in exosomes. As shown in Figures 5A and 5B, not only was 

Survivin present in exosomes, but so were XIAP, cIAP1 and cIAP2. In addition, 

treatment with anti-metabolites affected the levels of some released exosomal IAP 

proteins. Treatment with ribonucleotide reductase inhibitors (Fig. 5A) decreased the 

levels of exosomal cIAP2, cIAP1 and Survivin at higher concentrations while exosomal 

IAPs released from cells treated with thymidine synthase inhibitors were only effective in 

reducing the exosomal levels of XIAP (Fig. 5B). We next wanted to determine whether 

IAP mRNAs were also present in exosomes. PCR analysis indicated that all IAPs were 

present in exosomes (Fig. 5C and S1B). Surprisingly, while Survivin and cIAP1 mRNA 

levels remained unchanged with treatment, the presence of cIAP2 and XIAP mRNA were 

not consistent across the samples (Fig. 5C and S1B). In addition, XIAP mRNA levels 

decreased in the majority of the treatments using both families of inhibitors.  

 

 



63 

 

 

 

 

 

 

 



64 

 

 

 

 

 

 

 

 

 

 

Figure 5 - Presence of IAPs protein and mRNA in exosome. Not only is Survivin 

protein exported into extracellular space, but XIAP, cIAP1 and cIAP2 are also present in 

exosomes. (A and B) Exosomes isolated from PANC-1 cells treated with anti-metabolites 

showed a decrease of IAP protein levels. (C) IAP mRNA is found to be released 

extracellularly by exosomes. Presence of cIAP2 mRNA, however, was not consistently 

found in exosomes. 
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Discussion 

 In various types of cancer, the function and/or expression of the IAPs is not 

properly regulated. This can be due to a decrease in levels of endogenous IAP inhibitors, 

abnormalities in the gene or an increase in either the expression of mRNA or protein [40]. 

Specifically, the high levels of Survivin expression in cancer cells have been associated 

with dismal prognosis, disease progression, metastatic dissemination, chemo- and 

radiotherapy resistance and overall dismal disease outcome [27,41,42]. In many cancer 

types such as glioblastoma, renal cell carcinoma, liver and pancreatic cancer, the 

chromosome region of 11q21-23, which include both the cIAP1 and cIAP2 genes, is 

shown to be amplified in these diseases, making cIAP1/2 protooncogenes. Additionally, 

in about 50% of surveyed mucosa-associated lymphoid tissue (MALT) lymphoma cases, 

the BIR domain of cIAP2 is fused to the C-terminus of the paracaspase mucosa-

associated lymphoid tissue lymphoma translocation protein 1 (MALT1). This fusion 

protein in turn constitutively activates NF-κB [40,43]. Overexpression of XIAP 

correlated with poor clinical outcome, lower survival rates and aggressive tumor growth 

in diffuse large B lymphoma, colorectal cancer and clear-cell renal cell carcinoma, 

respectively [40]. In pancreatic adenocarcinoma specifically, it has been shown that 

Survivin, XIAP, cIAP1 and cIAP2 are constitutively upregulated by NF-κB in cell lines 

and tissue samples. This abnormal upregulation of IAPs also correlates with 

chemotherapy resistance [44].  Numerous efforts have been made to target these IAPs to 

address the problem with resistance to therapy. XIAP silencing by siRNA in pancreatic 

cancer cell lines has been shown to increase Gem sensitivity [45], as well as an 

enhancement of cell death when treated with both Gem and proton radiation [42]. Other 
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studies have targeted Survivin showing that knocking this IAP down with siRNA caused 

Gem chemosensitivity [46]. Chemotherapy treatment for metastatic pancreatic cancer is 

limited and modulation of IAP protein and message levels by these anti-metabolites is yet 

to be determined, both intracellularly and exosomally.  

 In this study, we first determined that CldA, Gem and HU were all able to 

decrease cell proliferation, in addition to inducing cell death in a time and dose dependent 

manner (Fig.1 A-F). We expected IAP protein and mRNA levels to be modulated by the 

ribonucleotide reductase inhibitors in both sublethal and lethal doses, as cell death was 

evident in these doses. Surprisingly, we observed that the IAP levels were maintained or 

even increased (Fig.2). The sublethal dose of Gem was not able to decrease the levels of 

IAP mRNA, but instead increased expression of all four IAPs. In addition, the lethal dose 

of Gem consistently increased the levels of IAP protein across all time points.  

 Like the ribonucleotide reductase inhibitos, cell proliferation was decreased with 

treatments of 5FdU and 5FU. Cell death was also evident in a time and dose dependent 

manner (Fig.1 G-J). However, treatments with the sublethal and lethal doses also did not 

reduce IAP protein and mRNA expression levels (Fig. 3). Since cell death was shown in 

both sublethal and lethal doses, we expected the IAP protein and mRNA levels to be 

modulated by these agents. Surprisingly, we observed that the IAP levels were 

maintained or even increased. This indicates that cell death shown in Fig. 1 may not 

result from a decrease of IAP levels in these cells, but is through a different mechanism. 

It is thus not surprising that studies using antimetabolite compounds against leukemias 

have been recently shown to overcome apoptosis resistance and trigger necroptotic cell 

death [47]. Additionally, the failure to reduce the levels of IAPs intracellularly by not 
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only Gem and 5FU, but by all the other agents in both antimetabolite families may play a 

role in chemoresistance in pancreatic adenocarcinoma patients and why combination 

therapies do not improve patient survival rates. In studies involving colon cancer cells, 

cIAP2 reduction has proven to be the only means to increase the efficacy of 5FU [48,49]. 

 Tumor exosomes have been described as “multi-purpose carriers”, having a 

supportive role in the survival and growth of the tumor cells and is involved in promoting 

host tissue invasion, the subsequent metastasis and facilitating immune response evasion 

[50-52]. It is speculated that the diverse function of TEX is due to the various bioactive 

molecules on and within the vesicles, which strongly influences the tumor 

microenvironment [53-56]. We have also shown that extracellular Survivin has a 

significant effect on the tumor microenvironment, causing cells to become highly 

proliferative, invasive and resistant to therapy [31]. In addition to Survivin being 

exosomal, we found that XIAP, cIAP1 and cIAP2 are also released into the extracellular 

space via exosomes (Fig. 5). 

 We looked at the exosomal levels of IAP proteins treated with ribonucleotide 

reductase inhibitors. We observed that the intracellular IAP expression levels did not 

reflect the levels of extracellular IAP expression (Fig. 5A). Here, the levels of exosomal 

IAPs were reduced, with the exception of the treatment of HU (500µM). Looking at the 

exosomal IAP levels, we saw that 5FU treatments increased Survivin levels in 

comparison to the other IAPs, as with the cIAP2 with 5FdU treatment at 100nM (Fig. 

5B). We expected the exosomal IAP levels would reflect the IAP levels found 

intracellularly. However, there were modest reductions in the exosomal IAP protein 

levels in the treated samples. We hypothesize that in an attempt to compensate for 
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decreasing levels of IAPs in the exosomes, chemotherapy-treated cells released more 

exosomes into the extracellular space (Fig. 4 and Fig. 5). IAP mRNA were also present in 

the exosomes (Figures 5C and S1B). The levels of cIAP1 and Survivin appear rather 

consistent across treatment, but the inconsistent presence of XIAP and cIAP2 mRNA 

may be due to truncated mRNA that is found within the exosomes. Further work in our 

lab and others is still evaluating this possibility.  

 Taken together, the results of this study suggest that protein and mRNA IAPs are 

found in exosomes and that both cellular and exosomal IAPs should be investigated for 

their roles in drug resistance in pancreatic cancer.  Moreover, though these 

antimetabolites reduced survival and cell proliferation, levels of the four IAPs studied 

here only modestly changed and at times increased in both locations depending upon the 

IAP. Our findings demonstrate for the first time that IAP protein and mRNAs are found 

in exosomes. More studies, however, are needed to be done in order to fully determine  

the function of exosomal IAPs in the extracellular space and whether they exhibit similar 

effects as extracellular Survivin. We also showed that other players are most likely 

involved in the cell death of PANC-1 cells after anti-metabolite treatments, while the 

failure to decrease the levels of both protein and mRNA intracellular IAPs may play a 

role in chemoresistance in pancreatic cancer patients. Although Gem was not able to 

reduce intracellular IAP protein and mRNA levels, Gem continues to be the first line 

treatment against metastatic pancreatic cancer. The ability to have different mechanisms 

of action depending on its phosphorylation state may be why Gem continues to be 

superior compared to other anti-metabolites [57]. The failure to decrease the levels of 

both protein and mRNA intracellular IAPs may play a role in chemoresistance in 
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pancreatic cancer patients. Innate and acquired chemoresistance in patients is a 

continuing problem in the clinic. Therefore, it is important to continue to find better ways 

to treat pancreatic adenocarcinoma to try to overcome the problem of resistance and 

improve overall patient survival rates.  
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Abstract 

Exosomes are endosomal-derived nanovesicles released by normal and tumor 

cells which have been shown to transfer functionally active protein, lipids, mRNAs and 

miRNAs between cells. Varying in molecular profiles, biological roles, functional roles 

and protein contents, exosomes have been described as “multi-purpose carriers” playing a 

role in supporting the survival and growth of tumor cells. The IAP Survivin has been 

found to be present in tumor exosomes. However, the existence of other IAPs in tumor 

exosomes is still unknown. Survivin, cIAP1, cIAP2 and XIAP mRNA and protein are 

differently expressed in a panel of tumor cell lines: DLCL2, HeLa, MCF-7, PANC-1, and 

PC3. Exosomes were isolated from conditioned media collected from the cells from 

which RNA and protein were extracted. Our results provide evidence that like Survivin, 

XIAP, cIAP1 and cIAP2 proteins are found in tumor exosomes. The mRNA expression, 

however, is differentially expressed across the tumor cell lines. The presence of these 

bioactive molecules in exosomes may not only serve as warning signals, but also play a 

role in providing protection to the cancer cells against changes that are constantly 

occurring in the tumor microenvironment. 

Keywords: Exosomes, IAPs, cancer cells, tumor microenvironment 
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Introduction 

Exosomes are small membrane vesicles, ranging from 40-150nm in diameter, that 

are shed from various cell types such as B- and T-lymphocytes, neurons, intestinal 

epithelial cells, dendritic cells and tumor cells [1-3]. Tumor exosomes, which are 

constitutively released into the extracellular space, have different molecular profiles, 

biological roles and molecular contents, giving an indication of the cell of origin, as well 

as their functional role [4-6]. Diverse tumor antigens expressed on and or in that are 

secreted from neoplastic cells give an indication of the type of tumor cells from which 

tumor exosomes originated [7-9]. This has also been shown in vivo, where membrane 

vesicles isolated from cancer patients’ plasma and neoplastic effusions are characterized 

by the expression of tumor- specific markers reflecting tumor origin [8, 10-12]. Tumor 

exosomes have a role in supporting the tumor cells’ survival and growth [13]. The 

specific roles include, and not limited to, evasion of host immunity [14], tissue invasion 

[15] and neoangiogenesis [16, 17]. Not only do tumor exosomes contain proteins and 

tumor antigens, but functional mRNA has also been shown to be contained within these 

microvesicles [10]. 

The inhibitor of apoptosis (IAP) family of proteins are known to be endogenous 

caspase inhibitors, where cIAP1, cIAP2 and XIAP directly binds to activated caspase-3, -

7, -9 using their baculorvirus IAP repeat (BIR) domains [18-21]. Survivin, a unique 

member of the IAP family, contains a BIR domain, but has a multifunctional role in 

various cellular activities, including regulating mitosis, inhibiting cells from undergoing 

apoptosis and adapting to stressful environments [22-24]. Survivin’s multifunctional role 

depends on its subcellular location, where it is found to be localized in the nucleus, 



78 

mitochondria and cytoplasm [25]. We have shown that an extracellular pool of Survivin 

also exists, released from cancer cells in exosomes [26]. Upon release and resorption by 

neighboring cancer cells, these cells become resistant to therapy, rapidly proliferate and 

acquire an increased potential to be invasive [27]. In addition to Survivin, we also have 

recently shown that cIAP1, cIAP2 and XIAP are found in exosomes collected from 

PANC-1 conditioned media [28].  

Here, we evaluate across a panel of cell lines representing five different cancer 

types and one non-cancer, whether like Survivin, cIAP1, cIAP2 and XIAP are released 

into the extracellular space via exosomes. We show that cIAP1, cIAP2 and XIAP and 

Survivin protein and mRNA are released by exosomes. 

  

Results 

Intracellular IAP mRNA and Protein is Differently Expressed in Cancer Cell Lines 

IAPs play an important role in the cancer cell’s ability to resist apoptosis (29). In 

this study, we used five different cancer cell lines from various cancer types. All cell 

lines, including a non- cancer cell line HEK293 displayed a range of IAP expression 

levels at protein level (Fig. 1A). In contrast, DLCL2 expressed an increased level of 

cIAP1. In comparison to protein expression, IAP mRNA is equally expressed in all the 

tumor cell lines. HEK293 cells highly expressed XIAP mRNA and showed low Survivin 

mRNA expression levels. In contrast, cIAP1 and cIAP2 expression levels were deficient 

in HEK293 cells (Fig. 1B). 
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Figure 1 - Western Blot Analysis of Survivin, cIAP1, cIAP2, XIAP and β-actin taken 

from non-cancer cell line and nontreated cancer cell lines: Human embryonic kidney cell 

line (HEK293), Diffuse Large Cell Cleaved (DLCL), cervical (HeLa), breast (MCF-7), 

pancreatic (PANC-1), and prostate (PC3).  A.  Antibodies for Survivin, cIAP1, cIAP2, 

XIAP and β-actin were used for Western blotting cell line-purified protein.  B. mRNA 

was also acquired from the same nontreated non-cancer and cancer cell lines and the 

varying IAP targets were amplified using PCR. Both Western blots as well as PCR are 

representative of 2-4 independent experiments. 
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Amount of Exosome Released Depends on Cell Line 

Tumor cells have been shown to constitutively release TEX into the extracellular 

space [4]. To determine whether the type of cancer influences the amount of exosomes 

released, we collected conditioned media from different cancer cell lines. The presence 

and amount of purified exosomes were determined by NanoSight. Among the cancer cell 

lines, HeLa, MCF-7 and PC3 released the least amount into the media (Fig. 2). To verify 

that the vesicles collected were indeed exosomes, the vesicles’ mode average sizes were 

analyzed using NanoSight’s nanoparticle tracking analysis software. Although a range of 

vesicle sizes were detected, the majority of the collected vesicles lie within the size range 

of exosomes (Fig. 3).  

 

IAPs are Present in Exosomes 

We have previously shown that Survivin, cIAP1, cIAP2 and XIAP are trafficked 

into the extracellular space via exosomes [26, 28]. We therefore hypothesized that IAPs 

would also be exported out of a variety of tumor cells in the same manner. We evaluated 

the presence of Survivin, cIAP1, cIAP2 and XIAP from isolated exosomes collected from 

conditioned media by Western blot to determine if these IAPs would be present in 

exosomes. Across all cell lines, Survivin, along with cIAP1, cIAP2 and XIAP were found 

in the exosomes of the cell lines evaluated (Fig. 4A). The quantity of IAPs released in the 

exosomes depends on the cell line. 
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Figure 2 - Histogram representing concentration of vesicles per ml to quantify exosome 

numbers. Exosomal contents in conditioned medium from HEK293, DLCL2, HeLa, 

MCF7, PANC-1, and PC3 cell lines.  Data are the mean ±SD of 3 independent 

experiments in triplicate. 
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Figure 3 - Mode average size of exosomes isolated using ExoQuick TC
TM

.
  
While there 

were a range of sizes of vesicles isolated, the mode average size of vesicles falls in the 

size range of exosomes.  
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IAP mRNA are Released into the Extracellular Space by Exosomes 

Exosomes serve as vesicles for not only proteins, but also for genetic materials 

[30]. In addition to verifying the presence of IAP protein in the exosomes, the presence of 

exosomal IAP mRNA was also investigated in the panel of tumor cell lines. To examine 

this possibility, mRNA was extracted from isolated exosomes and PCR was performed. 

Not all of the cancer cells showed representative abundance of all four IAPs. Survivin 

mRNA was found more abundantly than all other IAPs in the cell lines evaluated (Fig. 

4B). 

 

Discussion  

IAPs are characterized by an ~70 amino acid baculovirus IAP repeat (BIR) 

domain and a RING domain in the C-terminus of each family member [29, 31]. IAPs are 

known to be endogenous caspase inhibitors [32] directly binding to caspase-3, -7 and -9 

using their BIR domains [18-21]. The IAP family regulates cell survival and members of 

this family are often deregulated in cancer, which may be a factor for chemoresistance 

and treatment failure [33]. In most normal adult tissues, Survivin expression is very low 

or undetectable [23, 34, 35]. The high levels of Survivin expression in cancer cells have 

been associated with grim prognosis, disease progression, metastatic dissemination, 

therapy resistance and overall dismal disease outcome [23, 34]. The biological 

characteristics of the tumor, as well as the way the host responds to the tumor also plays a 

major role on the growth and spread of cancer [27]. Here we show that though there is a 

consistent cellular expression of IAP mRNA in all cell lines we evaluated, there is 
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Figure 4 - Western Blot Analysis of Survivin, cIAP1, cIAP2, XIAP and Lamp-1 taken 

from the conditioned medium off of nontreated non-cancer and cancer cell lines: Human 

embryonic kidney cell line (HEK293), Diffuse Large Cell Cleaved (DLCL), cervical 

(HeLa), breast (MCF-7), pancreatic (PANC-1), and prostate (PC3).  A.  Antibodies for 

Survivin, cIAP1, cIAP2, XIAP and Lamp-1 were used for Western blotting exosome-

purified protein.  B. mRNA was also acquired from the same nontreated non-cancer and 

cancer cell lines and the varying IAP targets were amplified using PCR. Both Western 

blots as well as PCR are representative of 2-4 independent experiments. 

  



87 

a distinct cell-type specific expression of IAP protein expression (Fig. 1). IAP protein 

expression varies, perhaps reflecting the cell line’s level of therapy resistance and 

aggressiveness. 

The tumor microenvironment is composed of a variety of cell types which make 

up the invasive carcinoma, its stromal elements and the immune cells. Communication 

between these components by secretion of various proteins, such as growth factors, 

ECM-degrading proteinases and chemokines is crucial for the progression, development 

and maintenance of the tumor [36]. Small membrane vesicles are known to be secreted 

from tumors [37] and increasing interest and studies to define their role are underway to 

elucidate the role of these vesicles or TEX play in cancer development and progression. 

TEX have been described as “multi-purpose carriers” having vital roles in the 

communication, protection, progression as well as genetic information exchange with 

neighboring cells in the microenvironment [38]. Various bioactive molecules have been 

found packaged within as well as on the TEX, strongly influencing the surrounding 

environment [7, 39-41] through direct signaling interaction or through trafficking of these 

molecules into a recipient cell(s). Survivin has a multifunctional role in various cellular 

activities depending on its subcellular location. We have recently established that 

Survivin is also found in the extracellular space [27] and exported out of the cancer cells 

via exosomes [26]. The work described here was to establish whether other IAPs were 

also exported from cancer cells in a similar fashion. 

Exosomes were isolated from condition media collected from the panel of cell 

lines. These samples were analyzed using the NanoSight to determine the presence and 

amount of purified exosomes (Figs. 2 & 3). Release of TEX can be affected by various 
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changes taking place in the microenvironment, such as chemo-, and radiation stress, as 

well as the biome they contain [42-44]. Interestingly, chemoresistant cells that have been 

treated with chemotherapeutic agents show a significant increase secretion of vesicles 

compared to chemosensitive cells [45, 46]. The difference in the amount of exosomes 

collected between cell lines could be due to stress, such as overconfluency of the cells. 

Here we show that Survivin, along with cIAP1, cIAP2 and XIAP, are secreted 

from tumor and non-tumor cells into the extracellular space via exosomes (Fig. 4A). 

Secretion of IAPs through exosomes and their subsequent uptake by neighboring cells of 

the tumor microenvironment can serve as a protective strategy from cell death. It could 

also be a mechanism for these IAPs and other exosomal biomolecules to travel long 

distances within the body, affecting, stabilizing or manipulating environments far from 

the primary tumor in order to aid secondary tumor growth and resistance. We have shown 

that Survivin, when released to the extracellular milieu has the ability to stimulate cellular 

proliferation, increase resistance and invasive potential [27], and modulate immune cells 

[47].  It may be that the tumor microenvironmental presence of exosome containing 

biomolecules could play a bigger role in antitumor protections than the cellular 

modulation of these IAPs, having significant reach beyond that possible for circulating 

tumor cells. 

Genetic material, found in vesicles, has been implicated in furthering tumor 

growth (30). Our lab has recently shown that IAP mRNA was found in exosomes isolated 

from PANC-1 conditioned media [28]. We therefore hypothesized that IAP mRNA is 

also found in exosomes collected from different tumor cell lines. While Survivin mRNAs 

were secreted by all the cell lines investigated in this study, cIAP2 and XIAP mRNA are 
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more selectively found in the exosomes from the cell lines observed (Fig. 4B).  

Interestingly, there appeared from experiment to experiment some variation in the 

mRNAs found in these exosomes which was not the case with protein.  We hypothesize 

that this variance may be the result of the type of RNA product and its status at the time 

of capture by the exosome.  It may be possible that exosomes package truncated mRNAs 

as their RNA transcripts undergo a widespread post-transcriptional cleavage. As a result 

these truncated RNAs provide a more small RNA, regulatory role like a miRNA [48, 49]. 

Full length IAP mRNA transcripts were also found to be present in exosomes, which may 

be translated into functional proteins upon reabsorption into recipient cells, as shown by 

Skog et al [10].  In addition, the release of these bioactive molecules may not only serve 

as warning signals to the neighboring cells, but also provide protection against the 

constant environmental changes in the tumor microenvironment. 

 

Materials and Methods 

Cell Lines and Cultures 

Cervical carcinoma (HeLa), prostate carcinoma (PC3), breast carcinoma (MCF-

7), pancreatic carcinoma (PANC-1) and human embryonic kidney (HEK293) cell lines 

were purchased from the American Type Culture Collection (ATCC; Manassas, VA). 

The non-Hodgkin’s lymphoma cell line (DLCL2) was a kind gift from Dr. Ayad Al-Katib 

(Wayne State University, Detroit, MI). The cells were maintained in DMEM, McCoy’s or 

RPMI (ATCC, CellGro; Manassas, VA) supplemented with 100U penicillin, 100µg/ml 

streptomycin, 10% fetal bovine serum (FBS: CellGro; Manassas, VA). The cells were 
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grown in a humidified atmosphere at 37°C of 95% O2 and 5% CO2 until 60% confluent 

and the medium was changed. The conditioned media was collected after 24 hours.  

 

Exosome Isolation  

The method for exosome isolation was performed using ExoQuick TC™ 

(Mountain View, CA). Briefly, CM was collected from the treated cells and centrifuged 

at 3,000 x g for 15 min. 1ml of ExoQuick TC™ was mixed with 5ml of CM and 

incubated at 4°C for 12h. Following incubation, the CM was centrifuged at 1,500 x g for 

30 min to pellet exosomes. The pellet was resuspended in the appropriate buffer to isolate 

RNA or protein to be used for PCR or Western blot analysis. Exosome pellet resuspended 

in PBS was used for NanoSight analysis. 

 

Verification of Exosome Presence and Exosome Quantification 

 To verify exosome presence and determine total exosome number, exosomes 

were diluted 1:10000 in PBS from the total isolated exosome sample and analyzed using 

a NanoSight LM10-HS microscope (Wiltshire, UK). Size distribution and total number of 

exosomes per milliliter were calculated by the nanoparticle tracking analysis software 

(Wiltshire, UK). 

 

Western Blots 

For total cell Western blot analysis, the cells were harvested and lysed in cell lysis 

buffer (0.5% Triton X-100, 300mM NaCl, 50mM Tris/HCl, 1mM PMSF) with 

sonication. The lysates were centrifuged at 10,000 rpm at 4°C for 20 min to remove cell 
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debris. For exosomes Western blot analysis, exosomes were solubilized in lysis buffer. 

Protein concentration was determined using the Micro BCA protein assay (Pierce 

Chemical; Rockford, IL). A total of 50µg cellular protein or 30µg exosome protein was 

separated using a 10-12% SDS polyacrylamide gels and transferred onto nitrocellulose 

membrane (BioRad; Hercules, CA). Blots were immunostained with antibodies against 

Survivin ((1:500-2000), NOVUS Biologicals, Littleton, CO), cIAP1, cIAP2 and XIAP 

((1:500-1000), Cell Signaling, Danvers, MA). β-actin ((1:1000), Cell Signaling) was used 

as control for cell samples and Lamp-1 ((1:500, BioLegend, San Diego, CA) was used as 

a loading control for exosome samples. Goat anti-rabbit antibodies (LI-COR Biosciences, 

Lincoln, NE) were used as secondary antibody. The immunoreactive bands were 

visualized using the Odyssey imaging system (LI-COR Biosciences).  

 

PCR 

 Harvested cells and isolated exosomes were resuspended in TRI Reagent® 

(Molecular Research Center, Cincinnati, OH) and stored at -80°C until needed. RNA was 

extracted per the manufacturer’s directions. RNA quantification was performed using 

NanoDrop 2000c (Thermo Fisher Scientific, Waltham, MA). Reverse transcription of 

RNA was performed using the First Strand cDNA Synthesis kit (Syd Labs, Inc, Malden, 

MA). Genomic DNA is eliminated prior to reverse transcription of RNA into cDNA. A 

total concentration of 100ng/µl cDNA was utilized to perform PCR reactions using 

Phusion® Flash High-Fidelity PCR Master Mix (Finnzymes, Thermo Scientific; 

Pittsburgh, PA).The forward and reverse primers (IDT, San Diego, CA) were designed to 

detect Survivin, cIAP1, cIAP2 and XIAP genes.  
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CHAPTER FIVE 

CONCLUSION 

Pancreatic cancer remains a devastating disease. Today, the standard of care for 

metastatic pancreatic adenocarcinoma is still gemcitabine monotherapy. Since 1996 when 

Gem was approved to be used against pancreatic cancer, there has been no significant 

advancement in the treatment for this deadly disease [1,2]. Additionally, there is a low 

patient response rate to Gem due to chemoresistance, innate and acquired, which 

continues to be a major problem [3]. Although Gem is the gold standard treatment, 

survival of patients is extended by only 5 weeks [4]. There have been numerous efforts 

and clinical trials to try to improve the efficacy of Gem in various chemotherapeutic 

combinations, but to no avail [5]. In addition to improving Gem’s efficacy, the need to 

develop a novel agent with a different mechanism of action, would prove move effective 

in the treatment of pancreatic cancer. It is therefore important to study the different 

factors of chemoresistance to aid in the discovery of new chemotherapeutic agents to 

overcome this problem in the clinic.  

One factor that may play a role in Gem chemoresistance is the release of bioactive 

proteins into the microenvironment via TEX, such as Survivin. Within the tumor 

microenvironment, constant changes are taking place such as cellular stressors by means 

of chemotherapy. This may induce the cancer cells and tissues to adapt to changes, which 

can modulate the release of TEX, as well as the packaging of bioactive molecules 

involved in communication, protection, even exchange of genetic information between 

cancer cells [6,7]. Initial observations of accelerated tumor growth in immunocompetent 

and nude mice pre-treated with murine mammary TEX led to a number of studies which 
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revealed the role of TEX [8]. TEX has now been described to have a supportive role in 

the survival and growth of the tumor cells and is involved in promoting host tissue 

invasion, the subsequent metastasis and facilitating immune response evasion [9-11]. In 

addition, exosomal Survivin has shown to cause neighboring cancer cells to proliferate 

rapidly, exhibit metastatic potential and become resistant to therapy [12]. It is speculated 

that the diverse function of TEX is due to the various bioactive molecules on and within 

the vesicles, which strongly influences the tumor microenvironment [13-16].  

We have shown that not only is Survivin released in exosomes, but also other IAP 

family members, namely cIAP1, cIAP2 and XIAP. In addition to IAP proteins being 

exosomal, we also discovered that IAP mRNA is present, both full length and truncated. 

This phenomenon is not cell line dependent, as we have shown this to be the case in five 

cancer and one non-cancer cell lines.  

Cellular and exosomal IAP protein and mRNA levels in PANC-1 cells were not 

decreased when treated with various anti-metabolite agents at sublethal and lethal doses. 

Instead, the protein and mRNA levels remained the same or showed an increase, which 

may contribute to pancreatic cancer’s lack of response to these agents and eventual 

progression to chemoresistance against these anti-metabolites.  

 These findings can be used to design and develop novel compounds that can be 

used in combination with Gem or 5FU as a combination therapy to prevent the release of 

exosomal IAPs into the tumor microenvironment, decreasing proliferation rate, resistance 

to therapy and potential to metastasize. As the use of Gem and 5FU in combination with 

other chemotherapy agents did not show any significant benefit, the development of a 
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novel therapeutic agents designed to target exosomes, in particular IAP packaging, may 

make a vital impact in the treatment for metastatic pancreatic cancer. 
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