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Recent studies have indicated that under the proper circumstances factor anaylisis 

may be accurately performed in samples as small as N = 9.  However, all of these studies 

have extracted a pre-known number of factors, leaving an examination of determining the 

proper number of factors to future studies. The current study uses examines the following 

methods for determining the proper number of factors: Monte Carlo data to examine the 

performance of common versions of the Kaiser Rule, minimum average partial, parallel 

analysis and salient loading criteria under the conditions created by all possible 

combinations of method, model strength, overdetermination and sample size. Method 

performance was compared for overall accuracy (percent correct), and average 

discrepancy (mean difference from correct). ANOVA revealed that item level methods, 

including salient loading criteria and MAP procedures, maintain accuracy when model 

strength is at least moderate and overdetermiantion is high. Use of selected empirical 

methods for determining the number of factors is possible in small sample sizes only 

when overdetermination and model strength are adequately high, larger sample sizes 

should be preferred when possible.



 

1 

CHAPTER ONE 

INTRODUCTION 

 

Factor analysis is a correlation method used to combine a number of variables 

into a limited number of factors that hypothetically represent real world constructs (e.g., 

personality traits, intellectual abilities). This technique has recently been called “arguably 

the most popular and useful method for identifying underlying dimensions that can 

account mathematically for behavior” (Widaman, 2012). Exploratory Factor Analysis 

(EFA) relies on direct observation of the data without placing prior constraints on the 

outcome. This freedom allows researchers to establish working hypotheses based on 

empirical observation, making EFA a preferable method for initial analyses where little is 

known about the constructs of interest.  

Despite its popularity and effectiveness, applications of EFA have been limited as 

it has typically been considered a large sample method with recommended minimum 

sample sizes ranging from 100 – 1000. These guidelines seemingly preclude the use of 

EFA in areas where it is typically impractical or impossible to obtain large samples. 

However, recent research indicates that under appropriate conditions accurate EFA may 

be possible with much smaller samples. If this is the case, the use of EFA could clearly 

be expanded.  

 

Sample Size and Error in EFA 

Large sample sizes have traditionally been thought to increase the accuracy of 

estimates by creating a more representative sample and increasing statistical power. 

However, recent research indicates that estimates are also influenced by aspects of the 
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statistical model which may compensate for low sample size.  MacCallum and Tucker 

(1991) have defined two primary sources of error in factor analysis: “model error” that 

results from designing a model that is discrepant from the true model (e.g., to many or 

too few factors or the wrong factor loadings for variables), and “sampling error” the 

result of deriving models from a sample that does not exactly mirror the population.  This 

distinction leads to two different methods for improving accuracy: improving statistical 

rigor in model specification and improving the sampling so as to better reflect the 

population.  

Past efforts have focused on reducing error by improving samplin. One of the 

quickest ways to make a sample more representative and add statistical power is to 

increase the sample size. With this in mind a number of researchers have sought to 

establish proper practices for reducing error by proposing guidelines for appropriate 

minimum sample sizes for EFA. Among others, Cattell (1978) suggested a minimum of 

250, Gorsuch (1983) recommended 100, and Comrey and Lee (1992) provided border 

recommendations identifying N = 100 as poor, N = 300 as good, and N = 1,000 or more 

as excellent.   

Several authors have noted that the relationship between sample size and accuracy 

appears to be effected by model complexity. As a result they have attempted to take into 

account model complexity by recommending a minimum ratio of the number of 

measured variables to number of participants. Most notably, Cattell (1978) recommended 

a ratio of 1:2, Gorsuch (1983) recommended 1:5, and Everitte (1975) recommended 1:10. 

Despite their promise, few of these rules have substantive theoretical or empirical 

backing. Indeed, results of empirical studies fail to support any rigid rules. Gaudagnoli 
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and Velicer’s (1988) examination of the effects of sample size on extraction failed to 

produce consistent effects of sample size or n:p ratio. They found instead that the 

component saturation (strength of factor loadings) was the most significant predictor of 

accuracy. These results were supported by Rouquette and Falissard (2011), who were 

also unable to find empirical support for any consistent effect of the n:p ratio.  

MacCallum, Widaman, Zhang, and Hong (1999) have questioned the assumption 

that specific elements (sample size, n:p ratio) consistently effect accuracy across all 

conditions. They asserted that the mathematical formulas for factor analysis consist of 

many differing interdependent elements that exert influence in a manner which varies 

across conditions in a systematic and predictable manner. That is to that the mathematical 

formulas used to estimate factor structure include other elements (primarily strength of 

model) that moderate the relationship between sample size and accuracy, making the 

relationship inconsistent across conditions. More specifically, they assert that the 

accuracy of factor extraction is dependent on the interaction of sample size, 

overdetermination (ratio between factors and variables), and strength of model 

(communalities of the variables); with model strength exerting the greatest influence over 

accuracy.  

 The typical operational definition for model strength is communality, which is a 

measure of the variance in a given variable accounted for by the overall EFA model. 

Each variable within a model has its own communality.  MacCallum et al. (1999) 

conceptualize data sets as compilations of common and unique factors. Common factors 

represent variance explained by a latent construct (or variance common to that construct) 

and unique factors represent variance uniquely explained by a given variable. One way to 
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conceptualize this distinction is to consider the common factor an estimate of the latent 

construct and the unique factor a representation of residual error variance in that given 

variable.  

Common factors, as defined by MacCallum et al. (1999) typically consist of more 

than one variable and represent a latent construct. Each variable within each common 

factor is assigned a factor loading (represented as a number between 0 and 1) that 

represents the amount of variance within this particular variable explained by the latent 

construct represented by the common factor; communalities then represent the amount of 

variance within a given variable, explained by all common factors (the EFA model in its 

entirety). When population values are known, communalities can be calculated by 

summing the squared loadings for a single variable across all retained factors. As 

population values are not typically known, communalities are iteratively estimated when 

using common factors extraction.  

Continuing with MacCallum et al.’s (1999) conceptualization, unique factors 

consist of a single variable and represent the amount of unexplained variance within that 

variable. Stated another way, loadings on unique factors represent residual variance left 

unexplained by the main EFA model factors. Each data set will contain one unique factor 

for each unique measured variable. 

The MacCallum et al. (1999) conceptualization provides us with a representation 

for 100% of the variance in the data; communalities represent variance explained by the 

model and unique factors representing residual variance. By their very nature, these two 

quantities must be inversely related. As common factors explain more variance, there is 

less variance left to be explained by the unique factors and vice-versa. This inverse 
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relationship is the key to the moderating effect of communalities on the relationship 

between sample size and accuracy.  

Theoretically, each unique factor represents a separate and unrelated portion of 

total variance. Therefore, unique factors should be orthogonal because they are not 

related to any other factor. However, sampling error creates a shared class of variance 

which leads to fallacious correlations between common and unique factors as well as 

within the set of unique factors.  MacCallum et al. (1999) noted that the population 

formula for estimating factor structures is greatly simplified when the orthogonal 

relationship of unique factors provide zeroes in key locations. They assert that erroneous 

correlation coefficients, resulting from correlations of sampling error, introduce 

significant error in model estimates by inserting correlation coefficients where a zero 

would cancel out an entire set of error. If this were the primary source of error, larger 

sample sizes would remedy the situation by reducing the shared sampling error. 

However, as previously stated, empirical studies have failed to verify this type of a 

simple linear relationship between sample size and accuracy (Guadagnoli & Velicer, 

1988; Rouquette & Falissard, 2011).  

MacCallum et al. (1999) explain that this difficulty in capturing the relationship 

between sample size and accuracy is once again due to the mathematical formula used to 

estimate factor structures. They note that this formula employs a vector of the unique 

factors in a manner that functions as a weight for the correlation matrix containing the 

erroneous correlations caused by sampling error. Therefore, the larger the loadings on 

unique factors, the greater the erroneous correlations are weighted; conversely, the 

smaller the unique loading, the less the influence of the erroneous correlations. Thus, the 
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impact of sampling error is directly moderated by the unique factor loadings. The larger 

the unique loading, the larger the effect of sampling error will be.  As previously 

discussed, unique factor loadings are intrinsically inversely related to communalities. 

Therefore, the influence of sampling error must be inversely related to communalities via 

the inherently reducing effect of large communalities on unique factor loadings. 

MacCallum et al. (1999) then conclude that when communalities are high (and therefore 

unique loading are low) EFA formulas will be robust to error regardless of sample size. 

On the other hand, they assert that smaller communalities will increase the influence of 

sampling error and therefore increase the effects of sample size. 

MacCallum, et al. (1999) also identified overdetermination (number of variables 

per factor) as another critical element effecting accuracy of analysis. They noted that 

increasing the number of variables representing a construct increases the reliability of the 

estimate because the more variables representing a construct the less susceptible it will be 

to the effects of random variation in any one given variable. The practice of increasing 

estimate reliability by using more variables is known as overdetermination. MacCallum 

et al. (1999) cited overdetermination as the primary method for reducing model error but 

cautioned that the relationship between model accuracy and overdetermination (ratio of 

variables to factor) will be moderated by communality strength. They finally assert that 

the benefit of increasing variables is to increase accuracy without increasing sample size, 

especially when communalities are low. Thus, MacCallum et al. propose that accuracy of 

factor analytic models is the result of the interaction of overdetrmination, model strength 

and sample size, with model strength moderating the effects of sample size and 

overdetermination. As such, the key focus for increasing accuracy becomes model 
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strength instead of sample size. MacCallum et al. have empirically tested and verified all 

of these hypothesized  relationships using simulated data containing no model error 

(MacCallum et al., 1999) and simulated data with model error (MacCallum et al., 2001). 

 The MacCallum et al. (1999) model of EFA indicates the potential for accurate 

analysis in small samples when communalities are high and variable per factor ratios are 

adequate. Both of their empirical studies obtained accurate results with samples as small 

as N = 60 (MacCallum et al., 1999; 2001). Other empirical studies have verified accuracy 

of EFA in even smaller samples. Mundfrom, Shaw, and Ke (2005) examined the 

performance of factor analysis in simulated data with varying levels of communality, 

factor to variable ratios, and number of factors. Accuracy of a result was evaluated in 

terms of the congruence of the solution with known population solutions, defined as the 

Tucker’s coefficient. Excellent accuracy was defined as a Tucker’s coefficient of 0.98 or 

higher, with good accuracy at 0.92 or higher. Recommended sample sizes were 

established by starting at a small sample size and slowly increasing the sample size until 

accurate solutions emerged. Final recommendations for excellent accuracy ranged from 

N’s of 11 to 30 for one factor with seven variables, to N’s of 55 to80 for six factors with 

seven variables each. Good accuracy was achieved with sample sizes as small as 30 in 

ideal conditions (factors = 3, communalities = .6 - .8, variables:factor = 8) and 35 under 

less ideal conditions (factors = 3, commonalities = .2-.8, variables:factor = 10).     

De Winter, Dodou, and Wieringa (2009) also used MacCaullum et al.’s (1999; 

2001) findings to establish minimum sample sizes for accurate extraction. They defined 

accuracy as a Tucker’s Coefficient of at least .95 and used an algorithm that adjusted the 

sample size based on previous results until a minimum accurate sample size was 
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established for each condition. Accurate results were found in samples as small as N = 6 

under ideal conditions (communalities = .8, factors = 1, variables = 96). Samples as small 

as 34 yielded accurate results in more typical conditions (commonalities = .6, factors = 2 

variables, = 24). These findings held when distortions (simulated model error) were 

introduced to the data. However, findings using empirical data were more conservative in 

their lower range. When applied to empirical data from a Big Five personality inventory, 

extraction of one factor was accurate with samples as small as 13-17, two factors required 

30-50 cases, and full five-factor extraction required 80 – 140. Notably, the average 

communality for this empirical data set ranged from .37-.42. It is likely that simulated 

findings would hold more robustly in empirical data with higher communalities. 

Considered together, the Mudfrom et al. (2005) and De Winter et al. (2009) findings 

provide proof of concept for EFA accuracy in samples smaller than 50.  

 

Extracting the Proper Number of Factors  

Empirical evidence from simulation studies suggests that there exists an ideal 

number of factors, with under- and over-extraction presenting individual and unique 

threats to the validity of one’s findings. None of the empirical examinations of the 

MacCallum model (de Winter et al., 2009; MacCallum et al., 2001; MacCallum et al., 

1999; Mundfrom et al., 2005) have directly examined the issue of determining the proper 

number of factors to extract. Complete application of EFA to small samples will require 

an empirical examination of this issue.   

Under-extraction is generally agreed to be the most severe case of miss-extraction 

(Cattell, 1978; Gorsuch, 1983; Thurstone, 1947), as it creates hybrid factors consisting of 
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collections of loosely associated items that represent a number of different constructs, 

whereas over-factoring simply splinters factors into multiple factors while maintaining 

the consistency of each factor. Wood, Tataryn, and Gorsuch (1996) examined the effects 

of under- and over- extraction in a simulated sample size of N = 200 with principal axis 

extraction and varimax rotation, and found that error in factor loadings significantly 

increased with each factor under extracted. Increased loading error will increase overall 

model error. Error is also likely to depress communalities, thus weakening the overall 

accuracy of the model. Fava and Velicer also examined miss-extraction and found that 

factor scores significantly changed when factors were under-extracted (1996) and over-

extracted (1992). Effects were found to be particularly deleterious when sample size and 

number of factors were low (Fava & Velicer, 1992, 1996), making proper extraction all 

the more critical in the proposed small samples. Fava and Velicer (1992) noted that the 

impact of over-extraction was moderated by model strength, as represented by the 

strength of item loadings (factor saturation). Given the close relationship between item 

loadings and communalities, it can be hypothesized that high communalities may serve as 

a moderator for the effects of miss-extraction on model accuracy.   

 

Statistical Solutions to the Number of Factor Question 

Due to the significant impact of extracting an inappropriate number of factors, 

several different methods for determining the proper number of factors have been 

established and studied. The Kaiser rule, minimum average partial, parallel analysis and 

salient loadings criteria appear to be the most widely used and/or promising methods.  
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Kaiser Rule 

The Kaiser Rule (Kaiser, 1960)  recommends that any factor with an eigenvalue 

greater than one be considered significant. Numerous studies have shown this method to 

consistently over-factor by as many as three to six factors (Gorsuch, 1980; Horn, 1965; 

Lee & Comrey, 1979; Velicer, Eaton, & Fava, 2000; Zwick & Velicer, 1982, 1986).  

Despite this problem, the Kaiser rule remains the most commonly used procedure for 

determining the number of factors to extract, and the default in many software suites 

(Fabrigar, Wegener, MacCallum, & Strahan, 1999; Hayton, Allen, & Scarpello, 2004). It 

has been included in this study because of its wide use.  

 

Parallel Analysis (PA) 

Horn (1965) noted that sampling introduces error, which in turn inflates 

eigenvalues. He argued that these circumstances required an inflated cut off score in 

place of a theoretically based cut off of one (e.g., the Kaiser Rule).  PA corrects for 

sampling error by deriving a new cut off from the averages of eigenvalues derived from 

random data.  The investigator randomly generates at least three datasets of similar 

dimensions (number of variables and sample size) to the data set that is to be analyzed.  

The average is calculated for each eigenvalue, and only factors that have eigenvalues 

larger than the average of randomly generated eigenvalues are considered significant.  

PA has been shown to be superior in accuracy to all other methods (Humphreys & 

Montanelli, 1975; Zwick & Velicer, 1986).  Zwick and Velicer (1986) found it accurate 

99.6% of the time when factor saturation, measure of communality in simulated data, was 

.8 and 84.2% of the time at .5 saturation.  This was superior to minimum average partial 
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(97.1% at .8 saturation and 67.5% at .5 saturation). Importantly errors for PA in this study 

followed the same pattern that MacCallum et al. (1999) identified for accuracy in overall 

factor analytic models. That is, errors occurred most often when the number of variables 

per factor was low, sample size was small, or factor saturation was low.  

It has been noted that using the mean of random eigenvalues may be too liberal a 

cut off, as it allows for a 50% chance that a random value could be considered significant.  

This can be seen in  Zwick and Velicer’s (1986) study where nearly two-thirds of PA 

misses were due to over-extraction.  Accordingly, several authors have called for a more 

conservative cut-off point. The 95th percentile of the randomly generated eigenvalues is 

the most commonly recommended cut score, since it is above the mean and corresponds 

to an alpha level of .05, (Buja & Eyuboglu, 1992; Glorfeld, 1995; Longman, Cota, 

Holden, & Fekken, 1989). Turner (1998) noted that using the first eiganvalue as the 

cutoff leads to under-extraction and that a more accurate method is to recreate the cut-off 

for each factor. Accordingly, the common procedure has now been to take the average or 

95th percentile of each eigenvalue in the random data and compare it to the eigenvalue of 

the corresponding factor in the data.  Significant factors are those that produce 

eigenvalues greater than the average or 95th percentile of the random eigenvalues.  This 

study will refer to use PA to indicate analysis with the mean and PA95 to indicate use of 

the 95th percentile. While there has been a good deal of theoretical discussion on these 

variations of PA, the authors are not aware of a study that has empirically compared   PA 

to PA95.   
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Minimum Average Partial (MAP) 

The MAP procedure was developed by Velicer (1976) and is based on the theory 

that the proper number of factors will explain the most systematic variance in a 

correlation matrix.  Removing systematic variance removes the co-variance among items, 

thus decreasing the correlations among items.  Once all the systematic variance has been 

extracted, removing further variance eliminates noise in the data, causing correlations to 

increase. Therefore, removing the proper number of factors from a correlation matrix 

produces the lowest possible correlations in the set of possible correlation matrices 

derived from partialing out factors.  Accordingly, Velicer (1976) recommended that the 

cut-off for the proper number of factors be the number of factors which produced the 

smallest average squared partial correlation. Velicer et al. (2000) provide a more in-depth 

explanation of the mathematical theory behind MAP. Zwick and Velicer (1982, 1986) 

found MAP to be the second most accurate procedure behind PA. When it was incorrect, 

MAP tended to under-extract.  

 

Salient Loadings Criteria (SL) 

Wrigley (1960) has proposed that the number of factors ought to be determined 

by examining how the individual variables load on each factor.  He purposed that the 

proper solution is the one in which every extracted and rotated factor contains at least two 

variables that load highest on that particular factor.  This is derived through a series of 

factor analyses that begins with an intentional over-extraction and ends when the proper 

solution is found.  Howard and Gordon (1963) have provided an applied example of this 

procedure.  While little empirical research has been done to test this method Gorsuch 
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(1997) has noted its potential and recommended use of this procedure, especially in 

construction of assessments, as it corrects for low reliability of individual test items. A 

recent unpublished study conducted by the authors found this method to have comparable 

accuracy to MAP with less of a tendency to under-extract (Porritt & Boyd, unpublished 

data).  

Velicer, Eaton and Fava (2000) have attempted to improve the accuracy of the 

MAP procedure by using partial correlations raised to the fourth power (MAP4) instead 

of squared partial correlations.  According to their study, the original MAP procedure 

was accurate 95.2% of the time, while the MAP4 matched the accuracy of Parallel 

analysis at 99.6% (Velicer, Eaton, & Fava, 2000).  A preliminary study of this method 

using respondent generated data failed to replicate these findings (Porritt & Boyd, 

unpublished data). 

Porritt and Boyd (unpublished data) used empirical data to examine the 

performance of Kaiser, MAP, MAP4, PA, PA95 and salient loading criteria in the 

specific situation of higher order factor analysis, which involves small item to factor 

ratios. PA was found to be the most accurate procedure, correctly identifying factor 

structure in 95% of the samples.  MAP correctly identified 77% of the factor structures, 

consistently under factoring when number of items to factors was low. The salient 

loading criterion had similar performance, correctly identifying 77% of the samples, but 

showed a relatively even balance between under and over extraction and performed well 

when items to factors ratio was low. Surprisingly, the Kaiser rule was as consistent as 

MAP and salient loadings criteria, accurately identifying 77% of the factor structures and 

over factoring by one in the other 23% of the samples. Consistent with past research, 
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scree plots identified 66% of the proper structures with a tendency to over extract when 

the number of variables was high.  These findings indicate that the majority of these 

number of factor methods are susceptible to at least one of the major determining causes 

of overall EFA accuracy (factor to variable ratio). It is likely that these methods will be 

affected by the same determining causes hypothesized by MacCallum et al. (1999).  

 

Hypotheses 

Past research indicates that all other methods, excluding the salient loadings 

criteria, are susceptible to error in small samples. As such, the salient loadings criteria 

may prove more suited to small sample EFA. It is hypothesized that the salient loadings 

criteria will have the highest levels of accuracy in small samples. It is also hypothesized 

that number of factors procedures will demonstrate the same influence patterns 

hypothesized by McCallum et al. (1999) namely that strength of model (communalities) 

will moderate  the relationship between sample size and overdetermination, with high 

communalities compensating for low overdetermination and/or sample size, and 

overdetermination providing further protection against the effects of small sample size 

and thus creating a limited set of circumstances under which EFA may be used with 

small samples. More specifically, it is hypothesized that number of factors criteria will 

maintain accuracy over 95% when model strength or overdetermination is high.  
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CHAPTER TWO 

METHOD 

 

Data Generation 

In order to more fully represent all sources of error (model error and sampling 

error) data were generated using the method described by Hong (1999). Population 

correlation matrixes containing model error were produced using the Hong (1999) 

adaptation of the  Tucker-Koopman-Linn procedure (1969), which allows for correlations 

between all factors. In keeping with Hong’s (1999) example, correlations among factors 

were set at .3 and a minor factor matrix of 50 successively less significant factors was 

generated using the MacCallum and Tucker (1991) method. Minor factors were scaled to 

represent 8% of the variance. The Wijsman (1959) transformation as described by Hong 

(1999) was used to generate sample matrixes. Detailed formulas for these methods can be 

found in Appendix A. 

Following MacCallum et al.’s (1999) lead, nine population matrixes were 

calculated to cover the combination of three conditions for over determination and three 

conditions for model strength. Levels of communality included high (communalities = .6, 

.7, .8) wide (communalities = .2 - .8) and low (communalities = .2, .3, .4) with an 

approximately equal number of variables being assigned specific communalities within 

each condition (e.g., 3 variables load at .8, 3 variables load at .7 and 3 variables load at 

.6). Levels of overdetermination include a low variables condition (12 variables: 3 

factors), a stable ratio condition (24 variables:3 factors) and a high factors condition (24 

variables:8 factors). Ratios were determined by selecting the values on the De Winter et 

al. (2009) table that were closest to the original MacCallum et al. (1999) ratios (10:3, 
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20:3, 20:7), thus allowing for best comparison across both studies.  Population matrices 

and their rotated solutions are displayed in Appendix B.   

Sample correlation matrices were calculated using two sample sizes: a 

“recommended size” of 500 chosen because it is in agreement with most recommended 

cut offs for sample size, and a minimum sample size of 60 that mirrors MacCallum et 

al.’s (1999) lower bound. All data were generated using the R statistical package 

(R_Core_Team, 2012). An annotated version of the syntax used to perform all procedures 

can be found in Appendix C. 

 

Procedures 

All procedures were carried out using the R statistical Package (R Core Team, 

2012).   The Kaiser Rule was implemented by counting the number of eigenvalues 

derived from the sample matrix that were greater than one.  Parallel Analysis values for 

the 50th and 95th percentiles were derived using the “parallel” function found in the 

‘nFactors’ package (Raiche, 2010). These were then compared to the sample eigenvalues 

and the proper determination was made at the point the random eigenvalues exceeded 

sample eigenvalues. Partial correlations for Velicer’s Minimum Average Partial 

procedures were obtained using   the “Very Simple Structure” (VSS) function found in 

the “psych” package (Revelle, 2013).  Fourth power correlations were calculated by 

multiplying the matrix of squared partial correlations by itself. Both matrixes (squared 

and fourth power) were then evaluated to determine the lowest correlation  

Original R code was written for the Salient Loadings Criteria. The algorithm 

performs a series factor analyses using maximum likelihood extraction with varimax 
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rotation.  The series begins by extracting twice the known number of factors, and 

continues by iteratively reducing the number of factors by one until the analysis yields a 

satisfactory structure.  Satisfactory structures were defined as a set of factors each of 

which contained at least two items loading at .5 or higher, or three items loading at .4 or 

higher. Also, none of the salient items were allowed to cross-load on another factor 

within .1 of the salient loading. If the initial extraction (twice the known number of 

factors), was satisfactory then the number of factors was iteratively increased by one until 

an unsatisfactory solution was reached. The last number of factor producing a correct 

solution was considered correct.  An annotated version of the syntax used to perform all 

procedures can be found in Appendix B.  

 

Evaluation Criteria 

The results were evaluated using similar criteria as Velicer, Eaton, and Fava 

(2000) who used percent correct, and mean difference to measure overall accuracy, and 

amount of discrepancy, respectively. Deviation of the difference was not included in this 

study as its non-normal distribution violated the ANOVA techniques assumption of 

normality and standardization would render the data uninformative for a comparison of 

means.     

 Percent Correct indicates the overall accuracy of a technique. Solutions were 

considered correct when they identified the known number of factors and incorrect when 

they failed to do so.  Individual answers were scored as 1 for correct and 0 for incorrect. 

The average of this variable represents the percentage of correct answers. 
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Difference from Correct examines the amount of discrepancy in a technique as 

defined by how far off the technique estimates which is determined by subtracting the 

known number of factors from the proposed number of factors.  Negative values indicate 

under-extraction, positive values indicate over-extraction and values of zero indicate a 

correct answer. Annotated R syntax for the creation of these outcome variables can be 

found in Appendix B. 
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CHAPTER THREE 

 

RESULTS  

 

Effects on each outcome variables were examined using a separate 2 x 6 x 3 x 3 

between-subjects analysis of variance procedures for each outcome measure. Independent 

variables were entered in the following order: sample size (low and recommended), 

method choice (Kaiser, MAP, MAP4, PA, PA95, and salient loading), strength of the 

model (low, wide, and high), and overdetermination (variable to factor ratios including: 

10:3, 24:3, and 24:8). The large sample size provided outsized power and all differences 

were statistically significant. As a result practical significance, as represented by effect 

size, will be the focus for this study. All results representing more than 1% or the 

variance in the data, as defined by an eta squared greater than .01, were considered 

interpretable.   

 When examining the outcome variable of percent correct, all main effects and 

interactions were statistically significant. Model strength (Means: Low = 6.12, Wide = 

38.83, High = 58.92; F (1, 47612) = 28660.57, p < .000, η2
p = 0.376) and sample size 

(Means: Low = 21.54,  High = 47.71; F (1, 47612) = 3882.03, p < .000, η2
p = 0.075) 

were the only main effects with interpretable effect sizes (as defined by η2
p > .01); full 

ANOVA results can be seen in Table 1, individual cell means are displayed in Table 2.  
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Table 1       

       

Results of Factorial ANOVA for Percent Correct    

              

  df 

Sum 

Sq 

Mean 

Sq F  p η2
p 

Sample Size 1 508 508 3882 <.000 0.075* 

Method 5 28 28 214 <.000 0.004 

Model Strength 2 3751 3751 28661 <.000 0.376* 

Overdetermination 2 8 8 63 <.000 0.001 

Sample Size x Method 5 100 100 763 <.000 0.016* 

Sample Size x Model Strength  2 134 134 1022 <.000 0.021* 

Method x Model Strength  10 10 10 74 <.000 0.002 

Sample Size x Overdetermination 2 27 27 203 <.000 0.004 

Method x Overdetermination 10 162 162 1240 <.000 0.025* 

Model Strength x Overdetermination 4 46 46 348 <.000 0.007 

Sample Size x Method x  Model Strength 10 15 15 114 <.000 0.002 

Sample Size x Method x  

Overdetermination 10 43 43 330 <.000 0.007 

Sample Size x Model Strength x 

Overdetermination 4 30 30 227 <.000 0.005 

Method x Model Strength x 

Overdetermination 20 21 21 159 <.000 0.003 

Sample Size x Method x Model Strength 

x Overdetermination  20 27 27 205 <.000 0.004 

Residuals 47520 6231 13     0.559 

Note. *  = Interpretable effect size, η2
p > .01.      
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Table 2               

               

Individual Cell Means for Percent Correct             

               

  Low Model Strength   Wide Model Strength   High Model Strength   

Overdetermination 12:3 24:3 24:8    12:3 24:3 24:8   12:3 24:3 24:8 Total 

High               

Sample Size Kaiser 0 0 0   14.51 0 2.04  100 100 100 35.17 

 PA 50.57 56.23 9.52   96.15 99.77 24.94  100 100 100 70.80 

 PA95 4.54 6.35 2.94   83.45 97.96 42.85  100 100 100 59.79 

 MAP 0 0 0   0 100 0  98.87 100 0 33.21 

 MAP4 0 0 0   0 100 0  98.87 100 0 33.21 

  SL 0 0 0    87.3 100 0   99.55 99.77 100 54.07 

Low               

Sample Size Kaiser 0 0 0   1.13 0 5.44  90.7 48.07 65.76 23.46 

 PA 8.16 0 8.84   44.44 0.002 1.81  90.02 11.34 1.13 18.42 

 PA95 0 0 0   10.43 0 6.12  92.29 0 30.83 15.52 

 MAP 0 0 0   1.14 98.41 0  82.09 100 0 31.29 

 MAP4 0 0 0   1.14 98.41 0  82.09 100 0 31.29 

  SL 0.01 1.81 0    43.99 93.88 0   95.69 100 36.51 41.32 
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Three small yet interpreteable interactions were observed. Sample size and 

method (F(1, 47612) = 763.46,  p < .001, η2
p = 0.016), interacted such that MAP and 

MAP4 showed little to no effect of sample sizes, salient loadings criteria and Kaiser 

showed a moderate effect of  sample size (approximately 12% decrease in percent correct 

when sample size was low),  and PA and PA95 showed significant effect of  sample size 

(approximately 45% decreases in percent correct when sample size was low), see figure 

1.  
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 Figure 1. Interaction of sample size and method for percent correct 
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Figure 2. Interaction of sample size and model strength for percent correct 

 

 

Sample size and model strength (F(1, 47612) =1022.24, p < .001, η2
p = 0.021), interacted 

such that the deleterious effect of low sample size was reduced as model strength 

decreased, see figure 2.  

Finally, method and overdetermination (F(1, 47612) =1240.23, p < .001, η2
p = 

0.026) interacted such that Kaiser, PA and PA95 were most correct with low variables 

and moderate factors (12:3), and MAP, MAP4, and Salient Loadings Criteria were most 

accurate with high overdetermination (24:3), see Figure 3. While statistically significant 

all other interactions were not interpretable (η2
p

 < .01), see table 1. 
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Figure 3. Interaction of overdetermination and method  

   

 

 

Effects on difference from correct were examined using a 2 x 6 x 3 x 3 factorial 

ANOVA.  Independent variables were entered in the following order: sample size (low 

and recommended), method (Kaiser, MAP, MAP4, PA, PA95, and salient loading), 

strength of the model (low, wide, and high), and overdetermination (10:3, 24:3, and 

24:8). All main effects and interactions were statistically significant. Main effects were 

interpretable for sample size (Means: low = -0.02, High = -0.55; F (1, 47612) = 510, p < 

.000, η2
p = 0.011), method (Means: Kaiser = 2.18, PA = 0.79, PA95 = 3.46, MAP = -

3.01, MAP4 = -3.01, SL = -2.12; F (1, 47612) = 15100, p < .000, η2
p = 0.241), model 

strength (Means: Low = -0.75, Wide = 0.05, High = -0.16; F (1, 47612) = 972, p < .000, 

η2
p = 0.020), and overdetermination (Means: 12:3 = -0.10, 24:3 = 2.12, 24:8 = -2.88; F 

(1, 47612) = 978, p < .000, η2
p = 0.020). Full ANOVA results can be seen in table 3 

individual cell means are displayed in table 4.  
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Table 3       

       

Results of Factorial ANOVA for Difference from Correct      

              

  df 

Sum 

Sq 

Mean 

Sq F  P η2
p 

Sample Size 1 5500 5500 510 <.000 0.011* 

Method 5 162909 162909 15100 <.000 0.241* 

Model Strength 2 10492 10492 972 <.000 0.020* 

Overdetermination 2 10546 10546 978 <.000 0.020* 

Sample Size x Method 5 1683 1683 156 <.000 0.003 

Sample Size x Model Strength  2 1886 1886 175 <.000 0.004 

Method x Model Strength  10 68414 68414 6341 <.000 0.118* 

Sample Size x Overdetermination 2 4614 4614 428 <.000 0.009 

Method x Overdetermination 10 8927 8927 827 <.000 0.017* 

Model Strength x Overdetermination 4 3460 3460 321 <.000 0.007 

Sample Size x Method x Model Strength 10 644 644 60 <.000 0.001 

Sample Size x Method x Overdetermination 10 1424 1424 132 <.000 0.003 

Sample Size x Model Strength x 

Overdetermination 4 560 560 52 <.000 0.001 

Method x Model Strength x 

Overdetermination 20 3938 3938 365 <.000 0.008 

Sample Size x Method x Model Strength x 

Overdetermination  20 296 296 27 <.000 0.001 

Residuals 47520 513673 11     0.643 

Note. *= Interpretable effect size,  η2
p > .01.       
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Table 4              

              

Individual Cell Means for Difference from Correct       

                            

  Low Model Strength  Wide Model Strength  High Model Strength  

Overdetermination 12:3 24:3 24:8   12:3 24:3 24:8   12:3 24:3 24:8  Total 

High              

Sample Size Kaiser 1.91 6.46 2.64  0.93 2.78 1.5  0 0 0 1.80 

 PA 0.21 0.56 -2.39  0.04 7.48 -1.07  0 0 0 0.54 

 PA95 2.70 2.40 5.34  0.17 11.44 0.03  0 0 0 2.45 

 MAP -2.00 -2.00 -7.00  -2.00 0.10 -7.00  -0.02 0 -7.00 -2.99 

 MAP4 -2.00 -2.00 -7.00  -2.00 0.10 -7.00  -0.02 0 -7.00 -2.99 

  SL -3.00 -2.98 -8.00   -0.13 0.34 -4.97   -0.01 0 0 -2.08 

Low              

Sample Size Kaiser 2.37 7.21 2.30  1.61 4.97 1.43  0.09 0.55 -0.14 2.27 

 PA 2.18 10.32 2.46  -0.07 4.44 -3.54  -0.10 1.00 -3.28 1.49 

 PA95 7.95 14.57 13.87  2.22 8.54 4.15  0.04 2.84 -0.65 5.95 

 MAP -2.00 -1.98 -6.99  -1.81 -0.02 -6.83  -0.28 0 -6.42 -2.93 

 MAP4 -2.00 -1.98 -6.99  -1.81 -0.02 -6.83  -0.28 0 -6.42 -2.93 

  SL -2.52 -2.23 -7.05   -0.6 0.06 -5   0.04 0 -0.96 -2.03 
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Significant interactions were observed for method and model strength (F (1, 

47612) = 6341, p < .000, η2
p = 0.118), and method and overdetermiantion (F (1, 47612) 

= 827, p < .000, η2
p = 0.017). Method interacted with model strength such that Kaiser, 

PA, and PA95 tended to overestimate the number of factors while MAP, MAP4 and 

salient loadings criteria tended to underestimate the number of factors, see figure 4. 

 

 

 
 

       

        

        

        

        

        

        

     

 

 

 

 

 

 

 

 

 

 

   

        

        

        

        

        

 

 

 

 

 
       

Figure 4.  Interaction of method and model strength for difference from correct. Negative 

difference represent underestimations. 
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Method and overdetermination interacted such that high overdetermination was 

detrimental to discrepancy with Kaiser, PA, PA95, ware as MAP, MAP4, and salient 

loading criteria provided the most accurate estimates with high overdetermination and 

saw the greatest errors when the number of factors increased in relation to the number of 

variables, see figure 5. 

Post-hoc pairwise planned comparisons with Bonferroni correction of familywise 

error were used to examine differences between specific methods, all contrasts were 

significant with the exception of MAP versus MAP4 (difference = 0, SE = .013, p = 

1.00), see table 5. The results of PA were the closest to correct, followed by 

 

 

       

        

        

        

        

        

        

        

        

       

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

Figure 5. Interaction of method and overdetermination for average difference. Negative 

difference represent underestimations. 
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salient loading criteria, Kaiser, both versions of MAP and PA95. Additionally, PA, PA95 

and Kaiser tended to over factor while MAP, MAP4 and salient loadings tended to under 

extract, see means in Table 4. 

 

Table 5     

     

Pairwise Comparison of Methods for Difference from 

Correct 

     

 diff. SE p  

Kaiser – PA 1.47 0.013 <.000  

PA - PA95 2.97 0.013 <.000  

PA95 – MAP 6.5 0.013 <.000  

MAP - MAP4 0 0.013 1  

MAP4 - Salient 

Loading -0.89 0.013 <.000  

Note. Negative differences represent underextractions  
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CHAPTER FOUR 

DISCUSSION 

 Sample size remains a major predictor of technique accuracy and seeking the 

largest possible sample size is still the best practice. Nevertheless, it would appear that 

accurate factor extraction in samples as small as 60 is possible given the proper 

conditions. Several studies have demonstrated accurate factor extraction in small sample 

sizes (de Winter et al., 2009; MacCallum et al., 2001; MacCallum et al., 1999; Mundfrom 

et al., 2005); however, none of these studies examined the accuracy of methods for 

determining the appropriate number of factors to extract. The results of the current study 

indicate that a subset of these methods may be cautiously applied in small sample size 

situations.  

 It would appear that, at least in terms of model strength, methods for determining 

the proper number of factors to extract are subject to similar influences as those observed 

for factor analysis on the whole. More specifically, increases in model strength lead to 

increases in the accuracy of all methods for determining the number of factors to extract. 

The most effective thing a researcher can do to yield proper results is to ensure that 

he/she specifies the most accurate model possible.  

The effects of overdetermination are more complex to determine as they appear to 

be moderated by method choice. Item level methods such as MAP, MAP4 and salient 

loadings criteria, demonstrated the expected relationship in which overdetermiantion 

improves accuracy and protects against the deleterious effects of small sample sizes.   On 

the other hand, eigenvalue-dependant methods such as Kaiser, PA, and PA95, performed 

best when item to factor ratio was moderate, with number of factors low in relation to 
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number of items.  Contrary to the expected pattern, accuracy of these methods decreased 

as number of variables increased in relation to factors. It is unclear what the specific 

mechanism for this relationship is, however; it is likely that the increase in number of 

variables increases the probability that a group of variables belonging to one factor will 

create a subfactor that will be produce a significant eigenvalues. This theory is 

corroborated by the fact that the methods in question tended to over-extract by at least 

two factors under the high overdetermination condition. Use of eigenvalue-dependent 

methods under low sample conditions cannot be recommended at this time, as high 

overdetermination is necessary to ensure accuracy when sample size is low. With that 

caveat it is important to recognize that eigenvalue methods, PA in particular, are highly 

accurate when the sample size complies with current recommendations. Indeed, PA was 

the most accurate method under most conditions and the only method that performed 

satisfactorily when model strength was moderate and variables were low in relationship 

to factors.  

Accuracy was also examined by looking at technique discrepancy or the 

difference between the provided answer and the correct answer. Method was the most 

important predictor of discrepancy. Examination of individual methods indicates that PA 

provided the least discrepant estimates tending to over-extract by an average of one 

factor. Kaiser and salient loading criteria, were discrepant by an average of 

approximately 2 and -2, respectively, indicatin that errors with Kaiser are likely to be less 

detrimental to overall accuracy of estimate.  MAP and MAP4 (off by an average of - 3 

factors) and PA95 (off by an average of approximately 4 factors) were the most 

discrepant methods.   
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Method was also a significant moderator of the other effects. Eigenvalue methods 

and item level methods again. In general eigenvalue methods tended to over factor and 

item level methods tending to under factor. This is of particular importance to researchers 

using item level methods when sample sizes are low, as this tends to exacerbate the 

negative effects of under-extracting (Wood et al., 1996) which are already considered to 

be worse than the effects of over-extracting. The negative impact of overdetermination on 

performance of eigenvalue methods was also apparent with this analysis as discrepancies 

for these methods tended to be greatest when overdetermination was high.      

 Another point of interest for this study was to elucidate the difference in 

performance between PA and PA95. PA appears to outperform PA95. PA was more 

accurate and less discrepant across all conditions, and was applicable to more conditions 

than PA95. However, more replication is needed before concrete recommendations are 

made.  

The focus of this study has been to provide a proof of concept for the small 

sample size use of empirical methods for determining the proper number of factors. It 

would appear that a select set of these methods, namely the item level methods of MAP, 

MAP4, and salient loadings criteria, can produce accurate results when sample sizes are 

low. However it must be emphasized that all methods performed best under higher 

sample sizes conditions and that small sample size analysis should be viewed as a special 

exception to the general rule of large sample analysis. It should also be noted that no one 

method is a “silver bullet” which will constantly provide the correct answer. As such, 

researchers are advised to seek guidance from multiple methods at once.  Specific details 
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and recommendations for appropriate points of application for each method are displayed 

in table 6. 

 

Table 6         

         

Recommendations for Use of Methods 

                  

  Wide Model Strength   High Model Strength  

Overdetermination 12:3 24:3 24:8   12:3 24:3 24:8 

High         

Sample Size Kaiser     P P P 

 PA P R   P P P 

 PA95  R   P P P 

 MAP  P   R P  

 MAP4  P   R P  

  SL   P     R R P 

Low         

Sample Size Kaiser        

 PA        

 PA95        

 MAP  P    P  

 MAP4  P    P  

  SL   R     P P   

Note. Low model strength condition was not included as none of the methods met 

minimum requirement of 95% correct         

R   =  Recommended (accuracy > 95%)                         

P   =  Preferred (Highest accuracy for conditions)   

 

 

 The primary limitation of this study is the use of Monte Carlo data. While we 

have taken every known step to generate complex data similar to that encountered in 

respondent generated data, it is likely that there are additional nuances and complexities 

we were unable to capture. It must also be mentioned that caution should be used when 

attempting to apply these findings to data outside of the bounds of the study parameters.   
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Having established the viability of empirical methods for determining the proper 

number of factors to extract, there are a number of directions for future research. Past 

research ((de Winter et al., 2009; Mundfrom et al., 2005)) has established lower bounds 

for accurate factor analysis that are often far lower than N = 60. Further research is 

needed to establish similar lower bounds for the accuracy of methods used to determining 

the proper number of factors to extract. Further exploration is also needed to determine 

the reason overdetermination is detrimental to eigenvalue methods and to explore options 

for ameliorating these effects. Based upon our hypothesis regarding subfactors, one may 

consider exploring the possibility of creating a combination between an eigenvalue and 

item level method, perhaps PA with a minimum item limit for a factor to be considered 

significant.  Finally, it would be beneficial to replicate these findings with respondent-

generated data.  
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APPENDIX A 

FORMULAS FOR DATA GENERATION 

Formulas for Generation of Population Correlation Matrix  

 

Hong (1999) described the Tucker-Koopman-Linn (1969) method as follows:  

 

P = VV’+D+WW’ 

 

Where: 

P  = Population correlation matrix (order k, where k is # of variables) 

V = Major factor loading matrix (k X r, where r is # of factors)  

D = Diagonal matrix of unique factor variances (k X k) 

W = Unique factor loading matrix (k X q, where q = # of minor factors) 

 

 

Hong (1999) made the following alterations in order to include correlations between 

factors (both minor and major). This alter version of the formula is the one used in this 

study. 

 

 

P = JBJ’ +D 

 

 

Where: 

J = Super Loading Matrix [V,W] ( k X (r + q) ) 

B = Matrix of Factor Correlations ( (r + q) X ( r + q ) )  

D = Diagonal Matrix of Unique Factor Variances (k X k) 

 

The MacCallum and Tucker (1991) method for generating a W matrix is as follows: 

Random factor loadings for the first factor are gained from a random distribution with a 

mean of 0 and a standard deviation of 1the standard deviation of the population is 

successively reduced by .8 for each factor. The matrix is than rescaled by row so that the 

minor factors account for the desired amount of variance.  
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Formulas for Sample Correlation Matrix Generation  

 

Population correlation matrixes were calculated using the Wijsman (1959) procedures. 

Hong (1999) described this procedure as follows: 

 

Generate a matrix A as follows: 

 

 

A = FGG’F’ 
 

Where: 

F = k X k factor matrix of population correlation matrix such that FF’ = P  

G = Randomly generated lower right triangle matrix. Off diagonal elements are random 

diviates drawn from a normal distribution with a mean of 0 and variance of 

1.Diagonal elements are positive square roots of random values drawn from chi-

square distributions with degrees of freedom of  n – j where n= sample size1 and 

j= column number.  

 

  Calculate Sample Covariance Matrix : 

 

 

C = (1/n)A 

 

 

Where 

C = Sample Covariance Matrix 

 n = Sample size 

A = As calculated above 

 

Calculate Sample Correlation Matrix: 

 

R = D-1/2CD-1/2 

 

 

Where: 

R = Sample correlation matrix  

D = Diagonal matrix containing diagonal elements of C (sample variances)  

 

 

                                                           
1  (N * 2) was substituted in instances where number of variables exceeded n. ( low sample conditions for 
the high communality of the 12:3 and 24:3 item to factor ratios)  
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APPENDIX B 

ANNOTATED SYNTAX 

All syntax is original work of Marc Porritt, please cite this dissertation for any reuse. For 

questions contact the author at marc.porritt@gmail.com  

 

Comments found after the “//” 

Syntax used to generate population correlation matrixes currently set for 12 variables into 

three factors with low communality: 

 
nVars = 12 // Set the number of files  

popFile = "C:/data/PopulationCorrelations/12-3-L.txt"//destination for output 

 

// creates B matrix for use Hong’s alteration to Tucker-Koopman-Linn 

B= matrix(.3, nrow=53, ncol = 53)  

diag(B) = 1 

 

// Input theoretically established major factor loading matrix 

V=matrix(c(.4, .3, .3, .2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, .4, .3, .3, .2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, .4, .3, .3 , 

.2 ), nrow = 12) 

 

// Randomly generates minor factor loading matrix of 50 factors  

W = matrix(c(rnorm(nVars,mean=0,sd=1))) 

sd=1 

for(i in 1:49)//first loop creates matrix with random variables 

{ 

  W2 = matrix(c(rnorm(nVars,mean=0,sd= sd))) 

  W = cbind(W,W2)  

  sd= sd*.8 

} 

for(i in 1:nVars)// second loop rescales the rows 

{ 

  Rsum = sum(abs(W[i,])) 

  for(j in 1:50){W[i,j]= (W[i,j]/Rsum)*.08} 

} 

 

// uses matrixes instantiated above to carry out Hong’s version of Tucker-//Coopman-Linn 

 

J =  cbind(V, W) 

 

JBJ= J%*%B%*%t(J) 

 

D = diag(nVars) 

diag(D) = diag(D)-diag(JBJ) 

 

P= JBJ+D 

 

//writes matrix to file specified above 

write.table(P,popFile, sep="\t") 
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Syntax used to generate sample matrixes and carry out methods on them: 

 
Nvars = 12   // number of variables 

Nfacs = 3    // number of factors 

sampleN=353  // Sample size 

strength = 1  //codes for strength of communality 

Nsets = 441  // designates the number of samples to be generated 

 

 

//destination file for generated data set 

Master =  "C:/Users/mporritt/Documents/Dissertation/data/12-3-L-L.txt" 

//destination file for generated sample correlation matrixes 

dataFile = "C:/Users/mporritt/Documents/Dissertation/data/12-3-L-L/12-3-L-L-" 

// extension for sample matrix files 

extension = ".txt" 

 

//instantiates the matrix that will hold the generated data ( ultimately this //data set will contain variables for 

the number of factors, number of //variables, strength of communalities, specific sample data came from, 

//method used to get the answer, and the answer produced by the method) 

dataFrame = matrix(0,6, nrow=1) 

colnames(dataFrame) = c("Nvars", "Nfactors", "LoadStrength","setNumber","Method", "Solution") 

 

//F matrix as determined by Maximum Likelihood extraction of 24 factors from //the population correlation 

matrix 

F = matrix(c(  

.222,.385,.065,.664,-.545,-.223,-.019,.005,-.014,.101,-.022,-.011, 

.235,-.236,.308,.494,.671,-.293,.018,-.004,-.010,.020,.055,.102, 

.246,-.136,-.355,.392,.100,.788,-.013,-.010,.027,.007,.084,-.054, 

.331,-.286,.373,-.102,-.249,.129,.690,-.031,-.020,.046,.158,.277, 

.357,-.278,.359,-.128,-.215,.103,-.653,.047,.063,.054,.208,.337, 

.353,.449,.075,-.175,.188,.094,.053,.679,.014,.357,-.031,-.008, 

.362,.443,.073,-.186,.176,.078,-.024,-.665,.015,.390,-.023,.006, 

.363,-.162,-.418,-.070,-.033,-.280,.060,.005,.689,.042,.286,-.148, 

.389,-.156,-.402,-.094,-.031,-.233,-.020,.009,-.649,.059,.383,-.164, 

.413,.472,.079,-.090,.103,.042,.013,-.019,.008,-.748,.130,.056, 

.441,-.165,-.427,-.047,-.017,-.136,.001,.003,-.058,-.059,-.641,.397, 

.450,-.276,.355,-.070,-.096,.042,-.048,-.006,-.007,-.076,-.355,-.667 

), ncol = 12, byrow =TRUE) 

 

 

 

 

 

// this loop computes a sample correlation matrix, performs all six methods, //and saves the answers from 

each method along with identifying information. 

//the loop will iterate as many times as was specified above with the Nsets //variable   

for(setNum in 1:Nsets) 

{ 

 //Generates a G matrix that meets Wijsman criteria.  

 G=matrix(0, Nvars,Nvars) 

 for(j in 1:Nvars){G[j,j] = abs(sqrt(rchisq(1,df=(sampleN-j))))} 

 r=1 

 for(k in 1:(Nvars-1))  

 {   
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  r=r+1  

       for(c in 1:k){G[r,c]=rnorm(1,mean=0,sd=1)} 

      } 

  

 //Computes A matrix according to Wijsman method 

A=F%*%G%*%t(G)%*%t(F) 

 

 //Sample covariance matrix 

 CovA = (1/sampleN)*A 

  

 //Scale covariance to correlation 

 D=diag(diag(CovA)^(-1/2)) 

 Corr = D%*%CovA%*%D 

     

//corrects for difference due to rounding – ensures the correlation // matrix is indeed a mirror of 

itself 

 for (i in 1:Nvars){for (j in 1:Nvars){ Corr[j,i] = Corr[i,j] }} 

  

//generates a unique file name for each sample matrix by concatanating //the name, location, and 

extension specified above with the counter //for this loop (setNum), writes the matrix to the file 

and prints the //file name – so as to provide a way for the user to keep track of //computations 

while the syntax is running  

fileName= paste(dataFile, setNum, extension, sep="") 

 write.table(Corr,fileName, sep="\t") 

 print(fileName) 

 

//this matrixcontains the identifying information that is common to all //elements of thi particular 

set of data (# variables, #factors, //communality strength, the specific sample matrix the data came 

//from.)an indentifyer for a method and the solution provided by that //method will be 

concatenated to this matrix before it is appended to //the master data matrix.  

dataSeed1 = matrix(c(Nvars,Nfacs,strength,setNum), nrow =1) 

 

 //retrieves sample matrix eigenvalues and stores them to vector EV 

eigen = eigen(Corr, only.values=TRUE) 

 EV = eigen$values 

 

 

 //Performs Kaiser Rule  

K = 0 

 for (i in 1:Nvars){if (EV[i] >= 1) {K = K + 1}}   

  

 //adds Kaiser specific values to dataSeed and appends to data matrix  

dataSeed2 = matrix(c(1,K), nrow=1) 

 Krow = cbind(dataSeed1,dataSeed2)  

 dataFrame = rbind(dataFrame,Krow) 

 

//Retrieves Parallel Analysis values and stores mean values in EV_PAM //and 95th percentile 

values in EV_PA95  

PA = parallel(subject=sampleN,var=Nvars,rep=100,cent=.05) 

 EV_PAM = PA$eigen$mevpea 

 EV_PA95 = PA$eigen$qevpea 

 

 //performs mean PA 

PAM = 0 

 for (i in 1:Nvars){if (EV[i] >= EV_PAM[i]) {PAM = PAM + 1}} 
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 //adds mean PA specific values to dataSeed and appends to data matrix  

dataSeed2 = matrix(c(2,PAM), nrow=1) 

 PAMrow = cbind(dataSeed1,dataSeed2)  

 dataFrame = rbind(dataFrame,PAMrow) 

 

 //performs PA95 and adds values to data 

PA95 = 0 

 for (i in 1:Nvars){if (EV[i] >= EV_PA95[i]) {PA95 = PA95 + 1}} 

 dataSeed2 = matrix(c(3,PA95), nrow=1) 

 PA95row = cbind(dataSeed1,dataSeed2)  

 dataFrame = rbind(dataFrame,PA95row) 

 

//obtains squared average partial correlations and calculates forth //power average partial 

correlations – stores each in a separate vector  

AP1 = VSS(Corr, n = Nvars-1, n.obs=sampleN, plot = FALSE) 

 APs = AP1$map 

 APs4= APs*APs 

 

//Loop determines minimum average partial correlation and breaks at the //first rise in values. 

Remaining code appends values to data  

MAP = 1 

 for (i in 1:(length(APs)-1))  

 { 

  if (APs[i] > APs[i+1]){MAP = MAP+1} 

  else{break}  

               } 

  

dataSeed2 = matrix(c(4,MAP), nrow=1) 

 MAProw = cbind(dataSeed1,dataSeed2)  

 dataFrame = rbind(dataFrame,MAProw)  

 

 //performs identical functions using fourth power average partails 

 MAP4 = 1 

 for (i in 1:(length(APs4)-1))  

 { 

  if (APs4[i+1] <= APs4[i]){MAP4 = MAP4+1} 

  else{break} 

 } 

 

 dataSeed2 = matrix(c(5,MAP4), nrow=1) 

 MAP4row = cbind(dataSeed1,dataSeed2)  

 dataFrame = rbind(dataFrame,MAP4row)   

 

 //performs Salient Loading Criteria and stores data 

 SLanswer = 0 

 

 SalientLoading() 

  

 dataSeed2 = matrix(c(6,SLanswer), nrow=1) 

 SLrow = cbind(dataSeed1,dataSeed2)  

 dataFrame = rbind(dataFrame,SLrow) 

} 

//when the loop is complete this writes the data matrix to the master file //specified above with tab 

delimitation  

write.table(dataFrame, Master, sep="\t") 
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Salient Loading Criteria Syntax 

Intellectual property of Marc Porritt – please cite this work for any reuse.  
 

//sets the number of factors that will initially be extracted – currently set to twice the known factors 

START = (round(Nfacs*2))  

 

//Loop performs successive factor analysis and evaluates the results against Salient Loading Criteria it will 

start by extracting START factors and continue by decrementing that number by 1 until criteria are met 

for(g in START:1) 

{ 

if(SLanswer>0){break}//Stops loop and returns answer if previous answer was satisfactory 

 

//Performs maximum likelihood FA with verimax rotation and stores rotated solution in LDs 

FA = factanal(covmat = Corr, factors= g, n.obs = sampleN, rotation = "varimax") 

LDs = FA$loadings  

 

SalFacs = 0 // This is a counter for the number of factors that meet criteria 

 

//This loop evaluates the saved rotated loadings matrix to determine if it meets criteria 

for (i in g:1) 

{ 

// this variable evaluates salience of >= 4 is threshold for meeting criteria 

 factorValue=0  

 

//This loop evaluates each individual factor for salience on a variable by variable basis 

starting at the last factor extracted and working to the first  

 

for(j in Nvars:1) 

 { 

       crossLoad= 0 // True if a cross loads bellow threshold of .1  

CheckMe= LDs[j,i]//pointer for a given loading 

 

 //evaluates for cross loading sets crossLoad to true/false  

for (k in 1:(length(LDs)/Nvars)){if(abs(LDs[1,k]- CheckMe)<.1){crossLoad = crossLoad 

+ 1}} 

 

//determines strength of variables loading and updates factorValue according 

if(crossLoad<=1) 

{ 

if(CheckMe >= 0.4 && CheckMe <0.5) {factorValue = factorValue + 1.5} 

if(CheckMe >= 0.5) {factorValue = factorValue + 2} 

} 

} 

 

// if any factors are determined to be non salient the evaluation stops and the next set of 

//factors are extracted and evaluated  

if(factorValue<4) {break} 

 

//otherwise the count of salient factors is incremented and the set of factors are evaluated 

 ELSE 

{ 

SalFacs = SalFacs+1 

if(SalFacs == g)// if all factors in the set are salient  

{ 

if(g== START)//if this is the first set of factors extracted   
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{ 

//the same process is repeated only this time the number of factors is incremented 

//instead of decremented – this functions essentially like a recursive function //call – 

therefore redundant code will be replaced by pseudo function calls  

 for(g2 in (START):(START*2)) 

{ 

extractAndEvaluateFactorMatrix()  

       

//if the answer is still correct the loop stops and we move forward to the 

following evaluations 

if(SLanswer>0){break}  

       

//if the factor is not salient than the answer is no longer correct and //the 

previous number of factors (the last successful solution) is //returned and 

the process stops   

if(factorValue<4) 

{ 

SLanswer=(g2-1) 

break 

} 

//otherwise if we have not evaluated the whole matrix but the factor is 

//salient than we increment the number of salient factors and evaluate //the 

next factor 

Else  

{ 

SalFacs = SalFacs+1 

//if all factors have been evaluated than the number of factors is 

incremented by //1 and the process continues  

if(SalFacs == g2){break} 

} 

}  

} 

      

} 

//otherwise(if the entire matrix is salient AND this is not the first set of factors 

extracted) than the current number of factors is the solution and the entire process stops 

Else 

{ 

SLanswer=SalFacs 

break 

} 

} 

} 

} 

 } 
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APPENDIX C 

 

POPULATION CORRELATION MATRICES 

 



 

 

4
9

 

 

 

 

 

 

Twelve Variables, Three Factors, High Communalities 

1.000            

0.559 1.000           

0.569 0.488 1.000          

0.484 0.415 0.422 1.000         

0.194 0.159 0.168 0.142 1.000        

0.177 0.146 0.153 0.128 0.560 1.000       

0.166 0.136 0.143 0.120 0.550 0.487 1.000      

0.143 0.117 0.124 0.104 0.472 0.418 0.411 1.000     

0.197 0.162 0.171 0.143 0.188 0.171 0.161 0.139 1.000    

0.170 0.140 0.147 0.124 0.162 0.148 0.138 0.119 0.556 1.000   

0.168 0.138 0.146 0.123 0.161 0.146 0.137 0.118 0.555 0.484 1.000  

0.163 0.133 0.141 0.118 0.155 0.141 0.132 0.114 0.493 0.430 0.428 1.000 

 

 

 

 



 

 

5
0

 

 

 

 

 

Varimax Rotated Maximum Likelihood Solution  

 1 2 3 

V9 .783 .113 .112 

V10 .683 .097 .095 

V11 .682 .095 .094 

V12 .601 .099 .097 

V1 .121 .790 .118 

V3 .104 .690 .101 

V2 .095 .680 .093 

V4 .086 .587 .084 

V5 .113 .112 .779 

V6 .105 .105 .688 

V7 .095 .094 .679 

V8 .082 .082 .582 
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Twelve Variables, Three Factors Wide Communalities  

CORR 1.00            

CORR 0.49 1.00           

CORR 0.33 0.25 1.00          

CORR 0.18 0.13 0.09 1.00         

CORR 0.21 0.15 0.11 0.06 1.00        

CORR 0.16 0.12 0.08 0.05 0.49 1.00       

CORR 0.11 0.08 0.06 0.03 0.33 0.25 1.00      

CORR 0.05 0.04 0.02 0.01 0.16 0.12 0.08 1.00     

CORR 0.22 0.16 0.11 0.06 0.21 0.16 0.11 0.05 1.00    

CORR 0.16 0.12 0.08 0.05 0.15 0.12 0.08 0.04 0.50 1.00   

CORR 0.09 0.07 0.05 0.03 0.09 0.07 0.05 0.02 0.32 0.24 1.00  

CORR 0.05 0.04 0.02 0.01 0.05 0.04 0.03 0.01 0.16 0.12 0.08 1.00 
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2

 

 

 

 

 

Varimax Rotated Maximum Likelihood Solution  

 1 2 3 

V1 .790 .121 .123 

V2 .594 .088 .086 

V3 .399 .060 .066 

V4 .215 .035 .038 

V9 .136 .794 .127 

V10 .098 .598 .089 

V11 .050 .386 .050 

V12 .029 .192 .032 

V5 .125 .116 .787 

V6 .097 .091 .594 

V7 .068 .064 .399 

V8 .029 .028 .194 
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3

 

 

 

 

 

Twelve Variables, Three Factors, Low Communalities  

1.000            

0.119 1.000           

0.121 0.093 1.000          

0.074 0.056 0.056 1.000         

0.050 0.039 0.041 0.019 1.000        

0.041 0.032 0.034 0.016 0.129 1.000       

0.036 0.028 0.029 0.014 0.123 0.095 1.000      

0.021 0.017 0.017 0.009 0.079 0.060 0.058 1.000     

0.054 0.042 0.045 0.021 0.059 0.050 0.043 0.024 1.000    

0.035 0.028 0.030 0.014 0.039 0.033 0.028 0.016 0.127 1.000   

0.031 0.024 0.025 0.012 0.033 0.027 0.024 0.014 0.120 0.087 1.000  

0.020 0.015 0.015 0.009 0.021 0.017 0.016 0.010 0.079 0.057 0.056 1.000 
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4

 

 

 

 

 

Varimax Rotated Maximum Likelihood Solution  

 1 2 3 

V5 .401 .060 .060 

V6 .306 .055 .052 

V7 .295 .043 .042 

V8 .190 .021 .023 

V9 .077 .405 .071 

V10 .047 .296 .043 

V11 .034 .284 .034 

V12 .022 .188 .020 

V1 .059 .055 .387 

V3 .050 .048 .298 

V2 .047 .043 .295 

V4 .018 .018 .184 
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Twenty Four Variables, Three Factors, High Communality  

1 1.000            

2 0.647 1.000           

3 0.653 0.672 1.000          

4 0.567 0.582 0.589 1.000         

5 0.551 0.565 0.570 0.495 1.000        

6 0.484 0.497 0.502 0.436 0.423 1.000       

7 0.485 0.497 0.503 0.437 0.423 0.372 1.000      

8 0.476 0.487 0.493 0.428 0.416 0.365 0.366 1.000     

9 0.188 0.204 0.211 0.180 0.164 0.152 0.153 0.144 1.000    

10 0.194 0.210 0.218 0.185 0.168 0.156 0.158 0.148 0.647 1.000   

11 0.199 0.217 0.224 0.191 0.173 0.161 0.162 0.152 0.653 0.659 1.000  

12 0.168 0.183 0.189 0.161 0.146 0.136 0.137 0.128 0.565 0.571 0.576 1.000 

13 0.154 0.167 0.172 0.147 0.134 0.124 0.125 0.118 0.550 0.554 0.559 0.484 

14 0.127 0.138 0.142 0.121 0.111 0.103 0.103 0.097 0.466 0.470 0.473 0.410 

15 0.141 0.153 0.159 0.136 0.123 0.114 0.115 0.108 0.481 0.486 0.490 0.424 

16 0.145 0.157 0.162 0.138 0.126 0.117 0.118 0.111 0.485 0.488 0.493 0.427 

17 0.178 0.193 0.199 0.170 0.155 0.143 0.144 0.136 0.183 0.188 0.193 0.163 

18 0.178 0.193 0.200 0.171 0.155 0.144 0.145 0.136 0.183 0.189 0.193 0.164 

19 0.197 0.215 0.222 0.189 0.171 0.160 0.161 0.150 0.203 0.209 0.215 0.182 

20 0.153 0.165 0.171 0.146 0.133 0.123 0.124 0.116 0.157 0.161 0.165 0.140 

21 0.174 0.190 0.197 0.168 0.152 0.141 0.142 0.133 0.180 0.185 0.191 0.161 

22 0.143 0.155 0.160 0.137 0.124 0.115 0.116 0.109 0.147 0.151 0.155 0.131 

23 0.136 0.148 0.153 0.130 0.119 0.110 0.110 0.104 0.140 0.144 0.148 0.125 

24 0.132 0.144 0.149 0.126 0.115 0.107 0.107 0.101 0.136 0.140 0.144 0.122 

 1 2 3 4 5 6 7 8 9 10 11 12 

 

             



 

 

5
6

 

 

 

13 1.000            

14 0.401 1.000           

15 0.413 0.350 1.000          

16 0.415 0.352 0.364 1.000         

17 0.149 0.124 0.137 0.140 1.000        

18 0.150 0.124 0.138 0.140 0.621 1.000       

19 0.166 0.137 0.153 0.156 0.640 0.640 1.000      

20 0.128 0.106 0.117 0.120 0.541 0.541 0.557 1.000     

21 0.146 0.120 0.135 0.138 0.561 0.562 0.581 0.489 1.000    

22 0.120 0.099 0.110 0.113 0.474 0.475 0.490 0.413 0.430 1.000   

23 0.114 0.095 0.105 0.107 0.469 0.469 0.483 0.408 0.424 0.358 1.000  

24 0.111 0.092 0.102 0.104 0.465 0.465 0.479 0.405 0.420 0.355 0.351 1.000 

 13 14 15 16 17 18 19 20 21 22 23 24 
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Varimax Rotated Maximum Likelihood Solution  

 1 2 3 

V3 .803 .130 .129 

V2 .796 .123 .122 

V1 .779 .107 .106 

V4 .698 .109 .108 

V5 .681 .093 .092 

V7 .597 .093 .091 

V6 .596 .091 .090 

V8 .587 .083 .082 

V11 .129 .795 .124 

V10 .123 .790 .119 

V9 .118 .784 .113 

V12 .107 .690 .103 

V13 .092 .675 .088 

V16 .092 .591 .088 

V15 .089 .588 .085 

V14 .074 .573 .071 

V19 .129 .125 .793 

V18 .108 .105 .774 

V17 .108 .105 .773 

V21 .115 .112 .695 

V20 .091 .089 .674 

V22 .091 .089 .589 

V23 .084 .081 .583 

V24 .080 .078 .579 
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Twenty Four Variables, Three Factors, Wide Communalities  

1 1.000            

2 0.556 1.000           

3 0.480 0.423 1.000          

4 0.396 0.348 0.301 1.000         

5 0.318 0.280 0.242 0.199 1.000        

6 0.311 0.273 0.236 0.194 0.156 1.000       

7 0.227 0.199 0.173 0.142 0.114 0.112 1.000      

8 0.156 0.138 0.120 0.098 0.079 0.077 0.057 1.000     

9 0.186 0.166 0.147 0.117 0.095 0.088 0.060 0.046 1.000    

10 0.170 0.152 0.133 0.107 0.087 0.080 0.054 0.041 0.564 1.000   

11 0.141 0.127 0.111 0.089 0.072 0.066 0.045 0.034 0.479 0.425 1.000  

12 0.110 0.098 0.087 0.069 0.056 0.051 0.035 0.027 0.391 0.346 0.295 1.000 

13 0.089 0.080 0.071 0.056 0.046 0.042 0.029 0.022 0.315 0.278 0.236 0.194 

14 0.088 0.079 0.070 0.056 0.045 0.041 0.028 0.021 0.313 0.278 0.236 0.193 

15 0.065 0.058 0.052 0.041 0.033 0.030 0.021 0.016 0.234 0.207 0.176 0.144 

16 0.054 0.048 0.042 0.034 0.027 0.025 0.017 0.012 0.166 0.148 0.125 0.102 

17 0.198 0.177 0.156 0.125 0.101 0.093 0.063 0.048 0.201 0.184 0.153 0.119 

18 0.167 0.149 0.132 0.106 0.085 0.079 0.054 0.041 0.169 0.155 0.129 0.100 

19 0.135 0.121 0.107 0.085 0.069 0.064 0.044 0.033 0.138 0.126 0.104 0.081 

20 0.116 0.103 0.091 0.073 0.059 0.054 0.037 0.028 0.117 0.107 0.089 0.070 

21 0.099 0.089 0.079 0.062 0.051 0.046 0.032 0.024 0.101 0.092 0.077 0.060 

22 0.096 0.086 0.076 0.061 0.049 0.045 0.031 0.023 0.097 0.089 0.074 0.058 

23 0.070 0.062 0.056 0.044 0.036 0.033 0.022 0.017 0.071 0.065 0.054 0.042 

24 0.054 0.049 0.043 0.034 0.028 0.026 0.017 0.013 0.056 0.051 0.042 0.033 

 1 2 3 4 5 6 7 8 9 10 11 12 
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13 1.000            

14 0.155 1.000           

15 0.116 0.115 1.000          

16 0.082 0.082 0.061 1.000         

17 0.096 0.096 0.070 0.058 1.000        

18 0.081 0.081 0.059 0.049 0.573 1.000       

19 0.066 0.065 0.048 0.039 0.483 0.417 1.000      

20 0.056 0.056 0.041 0.034 0.405 0.350 0.295 1.000     

21 0.049 0.048 0.036 0.029 0.332 0.287 0.242 0.203 1.000    

22 0.046 0.047 0.034 0.028 0.328 0.284 0.239 0.201 0.164 1.000   

23 0.034 0.034 0.025 0.021 0.244 0.211 0.178 0.149 0.122 0.121 1.000  

24 0.027 0.026 0.019 0.016 0.171 0.148 0.125 0.105 0.086 0.084 0.063 1.000 

 13 14 15 16 17 18 19 20 21 22 23 24 
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Varimax Rotated Maximum Likelihood Solution  

 1 2 3 

V17 .796 .122 .119 

V18 .690 .101 .098 

V19 .583 .079 .076 

V20 .489 .068 .066 

V21 .399 .061 .060 

V22 .395 .058 .057 

V23 .294 .041 .040 

V24 .204 .036 .035 

V9 .116 .782 .110 

V10 .109 .691 .103 

V11 .089 .588 .084 

V12 .066 .482 .062 

V13 .054 .387 .051 

V14 .053 .386 .050 

V15 .039 .288 .036 

V16 .036 .203 .034 

V1 .115 .111 .778 

V2 .105 .101 .684 

V3 .094 .091 .590 

V4 .073 .070 .487 

V5 .060 .058 .391 

V6 .052 .050 .384 

V7 .033 .032 .282 

V8 .028 .027 .193 
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24 Variables, 3 factors, Low Communalities  

1 1.000            

2 0.151 1.000           

3 0.149 0.156 1.000          

4 0.110 0.114 0.112 1.000         

5 0.118 0.125 0.123 0.090 1.000        

6 0.076 0.079 0.078 0.057 0.063 1.000       

7 0.078 0.082 0.081 0.059 0.065 0.041 1.000      

8 0.078 0.082 0.081 0.059 0.066 0.041 0.043 1.000     

9 0.045 0.054 0.052 0.035 0.049 0.027 0.030 0.031 1.000    

10 0.039 0.046 0.044 0.030 0.041 0.023 0.026 0.026 0.166 1.000   

11 0.044 0.053 0.050 0.034 0.047 0.026 0.029 0.030 0.174 0.164 1.000  

12 0.031 0.038 0.036 0.024 0.034 0.019 0.021 0.021 0.128 0.121 0.126 1.000 

13 0.032 0.039 0.036 0.025 0.034 0.019 0.021 0.022 0.129 0.122 0.127 0.094 

14 0.015 0.017 0.016 0.011 0.015 0.009 0.009 0.009 0.075 0.072 0.075 0.055 

15 0.020 0.025 0.023 0.016 0.022 0.012 0.014 0.014 0.085 0.080 0.084 0.062 

16 0.020 0.023 0.022 0.015 0.020 0.011 0.013 0.013 0.083 0.079 0.082 0.061 

17 0.040 0.048 0.045 0.031 0.043 0.024 0.027 0.027 0.056 0.048 0.054 0.039 

18 0.039 0.047 0.044 0.030 0.042 0.024 0.026 0.026 0.055 0.046 0.053 0.038 

19 0.036 0.042 0.040 0.027 0.037 0.021 0.023 0.023 0.049 0.041 0.047 0.034 

20 0.029 0.035 0.033 0.022 0.031 0.018 0.019 0.019 0.041 0.034 0.039 0.028 

21 0.030 0.036 0.034 0.024 0.032 0.018 0.020 0.021 0.042 0.035 0.041 0.029 

22 0.019 0.022 0.021 0.015 0.020 0.011 0.012 0.012 0.027 0.022 0.025 0.018 

23 0.018 0.021 0.020 0.014 0.019 0.011 0.012 0.012 0.025 0.021 0.024 0.017 

24 0.023 0.028 0.026 0.018 0.025 0.014 0.016 0.016 0.032 0.027 0.031 0.022 

 1 2 3 4 5 6 7 8 9 10 11 12 
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13 1.000            

14 0.055 1.000           

15 0.063 0.036 1.000          

16 0.061 0.036 0.040 1.000         

17 0.040 0.017 0.026 0.024 1.000        

18 0.038 0.017 0.024 0.023 0.160 1.000       

19 0.034 0.016 0.022 0.021 0.155 0.154 1.000      

20 0.028 0.013 0.018 0.017 0.120 0.119 0.116 1.000     

21 0.030 0.013 0.019 0.018 0.122 0.120 0.116 0.090 1.000    

22 0.019 0.009 0.012 0.011 0.079 0.078 0.077 0.059 0.059 1.000   

23 0.017 0.008 0.011 0.011 0.077 0.077 0.076 0.058 0.058 0.039 1.000  

24 0.023 0.010 0.015 0.014 0.084 0.084 0.081 0.063 0.063 0.041 0.041 1.000 

 13 14 15 16 17 18 19 20 21 22 23 24 

 

 

 

 

 

 



 

 

6
3

 

 

Varimax Rotated Maximum Likelihood Solution 

 1 2 3 

V9 .407 .071 .070 

V11 .403 .067 .067 

V10 .389 .054 .054 

V13 .301 .048 .048 

V12 .299 .046 .047 

V15 .198 .029 .030 

V16 .194 .027 .027 

V14 .180 .015 .015 

V17 .060 .393 .059 

V18 .056 .391 .056 

V19 .046 .381 .047 

V21 .045 .295 .044 

V20 .042 .293 .042 

V24 .037 .203 .036 

V22 .027 .194 .026 

V23 .023 .191 .024 

V2 .057 .055 .390 

V3 .051 .051 .386 

V1 .040 .041 .375 

V5 .056 .055 .305 

V4 .032 .032 .283 

V8 .034 .033 .201 

V7 .034 .033 .200 

V6 .028 .028 .195 
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Twenty Four Variables, Eight Factors, High Communality 

1 1.000            

2 0.552 1.000           

3 0.480 0.436 1.000          

4 0.183 0.180 0.161 1.000         

5 0.162 0.159 0.142 0.573 1.000        

6 0.124 0.123 0.109 0.475 0.417 1.000       

7 0.178 0.174 0.156 0.198 0.176 0.135 1.000      

8 0.154 0.151 0.136 0.172 0.153 0.117 0.559 1.000     

9 0.137 0.135 0.120 0.153 0.135 0.104 0.485 0.423 1.000    

10 0.188 0.186 0.166 0.211 0.186 0.143 0.204 0.178 0.158 1.000   

11 0.154 0.152 0.135 0.172 0.152 0.117 0.167 0.145 0.129 0.569 1.000  

12 0.127 0.125 0.111 0.141 0.125 0.097 0.137 0.120 0.106 0.482 0.413 1.000 

13 0.179 0.176 0.157 0.200 0.177 0.136 0.194 0.169 0.150 0.206 0.168 0.139 

14 0.155 0.153 0.136 0.173 0.153 0.119 0.168 0.146 0.130 0.178 0.146 0.121 

15 0.129 0.126 0.113 0.144 0.127 0.097 0.140 0.121 0.107 0.148 0.121 0.099 

16 0.181 0.178 0.159 0.202 0.179 0.137 0.196 0.171 0.152 0.208 0.170 0.141 

17 0.157 0.155 0.138 0.175 0.155 0.120 0.170 0.147 0.132 0.180 0.148 0.122 

18 0.141 0.140 0.124 0.158 0.139 0.108 0.153 0.133 0.119 0.163 0.133 0.110 

19 0.174 0.170 0.152 0.194 0.172 0.132 0.188 0.164 0.145 0.199 0.163 0.134 

20 0.165 0.164 0.146 0.185 0.163 0.126 0.179 0.156 0.139 0.191 0.156 0.128 

21 0.126 0.123 0.110 0.140 0.124 0.095 0.137 0.119 0.105 0.144 0.118 0.097 

22 0.177 0.175 0.156 0.199 0.176 0.135 0.193 0.167 0.149 0.204 0.168 0.138 

23 0.150 0.148 0.131 0.167 0.148 0.114 0.162 0.141 0.126 0.172 0.141 0.117 

24 0.131 0.128 0.115 0.145 0.129 0.099 0.141 0.123 0.109 0.150 0.122 0.101 

 1 2 3 4 5 6 7 8 9 10 11 12 
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13 1.000            

14 0.562 1.000           

15 0.476 0.415 1.000          

16 0.198 0.171 0.142 1.000         

17 0.171 0.149 0.123 0.565 1.000        

18 0.155 0.135 0.110 0.493 0.430 1.000       

19 0.190 0.164 0.137 0.192 0.166 0.149 1.000      

20 0.181 0.157 0.130 0.183 0.159 0.143 0.567 1.000     

21 0.137 0.118 0.099 0.139 0.120 0.108 0.470 0.420 1.000    

22 0.195 0.169 0.140 0.196 0.171 0.154 0.188 0.180 0.136 1.000   

23 0.164 0.142 0.117 0.166 0.144 0.130 0.158 0.152 0.114 0.555 1.000  

24 0.142 0.123 0.102 0.144 0.125 0.112 0.138 0.132 0.100 0.478 0.413 1.000 

 13 14 15 16 17 18 19 20 21 22 23 24 
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Varimax rotated Maximum Likelihood Solution 

 1 2 3 4 5 6 7 8 

V16 .765 .095 .094 .094 .095 .094 .094 .093 

V17 .669 .081 .081 .081 .082 .081 .081 .081 

V18 .579 .075 .075 .075 .075 .074 .075 .074 

V7 .094 .762 .093 .092 .093 .092 .092 .091 

V8 .082 .666 .080 .080 .081 .080 .079 .079 

V9 .074 .574 .072 .072 .072 .072 .072 .072 

V4 .098 .097 .767 .097 .097 .096 .096 .095 

V5 .087 .087 .672 .086 .086 .086 .085 .085 

V6 .064 .063 .564 .063 .063 .062 .063 .062 

V10 .103 .102 .101 .770 .101 .100 .100 .099 

V11 .081 .080 .080 .666 .080 .080 .079 .079 

V12 .066 .065 .064 .566 .065 .064 .064 .064 

V1 .083 .082 .081 .081 .750 .082 .081 .081 

V2 .087 .085 .085 .086 .671 .084 .085 .085 

V3 .079 .078 .078 .078 .580 .077 .077 .076 

V19 .091 .090 .089 .089 .090 .760 .089 .088 

V20 .091 .089 .089 .090 .090 .673 .088 .088 

V21 .064 .064 .064 .063 .064 .566 .063 .063 

V13 .096 .095 .094 .094 .094 .093 .763 .093 

V14 .083 .081 .081 .081 .081 .080 .666 .080 

V15 .067 .067 .066 .066 .067 .066 .567 .065 

V22 .095 .094 .094 .093 .094 .093 .093 .762 

V23 .079 .077 .077 .078 .078 .077 .077 .662 

V24 .069 .068 .067 .067 .068 .068 .067 .569 
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Twenty Four Variables, Eight Factors, Wide Communalities 

1 1.000            

2 0.402 1.000           

3 0.158 0.098 1.000          

4 0.192 0.117 0.044 1.000         

5 0.131 0.080 0.030 0.406 1.000        

6 0.044 0.028 0.010 0.154 0.099 1.000       

7 0.206 0.126 0.047 0.198 0.137 0.046 1.000      

8 0.124 0.076 0.029 0.119 0.083 0.028 0.409 1.000     

9 0.050 0.031 0.011 0.049 0.033 0.011 0.164 0.101 1.000    

10 0.195 0.119 0.045 0.187 0.128 0.043 0.202 0.121 0.049 1.000   

11 0.128 0.079 0.029 0.123 0.084 0.029 0.132 0.080 0.032 0.405 1.000  

12 0.051 0.031 0.012 0.049 0.033 0.011 0.052 0.031 0.013 0.162 0.103 1.000 

13 0.204 0.126 0.047 0.197 0.135 0.046 0.213 0.129 0.051 0.200 0.131 0.051 

14 0.132 0.081 0.030 0.127 0.087 0.029 0.137 0.082 0.033 0.129 0.085 0.034 

15 0.044 0.028 0.010 0.043 0.029 0.010 0.046 0.028 0.011 0.044 0.029 0.011 

16 0.195 0.120 0.045 0.188 0.129 0.044 0.203 0.123 0.049 0.191 0.126 0.050 

17 0.118 0.073 0.027 0.114 0.078 0.026 0.122 0.074 0.030 0.116 0.076 0.030 

18 0.049 0.030 0.011 0.047 0.032 0.011 0.050 0.030 0.012 0.047 0.032 0.012 

19 0.207 0.126 0.048 0.199 0.137 0.046 0.215 0.130 0.052 0.202 0.133 0.052 

20 0.117 0.072 0.027 0.113 0.078 0.027 0.122 0.074 0.029 0.115 0.076 0.029 

21 0.049 0.030 0.011 0.048 0.033 0.011 0.051 0.031 0.012 0.048 0.031 0.012 

22 0.202 0.123 0.047 0.194 0.134 0.045 0.210 0.127 0.051 0.198 0.130 0.051 

23 0.133 0.081 0.030 0.128 0.088 0.029 0.138 0.083 0.033 0.130 0.085 0.034 

24 0.057 0.035 0.013 0.055 0.037 0.012 0.059 0.035 0.014 0.056 0.036 0.015 

 1 2 3 4 5 6 7 8 9 10 11 12 
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13 1.000            

14 0.416 1.000           

15 0.158 0.099 1.000          

16 0.201 0.130 0.044 1.000         

17 0.122 0.078 0.027 0.396 1.000        

18 0.050 0.032 0.011 0.160 0.099 1.000       

19 0.213 0.137 0.046 0.204 0.123 0.050 1.000      

20 0.122 0.078 0.027 0.116 0.070 0.029 0.403 1.000     

21 0.051 0.032 0.011 0.049 0.029 0.012 0.163 0.099 1.000    

22 0.208 0.134 0.045 0.199 0.120 0.049 0.211 0.120 0.050 1.000   

23 0.137 0.088 0.030 0.130 0.079 0.032 0.138 0.079 0.033 0.415 1.000  

24 0.058 0.037 0.013 0.055 0.034 0.014 0.059 0.033 0.014 0.169 0.108 1.000 

 13 14 15 16 17 18 19 20 21 22 23 24 
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Varimax Rotated Maximum Likelihood Solution 

 1 2 3 4 5 6 7 8 

V7 .527 -.465 -.348 -.197 .035 -.063 -.030 -.031 

V19 .526 -.022 .460 -.400 .039 -.082 -.037 -.035 

V13 .524 .480 -.319 -.215 .025 -.067 -.032 -.026 

V22 .513 -.004 .057 .233 -.495 -.268 -.081 -.062 

V1 .503 .008 .072 .337 .442 -.266 -.066 -.061 

V10 .490 .002 .040 .131 -.008 .477 -.366 -.125 

V14 .335 .300 -.199 -.134 .016 -.041 -.020 -.016 

V23 .334 -.003 .036 .148 -.313 -.169 -.051 -.039 

V8 .321 -.292 -.218 -.124 .022 -.040 -.018 -.019 

V11 .319 .002 .025 .083 -.005 .300 -.229 -.079 

V2 .309 .006 .045 .211 .277 -.167 -.041 -.038 

V20 .307 -.013 .289 -.253 .025 -.052 -.023 -.022 

V24 .141 -.001 .015 .060 -.125 -.067 -.021 -.015 

V9 .129 -.117 -.086 -.048 .009 -.016 -.007 -.007 

V21 .127 -.006 .116 -.101 .010 -.021 -.009 -.008 

V12 .126 .000 .011 .034 -.002 .120 -.092 -.031 

V3 .118 .002 .018 .084 .110 -.067 -.016 -.015 

V15 .118 .120 -.080 -.054 .006 -.017 -.008 -.007 

V16 .490 .004 .033 .098 -.019 .215 .534 -.229 

V17 .299 .003 .020 .063 -.011 .136 .337 -.145 

V18 .122 .002 .008 .025 -.004 .055 .135 -.058 

V4 .480 -.002 .030 .081 -.010 .116 .108 .604 

V5 .324 -.001 .018 .050 -.007 .073 .068 .381 

V6 .113 .000 .007 .019 -.003 .029 .027 .152 
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Twenty Four Variables, Eight Factors, Low Communalities  

1 1.000            

2 0.115 1.000           

3 0.075 0.056 1.000          

4 0.043 0.031 0.020 1.000         

5 0.030 0.022 0.014 0.115 1.000        

6 0.019 0.014 0.008 0.075 0.055 1.000       

7 0.047 0.034 0.021 0.048 0.033 0.020 1.000      

8 0.032 0.023 0.014 0.032 0.022 0.014 0.119 1.000     

9 0.021 0.016 0.010 0.022 0.015 0.009 0.080 0.058 1.000    

10 0.042 0.030 0.019 0.043 0.029 0.019 0.047 0.032 0.021 1.000   

11 0.038 0.028 0.017 0.039 0.027 0.017 0.043 0.029 0.019 0.122 1.000  

12 0.029 0.021 0.012 0.029 0.020 0.013 0.032 0.022 0.014 0.085 0.069 1.000 

13 0.039 0.029 0.018 0.040 0.028 0.017 0.043 0.029 0.020 0.038 0.035 0.026 

14 0.035 0.025 0.016 0.036 0.025 0.015 0.039 0.026 0.018 0.035 0.032 0.024 

15 0.022 0.016 0.010 0.022 0.016 0.010 0.024 0.016 0.011 0.022 0.020 0.015 

16 0.041 0.030 0.018 0.042 0.029 0.018 0.045 0.031 0.021 0.041 0.037 0.028 

17 0.037 0.027 0.016 0.038 0.026 0.016 0.041 0.027 0.019 0.037 0.034 0.025 

18 0.027 0.020 0.012 0.028 0.019 0.012 0.030 0.020 0.014 0.027 0.026 0.019 

19 0.045 0.032 0.020 0.046 0.031 0.020 0.050 0.034 0.022 0.045 0.041 0.031 

20 0.036 0.026 0.016 0.037 0.025 0.016 0.040 0.027 0.018 0.036 0.033 0.024 

21 0.023 0.017 0.010 0.024 0.016 0.011 0.026 0.018 0.012 0.023 0.022 0.017 

22 0.047 0.034 0.021 0.048 0.033 0.021 0.053 0.036 0.023 0.047 0.043 0.033 

23 0.033 0.025 0.015 0.034 0.024 0.015 0.037 0.025 0.017 0.033 0.030 0.023 

24 0.025 0.018 0.011 0.025 0.017 0.011 0.027 0.019 0.012 0.025 0.023 0.017 

 1 2 3 4 5 6 7 8 9 10 11 12 
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13 1.000            

14 0.116 1.000           

15 0.076 0.060 1.000          

16 0.038 0.034 0.021 1.000         

17 0.034 0.030 0.019 0.120 1.000        

18 0.025 0.023 0.015 0.082 0.066 1.000       

19 0.041 0.037 0.023 0.044 0.039 0.029 1.000      

20 0.033 0.030 0.018 0.035 0.031 0.023 0.122 1.000     

21 0.021 0.019 0.012 0.023 0.021 0.016 0.081 0.062 1.000    

22 0.042 0.040 0.024 0.046 0.041 0.031 0.050 0.040 0.026 1.000   

23 0.031 0.027 0.018 0.032 0.029 0.022 0.035 0.028 0.019 0.121 1.000  

24 0.022 0.021 0.012 0.024 0.022 0.016 0.026 0.021 0.014 0.084 0.061 1.000 

 13 14 15 16 17 18 19 20 21 22 23 24 
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Varimax Rotated Maximum Likelihood Solution 

 1 2 3 4 5 6 7 8 

V10 .375 .042 .042 .042 .040 .039 .038 .038 

V11 .296 .042 .042 .043 .040 .040 .038 .037 

V12 .203 .034 .033 .034 .032 .030 .029 .029 

V22 .053 .386 .050 .050 .048 .047 .045 .045 

V23 .035 .284 .034 .035 .033 .033 .032 .031 

V24 .028 .195 .027 .027 .026 .025 .024 .024 

V19 .048 .047 .382 .047 .045 .044 .041 .042 

V20 .039 .038 .289 .038 .037 .037 .035 .035 

V21 .027 .025 .191 .026 .023 .023 .022 .022 

V16 .041 .041 .040 .373 .039 .039 .037 .037 

V17 .041 .039 .040 .293 .038 .038 .036 .036 

V18 .033 .031 .031 .199 .030 .029 .028 .027 

V7 .053 .051 .051 .051 .384 .048 .045 .046 

V8 .034 .034 .032 .033 .282 .030 .028 .029 

V9 .022 .021 .022 .022 .188 .022 .021 .020 

V13 .038 .037 .038 .039 .036 .372 .036 .036 

V14 .040 .039 .038 .038 .037 .285 .034 .035 

V15 .024 .023 .023 .024 .022 .189 .021 .021 

V4 .047 .046 .046 .047 .045 .044 .377 .042 

V5 .031 .030 .030 .031 .030 .030 .279 .028 

V6 .019 .019 .018 .019 .018 .018 .184 .018 

V1 .047 .046 .045 .045 .044 .042 .040 .375 

V2 .033 .032 .032 .033 .030 .030 .029 .280 

V3 .019 .018 .019 .019 .018 .018 .018 .184 
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