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ABSTRACT OF THE DISSERTATION 

Expression and Function of Ca
2+

-Activated K
+
 Channels in 

Uterine Arteries 

 

by 

 

Ronghui Zhu  

Doctor of Philosophy, Graduate Program in Biochemistry 

Loma Linda University, December 2013 

Dr. Lubo Zhang, Chairperson 

 

 

Chronic hypoxia during pregnancy is one of the most common insults to the 

maternal cardiovascular system and fetal development, and is associated with increased 

uterine vascular tone and heightened risk of preeclampsia and fetal intrauterine growth 

restriction (IUGR). The present study tested the hypothesis that calcium-activated 

potassium (KCa) channels play an essential role in uterine vascular adaptation to 

pregnancy, which is inhibited by chronic hypoxia during gestation. Uterine arteries (UAs) 

were isolated from nonpregnant ewes (NPUAs) and near-term pregnant ewes (PUAs) that 

had been maintained at sea level (~300 m) or exposed to high altitude (3,801 m) for 110 

days. In normoxic animals, both BKCa and SKCa channels were expressed in uterine 

arterial smooth muscle cells and endothelial cells. Pregnancy selectively enhanced the 

protein abundances and mRNA levels of BKCa subunit 1 and SKCa subtype 2 and 3 in 

uterine arteries, resulting in enhanced both BKCa and SKCa channels activities and their-

mediated relaxations, and decreased uterine vascular tone in PUAs as compared with 

those in NPUAs. Chronic treatment of NPUA with 17β-estradiol (E2β) and progesterone  

significantly increased BKCa and SKCa channel exspression and enhanced both BKCa 

activator NS1619- and SKCa activator NS309-induced relaxations of NPUAs. Chronic 
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hypoxia during gestation significantly attenuated both NS1619- and NS309-induced 

relaxations of UAs, which was associated with decreases in BKCa and SKCa channel 

expression and their activities. Chronic hypoxia enhanced the inhibitory role of oxidative 

stress and PKC on KCa channel activities and their-mediated uterine arterial relaxation. In 

addition, chronic hypoxia ettenuated the effect of 17β-estradiol and progesterone in KCa-

mediated relaxations in NPUAs. In conclusion, our results suggest an important role of 

KCa channels in the regulation of basal uterine vascular tone. Pregnancy-mediated 

decrease in uterine vascular tone is associated with an enhanced KCa channel expression 

and their activities, which is regulated by steroid hormones. Chronic hypoxia during 

gestation attenuates the effect of steroid hormone on KCa channels, resulting in decreased 

KCa channel-mediated relaxations and increased uterine vascular tone. 
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CHAPTER ONE 

INTRODUCTION 

 

Pregnancy is associated with a decrease in uterine vascular tone and a significant 

increase in uterine blood flow that optimizes the delivery of nutrients and oxygen to the 

developing fetus. The adaptation of the uterine circulation to pregnancy may be mediated, 

at least in part by vascular remodeling (Osol and Mandala, 2009), enhanced vasodilation 

(Gangula et al., 1999; Nelson et al., 1998; Ni et al., 1997; Xiao et al., 2001a), blunted 

vasoconstrictor response (Cooke et al., 2003;Nelson et al., 1995b; Weiner et al., 1991) 

and decreased vascular tone (Hu et al., 2011; Nelson et al., 1998; Xiao et al., 2001a).  

However, these adaptive changes in the uterine circulation during gestation are 

modulated by hypoxia (Jackson et al., 2005; Keyes et al., 1998; Nelson et al., 1995b; 

Rosenfeld et al., 2009; Xiao et al., 2012). Hypoxia is a pathophysiological condition in 

which the body as a whole or a region of the body is deprived of adequate oxygen supply.  

Both short-term (acute) hypoxia and long-term (chronic) hypoxia may result in 

cardiovascular dysfunction.  High altitude is considered above 2500 meters (8000ft) 

(Martin et al., 1998). High-altitude chronic hypoxia blunted pregnancy-induced reduction 

of myogenic tone in uterine arteries (Chang et al., 2009; Hu et al., 2012), which in turn 

attenuated pregnancy-induced increase in uterine blood flow (Julia et al., 2008; Zamudio 

et al., 1995 a, b). For example, compare to the sea level, pregnancies at high altitude may 

cause significantly depressed maternal arterial pO2 and changes in placental growth 

(Zamudio, 2003).  In addition, blood pressure in high altitude pregnant women has been 
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found inversely related with arterial O2 saturation. (Moore et al., 1998; Moore et al., 

2001).  Previous studies also suggested that women who reside at high-altitude were 

predisposed to numerous pathological conditions associated with low blood volume or 

altered vascular reactivity, as well as diabetes, lupus, and vasculitis (Zamudio et al., 1995 

a, b). These findings have provided evidence to support that the adverse impact of 

chronic hypoxia on uterine circulation may be one of the most common insults to the 

maternal cardiovascular system and fetal development (George et al., 2011; Julian et al., 

2008; Khalil et al., 2002; Moore et al., 2011; Palmer et al., 1999; Zamudio et al., 1995a). 

 Women at high altitude have a lower blood volume than women at moderate-

altitude during pregnancy, and have a higher risk of developing preeclampsia and 

intrauterine growth restriction (IUGR), which have been observed in many regions of the 

world including Middle East, North and South America and Tibet people in China 

(Zamudio, 2007). Moreover, the blood volume expansion during pregnancy has been 

found decreased in women who developed preeclampsia or transient hypertension 

compared with health women (Longo, 1984; Zamudio, 2003). Therefore, IUGR has been 

found related with low blood volume in pregnancy (Croall et al., 1978; Gibson, 1973; 

Goodlin et al., 1981), which is associated with increased risk of premature birth and 

complications of pregnancy other than hypertension (Goodlin et al., 1981). Furthermore, 

decreasing uterine artery blood flow has been found in pregnant women at high altitude, 

which precedes the symptoms of preeclampsia (Zamudio et al., 1995 a, b; Zamudio, 

2007). Overall, the susceptibility to develop preeclampsia and IUGR is significantly 

increased under conditions of maternal hypoxia (Palmer et al., 1992; Zamudio et al., 

1993). 
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KCa channels and Vasodilation 

Ion channels in vascular smooth muscle play an important role in the regulation of 

microvascular function. Potassium (K
+
) channels are highly expressed in the plasma 

membrane of arteriolar smooth muscle cells and K
+
 currents contribute to modulating 

membrane potential that in turn controls the activity of Ca
2+

 channels in vascular smooth 

muscle cells and regulates vascular tone (Jackson, 2005; Keyes et al., 1998; Nelso and 

Quayle, 1995; Rosenfeld et al., 2009).  It has been demonstrated that the regulation of 

potassium channel activities plays an important role during pregnancy to make sure that 

the myometrial tranquility during gestation is maintained until contractions are necessary 

in labor (Pierce et al., 2008). In general, the activation of K
+
 channels in arterial smooth 

muscle causes a decrease in vascular tone and an increase in blood flow via vasodilation.  

In contrast, the inhibition of K
+
 channels results in vasoconstriction.  Pregnancy is 

associated with increased sex steroids hormones/receptors levels in uterine vasculature. 

The increased steroid hormones/receptors differentially attenuate protein kinase C 

(PKC)-mediated signaling in uterine arterial smooth muscle cells (Xiao et al., 2006; 

Zhang et al., 2006), leading to differential upregulation of K
+
 channels expression and/or 

their activities, which are likely to contribute to the decreased uterine vascular tone and 

increased uterine blood flow in pregnancy.  Exposed to hypoxia during pregnancy 

attenuates the effects of sex steroid hormones/receptors, leading to enhanced PKC 

activation in pregnant uterine arteries.  The selective inhibition of K
+
 channels activities 

by the increased PKC activation is likely to contribute significantly to the maladaptation 

of uterine vascular hemodynamics in pregnancy complicated by preeclampsia and fetal 

intrauterine growth restriction in response to hypoxia. Four types of K
+
 channels have 
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been identified in most arterials smooth muscle: ATP sensitive (KATP), Ca
2+

 activated 

(KCa), voltage dependent (Kv) and inward rectifier (Kir)(Nelson and Quayle, 1995; 

Standen and Quayle, 1998).  As the knowledge of structures and properties of each K
+
 

channels and their physiological and pathological roles in uterine vasculature continues to 

grow, it should become possible to develop pharmacologic therapeutic strategies 

targeting on K
+
 channels to prevent or treat uterine vascular dysfunction in pregnancy 

complications such as diabetes and hypertension in gestation, preeclampsia and fetal 

intrauterine growth restriction.  

Ca
2+

-activated K
+
 (KCa) channels, which contribute significantly to setting the 

membrane potential, play an important role in regulating the excitability of vascular 

smooth muscle cells (VSMCs) (Figure 1) (Ledoux et al., 2006; Jackson, 2005). Based on 

their conductance, KCa channels are divided into large-conductance (BKCa), intermediate-

conductance (IKCa), and small-conductance (SKCa) channels (Wei et al., 2005). In 

VSMCs, opening of KCa channels causes membrane hyperpolarization, leading to closure 

of L-type voltage-gated Ca
2+

 channels (CaV) and subsequent vasodilation. In contrast, 

closure of KCa channels triggers membrane depolarization, resulting in opening of CaV 

and vasoconstriction.  In addition, hyperpolarization produced by the activation of SKCa 

and IKCa in endothelial cells could be transmitted to VSMCs via the myoendothelial gap 

junction (Félétou, 2009; Kohler et al., 2010). Activities of KCa channels are under tight 

control of external stimuli, such as vasoactive substances and environmental changes 

(Ledoux et al., 2006; Hu et al., 2012).  
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Figure 1. Role of KCa Channel Regulated Vascular Tone in Smooth Muscle Cell. 

Activation BKCa and SKCa channel by increasing [Ca
2+

]i in smooth muscle cells enables 

K
+
 efflux, and causing membrane hyperpolarization, leading the voltage-gated Ca

2+
 

channel closing and decreasing [Ca
2+

]i, then resulting in relaxation. BKCa and SKCa 

channel also can be opened by their blockers and openers, separately.  

 

 

 

 

 

 



6 

Large-conductance (200~250 pS), Ca
2+

-activated K
+
 channels are activated both 

by changes in intracellular Ca
2+

 concentration and membrane depolarization.  The 

channels have a high single-channel conductance, thus it is also called as “big” KCa 

channels (BKCa channels) (Nelson, 1993).  BKCa channels are comprised of a pore 

forming -subunit and four regulatory -subunits. The -subunit has seven 

transmembrane domains (S0-S6) (Nelson, 1993; Nelson et al., 1990; Wellner et al., 

1996). In addition, the BKCa channels have four -subunit isoforms (1, 2, 3, 4), each 

with two transmembrane domains. It has been shown that the 1-subunit predominates in 

vascular smooth muscle (Ledoux et al., 2006; Tanaka et al., 2004).  The major role of 1-

subunit is to enhance the apparent Ca
2+

 sensitivity of the channel, modifying the 

channel’s gating properties (Clapp and Jabr, 2003; Cox and Rusch, 2002; Meera et al., 

1996; Waldron and Cole, 1999).  

BKCa channels play an important physiologic role in regulating vascular smooth 

muscle contractility and blood pressure (Ledoux et al., 2006; Tanaka et al., 2004; 

Korovkina and England, 2002).  Studies in BK 1-subunit knockout mice have 

demonstrated that Ca
2+

 spark-induced BK current is significantly reduced and the mean 

arterial blood pressure is elevated in the 1-subunit-null mice, leading to left ventricular 

hypertrophy (Brenner et al., 2000).  In addition, BKCa channels also play a key role in the 

regulation of myogenic tone. Increased blood pressure induces membrane depolarization 

and increases [Ca
2+

]i leading to the activation of BKCa channels (Nelson and Quayle, 

1995).  Activation of BKCa channels in turn enhances K
+
 efflux and counteracts 

depolarization and constriction-induced by pressure or vasoconstrictors.  

BKCa channels are very effectively blocked by the scorpion peptide toxin 
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charybdotoxin (CTX), the related peptide iberiotoxin (IBTX) and slotoxin (Wallner et al., 

1995; Miller et al., 1985).  These blockers bind to the outer vestibule of the channel to 

physically occlude the pore and prevent ion conduction.  Several tremorgenic indole 

alkaloids molecules such as paxilline, penitrem A and verruculogen are also potent 

blockers of BKCa channels.  In addition, tetraethylammonium (TEA) is a broad-spectrum 

K
+
 channel blocker.  However, relatively low concentrations of TEA (≤ 1 mM) can 

selectively block BKCa channel. BKCa channel openers comprise a large series of 

synthetic benzimidazolone derivatives such as NS004 and NS1619, biaryl amines, 

biarylureas, pyridyl amines, 3-aryloxindoles, benzopyrans, dihydropyridines, and natural 

modulators such as dihydrosoyasaponin-1 (DHS-1) and flavonoids.  Both NS004 and 

NS1619 are known as α-subunit-selective BKCa openers. NS1619 is the only compound 

without any effects on other ion channels. Other than benzimidazolone derivatives, a 

wide structural diversity of drugs such as carbonic anhydrase inhibitors has also been 

shown BKCa activation properties.  In addition, various drugs such as niflumic, 

flufenamic, and mefenamic acids, as well as 17-β estradiol, can activate BKCa channels in 

a nonselective manner (Archer et al., 1994; Gelband et al., 1993; Hu et al, 1996; Jackson, 

2005; Nelson and Quayle, 1995; Wang et al., 1997). 

Whereas the BKCa channel is preferentially expressed in VSMCs, IKCa and SKCa 

channels are initially believed expressed predominantly in endothelial cells (Ledoux et 

al., 2006; Hu et al., 2012). It was believed that the activation of SKCa and IKCa channels 

indirectly affected smooth muscles through endothelium-dependent mechanisms which 

associated with generation of nitric oxide in the endothelium and smooth muscle cells 

(Wei et al., 2005; Kohler et al., 2010). This notion was supported by the finding that a 
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genetic deficit of SK3 or IK1 channels caused hypertension by abolishing endothelium-

derived hyperpolarizing factor-mediated vasodilation (Brahler et al., 2009). However, the 

presence of SKCa channels in VSMCs has been detected in several vascular beds by 

immunohistochemistry (Chen et al., 2004; Potocnik et al., 2009; Sorensen et al., 2011). 

SKCa channels are also found expressed in myometrium and regulated by oxygen (Pierce 

et al., 2010). The SKCa channels can be activated by NS309 and selectively blocked by 

apmine (Dalsgaard et al., 2010; Zhu et al., 2013 a). 

 

The Function of KCa during Pregnancy and Hypoxia 

Role of BKCa Channels in Uterine Vascular Adaptation to 

Pregnancy and Hypoxia 

Both α and β1-subunits of BKCa channels are expressed exclusively in ovine 

uterine arterial smooth muscle cells with no evidence of their existence in the 

endothelium (Rosenfeld et al., 2009; Nagar et al., 2005; Khan et al., 2010).  Recent 

studies have shown a pregnancy-related modification of BKCa channels gene expression 

patterns in uterine vasculature (Rosenfeld et al., 2009; Rosenfeld et al., 2001; Rosenfeld, 

1984; Rosenfeld, 2005).  Three α-subunit species were found in uterine arterial smooth 

muscle of nonpregnant sheep with 83, 100, and 105 kDa.  During pregnancy, there was 

an absence of the 83-kda protein and a marked decrease in the 105-kDa protein, both 

reappearing ≥30 days after delivery.  The 100-kDa α-subunit rises during pregnancy, but 

it does not appear to equal the fall in the other two species, suggesting that total channel 

density may actually fall in pregnancy (Rosenfeld et al., 2009).  Other studies showed 

that the α-subunit of 100 kDa was not significantly different in uterine arteries between 

nonpregnant and pregnant sheep (Hu et al., 2011). One possible reason for this apparent 
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difference may be because of different sizes of the vessels used (Rosenfeld et al., 2009; 

Hu et al., 2011).  BKCa β2-subunits are present in ovine uterine arterial smooth muscle 

cells, but the levels are low and unchanged throughout the reproductive cycle.  However, 

the β1-subunit expression is increased in pregnant uterine arteries as compared with 

nonpregnant vessels (Rosenfeld et al., 2009; Hu et al., 2011). The increased β1-subunit 

expression during pregnancy parallels the rise in uterine blood flow (Rosenfeld et al., 

2009; Rosenfeld, 1984; Rosenfeld et al., 2005).  Electrophysiological studies 

demonstrated a greater whole-cell K
+
 current density in pregnant, as compared with 

nonpregnant, uterine arteries. Both of the tetraethylammonium (TEA) and iberiotoxin 

inhibit K
+
 currents to the same extent in uterine arterial myocytes.  This suggests that the 

BKCa channel current density is significantly increased in uterine arteries of pregnant 

animals (Hu et al., 2011).  Upregulation of β1-subunit expression during pregnancy is 

likely to enhance the Ca
2+

 sensitivity of BKCa channels and facilitate the activation of the 

channel and the consequent reduction in uterine vascular tone in pregnancy.  Indeed, 

previous studies have demonstrated that intra-arterial infusion of TEA into the uterine 

artery circulation of late-gestation sheep causes a decrease of basal uterine blood flow 

from 50% to 80% in the absence of systemic effects (Rosenfeld et al., 2001; Rosenfeld, 

2005).  This is consistent with the recent findings that TEA inhibited K
+
 currents by 53% 

in pregnant uterine arteries, and TEA significantly increased pressure-dependent vascular 

tone in ovine pregnant uterine arteries and eliminated the difference of the myogenic 

response between nonpregnant and pregnant uterine arteries (Hu et al., 2011).  These 

observations suggest that the heightened BKCa channels activity is one of important 

mechanisms in regulating uterine vascular tone and maintaining uteroplacental blood 
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flow in pregnancy. 

In many vascular beds, hypoxia causes local vasodilation.  This response 

increases blood flow to the affected organ and thus promotes restoration of tissue 

oxygenation.  Many studies suggest that the hypoxia-induced vasodilation and blunted 

vasoconstriction are associated with an increased BKCa channels expression and/or their 

activities in the vasculatures (Long et al., 2002; Gebremedhin et al., 1994; Naik and 

Walker, 2003; Naik and Walker, 2006; Earleye et al., 2003). However, in the lung, 

hypoxia causes local vasoconstriction. Paradoxically, the hypoxia-induced pulmonary 

hypertension is associated with an increased expression of BKCa channels (Resnik et al., 

2006; Ahn et al., 2012), which might suggest an adaptive mechanism counteracting 

pulmonary hypertension since BKCa channel activation serves as a feedback modulator of 

vascular tone when cytoplasmic calcium becomes elevated (Nelson and Quayle, 1995).  

In the uteroplacental circulation, hypoxia-induced fetoplacental vascular constriction has 

been well demonstrated (Hampl and Jakoubek, 2009). The hypoxia-induced fetoplacental 

vascular constriction is largely mediated by hypoxic inhibition of Kv channels rather than 

its effect on BKCa channels in smooth muscle of small fetoplacental arteries (Hampl et 

al., 2002).  In pregnant sheep, chronic hypoxia enhances uterine vascular tone (Chang et 

al., 2009). Although the mechanisms underlying chronic hypoxia-mediated elevation of 

uterine vascular tone in pregnant animals are not completely understood, the reduction of 

uterine vascular BKCa channel activities is a possible mechanism, given a key role of 

BKCa channels in the regulation of uterine vascular tone during normal course of 

pregnancy (Hu et al., 2011; Zhu et al., 2013 b).   

 



11 

Role of SKCa Channels in Uterine Vascular Adaptation to 

Pregnancy and Hypoxia 

Uterine blood flow increases during pregnancy to ensure the optimal growth and 

development of the fetus. Remodeling of uterine vasculature (Osol and Mandala, 2009), 

reduced pressure-dependent myogenic reactivity (Hu et al., 2011; Veerareddy et al., 2002; 

Xiao et al., 2006), blunted vasoconstrictor response (Cooke and Davidge, 2003; Nelson et 

al., 1995; Weiner et al., 1991) and enhanced vasodilator response (Gangula et al., 1999; 

Nelson et al., 1998; Ni et al., 1997; Xiao et al., 2001a), all attribute to this hemodynamic 

change. Vascular tone constitutes the major determinant of the resistance of blood 

vessels, which regulates blood pressure and the distribution of blood flow between and 

within tissues and organs. Regulation of vascular tone in uterine arteries contributes to 

maintain normal pregnancy (Xiao et al., 2006; Xiao et al., 2009). Previous findings 

demonstrated that BKCa channels in uterine arteries during pregnancy were vital for 

decreasing vascular tone and contractility (Hu et al., 2011). Although the function of 

SKCa channel in uterine arteries during pregnancy is not clear, recent studies have 

provided evidence linking pregnancy in regulating SKCa channel expression in rat and 

human myometrium (Noble et al., 2010; Mazzone and Buxton, 2003). Moreover, recent 

studies demonstrated that uterine arteries from nonpregnant transgenic SK3
T/T

 mice 

overexpressed SK3 channels had larger basal diameters and blunted vasoconstrictor 

response compared to those from wild-type animals (Rada et al., 2012).  Lines of 

evidence have also implicated SKCa channels in regulating excitability and contraction of 

smooth muscle cells from uterus and urinary bladder (Brown et al., 2007; Herrera et al., 

2003; Thorneloe et al., 2008). Furthermore, previous studies have shown that sex steroid 

hormones play a vital role in downregulating uterine artery pressure-dependent myogenic 
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tone in pregnancy (Xiao et al., 2009).  Activation of estrogen receptors can alter gene 

transcription, which has profound impacts on cardiovascular function (Murphy, 2011). 

Pregnancy increased the expression of estrogen receptor-α in uterine arteries (Chang et 

al., 2010). Our group recently demonstrated that 17β-estradiol was responsible for 

heightened expression and activity of BKCa channels in uterine arteries of pregnant sheep 

(Hu et al., 2011). Similarly, the expression of SK3 channels is also regulated by 17β-

estradiol in recombinant expression system (Jacobson et al., 2003), hypothalamus (Bosch 

et al., 2002), and myometrium (Pierce and England, 2010). Therefore, sex steroid 

hormones play a curial role in the pregnancy-mediated regulations of Kca channel 

expression and function in the uterine vasculature.  

There is a growing number of evidence to suggest that chronic hypoxia abrogate 

the role of KCa channels in the regulation of myogenic reactivity in arteries. Previous 

findings demonstrated that IKCa channels were downregulated and EDHF-mediated 

relaxations were impaired in rat pulmonary arteries when expose to chronic hypoxia 

(Kroigaard et al., 2013). Our recent studies demonstrated that chronic hypoxia abolished 

the regulatory role of BKCa in uterine arteries in response to pregnancy (Hu et al., 2012). 

Moreover, chronic hypoxia during gestation significantly suppressed estrogen receptor- 

(ER) expression in uterine arteries without altering maternal plasma estrogen levels 

(Chang et al., 2010). More recent studies demonstrated that heightened promoter 

methylation attributed to chronic hypoxia-mediated downregulation of ER gene 

expression (Dasgupta et al., 2012). These findings suggest the ablation of pregnancy-

induced upregulation of KCa channels by chronic hypoxia during gestation may occur at 

the genomic level. 
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KCa Channels and Sex Steroid Hormones 

Pregnancy is a state with substantially higher levels of estrogen and progesterone 

as compared with the nonpregnant state.  Growing evidence suggests that the increased 

levels of sex steroid hormones may regulate uterine vascular tone and uterine blood flow 

via alteration of BKCa channels-mediated signaling (Hu et al., 2011; Magness et al., 1989; 

Magness et al., 1998; Rosenfeld et al., 2009; Rosenfeld et al., 2005; Rosenfeld et al., 

1976).  In ovariectomized sheep or mice, the estrogen treatment enhanced 1-subunit 

mRNA and protein expression in uterine arteries and myometrial smooth muscle, which 

suggests a possible role of the steroid hormone in modulating BKCa channels expression 

(Nagar et al., 2005; Benkusky et al., 2002). Indeed, the direct treatment of uterine arteries 

from nonpregnant animals with estrogen and progesterone for 48 hours ex vivo 

significantly enhanced 1-subunit protein expression in uterine arterial smooth muscle 

(Hu et al., 2011).  The expression of β1 subunit was also found higher in the follicular 

phase as compared with the luteal phase of the ovarian cycle in nonpregnant sheep, 

probably because of relatively high estrogen levels that were produced endogenously by 

the ovaries (Khan et al., 2010; Rupnow et al., 2001). Furthermore, TEA had no 

significant effects on basal uterine vascular resistance and blood flow, but produced a 

dose-dependent inhibition of the estradiol-17 (E2)-induced rise in uterine blood flow 

when infused into the uterine arterial circulation of ovariectomized nonpregnant ewes 

(Rosenfeld et al., 2000). In addition, E2-mediated uterine vasodilation is also associated 

with BKCa channels activation (Rosenfeld et al., 2009; Rosenfeld et al., 1984; Rosenfeld 

et al., 2005; Magness et al., 1989; Rosenfeld et al., 2000; Byers et al., 2005; Wellman et 

al., 1996; Darkow et al., 1997; White et al., 1995). These observations suggest that the 
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regulation of uterine vascular tone by BKCa channels is modulated by sex steroids. 

As compared with estrogen, the effect of progesterone in the regulation of BKCa 

channels is less well established.  In contrast to estrogen, progesterone inhibits the BKCa 

channel current in Xenopus oocytes (Wong et al.,2008).  The inhibitory effect of 

progesterone on BKCa channels may partly explain its antagonism against estrogen-

mediated vasorelaxation as shown in vitro in porcine coronary arteries (Teoh and Man, 

1999).  Given the fact that progesterone plays an important role in regulating uterine 

blood flow during pregnancy (Byers et al., 2005; Perrot-Applanat et al., 1988), whether 

progesterone-mediated uterine vascular tone is regulated through modulation of BKCa 

channels needs to be further investigated.  

 

KCa Channels and Protein Kinase C 

The activation of protein kianse C (PKC) has been shown an inhibition of BKCa 

channels in various vascular beds (Lange et al., 1997; Minami et al., 1993). Studies in 

porcine coronary artery have demonstrated that PKC activators inhibit the BKCa channels 

activation by increasing in cytosolic free Ca
2+

 and phosphorylation of the channel protein 

(Lange et al., 1997; Minami et al., 1993). In addition, PKC-induced phsophorylation of 

the channel protein inhibits BKCa channels activities in smooth muscle, and decreases its 

sensitivity to be activated by cyclic guanosine monophosphate (cGMP)-dependent 

protein kinas I or protein kianse A (PKA) (Ledoux et al., 2006; Crozatier, 2006). Recent 

studies have shown that the activation of PKC by Phorbol 12,13-dibutyrate (PDBu) 

significantly inhibits the whole-cell K
+
 current in uterine arterial myocytes.  The 

inhibition of K
+
 currents by PDBu is significantly greater in the myocytes of pregnanat 

sheep than that in nonpregnant animals (Hu et al., 2011). It has been further demonstrated 
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that the PDBu-induced reduction of K
+
 currents is predominately mediated by inhibiting 

the BKCa channels.  PKC plays an important role in the regulation of vascular smooth 

muscle contractility (Baraban et al., 1985; Singer and Baker, 1987). The finding that the 

activation of PKC inhibited BKCa channels activity and increased pressure-dependent 

myogenic tone in pregnant uterine arteries provides a functional link between BKCa 

channels and PKC-mediated attenuation of myogenic tone of uterine arteries in 

pregnancy (Zhu et al., 2013 b). 

 

KCa Channels and Reactive Oxygen Species 

Reactive oxygen species (ROS) have been found to play an important role in 

regulating vascular smooth muscle cell function (Wolin et al., 2005). Enhanced ROS 

production is associated with pathogenesis of various vascular dysfunctions, such as 

preeclampsia and pulmonary hypertension (Buetler et al., 2004; Fike et al., 2008; 

Matsubara et al., 2010). Exposure to hypoxia alters ROS generation in vasculatures 

(Wolin et al., 2005; Waypa and Schumacker, 2010). Accumulating evidence suggests that 

ROS regulate vascular tone by altering ion channel function (Faraci, 2006; Paffett and 

Walker, 2007; Brakemeier et al. 2003). Activities of KCa channels in VSMCs are 

modulated by ROS (Brakemeier et al., 2003; Cheranov and Jaggar, 2004; Xiao et al., 

2013); and vasorelaxation induced by H2O2 is mediated by potassium channels (Faraci 

2006; Iidia and Katusic, 2000). Additionally, peroxynitrite (OONO
-
) inhibits BKCa 

channel activity, leading to reduced hyperpolarization-mediated vasodilation (Brzezinska, 

et al., 2000; Liu et al., 2002). Moreover, we recently demonstrated that heightened 

oxidative stress in uterine arteries suppresses BKCa channel activity, resulting in 
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increased myogenic reactivity during gestational hypoxia (Xiao et al., 2013). These 

studies suggest that ROS could alter vascular function via altering KCa channel function 

in VSMCs. It remains to be determined how ROS exerts its effect on KCa channels in 

uterine arteries. 

  

Central Hypothesis 

The central hypothesis of our project is that KCa channels participate in the 

regulation of uterine artery contractility during pregnancy; and this regulatory role of KCa 

channels is impaired by chronic hypoxia. This hypothesis will be tested in uterine arteries 

from normoxic and long-term high altitude hypoxic sheep with the following three 

specific aims. Aim 1, to determine the role of KCa channels in uterine vascular adaptation 

to pregnancy. Aim 2, to determine the role of KCa channels in uterine vascular adaptation 

to chronic hypoxia. Aim 3, to determine the molecular mechanisms underlying KCa-

mediated uterine vascular contractility in response to pregnancy and hypoxia. 

 

Significance 

Adverse effects of chronic hypoxia on uterine vascular adaptation in pregnancy 

are likely to contribute to impaired uteroplacental blood flow associated with chronic 

hypoxia during gestation, which is a major risk factor of preeclampsia and intrauterine 

growth restriction (IUGR) (Palmer et al., 1992; Zamudio et al., 1993). However, the 

mechanisms are not fully understood. Ca
2+

 is essential for excitation-contraction coupling 

of VSMCs. An elevation in intracellular Ca
2+

 concentrations activates BKCa and SKCa 

channels. Our previous findings suggested that upregulation of BKCa channels in uterine 
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arteries during pregnancy was vital for reduced uterine vascular tone and contractility 

(Hu et al., 2011).  Similar changes in SK3 channel expression and function in rat 

mesenteric arteries have been found in angiotensin II-induced hypertension (Hilgers and 

Webb, 2007). Moreover, the finding that suppression of SK3 expression elevated blood 

pressure (Taylor et al., 2003) also provided evidence to support that impairment of SKCa 

channel function plays an important role in the pathogenesis of hypertension. However, 

the role of SKCa channels and BKCa channels in regulating uterine vascular function is 

unknown. Thus, we have high expectation that our study will reveal a novel mechanism 

of KCa channels in regulating uterine vascular adaptation to pregnancy, and help improve 

the understanding of maladaptation of uteroplacental circulation by chronic hypoxia 

during gestation. Studies on the modulation of KCa expression and function by steroid 

hormones and the interaction of PKC and KCa channel function in response to pregnancy 

and hypoxia will provide new insights into mechanisms of this regulation. Moreover, KCa 

channel mRNA studies will provide future direction for research this regulation from 

molecular level. Furthermore, the proposed study may help develop new therapeutic 

strategies that enhance expression and activity of KCa channels, which should be an 

attractive tactic for the treatment of hypertension in pregnancy and preeclampsia.  
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Abstract 

Small conductance Ca
2+

-activated K
+
 (SKCa) channels are crucial in regulating 

vascular tone and blood pressure. The present study tested the hypothesis that SKCa 

channels play an important role in uterine vascular adaptation in pregnancy, which is 

inhibited by chronic hypoxia during gestation. Uterine arteries were isolated from 

nonpregnant and near-term pregnant sheep maintained at sea level (~300 m) or exposed 

to high-altitude (3801 m) hypoxia for 110 days. Immunohistochemistry revealed the 

presence of SKCa channels type 2 (SK2) and type 3 (SK3) in both smooth muscle and 

endothelium of uterine arteries.  The expression of SK2 and SK3 channels was 

significantly increased during pregnancy, which was inhibited by chronic hypoxia. In 

normoxic animals, both SKCa channel opener NS309 and a large-conductance (BKCa) 

channel opener NS1619 relaxed norepinephrine-contracted uterine arteries in pregnant 

but not nonpregnant sheep. These relaxations were inhibited by selective SKCa and BKCa 

channel blockers, respectively. NS309-induced relaxation was largely endothelium-

independent.  In high altitude hypoxic animals, neither NS1619 nor NS309 produced 

significant relaxation of uterine arteries in either nonpregnant or pregnant sheep. 

Similarly, the role of SKCa channels in regulating myogenic reactivity of uterine arteries 

in pregnant animals was abrogated by chronic hypoxia.  Accordingly, the enhanced SKCa 

channel activity in uterine arterial myocytes of pregnant animals was ablated by chronic 

hypoxia.  The findings suggest a novel mechanism of SKCa channels in regulating 

myogenic adaptation of uterine arteries in pregnancy, and in the maladaptation of 

uteroplacental circulation caused by chronic hypoxia during gestation. 
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Introduction 

Vascular tone constitutes the major determinant of the resistance of blood vessels, 

which regulates blood pressure and the distribution of blood flow among and within 

tissues and organs.  Ca
2+

-activated K
+
 (KCa) channels contribute significantly to setting 

the membrane potential, and play a critical role in regulating excitability of vascular 

smooth muscle cells (VSMCs) (Jackson, 2005; Ledoux et al., 2006). Based on the 

conductance, KCa channels are divided into large-conductance (BKCa), intermediate-

conductance (IKCa), and small-conductance (SKCa) channels (Wei et al., 2005). KCa 

channels have distinct distributions in the vasculature.  SKCa channels are believed to be 

expressed predominantly in endothelial cells (Hu et al., 2012; Ledoux et al., 2006), and 

hyperpolarization produced by the activation of SKCa in endothelial cells may be 

transmitted to VSMCs via the myoendothelial gap junction (Feletou, 2009; Kohler et al., 

2010). 

During pregnancy, uterine blood flow increases substantially to optimize the 

supply of oxygen and nutrients to the developing fetus via the placenta. Chiefly, this is 

achieved by adaptive changes such as remodeling of the uterine vasculature (Osol and 

Mandala, 2009), reduced pressure-dependent myogenic reactivity (Hu et al., 2011; 

Veerareddy et al., 2002; Xiao et al., 2006), blunted vasoconstrictor response (Cooke and 

Daridge, 2003; Nelson et al., 1995; Weiner et al., 1991), and enhanced vasodilator 

response and vasodilator production (Gangula et al., 1999; Ni et al., 1997; Xiao et al., 

2001a).  Chronic hypoxia during gestation has profound adverse effects on the normal 

adaptation of uteroplacental circulation to pregnancy (Chang et al., 2009; Chang et al., 

2010; Hu et al., 2012; Julian et al., 2008; Zamudio et al., 1995a), leading to a 2 to 4-fold 
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increase in the incidence of preeclampsia and fetal intrauterine growth restriction (Julian 

et al., 2008; Keyes et al., 2003; White and Zhang, 2003; Zamudio et al., 1995 a, b).  

Previous studies have demonstrated that BKCa channels participate in the 

regulation of vascular tone and uterine blood flow during pregnancy (Rosenfeld et al., 

2001; Rosenfeld et al., 2005; Rosenfeld et al., 2009). Upregulated expression of the BKCa 

channel 1 subunit and enhanced BKCa channel activity contribute to the attenuated 

myogenic tone of uterine arteries during pregnancy (Hu et al., 2011). Chronic hypoxia 

during gestation inhibited pregnancy-induced upregulation of BKCa channel function in 

uterine arteries by selectively targeting the 1 subunit (Hu et al., 2012). Although SKCa 

channels are predominantly expressed in endothelial cells (Ledoux et al., 2006), apamin-

sensitive K
+
 currents and positive staining of SKCa channels have been detected in 

VSMCs of various vascular beds (Gebremedhin et al., 1996; Guthier et al., 2004; 

McNeish et al., 2006; Sorensen et al., 2011). Functional roles of SKCa channels in 

VSMCs remain elusive.  SKCa channels are also expressed in the myometrium and are 

regulated by estrogen during pregnancy (Pierce and England, 2010).  Of interest, SKCa 

channels are subject to regulation by oxygen (Keating et al., 2001; Kroigaard et al., 

2013). However, the role of SKCa channels in the regulation of uterine circulation under 

physiological and pathophysiological conditions such as pregnancy and chronic hypoxia 

is unclear.  In the present study, we tested hypotheses that SKCa channels play an 

important role in regulating the contractility of uterine arteries during pregnancy; and that 

chronic hypoxia during gestation impairs this regulation. To test these hypotheses, we 

first determined whether SKCa channels were expressed in the uterine vasculature and 

how pregnancy and chronic hypoxia regulated their expression. We then determined 
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SKCa-mediated relaxations of uterine arteries and their regulation by pregnancy and 

chronic hypoxia. Furthermore, we measured the SKCa channel activity in uterine vascular 

smooth muscle cells using patch-clamp analysis to see whether pregnancy and chronic 

hypoxia altered their activities. In addition, we determined the role of SKCa channels in 

pressure-dependent myogenic tone of uterine arteries and its regulation by pregnancy and 

chronic hypoxia.  

   

Materials and Methods 

Tissue Preparation and Treatment 

Uterine arteries were harvested from nonpregnant and near-term (142-145 days of 

gestation, the term is about 150 days) pregnant sheep maintained at sea level (~300 m) or 

exposed to high-altitude (3801 m) hypoxia for 110 days (Chang et al., 2010). For 

nonpregnant animals, uterine arteries were obtained from the animals with the luteal 

phase of the ovarian cycle but not the follicular phase. Animals were anesthetized with 

thiamylal (10 mg/kg, i.v.) followed by inhalation of 1.5% to 2.0% halothane. An incision 

was made in the abdomen and the uterus exposed.  The uterine arteries were isolated and 

removed without stretching and placed into a modified Krebs solution.  All procedures 

and protocols were approved by the Institutional Animal Care and Use Committee, and 

followed the guidelines by the National Institutes of Health Guide for the Care and Use 

of Laboratory Animals. 

 

Western Immunoblotting 

Protein abundance of SK2 and SK3 channels was measured in freshly isolated 

uterine arteries, as described previously (Hu et al., 2011). Briefly, tissues were 
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homogenized in a lysis buffer followed by centrifugation at 4°C for 10 minutes at 

10,000g, and the supernatants were collected.  Samples with equal protein contents were 

loaded onto 7.5% polyacrylamide gel with 0.1% sodium dodecyl sulfate, and were 

separated by electrophoresis at 100 V for 2 hours. Proteins then were transferred onto 

nitrocellulose membranes. After blocking nonspecific binding sites by dry milk, the 

membranes were incubated with primary antibodies against SK2 channel (Alomone Ltd, 

Jerusalem, Israel) and SK3 channel (Santa Cruz Biotechnology, Santa Cruz CA). After 

washing, membranes were incubated with secondary horseradish peroxidase-conjugated 

antibodies. Proteins were visualized with enhanced chemiluminescence reagents, and 

blots were exposed to Hyperfilm.  Results were quantified with the Kodak 

electrophoresis documentation and analysis system and Kodak ID image analysis 

software. 

 

Immunohistochemistry 

Uterine arteries were fixed in 10% neutral buffered formalin and embedded in 

paraffin. Immunohistochemical detection of SK2, SK3, and endothelial nitric-oxide 

synthase (eNOS) was performed using the Anti-Ig HRP Detection Kit (BD Biosciences 

PharMingen, San Diego, CA) as described previously (Kougias et al., 2006; Noble et al., 

2010). Briefly, tissue slices (10μm thick) were incubated with monoclonal antio-SK2 

(1:100), anti-SK3 (1:200), anti-eNOS primary antibody (1:100), respectively, for 60 min 

at room temperature.   After rinsing three times in phosphate-buffered saline for 30 min, 

slices were incubated with biotinylated secondary antibody (1:100) for 60 min at room 

temperature. Samples then were exposed to streptavidin-HRP and reacted with 

diaminobenzidine substrate solution according to the manufacturer’s recommendations, 
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and counterstained with hematoxylin.  Endothelial and smooth muscle cell nuclei were 

stained with hematoxylin.  To check whether the staining was specific, negative control 

staining was performed where the primary antibody was omitted. The slices were viewed 

with an Olympus BH-2 microscope (Olympus, Tokyo, Japan), and images were captured 

with an attached SPOT digital camera imaging system. 

 

Contraction Studies 

Fourth-generation branches of the main uterine arteries from nonpregnant and 

pregnant sheep were separated from the surrounding tissue, and cut into 2-mm ring 

segments. Isometric tension was measured in the Krebs solution in a tissue bath at 37°C, 

as described previously (Hu and Zhang, 1997; Xiao et al., 2010a). Briefly, each ring was 

equilibrated for 60 minutes and then gradually stretched to the optimal resting tension, as 

determined by the tension that developed in response to 120 mmol/L KCl added at each 

stretch level. After stable responses to KCl were obtained, tissues were rinsed and then 

contracted with a submaximal concentration of norepinephrine (3 μmol/L) that produced 

about 50-70% of the maximal contraction. This was followed by a BKCa channel opener 

NS1619 or a SKCa channel opener NS309 added in a cumulative manner, in the absence 

or presence of BKCa channel blockers tetraethylammonium (TEA) or iberitoxin (IBTX), 

or a SKCa channel blocker apamin, or a BKCa/IKCa channel blocker charybdotoxin (CTX), 

respectively. 

 

Measurement of SKCa Channel Current 

Arterial smooth muscle cells were dissociated enzymatically from resistance-sized 

uterine arteries, and whole-cell K
+
 currents were recorded using an EPC 10 patch-clamp 
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amplifier with Patchmaster software (HEKA, Lambrecht/Pfalz, Germany) at room 

temperature, as previously described.
2
 Briefly, cell suspension drops were placed in a 

recording chamber and adherent cells were superfused continuously with HEPES-

buffered physiologic salt solution containing (in mmol/L):  140.0 NaCl, 5.0 KCl, 1.8 

CaCl2, 1.2 MgCl2, 10.0 HEPES, and 10.0 glucose (pH 7.4).  Only relaxed and spindle-

shaped myocytes were used for recording.  Micropipettes were pulled from borosilicate 

glass and had resistances of 2 to 5 MΩ when filled with the pipette solution containing 

(in mmol/L) 140.0 KCl, 1.0 MgCl2, 5.0 Na2ATP, 5.0 EGTA, 10.0 HEPES (pH 7.2).  

CaCl2 was added to bring free Ca
2+

 concentrations to 200.0 nmol/L, as determined using 

WinMAXC software (Chris Patton, Stanford University).  Cells were held at –50 mV and 

whole-cell K
+
 currents were evoked by voltage steps from -60 mV to +80 mV by 

stepwise 10-mV depolarizing pulses (350-ms duration, 10-second intervals) in the 

absence and presence of 1 mol/L apamin or 1 mol/L NS309.  K
+
 currents were 

normalized to cell capacitance and were expressed as picoampere per picofarad (pA/pF). 

 

Measurement of Myogenic Tone 

Pressure-dependent myogenic tone of resistance-sized uterine arteries was 

measured as described previously (Chang et al., 2010; Hu et al., 2011; Xiao et al., 2009). 

Briefly, arterial segments were mounted and pressurized in an organ chamber (Living 

Systems Instruments, Burlington VT). The intraluminal pressure was controlled by a 

servo-system to set transmural pressures, and arterial diameter was recorded using the 

SoftEdge Acquisition Subsystem (IonOptix LLC, Milton MA).  Following the 

equilibration period, the intraluminal pressure was increased in a stepwise-manner from 



26 

10 to 100 mmHg in 10-mmHg increments.  Each pressure was maintained for 5 minutes 

to allow vessel diameter to stabilize before the measurement. To determine the maximum 

passive diameter, the passive pressure-diameter relationship was conducted in Ca
2+

-free 

physiologic saline solution (PSS) containing 3.0 mmol/L of EGTA.  The following 

formula was used to calculate percent myogenic tone at each pressure step: % myogenic 

tone = (D1 – D2)/D1 x 100, where D1 is the passive diameter in Ca
2+

-free physiologic 

saline solution (0 Ca
2+

 with 3.0 mmol/L of EGTA) and D2 is the active diameter with 

normal physiologic saline solution in the presence of extracellular Ca
2+

. 

 

Data Analysis 

Concentration-response curves were analyzed by computer-assisted nonlinear 

regression to fit the data using GraphPad Prism (GraphPad Software, San Diego, CA).  

Results were expressed as means ± SEM obtained from the number of experimental 

animals given.  Differences were evaluated for statistical significance (P < 0.05) by 

ANOVA or t test, where appropriate. 

 

Results 

Effect of Pregnancy and Chronic Hypoxia on SKCa Channel 

Expression 

Protein abundance of both SK2 and SK3 channels was significantly greater in 

uterine arteries of pregnant sheep than that in nonpregnant animals (Figure 2A).  Chronic 

hypoxia during gestation significantly decreased the expression of SK2 and SK3 channels 

in uterine arteries of pregnant animals (Figure 2B).   

 



27 

 

 

 

Figure  2.  Effect of Pregnancy and Chronic Hypoxia on Small-Conductance Ca
2+

-

Activated K
+
(SKCa) Channel Expression.  Protein abundance of SKCa channels type 

2(SK2) and type 3 (SK3) was determined by Western blot analyses in uterine arteries of 

normoxic nonpregnant(NPUA) and pregnant (PUA) animals (A-C) and in uterine arteries 

of normoxic and high-altitude hypoxic pregnant animals (D-F). Data are means  SEM of 

tissues from 4 to 6 animals of each group. *P<0.05 

 

 



28 

Effect of Pregnancy and Chronic Hypoxia on SKCa Channel-

Mediated Relaxation 

The effect of SKCa/IKCa channels on contractility of uterine arteries was examined 

by exposing norepinephrine-contracted arteries to NS309 (Figure 3).  In normoxic 

animals, NS309 had no effect on uterine artery relaxation in nonpregnant sheep, but 

produced concentration-dependent relaxations of uterine arteries in pregnant animals, 

with a maximal relaxation of 64.3 ± 7.5% (Figure 3A).  As shown in Figure 3B, blocking 

of BKCa channels with IBTX or blocking of BKCa/IKCa channels with CTX had no 

significant effect on NS309-induced relaxation, but the SKCa channel blocker apamin 

significantly inhibited NS309-mediated relaxation, suggesting that NS 309-induced 

relaxation was conferred chiefly by SKCa channel activation.  Long-term, high altitude 

hypoxia did not change NS309’s effect in nonpregnant sheep, but abrogated NS309-

mediated relaxations of uterine arteries in pregnant animals (Figure 3C). Similarly, the 

BKCa channel activator NS1619-induced relaxations were significantly increased in 

uterine arteries of pregnant sheep, which was inhibited by chronic hypoxia (Figure 4).  
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Figure 3.  Concentration-Response Curves of NS309-Induced Relaxation.  Uterine 

arteries were contracted with norepinephrine (NE, 3mol/L) and followed by additions of 

NS309. A. Normoxic animals. B. Normoxic pregnant animals in the absence (control) or 

presence of iberitoxin (IBTX, 100nmol/L), charybdotoxin (CTX, 70 nmol/L), or apamin 

(500 nmol/L). C. High-altitude hypoxic animals. Data are means  SEM of tissues from 5 

to 6 animals in each group. 
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Figure 4.  Concentration-Response Curves of NS1619-Induced Relaxation.  Uterine 

arteries were contracted with norepinephrine (NE, 3mol/L) and followed by additions of 

NS1619. A. Normoxic animals. B. Normoxic pregnant animals in the absence (control) or 

presence of iberitoxin (IBTX, 100 nmol/L) or tetraethylammonium(TEA, 1 mmol/L).C. 

High altitude hypoxic animals. Data are means  SEM of tissues from 4-8 animals in 

each group. 
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Involvement of Smooth Muscle Cells in SKCa Channel-Mediated 

Relaxations 

Given that SKCa channels are expressed in endothelial cells, we determined 

NS309-induced relaxation in endothelium-intact and -denuded uterine arteries. The 

validity of endothelium removal was confirmed by the absence of eNOS in 

immunohistochemical staining (Figure 5A).  As shown in Figure 5B, endothelial removal 

did not significantly alter NS309-induced relaxation of uterine arteries (pD2: 

endothelium-intact: 6.5 ± 0.3; endothelium-denuded: 6.6 ± 0.2; Emax: endothelium-

intact: 64.3 ± 7.5%; endothelium-denuded: 51.3 ± 11.4%, P > 0.05).  This suggests that 

NS309-induced relaxation of uterine arteries was mediated mainly by SKCa channels in 

vascular smooth muscle cells. Immunohistochemical staining revealed that both SK2 and 

SK3 channels were expressed in endothelial as well as smooth muscle cells in the uterine 

artery (Figure 5C). 
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Figure 5.  Effect of Endothelial Cells (EC) on NS309-Induced Relaxation.  

Immunoreactivity of endothelial nitric oxide synthase(eNOS) was present in EC-intact 

arteries (A) but absent in EC-denuded arteries (B), demonstrating the effectiveness of EC 

removal. C, NS309-induced relaxation of norepinephrine (NE, 3mol/L)-contracted 

pregnant uterine arteries with (EC intact) or without (EC removal) EC. Data are means  

SEM of tissues from 4 to 6 animals in each group. Immunoreactivity of small-

conductance Ca
2+

-activated K
+
 channel type 2 (SK2; D) and type 3 (SK3; F) in EC and 

vascular smooth muscles (SM) of pregnant uterine arteries. E and G, Negative controls of 

SK2 and SK3 staining.  
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Chronic Hypoxia Inhibited SKCa Channel Activity in Uterine 

Arteries 

To determine the effect of pregnancy and chronic hypoxia on SKCa channel 

activity in uterine arterial smooth muscle cells, whole-cell K
+
 currents were recorded in 

the absence or presence of apamin or NS309 in myocytes freshly isolated from uterine 

arteries of normoxic control and hypoxic animals.  As shown in normoxic pregnant 

sheep, apamin significantly reduced whole-cell K
+
 currents (from 60.7 ± 2.7 pA/pF to 

49.6 ± 2.3 pA/pF at +80 mV, P < 0.05) in uterine arterial myocytes (Figure 6A).  In 

contrast, in myocytes of hypoxic animals, apamin was without effect on whole-cell K
+
 

currents (Figure 6B).  Similarly, NS309 significantly enhanced whole-cell K
+
 currents in 

myocytes of normoxic pregnant animals (from 57.5 ± 1.3 pA/pF to 72.4 ± 2.9 pA/pF at 

+80 mV, P < 0.05) (Figure 6C) but not in hypoxic animals (Figure 6D).  Neither apamin 

nor NS 309 altered whole-cell K
+
 currents in uterine arterial myocytes of nonpregnant 

sheep in either normoxic or hypoxic animals (data not shown).  
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Figure 6.  Effect of Chronic Hypoxia on Small-Conductance Ca
2+

-Activated K
+
(SKCa) 

Channel Currents in Uterine Arteris of Pregnant Sheep.  Arterial myocytes were freshly 

isolated from uterine arteries of pregnant sheep in normoxic and high-altitude hypoxic 

animals. Whole-cell K
+
 currents were recorded in the absence or presence of apamin 

(1mol/L) or NS309 (1 mol/L). A and C, Normoxic animals. B and D, High-altitude 

hypoxic animals. Data are means  SEM of cells from 5 to 6 animals of each group. 

*P<0.05 vs control (Ctr). 

 

 

 

Effect of Pregnancy and Chronic Hypoxia on Uterine Artery SKCa 

Channel-Mediated Myogenic Tone 

As reported previously, pressure-dependent myogenic tone of uterine arteries was 

significantly reduced in pregnant sheep in normoxic control animals (Figure 5A and 5B).  

Blockade of SKCa channels with apamin had no significant effect on pressure-dependent 
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myogenic reactivity in uterine arteries of nonpregnant animals (Figure 5A), but resulted 

in a significant increase in myogenic tone in uterine arteries of pregnant animals (Figure 

5B). In the presence of apamin, there was no significant difference in myogenic tone of 

uterine arteries between nonpregnant and pregnant animals (Figure 5A and 5B). In 

hypoxic animals, apamin had no significant effect on pressure-dependent myogenic tone 

of uterine arteries in either nonpregnant or pregnant animals (Figure 5C and 5D). 
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Figure 7.  Effect of Pregnancy and Chronic Hypoxia on Small-Conductance Ca
2+

-

Activated K
+
(SKCa) Channel-Mediated Myogenic Tone.  Pressure-dependent myogenic 

tone was determined in the absence or presence of apamin (500 nmol/L) in normoxic 

nonpregnant uterine artery (UA; A), normoxic pregnant uterine artery (B), hypoxic 

nonpregnant uterine artery (C), and normoxic pregnant uterine artery (D). Data are means 

 SEM of tissues from 5 to 6 animals of each group. *P<0.05 vs control.  
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Discussion 

In the present study, we have demonstrated for the first time the expression and 

function of SKCa channels in uterine arteries.  The capacity of activation of SKCa channels 

to relax uterine arteries was markedly increased during pregnancy.  Additionally, the 

SKCa channel blocker apamin significantly increased pressure-dependent myogenic tone 

in uterine arteries of pregnant sheep and blunted the difference in the myogenic response 

of uterine arteries between nonpregnant and pregnant animals.  These pregnancy-induced 

changes were accompanied by increased expression of both SK2 and SK3 channels.  

Consistently, we detected increased activities of SKCa channels in uterine artery smooth 

muscle cells of pregnant sheep.  The concurrence of those findings suggests that 

pregnancy-induced upregulation of expression and activity of SKCa channels contributes 

to the reduced myogenic reactivity and vascular contractility of uterine arteries during 

gestation.  Decreased myogenic tone and increased vasorelaxing responses of uterine 

arteries have been implicated in the increase in uterine blood flow during pregnancy 

(Gangula et al., 1999; Hu et al., 2011; Ni et al., 1997; Xiao et al., 2001a; Xiao et al., 

2006; Veerareddy et al., 2002).  Hence, our observations provide a novel mechanism of 

upregulation and heightened activity of SKCa channels in the adaptation of uteroplacental 

circulation during pregnancy.  Furthermore, the up-regulation of SK3 channels appears to 

have a role in remodeling of the uterine vasculature.  A recent study demonstrated that 

uterine arteries from nonpregnant transgenic SK3
T/T

 mice that overexpress SK3 channels 

had larger basal diameters and blunted vasoconstrictor response compared to those from 

wild-type animals (Rada et al., 2012), although the expression of SK3 channels in uterine 

arteries was not determined. 
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At present, the mechanisms responsible for upregulating expression and function 

of SKCa channels in uterine arteries during pregnancy are not clear.  It is conceivable that 

sex steroid hormones may contribute to this regulation.  Activation of estrogen receptors 

may alter gene transcription, which has a profound impact on cardiovascular function 

(Murphy, 2011). Pregnancy up-regulates the expression of estrogen receptor α and β in 

uterine arteries (Chang et al., 2010; Byers et al., 2005).  Moreover, we recently 

demonstrated the 17-estradiol-mediated increase in expression and heightened activity 

of BKCa channels in uterine arteries of pregnant sheep (Hu et al., 2011). Similarly, SK3 

channel expression also was regulated by 17-estradiol in recombinant expression system 

(Jacobson et al., 2003), hypothalamus (Bosch et al., 2002), and myometrium (Pierce and 

England, 2010).   

 Although SKCa channels were expressed in uterine arteries of nonpregnant 

animals, the channel activity was not detected with an electrophysiological approach.   

Moreover, it appeared that these channels did not participate in regulating myogenic tone 

and contractility of uterine arteries in nonpregnant animals. One possibility is that in 

nonpregnant animals SKCa channels are not expressed in the cell membrane of uterine 

arteries smooth muscle, but rather are retained inside cells.  The incapability of those 

channels to insert into membrane would prevent them from being activated.  It is also 

possible that in nonpregnant animals despite being present in the myocyte membrane, the 

efficacy of these channels may be too low to be functional.  Similar findings have been 

reported for both IKCa and BKCa channels.  Although IKCa channels were stained at both 

the plasma membrane and within the cytoplasm (McNeish et al., 2006), the selective IKCa 

channel blocker TRAM-34 was unable to alter vascular tone of cerebral arteries 
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(McNeish et al., 2005). Similarly, BKCa channels in uterine arteries did not participate in 

the regulation of relaxation (the present study), myogenic tone, vascular resistance and 

blood flow in nonpregnant animals (Hu et al., 2011; Rosenfeld et al., 2000). 

 Initially, SKCa channels were detected in endothelial cells, but not in VSMCs of 

SK3
T/T

 mice (Taylor et al., 2003). The regulatory role of SKCa channels on vascular 

function is thought to be mediated exclusively by the endothelium.  This notion was 

supported by the finding that a genetic deficit of SK3 and IK1 channels caused 

hypertension by abolishing endothelium-derived hyperpolarizing factor-mediated 

vasodilation (Brahler et al., 2009). In the present study, immunostaining demonstrated the 

expression of SK2 and SK3 channels in both vascular smooth muscle and endothelial 

cells in uterine arteries.  The functional presence of SKCa channels in uterine arterial 

smooth muscle cells was confirmed with electrophysiological technique; and a selective 

SKCa channel blocker apamin decreased whole-cell K
+
 currents by ~20%.  This is in 

agreement with the previous findings in myocytes of rabbit aorta (Guthier et al., 2004) 

and rat myometrium (Noble et al., 2010) that apamin reduced whole-cell K
+
 currents by 

about 20%.  Furthermore, previous studies also have shown the presence of SKCa 

channels in other visceral and vascular smooth muscle cells by immunohistochemistry 

(Sorensen et al., 2011; Chen et al., 2004; Potocnik et al., 2009), although the functional 

roles of these channels are not known.  In uterine arteries, NS309-induced relaxation was 

largely endothelium-independent, suggesting that SKCa channels in vascular smooth 

muscle mediated mainly NS309-induced vasorelaxation.  To our knowledge, the present 

study is the first to demonstrate that SKCa channels in vascular smooth muscle 

significantly contribute to the regulation of vascular contractility and tone in this vascular 
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bed.  Lines of evidence have also implicated SKCa channels in regulating excitability and 

contraction of smooth muscle cells from the uterus and urinary bladder, which are highly 

responsive to sex steroids and in particular estrogen (Herrera et al., 2003;Brown et al., 

2007; Thorneloe et al., 2008). Our findings thus provide a novel mechanism of SKCa 

channels in regulating vascular tone and cardiovascular function.   

Previously, chronic hypoxia has been found to abrogate the capacity of BKCa in 

regulating myogenic reactivity of uterine arteries in pregnant sheep (Hu et al., 2012).  

The present findings of diminishment of vasodilator response to NS309 and failure of 

apamin to alter myogenic tone of uterine arteries in pregnant animals exposed to long-

term high altitude hypoxia suggest that chronic hypoxia resulted in a loss of the 

regulatory role of SKCa channels in vascular smooth muscle excitability and contractility.  

Hence, the nullification of the regulatory role of KCa channels may attribute to chronic 

hypoxia-induced reduction in uterine blood flow in pregnancy (Julian et al., 2008; 

Zamudio et al., 1995a).  Our data also suggest that the loss of regulatory role of SKCa 

channels in uterine arteries of pregnant animals resulted chiefly from reduced channel 

activities due to suppressed expression of these channels.  Similar findings were obtained 

for BKCa channels in uterine arteries of pregnant sheep
 
(Hu et al., 2012) and IKCa 

channels in pulmonary arteries from animals exposed to chronic hypoxia (Kroigaard et 

al., 2013). The effect of chronic hypoxia seems to be specific for KCa channels, as 

voltage-gated K
+
 (KV) channels were largely unaffected (Hu et al., 2012). Taken together, 

experimental evidence suggests that targeted suppression of KCa channels is a major 

mechanism to alter uterine vascular function by chronic hypoxia and the uterine arteries 

from chronic hypoxic animals are losing their adaptation to pregnancy.  This may account 
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for the increased incidence of preeclampsia and fetal intrauterine growth restriction 

associated with chronic hypoxia exposure during gestation.  Estrogens have been shown 

to regulate expression of BKCa (Hu et al., 2011; Nishimura et al., 2008) and SKCa 

(Jacobson et al., 2003; Pierce and England, 2010) channels.  Ablation of pregnancy-

induced upregulation of SKCa and BKCa channels in uterine arteries by chronic hypoxia 

during gestation likely occurred at the genomic level.  Expression of estrogen receptor  

in uterine arteries during gestation, but not plasma estrogen levels, was significantly 

depressed by chronic hypoxia (Chang et al., 2010) due to heightened promoter 

methylation (Dasgupta et al., 2012). It is possible that chronic hypoxia-mediated 

suppression of estrogen receptor  expression led to abrogation of upregulation of KCa 

channels in uterine arteries during pregnancy.  However, Jobe et al has shown there are 

numerous types of estrogens and estrogen metabolites that are decreased in preeclampsia 

(Jobe et al., 2013). Therefore, the regulation of KCa channels by estrogens in VSMCs 

likely has a significant role in physiological and pathophysiological conditions. 
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Abstract 

Our previous studies demonstrated that chronic hypoxia during gestation 

increased uterine artery contractility by upregulating protein kinase C (PKC) activity and 

downregulating Ca
2+

-activated K
+
 channel (KCa channel) activity. However, the 

interaction between PKC activation and KCa channel activity remains unknown. The 

present study tested the hypothesis that gestational hypoxia upregulates PKC-induced 

inhibition of KCa channel-mediated relaxation of uterine arteries in pregnancy. Uterine 

arteries were isolated from nonpregnant (NPUA) and pregnant (PUA) (~140 day 

gestation) sheep maintained at either sea level or high altitude (3,820 m for 110 days, 

PaO2: 60 mmHg). Contractions of uterine arteries were determined. In normoxic PUA, 

selective inhibition of large-conductance KCa (BKCa) channels significantly enhanced 

PKC activator PDBu-induced contractions. This effect was abrogated in PUA of animals 

treated with chronic hypoxia in gestation. Unlike BKCa channels, inhibition of small-

conductance KCa (SKCa) channels had no significant effect on 12, 13-dibutyrate (PDBu)-

mediated contractions. In normoxic PUA, activation of both BKCa with NS1619 or SKCa 

with NS309 produced concentration-dependent relaxations, which were not altered by the 

addition of PDBu. However, in uterine arteries treated with chronic hypoxia (10.5% O2 

for 48 h), both NS1619- and NS309-induced relaxations were significantly attenuated by 

PDBu. In NPUAs, inhibition of BKCa channels significantly enhanced PDBu-induced 

contractions in both normoxic and hypoxic animals. The results suggest that in the 

normoxic condition BKCa downregulates PKC activity and uterine vascular contractility, 

which is selectively attenuated by chronic hypoxia during gestation. In addition, hypoxia 

induces PKC-mediated inhibition of BKCa and SKCa activities and relaxations of uterine 

arteries in pregnancy.  
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Introduction 

Chronic hypoxia during gestation significantly increases the incidences of 

preeclampsia and fetal intrauterine growth restriction (IUGR) (Chang et al., 2009; Chang 

et al., 2010; Hu et al., 2012; Julian et al., 2008; Keyes et al., 2003; White and Zhang, 

2003; Zamudio et al., 1995 a, b). However, the mechanisms underlying hypoxia-induced 

adverse pregnancy outcomes are largely unknown. Recent studies suggest that hypoxia-

induced aberration of uteoplacental circulation in pregnancy may be one of the important 

mechanisms attributing to the pathogenesis of many pregnancy complications (Gerge and 

Granger, 2011; Julian et al., 2008; Khalil and Granger, 2002; Moore et al., 2001; Palmer 

et al., 1999; Zamudio et al., 1995b). Indeed, chronic hypoxia during gestation has 

profound adverse effects on uterine artery contractility and significantly increases uterine 

vascular tone, leading to attenuation of pregnancy-induced increase in uterine blood flow 

and increased risk of IUGR and preeclampsia (Change et al., 2009; Moore et al., 2001; 

Xiao et al., 2006; Zhou et al., 2013). 

 The molecular mechanisms underlying the adaptation of uterine arterial 

contractility to normal pregnancy and chronic hypoxia are complex and poorly 

understood. Pregnancy is characterized by an increase in uterine vascular relaxation and a 

decrease in uterine arterial constriction and vascular tone. Recent studies have 

demonstrated that pregnancy-induced decrease in uterine vascular tone is mediated by an 

increase in Ca
2+

-activated K
+
 (KCa) channel expression and activity (Hu et al., 2011; Hu 

et al., 2012). Inhibition of KCa channels reversed the pregnancy-mediated decrease in 

uterine vascular myogenic tone and increase in uterine blood flow (Hu et al., 2011; 

Rosenfeld et al., 2001; Rosenfeld et al., 2005), suggesting that enhanced KCa channel 
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function plays an important role in the adaptation of uterine circulation during pregnancy. 

Chronic hypoxia during gestation inhibited pregnancy-induced attenuation of uterine 

vascular tone via suppressing KCa channel function (Hu et al., 2012; Zhu et al., 2013 a). 

These studies showed a novel mechanism of KCa channels in regulating myogenic 

adaption of uterine arteries in pregnancy and in maladaptaion of uterine circulation 

caused by chronic hypoxia during gestation. 

 In contrast to KCa channels that are up-regulated by pregnancy and down-

regulated by chronic hypoxia, the activity of protein kinase C (PKC) and its mediation of 

uterine vascular contraction are down-regulated by pregnancy and up-regulated by 

chronic hypoxia (Farley and Ford, 1992; Magness et al., 1991; Xiao and Zhang, 2002; 

Xiao and Zhang, 2005).  Thus, pregnancy and chronic hypoxia differentially regulate KCa 

channel and PKC activities in uterine arteries. The balance between activations of KCa 

channels and PKC is likely to play an important role in the adaptation of uterine vascular 

tone to pregnancy and chronic hypoxia. However, the interaction between KCa channels 

and PKC as well as how they orchestrate and integrate to regulate uterine vascular 

contractility during pregnancy in response to chronic hypoxia remain largely unknown. 

 The goal of the present study was to investigate the potential effect of KCa channel 

inhibitors on PKC-mediated uterine arterial contractions in nonpregnant and pregnant 

sheep that reside in normoxic sea levels or exposed to long-term high altitude hypoxia. 

To further determine the interaction of PKC and KCa channel function and the effect of 

pregnancy and chronic hypoxia, we also investigated the effect of PKC activation on KCa 

channel-mediated relaxations of uterine arteries in nonpregnant and pregnant ewes in the 

normoxic and hypoxic conditions. 
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Materials and Methods 

Tissue Preparation and Treatment 

All procedures and protocols used in the present study were approved by the 

Animal Research Committee of Loma Linda University and followed the guidelines by 

the National Institutes of Health Guide for the Care and Use of Laboratory Animals. As 

previously described (Chang et al., 2010), nonpregnant and time-dated pregnant sheep 

were obtained from the Nebeker Ranch in Lancaster, CA (altitude: ~300 m; arterial PaO2: 

102 ± 2 mmHg). Uterine arteries were obtained from nonpregnant and near-term (~140 

days of gestation) pregnant sheep. Normoxic animals were studied between November 

and July. For chronic hypoxic treatment, nonpregnant and pregnant (30 days of gestation) 

animals bred during time period of March to June were transported to the Barcroft 

Laboratory, White Mountain Research Station, Bishop, CA (altitude, 3,820 m; maternal 

PaO2, 60 ± 2 mmHg) and maintained there for ~110 days. Starting from August to 

October, the animals were transported to the laboratory immediately before the studies. 

Animals were anesthetized with iv propofol (2 mg/kg), followed by incubated and 

anesthesia is maintained on 1.5% to 3.0% isoflurane balanced in O2 throughout the 

surgery. An incision in the abdomen was made and the uterus exposed. Uterine arteries 

were isolated and removed without stretching, and placed into a cold physiological salt 

solution (PSS) containing (in mM): 130 NaCl, 10.0 HEPES, 6.0 Glucose, 4.0 KCl, 4.0 

NaHCO3, 1.80 CaCl2, 1.2 MgSO4, 1.18 KH2PO4, and 0.025 EDTA, pH 7.4. After removal 

of the tissues, animals were killed with T-61 (euthanasia solution, Hoechst-Roussel, 

Somerville, NJ).  
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Relaxation Studies 

The fourth generation branches of the main uterine artery from pregnant sheep 

were separated from the surrounding tissue, and cut into 2-mm ring segments. For ex vivo 

treatment, the uterine arterial segments were incubated in phenol red-free DMEM with 

1% charcoal-stripped FBS for 48 hours at 37 °C in both normoxic chamber with 21% O2 

and hypoxia chamber with 10.5% O2. Isometric tension was measured in the Krebs 

solution in a tissue bath at 37 °C, as described previously (Zhu et al., 2013 a). Briefly, 

each ring was equilibrated for 60 minutes and then gradually stretched to the optimal 

resting tension, as determined by the tension that developed in response to 120 mmol/L 

KCl added at each stretch level. After stable responses to KCl were obtained, tissues were 

rinsed and then contracted with submaximal concentrations of norepinephrine, followed 

by additions of NS1619 or NS309 in the absence or presence of phorbol 12,13-dibutyrate 

(PDBu), added in a cumulative manner. 

 

Contraction Studies 

The fourth generation branches of the main uterine artery from both pregnant and 

nonpregnant sheep were isolated, and cut into 2-mm ring segments and mounted in 10-

mL tissue baths containing modified Krebs solution equilibrated with a mixture of 95% 

O2 and 5% CO2. Phorbol 12,13-dibutyrate (PDBu, Sigma) or norepinephrine -induced 

isometric tensions in the absence or presence of large-conductance Ca
2+

-activated K
+
 

channels (BKCa) inhibitor iberoitoxin (IBTX; 100 nmol/L), tetraethylammonium (TEA; 1 

mmol/L) or small-conductance Ca
2+

-activated K
+
 channels (SK) blocker apamin (500 

nmol/L), as described previous (Gauthier et al., 2004; Xiao et al., 2009; Xiao et al., 
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2010b). 

 

Data Analysis 

Concentration-response curves were analyzed by computer-assisted nonlinear 

regression to fit the data using GraphPad Prism (GraphPad Software, San Diego, CA).  

Results were expressed as means ± SEM obtained from the number of experimental 

animals given.  Differences were evaluated for statistical significance (P < 0.05) by 

ANOVA or t test, where appropriate. 

 

Results 

Inhibition of BKCa Channels Increased PKC-Mediated 

Contractions 

Our recent studies have demonstrated that both BKCa and SKCa are expressed in 

uterine arterial smooth muscle cells (Hu et al., 2011; Hu et al., 2012; Zhu et al., 2013 a). 

In the present study, we investigated whether both types of KCa channels play an 

important role in PKC-mediated uterine vascular contractility. As shown in Figure 8, 

inhibition of BKCa channels with IBTX significantly potentiated PKC activator PDBu-

induced contractions in uterine arteries of pregnant animals (pD2 values: 4.5  0.2 in 

control group vs. 5.8  0.3 in IBTX-treated group; P < 0.05; Emax: 39.7  5.8 % in control 

vs. 88.9  13.1 % in IBTX-treated groups; P < 0.05). In contrast, inhibition of SK 

channels with apamin did not affect PDBu-induced contractions (pD2: 4.5  0.2 vs. 4.5  

0.1; P > 0.05; Emax: 39.7  5.8 % vs. 41.7  4.9 %; P > 0.05). The data suggest that BKCa, 

but not SKCa channels play an important role in PKC-mediated uterine vascular 

contractions in pregnancy. 
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Figure 8.  Effect of KCa Channel Blockers on PDBu-Induced Contractions of Uterine 

Arteries from Normoxic Pregnant Sheep.  PDBu-induced contractions were determined 

in uterine arteries obtained from normoxic pregnant sheep in the absence (control) or 

presence of 100 nM IBTX or 500 nM apamin pretreatment for 20 min. Data are means  

SEM of tissues from 4-5 animals in each group.  
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Gestational Hypoxia Abrogated Inhibitory Effect of BKCa on PKC-

Mediated Contractions 

In agreement with the previous findings that chronic hypoxia enhanced PKC-

mediated uterine vascular contractions during pregnancy (Chang et al., 2009; Xiao and 

Zhang, 2002; Xiao and Zhang, 2005), PDBu-induced contractions of uterine arteries of 

pregnant sheep were significantly greater in hypoxic animals (Emax: 83.8 ± 5.4 %) (Figure 

9) than those in normoxic animals  (Emax: 39.7 ± 5.8 %) (Figure 8) (P < 0.05). In contrast 

to the findings in normoxic animals (Figure 8), inhibition of BKCa channels had no 

significant effect on PDBu-induced contractions of uterine arteries in pregnant sheep of 

hypoxic animals (Emax: 83.8 ± 5.4% in control group vs. 76.9 ± 12.5 % in TEA-treated 

groups; P > 0.05) (Figure 9). As shown in Figure 10, in uterine arteries of nonpregnant 

sheep, BKCa channel inhibition significantly enhanced PDBu-induced contractions in 

both normoxic (upper panel) and hypoxic (lower panel) animals. These data suggest that 

the inhibitory effect of BKCa channels on PKC-mediated contractions is selectively 

abrogated in uterine arteries of pregnant, but not nonpregnant animals acclimatized to 

long-term high altitude hypoxia. 
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Figure 9.  Effect of BKCa Blocker on PDBu-Induced Contractions of Uterine Arteries 

from Hypoxic Pregnant Sheep.  PDBu-induced contractions were determined in uterine 

arteries obtained from hypoxic pregnant sheep in the absence (control) or presence of 1 

mM TEA pretreatment for 20 min. Data are means  SEM of tissues from 4 animals in 

each group. 
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Figure 10.  Effect of BKCa Blocker on PDBu-Induced Contractions of Uterine Arteries 

from Nonpregnant Sheep.  PDBu-induced contractions were determined in uterine 

arteries obtained from normoxic (panel A) and hypoxic (panel B) nonpregnant sheep in 

the absence (control) or presence of 1 mM TEA pretreatment for 20 min. Data are means 

 SEM of tissues from 4-5 animals in each group.  
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Chronic Hypoxia Induced PKC-Mediated Inhibition of KCa 

Channel Activity 

As shown in Figure 11, both BKCa channel opener, NS1619 and SKCa channel 

opener, NS309 caused concentration-dependent relaxations of uterine arteries from 

pregnant animals. PDBu had no significantly effect on either NS1619- or NS309-induced 

relaxations under the normoxic condition (Figure 11).  Treatment of tissues with chronic 

hypoxia (10.5% O2 for 48 h) significantly reduced both NS1619 (Emax: 19.9 ± 1.1 vs. 30.6 

± 2.2; P < 0.05)- and NS309 (Emax: 18.9 ± 1.8 vs. 26.5 ± 1.6; P < 0.05)-induced 

relaxations. In addition, under the hypoxic condition, PDBu significantly inhibited both 

NS1619- and NS309-induced uterine arterial relaxations (Figure 12). 
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Figure 11.  Effect of PDBu on KCa Opener-Induced Relaxations of Uterine Arteries from 

Pregnant Sheep under Normoxic Condition.  Uterine arteries were isolated from pregnant 

sheep and incubated under 21% O2 for 48 h. NS1619 (panel A)- and NS309 (panel B)-

induced relaxations were determined in uterine arteries pre-contracted with 

norepinephrine (1 M), in the absence (control) or presence of 1 M PDBu. Data are 

means  SEM of tissues from 8-9 animals in each group. 
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Figure 12.  Effect of PDBu on KCa Opener-Induced Relaxations of Uterine Arteries from 

Pregnant Sheep under Hypoxic Condition.  Uterine arteries were isolated from pregnant 

sheep and incubated under 10.5% O2 for 48 h. NS1619 (panel A)- and NS309 (panel B)- 

induced relaxations were determined in uterine arteries pre-contracted with 

norepinephrine (1 M), in the absence (control) or presence of 1 M PDBu. Data are 

means  SEM of tissues from 5-8 animals in each group.  
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Inhibition of BKCa Channels Had no Effect on Norepinephrine-

Induced Contractions 

To determine the specific interaction of BKCa channels and PKC-mediated 

contractions in uterine arteries, the effect of BKCa channel inhibition on -adrenoceptor-

mediated contractions were examined. As shown in Figure 13, inhibition of BKCa 

channels had no significant effects on norepinephrine-induced, concentration-dependent 

contractions of uterine arteries from nonpregnant or pregnant sheep under either 

normoxic or hypoxic conditions.    
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Figure 13.  Effect of BKCa Blocker on Norepinephrine-Induced Contractions of Uterine 

Arteries.  Norepinephrine (NE)-induced contractions were determined in uterine arteries 

obtained from normoxic nonpregnant (panel A), hypoxic nonpregnant (panel B), 

normoxic pregnant (panel C) and hypoxic pregnant (panel D) sheep in the absence 

(control) or presence of 1 mM TEA pretreatment for 20 min. Data are means  SEM of 

tissues from 4-5 animals in each group.   
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Discussion 

Our previous studies have demonstrated that both PKC and KCa channels play an 

important role in uterine vascular adaptation to pregnancy and chronic hypoxia (Chang et 

al., 2009; Hu et al., 2011; Hu et al., 2012; Xiao et al., 2012; Xiao and Zhang, 2002; Xiao 

and Zhang, 2005). The present study provides new evidence that PKC and KCa channels 

interact each other and integrate to regulate uterine vascular contractility under 

physiological and pathophysiological conditions. The major findings of the present study 

are the following: 1) inhibition of BKCa but not SKCa channels potentiated PKC-mediated 

contractions of uterine arteries; 2) chronic hypoxia abrogated the inhibitory effect of 

BKCa channels on PKC-induced contractions of uterine arteries from pregnant, but not 

nonpregnant animals; 3) in uterine arteries of pregnant animals activation of PKC had no 

significant effects on either BKCa - or SKCa-mediated relaxations under the normoxic 

condition, but significantly inhibited them under the hypoxic condition;  4)  inhibition of 

BKCa channels had no significant effects on -adrenoceptor-mediated uterine arterial 

contractions.   

 The present finding that inhibition of BKCa but not SKCa channels significantly 

enhanced PDBu-induced contractions suggests that the basal BKCa channel activity plays 

a significant role in counteracting PKC-mediated myogenic tone of uterine arteries. BKCa 

channels are important in the regulation of resting membrane potential and control of 

vascular tone (Hu et al., 2011; Rosenfeld et al., 2005).  Previous studies demonstrated that 

PKC played a key role in pressure-dependent myogenic response of uterine arteries 

(Chang et al., 2009), and inhibition of BKCa channels significantly increased pressure-

dependent myogenic tone in uterine arteries of pregnant sheep (Hu et al., 2011). This is 



59 

consistent with the findings that intra-arterial infusion of BKCa channel inhibitor TEA 

into the uterine artery circulation of late-gestation sheep caused a significant decrease of 

basal uterine blood flow from 50% to 80% in the absence of systemic effects or a change 

in contralateral uterine blood flow (Rosenfeld et al., 2001; Rosenfeld et al., 2005). We 

have demonstrated that TEA and IBTX inhibit the BKCa channel currents by the same 

extent of 53% in uterine arterial myocytes (Hu et al., 2011).  

 Of importance, chronic hypoxia during gestation abrogated inhibitory effect of 

BKCa channels on PKC-mediated contractions of uterine arteries, suggesting that loss of 

negative regulatory component of basal BKCa channel activity may be a key signaling 

mechanism in chronic hypoxia-mediated increase in PKC-induced myogenic contractions 

of uterine arteries in pregnancy, as demonstrated in the present study as well as the 

previous studies (Chang et al., 2009; Xiao et al., 2009). This notion is supported by our 

recent findings that gestational hypoxia downregulated BKCa channel β1 subunit gene 

expression and BKCa channel activity in uterine arteries (Hu et al., 2012).  Of interest, this 

hypoxic-mediated effect is pregnancy-dependent, as inhibition of BKCa channels 

enhanced PDBu-induced contractions of uterine arteries of nonpregnant sheep in both 

normoxic and hypoxic animals. Previous studies demonstrated that pregnancy 

upregulated BKCa channel function in uterine arteries via the action of 17β-estradiol (Hu 

et al., 2011). Further studies showed that chronic hypoxia during gestation caused 

heightened promoter methylation and resultant estrogen receptor- (ER) gene 

repression in uterine arteries (Dasgupta et al., 2012).  Taken together, these findings 

suggest a specific vulnerability of steroid hormone-mediated response in uterine vascular 

adaptation in pregnancy to gestational hypoxia. 
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In addition to that basal BKCa channel activity may be important in regulating 

PKC-mediated contractions of uterine arteries, several studies have shown a regulatory 

role of PKC on KCa channel activation (Barman et al., 2004; Del Carlo et al., 2003; 

Taguchi et al., 2000). Our previous study showed that activation of PKC inhibited basal 

BK channel current density in uterine arteries (Hu et al., 2011). In the present study, we 

found that both BKCa channel opener NS1619- and SKCa channel opener NS309-induced 

relaxations of uterine arteries were not altered by the PDBu treatment. This finding is 

intriguing and suggests different regulatory mechanisms of basal and activated KCa 

channel activities in the uterine artery. Of importance, chronic hypoxia treatment induced 

PKC-mediated inhibition of NS1619- and NS309-produced relaxations. Our previous 

demonstrated that chronic hypoxia significantly increased the PKC activity in uterine 

arteries of pregnant sheep (Chang et al., 2009), suggesting hypoxia-mediated 

upregulation of PKC activity in inhibiting BKCa and SKCa channel-mediated relaxations 

of uterine arteries in pregnancy. Although the mechanisms of hypoxia-induced 

upregulation of inhibitory effect of PKC on activated KCa channel activities remain to be 

determined, a selective increase in the activity of PKC isozyme PKC in uterine arteries 

by chronic hypoxia (Chang et al., 2009) may play a role. Indeed, activation of PKC 

causes a stimulation of L-type Ca
2+

 channel through c-Src, resulting in inhibition of KCa 

channel activity (Alioua et al., 2002). 

Taken together, as shown in Figure 14, pregnancy and chronic hypoxia 

differentially regulate the interaction of PKC and KCa channels in modulating uterine 

arterial contractility. Thus, under the normoxic condition, heightened basal BKCa channel 

activity in pregnant animals has a negative regulatory effect on PKC-induced contraction 
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and myogenic tone of the uterine artery. Chronic hypoxia during gestation downregulates 

basal BKCa channel activity and abrogates its inhibition of PKC-mediated myogenic 

response. In addition, chronic hypoxia induces an inhibitory effect of PKC on activated 

KCa channel-mediated relaxations of the uterine arteries in pregnant animals. 

Collectively, these findings demonstrate complex yet integrated effects of pregnancy and 

chronic hypoxia on the interaction of PKC and KCa channel activities in the uterine artery, 

which are important in normal adaptation of reduced uterine vascular tone in pregnancy 

as well as in maladaptation of increased uterine vascular contractility in response to 

chronic hypoxia in gestation.  
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Figure 14.  Diagram of the Integrated Effects of Pregnancy and Chronic Hypoxia on the 

Interactions of PKC and KCa Channels in Modulating Uterine Arterial Contractility.  The 

diagram show that under the normoxic condition, heightened basal BKCa channel activity 

in pregnant animals has a negative regulatory effect on PKC-induced contraction and 

myogenic tone of the uterine artery. Chronic hypoxia during gestation downregulates 

basal BKCa channel activity and abrogates its inhibition of PKC-mediated myogenic 

response. In addtion, chronic hypoxia induces an inhibitory effect to PKC on activated 

KCa channel-mediated relaxations of the uterine arteries in pregnant animals. 
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Abstract 

Ca
2+

-activated K
+
 (KCa) channels play key role in regulating uterine vascular tone.  

Previous studies have shown an upregulation of Kca activity and Kca-mediated 

relaxation of uterine artery in pregnancy, which is inhibited by gestational hypoxia. The 

present study tested the hypothesis that reactive oxygen species (ROS) play an important 

role in chronic hypoxia-mediated inhibition of steroid hormone effect in upregulating 

uterine arterial Kca channel activity in pregnancy. Uterine arteries were isolated from 

nonpregnant (NPUA) and pregnant (PUA) sheep maintained at either sea-level or high 

altitude (3,820m, PaO2: 60mmHg). In PUA, hypoxia significantly decreased large 

conductance (BKCa) channel opener NS1619- and small conductance (SKCa) channel 

opener NS309-induced relaxations, which were partially abrogated by ROS inhibitor N-

acetylcysteine (NAC). Consistently, NAC significantly increased both BKCa and SKCa 

current densities in uterine arterial smooth muscle cells in pregnant animals acclimatized 

to high altitude. In NPUA, NS1619- and NS309-induced relaxations were diminished as 

compared with those in PUA. Pregnancy enhanced SKCa type 2 and 3 channels mRNA 

levels in uterine arteries, which were alleviated by hypoxia. Treatment of NPUA with 

17-estradiol (E2) and progesterone (P4) for 48 h increased SKCa type 3 protein 

abundance and NS1619- and NS309-induced relaxations, which were inhibited by 

hypoxia, but this hypoxia-mediated inhibition was reversed by NAC.  Consistently, 

steroid hormones treatment had no significant effects on BKCa current density in the 

absence of NAC, but enhanced it in the presence of NAC. The present data suggest an 

important role of ROS in negatively regulating steroid hormone-mediated upregulation of 

KCa channel activity and adaptation of uterine vascular reactivity in pregnancy, which 
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may contribute to the increased incidence of preeclampsia and fetal intrauterine growth 

restriction associated with maternal hypoxia. 

 

Introduction 

Ca
2+

-activated K
+
 (KCa) channels are key regulators of vascular tone (Ledoux J, et 

al., 2006; Hu and Zhang, 2012). Both large-conductance KCa (BKCa) and small-

conductance KCa (SKCa) contribute to the regulation of uterine vascular function (Hu et 

al., 2011; Hu et al., 2012; Zhu et al., 2013 a). Uterine blood flow increases dramatically 

during pregnancy to optimize the supply of oxygen and nutrition for the development of 

the fetus.  Steroid hormones such as estrogen and progesterone play an important role in 

the hemodynamic adaption in part by upregulating KCa channel (Hu et al., 2011), leading 

to decreased vascular tone.  However, this adaptive change was severely complicated by 

gestational hypoxia, leading to increased incidence of preeclampsia and fetal intrauterine 

growth restriction (Zamudio et al., 1995ab; Keyes et al., 2003; Julian et al., 2008).  The 

dysregulation of uterine circulation involves increased vascular tone due to impaired KCa 

channel function (Hu et al., 2012; Zhu et al., 2013 a).  However, the mechanism 

underlying the impairment of KCa channel function remains poorly understood. 

Reactive oxygen species (ROS) in the cardiovascular system primarily include 

superoxide (O2
.–
), hydrogen peroxide (H2O2), and hydroxyl radical (OH

.
). Increased level 

of ROS during exposure to hypoxia has been demonstrated in vasculature including 

uterine arteries from pregnant sheep (Marshall et al., 1996; Rathore et al., 2008; Xiao et 

al., 2013); and oxidative stress has been implicated in the pathogenesis of various 

cardiovascular disorders (Wolin et al., 2005; Schnabel and Blankenberg, 2007). Activities 
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of KCa channels in VSMCs are subject to modulation by ROS (Brakemeier et al., 2003; 

Xiao et al., 2013).  Considering important roles of KCa in regulating uterine vascular tone 

and the fact that increased generation of ROS in uterine arteries from pregnant animals 

exposed to high-altitude chronic hypoxia, the present studies were investigate whether the 

hypoxia-mediated heightened ROS altered KCa channels activities and their-mediated 

relaxations of uterine arteries in pregnancy. In addition, we were also investigated the 

effects of steroid hormones on KCa channels activities and their-mediated uterine 

vasorelaxations and determined whether this effect of steroid hormones was altered by 

hypoxia-enhanced ROS.   

 

Materials and Methods 

Tissue Preparation and Treatment 

Uterine arteries were harvested from nonpregnant and near-term (~140 days’ 

gestation) pregnant sheep maintained at sea level (~300 m) or exposed to high-altitude 

(3801 m) hypoxia (PaO2: 60 mmHg) for 110 days (Chang et al., 2010). Animals were 

anesthetized with Ketamine (10 mg/kg, i.v.) followed by inhalation of 1.5% to 2.0% 

halothane. An incision was made in the abdomen and the uterus exposed.  The uterine 

arteries were isolated and removed without stretching and placed into a modified Krebs 

solution.  All procedures and protocols were approved by the Institutional Animal Care 

and Use Committee and followed the guidelines by the National Institutes of Health 

Guide for the Care and Use of Laboratory Animals. 
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Contraction Studies 

The fourth generation branches of main uterine arteries from nonpregnant and 

pregnant sheep, respectively, were separated from the surrounding tissue, and cut into 2-

mm ring segments.  Uterine arteries from pregnant sheep were immediately used for 

contraction studies, whereas uterine arteries from nonpregnant sheep were treated with 

17-estradiol (E2, 0.3 nmol/L) and progesterone (P4, 100 nmol/L) for 48h in absence or 

presence of 1 mM N-acetylcysteine (NAC).  Isometric tension was measured in the Krebs 

solution in a tissue bath at 37°C, as described previously (Hu and Zhang, 1997; Xiao et 

al., 2010c). Briefly, each ring segment was equilibrated for 60 minutes and then gradually 

stretched to the optimal resting tension, as determined by the tension that developed in 

response to 120 mmol/L KCl added at each stretch level.  After stable responses to KCl 

were obtained, ring segments were rinsed and then contracted with submaximal 

concentrations of norepinephrine, followed by NS1619 or NS309 in the absence or 

presence of NAC, respectively, for tissues from pregnant animals and in the absence of 

NAC for tissues from nonpregnant animals, added in a cumulative manner. 

 

Western Immunoblotting 

Protein abundance of SK2 and SK3 channels were measured in freshly isolated 

nonpregnant uterine arteries after hormone treatment (Hu et al., 2011; Xiao et al., 2009; 

Zhu et al., 2013 a). Briefly, tissues were homogenized in a lysis buffer followed by 

centrifugation at 4°C for 10 minutes at 10,000g, and the supernatants were collected.  

Samples with equal proteins were loaded onto 7.5% polyacrylamide gel with 0.1% 

sodium dodecyl sulfate, and were separated by electrophoresis at 100 V for 2 hours. 
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Proteins were then transferred onto nitrocellulose membranes. After blocking nonspecific 

binding sites by dry milk, the membranes were incubated with primary antibodies against 

SK2 channel (Alomone Ltd, Jerusalem, Israel) and SK3 channel (Santa Cruz 

Biotechnology, Santa Cruz CA). After washing, membranes were incubated with 

secondary horseradish peroxidase-conjugated antibodies. Proteins were visualized with 

enhanced chemiluminescence reagents, and blots were exposed to Hyperfilm.  Results 

were quantified with the Kodak electrophoresis documentation and analysis system and 

Kodak ID image analysis software. 

 

Real-Time RT-PCR 

Total RNA was extracted from uterine arteries using TRIzol protocol (Invitrogen, 

Carlsbad, USA). Then, the SK2 and SK3 mRNA levels were determined by real-time 

RT-PCR using the iCycler Thermal cycler (BioRad, Hercules, CA). Specific SK2 primers 

were 5’-ATGGACACTCAGCTGACAAAAAGA-3’ (forward) and 5’-

GCTTGCAAGAATTTCCGTTGATGT-3’ (reverse). Specific SK3 primers were 5’-

CCAAGCGGATCAAGAATGCTGC-3’ (forward) and 5’-

GACGCTCCTCAACTGCAACTGGTGGATA-3’ (reverse). Real-time RT-PCR was 

performed in a 25 μl-reaction mixture according to the instruction of iScript one-step RT-

PCR kit (BioRad). RT-PCR was carried out under the following conditions: 95 °C for 10 

min, followed by 40 cycles of 95 °C for 10 sec, 50 °C for 15 sec and 72 °C for 15 sec. 

The results were calculated from the standard curve of 1 to 10
-13

 ng SK2 or SK3 cDNA 

plasmid run in each assay as previously described (Xiao et al., 2001b). 
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Measurement of KCa Channel Current 

Arterial smooth muscle cells were enzymatically dissociated from resistance-sized 

uterine arteries, and whole-cell K
+
 currents were recorded using an EPC 10 patch-clamp 

amplifier with Patchmaster software (HEKA, Lambrecht/Pfalz, Germany) at room 

temperature, as previously described (Hu et al., 2011). Briefly, cell suspension drops 

were placed in a recording chamber and adherent cells were continuously superfused with 

HEPES-buffered physiologic salt solution containing (in mmol/L):  140.0 NaCl, 5.0 KCl, 

1.8 CaCl2, 1.2 MgCl2, 10.0 HEPES, and 10.0 glucose (pH 7.4).  Only relaxed and 

spindle-shaped myocytes were used for recording.  Micropipettes were pulled from 

borosilicate glass and had resistances of 2 to 5 MΩ when filled with the pipette solution 

containing (in mmol/L) 140.0 KCl, 1.0 MgCl2, 5.0 Na2ATP, 5.0 EGTA, 10.0 HEPES (pH 

7.2).  CaCl2 was added to bring free Ca
2+

 concentrations to 200.0 nmol/L, as determined 

using WinMAXC software (Chris Patton, Stanford University).  Cells were held at –50 

mV and whole-cell K
+
 currents were evoked by voltage steps from -60 mV to +80 mV by 

stepwise 10-mV depolarizing pulses (350-ms duration, 10-second intervals) in the 

absence and presence of 1 mM tetraethylammonium (TEA) or 1 mol/L apamin.  The K
+
 

currents were normalized to cell capacitance and were expressed as picoampere per 

picofarad (pA/pF).   

 

Data Analysis 

Concentration-response curves were analyzed by computer-assisted nonlinear 

regression to fit the data using GraphPad Prism (GraphPad Software, San Diego, CA).  

Results were expressed as means ± SEM obtained from the number of experimental 
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animals given.  Differences were evaluated for statistical significance (P < 0.05) by 

ANOVA or t test, where appropriate. 

 

Results 

Effect of Acute N-acetylcysteine Treatment on KCa Channel-

Mediated Relaxation of Uterine Arteries from Normoxic Pregnant 

Sheep 

 As shown in Fig. 15A, the BKCa channel opener NS1619 induced a concentration-

dependent relaxation of uterine arteries in the absence or presence of N-acetylcysteine.  

However, relaxation-induced by NS1619 was not altered by N-acetylcysteine treatment 

(pD2: 6.7 ± 0.3 versus 5.8 ± 0.2; Emax: 39.3 ± 3.8 % versus 43.9 ± 5.0 %; P > 0.05).  

Similarly, relaxation induced by the SKCa channel opener NS309 was also concentration-

dependent (Fig. 15B).  N-acetylcysteine had no effect on NS309-induced relaxation 

(pD2: 5.5 ± 0.3 versus 6.5 ± 0.3; Emax: 58.0  11.2 % versus 50.7  11.9 %; P > 0.05). 
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Figure 15.  Effect of N-acetylcysteine on KCa Channel-Mediated Relaxation in Uterine 

Arteries from Normoxic Pregnant Sheep.  A. Concentration-response curves of NS 1619-

induced relaxation in the absence (Control) or presence of N-acetylcysteine (NAC, 1 

mmol/L).  B. Concentration-response curves of NS 309-induced relaxation in the absence 

or presence of N-acetylcysteine (1 mmol/L).  Uterine arteries were contracted with 

norepinephrine (NE, 1 mol/L), and then followed by additions of NS1619 or NS309. N-

acetylcysteine was added into organ baths 20 minutes before additon of NS1619 or 

NS309. Data are means  SEM from 4 to 5 animals in each group.  
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Effect of Acute N-acetylcysteine Treatment on KCa Channel-

Mediated Relaxation of Uterine Arteries from Hypoxic Pregnant 

Sheep 

 Consistent with previous studies (Zhu et al., 2013 a), relaxations induced by 

NS1619 and NS309 in uterine arteries were impaired in high-altitude pregnant animals 

(Fig. 16). As shown in Figure 16A, NS1691-induced maximal response of relaxations of 

uterine arteries were significantly attenuated in hypoxic sheep (13.7 ± 3.8 %) as 

compared with those in normoxic animals (39.3 ± 3.8 %, Fig. 15A) (P < 0.05). Similarly, 

NS309-induced maximal response of relaxations of uterine arteries were also 

significantly attenuated in hypoxic sheep (17.7  3.3 %, Fig. 16B) as compared with 

those in normoxic animals (58.0  11.2 %, Fig. 1B) (P < 0.05). Treatment with NAC 

significantly enhanced both NS1619-induced maximal relaxation (13.7 ± 3.8 % versus 

46.2 ± 9.5 %; P < 0.05) (Fig. 16A) and NS309-induced maximal relaxation (17.7  3.3 % 

versus 34.9  4.6 %; P < 0.05) (Fig. 16B). 
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Figure 16.  Effect of N-acetylcysteine on KCa Channel-Mediated Relaxation in Uterine 

Arteries from Hypoxic Pregnant Sheep.  A. Concentreation-response curves of NS1619-

induced relaxation in the absence (Control) or presence of N-acetylcysteine (NAC, 1 

mmol/L).  B. Concentration-response curves of NS309-induced relaxation in the absence 

or presence of N-acetylcysteine (1 mmol/L). Uterine arteries were contracted with 

norepinephrine (NE, 1 mol/L), and then followed by additions of NS1619 or NS309. N-

acetylcysteine was added into organ baths 20 minutes before addition of NS1619 or 

NS309. Data are means  SEM from 4 to 5 animals in each group. 

 

  

A 

B 
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Effect of Acute N-acetylcysteine Treatment on KCa Channel 

Activities in Uterine Arterial Smooth Muscle Cells 

 To determine the effect of ROS on KCa channel activities in uterine arterial 

smooth muscle cells, whole-cell K
+
 and KCa currents were obtained in the absence or 

presence of N-acetylcysteine in myocytes freshly isolated from uterine arteries of 

normoxic and hypoxic pregnant animals.  N-acetylcysteine was without effect on whole-

cell K
+
 currents in myocytes of normoxic animals (50.8 ± 2.0 pA/pF versus 52.8 ± 1.7 

pA/pF at +80 mV; P > 0.05).  However, N-acetylcysteine significantly increased whole-

cell K
+
 (from 42.4 ± 0.8 pA/pF to 50.4 ± 2.1 pA/pF; P < 0.05) and BKCa (from 18.5 ± 1.4 

pA/pF to 26.6 ± 2.4 pA/pF; P < 0.05) currents in uterine arterial myocytes of hypoxic 

animals (Fig. 17).  Consistent with previous finding (Zhu et al., 2013 a), no apamin-

sensitive K
+
 current was detected in uterine arterial myocytes of hypoxic animals; and N-

acetylcysteine treatment failed to upregulate SK currents (data not shown). 
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Figure 17.  Effect of N-acetylcysteine on KCa Channel Activities in Myocytes of Uterine 

Arteries from Hypoxic Pregnant Sheep.  A. Effect of chronic hypoxia on whole-cell K
+ 

currents in myocyte isolated from uterine arteries of hypoxic pregnant sheep in the 

presence of N-acetylcysteine (NAC, 1 mmol/L). Whole-cell K
+ 

currents were recored in 

the absence or presence of tetraethylammonium (TEA, 1 mmol/L). *P<0.05 vs control 

(Ctr). B. Effect of chronic hypoxia on BKCa currents in myocytes isolated from uterine 

arteries of hypoxic pregnant sheep. BKCa currents were determined as the difference 

between the whole-cell K+ current in the absence of tetraethylammonium (TEA) and that 

in the presence of TEA. Mocytes were exposed to N-acetylcysteine 10 min before 

applying the voltage-step protocol. Data are means  SEM of cells from 5 animals of 

each group. *P<0.05 vs in the presence of N-acetylcysteine (NAC).  
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Effect of Pregnancy and Chronic Hypoxia on SKCa Channel 

mRNA Levels of Uterine Arteries 

  Our previous studies have demonstrated that chronic hypoxia during gestation 

down-regulate both BKCa and SKCa channels protein expressions in uterine arteries (Hu et 

al., 2012; Zhu et al., 2013 a). In this study, we further determined the mRNA levels of 

SKca channels in uterine arteries. As shown in Fig. 18A, the mRNA levels of SK2 

channels in uterine arteries were significantly higher in pregnant animals than those in 

nonpregnant animals. In addition, chronic hypoxia significantly attenuated the mRNA 

levels in pregnant but nonpregnant animals. Similarly, the mRNA levels of SK3 channels 

were also significantly increased in pregnant animals as compared with nonpregnant 

animals (Fig. 18B), but chronic hypoxia significantly decreased the mRNA levels in both 

pregnant and nonpregnant animals. 
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Figure 18.  SKCa Channels mRNA Level in Uterine Arteries. SKCa channels type 2 and 3 

mRNA levels were quantified by RT-PCR, as described in MATERIALS AND 

METHODS, in freshly isolated uterine arteries from nonpregnant and pregnant sheep in 

both normoxic and hypoxic groups. The results were calculated from the standard curve 

of SK2 and SK3 cDNA plasmid run in each assay. Data are means  SEM of 5 nimals in 

each groups. *P<0.05, pregnant vs. nonpregnat; #P<0.05 , hypoxia vs. normoxia.  

 

 

 

 

A 
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Effect of Sex Steroid Hormones on KCa Channel-Mediated 

Relaxation of Uterine Arteries from Normoxic Nonpregnant Sheep 

 As shown in Figure 19A, NS1619-induced maximal response of relaxations of 

uterine arteries in normoxic nonpregnant animals (12.67 ± 2.1%) were significantly lower 

than those in normoxic preganant animals (39.3 ± 3.8 %, P < 0.05; Fig. 15A). Similarly, 

NS309-induced maximal response of relaxations of uterine arteries in normoxic 

nonpregnant animals (10.35 ± 1.0%; Fig 19B) were significantly lower than those in 

normoxic preganant animals (58.0  11.2 %, P < 0.05; Fig. 15B) 

We recently demonstrated upregulation of BKCa channel activity and expression 

in uterine arteries during pregnancy was mediated by actions of 17β-estradiol and 

progesterone (Hu et al., 2011).  In this experiment, we further examined the effect of 

steroid hormones on KCa channel-mediated uterine arterial function. As shown in Fig. 

19A, hormonal treatment significantly enhanced the potency (pD2: 5.4 ± 0.3 versus 7.4 ± 

0.4; P < 0.05) but not the maximal response (12.67 ± 2.1% versus 18.84 ± 2.42%) of 

relaxation-induced by NS1619.  However, both the potency (5.6 ± 0.2 versus 6.4  0.2; P 

< 0.05) and the maximal response (10.35 ± 1.0% versus 24.18  2.14%) of relaxation-

induced by NS309 were significantly increased by the hormonal treatment (Fig. 19B). 
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Figure 19.  Effect of Ex Vivo Hormonal Treatment on KCa-Mediated Relaxation in 

Uterine Arteries from Normoxic Nonpregnant Sheep.  Uterine arteries isolated from 

normoxic nonpregnant sheep were treated ex vivo with 17-estradiol (E2; 0.3 nmol/L) 

plus progesterone (P4; 100.0 nmol/L) under 21% O2 for 48 hours. Tissues were then 

contracted with norepinephrine (NE, 1 mol/L) and followed by additions of NS1619 or 

NS309.  A. Concentration-response curves of NS1619-induced relaxation in uterine 

arteries treated without (Control) or with steroid hormones (E2+P4). B. Concentration-

response curves of NS309-induced relaxation in uterine arteries treated without (Control) 

or with steroid hormones (E2+P4). Data are means  SEM from 4 to 6 animals in each 

group. 
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Effect of Sex Steroid Hormones on SKCa Channel Expression in 

Uterine Arteries 

 Our recent study revealed that ex vivo hormonal treatment of uterine arteries from 

normoxic nonpregnant sheep resulted in increased expression of BKCa channel 1 subunit 

(Hu et al., 2011).  To determine whether steroid hormones upregulate expression of SKCa 

channel, uterine arteries from normoxic nonpregnant sheep treated ex vivo with 17β-

estradiol (0.3 nmol/L) and progesterone (100.0 nmol/L) for 48 hours.  As shown in Fig. 

20, the hormonal treatment significantly increased SK3 channel, but not SK2, protein 

abundance in uterine arteries. 
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Figure 20.  Effect of Sex Steroid Hormones on SK2 and SK3 Protein Expression in 

Uterine Arteries from Normoxic Nonpregnant Sheep.  Uterine artereis from nonpregnant 

sheep of normoxic animals were treated ex vivo with 17-estradiol (E2; 0.3 nmol/L) 

plus progesterone (P4; 100.0 nmol/L) under 21% O2 for 48 hours. Protein abundance of 

SK2 and SK3 were determined by western blot analyses. Data are means  SEM of 

tissues from 4 animals of each group, *P<0.05, +E2/P4) vs. -E2/P4. 
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Effect of Chronic N-acetylcysteine Treatment on Steroid 

Hormones-Mediated KCa Channel-Mediated Relaxation of Uterine 

Arteries in Hypoxic Nonpregnant Sheep 

 In contrast to the effect of steroid hormones on Kca-mediated relaxations of 

uterine arteries in normoxic animals (Fig. 19), hormonal treatment did not alter both 

NS1619-induced relaxations (Emax: 11.17  1.03 % versus 12.89 ± 1.14 %; P > 0.05, 

Fig. 21A) and NS309-indiced relaxations of uterine arteries (Emax: 11.02  0.54 % 

versus 10.34  1.4 %; P > 0.05, Fig. 21B) in hypoxic animals.  However, hormonal 

treatment in the presence of N-acetylcysteine significantly enhanced both NS1619-

induced maximal relaxations (17.17  1.29 % versus 29.98  2.57 %; P<0.05, Fig. 21A) 

and NS309-induced maximal relaxations of uterine arteries (12.7  0.86 % versus 33.10  

4.02 %; P<0.05, Fig. 21B). 
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Figure 21.  N-acetylcysteine (NAC) Reverses Chronic Hypoxia-Induced Impairment of 

KCa Channel-Mediated Relaxation of Uterine Arteries from Nonpregnant Sheep Treated 

with Steroid Hormones Ex Vivo.  Uterine arteries isolated from hypoxic nonpregnant 

sheep were treated ex vivo with 17β-estradiol (E2β; 0.3 nmol/L) plus progesterone (P4; 

100.0 nmol/L) under 10.5% O2 for 48 hours in the absence and presence of NAC (1 

mmol/L). Tissues were then contracted with norepinephrine (NE, 1 mmol/L) and 

followed by additions of NS1619 or NS309. A.  NS1619-induced maximal response of 

relaxation in uterine arteries.  B.  NS309-induced maximal response of relaxation in 

uterine arteries.  Data are means ± SEM from 4 to 6 animals in each group. *P < 0.05, 

E2+P4 vs. control. 

  

A 

B 
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Effect of Chronic N-acetylcysteine Treatment on Regulation of 

KCa Channel Activities in Uterine Arteries from Hypoxic 

Nonpregnant Sheep by Steroid Hormones 

 We also examined KCa channel activities in uterine arteries from hypoxic 

nonpregnant sheep treated ex vivo with steroid hormones in the presence of N-

acetylcysteine for 48 hrs.  As shown in Fig. 22, whole-cell K
+
 and BKCa current densities 

in uterine arteries treated with N-acetylcysteine alone were similar to those observed in 

arteries treated without N-acetylcysteine (Hu et al., 2012).  However, in the presence of 

N-acetylcysteine, estrogen and progesterone were able to enhance both whole-cell K
+
 and 

BKCa current densities.  Whole-cell K
+
 currents in uterine arteries treated with N-

acetylcysteine were not sensitive to apamin.  Furthermore, enhanced whole-cell K
+
 

currents by the hormonal treatment in the presence of N-acetylcysteine were also not 

inhibited by apamin (data not shown). 
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Figure 22.  N-acetylcysteine Reverses Chronic Hypoxia-Induced Impairment of KCa 

Channel Activities in Myocytes of Uterine Arteries from Hypoxic Nonpregnant Sheep 

Treated with Steroid Hormones Ex Vivo.  Uterine arteries isolated from hypoxic 

nonpregnant sheep were treated ex vivo with 17β-estradiol (E2β; 0.3 nmol/L) plus 

progesterone (P4; 100.0 nmol/L) under 10.5% O2 for 48 hours in the absence and 

presence of N-acetylcysteine (1 mmol/L).  A. Effect of N-acetylcysteine on whole-cell K
+
 

currents in myocytes isolated from uterine arteries of hypoxic nonpregnant sheep ex vivo 

treated without or with steroid hormones. Whole-cell K
+
 currents were recorded in the 

absence or presence of tetraethylammonium (TEA, 1 mmol/L). *P<0.05 vs control (Ctr).  

B. Effect of N-acetylcysteine on BKCa currents in myocytes isolated from uterine arteries 

of hypoxic nonpregnant sheep ex vivo treated without or with steroid hormones. BKCa 

currents were determined as the difference between the whole-cell K
+
 current in the 

absence of tetraethylammonium (TEA) and that in the presence of TEA.  Data are means 

± SEM of cells from 5 animals of each group. *P<0.05, +E2β/P4 vs −E2β/P4. 
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Discussion 

In the present study, we have demonstrated that the functions of both BKCa and 

SKCa channel in uterine arteries are suppressed by heightened oxidative stress during 

chronic hypoxia. Our results suggest that chronic hypoxia-induced elevated oxidative 

stress exerts its adverse impact on KCa channel through suppressing steroid hormone-

induced up-regulation of KCa channels.  Our study provides strong evidence that ROS is a 

common mediator to impair BKCa and SKCa channel function in uterine arteries and 

contributes to the dysfunction of uterine circulation caused by chronic hypoxia during 

gestation.  

  In consistent with our previous studies (Zhu et al., 2013 a), our current finding 

that both NS1619 and NS309-induced relaxations of uterine arteries were significantly 

attenuated by chronic hypoxia in pregnant animals, further suggests that chronic hypoxia 

downregulate both BKCa and SKCa channels activities and their gene expressions. In deed, 

our finding that mRNA levels of SKCa type 2 and 3 channels in uterine arteries were 

significantly enhanced by pregnancy, which was attenuated by chronic hypoxia, suggests 

hypoxia during gestation downregulates SKCa gene expression. However, the molecular 

mechanisms underlying chronic hypoxia-mediated downregulation of BKCa and SKCa-

mediated uterine arterial relaxation remain unclear. The present findings that treatment 

with NAC, an antioxidant to scavenge free radicals (Sun, 2010), significantly enhanced 

both NS1619- and NS309-induced relaxations in hypoxic but not normoxic animal, 

suggest that hypoxia-mediated heightened ROS may be one of the key mechanisms in 

attenuation of both BKCa and SKCa-mediated uterine vascular relaxations during 

gestation. ROS plays an important role in pathogenesis of cardiovascular dysfunctions 
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(Wolin et al., 2005; Schnabel and Blankenberg, 2007).  ROS has been shown to inhibit 

BKCa channel activity (Brakemeier et al., 2003; Liu Y et al., 2002; Soto et al., 2002; Tang 

et al., 2004). We recently demonstrated that gestational hypoxia increased ROS 

production in uterine arteries (Xiao et al., 2013).  Therefore, heightened ROS likely 

attribute to the suppressed function of BKCa and SKCa channels in uterine arteries from 

pregnant sheep. In the present study, our finding that NAC could partially reverse the 

impairment of BKCa channel activity, suggests that ROS could directly alter BKCa 

channel activity, resulting in regulation of BKCa-mediated uterine vascular contractility in 

response to hypoxia exposure. These observations are consistent with previous findings 

that the NADPH oxidase inhibitor apocynin partially reversed the suppression of BKCa 

channel function by chronic hypoxia (Xiao et al., 2013). Similarly, impaired BKCa 

channel-mediated relaxation of cerebral arteries from insulin resistant rats was restored 

by superoxide dismutase plus catalase which catalyze the breakdown of free radicals 

(Erdös B et al., 2004).   

A novel and interesting finding in the present study is that the heightened ROS 

regulate SKCa channel-mediated uterine vascular contractile function but without 

alteration of SKCa channel activity. Our data indicated that hypoxia-mediated impairment 

of SKCa channel-mediated relaxation of uterine arteries was alleviated by N-

acetylcysteine. However, N-acetylcysteine treatment failed to restore SKCa channel 

activity in VSMCs of uterine arteries.  It is likely the N-acetylcysteine enhanced SKCa-

mediated relaxation of uterine arteries via an endothelium-dependent mechanism. In 

deed, SKCa channels are present in both VSMCs and endothelial cells of uterine arteries 

(Zhu et al., 2013 a). N-acetylcysteine treatment might increase SKCa channel activity in 



88 

endothelial cells, which in turn could cause vasorelaxation via releasing vasodilators and 

transmitting hyperpolarization into vascular smooth muscle via myoendothelial gap 

junctions (Feletou, 2009).  Given the fact that the increased blood pressure in the rat 

model with reduced uterine perfusion pressure was alleviated by N-acetylcysteine (Chang 

et al., 2005), the up-regulation of KCa function by N-acetylcysteine may have therapeutic 

implications.   

 We have demonstrated that BKCa channel function can be directly regulated by 

estrogen and progesterone through a genomic effect (Hu et al., 2011).  Similarly, 17β-

estradiol and progesterone also selectively up-regulated the expression of SKCa type 3 

channels in uterine arteries.  This finding mimicked enhanced SKCa channel activity seen 

in pregnant uterine arteries form normoxic animals (Zhu et al., 2013 a).  Estrogen 

receptor-α (ER-) is the predominant estrogen receptor in the uterine arteries (Chang et 

al., 2010). Estrogen has been shown to control SKCa channel expression in human 

myometrial cells via the specificity protein (Sp) family of transcription factors (Pierce 

and England, 2010).  Hence, the up-regulation of SKCa channel expression in uterine 

arteries by steroid hormones likely occurs at genomic level.   

In contrast to the upregulation of KCa channel activities and KCa channel-mediated 

relaxation in uterine arteries of normoxic animals by estrogen and progesterone, the 

effect of steroid hormones on regulation of KCa channels activities and their-mediated 

relaxation was diminished in hypoxic animals. These findings suggest that hypoxia-

mediated downregulation of KCa channels activities and their-mediated relaxations may 

be regulated through steroid hromones-mediated signaling. These observations are not 

surprising since ER- receptor is down-regulated during gestational hypoxia via 
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increased methylation of the receptor gene (Chang et al., 2010; Dasgupta et al., 2012). 

Down-regulation of ER-, in turn, suppresses KCa channel expression, leading to reduced 

channel activities and relaxation mediated by KCa channels. 

Off most interesting findings that hormonal treatment in the presence of N-

acetylcysteine restored KCa channel-mediated relaxation in uterine arteries from hypoxic 

animals, suggest that heightened oxidative stress during chronic hypoxia may diminish 

the ability of steroid hormones to regulate of KCa channel functions.  In deed, ROS has 

been shown to induce post-translational modifications of ERα, leading to ERα down-

regulation in human breast cancer cells (Weitsman et al., 2009).  Scavenging free radicals 

by N-acetylcysteine removed inhibitory effects of ROS, allowing steroid hormones to up-

regulated KCa channel expression and function.  Correspondingly, BKCa channel activity 

in uterine arterial VSMCs was also restored by N-acetylcysteine after hormonal 

treatment.  Although co-treatment of uterine arteries from hypoxic animals with steroid 

hormones and NAC failed to up-regulate SKCa channel activity in VSMCs, it could up-

regulate SKCa channel function in endothelial cells, which in turn results in enhanced 

SKCa channel-mediated relaxation via releasing vasodilators and hyperpolarizing VSMCs 

through myoendothelial gap junctions as aforementioned.  Indeed, it has been shown that 

N-acetylcysteine supplement improves human coronary and peripheral endothelium-

dependent vasodilation (Andrews et al., 2001).   

In conclusion, heightened ROS-induced by chronic hypoxia attenuated steroid 

hormones-mediated signaling, which leads to downregulation of KCa channels activities 

and their gene expression and results in decreased relaxations of uterine arteries during 

gestation. The attenuation of KCa channels-mediated relaxation may contribute to the 
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enhanced uterine vascular tone and increased incidence of preeclampsia and fetal 

intrauterine growth restriction associated with maternal hypoxia.   
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CHAPTER FIVE 

DISCUSSION 

 

Discussion 

Our recent studies suggested that upregulation of BKCa channel expression and 

activities attributed to attenuated myogenic tone of uterine arteries in pregnancy, and 

chronic hypoxia inhibited the steroid hormone-mediated upregulation of the 1 subunit 

and BKCa channel activity in uterine arteries (Hu et al., 2011; Hu et al., 2012). However, 

the role of SKCa in the regulation of uterine vascular reactivity under physiological and 

pathophysiological conditions such as pregnancy and chronic hypoxia is unclear. My 

research project has provided the evidence of KCa channels in uterine vascular adaptation 

to pregnancy and in response to chronic hypoxia during gestation and the mechanism 

associated with sex steroid hormone regulation.  

In chapter 2, our focuse was to determine if SKCa channel expression and function 

in uterine arteries have been changed in response to pregnancy and hypoxia. We 

demonstrated that pregnancy upregulated SKCa channel expression and function. 

However, the mechanisms are unknown. Based on findings that activation of estrogen 

receptoe may alter gene transcription (Murphy, 2011), and pregnancy up-regulates the 

expression of estrogen receptor  and  in uterine arteries (Byers et al., 2005; Chang et 

al., 2010), as well as the findings that 17-estradiol-mediates an increase in expression 

and heightened activity of BKCa channels in uterine arteries of pregnant sheep (Hu et al., 

2011). We proposed that sex steroid hormones may contribute to the regulation of SKCa 
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channel activity in the uterine artery. Our studies in chapter 4 have supported this 

hypothesis. In Chapter 4, we demonstrated that 17-estradiol and progesterone also 

upregulated the expression of SKCa channel in uterine arteries. Previous studies have 

shown that estrogen receptor- (ER-) is the predominant estrogen receptor in uterine 

arteries (Chang et al., 2010). Estrogen was shown to control SKCa channel expression in 

human myometrial cells via the specificity protein (Sp) family of transcription factors 

(Pierce and England, 2010). Therefore, the upregulation of SKCa channel expression in 

uterine arteries by steroid hormones is likely to occur at the genomic level. Furthermore, 

in chapter 4, we also found that hormonal treatment ex vivo under 10.5% O2 failed to 

upregulation of KCa channel activities and KCa channel-mediated relaxation in uterine 

arteries of hypoxic animals. This finding suggests that chronic hypoxia inhibits the ability 

of 17-estradiol and progesterone to modulate KCa channel function. The explaination of 

this finding may be that ER- is down-regulated during gestational hypoxia due to 

increased methylation of the receptor gene (Chang et al., 2010; Dasgupta et al., 2012). 

Down-regulation of ER- may in turn suppress KCa channel expression, leading to 

reduced channel activities and relaxation mediated by KCa channels.  

In chapter 2, we demonstrated the expression of SK2 and SK3 channels in both 

vascular smooth muscle and endothelial cells in uterine arteries. This is in agreement with 

the previous findings in other visceral and vascular smooth muscle cells by 

immunohistochemistry (Chen et al., 2004; Potocnik et al., 2009; Sorensen et al., 2011). 

The functional role of SKCa channels in vascular smooth muscle was comfirmed with 

our electrophysiological and contractility studies. Previous studies showed the expression 

and function of SKCa channels in endothelial cells (Brahler et al., 2009; Taylor et al., 
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2003). The chapter 2 is the first to demonstrate that the vascular tone and contractility 

may also be regulated by SKCa channels in smooth muscle cells. Hence, the present study 

provides a novel mechanism of SKCa channels in regulating vascular tone and function. 

Similar to previous findings on BKCa channels in uterine arteries of pregnant 

sheep (Hu et al., 2012) and IKCa channels in pulmonary arteries from animals exposed to 

chronic hypoxia (Kroigaard et al., 2013), chapter 2 demonstrated that chronic hypoxia 

impaired the regulatory role of SKCa channels in vascular smooth muscle excitability and 

contractility. This impairment was due to decreased expression and reduced channel 

activities of these channels. Our previous studies have shown that voltage-gated K
+ 

(Kv) 

channels were largely unaffected by chronic hypoxia, and suggested that chronic hypoxia 

may be specific for KCa channels in the uterine artery (Hu et al., 2012). These findings 

provide evidence of KCa channels attributing to changes in uterine vascular function by 

chronic hypoxia and provide a possible explanlation for increased incidence of 

preeclampsia and fetal intrauterine growth restriction under chronic hypoxia exposure 

during pregnancy. The mechanism of chronic hypoxia in regulating KCa function is 

unknown.  Our previous study demonstrated that chronic hypoxia changed the expression 

of estrogen receptor  in uterine arteries during gestation, without affecting the plasma 

estrogen levels (Chang et al., 2010; Dasgupta et al., 2012). Expression of BKCa (Hu et al., 

2011; Nishimura et al., 2008) and SKCa (Jacobson et al., 2003; Pierce and England, 2010) 

are changed by hormone treatment. Hence, estrogen plays an important role in regulating 

the adaptation of KCa channel function in the uterine artery during pregnancy and chronic 

hypoxia. Our studies in chapter 4 were based on this hypothesis.  
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In chapter 3 we demonstrated that inhibitory effect of BKCa but not SKCa channels 

on PKC-mediated contractions of uterine arteries and this inhibitory effect was impaired 

by chronic hypoxia during pregnancy, suggesting that chronic hypoxia-mediated increase 

in PKC-induced myogenic contractions of uterine arteris in pregnancy (Chang et al., 

2009; Xiao et al., 2012) by the modulation of BKCa channel activity. Gene expression and 

BKCa channel activity studies support this conculation (Hu et al., 2012). In addition, this 

chapter demonstrated that chronic hypoxia-mediated effect was pregnancy-dependent. 

Taken together with previous findings that BKCa channel expression and function were 

regulated by 17－estradiol (Hu et al., 2012), these studies provide new insights of 

mechanisms of chronic hypoxia-mediated vascular tone by estrogen in chapter 4. On the 

other hand in chapter 3, an inhibitory effect of PKC on activated KCa channel-mediated 

relaxations and channel activities of the uterine arteries in pregnant animals were induced 

by chronic hypoxia. Although the mechanism is unknow, it may be associated with the 

finding that the activity of PKC isozyme PKC is selectively increased by chronic 

hypoxia (Chang et al., 2009). Without suprise, activation of PKC inhibited KCa channel 

activity by stimulation of L-type Ca
2+

 channel via c-SRC (Alioua et al., 2002). 

In chapter 4, we demonstrated two mechanisms in the changes of KCa expression 

and function in response to pregnancy and chronic hypoxia including direct inhibition of 

channel activity and indirect inhibition of channel activities via suppressing steroid 

hormone-induced up-regulation of KCa channels. This chapter provides evidence that 

ROS impair BKCa and SKCa channel function in uterine arteries contributing to the 

maladpatation of uteroplacental circulation caused by chronic hypoxia during pregnancy.  
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Consistent with chapter 2 that BKCa and SKCa function and protein expression 

have enhanced by pregnancy and chronic hypoxia suppressed this enchancement, chapter 

4 has shown that mRNA levels of type 2 and type 3 in uterine arteries are significantly 

increased by pregnancy, which is decreased by chronic hypoxia. The mechanisms may be 

complex. Our finding that ROS inhibitor N-acetylcysteine siginificantly increased 

chronic hypoxia-mediated NS1619- and NS309-induced relaxation in high altitude 

hypoxia animals, suggests that the mechanism of decreasing BKCa and SKCa-mediated 

uterine vascular relaxation during pregnancy may be associated with enhanced ROS 

production caused by chronic hypoxia. This is consistent with the previous study showing 

that BKCa channel activity was inhibited by ROS (Brakemeier et al., 2003; Liu Y et al., 

2002; Soto et al., 2002; Tang et al., 2004). Consistent with our recently findings that 

apocynin partially reversed the impaired BKCa channel function by chronic hypoxia (Xiao 

et al., 2013), this project demonstrated that N-acetylcysteine altered BKCa channel 

activity, attributing to BKCa-mediated vascular contractility in response to hypoxia.  

The most interesting finding in chapter 4 is that the impaired KCa channel-induced 

relaxation in uterine arteries of hypoxic animals was restored by hormonal treatment in 

the presence of N-acetylcysteine, providing evidence that the regulatory role of steroid 

hormones on KCa channel functions was impaired by heightened oxidative stress during 

chronic hypoxia. Consistent with the contractility study, the electrophysiological study in 

the present project showed that BKCa channel activity in uterine arterial VSMCs was 

restored by N-acetylcysteine after hormonal treatment. Surprisingly, restoration of SKCa 

channel activity in VSMCs has not been found in hypoxic animals in the same treatment. 

One explaination is that this treatment upregulates SKCa channel function in endothelial 
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cells, which releasing vasodilators and hyperpolarizing VSMCs through myoendothelial 

gap junctions to enhance SKCa channel-mediated relaxation. This is consistent with 

previous finding of vascular endothelium-dependent vasodilation was increased by N-

acetylcysteine supplement (Andrews et al., 2001). 

 

Conclusions and Future Directions 

The present and previous studies (Hu et al., 2011; Hu et al., 2012) have 

demonstrated that BKCa and SKCa channels are expressed in uterine arterial smooth 

muscle cells and playing an important role in the regulation of vascular contractility and 

basal tone. Consistent with these studies, the present studies demonstrated that pregnancy 

significantly upregulated BKCa and SKCa channel expression by selectively targeting on 

BKCa β1 subunits and SK2 and SK3 channels. In addition, BKCa and SKCa channel 

activities and these channel-mediated relaxations were enhanced by pregnancy, and 

myogenic tone of uterine arteries was decreased. In constrast, chronic hypoxia during 

gestation decreased BKCa and SKCa channel expression and impaired their function in the 

regulation of contractility and myogenic tone. Hence, these studies demonstrated the role 

of KCa channels in uterine vascular adaptation to pregnancy and chronic hypoxia. 

Moreover, we demonstrated that pregnancy and chronic hypoxia differentially regulated 

the interaction of protein kinase C and calcium-activated potassium channels in 

modulating uterine arterial contractility. Futhermore, steroid hormones play an important 

role in the hemodynamic adaption by upregulating KCa channel, causing decreased 

vasculat tone. Our present project demonstrated that chronic hypoxia inhibited this 

adaptive changes in uterine arteries of pregnant sheep via increased ROS production. 

This study provides new insights of mechanisms in the dysfunction of uterine circulation 
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caused by chronic hypoxia during gestation. In general, the present project may attibut to 

improving our understanding of the pathophysiological mechanisms underlying the 

maladaptation of uteroplacental circulation and pregnancy complications including 

preeclampsia and fetal growth restriction associated with chronic hypoxia during 

gestation. 

Our project determined a reduction in SK2 and SK3 mRNA and protein 

abundance in the uterine artery of high altitude chronic hypoxic animals, providing new 

insights of future research in further investigation of possible epigenetic mechanisms 

involved in uteroplacental circulation adaption mechanims. This will provide further 

evidence that chronic hypoxia-mediated adaptation may encompasse epigenomic levels.  

 

  



98 

 

 

REFERENCES 

 

 

Ahn, Y.T., Kim, Y.M., Adams, E., Lyu, S.C., Alvira, C.M. and Cornfield, D.N.(2012) 

Hypoxia-inducible factor-1alpha regulates KCNMB1 expression in human 

pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol., 302: 

L352-359. 

 

Alioua, A., Mahajan, A., Nishimaru, K., Zarei, M.M., Stefani, E. and Toro, L.(2002) 

Coupling of c-Src to large conductance voltage-and Ca
2+

-activated K
+
 channels as a 

new mechanism of agonist-induced vasoconstriction. Proc Natl Acad Sci USA, 

99:14560–14565. 

 

Andrews, N.P., Prasad, A. and Quyyumi, A.A. (2001) N-acetylcysteine improves 

coronary and peripheral vascular function. J Am Coll Cardiol., 37:117-123. 

 

Archer, S.L., Huang, J.M., Hampl, V., Nelson, D.P., Shultz, P.J. and Weir, E.K. (1994) 

Nitric oxide and cGMP cause vasorelaxation by activation of a charybdotoxin-

sensitive K channel by cGMP-dependent protein kinase. Proc Natl Acad Sci USA., 

91: 7583-7587. 

 

Baraban, J.M., Gould, R.J., Peroutka, S.J. and Snyder, S.H. (1985) Phorbol ester effects 

on neurotransmission: interaction with neurotransmitters and calcium in smooth 

muscle. Proc Natl Acad Sci USA.,82: 604-607. 

 

Barman, S.A., Zhu, S. and White, R.E.(2004) Protein kinase C inhibits BKCa channel 

activity in pulmonary arterial smooth muscle. Am J Physiol Lung Cell Mol 

Physiol., 286: L149-155. 

 

Benkusky, N.A., Korovkina, V.P., Brainard, A.M. and England, S.K.(2002) Myometrial 

maxi-K channel beta1 subunit modulation during pregnancy and after 17beta-

estradiol stimulation. FEBS Lett., 524: 97-102. 

 

Bosch, M.A., Kelly, M.J. and Ronnekleiv, O.K.(2002) Distribution, neuronal 

colocalization, and 17beta-e2 modulation of small conductance calcium-activated 

K(+) channel (sk3) mrna in the guinea pig brain. Endocrinology., 143: 1097-1107 

 

Brahler, S., Kaistha, A., Schmidt, V.J., Wolfle, S.E., Busch, C., Kaistha, B.P., Kacik, M., 

Hasenau, A.L., Grgic, I., Si, H., Bond, C.T., Adelman, J.P., Wulff, H., de Wit, C., 

Hoyer, J. and Kohler, R.(2009) Genetic deficit of sk3 and ik1 channels disrupts the 

endothelium-derived hyperpolarizing factor vasodilator pathway and causes 

hypertension. Circulation., 119:2323-2332 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Andrews%20NP%5BAuthor%5D&cauthor=true&cauthor_uid=11153725
http://www.ncbi.nlm.nih.gov/pubmed?term=Prasad%20A%5BAuthor%5D&cauthor=true&cauthor_uid=11153725
http://www.ncbi.nlm.nih.gov/pubmed?term=Quyyumi%20AA%5BAuthor%5D&cauthor=true&cauthor_uid=11153725
http://www.ncbi.nlm.nih.gov/pubmed?term=Barman%20SA%5BAuthor%5D&cauthor=true&cauthor_uid=14514518
http://www.ncbi.nlm.nih.gov/pubmed?term=Zhu%20S%5BAuthor%5D&cauthor=true&cauthor_uid=14514518
http://www.ncbi.nlm.nih.gov/pubmed?term=White%20RE%5BAuthor%5D&cauthor=true&cauthor_uid=14514518


99 

Brakemeier, S., Eichler, I., Knorr, A., Fassheber, T., Köhler, R. and Hoyer, J.(2003) 

Modulation of Ca
2+

-activated K
+
 channel in renal artery endothelium in situ by 

nitric oxide and reactive oxygen species. Kidney Int., 64:199-207. 

 

Brenner, R., Peréz, G.J., Bonev, A.D., Eckman, D.M., Kosek, J.C., Wiler, S.W., 

Patterson, A.J., Nelson, M.T. and Aldrich, R.W.(2000) Vasoregulation by the beta1 

subunit of the calcium-activated potassium channel. Nature. 407:870-876. 

 

Brown, A., Cornwell, T., Korniyenko, I., Solodushko, V., Bond, C.T., Adelman, J.P. and 

Taylor, M.S.(2007) Myometrial expression of small conductance Ca
2+

-activated K
+
 

channels depresses phasic uterine contraction. Am J Physiol Cell Physiol., 

292:C832-840 

 

Brzezinska, A.K., Gebremedhin, D., Chilian, W.M., Kalyanaraman, B. and Elliott, 

S.J.(2000) Peroxynitrite reversibly inhibits Ca(2+)-activated K(+) channels in rat 

cerebral artery smooth muscle cells. Am J Physiol Heart Circ Physiol., 278:H1883-

1890. 

 

Byers, M.J., Zangl, A., Phernetton, T.M., Lopez, G., Chen, D.B. and Magness, 

R.R.(2005) Endothelial vasodilator production by ovine uterine and systemic 

arteries: ovarian steroid and pregnancy control of ERalpha and ERbeta levels. J 

Physiol., 565: 85-99. 

 

Buetler, T.M., Krauskopf, A. and Ruegg, U.T.(2004) Role of superoxide as a signaling 

molecule. News Physiol Sci., 19: 120-123. 

 

Chang, E.Y., Barbosa, E., Paintlia, M.K., Singh, A. and Singh, I.(2005) The use of N-

acetylcysteine for the prevention of hypertension in the reduced uterine perfusion 

pressure model for preeclampsia in Sprague-Dawley rats. Am J Obstet Gynecol., 

193: 952-6. 

 

Chang, K., Xiao, D., Huang, X., Longo, L.D. and Zhang, L.(2009) Chronic hypoxia 

increases pressure-dependent myogenic tone of the uterine artery in pregnant sheep: 

Role of erk/pkc pathway. Am J Physiol Heart Circ Physiol., 296:H1840-1849 

 

Chang, K., Xiao, D., Huang, X., Xue, Z., Yang, S., Longo, L.D. and Zhang, L.(2010) 

Chronic hypoxia inhibits sex steroid hormone-mediated attenuation of ovine uterine 

arterial myogenic tone in pregnancy. Hypertension., 56:750-757 

 

Chen, M.X., Gorman, S.A., Benson, B., Singh, K., Hieble, J.P., Michel, M.C., Tate, S.N. 

and Trezise, D.J.(2004) Small and intermediate conductance Ca(2+)-activated K(+) 

channels confer distinctive patterns of distribution in human tissues and differential 

cellular localisation in the colon and corpus cavernosum. Naunyn Schmiedebergs 

Arch Pharmacol., 369:602-615 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Brakemeier%20S%5BAuthor%5D&cauthor=true&cauthor_uid=12787410
http://www.ncbi.nlm.nih.gov/pubmed?term=Eichler%20I%5BAuthor%5D&cauthor=true&cauthor_uid=12787410
http://www.ncbi.nlm.nih.gov/pubmed?term=Knorr%20A%5BAuthor%5D&cauthor=true&cauthor_uid=12787410
http://www.ncbi.nlm.nih.gov/pubmed?term=Fassheber%20T%5BAuthor%5D&cauthor=true&cauthor_uid=12787410
http://www.ncbi.nlm.nih.gov/pubmed?term=K%C3%B6hler%20R%5BAuthor%5D&cauthor=true&cauthor_uid=12787410
http://www.ncbi.nlm.nih.gov/pubmed?term=Hoyer%20J%5BAuthor%5D&cauthor=true&cauthor_uid=12787410
http://www.ncbi.nlm.nih.gov/pubmed?term=Brzezinska%20AK%5BAuthor%5D&cauthor=true&cauthor_uid=10843885
http://www.ncbi.nlm.nih.gov/pubmed?term=Gebremedhin%20D%5BAuthor%5D&cauthor=true&cauthor_uid=10843885
http://www.ncbi.nlm.nih.gov/pubmed?term=Chilian%20WM%5BAuthor%5D&cauthor=true&cauthor_uid=10843885
http://www.ncbi.nlm.nih.gov/pubmed?term=Kalyanaraman%20B%5BAuthor%5D&cauthor=true&cauthor_uid=10843885
http://www.ncbi.nlm.nih.gov/pubmed?term=Elliott%20SJ%5BAuthor%5D&cauthor=true&cauthor_uid=10843885
http://www.ncbi.nlm.nih.gov/pubmed?term=Elliott%20SJ%5BAuthor%5D&cauthor=true&cauthor_uid=10843885
http://www.ncbi.nlm.nih.gov/pubmed?term=Chang%20EY%5BAuthor%5D&cauthor=true&cauthor_uid=16157093
http://www.ncbi.nlm.nih.gov/pubmed?term=Barbosa%20E%5BAuthor%5D&cauthor=true&cauthor_uid=16157093
http://www.ncbi.nlm.nih.gov/pubmed?term=Paintlia%20MK%5BAuthor%5D&cauthor=true&cauthor_uid=16157093
http://www.ncbi.nlm.nih.gov/pubmed?term=Singh%20A%5BAuthor%5D&cauthor=true&cauthor_uid=16157093
http://www.ncbi.nlm.nih.gov/pubmed?term=Singh%20I%5BAuthor%5D&cauthor=true&cauthor_uid=16157093


100 

Cheranov, S.Y. and Jaggar, J.H.(2004) Mitochondrial modulation of Ca
2+�sparks and 

transient KCa currents in smooth muscle of rat cerebral arteries. J Physiol 556: 755–

771. 

 

Clapp, L.H.and Jabr, R.I.(2003) The BK channel: protective or detrimental in genetic 

hypertension? Circ Res., 93: 893-895. 

 

Cooke, C.L. and Davidge, S.T.(2003) Pregnancy-induced alterations of vascular function 

in mouse mesenteric and uterine arteries. Biol Reprod., 68: 1072-1077 

 

Cox, R.H. and Rusch, N.J.(2002) New expression profiles of voltage-gated ion channels 

in arteries exposed to high blood pressure. Microcirculation., 9: 243-257. 

 

Croall, J., Sherrif, S. and Matthews, J.(1978) Non-pregnant maternal plasma volume and 

fetal growth retardation.Br J Obstet Gynaecol., 85: 90-95. 

 

Crozatier, B.(2006) Central role of PKCs in vascular smooth muscle cell ion channel 

regulation. J Mol Cell Cardiol., 41: 952-955. 

 

Dalsgaard, T., Kroigaard, C., Misfeldt, M., Bek, T. and Simonsen, U. (2010) Openers of 

small conductance calcium-activated potassium channels selectively enhance NO-

mediated bradykinin vasodilatation in porcine retinal arterioles. Br J 

Pharmacol.,160:1496-508. 

 

Darkow, D.J., Lu, L. and White, R.E.(1997) Estrogen relaxation of coronary artery 

smooth muscle is mediated by nitric oxide and cGMP. Am J Physiol., 272: H2765-

2773. 

 

Dasgupta, C., Chen, M., Zhang, H., Yang, S. and Zhang, L.(2012) Chronic hypoxia 

during gestation causes epigenetic repression of the estrogen receptor-alpha gene in 

ovine uterine arteries via heightened promoter methylation. Hypertension., 60:697-

704 

 

Del Carlo, B., Pellegrini, M. and Pellegrino, M.(2003) Modulation of Ca
2+

-activated K
+
 

channels of human erythrocytes by endogenous protein kinase C. Biochim Biophys 

Acta., 1612: 107–116. 

 

Earley, S., Pastuszyn, A. and Walker, B.R.(2003) Cytochrome p-450 epoxygenase 

products contribute to attenuated vasoconstriction after chronic hypoxia. Am J 

Physiol Heart Circ Physiol., 285: H127-136. 

 

Erdös, B., Simandle, S.A., Snipes, J.A., Miller, A.W. and Busija, D.W.(2004) Potassium 

channel dysfunction in cerebral arteries of insulin-resistant rats is mediated by 

reactive oxygen species. Stroke., 35: 964-969. 

 

Farley, D.B. and Ford, S.P.(1992) Evidence for declining extracellular calcium uptake 

http://www.ncbi.nlm.nih.gov/pubmed?term=Dalsgaard%20T%5BAuthor%5D&cauthor=true&cauthor_uid=20590639
http://www.ncbi.nlm.nih.gov/pubmed?term=Kroigaard%20C%5BAuthor%5D&cauthor=true&cauthor_uid=20590639
http://www.ncbi.nlm.nih.gov/pubmed?term=Misfeldt%20M%5BAuthor%5D&cauthor=true&cauthor_uid=20590639
http://www.ncbi.nlm.nih.gov/pubmed?term=Bek%20T%5BAuthor%5D&cauthor=true&cauthor_uid=20590639
http://www.ncbi.nlm.nih.gov/pubmed?term=Simonsen%20U%5BAuthor%5D&cauthor=true&cauthor_uid=20590639
http://www.ncbi.nlm.nih.gov/pubmed?term=Erd%C3%B6s%20B%5BAuthor%5D&cauthor=true&cauthor_uid=14976323
http://www.ncbi.nlm.nih.gov/pubmed?term=Simandle%20SA%5BAuthor%5D&cauthor=true&cauthor_uid=14976323
http://www.ncbi.nlm.nih.gov/pubmed?term=Snipes%20JA%5BAuthor%5D&cauthor=true&cauthor_uid=14976323
http://www.ncbi.nlm.nih.gov/pubmed?term=Miller%20AW%5BAuthor%5D&cauthor=true&cauthor_uid=14976323
http://www.ncbi.nlm.nih.gov/pubmed?term=Busija%20DW%5BAuthor%5D&cauthor=true&cauthor_uid=14976323
http://www.ncbi.nlm.nih.gov/pubmed?term=Farley%20DB%5BAuthor%5D&cauthor=true&cauthor_uid=1319752
http://www.ncbi.nlm.nih.gov/pubmed?term=Ford%20SP%5BAuthor%5D&cauthor=true&cauthor_uid=1319752


101 

and protein kinase C activity in uterine arterial smooth muscle during gestation in 

gilts. Biol Reprod., 46:315-321. 

 

Faraci, F.M.(2006) Reactive oxygen species: influence on cerebral vascular tone. J Appl 

Physiol.,100:739-743. 

 

Félétou, M.(2009) Calcium-activated potassium channels and endothelial dysfunction: 

Therapeutic options? Br J Pharmacol.,156:545-562 

 

Fike, C.D., Slaughter, J.C., Kaplowitz, M.R., Zhang, Y. and Aschner, J.L.(2008) Reactive 

oxygen species from nadph oxidase contribute to altered pulmonary vascular 

responses in piglets with chronic hypoxia-induced pulmonary hypertension. Am J 

Physiol Lung Cell Mol Physiol., 295: L881-888.   

 

Gangula, P.R., Zhao, H., Supowit, S., Wimalawansa, S., DiPette, D.and Yallampalli, 

C.(1999) Pregnancy and steroid hormones enhance the vasodilation responses to 

cgrp in rats. Am J Physiol., 276:H284-288 

 

Gauthier, K.M., Spitzbarth, N., Edwards, E.M.and Campbell WB.(2004) Apamin-

sensitive k+ currents mediate arachidonic acid-induced relaxations of rabbit aorta. 

Hypertension., 43:413-419 

 

Gelband, G.H. and McCullough, J.R.(1993) Modulation of rabbit aortic Ca(2+)-activated 

K+ channels by pinacidil, cromakalim, and glibenclamide. Am J Physiol., 264: 

C1119-1127. 

 

Gebremedhin, D., Bonnet, P., Greene, A.S., England, S.K., Rusch, N.J., Lombard, J.H. 

and Harder, D.R.(1994) Hypoxia increases the activity of Ca(2+)-sensitive K+ 

channels in cat cerebral arterial muscle cell membranes. Pflugers Arch., 428: 621-

630. 

 

Gebremedhin, D., Kaldunski, M., Jacobs, E.R., Harder, D.R. and Roman, R.J.(1996) 

Coexistence of two types of Ca(2+)-activated k+ channels in rat renal arterioles. 

Am J Physiol., 270:F69-81 

 

George, E.M.and Granger, J.P.(2011) Mechanisms and potential therapies for 

preeclampsia. Curr Hypertens Rep.,13:269-275 

 

Gibson, H.(1973) Plasma volume and glomerular filtration rate in pregnancy and their 

relation to differences in fatal growth. J Obstet Gynaecol Br Commonw., 80:1067-

1074. 

  

Goodlin, R.C., Quaife, M.A. and Dirksen, J.W.(1981) The significance, diagnosis, and 

treatment of maternal hypovolemia as associated with fetal/maternal illness.Semin 

Perinatol., 5:163-174. 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Faraci%20FM%5BAuthor%5D&cauthor=true&cauthor_uid=16421281


102 

Hampl, V. and Jakoubek, V. (2009) Regulation of fetoplacental vascular bed by hypoxia. 

Physiol Res., 58: S87-93. 

 

Hampl, V., Bibova, J., Stranak, Z., Wu, X., Michelakis, E.D., Hashimoto, K. and Archer, 

S.L. (2002) Hypoxic fetoplacental vasoconstriction in humans is mediated by 

potassium channel inhibition. Am J Physiol Heart Circ Physiol., 283: H2440-2449. 

 

Herrera, G.M., Pozo, M.J., Zvara, P., Petkov, G.V., Bond, C.T., Adelman, J.P. and 

Nelson, M.T.(2003) Urinary bladder instability induced by selective suppression of 

the murine small conductance calcium-activated potassium (sk3) channel. J 

Physiol., 551:893-903. 

 

Hilgers, R.H. and Webb, R.C. (2007) Reduced expression of SKCa and IKCa channel 

proteins in rat small mesenteric arteries during angiotensin ii-induced hypertension. 

Am J Physiol Heart Circ Physiol., 292: H2275-2284. 

 

Hu, S. and Kim, H.S.(1996) On the mechanism of the differential effects of NS004 and 

NS1608 in smooth muscle cells from guinea pig bladder. Eur J Pharmacol., 318: 

461-468. 

 

Hu, X.Q., Xiao, D., Zhu, R., Huang, X., Yang, S., Wilson, S. and Zhang, L.(2011) 

Pregnancy upregulates large-conductance Ca(2+)-activated K(+) channel activity 

and attenuates myogenic tone in uterine arteries. Hypertension., 58:1132-1139. 

 

Hu, X.Q. and Zhang, L.(2012) Function and regulation of large conductance Ca(2+)-

activated K+ channel in vascular smooth muscle cells. Drug Discov Today., 

17:974-987. 

 

Hu, X.Q., Xiao, D., Zhu, R., Huang, X., Yang, S., Wilson, S.M. and Zhang, L.(2012) 

Chronic hypoxia suppresses pregnancy-induced upregulation of large-conductance 

Ca
2+

-activated K
+
 channel activity in uterine arteries. Hypertension., 60: 214-222. 

 

Hu, X.Q. and Zhang, L.(1997) Chronic hypoxia suppresses pharmacomechanical 

coupling of the uterine artery in near-term pregnant sheep. J Physiol., 499:551-559. 

 

 

Iida, Y. and Katusic, Z.S.(2000) Mechanisms of cerebral arterial relaxations to hydrogen 

peroxide. Stroke 31: 2224 –2230. 

 

Jackson, W.F.(2005) Potassium channels in the peripheral microcirculation. 

Microcirculation12: 113-127. 

 

Jacobson, D., Pribnow, D., Herson, P.S., Maylie, J. and Adelman, J.P.(2003) 

Determinants contributing to estrogen-regulated expression of sk3. Biochem 

Biophys Res Commun., 303:660-668. 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Hu%20XQ%5BAuthor%5D&cauthor=true&cauthor_uid=9080381
http://www.ncbi.nlm.nih.gov/pubmed?term=Zhang%20L%5BAuthor%5D&cauthor=true&cauthor_uid=9080381
http://www.ncbi.nlm.nih.gov/pubmed/9080381


103 

Jobe, S.O., Tyler, C.T. and Magness, R.R.(2013) Aberrant synthesis, metabolism, and 

plasma accumulation of circulating estrogens and estrogen metabolites in 

preeclampsia implications for vascular dysfunction. Hypertension., 61:480-487. 

 

Julian, C.G., Galan, H.L., Wilson, M.J., Desilva, W., Cioffi-Ragan, D., Schwartz, J. and 

Moore, L.G.(2008) Lower uterine artery blood flow and higher endothelin relative 

to nitric oxide metabolite levels are associated with reductions in birth weight at 

high altitude. Am J Physiol Regul Integr Comp Physiol., 295:R906-915. 

 

Keating, D.J., Rychkov, G.Y. and Roberts, M.L.(2001) Oxygen sensitivity in the sheep 

adrenal medulla: Role of sk channels. Am J Physiol Cell Physiol., 281:C1434-1441. 

 

Keyes, L., Rodman, D.M., Curran-Everett, D., Morris, K. and Moore, L.G.(1998) Effect 

of K+ATP channel inhibition on total and regional vascular resistance in guinea pig 

pregnancy. Am J Physiol., 275: H680-688. 

 

Keyes, L.E., Armaza, J.F., Niermeyer, S., Vargas, E., Young, D.A. and Moore, L.G. 

(2003) Intrauterine growth restriction, preeclampsia, and intrauterine mortality at 

high altitude in Bolivia. Pediatr Res., 54:20–25. 

 

 

Khalil, R.A. and Granger, J.P.(2002) Vascular mechanisms of increased arterial pressure 

in preeclampsia: Lessons from animal models. Am J Physiol Regul Integr Comp 

Physiol., 283:R29-45. 

 

Khan, L.H., Rosenfeld, C.R., Liu, X.T. and Magness, R.R.(2010) Regulation of the 

cGMP-cPKG pathway and large-conductance Ca2+-activated K+ channels in 

uterine arteries during the ovine ovarian cycle. Am J Physiol Endocrinol Metab., 

298: E222-228. 

 

Kohler, R., Kaistha, B.P. and Wulff, H.(2010) Vascular kca-channels as therapeutic 

targets in hypertension and restenosis disease. Expert Opin Ther Targets., 14:143-

155. 

 

Korovkina, V.P. and England, S.K.(2002) Detection and implications of potassium 

channel alterations. Vascul Pharmacol., 38: 3-12. 

 

Kougias, P., Chai, H., Lin, P.H., Yao, Q., Lumsden, A.B. and Chen, C.(2006) Neutrophil 

antimicrobial peptide alpha-defensin causes endothelial dysfunction in porcine 

coronary arteries. J Vasc Surg., 43:357-363. 

 

Kroigaard, C., Kudryavtseva, O., Dalsgaard, T., Wandall-Frostholm, C., Olesen, S.P. and 

Simonsen, U.(2013) Kca3.1 channel downregulation and impaired edh-type 

relaxation in pulmonary arteries from chronic hypoxic rats. Exp Physiol., 98: 957-

969. 

 



104 

Lange, A., Gebremedhin, D., Narayanan, J. and Harder, D.(1997) 20-

Hydroxyeicosatetraenoic acid-induced vasoconstriction and inhibition of potassium 

current in cerebral vascular smooth muscle is dependent on activation of protein 

kinase C. J Biol Chem., 272: 27345-27352. 

 

Ledoux, J., Werner, M.E., Brayden, J.E. and Nelson, M.T.(2006) Calcium-activated 

potassium channels and the regulation of vascular tone. Physiology., 21: 69-78. 

 

Long, W., Zhang, L.and Longo, L.D.(2002) Fetal and adult cerebral artery K(ATP) and 

K(Ca) channel responses to long-term hypoxia. J Appl Physiol., 92: 1692-1701. 

 

Longo, L.D.(1984) Intrauterine growth retardation: a "mosaic" hypothesis of 

pathophysiology. Semin Perinatol., 8:62-72. 

 

Liu, Y, Terata, K., Chai, Q., Li, H., Kleinman, L.H. and Gutterman, D.D. (2002) 

Peroxynitrite inhibits Ca2+-activated K+ channel activity in smooth muscle of 

human coronary arterioles. Circ. Res., 91, 1070–1076. 

 

Magder, S.(2006) Reactive oxygen species: toxic molecules or spark of life? Crit Care., 

10: 208. 

 

Magness, R.R., Phernetton, T.M. and Zheng, J.(1998) Systemic and uterine blood flow 

distribution during prolonged infusion of 17beta-estradiol. Am J Physiol., 275: 

H731-43. 

 

Magness, R.R. and Rosenfeld, C.R.(1989) Local and systemic estradiol-17 beta: effects 

on uterine and systemic vasodilation. Am J Physiol., 256: E536-542. 

 

Magness, R.R., Rosenfeld, C.R. and Carr, B.R.(1991) Protein kinase C in uterine and 

systemic arteries during ovarian cycle and pregnancy. Am J Physiol., 260: E464-

470. 

 

Marshall, C., Mamary, A.J., Verhoeven, A.J. and Marshall, B.E.(1996) Pulmonary artery 

NADPH-oxidase is activated in hypoxic pulmonary vasoconstriction. Am J Respir 

Cell Mol Biol., 15: 633–644. 

 

Martin, C., Yu, Y.A., Jiang, B.H., Davis, L., Kimberly, D., Hohimer, A.R.and Semenza, 

G.L.(1998) Cardiac hypertrophy in chronically anemic fetal sheep: Increased 

vascularization is associated with increased myocardial expression of vascular 

endothelial growth factor and hypoxia-inducible factor 1. Am J Obstet Gynecol., 

178:527-534. 

 

Matsubara, K., Matsubara, Y., Hyodo, S., Katayama, T. and Ito, M.(2010) Role of nitric 

oxide and reactive oxygen species in the pathogenesis of preeclampsia. J Obstet 

Gynaecol Res., 36: 239-247.    

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Liu%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=12456494
http://www.ncbi.nlm.nih.gov/pubmed?term=Terata%20K%5BAuthor%5D&cauthor=true&cauthor_uid=12456494
http://www.ncbi.nlm.nih.gov/pubmed?term=Chai%20Q%5BAuthor%5D&cauthor=true&cauthor_uid=12456494
http://www.ncbi.nlm.nih.gov/pubmed?term=Li%20H%5BAuthor%5D&cauthor=true&cauthor_uid=12456494
http://www.ncbi.nlm.nih.gov/pubmed?term=Kleinman%20LH%5BAuthor%5D&cauthor=true&cauthor_uid=12456494
http://www.ncbi.nlm.nih.gov/pubmed?term=Gutterman%20DD%5BAuthor%5D&cauthor=true&cauthor_uid=12456494
http://www.ncbi.nlm.nih.gov/pubmed?term=Magness%20RR%5BAuthor%5D&cauthor=true&cauthor_uid=2003600
http://www.ncbi.nlm.nih.gov/pubmed?term=Rosenfeld%20CR%5BAuthor%5D&cauthor=true&cauthor_uid=2003600
http://www.ncbi.nlm.nih.gov/pubmed?term=Carr%20BR%5BAuthor%5D&cauthor=true&cauthor_uid=2003600


105 

Mazzone, J. and Buxton, I.L.(2003) Changes in small conductance potassium channel 

expression in human myometrium during pregnancy measured by RT-PCR.Proc 

West Pharmacol Soc., 46:74-77. 

McNeish, A.J., Dora, K.A. and Garland, C.J.(2005) Possible role for K
+
 in endothelium-

derived hyperpolarizing factor-linked dilatation in rat middle cerebral artery. 

Stroke., 36:1526-1532. 

  

McNeish, A.J., Sandow, S.L., Neylon, C.B., Chen, M.X., Dora, K.A. and Garland, 

C.J.(2006) Evidence for involvement of both IKCa and SKCa channels in 

hyperpolarizing responses of the rat middle cerebral artery. Stroke., 37:1277-1282. 

 

Meera, P., Wallner, M., Jiang, Z. and Toro, L.(1996) A calcium switch for the functional 

coupling between alpha (hslo) and beta subunits (Kv,cabeta) of maxi K channels. 

FEBS Lett., 385: 127-128. 

 

Miller, C., Moczydlowski, E., Latorre, R. and Phillips, M.(1985) Charybdotoxin, a 

protein inhibitor of single Ca2+-activated K+ channels from mammalian skeletal 

muscle. Nature., 313: 316-318. 

 

Minami, K., Fukuzawa, K. and Nakaya, Y.(1993) Protein kinase C inhibits the Ca(2+)-

activated K+ channel of cultured porcine coronary artery smooth muscle cells. 

Biochem Biophys Res Commun., 190: 263-269. 

 

Moore, L.G., Charles, S.M. and Julian, C.G.(2011) Humans at high altitude: Hypoxia and 

fetal growth. Respir Physiol Neurobiol., 178:181-190 

 

Moore, L.G., Niermeyer, S. and Zamudio, S.(1998) Human adaptation to high altitude: 

regional and life-cycle perspectives. Am J Phys Anthropol Suppl., 27:25-64. 

 

Moore, L.G., Young, D., McCullough, R.E., Droma, T. and Zamudio, S.(2001) Tibetan 

protection from intrauterine growth restriction (IUGR) and reproductive loss at high 

altitude. Am J Hum Biol., 13: 635–644. 

 

Moore, L.G., Zamudio, S., Zhuang, J., Sun, S. and Droma, T.(2001) Oxygen transport in 

tibetan women during pregnancy at 3,658 m. Am J Phys Anthropol., 114:42-53. 

 

Murphy, E.(2011) Estrogen signaling and cardiovascular disease. Circ Res., 109:687-696. 

 

Nagar, D., Liu, X.T. and Rosenfeld, C.R.(2005) Estrogen regulates {beta}1-subunit 

expression in Ca(2+)-activated K(+) channels in arteries from reproductive tissues. 

Am J Physiol Heart Circ Physiol., 289: H1417-1427. 

 

Naik, J.S. and Walker, B.R.(2003) Heme oxygenase-mediated vasodilation involves 

vascular smooth muscle cell hyperpolarization. Am J Physiol Heart Circ Physiol., 

285: H220-228. 

 



106 

Naik, J.S. and Walker, BR.(2006) Role of vascular heme oxygenase in reduced myogenic 

reactivity following chronic hypoxia. Microcirculation., 13: 81-88. 

 

Navarro-Antolín, J., Levitsky, K.L., Calderón, E., Ordóñez, A. and López-Barneo, 

J.(2005) Decreased expression of maxi-K+ channel beta1-subunit and altered 

vasoregulation in hypoxia. Circulation., 112:1309-1315. 

 

Nelson, M.T.(1993) Ca(2+)-activated potassium channels and ATP-sensitive potassium 

channels as modulators of vascular tone. Trends Cardiovasc Med., 3: 54-60. 

 

Nelson, M.T., Huang, Y., Brayden, J.E., Hescheler, J. and Standen, N.B.(1990) Arterial 

dilations in response to calcitonin gene-related peptide involve activation of K+ 

channels. Nature., 344: 770-773. 

 

Nelson, M.T. and Quayle, J.M.(1995) Physiological roles and properties of potassium 

channels in arterial smooth muscle. Am J Physiol., 268: C799-822. 

 

Nelson, S.H., Steinsland, O.S., Johnson, R.L., Suresh, M.S., Gifford, A. and Ehardt, 

J.S.(1995) Pregnancy-induced alterations of neurogenic constriction and dilation of 

human uterine artery. Am J Physiol., 268:H1694-1701. 

 

Nelson, S.H., Steinsland, O.S., Suresh, M.S. and Lee, N.M.(1998) Pregnancy augments 

nitric oxide-dependent dilator response to acetylcholine in the human uterine artery. 

Hum Reprod., 13:1361-1367. 

 

Ni, Y., May, V., Braas, K. and Osol, G.(1997) Pregnancy augments uteroplacental 

vascular endothelial growth factor gene expression and vasodilator effects. Am J 

Physiol., 273:H938-944. 

 

Nishimura, I., Ui-Tei, K., Saigo, K., Ishii, H., Sakuma, Y. and Kato, M.(2008) 17b-

estradiol at physiological concentrations augments Ca
2+

-activated K
+
 currents via 

estrogen receptor b in the gonadotropin-releasing hormone neuronal cell line GT1-

7. Endocrinology.,149:774-782. 

 

Noble, K., Floyd, R., Shmygol, A., Shmygol, A., Mobasheri, A. and Wray, S. (2010) 

Distribution, expression and functional effects of small conductance Ca-activated 

potassium (SK) channels in rat myometrium.Cell Calcium., 47:47-54. 

 

Okami, J., Simeone, D.M. and Logsdon, C.D. (2004) Silencing of the hypoxia-inducible 

cell death protein BNIP3 in pancreatic cancer. Cancer Research., 64: 5338-5346. 

 

Osol, G. and Mandala, M.(2009) Maternal uterine vascular remodeling during pregnancy. 

Physiology., 24:58-71.  

 

Paffett, M.L. and Walker, B.R.(2007) Vascular adaptations to hypoxia: molecular and 

cellular mechanisms regulating vascular tone. Essays Biochem., 43:105-119. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Paffett%20ML%5BAuthor%5D&cauthor=true&cauthor_uid=17705796
http://www.ncbi.nlm.nih.gov/pubmed?term=Walker%20BR%5BAuthor%5D&cauthor=true&cauthor_uid=17705796


107 

 

Palmer, S.K., Berman, J.C., Zamudio, S., Gibbs, C.P., and Moore, L.G.(1992) Altered 

heart rate response to hypoxia in women who develop preeclampsia(Abstract). 

Anesthesiology., 77: A1000. 

 

Palmer, S.K., Moore, L.G., Young, D., Cregger, B., Berman, J.C. and Zamudio, S.(1999) 

Altered blood pressure course during normal pregnancy and increased preeclampsia 

at high altitude (3100 meters) in Colorado. Am J Obstet Gynecol., 180: 1161-1168. 

 

 

Palmer, S.K., Moore, L.G., Young, D., Cregger, B., Berman, J.C. and Zamudio, S.(1999) 

Altered blood pressure course during normal pregnancy and increased preeclampsia 

at high altitude (3100 meters) in colorado. Am J Obstet Gynecol., 180:1161-1168 

 

Perrot-Applanat, M., Groyer-Picard, M.T., Garcia, E., Lorenzo, F. and Milgrom, E.(1988) 

Immunocytochemical demonstration of estrogen and progesterone receptors in 

muscle cells of uterine arteries in rabbits and humans. Endocrinology., 123: 1511-

1519. 

 

Pierce, S.L., Kresowik, J.D. and Lamping, K.G.(2008) England SK. Overexpression of 

SK3 channels dampens uterine contractility to prevent preterm labor in mice. Biol 

Reprod., 78:1058-1063. 

 

Pierce, S.L. and England, S.K.(2010) SK3 channel expression during pregnancy is 

regulated through estrogen and sp factor-mediated transcriptional control of the 

kcnn3 gene. Am J Physiol Endocrinol Metab., 299:E640-646. 

 

Potocnik, S.J., McSherry, I., Ding, H., Murphy, T.V., Kotecha, N., Dora, K.A., Yuill, 

K.H., Triggle, C.R. and Hill, M.A.(2009): Role of edh and k(+) channels. 

Microcirculation.,16:377-390; 1p after 390. 

 

Rada, C.C., Pierce, S.L., Nuno, D.W., Zimmerman, K., Lamping, K.G., Bowdler, N.C., 

Weiss, R.M. and England, S.K.(2012) Overexpression of the sk3 channel alters 

vascular remodeling during pregnancy, leading to fetal demise. Am J Physiol 

Endocrinol Metab., 303:E825-831. 

 

Rathore, R., Zheng, Y.M., Niu, C.F., Liu, Q.H., Korde, A., Ho, Y.S. and Wang, 

Y.X.(2008) Hypoxia activates nadph oxidase to increase [ROS]i and [Ca
2+

]i 

through the mitochondrial ROS-PKCε signaling axis in pulmonary artery smooth 

muscle cells. Free Radic Biol Med., 45: 1223–1231. 

 

Resnik, E., Herron, J., Fu, R. and Ivy, D.D.(2006) Cornfield DN. Oxygen tension 

modulates the expression of pulmonary vascular BKCa channel alpha- and beta-

subunits. Am J Physiol Lung Cell Mol Physiol., 290: L761-768. 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Palmer%20SK%5BAuthor%5D&cauthor=true&cauthor_uid=10329872
http://www.ncbi.nlm.nih.gov/pubmed?term=Moore%20LG%5BAuthor%5D&cauthor=true&cauthor_uid=10329872
http://www.ncbi.nlm.nih.gov/pubmed?term=Young%20D%5BAuthor%5D&cauthor=true&cauthor_uid=10329872
http://www.ncbi.nlm.nih.gov/pubmed?term=Cregger%20B%5BAuthor%5D&cauthor=true&cauthor_uid=10329872
http://www.ncbi.nlm.nih.gov/pubmed?term=Berman%20JC%5BAuthor%5D&cauthor=true&cauthor_uid=10329872
http://www.ncbi.nlm.nih.gov/pubmed?term=Zamudio%20S%5BAuthor%5D&cauthor=true&cauthor_uid=10329872
http://www.ncbi.nlm.nih.gov/pubmed?term=Niu%20CF%5BAuthor%5D&cauthor=true&cauthor_uid=18638544
http://www.ncbi.nlm.nih.gov/pubmed?term=Liu%20QH%5BAuthor%5D&cauthor=true&cauthor_uid=18638544
http://www.ncbi.nlm.nih.gov/pubmed?term=Korde%20A%5BAuthor%5D&cauthor=true&cauthor_uid=18638544
http://www.ncbi.nlm.nih.gov/pubmed?term=Ho%20YS%5BAuthor%5D&cauthor=true&cauthor_uid=18638544
http://www.ncbi.nlm.nih.gov/pubmed?term=Wang%20YX%5BAuthor%5D&cauthor=true&cauthor_uid=18638544
http://www.ncbi.nlm.nih.gov/pubmed?term=Wang%20YX%5BAuthor%5D&cauthor=true&cauthor_uid=18638544


108 

Robertson, KD.(2005) DNA methylation and human disease. Nature Reviews Genetics., 

6, 597-610. 

 

Rosenfeld, C.R.(1984) Consideration of the uteroplacental circulation in intrauterine 

growth. Semin Perinatol., 8: 42-51. 

 

Rosenfeld, C.R., Cornfield, D.N. and Roy, T.(2001) Ca(2+)-activated K(+) channels 

modulate basal and E(2)beta-induced rises in uterine blood flow in ovine 

pregnancy. Am J Physiol Heart Circ Physiol., 281: H422-431. 

 

Rosenfeld, C.R., Liu, X.T. and DeSpain, K.(2009) Pregnancy modifies the large 

conductance Ca2+-activated K+ channel and cGMP-dependent signaling pathway 

in uterine vascular smooth muscle. Am J Physiol Heart Circ Physiol., 296: H1878-

1887. 

 

Rosenfeld, C.R., Morriss, F.H.Jr., Battaglia, F.C., Makowski, E.L. and Meschia, G.(1976) 

Effect of estradiol-17beta on blood flow to reproductive and nonreproductive 

tissues in pregnant ewes. Am J Obstet Gynecol.,124: 618-629. 

 

Rosenfeld, C.R., Roy, T., DeSpain, K. and Cox, B.E.(2005) Large-conductance Ca
2+

-

dependent K
+
 channels regulate basal uteroplacental blood flow in ovine 

pregnancy. J Soc Gynecol Investig.,12: 402-408. 

 

Rosenfeld, C.R., White, R.E., Roy, T. and Cox, B.E.(2000) Calcium-activated potassium 

channels and nitric oxide coregulate estrogen-induced vasodilation. Am J Physiol 

Heart Circ Physiol. 279: H319-328. 

 

Rupnow, H.L., Phernetton, T.M., Shaw, C.E., Modrick, M.L., Bird, I.M. and Magness 

R.R.(2001) Endothelial vasodilator production by uterine and systemic arteries. 

VII. Estrogen and progesterone effects on eNOS. Am J Physiol Heart Circ Physiol., 

280: H1699-1705. 

 

Schnabel, R. and Blankenberg, S.(2007) Oxidative stress in cardiovascular disease: 

successful translation from bench to bedside? Circulation.,116: 1338-1340. 

 

Singer, H.A. and Baker, K.M.(1987) Calcium dependence of phorbol 12,13-dibutyrate-

induced force and myosin light chain phosphorylation in arterial smooth muscle. J 

Pharmacol Exp Ther., 243: 814-821. 

 

Standen, N.B. and Quayle, J.M.(1998) K+ channel modulation in arterial smooth muscle. 

Acta Physiol Scand.,164: 549-557. 

 

Sorensen, C.M., Giese, I., Braunstein, T.H., Holstein-Rathlou, N.H. and Salomonsson, 

M.(2011) Closure of multiple types of K
+
 channels is necessary to induce changes 

in renal vascular resistance in vivo in rats. Pflugers Arch., 462:655-667 

 



109 

Soto, M.A., Gonzalez, C., Lissi, E., Vergara, C. and Latorre, R.(2002) Ca
2+

-activated K
+
 

channel inhibition by reactive oxygen species. Am J Physiol Cell Physiol., 282: 

C461–471. 

 

Sun, SY.(2010) N-acetylcysteine, reactive oxygen species and beyond. Cancer Biol 

Ther., 9: 109-110. 

 

 

Taguchi, K., Kaneko, K. and Kubo, T.(2000) Protein kinase C modulates Ca
2+

-activated 

K
+
 channels in cultured rat mesenteric artery smooth muscle cells. Biol Pharm Bull, 

23: 1450–1454. 

 

Tanaka, Y., Koike, K., Toro, L.(2004) MaxiK channel roles in blood vessel relaxations 

induced by endothelium-derived relaxing factors and their molecular mechanisms. J 

Smooth Muscle Res., 40: 125-153. 

 

Tang, X.D., Garcia, M.L., Heinemann, S.H. and Hoshi, T.(2004) Reactive oxygen species 

impair slo1 BK channel function by altering cysteine-mediated calcium sensing. 

Nat Struct Mol Biol., 11: 171–178 

 

Taylor, M.S., Bonev, A.D., Gross, T.P., Eckman, D.M., Brayden, J.E., Bond, C.T., 

Adelman, J.P. and Nelson, M.T.(2003) Altered expression of small-conductance 

Ca
2+

-activated K
+
 (SK3) channels modulates arterial tone and blood pressure. Circ 

Res., 93:124-131. 

 

Teoh, H. and Man, R.Y.(1999) Progesterone modulates estradiol actions: acute effects at 

physiological concentrations. Eur J Pharmacol., 378: 57-62. 

 

Thorneloe, K.S., Knorn, A.M., Doetsch, P.E., Lashinger, E.S., Liu, A.X., Bond, C.T., 

Adelman, J.P. and Nelson, M.T.(2008) Small-conductance, Ca(2+) -activated K+ 

channel 2 is the key functional component of sk channels in mouse urinary bladder. 

Am J Physiol Regul Integr Comp Physiol., 294:R1737-1743. 

 

Veerareddy, S., Cooke, C.L., Baker, P.N. and Davidge, S.T.(2002) Vascular adaptations 

to pregnancy in mice: Effects on myogenic tone. Am J Physiol Heart Circ Physiol., 

283:H2226-2233. 

 

Waldron, G.J. and Cole, W.C.(1999) Activation of vascular smooth muscle K+ channels 

by endothelium-derived relaxing factors. Clin Exp Pharmacol Physiol. 1999; 26: 

180-4. 

 

Wallner, M., Meera, P., Ottolia, M., Kaczorowski, G.J., Latorre, R., Garcia, M.L., 

Stefani, E., Toro, T. (1995) Characterization of and modulation by a beta-subunit of 

a human maxi KCa channel cloned from myometrium. Receptors Channels., 3: 185-

199. 

 



110 

Wang, R., Wu, L. and Wang, Z.(1997) The direct effect of carbon monoxide on KCa 

channels in vascular smooth muscle cells. Pflugers Arch., 434: 285-291. 

 

Waypa, G.B. and Schumacker, P.T.(2010) Hypoxia-induced changes in pulmonary and 

systemic vascular resistance: where is the O2 sensor?. Respir Physiol Neurobiol., 

174:201–211. 

 

Wellman, G.C., Bonev, A.D., Nelson, M.T. and Brayden, J.E.(1996) Gender differences 

in coronary artery diameter involve estrogen, nitric oxide, and Ca(2+)-dependent 

K+ channels. Circ Res., 79: 1024-1030. 

 

Wei, A.D., Gutman, G.A., Aldrich, R., Chandy, K.G., Grissmer, S. and Wulff, H.(2005) 

International union of pharmacology. Lii. Nomenclature and molecular 

relationships of calcium-activated potassium channels. Pharmacol Rev., 57:463-472 

 

Weiner, C., Liu, K.Z., Thompson, L., Herrig, J. and Chestnut, D.(1991) Effect of 

pregnancy on endothelium and smooth muscle: Their role in reduced adrenergic 

sensitivity. Am J Physiol., 261:H1275-1283 

 

Weitsman, G.E., Weebadda, W., Ung, K. and Murphy, L.C.(2009) Reactive oxygen 

species induce phosphorylation of serine 118 and 167 on estrogen receptor alpha. 

Breast Cancer Res Treat., 118: 269-279. 

 

White, M.M. and Zhang, L(2003) Effects of chronic hypoxia on maternal vasodilation 

and vascular reactivity in guinea pig and ovine pregnancy. High Alt Med Biol., 4: 

157-169. 

 

White, R.E., Darkow, D.J.and Lang, J.L.(1995) Estrogen relaxes coronary arteries by 

opening BKCa channels through a cGMP-dependent mechanism. Circ Res., 77: 

936-942. 

 

Wolin, M.S., Ahmad, M. and Gupte, S.A.(2005) Oxidant and redox signaling in vascular 

oxygen sensing mechanisms: basic concepts, current controversies, and potential 

importance of cytosolic NADPH. Am J Physiol Lung Cell Mol Physiol., 289:159–

173. 

 

Wong, C.M., Tsang, S.Y., Yao, X., Chan, F.L. and Huang, Y.(2008) Differential effects 

of estrogen and progesterone on potassium channels expressed in Xenopus oocytes. 

Steroids.73: 272-279. 

 

Xiao, D., Buchholz, J.N. and Zhang, L.(2006) Pregnancy attenuates uterine artery 

pressure-dependent vascular tone: role of PKC/ERK pathway. Am J Physiol Heart 

Circ Physiol., 290:H2337–H2343. 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Weitsman%20GE%5BAuthor%5D&cauthor=true&cauthor_uid=18941890
http://www.ncbi.nlm.nih.gov/pubmed?term=Weebadda%20W%5BAuthor%5D&cauthor=true&cauthor_uid=18941890
http://www.ncbi.nlm.nih.gov/pubmed?term=Ung%20K%5BAuthor%5D&cauthor=true&cauthor_uid=18941890
http://www.ncbi.nlm.nih.gov/pubmed?term=Murphy%20LC%5BAuthor%5D&cauthor=true&cauthor_uid=18941890


111 

Xiao, D., Hu, X.Q., Huang, X., Zhou, J., Wilson, S.M., Yang, S. and Zhang, L.(2013) 

Chronic Hypoxia during Gestation Enhances Uterine Arterial Myogenic Tone via 

Heightened Oxidative Stress. PLoS One., 8:e73731 

 

Xiao, D., Huang, X., Yang, S. and Zhang, L.(2009) Direct chronic effect of steroid 

hormones in attenuating uterine arterial myogenic tone: role of protein kinase 

c/extracellular signal-regulated kinase 1/2. Hypertension., 54:352–358. 

 

Xiao, D., Huang, X., Zhang, L.(2012) Chronic hypoxia differentially up-regulates protein 

kinase C-mediated ovine uterine arterial contraction via actin polymerization 

signaling in pregnancy. Biol Reprod., 87:142. 

 

Xiao, D., Longo, L.D. and Zhang, L.(2010c) Role of KATP and L-type Ca
2+

 channel 

activities in regulation of ovine uterine vascular contractility: effect of pregnancy 

and chronic  hypoxia. Am J Obstet Gynecol., 203: 596 e6-12. 

 

Xiao, D., Huang, X., Longo, L.D. and Zhang, L.(2010b) PKC regulates alpha (1)-

adrenoceptor-mediated contractions and baseline Ca(2+) sensitivity in the uterine 

arteries of nonpregnant and pregnant sheep acclimatized to high altitude hypoxia. 

High Alt Med Biol, 11: 153-161. 

 

Xiao, D., Huang, X., Yang, S., Longo, L.D. and Zhang, L.(2010a) Pregnancy 

downregulates actin polymerization and pressure-dependent myogenic tone in 

ovine uterine arteries. Hypertension., 56:1009-1015 

 

Xiao, D., Bird, I.M., Magness, R.R., Longo, L.D. and Zhang, L.(2001b) Upregulation of 

eNOS in pregnant ovine uterine arteries by chronic hypoxia. Am J Physiol Heart 

Circ Physiol., 208: H812-H820. 

 

Xiao, D., Pearce, W.J. and Zhang, L. (2001a) Pregnancy enhances endothelium-

dependent relaxation of ovine uterine artery: Role of NO and intracellular Ca(2+). 

Am J Physiol Heart Circ Physiol., 281:H183-190 

 

Xiao, D. and Zhang, L.(2002) ERK MAP kinases regulate smooth muscle contraction in 

ovine uterine artery: effect of pregnancy. Am J Physiol Heart Circ Physiol., 282: 

H292-H300. 

 

Xiao, D. and Zhang, L.(2005) Adaptation of uterine artery thick- and thin-filament 

regulatory pathways to pregnancy. Am J Physiol Heart Circ Physiol., 288: H142-

H148. 

 

Zamudio, S.(2003) The placenta at high altitude. High Alt Med Biol., 4:171-191. 

 

Zamudio, S.(2007) High-altitude hypoxia and preeclampsia. Front Biosci., 12:2967-2977. 

 

Zamudio, S., Palmer, S.K., Dahms, T.E., Berman, J.C., McCullough, R.G., McCullough, 

http://www.researchgate.net/researcher/39368450_Xiaohui_Huang/
http://www.researchgate.net/researcher/38955378_Lawrence_D_Longo/
http://www.researchgate.net/researcher/38645529_Lubo_Zhang/
http://www.ncbi.nlm.nih.gov/pubmed?term=Xiao%20D%5BAuthor%5D&cauthor=true&cauthor_uid=11748074
http://www.ncbi.nlm.nih.gov/pubmed?term=Zhang%20L%5BAuthor%5D&cauthor=true&cauthor_uid=11748074
http://www.ncbi.nlm.nih.gov/pubmed?term=Xiao%20D%5BAuthor%5D&cauthor=true&cauthor_uid=16399857
http://www.ncbi.nlm.nih.gov/pubmed?term=Zhang%20L%5BAuthor%5D&cauthor=true&cauthor_uid=16399857


112 

R.E. and Moore, L.G.(1993) Blood volume expansion, preeclampsia, and infant 

birth weight at high altitude. J Appl Physiol., 75: 1566-1573. 

 

Zamudio, S., Palmer, S.K., Dahms, T.E., Berman, J.C., Young, D.A. and Moore, 

L.G.(1995a) Alterations in uteroplacental blood flow precede hypertension in 

preeclampsia at high altitude. J Appl Physiol., 79:15-22. 

 

Zamudio, S., Palmer, S.K., Droma, T., Stamm, E., Coffin, C. and Moore, L.G.(1995b) 

Effect of altitude on uterine artery blood flow during normal pregnancy.J Appl 

Physiol., 79:7-14. 

 

Zhang, H., Xiao, D., Longo, L.D. and Zhang, L.(2006) Regulation of α1-adrenoceptor-

mediated contractions of uterine arteries by PKC: effect of pregnancy. Am J 

Physiol Heart Circ Physiol., 291: H2282-H2289.  

 

Zhou, J., Xiao, D.,  Hu, Y.,  Wang, Z.,  Paradis, A.,  Mata-Greenwood, E. and Zhang, 

L.(2013) Gestational hypoxia induces preeclampsia-like symptoms via heightened 

endothelin-1 signaling in pregnant rats. Hypertension., 62: 599-607. 

 

Zhu, R., Hu, X.Q., Xiao, D., Yang, S., Wilson, S.M., Longo, L.D. and Zhang, L. (2013a) 

Chronic Hypoxia Inhibits Pregnancy-Induced Upregulation of SKCa Channel 

Expression and Function in Uterine Arteries. Hypertension.,62: 367-374. 

 

Zhu, R., Xiao, D. and Zhang, L. (2013b) Potassium channels and uterine vascular 

adaptation to pregnancy and chronic hypoxia. Curr Vasc Pharmacol., 11:737-747. 

 

 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Zhou%20J%5BAuthor%5D&cauthor=true&cauthor_uid=23817493
http://www.ncbi.nlm.nih.gov/pubmed?term=Xiao%20D%5BAuthor%5D&cauthor=true&cauthor_uid=23817493
http://www.ncbi.nlm.nih.gov/pubmed?term=Hu%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=23817493
http://www.ncbi.nlm.nih.gov/pubmed?term=Wang%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=23817493
http://www.ncbi.nlm.nih.gov/pubmed?term=Paradis%20A%5BAuthor%5D&cauthor=true&cauthor_uid=23817493
http://www.ncbi.nlm.nih.gov/pubmed?term=Mata-Greenwood%20E%5BAuthor%5D&cauthor=true&cauthor_uid=23817493
http://www.ncbi.nlm.nih.gov/pubmed?term=Zhang%20L%5BAuthor%5D&cauthor=true&cauthor_uid=23817493
http://www.ncbi.nlm.nih.gov/pubmed?term=Zhang%20L%5BAuthor%5D&cauthor=true&cauthor_uid=23817493
http://www.ncbi.nlm.nih.gov/pubmed?term=Zhu%20R%5BAuthor%5D&cauthor=true&cauthor_uid=23716582
http://www.ncbi.nlm.nih.gov/pubmed?term=Hu%20XQ%5BAuthor%5D&cauthor=true&cauthor_uid=23716582
http://www.ncbi.nlm.nih.gov/pubmed?term=Xiao%20D%5BAuthor%5D&cauthor=true&cauthor_uid=23716582
http://www.ncbi.nlm.nih.gov/pubmed?term=Yang%20S%5BAuthor%5D&cauthor=true&cauthor_uid=23716582
http://www.ncbi.nlm.nih.gov/pubmed?term=Wilson%20SM%5BAuthor%5D&cauthor=true&cauthor_uid=23716582
http://www.ncbi.nlm.nih.gov/pubmed?term=Longo%20LD%5BAuthor%5D&cauthor=true&cauthor_uid=23716582
http://www.ncbi.nlm.nih.gov/pubmed?term=Zhang%20L%5BAuthor%5D&cauthor=true&cauthor_uid=23716582

	Expression and Function of Ca2+-Activated K+ Channels in Uterine Arteries
	Recommended Citation

	LOMA LINDA UNIVERSITY

