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Dr. Charles A. Ducsay, Chairperson 

 

Maintaining normal levels of cortisol in response to chronic stress, while retaining 

the ability to respond to acute stress, is important for ensuring normal fetal growth and 

development. Long-term hypoxia (LTH) causes adaptations in the fetal hypothalamo-

pituitary-adrenal (HPA) axis that maintain basal cortisol levels but enhance production in 

response to a secondary stress. Nitric oxide (NO), produced by endothelial nitric oxide 

synthase (eNOS) in the adrenal cortex, plays a significant role in regulating cortisol 

production in the LTH fetus. The production of NO is regulated by eNOS activity which 

can be altered via phosphorylation through key signaling pathways. In examining the 

effects of the MEK/ERK1/2, PI3K/Akt, and calcium signaling pathways, we found that 

the MEK/ERK1/2 pathway and calcium do not regulate eNOS phosphorylation (peNOS), 

but the PI3K/Akt pathway, along with ACTH, regulates peNOS in LTH fetal 

adrenocortical cells (FACs); inhibition of the PI3K/Akt pathway resulted in reduced 

peNOS and enhanced cortisol production in response to ACTH in LTH FACs. Defining 

the regulatory role of these pathways will enhance our understanding of how these 

adaptations to LTH impact the fetus. 
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Abstract 

In utero, hypoxia is a significant, yet common, stress that perturbs homeostasis 

and can occur due to preeclampsia, preterm labor, maternal smoking, heart or lung 

disease, obesity, and high altitude. The fetus has the extraordinary capacity to respond to 

stress during development, This is mediated, in part, by the hypothalamic-pituitary-

adrenal (HPA) axis and, more recently explored, changes in perirenal adipose tissue 

(PAT) in response to hypoxia. Obvious ethical considerations limit studies of the human 

fetus and fetal studies in the rodent model are limited due to size considerations and 

major differences in developmental landmarks. The sheep is a common model that has 

been used extensively to study the effects of both acute and chronic hypoxia on fetal 

development. In response to high-altitude induced, moderate long-term hypoxia (LTH), 

both the HPA axis and PAT adapt to preserve normal fetal growth and development, 

while allowing for responses to acute stress. LTH upregulates the HPA axis at the level of 

the hypothalamus and anterior pituitary yet maintains the normal ontogenic pattern of 

cortisol production during late gestation. Two mechanisms converge at the adrenal cortex 

that facilitate this divergent effect on fetal HPA function. In the PAT, LTH increases 

leptin production, which suppresses adrenocortical gene expression, while nitric oxide 

aids in maintaining acute cortisol production within the adrenal cortex. Although these 

adaptations appear beneficial during fetal development, they may become deleterious 

postnatally and into adulthood. This review will discuss some of the endocrine and 

metabolic adaptive changes that take place in response to hypoxia. 
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Introduction 

Mammalian fetuses, and in particular fetuses from long gestational length 

pregnancies such as humans (primates) and ruminants, have the ability to respond to 

and/or adapt to stress during gestation to survive the potentially harsh intrauterine 

environment and continue to term. Post-birth, both the hypothalamic-pituitary-adrenal 

(HPA) axis, via cortisol, and the adrenomedullary/sympathetic nervous system (SNS), via 

catecholamines, serve as homeostatic regulators in response to acute and chronic stress. 

In larger mammalian fetuses, these systems exhibit maturation in late gestation and serve 

similar roles, providing the fetus with the means to respond to intrauterine stressors. 

While these responses to hypoxic stress may often be beneficial acutely, they have the 

potential to be deleterious, especially under sustained periods of hypoxic stress. 

The influence of hypoxia during fetal development is of particular importance due 

to its potential to induce or “program” alterations in endocrinology and metabolism long 

after birth. It has been recognized for over two decades that an “adverse intrauterine 

environment” could lead to offspring predisposed to a variety of related disorders 

including cardiovascular, metabolic and obesity as adults. This so-called programming, 

also referred to as the “fetal origins of adult disease hypothesis”, describes how an 

“adverse intrauterine environment” can trigger adaptive or maladaptive changes in the 

developing fetus to overcome the hostile conditions and survive (9, 11, 12, 157). Through 

epigenetic imprinting, these changes can lead to susceptibility of the fetus to acquire 

these cardiovascular and metabolic pathologies. Although the original hypothesis was 

largely derived from observations of offspring from malnourished or undernourished 

pregnancies, later studies have expanded on the impact of a variety of so-called intra-
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uterine stressors. This has been reviewed in more detail by Godfrey (67) and Calkins 

(23). 

Fetal hypoxia is a common stressor that occurs during pregnancy as the result of a 

variety of situations including maternal under or malnutrition, preeclampsia, preterm 

labor, smoking, heart or lung disease, obesity, and exposure to high altitude (13, 35, 46, 

73, 94, 142, 160). Therefore, due to its prevalence, hypoxia likely plays a key role on the 

impact of an adverse intrauterine environment on the developing fetus. The impact of 

hypoxia on the fetus is dependent on a wide range of variables including gestational age, 

severity and duration of hypoxia, as well as confounders such as acidemia and 

hypercapnia.  

When considering changes in response to hypoxic stress, the HPA axis is key due 

to its role in growth and maturation of the fetus. The HPA axis, through regulation of 

glucocorticoid biosynthesis, dictates differentiation and maturation of key organ systems 

including lung, liver, kidney, and regulation of metabolism including lipolysis, 

glycogenolysis, and protein catabolism (28, 116, 128). Acutely, activation of the HPA 

leads to a significant increase in cortisol (2, 16, 17, 83, 90), a glucocorticoid that plays a 

critical role in governing metabolism by influencing plasma glucose, lipid, and protein 

concentrations, as well as immune regulation, inflammation, and cardiovascular function. 

Under chronic stress conditions, cortisol production is associated with hyperglycemia, 

immune suppression, excess adipose deposition, bone loss, and hypertension (33, 158, 

173). Therefore, the ability of the fetal HPA axis to adapt to limit cortisol production 

under conditions of chronic stress is crucial for maintaining normal development during 

gestation. The regulation of cortisol must be effectively coordinated to permit the late 
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gestation exponential rise in fetal plasma cortisol essential for fetal maturation, while 

permitting episodic cortisol production in response to acute stress.  

Another key regulatory mediator influenced by hypoxia in the fetus is perirenal 

adipose tissue (PAT). In sheep, approximately 80% of fetal adipose tissue deposition 

occurs in the perirenal-abdominal region (171). During late gestation, fetal mass expands 

and adipose tissue develops and responds to hormonal and nutritional perturbations that 

can alter lipid storage and release, as well as induce secretion of leptin (152). Early 

changes in adipose function in response to hypoxia may play a role in fetal programming, 

due to the influence of leptin and gene expression on metabolic processes and the 

possible overlap between leptin and cortisol regulation.  

For obvious ethical considerations, there is little data on the effect of hypoxia on 

endocrine and metabolic alterations in human fetuses. Additionally, although there are 

programming studies of the effects of hypoxia in rodents, due to the small size and 

developmental maturity of the fetus, they are not ideal for fetal endocrine and metabolic 

studies. Fetal studies have also been conducted in nonhuman primates, but they are 

limited due to the tremendous cost and lack of availability of animals. The sheep has 

become a major animal model for studying the impact of hypoxia on the developing fetus 

due to its relatively long gestational period, similarity of endocrine and physiological 

systems, and relative ease of fetal and maternal instrumentation.  

Throughout this review, we will highlight key findings in relation to the impact of 

hypoxia on endocrine and metabolic responses of the fetus. Although as previously 

described, the majority of information has been derived from studies utilizing the ovine 
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fetus, wherever possible, we will draw correlates from human and non-human primate 

studies. 

 

Acute Hypoxia 

As described above, from a clinical perspective, fetal hypoxia can occur as a 

result of a wide range of maternal conditions. In an effort to mimic some of these 

conditions, multiple models of hypoxia have been developed. Acute hypoxia can be 

induced through maternal hypoxia (6, 37), blood flow restriction (182), or umbilical cord 

occlusion (UCO) (61, 69, 176), for a duration of a few minutes to several hours. In 

response to of acute hypoxia, there is a rapid release of corticotropin releasing hormone 

(CRH) and arginine vasopressin (AVP) from the hypothalamus which triggers 

adrenocorticotropic hormone (ACTH) secretion from the anterior pituitary followed by 

glucocorticoid production in the fetal adrenal cortex proportional to the degree and 

duration of hypoxia. This swift response of the HPA to acute stress emphasizes the 

critical role glucocorticoids play in homeostasis and limiting the physiological impact of 

stress on the fetus.  

Several studies conducted in the fetal sheep examined the effects of acute 

hypoxemia induced by reduction in maternal oxygen or by reduction of uteroplacental 

blood flow by umbilical cord occlusion (UCO). Akagi and Challis showed that moderate 

maternal hypoxia (PO2 reduced by 8.4 mmHg) for 1 hour increased fetal plasma AVP 

and ACTH in 106-117 days gestation (dG) fetuses (6). In a later gestation fetus (131 dG), 

Unno, et al. observed increased fetal plasma ACTH and cortisol concentrations following 

a 50% reduction in blood flow by UCO (176). Further, several studies found that acute 
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episodes (1-48h) of fetal hypoxemia (induced by maternal hypoxia or UCO) resulted in 

increased CRH mRNA in the fetal hypothalamus, proopiomelanocortin (POMC) mRNA 

in the fetal pituitary, and increased circulating AVP, ACTH, and cortisol concentrations 

in fetal plasma (7, 17, 19, 27, 90, 114, 145, 159, 169). While the response of the HPA 

axis to stress is best seen in the late gestation fetus, as the fetal HPA has matured and 

become fully responsive (54), changes in fetal plasma cortisol concentrations in response 

to acute hypoxemia have been reported in the ovine fetus as early as 120 dG (16). 

Together, the results of these studies exemplify the integrated response of the HPA axis 

to acute hypoxic stress. 

Although the response to an acute hypoxic insult results in upregulation of the 

HPA, prolonged elevated cortisol levels lead to fetal growth restriction and, in ruminants, 

activation of the parturition cascade and early birth of small fetus (64, 164). To further 

examine the effects of hypoxia as a fetal stress, the response of the fetal HPA axis to 

repeated hypoxic perturbations or prolonged hypoxia over the course of several days has 

been investigated. Unno, et al. found that after repeated UCOs, fetal anterior pituitary 

responsiveness was maintained with increased levels of plasma ACTH released after each 

UCO, but adrenocortical responsiveness was blunted; despite elevated ACTH, cortisol 

levels remained similar to basal levels by the 12th UCO (176). Green, et al. subjected 

112-116 dG fetal sheep to repeated UCOs and saw increased plasma ACTH and cortisol 

concentrations but this response was attenuated after 4 days (69). These studies show that 

while fetal CRH/AVP and ACTH remained elevated in fetal plasma, cortisol returned to 

basal levels by the end of the hypoxic insult. 
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In its role as a glucocorticoid, cortisol regulates metabolism by influencing 

plasma glucose concentrations. Along with cortisol, plasma glucose levels and fetal 

growth and development are also regulated by insulin, a hormone secreted from 

pancreatic β-cells in response to increased plasma glucose concentrations that stimulates 

cellular uptake of glucose (53). Insulin secretion is tightly coupled to plasma glucose 

concentration, maintaining a relatively constant insulin-to-glucose ratio (I/G). However 

in response to an acute hypoxic challenge, several studies found that the fetus, had 

decreased insulin secretion (87, 187) accompanied by increased norepinephrine (NE) and 

epinephrine (E) secretion (36) and increased cortisol and corticosterone secretion (86). 

Further studies showed that hypoxic stress acts through an α2-adrenergic mechanism to 

induce inhibition of insulin secretion (85, 87, 104, 167). The increase in glucocorticoid 

elevated plasma glucose and circulating catecholamines prevented hyperinsulinemia, but 

together resulted in hyperlactacemia and hypocarbia (107), showing a direct impact on 

fetal metabolism. In response to hypoxia, however, gluconeogenesis is initiated, and the 

excess lactate generated is used as a substrate for hepatic glucose production (107). This 

sympathoadrenal suppression of insulin secretion may act as a mechanism to conserve 

glucose and oxygen for essential organs such as the brain and heart (20, 62), but if 

sustained could result in reduced birth weight (85).  

In the human fetus, Zamudio, et al. found that women living at high altitude 

experienced chronic hypoxia that resulted in IUGR, potentially initiated by fetal 

hypoglycemia; there was decreased circulating fetal glucose concentrations and 

consumption (190). This suggests altered placental metabolism that spares oxygen for 

fetal use but limits glucose availability for fetal growth. IUGR as a result of altered 
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glucose metabolism has also been reported in a rat model of hypoxia by Lueder, et al. 

(111). They observed that maternal exposure to 5 days of 10% ambient oxygen in the 

third trimester resulted in similar fetal plasma glucose concentrations between hypoxic 

and control but increased relative glucose utilization of hypoxic fetal tissues accompanied 

by acidosis, suggesting anaerobic metabolism and increased glycolysis in the hypoxic 

fetus.  

In response to changes in metabolism, cortisol works to restore homeostasis to 

allow for the continued growth and development of the fetus. In the case of recurring 

acute hypoxic stress, continuous bursts of cortisol can become detrimental to fetal 

development and lead to a growth restricted fetus delivered pre-term. From these results, 

the ovine fetus has demonstrated an adaptation in the HPA axis where there is a 

dissociation in the response between the hypothalamic-pituitary axis and the 

adrenocortical response to brief repeated hypoxic stress or prolonged hypoxia over 

several days. While CRH/AVP and ACTH levels remain elevated, cortisol returns to 

basal levels to allow for normal growth and development of the fetus. 

 

Chronic Hypoxia 

Experimentally, chronic hypoxia (over days to weeks or even months) can be 

initiated early or late in gestation and can be induced through placental embolization (21, 

58), placental restriction, secondary to nutrient restriction (51), or by high altitude 

resulting in moderate continuous hypoxia with normal pregnancy duration and no 

accompanying growth restriction (2, 78, 83, 92). Because the HPA axis matures in the 

latter third of gestation and increases in responsiveness as the fetus nears term (25, 101, 
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102, 141, 147, 150, 156, 177), studies often measure the effects of hypoxia in late 

gestation.  

Gagnon, et al. examined the effects of fetal placental embolization (30% 

reduction in arterial PO2) for 10 days in 122 dG sheep. It resulted in progressive 

hypoxemia with reduced fetal plasma ACTH but increased prostaglandin E2 (PGE2) and 

maintained cortisol (58, 131). This suggests that PGE2 may be involved in an adaptation 

to maintain basal fetal cortisol levels when ACTH is reduced and indicates that additional 

factors other than ACTH play a role in regulating cortisol production in the ovine fetus.  

To induce hypoxia by placental restriction (PR), Phillips, et al. performed 

caruncletomies prior to mating to reduce the number of placentomes formed in ewes. 

This resulted in gestational hypoxia, with fetal arterial PO2 reduced by 30%. This highly 

successful model by the McMillen group allows for hypoxia throughout the entire course 

of gestation. However, the hypoxia is accompanied by nutrient restriction and IUGR. Due 

to PR, there was decreased POMC mRNA in the fetal pituitary and higher cortisol levels 

compared to control, despite similar levels of plasma ACTH at 140 dG (151). They 

hypothesized that the HPA axis adapts to operate at a new set point in the growth 

restricted fetus in response to nutrient restriction. 

In the high altitude induced long-term hypoxic (LTH) ovine model, ewes are 

maintained at 3820 m beginning at approximately day 40 of gestation and continuing 

through to near term (139-141 dG, term is ~145, hypoxic fetal PO2 ~18 mmHg, normoxic 

~23 mmHg). In this model, the fetus has adapted to hypoxia such that pregnancies are of 

normal duration, fetuses are not growth restricted, and there is no accompanying acidosis 

(78, 92). Initial studies examining the effects of LTH on the ovine fetus showed that basal 
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immunoreactive (IR) ACTH and cortisol concentrations were similar to normoxic control 

fetuses (78, 133). However, subsequent studies revealed that LTH stimulated 

hypothalamic drive which enhanced expression of POMC and processing to ACTH with 

increased concentrations of ACTH1-39 and key POMC precursors (POMC and 22 kDa 

ACTH) in plasma (133). Despite higher basal levels of ACTH1-39, cortisol concentrations 

were not increased above normoxic controls in near term fetuses.  

This dichotomy became even more interesting in response to a superimposed 

acute secondary stressor. Surprisingly, in the LTH fetuses in response to hypotension or 

UCO, both ACTH and cortisol increased, but the cortisol response was greater compared 

to the response in normoxic fetuses (2, 83, 132). Further studies by Myers, et al. 

demonstrated reduced expression of ACTH-R, CYP17, and CYP11A1 with no changes in 

CYP21 or StAR in the late gestation LTH fetal adrenal cortex compared to normoxic 

controls (135), suggesting that a reduced steroidogenic capacity in the LTH fetus may 

play a role in the disconnect between basal ACTH and cortisol levels. However, 

mechanisms must exist to allow for a heightened cortisol response to acute stress, despite 

the lowered expression of these key steroidogenic enzymes. The fetus has developed such 

that despite elevated basal plasma ACTH, normal ontogenic maturation of cortisol 

production is maintained and the prepartum exponential rise is preserved as well as the 

capacity to respond to an acute secondary stress. These adaptations indicate that the 

hypothalamic-pituitary portion of the axis responds to hypoxia as a stress by increasing 

the synthesis and release of ACTH secretagogues and activating the stress response 

However, adaptive responses at the level of the adrenal cortex suppress excess 

stimulation under basal conditions.  
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As described above, in the LTH fetal adrenal cortex, there is decreased expression 

of CYP11A1 and CYP17, two key enzymes mediating cortisol synthesis, as well as 

decreased ACTH receptor expression (135). The reduction of these factors would result 

in attenuated adrenal responsiveness to ACTH and limited cortisol production. Along 

with these changes, however, there is an increase in the spent form of steroidogenic acute 

regulator (StAR) protein (30 kDa), indicating increased transport of cholesterol into the 

inner mitochondrial membrane for the first step in cortisol biosynthesis. This could 

balance the adaptations of elevated basal plasma ACTH1-39 but reduced adrenal 

responsiveness to maintain basal levels of plasma cortisol similar to those observed in 

normoxic fetuses. In the LTH adrenal cortex, there are no changes in SF-1 and DAX-1 

expression, key transcription factors for ACTH-R and CYP11A1 and CYP17. This 

suggests that activation of these transcription factors is altered, possibly via 

phosphorylation state or increased recruitment of co-repressors (166). 

The mechanisms involved in these adaptations have not been fully elucidated, 

however nitric oxide (NO) may play a major role in regulating cortisol production 

intracellularly in the LTH fetal adrenal cortex. Tsubaki, et al. examined adrenal tissue and 

observed increased expression of endothelial nitric oxide synthase (eNOS) in adrenal 

tissue that colocalizes with CYP17 in LTH fetuses suggesting NO plays a role in 

regulation of adrenal steroidogenesis (174). Monau, et al. also showed that eNOS is the 

dominant NOS isoform in the ovine fetal adrenal cortex, and eNOS mRNA and protein 

expression is increased in the LTH adrenal primarily in CYP17 expressing cells in the 

cortisol producing zona fasciculate (122). Subsequent studies by Monau, et al. showed 

that NO reduced ACTH-mediated cortisol production in LTH fetal adrenocortical cells 
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(FACs) in vitro, while inhibition of NOS activity increased cortisol production in LTH 

cells, with no effect on normoxic cells (123). Also, ACTH reduced eNOS activation via 

phosphorylation in LTH FACs (140), and NO-dependent inhibition of ACTH induced 

cortisol production in vitro FACs further supports the role of NO in regulating cortisol 

production in the LTH fetal adrenal (175). This may be possible by NO competing with 

the oxygen binding site of CYP11A1 and CYP17 (75, 174), disrupting the heme-oxygen 

complex attack by the enzyme on the steroid substrate. The increased release of NO 

under basal conditions would limit cortisol synthesis, while elevated ACTH release and 

signaling due to a secondary stress would inhibit NOS activity and remove NO inhibition, 

resulting in enhanced cortisol production in the LTH fetus. This provides a mechanism 

(NO) for the capability of the LTH fetus to overcome the reduced steroidogenic enzyme 

gene expression and mount an enhanced cortisol response to acute stressors. However the 

question remains as to what factor(s) is involved in the decreased expression of the key 

steroidogenic machinery in response to LTH? 

 

PAT and Leptin 

One factor that my play a role is leptin. This 16 kDa protein derived from adipose 

tissue is most widely recognized for its role in appetite regulation in the adult (5, 89). 

However, leptin has also been clearly demonstrated to regulate adrenal steroid 

biosynthesis. In adult bovine adrenocortical cells, leptin suppressed cortisol output in 

response to ACTH stimulation and this effect was mediated through a reduction in 

CYP17 and CYP11A1 expression (18, 99). Further, leptin is a hypoxia inducible gene 

(110). This adipocyte-derived hormone, like in human fetuses (108), circulates in the 
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fetal sheep and increases in abundance in perirenal adipocytes as gestation progresses 

(188, 189). As in other metabolic tissues, fetal PAT is influenced by maternal conditions 

and intrauterine stressors, such as hypoxia.  

In sheep approximately 80% of fetal adipose tissue deposition occurs in the 

perirenal-abdominal region (152). Fetal PAT differentiation is initiated in mid gestation, 

and expands during late gestation with a concomitant increase in hormone receptor 

populations (152). Adipose tissue begins to develop and respond to hormonal and 

nutritional perturbations in the fetus which in turn affects lipid storage and release. 

Importantly, this adipose tissue depot serves as an endocrine organ with the production of 

leptin (152). Along with the intracellular regulation of cortisol production by NO in the 

fetal adrenal, extracellular regulation of cortisol and the fetal response to hypoxia may be 

regulated by leptin. 

When infused into the late gestation ovine fetus, leptin attenuated the prepartum 

increase in fetal plasma ACTH and cortisol (80, 115, 189). Ducsay, et al. found that 

plasma leptin was elevated in the LTH fetus compared to normoxic controls, with PAT 

and placenta expressing higher levels of leptin mRNA (48). Also, OB-Ra (the inactive, 

short isoform) leptin receptor expression was reduced in the LTH hypothalamus while 

OB-Rb (the active, long-form) expression was increased in the adrenal (48), suggesting 

the potential for enhanced leptin activity in the fetal adrenal. Thus, leptin appears to be a 

hypoxia-inducible gene in the ovine fetus with the capacity to inhibit cortisol biosynthesis 

at the adrenocortical level.  

Subsequent studies showed that StAR, ACTH-R, CYP11A1, and CYP17 

expression were lower in the LTH fetus (47), and that a 96 hour leptin infusion into late 
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gestation spontaneously hypoxemic fetal sheep downregulated CYP21 mRNA, and 

ACTH-R and StAR mRNA and protein (168), indicating reduced adrenal responsiveness 

and a reduced capacity to produce cortisol. A 4-day infusion of a leptin receptor 

antagonist restored expression of CYP11A1 and CYP17 in the LTH fetus to levels 

similar to normoxic but did not affect fetal plasma ACTH or cortisol (47), demonstrating 

that LTH regulation of leptin can influence adrenal steroidogenic enzyme expression. 

Although leptin plays a role in regulating the response of the HPA and adipose 

tissue to chronic stress, it works alongside cortisol and the adrenal to facilitate the fetal 

adaptation to hypoxia. Understanding the role of leptin in the intrauterine environment 

and the influence it has on the fetal HPA will help determine the long-term metabolic 

consequences of early life events and may include the ability of leptin to influence the 

development of obesity and its comorbidities. 

 

Metabolic Gene Expression 

Along with the production of leptin, other factors in adipose tissue are affected by 

hypoxia and may have a metabolic impact on the fetus. In the fetal sheep, as well as the 

human, PAT has classically been considered a brown fat deposit (brown adipose tissue, 

BAT). It expresses uncoupling protein 1 (UCP1) (26, 34, 42), which increases proton 

conduction of the inner mitochondrial membrane and catalyzes adaptive thermogenesis 

(24, 170). This enables the rapid generation of a significant amount of heat, and 

expression is most abundant in the newborn (170).  

The fetal perirenal adipose depot in the LTH fetus, however, has been 

characterized with an unusual brown fat phenotype; there are mixed populations of 
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multilocular deposits, typical of white fat, and unilocular fat deposits, more common in 

brown fat. Leptin expression is more typical of white fat and it is equally distributed in 

unilocular and multilocular adipocytes with UCP1 staining distributed throughout the 

PAT. This unique phenotype has been termed “beige” fat; white adipose tissue (WAT, 

myf+5 lineage) expressing as BAT (myf-5) (26, 42, 70, 84, 149, 161). Within this tissue, 

Myers, et al. showed upregulation of UCP1, deiodinase 2 (DIO2), 11β hydroxysteroid 

dehydrogenase 1 (HSD11β1), peroxisome proliferator-activated receptor (PPAR) γ and 

PPAR coactivator (PGC) 1α mRNA in the LTH fetal adipose (134). As hallmarks of the 

brown fat phenotype, LTH appears to enhance brown fat functionality, and increased 

HSD11β1 and DIO2 would allow adipose tissue to increase the BAT phenotype without 

systemic increases in cortisol and triiodothyronine (T3) which would deleteriously impact 

fetal growth and organ function. Along with upregulated brown fat gene expression, 

Myers, et al. found increased mRNA of transcription factors that regulate expression of 

NRF2 and mtTFA, genes that govern mitochondrial function (136), further indicating a 

BAT phenotype. 

The fetal adaptation to LTH in adipose tissue appears to involve increased leptin 

production and regulation of basal cortisol, as described above, as well as enhanced 

activation of adipose tissue. In the newborn, abdominal adipose is important for 

nonshivering thermogenesis and is regulated by UCP1. By increasing UCP1 expression, 

the fetus ensures adequate thermogenesis in the event of birth into oxygen limited 

conditions. UCP1 expression is regulated by cortisol and T3, and increases in HSD11β1 

and DIO2 indicate increased capacity for local synthesis and regulation by these 

hormones in the adipose tissue. This enhanced brown fat phenotype in anticipation of 
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birth into a potentially hostile environment creates a balance between the upregulation of 

the HP axis while downregulating adrenal responsiveness to maintain basal levels. 

These changes in the LTH fetus, however, are not maintained postnatally. After 

birth, LTH lambs lose their brown fat phenotype; Ducsay, et al. (49) and Symonds, et al. 

(170) showed that expression of UCP1, PGC1α, and PRDM16 decrease post birth, 

implying a lineage derived from WAT, not BAT. Although the beige fat phenotype 

initially is protective of adiposity, as the fetus expresses as brown fat, decreases in UCP1, 

PGC1α, and PRDM16 suggest a predisposition of the lamb to fat deposition. In the 

transition from fetus to neonate, there is a shift toward an enhanced white fat phenotype 

which may result in greater adiposity as the newborn matures; decreased BAT has been 

shown to result in obesity and related metabolic disorders that develop later in life (79, 

84, 162).  

The combined increased PAT expression and release of leptin, increased 

adrenocortical leptin receptor (OB-Rb) expression, and increased zona fasciculata-

specific eNOS expression and activity (NO release) would limit the ability of elevated 

fetal plasma ACTH to stimulate cortisol production under basal conditions. Overcoming 

these mechanisms may allow for increased synthesis and release of cortisol in response to 

an acute secondary stressor.  

 

Conclusions 

The influence of hypoxia on the developing fetus has clearly been shown in the 

HPA and adipose tissue in the ovine model. A variety of other studies have shown 

changes in response to hypoxia in the macaques as well as the human. Hypoxia in the 
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human fetus has been associated with both maternal and fetal conditions including high 

altitude, maternal heart disease or pulmonary hypertension, preeclampsia, and placental 

insufficiency. These conditions often result in intrauterine growth restriction (IUGR), 

preterm delivery, or stillbirth (1, 63, 71, 73, 88, 100, 126, 139). Maternal smoking also 

leads to hypoxia in the human and has been associated with intrauterine growth 

restriction (8, 52, 96, 155, 181, 184); low birth weight is a significant risk factor for the 

development of obesity, hypertension, and type 2 diabetes (10, 13, 66, 67, 143, 163). 

Studies in a nonhuman primate model, Japanese macaques, show that a high fat diet 

reduces uterine volume blood flow, resulting in undernourished fetuses and an increased 

incidence of stillbirth (55). These studies show a dramatic effect of hypoxia on the 

growth potential of the fetus by either preventing full development, or predisposing the 

fetus to numerous detrimental disorders. 

The sheep has emerged as a major model for studying the effects of hypoxia on 

the fetus. When challenged with an acute stress, the fetal HPA axis is activated to release 

cortisol to counteract the perturbation and return the fetus to homeostasis. 

Sympathoadrenal inhibition of insulin secretion in response to hypoxia ensures adequate 

glucose for essential functions to restore homeostasis. In the case of a chronic stress, such 

as long-term hypoxia, several studies have shown the remarkable ability of the fetus to 

adapt to circumvent growth restriction and preterm birth.  

Hypoxia is a potent stressor that commonly affects the developing fetus and can 

cause adaptations in both the HPA axis as well as the adipose tissue. In the LTH fetus, 

the HPA adapts such that despite the upregulation of hypothalamic CRH/AVP and 

pituitary ACTH under basal conditions, adrenal production of cortisol is maintained at 
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normoxic levels. However in response to an acute secondary stressor, the production of 

cortisol is enhance beyond the stress response in normoxic controls. This proposes an 

adaptation of the system that maintains cortisol levels required for growth and 

development, but is combined with a programmed heightened response to acute stress. 

This mechanism may be mediated by NO production in adrenal cortical cells, but also by 

leptin production in fetal PAT. Both are capable of inhibiting cortisol synthesis, however 

the exact mechanisms are still undetermined. NO may interact with steroidogenic 

enzymes to reduce cortisol biosynthesis, while leptin may reduce adrenal responsiveness 

to ACTH. 

In adipose tissue, there is a unique beige phenotype developed in response to 

chronic hypoxia. There is an upregulation of expression of BAT phenotypic genes, 

UCP1, DIO2, HSD11B1, PPARγ, and PGC1α that would ensure adequate nonshivering 

thermogenesis and indicate reduced adiposity. These genes, however, become 

downregulated after birth, shifting toward a WAT phenotype and predisposing the 

newborn to fat deposition. If the fetus were born into a hypoxic environment, this 

adaptation may be beneficial, but in a normoxic environment, this could have a 

significant detrimental life-long impact resulting in a variety of metabolic disorders 

including obesity and diabetes.  

As briefly described above, NO plays a major role in steroidogenesis. Below is a 

detailed description of NO and the impact of hypoxia on NO production. It also describes 

the mechanisms of action of NO on steroidogenesis and mechanisms of regulation of 

eNOS. 
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Nitric Oxide 

Nitric oxide (NO) is a diatomic free radical molecule that diffuses feely across 

cell membranes and is oxidized to nitrite (NO2-) and nitrate (NO3-) under physiological 

conditions (56, 93, 105). NO has a wide range of physiologic functions including smooth 

muscle relaxation and neurotransmission (124, 125, 180). NO is synthesized from L-

arginine by a family of nitric oxide synthases (NOS) (82); constitutively expressed 

neuronal NOS (nNOS/NOS-I) and endothelial NOS (eNOS/NOS-III) and inducible NOS 

(iNOS/NOS-II). Regulation of eNOS and nNOS are Ca2+/calmodulin-dependent, while 

regulation of iNOS is Ca2+/calmodulin-independent (117). NO produced by eNOS and 

nNOS regulate physiologic functions while iNOS tends to be invoked in pathological 

situations. 

Classically, NO-mediated cellular signaling is regulated via activation of soluble 

guanylate cyclase (sGC). In his review, Ignarro describes how NO binds to the heme 

group of guanylate cyclase to alter enzyme conformation and increase its activity (81). 

This leads to elevation of intracellular cyclic guanosine monophosphate (cGMP) 

followed by activation of protein kinase G (PKG). Although these actions of NO have 

been best studied in vascular relaxation, it has been shown that guanylate cyclase 

inhibitors do not fully block the vasorelaxant effects of NO, indicating a cGMP-

independent component of NO activity (41).  

Aside from vasorelaxation, a variety of cGMP-independent effects of NO have 

been studied, including the inhibition of steroidogenesis; Drewett et al., determined 

cGMP-independent NO inhibition of key rate-limiting steps in the steroidogenic pathway 

(45). Changes in NO have been shown to affect steroidogenesis in a variety of tissues 
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including inhibition in ovarian tissue of women (178), pigs (112, 113), rabbits (65, 186), 

and rats (120), while inhibition of NOS increased testosterone production in Leydig cells 

(44). In adult rat testis, immobilization stress increased NO and reduced the production of 

testosterone (97) and NO inhibited cortisol secretion (3). In the adrenal, NO inhibited 

basal, ACTH, and angiotensin II-induced aldosterone production in the adult rat (74, 75) 

and bovine adrenal cortical cells (76), while NOS inhibition increased aldosterone in 

humans (127). Also in the adrenal, NO donors decreased corticosterone production and 

NOS inhibition enhanced glucocorticoid output (38, 39). These studies show that changes 

in NO production affect steroidogenesis in multiple tissue types, including adrenal cells. 

In our lab, we have shown that NO inhibits cortisol biosynthesis and that inhibition of 

NOS enhances cortisol output in ovine LTH FACs (123). Together this suggests that the 

regulation of nitric oxide production may be important to the fetal adaptation to LTH.  

Due to the short half-life of NO, the site and source of NO production must be 

close to the target cells for inhibition to occur. In the adrenal, nNOS has been shown to 

increase in the rat cortex following immobilization stress (95, 138), and eNOS expression 

has been demonstrated in the rate zona glomerulosa (40, 138) and fasciculata (40), as 

well as the adult sheep fasciculate (148). NOS mRNA was also detected in the near term 

rat pup (4). Our lab has identified robust eNOS, but minimal amounts of nNOS and iNOS 

expression in the ovine fetal adrenal, with the greatest density of eNOS in the cortisol 

producing zona fasciculata/reticularis area in both normoxic and LTH adrenal sections. 

We also found greater eNOS protein expression in the LTH compared to normoxic 

adrenals, colocalizing with CYP17, identifying eNOS expression in cortisol producing 
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cells (122). Together this implies that eNOS plays a major role in the fetal adaptation to 

LTH through direct interaction of NO within FACs. 

 

Hypoxia and NO Production 

Regulation of steroidogenesis by hypoxia has been clearly shown by Raff et al., 

(153, 154), and Hanke and Campbell demonstrated that reducing oxygen concentrations 

resulted in a lower threshold for NO-mediated inhibition of aldosterone synthesis in adult 

rat adrenals (74). Due to this regulation, NO represents a potential mechanism in the 

adrenocortical adaptation to LTH, and as the predominant NOS isoform in the ovine fetal 

adrenal cortex and increased in the LTH adrenal, eNOS is a potential target for adapted 

regulation of steroidogenesis in the LTH ovine fetus. 

Hypoxia has a wide range of effects on NO production (and/or expression of NOS 

isoforms) in different animal models and tissues. Justice et al., showed that hypoxia 

increased eNOS expression and NO production in micro vessels in the heart of pigs (91), 

and Xiao found that LTH enhanced eNOS expression in ovine uterine arteries (185). In 

cerebral arteries, Williams et al., determined that hypoxia reduced eNOS expression but 

increased components of the NO/cGMP/PKG pathway, increasing vascular sensitivity to 

NO (183). Following hypoxia (5% O2 for 7 days), Murata et al., observed reduced eNOS 

expression and function in cultured pulmonary arteries (130), and that hypoxia-induced 

pulmonary hypertension impaired the interaction of eNOS with its regulatory proteins, 

and thus reduced NO production (129). Thompson and Dong found that hypoxia may 

have divergent effects on eNOS expression, with decreased fetal eNOS expression but 

increased adult expression in guinea pig hearts (172). Hypoxia was shown by Chen and 
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Meyrick to stimulate eNOS-Hsp90 interaction and activate the PI3K/Akt pathway, 

leading to eNOS phosphorylation and increased NO production (30). These mixed results 

suggest that the effects of hypoxia on eNOS regulation and NO production may be tissue 

specific. 

Hypoxia has also been shown to affect the regulatory pathways for both NO and 

cortisol synthesis. Mishra et al., showed that administration of a NOS inhibitor prevented 

hypoxia-induced phosphorylation of ERK in neuronal nuclei of newborn piglets, 

suggesting NO mediates ERK phosphorylation in response to hypoxia (119). Zhu et al., 

showed that hypoxia enhanced ERK phosphorylation in endothelial cells (192), and 

Onishi et al., showed that basal PKA activity in fetal hearts was increased in LTH fetuses 

compared with normoxic controls (144). These changes in regulatory signaling pathways 

could result in changes in steroid production. 

Another signaling pathway that has been shown to be affected by hypoxia is 

through Akt. Decreased oxygen resulted in increased AMP-activation of AMPK, and 

hypoxia-induced AMPK/Akt-activation of eNOS was demonstrated in endothelial cells. 

Akt was also shown to be the dominant kinase involved in eNOS phosphorylation at 

Ser1177 in hypoxic endothelial cells, and direct AMPK phosphorylation of eNOS was 

suggested to occur under conditions of prolonged hypoxia (137). The Ser1177/79 residue 

on eNOS has been shown to be a substrate for both Akt (43, 57) and AMPK (31). 

Typically this serine residue is referred to Ser1177/79 as Ser1177 refers to the human 

residue while in the bovine/ovine it is Ser1179 (43, 57, 59). It was also shown that 

AMPK phosphorylates eNOS at Ser633 and signals NO bioavailability (32). Changes in 
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eNOS phosphorylation induced through these signaling pathways could affect eNOS 

activity and NO synthesis, and they could be influenced by oxygen levels.  

 

Mechanisms of NO Disruption of Steroidogenesis 

Direct Effects 

An alternative mechanism to NO/cGMP signaling may be through NO-heme 

binding. Tsubaki et al., showed that NO is capable of competitively interacting with the 

heme-oxygen binding site, similar to guanylate cyclase, and binds to key steroidogenic 

enzymes CYP11A1 and CYP17 (174, 175). Peterson et al., suggested that because these 

P450 enzymes use several round of attack of the heme-oxygen complex on the steroid 

substrate, they may be more susceptible to NO inhibition than other enzymes (148). 

 

Indirect Effects 

Another potential mechanism of NO suppression of steroidogenesis is S-

nitrosylation of key Cys residues in critical steroidogenic proteins. CYP11A1 and CYP17 

are key steroidogenic enzymes have critical Cys residues in their actives sites. 

Modification of these Cys residues could play a role in their activity. Though largely 

unexplored in steroidogenic CYPs, Lee et al., reported CYP S-nitrosylation in liver (103). 

Zinc finger transcription factor SF-1, responsible for transcription of CYP11A1 and 

CYP17 and StAR (165, 191), is another target for NO-mediated S-nitrosylation. S-

nitrosylation of Zn+ finger transcription factors results in the loss of Zn+ from the DNA 

binding pocket, disrupting their function as transcriptional activators (60, 98).  
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Mechanisms of eNOS Regulation 

Regulation of eNOS can occur through post-translational mechanism including 

protein-protein interactions and phosphorylation (50). Interaction with Ca2+/calmodulin 

can activate eNOS (117), as well as interaction with Caveolin-1 (Cav-1) and heat shock 

protein 90 (Hsp90) (29, 30, 68). Gratton et al., showed that Cav-1 keeps eNOS in an 

inactive state at the caveolae while inhibiting eNOS translocation and/or the stimulatory 

actions of calmodulin binding. Hsp90 binds soluble eNOS and may disrupt the Cav-

1/eNOS complex, enhancing NOS activity (68).  

Another method of eNOS regulation is through phosphorylation. There are 

multiple signaling pathways that may be involved in the phosphorylation of eNOS 

including MEK/ERK1/2 and PI3K/Akt, as well as Ca2+/calmodulin, AMPK, PKA, PKC, 

and ERKs (14, 15, 30-32). We have already shown that basal Akt and ERK1/2 

phosphorylation are elevated in the LTH fetal adrenal , and that regulation of ERK1/2 is 

able to affect cortisol production (179). The role of ERK1/2 on NOS expression and 

activity is controversial but evident in various tissues. Cale and Bird showed that 

inhibition of ERK1/2 upregulated ATP-stimulated eNOS activity but inhibited ATP-

stimulated activity in COS-7 cells (22), while Chen and Meyrick showed that 

MEK/ERK1/2 inhibition enhanced eNOS activity in porcine pulmonary arteries (30). A 

variety of other studies have shown that MEK/ERK1/2 pathway inhibition reduces eNOS 

phosphorylation and NO production in multiple cell types (29, 109, 118, 121). Studies 

have also shown that eNOS phosphorylation can be altered through the PI3K/Akt 

pathway (57, 77, 118).  



 

26 

At present however, the potential role of these signaling pathways in eNOS 

regulation and NO production have not been explored. More importantly, information on 

the novel role of hypoxia in this regulatory process is lacking. This gap in our knowledge 

has served as the major focus of our current work. 

 

Signaling Pathways and Steroidogenesis 

ERK1/2 stimulation has been shown to affect steroidogenesis through 

upregulation of StAR expression (72), and we have shown that inhibition of ERK1/2 

reduces cortisol production in fetal adrenocortical cells, with a greater effect in LTH 

FACs (179). It has also been shown that inhibition of the PI3K/Akt pathway reduced 

stimulated steroid production in multiple cell types including ovaries, testes, and adrenals 

(106, 146). 

In the LTH fetus, we showed that NOS activity was significantly greater in LTH 

vs normoxic and that ACTH treatment significantly reduced NOS activity in LTH with 

no effect in normoxic, returning activity to levels observed in normoxic (123). Together 

with NO-stimulated inhibition of cortisol synthesis and enhanced cortisol in response to 

NOS inhibition, this may be a mechanism of regulating cortisol responses under 

conditions of LTH. Upregulation of adrenal eNOS in the LTH group may be responsible 

for enhanced basal NOS activity which would exert an inhibitory effect on basal cortisol 

production overcoming low level stimulation by elevated basal ACTH. Stress levels of 

ACTH would decrease NOS activity, enhancing cortisol output. The mechanisms 

involved in LTH regulation of adrenal eNOS and associated NO along with the 



 

27 

mechanisms via which NO modulates cortisol production may include key signaling 

pathways MEK/ERK1/2 and PI3K/Akt. 

Based on the work in our laboratory and that of others, the following model of the 

potential role of NO in the regulation of cortisol biosynthesis under conditions of LTH 

has been developed (Figure 1). 
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Figure 1. Schematic diagram of eNOS regulation in the LTH adrenal cortex. LTH results 

in increased activation of PI3K, AMPK, and Ras signaling pathways. Activation of PI3K 

and/or AMPK results in elevated pAkt/Akt which we hypothesize results in increased 

activity of eNOS via phosphorylation of eNOS at Ser1177/79 and dissociation of Cav-1 

and recruitment of the eNOS activator, Hsp90. Activated eNOS results in NO generation 

leading to Cys S-nitrosylation of critical target proteins governing cortisol synthesis 

(CY11A1, CYP17), and SF-1, which regulates CYP11A1/17 transcription. We 

hypothesize that S-nitrosylation of Cys residues in the DNA binding domain of SF-1 

reduces its capacity to interact with specific SF-1 cis elements in the promoter regions of 

CYP11A1/17 while nitrosylation of CYP11A1/17 decreases enzyme activity. These 

hypotheses are consistent with decreased cortisol synthesis and CYP expression observed 

in the adrenal cortex of LTH fetal sheep in spite of elevated basal plasma ACTH. However, 

under conditions of a secondary stressor, large increases in ACTH (~10-20 fold over basal 

levels) override the inhibitory effects of NO and result in enhanced cortisol production 

compared to normoxic. 
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Under basal conditions, despite increased hypothalamic drive, cortisol output 

remains normal in the LTH fetus. In response to a secondary stressor, this 

biochemical/molecular “brake” on cortisol production can be overridden, allowing the 

LTH fetus to mount an enhanced response. NO, through regulation of NOS may be one 

of the key factors involved in adapted regulation of cortisol in response to LTH. The 

following studies were designed to define the mechanisms involved in this adaptive 

response. This project addressed the role of key signaling pathways MEK/ERK1/2 and 

PI3K/Akt, as well as Ca2+, governing eNOS activity in the ovine fetal adrenal, the effect 

of NO on key steroidogenic enzymes, and the role of eNOS in cortisol biosynthesis in the 

fetal adaptation to LTH. The expression and phosphorylation of eNOS at Ser1177/79, one 

primary phosphorylation site governing eNOS activity, and cortisol production was 

investigated in response to MEK/ERK1/2 or PI3K/Akt pathway inhibition, or Ca2+ 

induction accompanied by secondary stress stimulation with ACTH. NO supplementation 

and eNOS inhibition were used in combination with ACTH stimulation to determine the 

role of NO on the expression of CYP11A1, CYP17, StAR, and ACTH-R mRNA as well 

as cortisol production in both normoxic and LTH FACs. 
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Abstract 

This study was designed to determine the role of the MEK/ERK1/2 and PI3K/Akt 

pathways in cortisol production and endothelial nitric oxide synthase (eNOS) 

phosphorylation (peNOS) in the ovine fetal adrenal in response to long-term hypoxia 

(LTH). Pregnant ewes were maintained at high altitude (3820 m) for the last 100 days of 

gestation (dGa). At 138 to 142 dGa, fetal adrenal cortical cells (FACs) were collected 

from LTH and age-matched normoxic fetuses. Cortisol production and peNOS were 

measured in response to pretreatment with the MEK/ERK1/2 pathway inhibitor UO126 

(UO) and adrenocorticotropic hormone (ACTH) stimulation. UO126 reduced ACTH-

stimulated cortisol in both normoxic and LTH FACs. UO126 alone or in combination 

with ACTH reduced peNOS in the normoxic group, while ACTH alone or ACTH + UO 

inhibited peNOS in LTH FACs. Additionally, cortisol was measured in response to 

pretreatment with UO and treatment with 22R-hydroxycholesterol (22R-OHC) or water-

soluble cholesterol (WSC) with and without ACTH stimulation. UO126 had no effect on 

22R-OHC–treated cells, but reduced cortisol in cells treated with WSC and/or ACTH. 

Cortisol and peNOS were also measured in response to pretreatment with PI3K/Akt 

pathway inhibitor Wortmannin (WT) and ACTH stimulation. Wortmannin further 

increased cortisol under ACTH-stimulated conditions and, like ACTH, reduced peNOS in 

LTH but not normoxic FACs. Together, these data suggest that in LTH FACs 

MEK/ERK1/2 does not regulate peNOS but that UO acts downstream from eNOS, 

possibly at cholesterol transport, to affect cortisol production in LTH FACs, while the 

PI3K/Akt pathway, along with ACTH, regulates peNOS and plays a role in the fetal 

adaptation to LTH in FACs. 
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Introduction 

Hypoxia is a potent stressor that activates the hypothalamo-pituitary-adrenal 

(HPA) axis, and acutely, leads to a significant increase in cortisol (1-3, 19, 20). Since 

cortisol is involved in lipolysis, glycogenolysis, and protein catabolism, a sustained 

elevation of plasma cortisol concentrations can suppress anabolic processes resulting in 

muscle atrophy and delayed maturation and organ growth (26, 34). Therefore, under 

conditions of chronic stress, the ability of the fetal HPA axis to adapt to limit cortisol 

production is crucial for maintaining normal development during gestation. The 

regulation of cortisol must also be effectively coordinated to permit the late gestation 

exponential rise in fetal plasma cortisol essential for fetal maturation, while permitting 

episodic cortisol production in response to acute stress. 

In our laboratory, we have clearly shown the ability of the fetal HPA axis to adapt 

to the chronic stress of long-term moderate gestational hypoxia (LTH). In this model, the 

fetus develops under high altitude induced (3820 m from approximately day 40 of 

gestation) moderate hypoxia (fetal PO2 ~17-19 mmHg vs. ~21-23 mmHg normoxic 

controls). Under conditions of LTH, the fetus maintains normal basal plasma cortisol 

concentrations despite elevated adrenocorticotropic hormone (ACTH) (35). Although we 

found no differences in cyclic adenosine monophosphate (cAMP) production or protein 

kinase A (PKA) activation either basally or in response to ACTH in LTH fetal 

adrenocortical cells (FACs), we did observe decreased expression of CYP11A1 and 

CYP17, two key steroidogenic P450 enzymes, as well as decreased ACTH receptor 

expression (36). When combined, this may contribute to maintaining basal cortisol levels 

in the LTH fetus. In contrast to basal conditions, the LTH fetus displays a heightened 
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cortisol response to an acute secondary stressor compared to normoxic fetuses (1, 19). 

Thus, the LTH fetus has developed a mechanism of regulation that maintains basal 

plasma cortisol, despite elevated basal ACTH, but allows the fetus to overcome this 

suppression for an enhanced cortisol response to an acute secondary stress.  

One possible effector of cortisol regulation in this system is nitric oxide (NO), a 

diatomic free radical gas with a variety of physiological functions that is produced from 

L-arginine by NO synthases (NOSs) (18, 33). We have previously shown that NO 

inhibits ACTH-stimulated cortisol production in LTH ovine FACs and that endothelial 

NOS (eNOS) inhibition enhances LTH FAC cortisol biosynthesis (32). We have also 

demonstrated that eNOS is the most abundant isoform of NOS in the ovine fetal adrenal 

cortex, and that expression of eNOS is enhanced in LTH adrenals compared to normoxic 

controls (31), consistent with the observed dissociation between elevated plasma ACTH 

and normal basal output of cortisol. However, in line with enhanced ACTH and stress-

stimulated cortisol production in the LTH fetus, ACTH treatment significantly reduced 

eNOS activity in LTH FACs compared to normoxic (32). 

A key mechanism involved in the regulation of eNOS is phosphorylation at a 

serine activation site. In the human, it is serine residue 1177, and in the bovine/ovine it is 

serine residue 1179, typically referred to as Ser1177/79 (10, 14, 15). A reduction in 

phosphorylation at this residue could be the result of either decreased kinase activation or 

active dephosphorylation (4, 7, 16). Both of these potential mechanisms would lead to a 

reduction in NOS activity, with a resultant decrease in NO production. This in turn would 

allow for increased cortisol biosynthesis under ACTH-stimulated conditions in the LTH 

fetal adrenal. Phosphorylation at this site may be affected by different cell signaling 
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pathways including MEK/ERK1/2 and PI3K/Akt. Various studies have shown that 

inhibition of the MEK/ERK1/2 pathway with UO126 (UO) reduces eNOS 

phosphorylation and NO production in a variety of cell types (5, 23, 28, 30). Other 

studies have shown that the PI3K/Akt pathway also targets eNOS at Ser1177/79 in 

endothelial cells (14, 17, 28). The roles of the MEK/ERK1/2 and the PI3K/Akt pathways 

in eNOS activation and in the context of LTH in ovine FACs have yet to be examined. 

However, we have shown that NO clearly inhibits basal and ACTH-induced cortisol 

synthesis in ovine FACs (32). Paradoxically, we observed that inhibition of 

MEK/ERK1/2 signaling with UO did not have the predicted enhancement of basal or 

ACTH-induced cortisol synthesis but rather inhibited ACTH-induced cortisol synthesis 

(43), suggesting that while MEK/ERK1/2 may target eNOS in these cells, it has 

additional pathways that may predominate in regulating cortisol synthesis. 

In light of these findings, UO has also been shown to block steroidogenesis in 

both granulosa (9) and Leydig (25, 38) cells. This may be through effects on 

steroidogenic acute regulatory (StAR) protein, which transports cholesterol into the 

mitochondria (8, 21, 24, 39-41); inhibition of StAR activity would prevent cortisol 

biosynthesis. These studies showed that UO inhibited synthesis of steroid in both 

stimulated cells and cells supplemented with water-soluble cholesterol (WSC), both of 

which require cholesterol transport into the mitochondria for steroidogenesis. However, 

steroid production was unaffected in cells treated with 22R-hydroxycholesterol (22R-

OHC), a mitochondrial membrane permeable form of cholesterol that does not require 

facilitative transport. Therefore, although MEK/ERK1/2 may have a major role in 
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cholesterol transport in FACs, the role of LTH on this process has not yet been 

determined in ovine FACs. 

The present study was designed to 1) determine if either the MEK/ERK1/2 or 

PI3K/Akt pathways regulate eNOS phosphorylation in FACs, 2) address the role of 

MEKERK1/2 in facilitating cholesterol transport to the mitochondria, and 3) determine 

the potential adaptive alterations in these pathways in response to LTH.  

 

Materials and Methods 

Animals 

Time-dated pregnant ewes were maintained at the Barcroft Laboratory White 

Mountain Research Station (3820m, maternal PO2 ~ 60mmHg) from approximately day 

40 of gestation to near term (term  146 days). Following transportation to the laboratory, 

hypoxia was maintained by nitrogen infusion through a maternal tracheal catheter as 

previously described (1, 12, 19, 32, 42). Age-matched, normoxic ewes served as controls. 

On days 138-142 of gestation, ewes were sedated and maintained under general 

anesthesia while fetuses were delivered through midline laparotomy. Procedures were 

performed as previously described in detail (29). Fetal adrenal glands were collected in 

ice-cold media M-199 (Sigma-Aldrich, St. Louis, MO), containing 2.2 g sodium 

bicarbonate, 2.0 g bovine serum albumin (BSA), and 0.1 g L-glutamine for cell 

dispersion and subsequent study. All procedures were conducted with the approval of the 

Institutional Animal Care and Use Committees (Loma Linda University School of 

Medicine, Loma Linda, CA). 
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Cell Dispersion 

Procedures for collection of FACs were similar to those we previously 

described.(42, 43) Briefly, fetal adrenal glands were divided in half along the longitudinal 

axis and the cortex was separated from the medulla. The cortical tissue was minced and 

enzymatically dispersed with 40 mg collagenase Type II (Worthington Biomedical, 

Lakewood, NJ), 40 mg of Polypep bovine protein digest (Sigma-Aldrich) and 100 µl of 

DNAse I (Type IV) (Sigma-Aldrich) dissolved in 10 ml of Sodium Krebs Buffer (0.4% 

collagenase). The resulting mono-dispersed FACs were aliquoted into individual tubes 

with media (M-199), and allowed to equilibrate for 2 hours at 37°C prior to initiation of 

each study as required by each experimental protocol. Cell viability was confirmed by 

Trypan blue exclusion. 

 

Treatment Protocols 

Effects of MEK/ERK1/2 Inhibition and ACTH Stimulation on Cortisol Biosynthesis 

and eNOS Phosphorylation 

FACs from normoxic (n=7) and LTH (n=5) fetuses, aliquoted at 7.5x105 

cells/1mL, were untreated, pretreated with MEK/ERK1/2 inhibitor UO126 (UO, 10 µM) 

for 1 hour, or stimulated with ACTH (100 pM), with and without UO pretreatment. 

Media and cells were collected at 0 (baseline), 10, 20, and 60 minutes after stimulation. 

Media was immediately frozen in liquid nitrogen, and stored at -80°C until determination 

of cortisol. Cells were lysed in 80 µL of lysis buffer (93% prelysis buffer [1 mM Trizma 

Base, 10 mM NaCl, 0.1 mM EDTA, 0.1 mM EGTA, 1% Triton X-100, 0.5% Igepal CO-

630, 20 mM NaF], 1% 100 mM phenylmethanesulfonyl fluoride [PMSF], 1% Protease 
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Inhibitor Cocktail [PIC, Sigma, St Louis, Missouri], 5% 20 mM sodium orthovanadate), 

frozen in liquid nitrogen, and stored at -80°C until analysis. 

 

Effects of UO126 Pretreatment and ACTH, 22R-OHC, or WSC Stimulation on 

Cortisol Biosynthesis  

This experiment was designed to examine the interaction between inhibition of 

the MEK/ERK1/2 pathway with UO126 and cholesterol transport across the 

mitochondrial membrane. FACs from normoxic (n=6) and LTH (n=7) fetuses, aliquoted 

at 2.5x105 cells/mL, were either untreated, pretreated with UO (10 µM) for 1 hour, or 

stimulated with ACTH (100 pM) with and without UO pretreatment, treated with 

membrane permeable 22R-hydroxycholesterol (22R-OHC, 10 µM), with and without UO 

pretreatment, treated with water-soluble cholesterol (WSC, 10 µM), with and without UO 

pretreatment, or a combined stimulation of ACTH and 22R-OHC treatment or ACTH and 

WSC treatment with and without UO pretreatment. The membrane permeable form, 22R-

OHC does not require transport across the mitochondrial membrane whereas WSC is 

transport dependent. Media was collected at 60 minutes after stimulation and stored as 

described above for later cortisol analysis.  

 

Effects of PI3K/Akt Inhibition and ACTH Stimulation on Cortisol Biosynthesis and 

eNOS Phosphorylation 

FACs from normoxic (n=7) and LTH (n=9) fetuses, aliquoted at 7.5x105 

cells/1mL, were either untreated, pretreated with PI3K/Akt inhibitor Wortmannin (WT, 

10 nM) for 1 hour, or stimulated with ACTH (100 pM), with and without WT 
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pretreatment. Media and cells were collected at 0 (baseline), 10, 20, and 60 minutes after 

stimulation and stored as described above. We chose to use Wortmannin instead of 

LY294002 because in preliminary studies, the LY compound dramatically reduced FAC 

viability. 

Cortisol Assay 

Cortisol was measured using a commercially available enzyme-linked 

immunosorbent assay (ELISA) cortisol kit (Oxford Biomedical Research, Oxford, MI) 

that has been previously described and validated for use in our laboratory (13, 32, 36). 

 

Western Analysis 

Endothelial nitric oxide synthase protein was analyzed from FACs collected at 0 

(baseline), 10, 20, and 60 minutes for both normoxic and LTH groups, described above. 

Samples were thawed and protein concentration was determined using a bicinchoninic 

acid (BCA) protein assay (Thermo Scientific, Rockford, Illinois) with BSA as the 

standard. Absorbance was measured at 595 nm on a BioTek Synergy HT Multi-Mode 

Microplate Reader (Winooski, Vermont).  

Endothelial nitric oxide protein phosphorylation was determined by Western 

blotting using methods we have previously described and validated.(35, 36) Briefly, 

protein samples were denatured for 5 minutes at boiling temperature and 20 µg of protein 

were loaded per lane. Protein samples were separated using 7.5% polyacrylamide gels 

(Bio-Rad, Hercules, CA) and subjected to electrophoresis (SDS-PAGE) and then 

transferred to polyvinylidene fluoride (PVDF) membranes (Millipore, Billerica, MA) 

using a Transblot cell apparatus (Bio-Rad). 
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To determine the level of eNOS protein phosphorylation, the membranes were 

incubated with a rabbit monoclonal phospho-eNOS (Ser1177) (C9C3) primary antibody 

(Cell Signaling, Product#9570) in 10 mL 5% BSA TBST solution (1:1000) overnight at 

4°C. Membranes were then incubated with goat anti-rabbit polyclonal secondary 

antibody (ThermoScientific, Product#35571) in 10 mL 5% BSA TBST solution 

(1:10000) for 90 minutes, washed, and imaged with a Licor Odyssey scanner at 700 nm. 

The relative optical densities (ROD) of the bands were used to compare normoxic to LTH 

phosphorylated eNOS (peNOS) protein expression. An internal positive standard 

prepared from whole fetal adrenal tissue was used to normalize peNOS protein.  

To determine the level of eNOS protein expression, the membranes were first 

stripped of phosphorylated antibody and incubated with mouse anti-eNOS primary 

antibody (BD Transduction, Product# 610296) in 10 mL 5% NFDM TBST solution 

(1:250) overnight at 4°C. Membranes were then incubated with goat anti-mouse 

polyclonal secondary antibody (Thermo Scientific, Product# 35518) in 10 mL 5% NFDM 

TBST solution (1:20000) for 90 minutes, washed, and imaged with a Licor Odyssey 

scanner at 800 nm. The RODs of the bands were used to compare normoxic to LTH 

eNOS protein expression. An internal positive standard prepared from whole fetal adrenal 

tissue was used to normalize eNOS protein as we have previously described in our 

laboratory (31, 43). 

 

Statistical Analysis 

Descriptive statistics are presented as mean ± standard error. Data analysis was 

performed using repeated measures analysis of variance (ANOVA) with 1 between-
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subject factor (treatment) and 1 within-subject factor (time) stratified by oxygenation 

level (normoxic or LTH). The main effect tested was in vitro treatment (WT or UO). For 

the cholesterol study, 2-way ANOVA was used with oxygenation level (normoxic or 

LTH) tested across cholesterol treatment. Alpha was set at .05 significance level. Post 

hoc tests were adjusted using the Bonferroni method. Statistical analyses were performed 

using IBM SPSS Statistics (Version 22; IBM Corporation, 2013). 

 

Results 

Effects of MEK/ERK1/2 Inhibition and ACTH Stimulation 

Cortisol Production 

There were no differences observed in cortisol production from either control or 

LTH FACs that were pretreated with UO compared to the untreated cells, and cortisol 

levels remained relatively constant throughout the 60 minutes of study (Figure 1). There 

was a significant increase in cortisol output from both normoxic (4.49 +/- 0.89 ng/mL) 

and LTH (13.25 +/- 0.78 ng/mL) FACs; in control normoxic FACs, cortisol was 

significantly elevated by 60 minutes after ACTH stimulation (p<0.05), while a significant 

increase in cortisol output was observed in LTH FACs in response to ACTH by 10 

minutes. Pretreatment with UO inhibited the stimulated increase in cortisol in both 

normoxic and LTH FACs compared to ACTH alone (p<0.05). 

 

Expression of eNOS 

Treatment with ACTH and UO pretreatment had no effect on expression of eNOS 

protein in either LTH or control FACs (Figure 2A).  
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Phosphorylation of eNOS 

In normoxic FACs, all three treatments resulted in a similar reduction in peNOS. 

In contrast, LTH FACs demonstrated a significant reduction in peNOS in the ACTH 

treated groups (UO + ACTH or ACTH alone) compared to untreated FACs (p<0.05). 

This reduction was similar in both groups (Figure 2B).  

 

Effects of UO126 and ACTH, 22R-OHC, and WSC Stimulation on Cortisol Production 

Treatment with either ACTH and 22R-OHC, or ACTH and WSC resulted in 

enhanced cortisol production in FACs from both normoxic and LTH groups compared to 

respective untreated controls (p<0.05) while the effect was greater in the LTH group 

compared to the normoxic group (p<0.05) (Figure 3). Pretreatment with UO blocked the 

ACTH and WSC stimulated increase but had no effect on cortisol production in cells 

stimulated with 22R-OHC in either normoxic or LTH FACs (Figure 3). 

 

Effects of PI3K/Akt Inhibition and ACTH Stimulation 

Cortisol Production 

Pretreatment with WT alone had no effect on cortisol biosynthesis compared to 

untreated control FACs in both normoxic and LTH FACs, and cortisol levels remained 

relatively constant throughout the 60 minutes of study (Figure 4). There was a significant 

increase in cortisol production by 60 minutes (p<0.05) in cells stimulated with ACTH in 

both normoxic (7.54 +/- 1.37 ng/mL) and LTH (8.85 +/- ng/mL) FACs. ACTH cells 

pretreated with WT demonstrated significantly enhanced cortisol production in both 
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normoxic (12.42 +/- 1.96 ng/mL) and LTH (26.18 +/- 4.48 ng/mL) compared to ACTH 

alone (p<0.05). 

 

Expression of eNOS 

No differences were observed in eNOS expression between treatment groups in 

both normoxic and LTH FACs (Figure 5A). 

 

Phosphorylation of eNOS  

There were no significant changes in phosphorylation between treatment groups 

in the normoxic FACs (Figure 5B). In LTH FACs, there was a significant reduction in 

phosphorylation with WT pretreatment, ACTH stimulation, and combined pretreatment 

and stimulation compared to untreated FACs (p<0.05). This reduction was similar, with 

no differences observed among WT, ACTH, or WT+ACTH groups. 
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Figure 1. Time course of cortisol production in normoxic and LTH FACs with 

MEK/ERK1/2 inhibition and ACTH stimulation. Treatment with ACTH (100pM) 

increased cortisol production in both normoxic and LTH FACs. Pretreatment with UO 

(10µM) had no effect on basal cortisol, but prevented increased cortisol biosynthesis in 

response to ACTH stimulation in both normoxic and LTH FACs. (Normoxic n=7, LTH 

n=5) Values represent mean values ± SEM. *p<0.05 compared to time 0. FACs, fetal 

adrenocortical cells; LTH, long-term hypoxia; UO, UO126; ACTH, adrenocorticotropic 

hormone. 
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Figure 2. Protein expression (A) and phosphorylation (B) of eNOS in response to 

MEK/ERK1/2 inhibition and ACTH stimulation in normoxic and LTH FACs as 

determined by Western analysis. Pretreatment with UO (10µM) with and without ACTH 

(100pM) stimulation had no effect on eNOS in both normoxic and LTH FACs. 

Pretreatment with UO (10µM) had no effect on peNOS in both normoxic and LTH FACs. 

Treatment with ACTH had no effect on peNOS in normoxic FACs but decreased peNOS 

in LTH FACs (p<0.05 compared to untreated LTH FACs; Normoxic n=7, LTH n=5). 

Values represent mean values ± SEM. *p<0.05 compared to control. FACs, fetal 

adrenocortical cells; LTH, long-term hypoxia; eNOS, endothelial nitric oxide synthase; 

peNOS, phosphorylated endothelial nitric oxide synthase; ROD, relative optical density; 

UO, UO126; ACTH, adrenocorticotropic hormone. 
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Figure 3. Cortisol production in response to UO126 pretreatment and 22R-OHC or WSC 

stimulation with or without ACTH in normoxic and LTH FACs. ACTH (100pM), 22R-

OHC (10µM), and WSC (10µM) stimulation increased cortisol production in both 

normoxic and LTH FACs, with a greater increase in dual stimulated cells. Pretreatment 

with UO blocked cortisol increase in cells stimulated with ACTH and WSC but had no 

effect on cells stimulated with 22R-OHC in both normoxic and LTH FACs. (Normoxic 

n=6, LTH n=7) Values represent mean values ± SEM. *p<0.05 compared to untreated 

control, #p<0.05 compared to normoxic. FACs, fetal adrenocortical cells; LTH, long-term 

hypoxia; C, Control; UO, UO126; ACTH, adrenocorticotropic hormone; 22R-OHC, 22R-

hydroxycholesterol; WSC, water-soluble cholesterol. 
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Figure 4. Time course of cortisol production in normoxic and LTH FACs with PI3K/Akt 

inhibition and ACTH stimulation. Treatment with ACTH (100pM) increased cortisol 

production in both normoxic and LTH FACs. Pretreatment with WT (10nM) had no effect 

on basal cortisol but enhanced cortisol biosynthesis in response to ACTH stimulation in 

both normoxic and LTH. (Normoxic n=7, LTH n=9) Values represent mean values ± SEM. 

*p<0.05 compared to time 0. FACs, fetal adrenocortical cells; LTH, long-term hypoxia; 

WT, Wortmannin; ACTH, adrenocorticotropic hormone. 
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Figure 5. Protein expression (A) and phosphorylation (B) of eNOS in response to 

PI3K/Akt inhibition and ACTH stimulation in normoxic and LTH FACs as determined by 

Western analysis. Pretreatment with WT (10nM) with and without ACTH (100pM) 

stimulation had no effect on eNOS in both normoxic and LTH FACs. Pretreatment with 

WT (10nM) with and without ACTH (100pM) stimulation had no effect on peNOS in 

normoxic FACs but reduced peNOS in LTH FACs. (Normoxic n=7, LTH n=9) Values 

represent mean values ± SEM. *p<0.05 compared to control. FACs, fetal adrenocortical 

cells; LTH, long-term hypoxia; eNOS, endothelial nitric oxide synthase; peNOS, 

phosphorylated endothelial nitric oxide synthase; ROD, relative optical density; WT, 

Wortmannin; ACTH, adrenocorticotropic hormone. 
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Discussion 

The regulation of cortisol is a crucial component of fetal development due to its 

involvement in catabolic processes; chronically high levels of cortisol can suppress 

anabolic processes, which can prevent normal tissue growth and maturation of the fetus 

(26, 34). The ovine fetus demonstrates a divergent adaptive response of the HPA axis to 

LTH. At the level of the hypothalamus and anterior pituitary, there is clearly an activation 

of the stress response with enhanced proopiomelanocortin (POMC) processing to ACTH 

coupled with elevated basal plasma ACTH levels in LTH fetuses compared to normoxic 

controls (35). There is also a distinct up regulation of the ACTH response to AVP 

compared to CRH in the LTH fetuses (13). In contrast to the hypothalamic and pituitary 

responses, we showed that basal adrenal cortisol biosynthesis is normal despite the 

elevated plasma ACTH.(1, 11, 19, 35) Surprisingly, the LTH fetus responds more 

robustly, with enhanced cortisol production to a secondary stressor compared to the 

normoxic fetus (1, 19), suggesting an adaptation in the HPA axis that maintains normal 

basal levels but allows for enhanced production in response to stress. 

We previously reported that NO inhibits ACTH-stimulated cortisol production, 

while eNOS inhibition enhanced cortisol biosynthesis in LTH ovine FACs (32). We also 

found that endothelial NOS (eNOS) is the most abundant adrenal cortical NOS isoform 

and LTH enhanced not only expression of eNOS (31), but also NOS activity compared to 

normoxic controls (32). Activity of eNOS can be influenced by a number of factors 

including substrate availability, protein-protein interactions, and post-translational 

modification via phosphorylation (6). In this study we address the ability of the cell 

signaling kinase pathways MEK/ERK1/2 and PI3K/Akt to regulate eNOS activity via 
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phosphorylation of Ser1177/79 to alter NO production that, in turn, could then affect 

cortisol biosynthesis. We also addressed if the site of action of MEK/ERK1/2 on cortisol 

synthesis in FACs was up- or downstream of cholesterol translocation into the 

mitochondria, the site of the first rate-limiting step in steroidogenesis, since we 

previously observed a major inhibition in ACTH-induced cortisol synthesis in FACs (43). 

In a previous study we showed MEK/ERK1/2 inhibition reduced cortisol output 

in FACs in response to stimulation with ACTH (43). In the present study, as in our 

previously published report (43), we found that MEK/ERK1/2 inhibition with UO126 

(UO) prevented the increase of cortisol in response to ACTH in both normoxic and LTH 

FACs. While ACTH-stimulated cortisol production was inhibited in both normoxic and 

LTH FACs, the ability of UO to almost completely prevent the enhanced cortisol 

production in response to ACTH in the LTH FACs indicates that the adaptive response 

seen in the LTH fetus is dependent upon MEK/ERK1/2 signaling. In the present study, 

we also explored the effect of UO on eNOS expression or phosphorylation. UO126 alone 

did not affect eNOS expression. In normoxic FACs, all 3 treatments (UO, ACTH and 

ACTH + UO) reduced peNOS similarly over time. This suggests that ACTH itself is not 

responsible for changes in eNOS phosphorylation in normoxic FACs. In contrast, in LTH 

FACs, UO alone had no effect on peNOS. As predicted, however, ACTH significantly 

reduced peNOS, and the same effect was observed with ACTH in the presence of UO. 

Together with the cortisol data, these findings demonstrate that MEK/ERK1/2 signaling, 

while playing a role in the adaptive increase in ACTH-stimulated cortisol production in 

the LTH adrenal cortex, does so through a pathway not involving MEK/ERK1/2 

mediated phosphorylation of eNOS. 
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Results from the MEK/ERK1/2 experiment also demonstrated the divergent 

effects of ACTH on cortisol and peNOS in LTH FACs; ACTH increased cortisol while 

decreasing peNOS which supports our hypothesis that eNOS is involved in the fetal 

adaptation to LTH and that regulation of eNOS phosphorylation alters NO production, 

which then affects cortisol biosynthesis in LTH FACs. These results show that while 

inhibition of the MEK/ERK1/2 pathway with UO was able to prevent the increase in 

cortisol in cells stimulated with ACTH, it had no effect on peNOS suggesting that UO 

works through a different mechanism to inhibit cortisol production. 

Inhibition of steroidogenesis by UO has been shown in both granulosa (9) and 

Leydig (25, 38) cells. These studies demonstrated that although stimulated synthesis of 

steroid was inhibited by UO, when cells were stimulated with 22R-hydroxycholesterol 

(22R-OHC), a membrane permeable form of cholesterol, steroid production was 

unaffected. This suggests UO was blocking steroidogenesis by preventing cholesterol 

translocation into the mitochondria, a process carried out by steroidogenic acute 

regulatory (StAR) protein. StAR, classically regulated by PKA via cAMP (39), is 

responsible for transporting cholesterol to the inner mitochondrial membrane for 

conversion from cholesterol to pregnenolone by CYP11A1 (P450scc) (8, 21, 24, 40, 41), 

the rate-limiting step for cortisol biosynthesis. Inhibition of StAR activity would halt 

steroidogenesis by eliminating the substrate. In this study, we stimulated FACs with 22R-

OHC, a substrate that does not require transport, to examine the effects of UO on 

cholesterol translocation. We found that UO blocked the cortisol increase observed in 

cells stimulated with ACTH and water-soluble cholesterol (WSC), which both require 

cholesterol transport across the membrane, however UO had no effect on the 22R-OHC 
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stimulated increase. Together this suggests that UO may be able to block cholesterol 

transport to limit cortisol production and demonstrates that an adaptation does occur in 

response to LTH to allow for increased cortisol in response to a secondary stressor.  

Although it is evident from our prior studies that eNOS is involved in the fetal 

adaptation to LTH and that ACTH stimulation decreases peNOS while increasing 

cortisol, our finding in the present study that inhibition of MEK/ERK1/2 did not have an 

effect on peNOS suggests that another pathway may play a role in the phosphorylation 

state of peNOS. Inhibition of the PI3K/Akt pathway has been implicated in inhibition of 

stimulated steroid production in multiple steroidogenic cell types (22, 37) and has also 

been shown to reduce eNOS phosphorylation in endothelial cells followed by decreased 

NO production (14, 17, 28). We examined the role of the PI3K/Akt pathway by 

stimulating FACs with ACTH, with and without pretreatment with PI3K/Akt pathway 

inhibitor WT, and examined cortisol and eNOS protein expression and phosphorylation 

in both normoxic and LTH groups. Pretreatment with WT had no effect alone but 

enhanced ACTH-stimulated cortisol synthesis above ACTH alone. This suggests that the 

PI3K/Akt pathway differentially regulates cortisol biosynthesis in LTH FACs and may 

work to prevent even higher levels of cortisol in LTH FACs under stimulated conditions. 

We also found that PI3K/Akt inhibition did not affect eNOS expression in either 

normoxic or LTH FACs and had no effect on peNOS in normoxic FACs. However, WT, 

and ACTH as we had previously seen, significantly reduced peNOS in LTH FACs, 

suggesting the involvement of the PI3K/Akt pathway in the fetal adaptation to LTH; 

PI3K/Akt inhibition with WT reduced peNOS and allowed for an even greater increase in 

cortisol in ACTH-stimulated LTH FACs. This further supports the idea that 
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phosphorylation of eNOS is closely linked to cortisol synthesis in the LTH fetus while 

other mechanisms play a more dominant role in normoxic adrenals. It also suggests that 

while ACTH stimulates cortisol biosynthesis in both normoxic and LTH FACs, it may 

also interact with the PI3K/Akt pathway in LTH FACs resulting in the observed 

enhanced cortisol production. 

A possible intermediary between ACTH and eNOS is protein phosphatase 2A 

(PP2A). PP2A has been shown to be capable of dephosphorylating eNOS and the 

inhibition of PP2A increases peNOS in endothelial cells (16, 27), however the effects of 

LTH on this system are unexplored. Preliminary data from our lab shows significantly 

greater PP2A expression in the LTH adrenal cortex compared to normoxic tissue 

(unpublished results) suggesting the involvement of PP2A in the fetal adaptation to LTH. 

If ACTH increases PP2A activity, combined with greater PP2A expression, it would 

reduce peNOS, thereby reducing NO production and effectively limiting the inhibition of 

NO on cortisol production in LTH FACs. 

Taken together, the results from the present studies as well as our previous work 

(31, 32, 42, 43) indicate that LTH has profound adaptive effects on the fetal adrenal 

cortex. NO, produced by eNOS, may play an important role in this adaptation in the LTH 

fetus. The results from this study show that while the MEK/ERK pathway is involved in 

cortisol biosynthesis, as evidenced by UO inhibition of cholesterol transport in response 

to ACTH stimulation, it is not involved in the differential regulation of eNOS 

phosphorylation. These results also show that both the PI3K/Akt pathway and ACTH 

differentially regulate peNOS. Collectively, these data suggest that the PI3k/Akt pathway 

and ACTH regulation of eNOS phosphorylation in LTH fetal adrenal cortical cells may 
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be key components of the fetal adaptation in cortisol biosynthesis. Combined with the 

higher levels of eNOS protein in the LTH adrenals, the PI3K/Akt pathway and ACTH 

may work congruently in LTH FACs to regulate eNOS activity via phosphorylation; the 

PI3K/Akt pathway maintains peNOS to allow NO to be produced while ACTH 

stimulation overrides the PI3K/Akt pathway to reduce peNOS and limit NO production. 

Together, these mechanisms would preserve normal cortisol levels under basal conditions 

but also allow for the robust increase in cortisol observed in stimulated LTH FACs when 

compared to normoxic controls. 
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CHAPTER THREE 

EFFECTS OF 8BROMO-CAMP AND UO126 ON CORTISOL BIOSYNTHESIS 

AND ENOS PHOSPHORYLATION IN OVINE LONG-TERM HYPOXIC FETAL 

ADRENOCORTICAL CELLS 

 

Abstract 

Previously we have demonstrated enhanced cortisol biosynthesis in long-term 

hypoxic (LTH) fetal adrenocortical cells (FACs) in response to stress levels of ACTH 

that was not a result of differences in cyclic 3,5-adenosine mono phosphate (cAMP) or 

protein kinase A (PKA). We did show that inhibition of the MEK/ERK1/2 pathway with 

UO126 (UO) was able to prevent increased cortisol in both normoxic and LTH FACs but 

the mechanism was unknown. This study was designed to determine the role of cAMP 

stimulation, using the analog 8Bromo-cAMP (8Br), and MEK/ERK1/2 pathway 

inhibition on cortisol production and eNOS phosphorylation (peNOS) in the ovine fetal 

adrenal in response to long term hypoxia (LTH). Pregnant ewes were maintained at high 

altitude (3820m) for approximately the last 100 days of gestation (dGa). At 138-142 dGa, 

fetal adrenal cortical cells (FACs) were collected from LTH and age matched normoxic 

ovine fetuses. Cortisol production and peNOS were measured in response to 8Br 

stimulation and pretreatment with MEK/ERK1/2 pathway inhibitor UO. Neither 8Br nor 

UO affected peNOS but UO reduced 8Br-stimulated cortisol in normoxic and LTH FACs 

suggesting that cAMP and the MEK/ERK1/2 pathway are not involved in regulating 

eNOS phosphorylation in the LTH ovine fetal adrenal.  
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Introduction 

The study presented in this chapter on the effects of 8Bromo-cAMP (8Br) 

stimulation and MEK/ERK1/2 inhibition with UO126 (UO) on cortisol biosynthesis and 

eNOS phosphorylation in ovine long-term hypoxic (LTH) fetal adrenocortical cells 

(FACs) was conducted as an adjunct to the studies presented in the previous published 

chapter.  

The fetus has the ability to adapt the hypothalamic-pituitary-adrenal (HPA) axis 

to the chronic stress of long-term moderate gestational hypoxia (LTH). In response to 

conditions of LTH, the fetus maintains normal basal plasma cortisol concentrations, 

despite elevated levels of adrenocorticotropic hormone (ACTH) (17). However, unlike 

basal conditions, the LTH fetus has a heightened cortisol response to acute secondary 

stressors compared to normoxic fetuses (1, 11). While we found no differences in cyclic 

adenosine monophosphate (cAMP) production or protein kinase A (PKA) activation 

basally or in response to ACTH in LTH fetal adrenocortical cells (FACs) (23), CYP11A1 

and CYP17, two key steroidogenic P450 enzymes, and ACTH receptor (ACTH-R) were 

decreased (18). These changes may contribute to the ability of the LTH fetus to maintain 

basal cortisol levels despite elevated ACTH, however the mechanism of regulation that 

allows the fetus to overcome this suppression with enhanced cortisol production in 

response to a secondary stress is still undefined.  

In our previous studies, we found that inhibition of the MEK/ERK1/2 signaling 

pathway with UO126 reduced ACTH-induced cortisol production in both normoxic and 

LTH FACs (24), and that MEK/ERK1/2 signaling does not affect cortisol through 

regulation of eNOS phosphorylation; inhibition with UO126 did not alter peNOS in 
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either normoxic or LTH FACs and did not differentially limit ACTH-stimulated cortisol 

production between normoxic and LTH FACs (19). Together these results suggest that 

the MEK/ERK1/2 pathway affects cortisol production and acts through a mechanism 

other than NO to impact cortisol steroidogenesis. Classically, ACTH-stimulated cortisol 

biosynthesis is regulated via 3,5-cAMP/PKA activation of steroidogenic acute regulatory 

(StAR) protein (7, 21). We found that enhanced ACTH-stimulated cortisol production in 

LTH FACs is not a result of increased cAMP production and/or PKA activation, 

however, expression of StAR protein, responsible for cholesterol transport in to the inner 

mitochondrial membrane for the initial rate limiting step in steroidogenesis, was 

increased in LTH FACs compared to normoxic controls (23). These results indicate that 

while MEK/ERK1/2 signaling is involved in cortisol biosynthesis, the adaptive 

mechanism dissociating cortisol production from elevated ACTH lies downstream from 

ACTH signal transduction. This study was designed to (1) assess whether activation of 

steroidogenesis via membrane permeable cAMP analog 8Bromo-cAMP (8Br) is altered 

by MEK/ERK1/2 pathway inhibition with UO, and (2) determine whether 8Br activation 

of steroidogenesis regulates eNOS phosphorylation in FACs.  

 

Materials and Methods 

Animals 

Time-dated pregnant ewes were maintained at the Barcroft Laboratory White 

Mountain Research Station (3820m, maternal PO2 ~ 60mmHg) from approximately 40 

days gestational age (dGa) to near term (term ≅ 146 days). Following transportation to 

the laboratory, hypoxia was maintained by nitrogen infusion through a maternal tracheal 
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catheter as previously described (1, 9, 11, 15, 19, 23). Age-matched, normoxic ewes 

served as controls. On 138 to 142 dGa, ewes were sedated and maintained under general 

anesthesia while fetuses were delivered through midline laparotomy. Procedures were 

performed as previously described in detail (13). Fetal adrenal glands were collected in 

ice-cold media M-199 (Sigma-Aldrich, St. Louis, Missouri), containing 2.2 g sodium 

bicarbonate, 2.0 g bovine serum albumin, and 0.1 g L-glutamine for cell dispersion and 

subsequent study. All procedures were conducted with the approval of the Institutional 

Animal Care and Use Committees (Loma Linda University School of Medicine, Loma 

Linda, CA). 

 

Cell Dispersion 

Procedures for collection of FACs were similar to those we described previously 

(19, 23, 24). Briefly, fetal adrenal glands were divided in half along the longitudinal axis 

and the cortex was separated from the medulla. The cortical tissue was minced and 

enzymatically dispersed with 40 mg collagenase Type II (Worthington Biomedical, 

Lakewood, NJ), 40 mg of Polypep bovine protein digest (Sigma-Aldrich) and 100 µl of 

DNAse I (Type IV; Sigma-Aldrich) dissolved in 10 mL of Sodium Krebs Buffer (0.4% 

collagenase). The resulting monodispersed FACs were aliquoted into individual tubes 

with media (M-199), and allowed to equilibrate for 2 hr at 37°C prior to initiation of the 

study as required by the experimental protocol. Cell viability was confirmed by Trypan 

blue exclusion. 
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Treatment Protocol 

Effects of MEK/ERK1/2 inhibition and 8Bromo-cAMP stimulation on cortisol 

biosynthesis and eNOS phosphorylation 

FACs, aliquoted at 7.5x105 cells/mL, were untreated, pretreated with 

MEK/ERK1/2 inhibitor UO126 (UO, 10 µM) for 1 hour, or stimulated with 8Bromo-

cAMP (8Br, 10 mM), with and without UO pretreatment. Media and cells were collected 

at 0 (baseline), 10, 20, and 60 minutes after stimulation (Figure 1). Media were 

immediately frozen in liquid nitrogen, and stored at -80°C until determination of cortisol. 

Cells were lysed in 80 µL of lysis buffer (93% prelysis buffer [1 mmol/L Trizma Base, 

10 mmol/L NaCl, 0.1 mmol/L EDTA, 0.1 mmol/L EGTA, 1% Triton X-100, 0.5% Igepal 

CO-630, 20 mmol/L NaF], 1% 100 mmol/L phenylmethanesulfonyl fluoride, 1% 

Protease Inhibitor Cocktail [Sigma, St Louis, Missouri], 5% 20 mmol/L sodium 

orthovanadate), frozen in liquid nitrogen, and stored at -80°C until analysis. 

 

 

Figure 1. Timeline for treatment protocol 8Bromo-cAMP. UO, UO126; 8Br, 8Bromo-

cAMP. 
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Cortisol Assay 

Cortisol was measured using a commercially available enzyme-linked 

immunosorbent assay cortisol kit (Oxford Biomedical Research, Oxford, Michigan) that 

has been previously described and validated for use in our laboratory (10, 15, 18). 

 

Western Analysis 

Endothelial NOS protein was analyzed from FACs collected at 0 (baseline), 10, 

20, and 60 min for both normoxic and LTH groups, described earlier. Samples were 

thawed and protein concentration was determined using a bicinchoninic acid protein 

assay (Thermo Scientific, Rockford, Illinois) with BSA as the standard. Absorbance was 

measured at 595 nm on a BioTek Synergy HT Multi-Mode Microplate Reader 

(Winooski, Vermont).  

Endothelial NOS protein phosphorylation was determined by Western blotting 

using methods we have previously described and validated (17, 18). Briefly, protein 

samples were denatured for 5 minutes at boiling temperature and a total of 20 µg of 

protein were loaded per lane. Protein samples were separated using 7.5% polyacrylamide 

gels (Bio-Rad, Hercules, California) and subjected to electrophoresis (sodium dodecyl 

sulfate polyacrylamide gel electrophoresis) and then transferred to polyvinylidene 

fluoride membranes (Millipore, Billerica, Massachusetts) using a Transblot cell apparatus 

(Bio-Rad).  

To determine the level of eNOS protein phosphorylation, the membranes were 

incubated with a rabbit monoclonal phospho-eNOS (Ser1177; C9C3) primary antibody 

(Cell Signaling, Product#9570) in 10 mL 5% BSA Tris-buffered saline with Tween 20 
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(TBST) solution (1:1000) overnight at 4°C. Membranes were then incubated with goat 

anti-rabbit polyclonal secondary antibody (ThermoScientific, Product#35571) in 10 mL 

5% BSA TBST solution (1:10000) for 90 minutes, washed, and imaged with a Licor 

Odyssey Infrared Imaging System (LI-COR Bio-sciences, Lincoln, Nebraska) at 700 nm. 

The relative optical densities (ROD) of the bands were used to measure normoxic and 

LTH phosphorylated eNOS (peNOS) protein expression. An internal positive standard 

prepared from whole fetal adrenal tissue was used to normalize peNOS protein.  

To determine the level of eNOS protein expression, the membranes were first 

stripped of phosphorylated antibody and incubated with mouse anti-eNOS primary 

antibody (BD Transduction, Product# 610296) in 10 mL 5% nonfat dry milk (NFDM) 

TBST solution (1:250) overnight at 4°C. Membranes were then incubated with goat anti-

mouse polyclonal secondary antibody (Thermo Scientific, Product# 35518) in 10 mL 5% 

NFDM TBST solution (1:20000) for 90 minutes, washed, and imaged with a Licor 

Odyssey Infrared Imaging System (LI-COR Bio-sciences, Lincoln, Nebraska) at 800 nm. 

The RODs of the bands were used to measure normoxic and LTH eNOS protein 

expression. An internal positive standard prepared from whole fetal adrenal tissue was 

used to normalize eNOS protein as we have previously described in our laboratory (14, 

24). 

 

Statistical Analysis 

Descriptive statistics are presented as mean ± standard error. Data analysis was 

performed using two-way analysis of variance (ANOVA) with 1 between-subject factor 

(treatment) and 1 within-subject factor (time) stratified by oxygenation level (normoxic 
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or LTH). The main effect tested was in vitro treatment (UO). Alpha was set at .05 

significance level. Post hoc tests were adjusted using the Bonferroni method. Statistical 

analyses were performed GraphPad Prism 5 (Version 5.04; GraphPad Software, Inc., 

2010). 

 

Results 

Effects of MEK/ERK1/2 Inhibition and 8Bromo-cAMP Stimulation 

Cortisol Production 

There were no differences observed in cortisol production from either normoxic 

(n=6) or LTH (n=6) FACs that were pretreated with UO compared to the untreated cells, 

and cortisol levels remained relatively constant throughout the 60 minutes of study 

(Figure 2). There was a significant increase in cortisol output from both normoxic and 

LTH FACs; in control normoxic FACs, cortisol was significantly elevated by 60 minutes 

after 8Br stimulation (p<0.05) compared to time 0, while a significant increase in cortisol 

output was observed in LTH FACs in response to 8Br by 10 minutes compared to time 0. 

The maximal increase in cortisol production was approximately 15 fold in the LTH FACs 

compared to approximately 5 fold in the control cells. Pretreatment with UO inhibited the 

8Br-stimulated increase in cortisol in both normoxic and LTH FACs compared to 8Br 

alone (p<0.05).  

 

Expression of eNOS 

Treatment with 8Br and UO pretreatment had no effect on expression of eNOS 

protein in either normoxic or LTH FACs compared to control (Figure 3A).    
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Phosphorylation of eNOS 

Treatment with 8Br and UO pretreatment had no effect on phosphorylation of 

eNOS protein in either normoxic or LTH FACs compared to control (Figure 3B). 
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Figure 2. Time course of cortisol production in normoxic and LTH FACs with 

MEK/ERK1/2 inhibition and 8Bromo-cAMP stimulation. Treatment with 8Br (10mM) 

increased cortisol production in both normoxic and LTH FACs. UO126 (10µM) 

pretreatment had no effect on basal cortisol, but prevented increased cortisol biosynthesis 

in response to 8Br stimulation in both normoxic and LTH. (Normoxic n=6, LTH n=6) 

Values represent mean values ± SEM. *p<0.05 compared to time 0. FACs, fetal 

adrenocortical cells; LTH, long-term hypoxia; UO, UO126; 8Br, 8Bromo-cAMP.  
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Figure 3. Protein expression (A) and phosphorylation (B) of eNOS in response to 

MEK/ERK1/2 inhibition and 8Bromo-cAMP stimulation in normoxic and LTH FACs as 

determined by Western analysis. Pretreatment with UO (10µM) with and without 8Br 

(10mM) stimulation had no effect on either eNOS or peNOS in both normoxic and LTH 

FACs compared to control. (Normoxic n=6, LTH n=6) Values represent mean values ± 

SEM. FACs, fetal adrenocortical cells; LTH, long-term hypoxia; eNOS, endothelial nitric 

oxide synthase; peNOS, phosphorylated endothelial nitric oxide synthase; ROD, relative 

optical density; UO, UO126; 8Br, 8Bromo-cAMP. 
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Discussion 

Cortisol regulation is a critical component of fetal development due to its 

involvement tissue growth and maturation; chronically high levels of glucocorticoids can 

suppress normal anabolic processes necessary for fetal growth (3, 12, 16). In the LTH 

ovine fetus, there is an adaptive response of the HPA axis to upregulate the 

hypothalamic-anterior pituitary portion with increased release of CRH and AVP (10), as 

well as elevated basal plasma ACTH and enhanced processing of POMC to ACTH (17). 

In contrast, expression of key steroidogenic enzymes (CYP11A1 and CYP17) as well as 

expression of ACTH receptor mRNA are reduced (18), and basal adrenal cortisol levels 

remain normal, despite elevated ACTH (1, 8, 11, 17). And in response to a secondary 

stressor, the LTH fetus produces enhanced levels of cortisol compared to the normoxic 

fetus (1, 11). Enhanced cortisol secretion in LTH FACs was not the result of increased 

cAMP production and/or protein kinas A (PKA) stimulation, however expression of 

steroidogenic acute regulatory protein was greater in LTH compared to normoxic FACs 

(23). Together, this suggests an adaptation in the HPA axis that maintains normal basal 

levels of cortisol required for fetal development, but allows for enhanced cortisol 

production in response to a secondary stress. 

Cortisol production in the adrenal cortex is classically known to be regulated by 

signaling of ACTH via 3,5-cAMP, which activates PKA liberation of cholesterol and 

activation of StAR, and StAR transfers cholesterol to the inner mitochondrial membrane 

for conversion into pregnenolone by CYP11A1, a major rate limiting step cortisol 

biosynthesis (2, 7, 20-22). In a previous study, we also showed that cortisol production 

can be regulated by nitric oxide (NO); NO inhibited ACTH-stimulated cortisol 
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production and endothelial nitric oxide synthase (eNOS) inhibition enhanced cortisol 

synthesis in LTH ovine FACs (15). Further, we demonstrated that LTH enhanced eNOS 

expression (14) and NOS activity in LTH compared to normoxic adrenals (15). We more 

recently found that MEK/ERK1/2 inhibition with UO126 (UO) reduced ACTH-

stimulated cortisol production in both normoxic and LTH FACs (19, 24), but had no 

effect on eNOS phosphorylation (peNOS) (19). Unlike UO, stimulation of cortisol 

production with ACTH reduced peNOS in LTH FACs and enhanced cortisol production 

above normoxic levels (19).  

In the present study, we examined the effects of UO inhibition on 8Bromo-cAMP 

(8Br) stimulated cortisol production and 8Br stimulation on peNOS to determine the 

involvement of cAMP in the fetal adaptation to LTH. 8Br is a cAMP analog that does not 

require a membrane receptor; it diffuses through the membrane to activate PKA and 

stimulate cortisol production. In rat adrenal zona fasiculata cells, 8Br was shown to 

increase corticosterone biosynthesis (5, 6), and treatment of Y1 mouse adrenocortical 

cells with 8Br increased StAR protein and mRNA in a PKA-dependent manner (4). In 

our FACs, we found that, similar to ACTH in chapter 2, 8Br enhanced cortisol 

production in both normoxic and LTH FACs, consistent with cAMP/PKA pathway 

regulation, with LTH levels greater than those achieved in normoxic FACs. Also similar 

to the previous study, UO reduced cortisol output in response to 8Br stimulation in both 

normoxic and LTH FACs, indicating that UO inhibition of cortisol synthesis is 

downstream of cAMP/PKA signaling. Unlike ACTH, however, 8Br-stimulated cortisol 

production did not elicit as great of an enhancement in LTH FACs, possibly due to the 

time required to reach stimulatory intracellular concentrations, and 8Br had no effect on 
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peNOS in both normoxic and LTH FACs, suggesting that ACTH dephosphorylation is 

not cAMP dependent and that ACTH regulates acute cortisol production through 

alternative signaling mechanisms activated by LTH that induce phosphatase activity. 

Taken together, the results from the present study as well as our previous work 

(14, 15, 23, 24) indicate that LTH has profound adaptive effects on the fetal adrenal 

cortex; activation of the cAMP/PKA pathway enhances cortisol production in ovine LTH 

FACs. The results from this study show that while the MEK/ERK1/2 pathway and cAMP 

are involved in cortisol biosynthesis, as evidenced by UO inhibition and 8Bromo-cAMP 

stimulation of cortisol production, they are not involved in the differential regulation of 

eNOS phosphorylation. 8Br had similar effects as ACTH and in response to UO on 

cortisol in LTH and normoxic FACs, supporting the role of cAMP in cortisol synthesis in 

FACs, but UO inhibition seems to be downstream of cAMP, as 8Br stimulation was able 

to enhance cortisol synthesis but UO effectively limited cortisol production in both 

normoxic and LTH FACs. However, 8Br had no effect on peNOS, indicating the 

activation of alternative mechanisms by ACTH to induce phosphatase activity. Although 

8Br stimulation did enhance cortisol in LTH FACs to levels above those observed in the 

normoxic FACs, the use of this analog was not able to replicate the results of ACTH-

stimulated reduction in peNOS. This suggests that this cAMP analog does not effectively 

replicate the actions of the native cAMP, or that ACTH activates an alternative 

mechanism outside of the classical cAMP/PKA signaling pathway to affect both cortisol 

and eNOS phosphorylation. 
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CHAPTER FOUR 

EFFECTS OF A23187 AND ACTH ON CORTISOL BIOSYNTHESIS AND ENOS 

PHOSPHORYLATION IN OVINE LONG-TERM HYPOXIC FETAL 

ADRENOCORTICAL CELLS 

 

Abstract 

In the long-term hypoxic (LTH) fetus, we have shown that cortisol production is 

enhanced in response to secondary stress, while basal levels remain normal despite 

elevated basal ACTH. Nitric oxide (NO) may be a major regulator of this mechanism as 

we have shown that NO inhibits cortisol production in LTH fetal adrenocortical cells 

(FACs). We have also shown that endothelial nitric oxide synthase (eNOS) expression is 

greater in the LTH fetal adrenal, and that NOS activity is reduced by ACTH treatment in 

LTH FACs. This study was designed to determine the role of calcium signaling on eNOS 

phosphorylation (peNOS) and subsequent cortisol production in the ovine FACs in 

response to long term hypoxia (LTH). Pregnant ewes were maintained at high altitude 

(3820m) for approximately the last 100 days of gestation (dGa). At 138-142 dGa, fetal 

adrenal cortical cells (FACs) were collected from LTH and age matched normoxic ovine 

fetuses. Cortisol production and peNOS were measured in response to pretreatment with 

calcium ionophore A23187 and ACTH stimulation. A23187 had no effect on cortisol 

production or peNOS in both normoxic and LTH FACs, suggesting that calcium 

signaling does not play a major role in regulating cortisol or eNOS phosphorylation in the 

ovine fetal adrenal. 

 



 

94 

Introduction 

Long-term hypoxia (LTH) in the fetus causes adaptations that lead to increased 

basal plasma concentrations of ACTH, however cortisol levels remain normal under basal 

conditions (37). In response to a secondary stress, cortisol production is enhanced in the 

LTH fetus beyond levels achieved in the normoxic (3, 24), suggesting a mechanism of 

cortisol regulation that maintains normal cortisol levels under basal conditions but allows 

for a heightened output in response to stress. The mechanism for this adaptation may be 

mediated by nitric oxide (NO) produced from endothelial nitric oxide synthase (NOS). 

Previous work from our lab has shown that eNOS expression was greater in LTH 

fetal adrenals (34), and that NO inhibited ACTH-stimulated cortisol production while 

NOS inhibition enhanced cortisol synthesis in LTH FACs (35). This suggests that eNOS 

and subsequent NO production plays an important role in regulating cortisol biosynthesis 

in response to a secondary stress in the fetus.  

The regulation of eNOS activity has been shown to occur through post-

translational mechanisms including phosphorylation (13), protein-protein interactions 

with caveolin-1 (Cav-1) and heat shock protein 90 (Hsp90) (7, 8, 22), and interaction 

with calcium (Ca2+)/calmodulin (CaM) (31). Calmodulin is an allosteric activator of 

eNOS and increases in intracellular Ca2+ concentrations promote the dissociation of 

eNOS with the inhibitory protein Cav-1 and association of eNOS with CaM (27, 29, 39, 

45). The activated eNOS-CaM complex synthesizes NO until Ca2+ decreases and CaM 

dissociates, followed by reformation of the eNOS-Cav-1 complex (1, 25, 27, 30, 40). 

This mechanism of Ca2+ regulation of eNOS has been well characterized in 

endothelial cells, but not as well explored in steroidogenic cells, especially the fetal 
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adrenal, and studies on the effects of Ca2+ on eNOS phosphorylation (peNOS) are 

limited. Further, the role of Ca2+ regulation of peNOS under hypoxic conditions is 

uncertain. In endothelial cells, treatment with calcium ionophore A23187 increased 

peNOS and NO production (4, 23, 51), while Ca2+ chelators and calcium free media 

prevented stimulated increases in peNOS (15, 21). Taken together, these studies suggest 

that Ca2+ plays an important role in regulating peNOS. This study was designed to 

examine the effects of elevating intracellular calcium with calcium ionophore A23187 on 

peNOS and subsequent cortisol biosynthesis to determine the role of calcium in 

regulating fetal eNOS and cortisol production in LTH ovine FACs. 

 

Materials and Methods 

Animals 

Time-dated pregnant ewes were maintained at the Barcroft Laboratory White 

Mountain Research Station (3820m, maternal PO2 ~ 60mmHg) from approximately 40 

dGa to near term (term ≅ 146 days). Following transportation to the laboratory, hypoxia 

was maintained by nitrogen infusion through a maternal tracheal catheter as previously 

described (3, 11, 24, 35, 41, 49). Age-matched, normoxic ewes served as controls. On 

138 to 142 dGa, ewes were sedated and maintained under general anesthesia while 

fetuses were delivered through midline laparotomy. Procedures were performed as 

previously described in detail (33). Fetal adrenal glands were collected in ice-cold media 

M-199 (Sigma-Aldrich, St. Louis, Missouri), containing 2.2 g sodium bicarbonate, 2.0 g 

bovine serum albumin, and 0.1 g L-glutamine for cell dispersion and subsequent study. 
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All procedures were conducted with the approval of the Institutional Animal Care and 

Use Committees (Loma Linda University School of Medicine, Loma Linda, CA). 

 

Cell Dispersion 

Procedures for collection of FACs were similar to those we described previously 

(41, 49, 50). Briefly, fetal adrenal glands were divided in half along the longitudinal axis 

and the cortex was separated from the medulla. The cortical tissue was minced and 

enzymatically dispersed with 40 mg collagenase Type II (Worthington Biomedical, 

Lakewood, NJ), 40 mg of Polypep bovine protein digest (Sigma-Aldrich) and 100 µl of 

DNAse I (Type IV; Sigma-Aldrich) dissolved in 10 mL of Sodium Krebs Buffer (0.4% 

collagenase). The resulting monodispersed FACs were aliquoted into individual tubes 

with media (M-199), and allowed to equilibrate for 2 hr at 37°C prior to initiation of the 

study as required by the experimental protocol. Cell viability was confirmed by Trypan 

blue exclusion. 

 

Treatment Protocol 

Effects of A23187 treatment and ACTH stimulation on eNOS phosphorylation and 

cortisol biosynthesis 

FACs, aliquoted at 7.5x105 cells/mL, were untreated, pretreated with calcium 

ionophore A23187 (3.3 µM) for 1 hour, or stimulated with ACTH (100 pM), with and 

without A23187 pretreatment. Media and cells were collected at 0 (baseline), 10, 20, and 

60 minutes after stimulation. Media were immediately frozen in liquid nitrogen, and 

stored at -80°C until determination of cortisol. Cells were lysed in 80 µL of lysis buffer 
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(93% prelysis buffer [1 mmol/L Trizma Base, 10 mmol/L NaCl, 0.1 mmol/L EDTA, 0.1 

mmol/L EGTA, 1% Triton X-100, 0.5% Igepal CO-630, 20 mmol/L NaF], 1% 100 

mmol/L phenylmethanesulfonyl fluoride, 1% Protease Inhibitor Cocktail [Sigma, St 

Louis, Missouri], 5% 20 mmol/L sodium orthovanadate), frozen in liquid nitrogen, and 

stored at -80°C until analysis. 

 

 

Figure 1. Timeline for treatment protocol A23187. ACTH, adrenocorticotropic hormone; 

A23187, calcium ionophore A23187. 

 

 

Cortisol Assay 

Cortisol was measured using a commercially available enzyme-linked 

immunosorbent assay cortisol kit (Oxford Biomedical Research, Oxford, Michigan) that 

has been previously described and validated for use in our laboratory (12, 35, 38). 

 

Western Analysis 

Endothelial NOS protein was analyzed from FACs collected at 0 (baseline), 10, 

20, and 60 min for both normoxic and LTH groups, described earlier. Samples were 

thawed and protein concentration was determined using a bicinchoninic acid protein 

assay (Thermo Scientific, Rockford, Illinois) with BSA as the standard. Absorbance was 

Rest 2hr Pretreat 1hr 

A23187 3.3 µM ACTH 100 pM 

0min 
10min 

20min 
60min 
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measured at 595 nm on a BioTek Synergy HT Multi-Mode Microplate Reader 

(Winooski, Vermont).  

Endothelial NOS protein expression and phosphorylation was determined by 

Western blotting using methods we have previously described and validated (37, 38). 

Briefly, protein samples were denatured for 5 minutes at boiling temperature and a total 

of 20 µg of protein were loaded per lane. Protein samples were separated using 7.5% 

polyacrylamide gels (Bio-Rad, Hercules, California) and subjected to electrophoresis 

(sodium dodecyl sulfate polyacrylamide gel electrophoresis) and then transferred to 

polyvinylidene fluoride membranes (Millipore, Billerica, Massachusetts) using a 

Transblot cell apparatus (Bio-Rad).  

To determine the level of eNOS phosphorylation, the membranes were incubated 

with a rabbit monoclonal phospho-eNOS (Ser1177; C9C3) primary antibody (Cell 

Signaling, Product#9570) in 10 mL 5% BSA Tris-buffered saline with Tween 20 (TBST) 

solution (1:1000) overnight at 4°C. Membranes were then incubated with goat anti-rabbit 

polyclonal secondary antibody (ThermoScientific, Product#35571) in 10 mL 5% BSA 

TBST solution (1:10000) for 90 minutes, washed, and imaged with a Licor Odyssey 

Infrared Imaging System (LI-COR Bio-sciences, Lincoln, Nebraska) at 700 nm. The 

relative optical densities (ROD) of the bands were used to measure normoxic and LTH 

phosphorylated eNOS (peNOS) protein expression. An internal positive standard 

prepared from whole fetal adrenal tissue was used to normalize peNOS protein.  

To determine the level of eNOS protein expression, the membranes were first 

stripped of phosphorylated antibody and incubated with mouse anti-eNOS primary 

antibody (BD Transduction, Product# 610296) in 10 mL 5% nonfat dry milk (NFDM) 



 

99 

TBST solution (1:250) overnight at 4°C. Membranes were then incubated with goat anti-

mouse polyclonal secondary antibody (Thermo Scientific, Product# 35518) in 10 mL 5% 

NFDM TBST solution (1:20000) for 90 minutes, washed, and imaged with a Licor 

Odyssey Infrared Imaging System (LI-COR Bio-sciences, Lincoln, Nebraska) at 800 nm. 

The RODs of the bands were used to measure normoxic and LTH eNOS protein 

expression. An internal positive standard prepared from whole fetal adrenal tissue was 

used to normalize eNOS protein as we have previously described in our laboratory (34, 

50). 

 

Statistical Analysis 

Descriptive statistics are presented as mean ± standard error. Data analysis was 

performed using two-way analysis of variance (ANOVA) with 1 between-subject factor 

(treatment) and 1 within-subject factor (time) stratified by oxygenation level (normoxic 

or LTH). The main effect tested was in vitro treatment (A23187). Alpha was set at .05 

significance level. Post hoc tests were adjusted using the Bonferroni method. Statistical 

analyses were performed GraphPad Prism 5 (Version 5.04; GraphPad Software, Inc., 

2010). 

 

Results 

Effects of A23187 and ACTH Stimulation 

Cortisol Production 

ACTH significantly increased cortisol production in both normoxic and LTH 

FACs. A23187 did not affect cortisol output in both normoxic and LTH FACs, with and 
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without ACTH stimulation (Figure 2). 

 

Expression of eNOS 

Treatment with A23187 and ACTH had no effect on expression of eNOS protein 

in either normoxic or LTH FACs compared to control (Figure 3A).  

 

Phosphorylation of eNOS 

Treatment with A23187 and ACTH had no effect on phosphorylation of eNOS 

protein in either normoxic or LTH FACs compared to control (Figure 3B). 
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Figure 2. Time course of cortisol production in normoxic and LTH FACs with calcium 

ionophore A23187 pretreatment and ACTH stimulation. Treatment with ACTH (100pM) 

increased cortisol production in both normoxic and LTH FACs. A23187 (3.3µM) 

pretreatment had no effect on basal or ACTH-induced cortisol biosynthesis in both 

normoxic and LTH. (Normoxic n=5, LTH n=5) Values represent mean values ± SEM. 

*p<0.05 compared to time 0. FACs, fetal adrenocortical cells; LTH, long-term hypoxia; 

ACTH, adrenocorticotropic hormone; A23187, calcium ionophore A23187.  
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Figure 3. Protein expression (A) and phosphorylation (B) of eNOS in response to calcium 

ionophore A23187 and ACTH stimulation in normoxic and LTH FACs as determined by 

Western analysis. Pretreatment with A23187 (3.3µM) with and without ACTH (100pM) 

stimulation had no effect on eNOS or peNOS in both normoxic and LTH FACs compared 

to control. (Normoxic n=5, LTH n=5) Values represent mean values ± SEM. FACs, fetal 

adrenocortical cells; LTH, long-term hypoxia; eNOS, endothelial nitric oxide synthase; 

peNOS, phosphorylated endothelial nitric oxide synthase; ROD, relative optical density; 

ACTH, adrenocorticotropic hormone; A23187, calcium ionophore A23187. 
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Discussion 

The regulation of cortisol biosynthesis in the fetus is critical due to its 

involvement in growth and maturation, and chronically high levels can suppress the 

normal processes necessary for development (6, 28, 36). The hypothalamic-pituitary-

adrenal (HPA) axis of the long-term hypoxic (LTH) fetus undergoes significant 

adaptation resulting in maintenance of basal levels of cortisol, despite elevated ACTH 

(37), and enhanced cortisol biosynthesis in response to a secondary stress (3, 24). This 

adaptation may be mediated by nitric oxide (NO) produced by endothelial nitric oxide 

synthase (eNOS); we have shown that eNOS expression was greater in LTH fetal 

adrenals (34), and that NO inhibited ACTH-stimulated cortisol production while NOS 

inhibition enhanced cortisol synthesis in LTH fetal adrenocortical cells (FACs) (35). 

Therefore, eNOS regulation of NO production appears to play a critical role in regulating 

cortisol biosynthesis in response to stress in the LTH fetus. 

Regulation of eNOS has been shown to occur through post-translational 

mechanisms including phosphorylation (9, 10, 13, 17, 18, 32), protein-protein 

interactions with caveolin-1 (Cav-1) and heat shock protein 90 (Hsp90) (7, 8, 19, 20, 22), 

and interaction with calcium (Ca2+)/calmodulin (CaM) (16, 31). In our lab, we have 

shown that although there is significant co-localization of eNOS with regulatory proteins 

Hsp90 and Cav-1 present in the fetal adrenal, there were no changes in co-localization of 

either protein with eNOS in the LTH fetus compared to normoxic controls (46). This 

indicates that Cav-1/Hsp90 regulation of eNOS is likely not an important part of the fetal 

adaptation to LTH and suggests that other methods are involved. Calcium is a possible 

regulator involved in managing eNOS activity. Increases in intracellular Ca2+ 
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concentrations ([Ca2+]i) have been shown to activate eNOS by inducing dissociation of 

eNOS with Cav-1 and association with CaM, initiating NO production (27, 29, 39, 45). 

Decreases in [Ca2+]i were followed by CaM dissociation and reformation of the eNOS-

Cav-1 complex, halting NO synthesis (1, 25, 27, 30, 40), showing that eNOS activity is 

dependent on [Ca2+]i.  

This mechanism of Ca2+ regulation of eNOS has been well characterized in 

endothelial cells (1, 2, 16, 25, 27, 30, 40, 44), but not as well explored in steroidogenic 

cells, especially the fetal adrenal, and studies on the effects of Ca2+ on eNOS 

phosphorylation (peNOS) are limited. Further, the role of Ca2+ regulation of peNOS 

under hypoxic conditions is uncertain. Studies have shown that in bovine aortic 

endothelial cells (BAECs) and COS-7 transfected cells, treatment with calcium ionophore 

A23187 increased peNOS at Ser1177 and NO production (4, 23), while treatment of 

endothelial cells with Ca2+ chelators prevented VEGF-mediated peNOS and NO 

synthesis (21). In porcine aortic endothelial cells (PAECs), bradykinin-induced peNOS 

was reduced in calcium-free media (15), and treatment with A23187 increased NO in 

pregnant ovine uterine arteries, inducing relaxation that was enhanced in hypoxic tissues 

compared to normoxic (51). Together these results suggest a possible role for Ca2+ 

regulation of peNOS that may be affected by LTH. 

In this study we investigated the role of intracellular calcium on peNOS and 

cortisol production in the LTH ovine FACs. We found that while ACTH increased 

cortisol production, as we have previously described (35, 41, 49, 50), pretreatment of 

FACs with calcium ionophore A23187 had no effect on eNOS expression and 

phosphorylation, and subsequent ACTH-stimulated cortisol production was not affected 
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in both normoxic and LTH FACs. This implies that [Ca2+]i does not play a major role in 

the fetal adaptation to LTH, and may not contribute to eNOS regulation in the fetal 

adrenal. 

It has been suggested that eNOS regulation may be tissue specific (14), and thus 

the lack of calcium influence in the fetal adrenal may be a result of this specificity in 

regulation. It could also be a difference in regulation based on the type of agonist; the 

requirement of calcium for NO production has been shown to vary depending on the type 

of agonist. A rise in calcium is necessary in response to acetylcholine (43) or vascular 

endothelial growth factor (42), however fluid shear stress (26), estrogen (5), and insulin 

(48) do not require increases in calcium for NO production. In these cases, it is likely that 

CaM is bound, as it is an essential regulator of electron flux required for NO generation 

(2), but that it’s affinity is not as affected by calcium concentrations. The negative charge 

of the phosphate could permit greater activation of eNOS without changing CaM affinity 

at varying calcium levels (10, 17, 32, 47), thus generating NO even at lower 

calcium/CaM concentrations. Together these data suggest that the lack of changes in 

peNOS and cortisol as a result of calcium ionophore A23187 treatment could be tissue 

specific. Calcium may not be a major regulator of eNOS in FACs and thus increases in 

intracellular calcium may not have an impact on eNOS activity. 
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CHAPTER FIVE 

EFFECTS OF NITRIC OXIDE ON CORTISOL BIOSYNTHESIS AND MRNA 

ABUNDANCE OF CYP11A1, CYP17, STAR, AND ACTH-R IN OVINE LONG-

TERM HYPOXIC FETAL ADRENOCORTICAL CELLS 

 

Abstract 

We previously showed a decrease in key steroidogenic enzymes CYP11A1 and 

CYP17, as well as a decrease in ACTH receptor (ACTH-R) in the ovine fetal adrenal that 

may contribute to the ability of the LTH fetus to maintain basal cortisol levels despite 

elevated ACTH. We have also shown an increase in steroidogenic acute regulatory 

(StAR) protein in LTH fetal adrenocortical cells (FACs) that would allow for an 

enhanced response to a secondary stress. And we have shown the ability of NO to inhibit 

ACTH-induced cortisol production. This study was designed to determine the role of 

nitric oxide (NO), using DETA-NO, an NO donor, and L-NAME, a NOS inhibitor, in 

altering steroidogenic capacity by measuring cortisol production and mRNA of 

CYP11A1, CYP17, StAR, and ACTH-R. Pregnant ewes were maintained at high altitude 

(3820m) for approximately the last 100 days of gestation (dGa). At 138-142 dGa, fetal 

adrenal cortical cells (FACs) were collected from LTH and age matched normoxic ovine 

fetuses and treated over the course of 96h at 37°C and 5% CO2. Cortisol production and 

mRNA were measured in response to DETA-NO, L-NAME, and/or ACTH treatment. 

DETA-NO and L-NAME did not alter cortisol or mRNA abundance of CYP11A1, 

CYP17, StAR, and ACTH-R with and without ACTH treatment in both normoxic and 

LTH FACs. ACTH treatment significantly increased cortisol production in both 
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normoxic and LTH FACs, and normoxic cortisol concentrations were greater than LTH. 

ACTH increased mRNA abundance in both normoxic and LTH FACs, but was not 

affected by DETA-NO or L-NAME treatment. Together these results suggest that ACTH 

treatment is able to overcome NO inhibition of steroidogenesis over 96h, and NO does 

not affect steroidogenesis at the level of mRNA abundance of key steroidogenic enzymes 

CYP11A1 and CYP17 or StAR and ACTH-R in the LTH fetal adrenal. 

 

Introduction 

Hypoxia is a common fetal stressor that leads to adaptations in the ovine fetal 

adrenal. In response to long-term moderate gestational hypoxia (LTH), the fetus 

maintains normal basal plasma cortisol concentrations, despite elevated basal levels of 

adrenocorticotropic hormone (ACTH) (45). However, the LTH fetus has an enhanced 

cortisol response to acute secondary stressors compared to normoxic fetuses (1, 28). This 

suggests an adaptation in the HPA axis that prevents early and excess cortisol production, 

but allows for increased cortisol production in response to a secondary stress. 

Regulation of cortisol is important for fetal development due to its involvement in 

tissue growth and maturation (8, 36, 44), and cortisol biosynthesis is regulated through a 

series of enzymatic steps. Steroidogenesis involves the key rate-limiting enzymes 

cytochrome P450 side-chain cleavage (CYP11A1) and cytochrome P450 17α-

hydroxylase (CYP17). Additionally, steroidogenic acute regulatory (StAR) protein and 

ACTH receptor (ACTH-R) are other necessary components. ACTH initiates 

steroidogenesis through activation of ACTH-R (38). StAR is responsible for cholesterol 

transport in to the inner mitochondrial membrane, the initial rate limiting step in 
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steroidogenesis, where CYP11A1 converts cholesterol into pregnenolone (3, 9, 37, 38, 

52, 61). CYP17 continues cortisol biosynthesis by mediating the 17α-hydroxylation of 

pregnenolone to 17α-hydroxypregnenolone and progesterone 17α-hydroxyprogesterone 

(25). 

Under basal conditions, we have previously shown that despite elevated plasma 

ACTH, expression of CYP11A1 and CYP17 and ACTH-R are decreased in the adrenal 

gland of the LTH fetus (46), while expression of steroidogenic acute regulatory protein 

was greater in LTH compared to normoxic fetal adrenocortical cells (FACs) (68). We 

also observed that under acute secondary stress in vivo, cortisol production is greater in 

LTH fetuses than normoxic controls (1, 28). This is paralleled by in vitro studies that 

demonstrate enhanced cortisol biosynthesis in response to “stress” levels of ACTH in 

LTH FACs (69). Taken together, these data suggest that levels of CYP11A1, CYP17, and 

ACTH-R are adequate to carry out cortisol biosynthesis in the LTH fetal adrenal, but that 

there is an inhibitory mechanism under basal conditions on these biosynthetic proteins 

that is overridden to induce enhanced cortisol in response to a secondary stressor.  

A possible mediator of biosynthetic activity in the LTH fetal adrenal is nitric 

oxide (NO), a diatomic free radical molecule with a variety of physiological functions 

and produced from L-arginine by NO synthases (NOSs) (27, 42). NO has clearly been 

shown to inhibit CYP expression (17, 59) and activity (11, 13, 23) in adrenal cells. 

Studies from our own laboratory showed that NO inhibited ACTH-stimulated cortisol 

while NOS inhibition enhanced cortisol output in LTH FACs (41) . Thus, NO appears to 

play a role in regulating cortisol biosynthesis in the LTH fetal adrenal.  
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This study was designed to address the role of extended NO exposure, via NO 

donor DETA-NO, or removal, via NOS inhibitor L-NAME, on CYP11A1, CYP17, 

StAR, and ACTH-R mRNA abundance in normoxic and LTH FACs. We also determined 

the effects of altered NO exposure on cortisol biosynthesis.  

 

Materials and Methods 

Animals 

Time-dated pregnant ewes were maintained at the Barcroft Laboratory White 

Mountain Research Station (3820m, maternal PO2 ~ 60mmHg) from approximately day 

40 of gestation to near term (term = 146 days). Following transportation to the laboratory, 

hypoxia was maintained by nitrogen infusion through a maternal tracheal catheter as 

previously described (1, 15, 28, 41, 50, 68). Age-matched, normoxic ewes served as 

controls. On days 138-142 of gestation, ewes were sedated and maintained under general 

anesthesia while fetuses were delivered through midline laparotomy. Procedures were 

performed as previously described in detail (40). Fetal adrenal glands were collected in 

ice-cold media DMEM (Sigma-Aldrich, St. Louis, MO), containing 3.2 g sodium 

bicarbonate for cell dispersion and subsequent study. All procedures were conducted with 

the approval of the Institutional Animal Care and Use Committees (Loma Linda 

University School of Medicine, Loma Linda, CA). 

 

Cell Dispersion 

Fetal adrenal glands were divided in half along the longitudinal axis and the 

cortex was separated from the medulla. The cortical tissue was minced and enzymatically 
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dispersed with 40 mg collagenase Type II (Worthington Biomedical, Lakewood, NJ), 40 

mg of Polypep bovine protein digest (Sigma-Aldrich) and 100 µl of DNAse I (Type IV) 

(Sigma-Aldrich) dissolved in 10 ml of Sodium Krebs Buffer (0.4% collagenase). The 

resulting mono-dispersed FACs were aliquoted 2.5x105 cells/mL into 24 well plates with 

media (DMEM-FBS 5%), and incubated for 24h at 37°C and 5% CO2 prior to initiation 

of the study as required by the experimental protocol. FBS was added to DMEM cell 

media to provide the necessary factors require for cell growth. Cell viability was 

confirmed by Trypan blue exclusion. All procedures were performed as previously 

described and validated for our laboratory (50, 69). 

 

Treatment Protocol 

Effects of NOS Inhibition, NO Supplementation, and ACTH Stimulation on Cortisol 

Biosynthesis and CYP11A1, CYP17, StAR, and ACTH-R mRNA Abundance 

To examine the effects of NO on mRNA abundance and cortisol production, we 

used the NO donor (Z)-1-[2-(2-aminoethyl-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-

diolate (DETA-NO) (26), and NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-

NAME). Continuous exposure to NO donors is potentially cytotoxic, therefore DETA-

NO was chosen for this experiment because we have previously shown that this NO 

donor does not affect cell viability during cell culture (24). It also has a long half-life and 

the chosen dose (20uM) maintains physiological levels of NO (4, 7, 53). The dose of L-

NAME used was that found to be effective in a previous study (41). 

After the 24h incubation, all media was removed from each well, labeled 0h post 

treatment, and immediately frozen in liquid nitrogen and stored at -80C until 
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determination of cortisol. Following the initial media collection, FACs were either 

untreated, treated with NOS inhibitor L-NAME (1 mM), treated with NO donor DETA-

NO (20 µM), or treated with stress levels of ACTH (100 pM), with and without L-NAME 

or DETA-NO in DMEM-FBS, and returned to the incubator at 37°C and 5% CO2. Media, 

along with the appropriate agonist or antagonist were replaced every 24 h for a total of 96 

h post treatment and collected media was immediately frozen in liquid nitrogen, and 

stored at -80°C until determination of cortisol. At the end of the 96h treatment period, 

cells were lysed in 250 µL Denaturation Solution (Ambion) per well for 20 min, rinsed 

with 200 µL Denaturation Solution, frozen in liquid nitrogen, and stored at -80C until 

analysis. 

 

Cortisol Assay 

Cortisol was measured using a commercially available enzyme-linked 

immunosorbent assay (ELISA) cortisol kit (Oxford Biomedical Research, Oxford, MI) 

that has been previously described and validated for use in our laboratory (16, 41, 46). 

 

qRT-PCR 

Quantitative real-time PCR analysis. Quantitative real-time (qRT) PCR was used 

to quantify the mRNA for CYP17, CYP11A1, StAR, and ACTH-R (MC2). Total RNA 

was prepared from adrenal cortical cells (n=5 for normoxic and LTH) with an RNA 

preparation kit as per the manufacturer’s instructions (Qiagen). Before qRT-PCR, total 

RNA (1 µg) was treated with DNase I (1 U) at 37°C for 60 min and DNase was removed 

via PCR purification columns. Reverse transcription was performed using 1 µg of total 
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RNA per sample, oligo (dT21) as the primer, and Superscript II (Invitrogen) as reverse 

transcriptase. The details of the qRT PCR have been previously described for our 

laboratory in detail (45, 49). For all genes of interest, real-time PCR was also performed 

using control reverse-transcription reactions in which the reverse transcriptase was 

purposely omitted. 

Real-time PCR was performed using cDNA generated from the first-strand 

synthesis reaction. All PCRs were performed in triplicate. For CYP11A1, CYP17, 

ACTH-R, and cyclophilin, 50 ng cDNA/PCR reaction were used. For the qRT-PCR, Sybr 

green (1x Sybr green master mix; Quanta Biosciences, Gaithersburg, Maryland) was 

utilized as the fluorophore, and real-time PCR was performed utilizing a Bio-Rad iCycler 

equipped with the real-time optical fluorescent detection system. The primer sequences 

used are listed in Table 1; the primers were derived from cDNA sequences available at 

the National Center for Biotechnology Information (ovine CYP17: AF251388; ovine 

CYP11A1: D50057; ovine StAR: AF290202; ovine ACTH receptor: NM_001009442; 

bovine cyclophilin B: BT020966). A three- step PCR was used: an initial denaturation 

step of 95°C for 1.5 min to activate the hot-start Taq DNA polymerase, followed by 

sequential cycles consisting of denaturation at 95°C for 45 s, annealing at 55°C for 30 s, 

and extension at 72°C for 45 s. A total of 35 PCR cycles were performed. qRT-PCR was 

performed for each sample (in triplicate) for cyclophilin as a control mRNA using the 

identical first-strand cDNA used for quantification of mRNA for the gene of interest and 

in the same PCR run as for the gene of interest to circumvent any between-run variation. 

Cyclophilin was used as a “housekeeping” mRNA, since we previously found that 

cyclophilin mRNA is not glucocorticoid responsive and does not change in expression in 
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adrenal cells in vitro in response to a variety of stimuli, including ACTH. For 

quantification purposes, a synthetic, double-stranded DNA standard was used to generate 

a standard curve for extrapolation of starting cDNA concentrations per reaction using the 

Ct (threshold at which the fluorescence of each PCR reaction increased above baseline) 

values for standards to create a linear standard curve (100, 10, 1, 0.1, 0.01, and 0.001 pg 

of standard cDNA). Extrapolation of unknowns from the standard curve was performed 

using Prism 3 (GraphPad Software, San Diego, CA), predicting unknowns from the 

standard curve Ct values. 

  



 

119 

 

 

 

 

 

Table 1. Forward and reverse primer sequences used for quantitative real-time PCR 

Gene  Primer Sequence NCBI 

CYP17 Fw 5'-CATCAGAGAAGTGCTCCGAATCC-3' AF251388 

 Rv 5'-TCCTGCTCCAAAGGGCAAGTAG-3'  

CYP11A1 Fw 5'- GGAGGATGTCAAGGCCAATA-3' D50057 

 Rv 5'- TCTTGCTTATGTCGCCCTCT-3'  

StAR Fw 5'-CAGAAGATTGGAAAAGACACGGTC-3' AF290202 

 Rv 5'-AGGTGAGTTTGGTCCTTGAGGG-3'  

ACTH-R Fw 5'-ATGAAACACATTCTCAATCTG-3' NM_001009442 

 Rv 5'-AACGTTTTCCAAAATCTTGTAC-3'  

CYCLO Fw 5'-CCATCGTGTGATCAAGGACTTCAT-3' BT020966 

 Rv 5'-CTTGCCATCTAGCCAGGCAGTCTT-3'  

Fw, forward; Rv, reverse; CYCLO, cyclophilin; CYP17, 17a-hydroxylase; CYP11A1, 

cholesterol side-chain cleavage; StAR, steroidogenic acute regulatory protein; ACTH-R, 

adrenocorticotropic hormone receptor; NCBI, National Center for Biotechnology 

Information. 
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Statistical Analysis 

Descriptive statistics are presented as mean ± standard error. Data analysis for 

cortisol was performed using two-way analysis of variance (ANOVA) with 1 between-

subject factor (treatment) and 1 within-subject factor (time) stratified by oxygenation 

level (normoxic or LTH). Cortisol levels are reported as log transformed due to the large 

scale of change between control untreated and ACTH treatment. Data analysis for mRNA 

abundance was performed using two-way ANOVA with 1 between-subject factor 

(oxygenation level) and 1 within-subject factor (treatment). Alpha was set at .05 

significance level. Post hoc tests were adjusted using the Bonferroni method. Statistical 

analyses were performed GraphPad Prism 5 (Version 5.04; GraphPad Software, Inc., 

2010). 

 

Results 

Effects of NO on Cortisol Production 

There were no differences observed in cortisol production from either normoxic 

(n=5) or LTH (n=5) FACs that were treated with DETA-NO or L-NAME compared to 

untreated cells, and cortisol levels remained relatively constant throughout the 96h time 

course (Figure 1). In normoxic FACs, ACTH treatment significantly increased cortisol 

output by 24h and remained significantly elevated throughout the 96h time course 

compared to untreated FACs. In LTH FACs, ACTH treatment significantly increased 

cortisol output by 48h but production fell off by 96h. DETA-NO and L-NAME treatment 

did not significantly affect ACTH-stimulated cortisol for the entire course of treatment in 

either normoxic or LTH FACs. Although not significant, there was a trend for cortisol 
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production from normoxic FACs to be higher than LTH FACs in response to ACTH 

(838.64 +/- 359.57 Normoxic vs 573.39 +/- 310.11 LTH ACTH only; 834.30 +/- 385.94 

Normoxic vs 260.99 +/- 74.60 LTH ACTH + L-NAME; 1000.62 +/- 444.35 Normoxic vs 

430.08 +/- 131.92 LTH ACTH + DETA-NO). 

 

Effects of NO on mRNA Abundance of CYP11A1, CYP17, StAR, and ACTH-R 

DETA-NO and L-NAME had no significant effects on mRNA abundance of 

CYP11A1, CYP17, StAR, and ACTH-R in both normoxic and LTH FACs (Figures 2-5). 

ACTH treatment increased expression in both normoxic and LTH FACs. There were no 

significant changes in basal mRNA abundance between normoxic and LTH FACs. 
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Figure 1. Time course of cortisol production in normoxic and LTH FACs with NO donor 

DETA-NO and NOS inhibitor L-NAME treatment, with and without ACTH stimulation. 

Treatment with ACTH (100pM) increased cortisol production in both normoxic and LTH 

FACs. DETA-NO (20µM) and L-NAME (1mM) had no effect on cortisol, in the presence 

and absence of ACTH in both normoxic and LTH. (Normoxic n=5, LTH n=5) Values 

represent mean values ± SEM. *p<0.05 compared to time control. FACs, fetal 

adrenocortical cells; LTH, long-term hypoxia; DETA-NO, (Z)-1-[2-(2-aminoethyl-N-(2-

ammonioethyl)amino]diazen-1-ium-1,2-diolate; L-NAME, N(G)-nitro-L-arginine methyl 

ester; ACTH, adrenocorticotropic hormone. 
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Figure 2. mRNA abundance of CYP11A1 in normoxic and LTH FACs in response to NO 

donor DETA-NO and NOS inhibitor L-NAME treatment, with and without ACTH 

stimulation. Treatment with ACTH (100pM) increased mRNA in both normoxic and LTH 

FACs compared to control. DETA-NO (20µM) and L-NAME (1mM) had no effect on 

mRNA, in the presence and absence of ACTH in both normoxic and LTH. (Normoxic n=5, 

LTH n=5) Values represent mean values ± SEM. FACs, fetal adrenocortical cells; LTH, 

long-term hypoxia; DETA-NO, (Z)-1-[2-(2-aminoethyl-N-(2-

ammonioethyl)amino]diazen-1-ium-1,2-diolate; L-NAME, N(G)-nitro-L-arginine methyl 

ester; ACTH, adrenocorticotropic hormone. 
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Figure 3. mRNA abundance of CYP17 in normoxic and LTH FACs in response to NO 

donor DETA-NO and NOS inhibitor L-NAME treatment, with and without ACTH 

stimulation. Treatment with ACTH (100pM) increased mRNA in both normoxic and LTH 

FACs compared to control. DETA-NO (20µM) and L-NAME (1mM) had no effect on 

mRNA, in the presence and absence of ACTH in both normoxic and LTH. (Normoxic n=5, 

LTH n=5) Values represent mean values ± SEM. FACs, fetal adrenocortical cells; LTH, 

long-term hypoxia; DETA-NO, (Z)-1-[2-(2-aminoethyl-N-(2-

ammonioethyl)amino]diazen-1-ium-1,2-diolate; L-NAME, N(G)-nitro-L-arginine methyl 

ester; ACTH, adrenocorticotropic hormone. 
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Figure 4. mRNA abundance of StAR in normoxic and LTH FACs in response to NO donor 

DETA-NO and NOS inhibitor L-NAME treatment, with and without ACTH stimulation. 

Treatment with ACTH (100pM) increased mRNA in both normoxic and LTH FACs 

compared to control. DETA-NO (20µM) and L-NAME (1mM) had no effect on mRNA, 

in the presence and absence of ACTH in both normoxic and LTH. (Normoxic n=5, LTH 

n=5) Values represent mean values ± SEM. FACs, fetal adrenocortical cells; LTH, long-

term hypoxia; DETA-NO, (Z)-1-[2-(2-aminoethyl-N-(2-ammonioethyl)amino]diazen-1-

ium-1,2-diolate; L-NAME, N(G)-nitro-L-arginine methyl ester; ACTH, 

adrenocorticotropic hormone. 
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Figure 5. mRNA abundance of ACTH-R in normoxic and LTH FACs in response to NO 

donor DETA-NO and NOS inhibitor L-NAME treatment, with and without ACTH 

stimulation. Treatment with ACTH (100pM) increased mRNA in both normoxic and LTH 

FACs compared to control. DETA-NO (20µM) and L-NAME (1mM) had no effect on 

mRNA, in the presence and absence of ACTH in both normoxic and LTH. (Normoxic n=5, 

LTH n=5) Values represent mean values ± SEM. FACs, fetal adrenocortical cells; LTH, 

long-term hypoxia; DETA-NO, (Z)-1-[2-(2-aminoethyl-N-(2-

ammonioethyl)amino]diazen-1-ium-1,2-diolate; L-NAME, N(G)-nitro-L-arginine methyl 

ester; ACTH, adrenocorticotropic hormone. 
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Discussion 

In response to conditions of long-term moderate gestational hypoxia (LTH), the 

fetus has the ability to adapt the hypothalamic-pituitary-adrenal (HPA) axis to preserve 

normal growth and development. Under basal conditions, normal basal plasma cortisol 

concentrations are maintained, despite elevated levels of adrenocorticotropic hormone 

(ACTH) (45). However, the LTH fetus has a heightened cortisol response to acute 

secondary stressors compared to normoxic fetuses (1, 28). There is also reduced 

expression of key steroidogenic enzymes CYP11A1 (P450 side chain cleavage) and 

CYP17 (P450 17α-hydroxylase), as well as reduced ACTH receptor (ACTH-R) mRNA 

in the LTH adrenal cortex (46), but expression of steroidogenic acute regulatory (StAR) 

protein is greater in LTH compared to normoxic fetal adrenocortical cells (FACs) (68). 

Together these changes suggest an adaptive response to LTH to prevent excessive 

cortisol production that would restrict fetal growth, but allow for enhanced cortisol 

production in response to a secondary stress.  

A possible effector on cortisol production in this system is nitric oxide (NO). 

Aside from its well established role in the vascular system, NO has also been shown to 

inhibit steroidogenesis in a variety of tissues. NO reduced steroidogenesis in ovarian 

tissue of women (67), pigs (34, 35), rabbits (19, 73), and rats (39), and NO also reduced 

testosterone (30) and cortisol secretion (2) in the adult rat. Inhibition of NOS increased 

testosterone in the Leydig cells (14) and increased aldosterone production in humans 

(43). In the adrenal, NO inhibited basal, ACTH, and angiotensin II-induced aldosterone 

production in zona glomerulosa cells of adult rat adrenal cortex transfected with eNOS 

(21, 22) and adult bovine zona glomerulosa cells (23). In rat zona fasciculata cells, NO 



 

128 

donors decreased both unstimulated and ACTH-stimulated corticosterone production, and 

NOS inhibition enhanced glucocorticoid output (11, 12). In our lab, we have shown that 

NO inhibits cortisol biosynthesis and that inhibition of NOS enhances cortisol output in 

ovine LTH FACs (41), therefore nitric oxide may play an important role in the fetal 

adaptation to LTH in regulating cortisol production.  

This study investigated the effects of NO on cortisol production and mRNA 

abundance of key steroidogenic enzymes CYP11A1 and CYP17, as well as StAR and 

ACTH-R in ovine FACs to determine a potential point of action of NO. Cortisol 

biosynthesis in the adrenal is initiated by ACTH activation of ACTH-R (38). Subsequent 

signaling leads to StAR-mediated translocation of cholesterol from the outer to the inner 

mitochondrial membrane, providing substrate, where CYP11A1 converts cholesterol into 

pregnenolone (3, 9, 52, 55, 56). CYP17 continues cortisol biosynthesis by mediating the 

17α-hydroxylation of pregnenolone to 17α-hydroxypregnenolone and progesterone to 

17α-hydroxyprogesterone (25). Changes in these proteins would directly affect the ability 

of the fetus to produce cortisol.  

Interestingly we found that treatment with either the NO donor DETA-NO or 

NOS inhibition with L-NAME over 96h did not affect cortisol production compared to 

untreated cells in both normoxic and LTH FACs, however ACTH stimulation 

significantly increased cortisol output in normoxic FACs by 24h and in LTH FACs by 

48h compared to untreated cells (Figure 1). ACTH-stimulated cortisol biosynthesis was 

not significantly affected by either DETA-NO or L-NAME treatment in both normoxic 

and LTH FACs, however this could be due to sustained stimulation of the cells with 

stress levels of ACTH. ACTH has been shown to increase the expression of CYP11A1 
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and CYP17 in the fetal adrenal (10, 18, 47, 48, 54, 57, 63), and elevated ACTH in the 

fetal sheep was shown to be accompanied by increased 30 kDa StAR (72), the inactive 

spent form, suggesting enhanced translocation of cholesterol to the inner mitochondrial 

membrane. Together, the increased levels of ACTH through continuous treatments in this 

study would result in increased levels of these enzymes followed by increased production 

of cortisol. These increases in gene expression could overcome NO inhibition to produce 

cortisol in response to stress.  

We also found that cortisol output from normoxic FACs tended to reach higher 

levels than those in LTH FACs in response to ACTH. This could be due to the lack of 

cholesterol availability in the media. The production of steroid hormones is dependent on 

the availability of cholesterol within the steroidogenic cells. Sources of cholesterol 

include from the serum high density lipoproteins (HDLs) or low density lipoprotein 

(LDL) (20, 31), or de novo synthesis from acetate. Steroidogenesis occurs when 

cholesterol is mobilized from cellular stores to the outer mitochondrial membrane, via 

cholesterol esterase (5, 6, 64), or taken up from the plasma, followed by the transfer from 

the outer to the inner mitochondrial membrane by StAR (29, 33, 62). We have recently 

shown that LDL receptor and HMG-CoA Reductase mRNA was increased in whole 

adrenal cortex in the LTH fetus compared to normoxic control (unpublished results), 

however basal and ACTH stimulated cortisol output was lower in LTH compared to 

control in FACs over the course of 36h (70). This suggests that although LTH adrenals 

seem to have increased capacity for LDL uptake and de novo synthesis of cholesterol 

from acetate, there may be a defect in LDL transport in the LTH fetal adrenal cortex 

compared to normoxic controls. 
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Our earlier acute studies indicated a significant inhibitory effect of NO on cortisol 

biosynthesis in the LTH FACs (41). With this in mind, we wanted to determine if NO had 

a potentially longer lasting effect and altered gene expression of key proteins involved in 

cortisol production. In the present study we found that treatment with DETA-NO or L-

NAME both with or without ACTH for 96h had no significant effect on mRNA 

abundance of CYP11A1, CYP17, StAR, and ACTH-R in both normoxic and LTH FACs 

(Figure 2). ACTH treatment, however, increased mRNA in both normoxic and LTH 

FACs, but unlike our previous study (46), levels in untreated cells were not different in 

LTH compared to normoxic. This could be due to a lack of basal ACTH stimulation; as 

we have previously shown, ACTH is required for normal CYP11A1 and CYP17 

expression (47, 48). Together these results suggest that NO does not play a significant 

role in the regulation of CYP11A1, CYP17, StAR, and ACTH-R mRNA, and that 

changes in mRNA are not responsible for the inhibition of acute ACTH-induced cortisol 

production by NO that we have previously observed (41). 

The effects of NO on steroidogenesis, including cortisol production, have been 

well established, but the mechanism of action is still uncertain. In this study we showed 

that NO does not affect mRNA abundance of key steroidogenic enzymes and proteins, 

but NO may alter steroidogenesis by other post-translational mechanisms. One possibility 

is that NO may act directly on the CYP enzymes, through competitive interaction at the 

heme-oxygen binding site of CYP11A1 and CYP17 (22), or indirectly through S-

nitrosylation of CYP11A1 and CYP17 (60). It has been shown that NO is capable of 

interacting with the heme-oxygen binding site of CYP11A1 and CYP17 (65, 66), and 

because these enzymes use several rounds of attack of the heme-oxygen complex on the 
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steroid substrate (51), they may be more sensitive to NO inhibition than other enzymes. It 

has also been demonstrated that decreased oxygen concentrations resulted in a lower 

threshold for NO-mediated inhibition of aldosterone synthesis in adult rat adrenals (21), 

suggesting that the LTH fetus may be more susceptible to NO inhibition of cortisol.  

NO may also act through S-nitrosylation of key Cys residues in the active sites on 

CYP11A1 and CYP17, which could lead to suppressed steroidogenic activity and 

decreased cortisol production. S-nitrosylation has been unexplored in steroidogenic CYPs 

but it has been shown in the liver to affect both CYP transcription through zinc finger 

transcription interaction (71), as well as reduction in CYP expression (32). S-

nitrosylation has also been proposed as the mechanisms responsible for the NO-induced 

inhibition of aromatase activity in granulosa cells (58), and inhibition of corticosterone 

production in rat adrenocortical cells (12). These interactions of NO on CYP11A1 and 

CYP17 activity may lead to inhibition of acute ACTH-induced steroidogenesis following 

NO treatment in LTH FACs. 

The HPA axis of the fetal sheep undergoes significant adaptations in response to 

development under conditions of LTH. These changes include increased circulating basal 

ACTH, but reduced expression of CYP11A1, CYP17, and ACTH-R and normal plasma 

cortisol concentrations. Together, these adaptations suggest heightened activation of the 

hypothalamic-pituitary arm of the HPA axis, but reduced adrenocortical capacity to 

respond to ACTH. This divergent adaptation may serve to limit cortisol production in the 

basal state yet allow increased production of cortisol when needed during acute 

secondary stress. The mechanisms involved in this adaptation are not yet fully 

understood, however nitric oxide appears to still play a role. Although NO has been 
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shown to inhibit ACTH-induced cortisol production, the results from this study show that 

NO does not affect mRNA abundance of key steroidogenic enzymes CYP11A1 and 

CYP17, as well as StAR and ACTH-R. The lack of change in mRNA suggests that the 

effects of NO on cortisol biosynthesis are downstream from transcription, perhaps 

affecting enzyme activity through competition at the heme-oxygen binding site or 

through S-nitrosylation in the activation sites of the CYP enzymes. Future work should 

investigate the possibility of S-nitrosylation of the CYP enzymes as a mechanism for 

NO-induced cortisol inhibition. 
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CHAPTER SIX 

CONCLUSIONS 

 

Hypoxia is a common fetal stress that can occur during pregnancy due to maternal 

malnutrition, smoking, heart or lung disease, obesity, preeclampsia, or exposure to high 

altitude (3, 19, 27, 38, 47, 69). The fetus synthesizes cortisol from the fetal adrenal as part 

of the hypothalamus-pituitary-adrenal axis (HPA) response to stress (1, 6, 7, 45, 46). 

Regulation of cortisol is important for normal fetal development due to its involvement in 

growth and organ maturation, as well as regulation of plasma glucose, lipid, and protein 

concentrations (10, 56, 66). Through studies in our lab, we have shown that the fetus has 

the ability to adapt to chronic stress during the course of gestation. When exposed to 

moderate gestational hypoxia during the last hundred days of gestation (long-term 

hypoxia, LTH), basal levels of cortisol remain similar to levels in the normoxic fetus, 

despite elevated levels of ACTH (67), and when challenged with a secondary stressor, the 

LTH fetus responds with a higher output of cortisol than the normoxic fetus (1, 45). We 

also found that expression of two key steroidogenic P450 enzymes, CYP11A1 and 

CYYP17, was decreased along with the ACTH receptor (ACTH-R) in LTH FACs (68), 

and that StAR expression was increased (82). Together, these changes suggest an 

adaptation in the fetal adrenal that maintains normal basal levels of cortisol required for 

fetal development, but allows for enhanced cortisol in response to a secondary stress. 

These adaptations may be mediated through NO produced by eNOS in the adrenocortical 

cells. 
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The effects of nitric oxide have been well established in adult steroidogenic 

tissues and cells, with increases in NO leading to reduced steroidogenesis (21, 26, 36, 39-

41, 51, 54, 55, 61, 81, 85) and inhibition of NOS resulting in increased steroid production 

(20, 26, 65). This key role of NO has been demonstrated in a variety of species, including 

human and rat, however there are very few studies on the effects of NO in the fetus, as 

well as limited studies on the regulation of NOS in non-endothelial cells. In our lab, we 

have studied the effects of NO on ovine fetal adrenal cortical cells (FACs) as well as the 

effects of exposure to LTH. We found that NO inhibits cortisol biosynthesis, while 

inhibition of NOS enhances cortisol output in ovine LTH FACs (64). We have also 

shown that eNOS expression is upregulated in LTH FACs (63), suggesting that NO via 

eNOS may play a role in the fetal adaptation to LTH.  

Regulation of eNOS can occur through multiple post-translational mechanisms 

including phosphorylation via MEK/ERK1/2 and PI3K/Akt signaling, as well as 

calcium/calmodulin (4, 5, 12-14, 28). Changes in phosphorylation of eNOS at serine 

activation site 1177 in human, 1179 in bovine/ovine (25, 33, 34), could lead to altered 

NOS activity and subsequent NO production that could ultimately have an effect on 

cortisol biosynthesis. This brought us to our general hypothesis that adaptations in 

cortisol production in the LTH fetus are mediated by eNOS-derived NO. Specifically, we 

investigated the role of key signaling pathways MEK/ERK1/2, PI3K/Akt, and calcium in 

regulating eNOS phosphorylation (peNOS) at Ser1177/79 and the subsequent effects of 

changes in these pathways on cortisol production in ovine LTH FACs. We also 

determined the effects of NO on the expression of key steroidogenic enzymes CYP11A1 

and CYP17, as well as steroidogenic proteins StAR and ACTH-R and the potential 
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effects on cortisol biosynthesis. Through studying the role of these key signaling 

pathways on peNOS and the impact of NO on the CYPs, StAR, and ACTH-R along with 

their effects on cortisol biosynthesis in FACs, we wanted to better understand the 

influence of LTH in the ovine fetus and adaptations that may occur in the fetal adrenal 

response to LTH as a chronic stressor during pregnancy. 

A variety of studies have shown that inhibition of the MEK/ERK1/2 pathway with 

UO126 (UO) reduces peNOS and NO production (11, 52, 60, 62), and a previous study 

from our lab showed that MEK/ERK1/2 inhibition with UO resulted in decreased ACTH-

stimulated cortisol output in FACs (83). In chapter 2, we determined that the 

MEK/ERK1/2 signaling pathway is involved in the adaptive increase in ACTH-

stimulated cortisol in LTH FACs, however this effect is not mediated through peNOS; 

UO treatment did not reduce peNOS. Instead, it is likely that MEK/ERK1/2 signaling is 

more important for cholesterol transport in the mitochondria as inhibition of this pathway 

with UO prevented the increase in cortisol observed in response to ACTH treatment, but 

had no effect on ACTH-stimulated cortisol levels in the presence of membrane permeable 

22R-hydroxycholesterol (22R-OHC). These findings are consistent with other studies that 

have shown that UO blocks steroidogenesis in both granulosa (24) and Leydig cells (53, 

71) but does not affect steroid production in cells treated with 22R-OHC.  

Another signaling pathway that has been shown to target eNOS at Ser1177/79 in 

endothelial cells (33, 42, 60) is the PI3K/Akt pathway. In our FACs we found that, unlike 

the MEK/ERK1/2 pathway, the PI3K/Akt pathway played a significant role in regulating 

peNOS as well as cortisol production in LTH FACs. In response to PI3K/Akt pathway 

inhibition with wortmannin, ACTH-stimulated cortisol was elevated above levels 
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produced by ACTH stimulation alone, and peNOS was reduced compared to untreated 

cells. Together this suggests that peNOS is closely linked to cortisol biosynthesis in the 

LTH fetus, and that the PI3K/Akt pathway works in the LTH fetus to prevent even higher 

levels of cortisol under stimulating conditions.  

In both these experiments we demonstrated divergent effects of ACTH on cortisol 

and peNOS in the LTH FACs; treatment with ACTH increased cortisol while decreasing 

peNOS, supporting our hypothesis that eNOS is involved in the fetal adaptation to LTH. 

When combined with higher levels of eNOS protein in LTH adrenals that we previously 

observed (63) and the ability of NO to inhibit cortisol production in LTH FACs (64), the 

PI3K/Akt pathway and ACTH may work together in LTH FACs to regulate peNOS; 

PI3K/Akt signaling maintains peNOS and NO production while ACTH stimulation 

overrides PI3K/Akt signaling to reduce peNOS and limit NO. This mechanism would 

preserve normal basal cortisol levels but allow for a robust cortisol response in stressed 

FACs in LTH compared to normoxic controls. 

In a concurrent study with chapter 2, chapter 3 assessed the role cAMP activation 

of steroidogenesis via membrane permeable analog 8Bromo-cAMP (8Br). ACTH-

stimulation of cortisol classically occurs through 3,5-cAMP/PKA activation of StAR 

protein (23, 76), and 8Br has been shown to effectively increase glucocorticoids in 

adrenal cells (17, 20, 21), supporting cAMP/PKA regulation. Because 8Br is membrane 

permeable, it bypasses ACTH-activation of the ACTH-R and stimulates PKA directly to 

determine if the fetal adaptation to LTH is cAMP-dependent. Consistent with previous 

studies using ACTH, 8Br treatment enhanced cortisol production in LTH FACs above 

levels observed in normoxic controls. We also found that MEK/ERK1/2 pathway 
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inhibition with UO reduced 8Br-stimulated cortisol output, further supporting the 

involvement of the MEK/ERK1/2 pathway in cortisol production and indicating that UO 

inhibition of cortisol synthesis is downstream of cAMP/PKA signaling. However, 8Br 

treatment had no effect on peNOS, suggesting that the use of this analog was not able to 

replicate the actions of endogenous cAMP, or that ACTH-mediated dephosphorylation of 

eNOS is not cAMP dependent and that alternative signaling mechanisms are activated to 

induce phosphatase activity in LTH FACs. 

A possible intermediary between ACTH and eNOS is protein phosphatase 2A 

(PP2A). PP2A has been shown to be capable of dephosphorylating eNOS and the 

inhibition of PP2A with okadaic acid increases peNOS in endothelial cells (37, 57), 

however the effects of LTH on this system are unexplored. Preliminary data from our lab 

shows significantly greater PP2A expression in the LTH adrenal cortex compared to 

normoxic tissue (unpublished results) suggesting the involvement of PP2A in the fetal 

adaptation to LTH. If ACTH increases PP2A activity, combined with greater PP2A 

expression, it would reduce peNOS, thereby reducing NO production and effectively 

limiting the inhibition of NO on cortisol production in LTH FACs. Further studies 

examining the activity of PP2A in the fetal adrenal cortex could help determine the 

mechanism responsible for ACTH-mediated reduction in peNOS.  

Calcium regulation of eNOS activity has been well characterized in endothelial 

cells; increases in intracellular calcium using calcium ionophore A23187 increased 

peNOS and NO production (8, 43, 84), and calcium chelators and calcium free media 

prevented stimulated increases in peNOS (31, 35). The effects of calcium on 

steroidogenic cells have not yet been explored, and the impact of hypoxia on calcium 
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regulation of eNOS is uncertain. Chapter 4 investigated the effects of increasing 

intracellular calcium in FACs and we found that peNOS and cortisol were unaffected; 

both basal and ACTH-stimulated levels of peNOS and cortisol did not change in response 

to elevated calcium. This suggests that calcium does not play a major role in regulating 

fetal adrenal eNOS and is not involved in the fetal adaptation to LTH. The lack of 

involvement of calcium in the regulation of eNOS may be due to tissue specificity (30), 

or the requirement of calcium may be reduced due to the type of agonist in FACs (9, 80). 

Cortisol biosynthesis in the adrenal requires a series of enzymatic steps initiated 

by ACTH signaling through the ACTH receptor (ACTH-R) to activate steroidogenic 

acute regulatory (StAR) protein (59). Following activation, StAR transports cholesterol to 

the inner mitochondrial membrane where the key rate-limiting enzyme cytochrome P450 

side-chain cleavage (CYP11A1) cleaves cholesterol into pregnenolone (2, 16, 58, 59, 70, 

78). Cytochrome P450 17α-hydroxylase (CYP17) then continues cortisol biosynthesis by 

mediating the 17α-hydroxylation of pregnenolone to 17α-hydroxypregnenolone and 

progesterone 17α-hydroxyprogesterone (44). In adrenal cells, NO has been shown to 

inhibit CYP expression (29, 77) and activity (20, 22, 41), which would limit cortisol 

production, and previous studies from our lab found that NO inhibited ACTH-stimulated 

cortisol while NOS inhibition enhanced cortisol output in LTH FACs (64). For chapter 5, 

we sought to determine a potential point of action for NO and any longer lasting effects 

in gene expression. We found that extended NO exposure, via NO donor DETA-NO, or 

removal, via NOS inhibitor L-NAME, had no effect on mRNA abundance of key 

steroidogenic enzymes CY11A1 and CYP17, and key steroidogenic proteins StAR and 

ACTH-R. In contrast to our acute studies (64), there were also no significant changes in 
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ACTH-induced cortisol production in response to NO exposure or removal. This suggests 

that the effects of NO are downstream from transcription and may inhibit cortisol 

biosynthesis through competition at the heme-oxygen binding site or through S-

nitrosylation in the CYP enzyme activation sites. We have recently found that NO 

induces S-nitrosylation of CYP11A1 in LTH FACs (unpublished results). Although these 

data are from a limited number of animals, the continuation of this work will be 

important in determining the mechanism of action for NO in inhibiting cortisol 

production as a part of the fetal adrenal adaptation to LTH. 

Taken together, these studies address the potential adaptations in the role of NO 

and the regulation of its production via peNOS in response to LTH in the ovine fetal 

adrenal gland under basal and stressed conditions. In investigating the signaling pathways 

involved in regulating peNOS, we found that the PI3K/Akt pathway may work to 

maintain basal levels of cortisol through peNOS-derived NO. Stimulation of FACs with 

stress levels of ACTH could override this signal, possibly through activation of PP2A, to 

reduce peNOS and NO inhibition, allowing for the enhanced levels of cortisol produced 

in LTH FACs. Future studies could investigate the activity of PP2A through use of 

specific inhibitors or activators to see if changes in PP2A activity affect peNOS and 

subsequent cortisol production. This would further elucidate the adaptations in signaling 

mechanisms involved in regulating peNOS in the LTH fetal adrenal, and if there are any 

differential effects in LTH compared to normoxic. Although NO does not seem to have 

any effects on gene expression of key steroidogenic proteins, the inhibitory abilities of 

NO could be through direct actions on the proteins via S-nitrosylation or competition 

with O2 for the heme-oxygen binding site. Continuation of our current studies on the 
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effects of NO on S-nitrosylation of CYP11A1 could provide further insight into the 

adaptive mechanisms responsible for the changes observed in cortisol production in the 

LTH fetus.  

Many fetal and maternal conditions including maternal malnutrition, smoking, 

heart or lung disease, obesity, preeclampsia, or exposure to high altitude (3, 19, 27, 38, 

47, 69) can result in varying degrees of hypoxia that can adversely affect the developing 

fetus and increase perinatal morbidity and mortality. In response to hypoxic stress, the 

fetus synthesizes cortisol from the fetal adrenal as part of the hypothalamus-pituitary-

adrenal axis (HPA) (1, 6, 7, 45, 46). Due to its involvement in growth and organ 

maturation, as well as its effects on metabolism, regulation of cortisol is important for 

normal fetal development (10, 56, 66).When exposed to hypoxic conditions for an 

extended period of time, the fetus can adapt in order to preserve normal growth and 

development. We have shown that basal levels of cortisol remain similar to levels in the 

normoxic fetus, despite elevated levels of ACTH (67), and when challenged with a 

secondary stressor, the LTH fetus responds with a higher output of cortisol than the 

normoxic fetus (1, 45). We suspect this ability of the fetus is due to NO produced by 

eNOS and that the regulation of eNOS activity is altered in response to LTH.  

Because NO has such potent effects on steroidogenesis and involvement in the 

fetal adaptation to LTH, its therapeutic use should be considered carefully. Currently, 

inhaled NO (iNO) is used clinically as a treatment in the neonatal intensive care unit 

(NICU) for premature infants with respiratory distress syndrome (75) and newborns with 

persistent pulmonary hypertension (18, 48, 50) to induce selective pulmonary 

vasodilation (32) and reduce the incidence of chronic lung disease and death. In the 
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newborn lamb, it has been reported that iNO reversed hypoxic pulmonary 

vasoconstriction (72), and increased oxygenation (86) and survival (87), and in the 

human, iNO rapidly increased oxygenation in infants with severe hypoxemia and 

pulmonary-artery hypertension, without causing systemic hypotension (50, 73). Although 

iNO is rapidly metabolized in the lung (49), limiting the direct effects of NO on the 

adrenal, the potential systemic effects through increases in oxygen could influence 

steroidogenesis and alter cortisol production in the LTH adapted newborn. If the newborn 

has adapted the HPA as a fetus to lower levels of oxygen in response to LTH, suddenly 

increases in systemic oxygen through the use of iNO could have negative consequences 

by superseding NO regulation of cortisol in the adrenal and increasing cortisol output. If 

high levels of cortisol are sustained, they could interfere with the HPA response to acute 

stressors associated with extrauterine life and be detrimental to the newborn’s growth and 

development, as elevated cortisol is associated with hyperglycemia, immune suppression, 

excess adipose deposition, bone loss, and hypertension (15, 74, 79). Understanding the 

mechanisms of action for the regulation of NO and cortisol production are important for 

determining the adaptations in the fetal HPA in response to LTH, and they can provide 

insight into better care for at risk pregnancies. Determining the long-term effects of 

reduced oxygen can also inform on the potential outcomes in the LTH newborn of iNO-

treatment induced increases in systemic oxygen currently being used in the NICU.  
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