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ABSTRACT OF THE DISSERTATION  

 

Anti-tumor Mechanisms of HPV16 E6* 

by 

Whitney S. Evans 

Doctor of Philosophy, Graduate Program in Pharmacology 

Loma Linda University, December 2016 

Dr. Penelope Duerksen-Hughes, Chairperson 

 

 High-risk types of the human papillomavirus (HR-HPV) are the causative agents 

of nearly all cases of cervical cancer, as well as a significant number of head, neck, 

penile, vulvar and anal cancers. Like many other viruses with small genomes, HPV (~8 

kb) utilizes numerous mechanisms to increase the capacity of its genome to encode the 

proteins necessary for successful completion of its infectious life cycle, including 

alternative splicing. Studies over the past few decades have focused intensively on the 

activities and roles of E6 proteins from HR-HPVs during the process of cellular 

transformation, clearly implicating E6 as a major transforming agent. In contrast, the role 

of the smaller splice isoform, E6*, in the carcinogenic process has not yet been 

established. Based on previous studies, we proposed that E6* had the potential to reduce 

tumor formation in vivo. To test this prediction, we injected HPV16+ SiHa and HPV16- 

C33A cervical cancer cells overexpressing E6* into nude mice and monitored tumor 

growth over several weeks while comparing them with control tumors lacking E6* 

overexpression. E6* was found to reduce growth in both SiHa- and C33A-derived 

tumors. These findings were followed up by in vitro experiments showing that E6* binds 

to full-length E6 and decreases the growth rate in SiHa cells. Subsequently, we sought to 
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find the cellular pathways most influenced by E6* in attenuating SiHa and C33A tumor 

growth. Thus, proteomic analysis was performed on both cell lines, revealing that the β -

Integrin pathway in SiHa cells and the mitochondrial dysfunction and oxidative 

phosphorylation pathway in C33A cells were the most significantly altered. Proteomic 

data was confirmed using immunoblot, microscopy, and flow cytometry techniques. 

These findings will assist in our quest for understanding the fundamental driving forces 

behind HPV-mediated and non-HPV-mediated cervical cancers and introduce novel ideas 

for small molecule inhibitors. Our studies provide several promising leads for future 

analyses, specifically in the context of human cancers, and carry with them the exciting 

possibility of replicating the anti-oncogenic activity of E6* in such a way as to provide 

therapeutic benefit.    
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CHAPTER ONE 

INTRODUCTION 

 Cervical cancer was formerly the second most common cause of cancer death in 

women worldwide. This began to change following widespread adoption of Papanicolau 

cytologic screening (Pap test) for cervical cancer in the 1950s. As of 2012, high-risk 

human papillomaviruses (HR-HPVs) caused cervical cancer in more than 527,600 

women annually, making it the fourth most common cancer in women worldwide, 

according to the American Cancer Society (ACS).  

Over the past three decades the scientific community has witnessed spectacular 

advances in the understanding of the underlying pathophysiology of cervical cancer, with 

the most profound discovery being the identification in 1983 of the HPV within cervical 

cancer (a discovery that earned Harold Zur-Hausen, M.D the Nobel prize for Medicine 

and Physiology in 2008). A viral etiology for cervical cancer implied that it might be 

possible to eradicate cervical cancer through vaccination. This promise was partially 

fulfilled in 2006 when the United States Food and Drug Administration approved a HPV 

vaccine for the prevention of HPV-induced cervical dysplasia and/or cancer. In fact, an 

article published in the Journal of Infectious Disease states that the prevalence of the HR-

HPVs 6, 11, 16, and 18 has decreased by 56% in females ages 14-19 between 2003 and 

2010 (1). These advances, profound though they are, have yet to eradicate cervical 

cancer. Although controversial, recent reports have found that HR-HPVs are also present 

in their invasive forms in approximately 70% of colorectal cancers, the second most 

common cause of cancer death in the U.S. Similarly, a meta-analysis confirms evidence 

for an association between colon cancer risk and HPV infection (2). These statistics, 
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along with the climbing rates of HPV-mediated oropharyngeal cancer, supports the claim 

for need of continued research on the mechanisms that allow HR-HPVs to interact with 

their host to cause cellular transformation. In fact, all mucosal sites could be at risk for 

infection with mucosal virions, a striking commonality that illustrates the resilience of 

HR-HPVs and substantiates the necessity for HPV-mediated cancer treatment. Due to the 

pervasiveness of HPV infection across all populations and the timeline of disease 

progression, it will be a few decades before we will be able to determine the impact 

preventive practices are having on cancer incidence and prevalence. Therefore, those for 

whom preventative measures are not a solution, including HIV+ individuals as well as 

women already infected with HR-HPV, await an answer. 

 

 HPV Virology 

HPV Genome Structure 

The human papillomavirus is a non-enveloped, double-stranded, circular DNA 

virus that is 8 kilobases long and comprised of 6 early proteins (E1, E2, E4, E5, and E6) 

and 2 late proteins (L1 and L2). Over 200 viruses have been identified and divided into 5 

genera; the papillomaviruses linked to cancer belong to the Alpha genus. HPVs are 

further divided into types (as opposed to “serotypes” or “strains”) based on how similar 

the virus’ L1 gene nucleotide sequence is to other viruses. Fascinatingly, these episomes 

contain approximately 8 or 9 ORFs, which allows the virus to produce more proteins 

even with a smaller sized genome. Viral gene expression is augmented by the use of 

multiple promoters as well as by sophisticated splicing mechanisms that are not fully 

understood (3). 
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HPV Infection & Pathogenesis 

HPV infection of the cervix begins with a break in the mucosal epithelium deep 

enough to expose the basal layer of epidermis to virus. Following entry into the cell, HPV 

occupies the basal cells of the epidermis in its episomal form, producing very little viral 

DNA. During normal HPV infection, the early expression of E6 and E7 proteins, which is 

linked to epithelial differentiation, enables the virus to trigger its host cells to re-enter S 

phase of the cell cycle, leading to viral genome replication and cell proliferation (4). 

Progeny basal cells containing virus may remain in the basal layer, or they may move up 

in to more superficial layers of epithelium. In select suprabasal layer cells, the virus may 

amplify its viral DNA copy number from low to high (5), which is facilitated by the 

increase in expression of other viral proteins such as E1, E2, E4, and E5 (4). From here, 

keratinocytes prepare to produce progeny virus particles through the expression of the 

capsid proteins L1 and L2, as they ascend to the epidermal surface where the virus 

particles will be released from desquamated cells (6).  

 In the case of HR-HPV infection, some postulate that the malignant potential of 

the virus is related to the integration of viral DNA into the host genome, thus favoring the 

carcinogenic process (7). It has been proposed that when the virus integrates into the 

cellular genome, the E2 gene, which is a transcriptional regulator of the viral 

oncoproteins, E6 and E7, is disrupted (8, 9). This event leads to the uncontrolled 

expression of E6 and E7, causing increased cell survival and division through the 

weakening of pro-apoptotic processes and cell cycle regulation, respectively. These 

increased levels of E6 and E7 oncoproteins are thought to mark the transition between 

viral infection and virus-induced malignancy (10). At this point, affected cells are no 
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longer committed to a terminal differentiation pathway, but rather, become transformed 

(11, 12). Though E6 and E7 are both considered indispensable for transformation 

efficiency, E6 can, in some instances, immortalize cells in the absence of E7 (6, 13, 14). 

Our lab has focused its resources on E6-dependent mechanisms underlying cervical 

carcinogenesis. 

 

Splicing Mechanisms of High-Risk HPVs 

High-risk, but not low-risk HPVs generate multiple transcripts of full-length E6 

mRNA via alternative splicing (AS) (11, 15). AS enables the virus to expand its proteome 

from a modestly sized genome. This increases the genetic diversity and persistence of the 

virus in the face of host immunity, and increases its chance of survival (16). The number 

of E6 splicing patterns available to the virus varies and is dependent on the HR-HPV in 

question (17). In the case of HPV16, E6 is thought to yield four different species: E6*I, 

E6*II, E6*III, and E6*IV (18), with E6*I being the most abundant (19).  How the virus 

determines which isoform(s) should be produced at any given time remains unclear. 

Nevertheless, we know that the splicing process is regulated by various factors, which 

influence the selection of specific splice sites for the inclusion or exclusion of nucleotide 

sequences. The full-length E6 isoform will be produced if the introns from the E6/E7 

transcript remain unspliced. However, E6*I (E6*) results when the first 5’ alternative 

splice site of the HPV E6/E7 ORF is chosen, leading to the removal of an intron and 

creating a premature stop codon (11). The E6* mRNA is then translated into a smaller 

protein consisting of 44 amino acids, approximately one-third the length of E6. 

Accumulating evidence suggests that E6* can bind and regulate its parental isoform, E6 
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(17), as well as the activities of cellular proteins like procaspase 8 (20). Indeed, 

researchers are now realizing that splicing may play an important role in cancer 

development (21, 22), and that splice variants may act functionally independent of its 

parent molecule in a biologically significant manner (23, 24). Such factors increase the 

appeal of exploiting anti-oncogenic properties of E6* for therapeutic interventions (20, 

25, 26). Alongside these reports, other studies have shown that alternative-splicing 

patterns can be tumor-specific, and affect cell proliferation and drug-response. Yet, the 

mechanisms behind this regulation have not yet been clearly defined (22). Therapies 

designed to target disease-associated AS incorporate the use of small molecules, 

antisense oligonucleotides, and bifunctional oligonucleotides to manipulate aberrant 

splicing events, and are gaining recognition in various disciplines including cancer 

research (22, 27). These developments demonstrate proof-of-concept in managing 

splicing mechanisms for cancer treatment. In this proposal, we present data showing that 

the smaller isoform, E6*, inhibits tumorigenesis caused by full-length E6 in HPV-

mediated cervical cancer (19). We find that E6* exhibits several desirable traits of AS 

therapy in being isoform-specific for and affecting the expression of the targeted protein 

(E6) (27). Intriguingly, our current studies suggest E6* may also inhibit the growth of 

tumors derived from cervical cancer cells that lack HPV. 

 

Vaccination, Screening, & Prevention  

Prophylactic Vaccination 

Presently, the most effective protective factor against the most prevalent and high-

risk types of HPV infection is prophylactic vaccination (28). It has been ten years since 
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the introduction of the first HPV vaccine (29). Since then, three vaccines, Gardasil, 

Cervarix, and Gardasil 9 have been made available to the public (30). The vaccines 

induce the production of neutralizing antibodies against HPV L1 capsid virus-like 

proteins (VLPs), which do not contain virus genetic material. The quadrivalent vaccine, 

Gardasil, protects against low- and high-risk HPV (LR- and HR-HPV, respectively) types 

6, 11, 16, and 18 following full vaccination of all three doses at 0, 1, 2 and 6 months. The 

bivalent vaccine, Cervarix, prevents infection by HR-HPV types 16 and 18. Both 

Gardasil and Cervarix possess compelling prophylactic efficacy in preventing cervical, 

genital, and anal diseases. This protection is expected to persist for 7 years, or at least 

during the years of high infection risk for most individuals (31-33). Gardasil 9 is our 

newest prophylactic vaccine and is nonavalent, providing coverage against 9 genital wart-

causing and oncogenic HPVs (Types 6, 11, 16, 18, 31, 33, 45, 52, 58). While Gardasil 9 

is our most advanced prophylactic solution to HPV-mediated cervical cancer to date, at 

least a dozen HPVs have been found to cause cancer, and thus vaccination does not 

preclude the necessity of regular screening.  

 Although data for Gardasil 9 is lacking regarding cross-protection, we do know 

HPV infections caused by types other than the four covered by Gardasil and Cervarix (6, 

11, 16, 18) are not reliably prevented by vaccination, and re-asserts the importance of 

continued screening. It is also important to note that Cervarix and Gardasil do exhibit 

cross-protection for certain high-risk types not included in the vaccine, but not all (e.g. 

HPV 31 is vulnerable to both bivalent and quadrivalent vaccines (34). Also, studies are 

warranted regarding the vaccine’s long-term effects and how they might impact the 

occurrence of infections by other HPV types. It has already been noted that quadrivalent 
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and bivalent vaccines may exhibit cross-protection against HPV 31 and other types by 75 

to 80 percent (35). However, concerns have emerged relating to HPV type-replacement. 

Type-replacement is an increased prevalence of other HPV strains that are not included in 

the vaccines, while vaccine-type HPV prevalence is decreased. It was recently reported 

that vaccine-type HPV has been reduced in vaccinated and nonvaccinated women, while 

nonvaccine-type HPV has slightly increased overall (36). Researchers do not expect type-

replacement to occur frequently. However, studies are becoming more attentive to 

changes in the prevalence of various HPV types, which are expected to surface first 

within the sexually experienced population. Also, the amino acids comprising the L1 

capsid protein are hypervariable and have diverged among HPV types due to host 

immune selection, resulting in poor cross binding (and cross-protection) of antibodies 

among distantly-related HPV types (3). Such discoveries should encourage the research 

community to continue seeking multivalent solutions to as many HPV types as possible 

without eliciting additional harmful results. To date, clinical trials have revealed that the 

most common adverse response to both vaccines are injection site reactions, which occur 

more frequently in vaccine groups rather than in participants given placebos (37). 

 Though most industrialized countries, like Great Britain, have already 

implemented structured HPV immunization programs, well-functioning programs geared 

towards adults and young adolescents have yet to be seen in many developing countries. 

However, there are globally funded systems with strong infrastructure that support the 

immunization of infants in developing countries (38). This anomaly is due to several 

challenges, which include the cost of the vaccines, though the biological, economical, and 

psychological disease burdens of HPV have been considered (37, 38). Therefore, it is no 
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surprise that less developed countries have not made HPV vaccination programs a 

priority while other issues compete for the same limited governmental resources. The 

most apparent considerations regarding vaccine distribution in these countries relate to 

healthcare infrastructure, which can directly affect a country’s ability to establish and 

maintain immunization programs that target the vaccine’s intended population – 

adolescents. Other factors of significant importance comprise how to best promote these 

programs in a way that does not aggravate ethnic/cultural sensitivities and attitudes about 

vaccination against an STI (39, 40). This would further include easing parental concerns 

about what an STI vaccine might imply if perceived as socially acceptable within the 

targeted age groups. Perhaps if immunization programs were set up in an educational 

setting, a stronger risk-perception might be instilled, which would encourage the 

formation of better habits of awareness. In years to come, these types of educational 

agendas might also improve adherence to the 3-dose regimen over the six-month 

vaccination period and increase compliance with screening routines throughout a 

woman’s lifetime (41).  

 One clear limitation of the HPV vaccines is their lack of efficacy for those who 

have already been exposed to the virus types included in the vaccines. Of course, this 

exposure is directly correlated to increasing age and sexual experience (42, 43). For those 

who fall into this group, including older women regardless of vaccination status, it is 

important that screenings continue as outlined by the ACS guidelines for Cervical Cancer 

Prevention and Early Detection. Therefore, integrated approaches of prevention and 

detection are required if efforts against HPV-mediated cervical cancer are to be 

maximized. Another important consideration for vaccination is the immune status of 
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potential vaccine recipients; the immune system must be intact (44). The immune 

system’s ability to clear antigens depends largely on its strength and competence. Thus, 

immunocompromised women are especially in peril of HR-HPV infection progressing to 

cancer (45).  

 The most common scenarios for compromised immunity are seen in HIV positive 

individuals and organ transplant beneficiaries. Those infected with HIV have a greater 

chance of HPV co-infection and progression to invasive cervical cancer as compared to 

those without HIV (46, 47). The disparity observed here is most likely due to the immune 

system’s inability to effectively clear virus among this subset due to decreased immune 

reactivity to HPV antigen (48, 49). It was also found that HPV infection is prevalent 

among those receiving organ transplants (50), and that the infection increasingly persisted 

throughout immunosuppressive therapy to moderate graft rejection (45). Despite these 

challenges, researchers agree that previous prophylactic HPV vaccination is still 

beneficial for organ transplant recipients as well as the HPV/HIV co-infected population 

who receive HPV vaccination before becoming HIV positive. In these cases, any future 

challenges of HPV infection following vaccination would be neutralized by an earlier 

developed immunity prior to the individual presenting as HIV positive. This is based on 

the premise that the protection conferred against the viral types represented in the vaccine 

is expected to last for approximately the same time period as in others who are not 

infected with HIV. However, what remains unclear is whether the vaccine will prove 

effective for an individual already infected with HIV, or in any immunocompromised 

state (49). The current understanding is that humoral immune responses remain relatively 

intact following HIV infection. However, in such a state of immune weakness, it is 
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unknown whether protection against HPV can be sustained. Overall, individuals who 

have been vaccinated prior to becoming immune compromised are expected to benefit 

from vaccination by maintaining immune competency, because new HPV infections from 

these specific types and the risk of lesions reactivating from an ongoing, latent HPV 

infection would be reduced. Of course, they, like other individuals, will only be protected 

from types targeted by the vaccine, and it is imperative to note that questions regarding 

long-term safety in such vulnerable groups remain unanswered (42, 43, 45, 51, 52).  

 To this end, it is important that innovative therapeutic approaches to improve 

immunological surveillance and clearance of HPV continue to develop. It is well 

documented that cellular immune components contribute directly to natural clearance of 

the virus in most people. For instance, CD4+ and CD8+ cytotoxic T cells (CTLs) are 

thought to target HPV 16 early and late proteins, and active HPV-specific CTLs have 

been identified in patients with existing infections (53). Furthermore, researchers have 

found that in response to a vaccine containing E6 and E7 oncoproteins, CD4+ and CD8+ 

CTLs were stimulated, thus inducing the regression of HPV-mediated vulvar 

intraepithelial neoplasia (VIN) in 50 percent of subjects (54). Thus, a variety of other 

immunotherapy investigations are underway. 

 

Screening 

The ultimate goal of cervical cancer screening, as outlined by the ACS guidelines 

for the prevention and early detection of cervical cancer, is to prevent morbidity and 

mortality by determining appropriate treatment plans. In detecting the presence of HPV 

in the cervix, screening methods should serve to distinguish transient from persistent 
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infections, and to effectively diagnose disease while minimizing or avoiding unnecessary 

complications induced by these techniques. Because 50 percent of women diagnosed with 

cervical cancer in the U.S. have never been screened, the importance of diligent 

watchfulness cannot be over-stated. Moreover, when HIV positive women comply with 

regular detection methods and schedules, their otherwise 10-fold higher risk of 

progression to invasive cervical carcinoma is diminished (42, 43, 55). Earlier detection 

corresponds to better prognosis (56). Thus, it is ideal for precancerous women who are at 

significantly higher risk for invasive cervical carcinoma to be promptly identified and to 

undergo intervention. Though cervical monitoring is an integral component of preventing 

invasive disease at all stages (57), the U.S. Preventive Task Force (USPSTF) 

recommends that cervical cancer screening by pap smear start no earlier than age 21 for 

both non-vaccinated and vaccinated women and continue until age 65. The USPSTF also 

advises against routine HPV testing until age 30 unless indicated by abnormal cytology, 

as it is believed that younger women clear HPV infections more easily. Because cervical 

cancer detection programs are the most expensive preventive measure in developed 

countries, enhancements to existing screening techniques, or the development of 

completely innovative and economical methods would be beneficial.  

 The most utilized and successful of screening methods in lowering cervical cancer 

incidence rates (by 70 percent) is exfoliative cervicovaginal cytology, or the Pap test. The 

Pap test satisfies the aforementioned objectives for reducing the occurrence of squamous 

cervical carcinoma through appropriate screening (57). Pap tests are recommended for all 

sexually active women and/or women ages 21 and above. Now, a modified liquid-based 

version of the Pap smear is available. In a liquid-based Pap test such as Cytoscreen or 
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Thinprep, the cells are first filtered and fixed in preservative. Then the specimen is 

smeared on a glass slide, which is slightly in contrast to the conventional method of 

directly smearing a sample onto a microscope slide. Other tests such as visual inspection 

with acetic acid (58) (58)  are useful in resource-limited settings. Further modifications of 

VIA include magnified visual inspection with acetic acid (VIAM) and visual inspection 

with Lugol’s iodine solution (VILI) (59). Colposcopy, though considered more 

diagnostic, also allows a magnified visualization of abnormal cervical cells (56). Other 

cervical cancer screening tests may also be applied: pelvic examination – involving 

internal palpation of the reproductive organs; automated cervical screening techniques – 

supplemental imaging that reduces false positives from the cytological tests; computer 

imaging; polar probe – measuring the differences in electrical stimulation between 

normal and abnormal cervical tissue; laser-induced fluorescence – measuring 

spectroscopic differences in florescence between normal and diseased cervix; 

speculoscopy – cervical inspection using acetic acid with chemiluminescent light; and 

cervicography – photo development while using acetic acid (56).  

 Complementing the Pap test is the detection of HPV DNA. The direct testing for 

HPV DNA is becoming standard in many cervical cancer screening regimens, as its 

combined use with liquid-based cytology has generated results with even better 

sensitivity (up to 100 percent) for predicting high-grade cervical dysplasia (60). HPV 

DNA is usually obtained from cervical scrapes and/or biopsy specimens, and recent 

clinical studies continue to assert the unique value of HPV-DNA testing over cytology 

(61-63). Nevertheless, only time will tell the extent to which the Pap test will be replaced 

by the more economically appealing HPV-DNA test. To date, the FDA has approved 
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several HPV-DNA tests: the Hybrid Capture 2 HPV DNA test, the Cervista HPV HR test, 

the Cervista HPV16/18 test, the Cobas 4800 HPV test, and the Aptima HPV assay. Other 

commonly used assays not approved by the FDA include PCR and Southern Blot 

hybridization, the latter being the laboratory gold standard. Some other recent innovative 

HPV detection methods are complete HPV genotyping, HPV mRNA detection, HPV load 

quantitation, identifying HPV integration, p16 ELISA, methylation profiles, and the E6 

Strip test (64, 65). Nevertheless, cervical cancer incidence and mortality seem to be on a 

downward swing in the U.S., primarily due to cytological gynecologic screening through 

the Pap test. Nevertheless, the global burden of HPV infection remains. 

 

Prevention 

The use of condoms can reduce the rate of HPV infection. One study showed that 

when condoms are used during all vaginal intercourse encounters, HPV 

transmission/infection is reduced by 70 percent. Even if a condom is used greater than 

half of the time, the risk of infection is still reduced by 50 percent (58). Another study 

similarly reports that condoms benefit users by promoting viral clearance and possible 

regression of CIN (66). The use of barrier protectors such as microbicidal and 

spermicidal gels can also reduce the risk of HPV infection (67, 68). The recent utilization 

of pseudoviruses has proven helpful in better understanding HPV invasion into 

keratinocytes through cell surface proteins. In these pseudovirus studies, carrageenan 

exhibited a microbicidal function by blocking virus particle attachment to heparin 

sulphate proteoglycans on cell basement membranes. Beyond its function on the tissue 

surfaces, carrageenan also exhibited post-attachment inhibitory actions. Carrageenan has 
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been used as a thickening agent in sex lubricants and Pap smear gels, and has shown 

microbicidal function against a host of STI-causing microbes including HPV (68, 69). 

Originally derived from red algae, it is structurally similar to heparin but several times 

more potent. Therefore, it is able to bind virus more effectively than host cells and 

thereby acts as a decoy receptor (67, 68). 

During the decades that frequently occur between HPV infection and cancer 

development, there exists a window of opportunity to intercept the process. Any 

interventions that increase viral clearance, for example, would fit into this category. 

Another possible approach would be to target the process by which viral DNA integrates 

into the host chromosome, a relatively rare event that greatly increases the incidence of 

cancer. One study, for example, has postulated that chronic inflammation and the 

subsequent generation of reactive oxygen/nitrogen species (ROS/RNS) are harbingers of 

DNA damage, causing high HPV integration rates. Furthermore, smoking, cervical 

trauma induced by high parity, co-infection with other STDs, and long-term use of oral 

contraceptives have all been linked to cellular oxidative stress (70). Thus, breaks in the 

DNA induced by this oxidative stress increase the probability of viral integration (8). In 

support of this model, HR-HPV types integrate more frequently than do LR-HPV. The 

difference in integration occurrence suggests a distinction in the molecular variation 

and/or susceptibility between high- and low-grade lesions. Therefore, progression to 

cervical, and some anogenital, cancers is dependent on the presence of HR-HPV 

integration into the host genome. Furthermore, scientists are finding certain patterns in 

HPV integration events. In particular, the E2 ORF region of the viral genome is strongly 

preferred over other sites of integration, and integration at this site, with its 
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accompanying loss of functional E2 protein, is linked to an increase in E6 and E7 

oncogene expression (71, 72). Consequentially, integration leads to uncontrolled 

expression of the oncogenes and ultimately to cellular transformation.  

 The role of chronic inflammation and its link to radical species production in 

cancer pathogenesis is widely recognized. If increased levels of oxidative stress and ROS 

do indeed increase the frequency of integration and cancer, one would predict that 

antioxidant mechanisms that counteract the generation of radical species could therefore 

exert chemopreventative and chemotherapeutic effects; such mechanisms have indeed 

been described (73, 74). In contrast, other groups are studying ways to therapeutically 

harness the power of oxidative stress for actions against cancer cells. For example, the 

antimalarial drug, artemisin, was found to induce apoptosis in cervical cancer cells. The 

mechanism of action involves artemisin interacting with reduced iron to generate 

oxidative stress through ROS, as well as the destabilization of mitochondrial oxidative 

mechanisms (67, 75). These discoveries merit further research that continues to seek 

ways of preventing HPV-mediated oncogenesis.  

 

Novel Therapeutic Initiatives to Treat HPV-mediated Cancers 

The development of polyvalent HPV vaccines like Gardasil and Gardasil 9, in 

addition to Cervarix, were essential considering that at least a dozen additional HR-HPV 

types, which are also capable of causing HPV-mediated cervical cancer, were not covered 

by the first two vaccines (Cervarix and Gardisil) (20). In addition to these preventive 

strategies, it is also essential to invest in therapeutic strategies for the continuous 

management of microbe-related problems. Such a well-rounded approach to preventing 
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and curing HPV-mediated cervical cancer will increase treatment options for cervical 

cancer patients, the immunocompromised, and others with no or limited access to 

preventive programs.  

The development of polyvalent HPV vaccines like Gardasil and Gardasil 9, in 

addition to Cervarix, were essential considering that at least a dozen additional HR-HPV 

types, which are also capable of causing HPV-mediated cervical cancer, were not covered 

by the first two vaccines (Cervarix and Gardisil) (20). In addition to these preventive 

strategies, it is also essential to invest in therapeutic strategies for the continuous 

management of microbe-related problems. Such a well-rounded approach to preventing 

and curing HPV-mediated cervical cancer will increase treatment options for cervical 

cancer patients, the immunocompromised, and others with no or limited access to 

preventive programs.  

 

Current Clinical Treatments 

Despite prevention initiatives to stay the tide of carcinogenesis caused by HR-

HPV, thousands worldwide still require treatment. Currently, the most effective course of 

managing cervical carcinoma involves surgery and/or radiation. Surgery provides the 

management team with better insight into the extent of the disease because it allows the 

assessment of lymph node involvement (76, 77). The surgical options available range 

from total removal of the cervix (radical hysterectomy) to less extreme options that 

preserve the fertility of the patient (radical trachelectomy), and are somewhat contingent 

upon disease progression. Other procedures such as chemotherapy, radiotherapy, or a 

combination thereof are routinely used, and their utilization depends on cancer stage as 

well. Factors further impacting the course of management include pregnancy; disease 
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recurrence; fertility preservation; cervical location of the lesion; cancer type; age and 

general physical health. In any case, the most important treatment determinant for 

cervical cancer is stage of disease. 

The staging of cervical cancer is based on the physical examination and is 

established by the International Federation of Gynecology and Obstetrics (FIGO). The 

World Health Organization reaffirms the FIGO organization of cervical carcinoma 

progression into four stages (I-IV): 

 Stage I: cancer found only in the cervix 

 Stage II: cancer found beyond the cervix in the vagina, excluding the lower third 

of the vagina, but has not spread to the pelvic wall. 

 Stage III: cancer has spread to the lower third of the vagina and/or pelvic 

sidewall, and includes cases with kidney involvement 

 Stage IV: cancer has grown beyond the pelvis and involves tissue of the rectum, 

bladder, and/or distal sites of metastasis. 

The four main stages are then organized into sub-categories that further describe the 

extent of growth, adjacent tissue involvement, local organ participation, and metastasis to 

distal sites through the lymphatic system (78). 

 Surgery is the advised treatment for cervical carcinoma at stages I and II. The 

preferred procedure, radical hysterectomy (66), has a 75 to 80 percent cure rate according 

to the NCI and is the gold standard of treatment. Radical hysterectomy is the complete 

removal of the uterus, cervix, and upper portion of the vagina, and involves measuring 

metastasis to the parametrial and pelvic lymph nodes (79, 80). Surgery is immensely 

valuable for determining lymph node status, which is strongly correlated to survival (81). 
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The risk of lymph node metastasis is increased by 10 percent if tumor invasion reaches 

between 3 and 5 mm beyond the primary lesion. However, limitations of surgery include 

pelvic sepsis and thrombosis as well as vesicovaginal fistulas. There is no doubt that 

surgery is vital in the prospective treatment planning of the patient following operation 

because it allows the delineation of tumor metastasis. Yet, surgical options are contingent 

upon early detection, and thus time will always be one of the most important factors in 

predicting a prognosis (77). 

Post-surgery radiotherapy (RT) is indicated if the tissue collected during surgery 

has a positive margin, which alludes to residual cancer and commonly occurs in late stage 

I (77). More advanced cervical cancer (stage IIb and higher) is treated with radiotherapy 

(RT), chemotherapy, or a combination of the two. However, surgery and RT both aim to 

completely eradicate malignancy and have equally positive results in attenuating disease 

in the initial phases. RT is generally substituted for surgery when circumstances render an 

operation less than optimal as in the case of elderly patients, obese patients, or patients 

with several co-morbidities (81, 82). Usually younger patients elect for surgery in order 

to preserve sexual function and to avoid side effects such as vaginal dryness and 

narrowing caused by scar tissue (as described by the ACS). There are two main types of 

radiation therapy: external beam radiation, and internal (implant) radiation usually 

referred to as intracavitary brachytherapy (83). External beam radiation therapy is aimed 

wholly at the pelvis, much like a regular x-ray, and is often accompanied by cisplatin 

chemotherapy. 

Chemotherapy is the principal treatment option for recurrent and metastatic 

cervical cancer, and it is recommended by the ACS for the management of late stage I of 
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cervical cancer or higher. Chemotherapy can be curative or palliative. In early cervical 

disease, chemotherapy can be curative, but may also be given in more advanced stages 

(stage IV and recurrence) to alleviate the ravaging effects of the cancer itself and its 

related symptoms. Chemotherapy may also be given in the later stages to postpone the 

toxicities associated with it until absolutely necessary. Thus, designing optimal regimens 

suited for each case is essential to attaining both patient comfort and treatment success. 

Chemotherapy can also be given adjunctively to strengthen the effects of primary 

treatment, or provided post-operatively (84). In fact, the ways in which chemotherapy can 

be administered are numerous, ranging from single, doublet, triplet, or quartlet-agent 

regimens to combined chemoradiation routines. However, a few agents such as cisplatin, 

paclitaxel, and ifosfamide are distinguished for being somewhat autonomously potent 

(85). However, the success of single-agent chemotherapy generally depends on histology. 

Cisplatin, a platinum-based agent, is the accepted standard of chemotherapy for cervical 

cancer, and it improves survival in chemoradiation recipients as compared to the use of 

other chemotherapeutic drugs (86-90).  

Multidisciplinary treatment might be indicated throughout any of the stages of 

cervical carcinoma, mainly depending on its aggressiveness. In fact, it is quite common 

for treatment schedules to include chemotherapy, radiation therapy, and surgery (82). The 

concurrent use of chemotherapy and radiation therapy is reported by the NCI to reduce 

cervical cancer mortality by 30 to 50 percent, particularly in late stage II. Alternatively, 

neoadjuvant therapy, defined as a specific sequence for delivering any treatment before a 

definitive therapy such as surgery or radiotherapy, may be employed. Neoadjuvant 

therapy is intended to prime the target tissue, thus making it more susceptible to primary 
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treatment (89, 91). The chemotherapeutic drugs most commonly used with radiation are 

cisplatin, 5-FU, mitomycin C, and hydroxyurea, though cisplatin produces the largest 

increase in survival by reducing mortality and recurrence (89, 90). Many times, the 

sensitizing effects of drugs are needed to accentuate the value of other treatment methods 

(82). 

 

Molecular Therapeutic Strategies Underdevelopment 

Along with clinical treatment of cervical cancer, molecular therapies that target 

cervical cancer processes are also anticipated to contribute to the elimination of the 

disease. The currently available treatment options described above for HPV-associated 

malignancies are limited, however. According to the ACS, the 5-year survival rate drops 

to 35% when a woman is diagnosed with Stage III cervical cancer, and the survival rate is 

further halved if the cancer is stage IV. Research focusing on the development of the 

prophylactic vaccine has forever changed the course of HPV-mediated cervical disease. 

Nevertheless, it is clear that there is still an immense need for therapeutic options, 

especially in developing countries where the positive, yet costly measures of preventative 

initiatives remain to be implemented.  

In contrast to prophylactic vaccines that target the L1 and L2 proteins and are 

protective against HPV infections, therapeutic vaccines would ideally target molecules 

such as E6 and/or E7 post-infection, which are directly linked to HPV-mediated 

carcinogenesis (92). HPV early proteins will continue to provide insights regarding the 

viral mechanisms used to take control over cellular processes. Of these viral components, 

the E6 and E7 oncoproteins have long been recognized as the main mediators of HPV-

associated malignancies. Therefore, the idea that approaches targeting these two 
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oncoproteins are likely to act in an anti-oncogenic manner is reasonable. Such discoveries 

have the potential to exert a broad impact in the field of virology, as they will enable 

researchers to more fully understand virus-host interactions and how to better equip the 

body to respond to or even prevent infection. A few of the many strategies being 

developed to make HPV more immunogenic are discussed below. 

One of the many challenges of HPV research that has left scientists puzzled is 

how it escapes detection by the immune system, since the time interval between infection 

and diagnosis can be several years. Therefore, many resources have been allocated to 

improve the virus’ visibility to protective host mechanisms. Live, vector-based vaccines, 

bacterial and viral, can generate very robust cell-mediated and adaptive immune 

responses, and because of this they are preferred over peptide/protein vaccines. 

Specifically, bacterial vectors function well when they are packaged with antigen (genes 

or proteins), thereby alerting antigen-presenting cells (APCs) to initiate an immune 

response (93-96). With regards to viral vectors, a few viruses, such as the vaccinia virus, 

adenovirus, vesicular stomatitis virus, and alphavirus, show great potential. However, 

safety factors remain a high priority when viral vectors are considered, and these vectors 

must be properly reconstructed for use in both immunocompetent and 

immunocompromised individuals (92).  

Though bacterial and viral show promise in their ability to deliver HPV antigens 

to elicit an immune response, they are not ideal therapeutic vaccine candidates for 

reasons relating to cost effectiveness and safety. However, in peptide-based vaccines, 

antigens from HPV are directly administered to induce a response from dendritic cells 

(DCs) via toll-like receptor (TLR) activation (97). The peptide vaccine platform would be 
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optimal for mass production, but the breadth of its efficacy is limited by the expression of 

only one major histocompatibility complex I (MHC I) phenotype; protein-based vaccines 

are not encumbered in the same way. If, however, specific immunogenic epitopes on 

peptides could be identified it would greatly remedy this difficulty. Similarly, protein-

based therapeutic vaccines, like peptide-based vaccines, are advantageous for safety and 

tolerability. Protein-based vaccines are not restricted by MHC compatibility, but they 

cannot directly stimulate cytotoxic T lymphocytes (CTL). Yet, protein vaccine adjuvants 

are being considered to compensate for this weakness. Therefore, in general, any strategy 

that increases HPV antigen uptake by APCs, antigen presentation, or the CTL response is 

expected to improve the immunogenicity of viral proteins such as E6 or E7. 

In the previously mentioned methods, HPV antigens would need to be presented 

to the host via a carrier (bacterial or viral) or produced outside of the system (protein or 

peptide) and then introduced to the host in this way. In contrast, one advantage of DNA-

based vaccination is its capacity to increase immunological memory through constant 

antigen production. Because the immune response itself is not anti-vector, multiple 

“vaccinations” originating from a single DNA molecule are possible. Moreover, the 

antigens produced by DNA vaccines can be delivered in a variety of ways, resulting in 

the stimulation of both APCs and T lymphocyte immune defenses (98, 99). However, 

DNA vaccines also present the challenge of overcoming low immunogenicity due to 

limited APC specificity. Therefore, future developments must focus on antigen 

modifications so as to elicit a stronger dendritic cell adaptive immune response. RNA 

replicon-based vaccines have some advantages over DNA vaccines: 1) they are less likely 

to integrate into the host genome, thus decreasing the risk of cell transformation and 2) 
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they can potentially generate more protein than can DNA methods. One significant 

limitation of using replicons is that RNA is inherently unstable (92, 100, 101). 

Because tumor cell-based vaccines have shown promise in malignancies like 

melanoma, colon and prostate cancers, many subscribe to this paradigm as the key to 

solving the cervical carcinoma dilemma. The idea of manipulating cervical cancer tumor 

cells into becoming more discernible by the immune system is based on the principle of 

inducing their expression of immunomodulatory cytokines like IL-2 and IL-12 (102). 

However, at present, it is unclear which cytokines might work best for HPV-mediated 

cervical cancers. Furthermore, such an individualized treatment is costly and may border 

on the impractical as compared to other recent advances in the field of cervical cancer 

vaccination. 

The use of monoclonal antibodies in cancer treatment is an appealing concept due 

to the selectivity and specificity with which an antibody can bind to the molecule of 

interest. Molecules participating in tumor progression can be targeted by antibodies 

through three general mechanisms: 1) Recognition of specific tumor-associated receptors, 

such as EGFR; 2) Binding to immune effector cells, and 3) Binding to tumor-promoting 

molecules such as VEGF (which is of major importance since we found that HPV16 E6* 

overexpression reduces VEGFR-1 expression in our SiHa tumor model). Though no 

monoclonal antibodies have been approved for the treatment of cervical cancer, 

researchers are accruing more convincing evidence of their value (103). 

Though no small molecule inhibitor of HPV has yet been approved, a significant 

amount of antiviral agent research has focused on five major potential targets for 

intervention: 1) Inhibition of E1/E2 interactions, 2) E6 and E7 oncoprotein blockade, 3) 
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Direct interference with E6AP-mediated p53 degradation, 4) Interference with 

interactions between HPV and other apoptotic factors (i.e. Bax and FADD), and 5) 

Stalling the ubiquitin proteasome system to reduce the degradation of anti-tumor proteins. 

E1 is the only enzymatic product of the viral genome, coding for an ATPase, and 

is thus an appealing target for molecular intervention. Indeed, if E1’s binding and 

helicase properties could be blocked, DNA replication would be halted. Inevitably, 

impeding this process would also thwart the hijacking of cellular replication machinery 

for viral genome multiplication. Because the virus uses cellular replication factors 

derived from the host, current antiviral agents that block viral proteases and polymerases 

are ineffective in opposing HPV. Small molecular inhibitors called indandiones are 

recognized as the first class of molecules to block HPV DNA replication by interrupting 

E1-E2 binding. The presence of indandiones induces conformational changes in E2, 

forming a deep binding pocket through which the small molecule modifies protein 

activity (104). Repaglinides operate similarly to indandiones in disrupting E1-E2 binding, 

though their effect is reversible, and they are reported to occupy a larger area of the 

binding pocket than do their indandione counterparts. An important factor that must be 

considered is the fact that viral integration into the host genome frequently leads to loss 

of E1/E2 gene expression, meaning that established cancers are likely to have lost the 

molecules targeted by inhibitors of E1 and/or E2, thereby severely limiting their 

usefulness (105, 106).     

E6 and E7 are frequently over-expressed in established cancers, making these two 

proteins potentially quite attractive as targets. E6 and E7 are zinc finger-containing 

proteins primarily responsible for the malignant alterations and de-differentiation of 



 

38 

keratinocytes observed during cell transformation. These changes occur following 

integration of the HPV genome into host DNA (107, 108). During this process, the 

regulators of viral replication, E1 and E2, are frequently disrupted, allowing over-

expression of E6 and E7. HR-HPV types induce cell immortalization and transformation 

primarily through the over-expression of E6 and/or E7, which are best known for their 

ability to accelerate the degradation of the p53 and retinoblastoma proteins (pRB), 

respectively. The E6-mediated loss of p53 function leads to an insensitivity to apoptotic 

signals as well as to a loss of cell cycle regulation at the G1/S checkpoint in response to 

DNA damage. E7 contributes to the hyperplasia crisis by accelerating the degradation of 

pRB and thereby stimulating cells in Interphase to re-enter the cell cycle at S phase (109-

111). Together, over-expression of the E6 and E7 oncoproteins decrease apoptosis and 

increase cell division, setting the stage for cancer (112). Antiviral agents that could 

partially, if not fully, inhibit E6 and/or E7 functions clearly have the potential to 

negatively impact the carcinogenic process. One target of E6 is the p53 tumor suppressor, 

which is degraded following association of E6 with the ubiquitin protein ligase, E6AP. 

The E6/E6AP complex binds to p53 and initiates its ubiquitination and consequent 

proteolytic destruction (113). This means that the downstream targets of p53, which 

mediate cell cycle arrest and apoptosis, are not activated. Therefore, interference with the 

E6/E6AP-mediated proteasomal degradation of p53 has been seen as another possible 

strategy for treatment. 

While p53 and the proteins to which it is connected are clearly targets worth 

exploring, other pro-apoptotic targets could prove just as important in halting the 

progression of HPV-mediated disease. HPV16 E6 binds to several additional signaling 
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molecules in the intrinsic and extrinsic apoptotic pathways, including Bax, FADD, and 

procaspase-8, thus blocking their ability to interact with their normal partners and leading 

to their premature disposal by the proteasome (114, 115). It has also been reported that 

HPV16 E6 binds to both FADD and caspase 8 via DED residues, and a peptide 

corresponding to the binding site of FADD blocked both of these interactions. Expression 

of this peptide in HPV+ cells was able to re-sensitize those cells to apoptosis triggered 

through the extrinsic pathway (20, 116). A search for small molecules capable of 

interfering with these interactions was conducted and several candidates were identified, 

primarily among the flavones and flavonols. Of these compounds, myricetin generated 

the lowest IC50 (850 nM) in assays designed to detect the inhibition of E6-procaspase 8 

binding. (117)  Unfortunately, myricetin lacks desired specificity in that it is known to 

inhibit several cellular proteins including kinases. Further library screening of small 

molecules to inhibit the interaction between E6 and its cellular partners such as caspase 8 

and E6AP lead to the identification of an additional candidate, spinacine, an imidazole 

amino-acid derivative of histidine (117, 118). Of the molecules tested, spinacine 

demonstrated the greatest capacity to specifically inhibit E6 interactions with E6AP as 

well as caspase 8, and exhibited the lowest EC50 for E6/caspase and E6/E6AP binding 

(118). Interestingly, HR-HPVs seem to have their own natural inhibitor of the full-length 

E6 oncoprotein, suggesting that this property could be exploited for the purpose of 

designing small molecule inhibitors to mimic the activities of E6’s natural inhibitor (19).  
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Purpose of Study 

The scientific community has witnessed tremendous progress in the recent years 

towards the goal of eradicating HPV-mediated cervical carcinoma. Of these endeavors, 

routine Pap testing and the three prophylactic vaccines are particularly noteworthy for 

their documented and anticipated progress in decreasing disease burden. While progress 

in prevention must continue, complementary approaches providing better treatment 

options to populations not directly benefiting from vaccine therapies must also be 

developed. These groups include women who are already infected with HPV; 

immunocompromised individuals such as individuals co-infected with HPV/HIV; and 

organ transplant patients.  

Over the past years, developments have made the eradication of cervical cancer a 

more achievable goal than in the past, and progress is occurring at each level of clinical 

management ranging from detection to the development of small molecule antiviral leads.  

Research targeting the HPV early proteins will continue to provide valuable insights 

regarding the viral mechanisms used to hijack cellular processes. Of the viral 

components, the E6 and E7 oncoproteins have long been recognized as the main 

mediators of HPV-associated malignancies. Therefore, approaches targeting these 

oncoproteins are quite reasonable. Such discoveries have the potential to exert a broad 

impact in the field of virology, as they will enable researchers to more fully understand 

virus-host interactions and how to better equip the body to respond to or even prevent 

infection. 

 Much is already known about the HPV life cycle, HPV-mediated cell 

transformation, and the mechanisms manipulated by the viral proteins, E6 and E7, to 

advance the virus’ oncogenic agenda. However, there are many viral processes we know 
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much less about, such as the intricacies of splicing and the significance of its varying 

products in HR-HPVs. Thus, in exploring these phenomena we posed the following 

questions: 1) Which the of splicing products of HPV16 E6 are the most abundant and, in 

turn, what affect would its/their overexpression have on the growth of HPV+ and HPV- 

cervical cancer cells in vivo? 2) What are the distinguishing molecular and histological 

features of tumors overexpressing E6* compared to control tumors in a xenograft model? 

3) If the overexpression of HPV16 E6* in HPV+ and HPV- cervical cancer cells causes a 

reduction in tumor growth, what cellular mechanisms are targeted by E6* to induce this 

change in tumor volume? Together, the result of these studies will allow researchers to 

pinpoint the mechanisms most important in regulating HPV-mediated cervical cancer, 

and will provide deeper insight into how best to neutralize or arrest the oncogenic 

influence of HR-HPVs. 
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CHAPTER TWO 

THE SMALL SPLICE VARIANT OF HPV16 E6, E6*, REDUCES TUMOR 

FORMATION IN CERVICAL CARCINOMA XENOGRAFTS 
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Abstract 

High-risk types of human papillomavirus (HPV) cause nearly all cases of cervical 

cancer. The E6 oncoprotein is produced as a full-length variant (E6) as well as several 

shorter isoforms (E6*). E6* inhibits certain oncogenic activities of E6, suggesting that it 

might play an anti-oncogenic role in vivo. To test this, we created E6*-expressing SiHa 

(HPV+) and C33A (HPV-) cells, then examined the ability of both the parental and E6*-

expressing cells to form tumors in nude mice. We found that over-expression of E6* 

indeed decreased the growth of tumors derived from both SiHa and C33A cells, with the 

reduction greatest in tumors derived from E6*-expressing SiHa cells. These findings 

point to multiple anti-oncogenic characteristics of E6*, some of which likely involve 

down-regulation of the full-length isoform, and others that are independent of HPV. 

These data represent the first demonstration of biologically relevant E6* activities 

distinct from those of the full-length isoform in vivo. 
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Introduction 

High-risk types of the human papillomavirus (HPV) are the causative agents of 

nearly all cases of cervical cancer, as well as a significant number of head, neck, penile, 

vulvar and anal cancers.  Like many other viruses with small genomes, HPV (~8 kb) 

utilizes numerous mechanisms to increase the capacity of its genome to encode the 

proteins necessary for successful completion of its infectious life cycle. Alternative 

splicing of viral mRNA is one common mechanism used by many viruses, including 

HPV, to produce multiple proteins from a limited genetic sequence.  The early HPV 

genes (E1, E2, E4, E5, E6 and E7), and in particular, E1, E2, E6 and E7, have been 

studied intensively over the last 2 decades (119-125). Their activities and roles in the 

virus life cycle and during cellular transformation have been well established, with the E6 

and E7 oncogenes from high-risk types implicated as the major transforming agents. 

However, the functions of their alternatively spliced products have not yet been closely 

examined, even though increasing evidence suggests that these proteins may play 

important roles in the viral life cycle as well as contribute to carcinogenesis.  For 

example, the splicing product E1^E4 has been linked to the productive life cycle. This 

function is associated with keratin networks, although the exact mechanism has not yet 

been elucidated (126). Additionally, overexpression of HPV-11 and HPV-16 E1^E4 has 

been shown to induce G2 arrest (127). Another example of an HPV splice product with a 

biologically important role is the spliced E8^E2C fusion protein, which functions as a 

negative regulator of viral transcription and replication for HPV 31 (128, 129).   

 The E6 and E7 oncogenes of high-risk HPVs are predominantly transcribed as an 

early transcript from the early promoter that produces bicistronic E6/E7 pre-mRNA. If 
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the introns within this E6/E7 transcript remain unspliced, the resulting mRNA expresses 

oncogenic full length E6. If, however, these introns are spliced out, several splice variants 

are possible. High-risk HPVs possess one 5′ donor splice site within the E6 coding region 

as well as multiple acceptor splice sites localized within E6 as well as in other genes 

(130). The E6*I and E6*II splice variants are produced when the acceptor sites are 

localized within the E6 sequence, and their protein products are quite similar as they 

differ only in the last 7 aa (Figure 1A). The ability to produce splice variants of E6 

appears to be a characteristic of high-risk types of HPVs, as HPV 16, HPV 18, HPV 31, 

HPV 33 and HPV 45 do produce these variants (131), while low-risk types such as HPV 

6b and HPV 11 do not (17, 18). This difference in the presence of E6 splice variants 

between low- and high-risk HPV types may suggest that E6 splicing plays a role in viral 

oncogenesis (132). An alternative suggestion is that this alternate splicing is somehow 

required for successful completion of the high-risk (but not the low-risk) life cycle. 

 One initial explanation for these splice variants was that such splicing, 

particularly splicing of intron 1 resulting in the E6*I transcript, benefited E7 expression 

(133). Investigators showed that when protein translation occurs on E6E7 mRNA, the 

space between termination of E6 translation and the initiation of E7 is not sufficient for 

effective translation of E7 (134). However, there is enough space on the spliced E6*I-E7 

mRNA for termination of E6*I translation and re-initiation of E7 translation (134), 

leading to the suggestion that the purpose of E6 splicing was simply to promote E7 

expression. Interestingly, although the presence of transcripts coding for E6 splice 

variants has been acknowledged for several years the activity and existence of the E6* 

protein has remained under question. The recent availability of antibodies with improved 
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sensitivity and specificity for E6 and E6* has now allowed us to demonstrate the 

presence of E6* at the protein level in cervical cancer cell lines, and also to observe 

differences in the expression levels of both E6 and E6* between the CaSki and SiHa 

cervical carcinoma cell lines (135).  We found not only that E6* is indeed produced at 

detectable levels, but also that it is biologically active. For example, we demonstrated that 

the over-expression of E6* in SiHa cells sensitized these cells to apoptosis induced 

through the TNF and Fas pathways (135), indicating a possible pro-apoptotic role for this 

protein. Additional functions of E6* from HPV18 have been demonstrated by the Banks 

group (25), which showed that HPV 18 E6* can suppress the growth of transformed cells, 

and decrease the ability of the full-length isoform to degrade p53. 

 This type of data, suggesting that E6* possesses anti-oncogenic activities, led to 

the intriguing suggestion that the truncated isoform might play a distinct role in 

carcinogenesis, possibly by opposing activities of the full-length isoform. Each of the 

studies noted above was carried out in the context of cell lines, so to test the prospect that 

E6* might act as an anti-oncogene in vivo, we examined the influence of E6* on tumor 

formation in a cervical cancer xenograft model. To discriminate between activities that 

require the presence of the full-length isoform and activities that are independent of E6, 

we asked whether E6* could affect the formation of tumors from both HPV16+ SiHa cells 

and HPV16- C33A cells. We were able to demonstrate that indeed, over-expression of 

E6* in both HPV16+ SiHa cells and HPV16- C33A cells led to the inhibition of tumor 

growth in nude mice, with the inhibition of tumor growth greatest in tumors derived from 

HPV+ cells. These findings suggest the involvement of both E6-specific and E6-

independent activities. 
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Materials & Methods 

Reagents 

          MG132 (Sigma-Aldrich)) was dissolved in DMSO to yield a 10 mM stock, then 

stored at -20 o C until use. Doxycycline (Dox) (BD Biosciences) was dissolved in PBS to 

a 1 mg/ml stock. α-Flag agarose, α-Flag-HRP conjugated antibodies and α-β-actin were 

obtained from Sigma-Aldrich. α-VEGFR-1 antibodies were purchased from Epitomics, 

α-E6 N-terminus antibodies were obtained from Euromedex (France), α-E-cadherin was 

purchased from Cell Signalling Technology, α-caspase 8 antibodies were purchased from 

BD Biosciences, α-HA was obtained from Roche Applied Science, and secondary 

ImmunoPure Antibody HRP conjugated antibodies were obtained from Fisher Scientific. 

α-p53 p122 antibodies were purified from conditioned media obtained during hybridoma 

growth.   

 

Cell Culture 

U2OS cells, derived from a human osteosarcoma, as well as SiHa, C33A, and 

CaSki cells, derived from cervical carcinomas, were obtained from the ATCC. U2OS 

cells and their derivatives were cultured in McCoy’s 5A medium (Invitrogen), and SiHa, 

C33A, and CaSki cells were maintained in MEM medum (Mediatech, Inc). Media was 

supplemented to contain 10% fetal bovine serum (Invitrogen), penicillin (100 u/ml) and 

streptomycin (100 µg/ml) (Sigma-Aldrich). Media for U2OS cells expressing E6 under 

the control of the tet-responsive element (UtetE6wt and UtetE6) was supplemented with 

Tet-FBS (BD Biosciences). The description and production of stably transfected U2OS 

cell lines capable of expressing variable amounts of HA-E6 wt, regulated by different 
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concentrations of Dox present in media, has been described previously (136, 137).  

 

 

Plasmids, Transfection, & Production of Stable Cell Lines 

  The plasmid pTre-E6 (BD Clontech), which expresses HA-tagged HPV 16 E6 

wild type (E6 wt) has been cloned and described previously (137, 138). The plasmids 

pFlag-E6 wt (pE6wt), pFlag-E6*(pE6*), and pFlag-E6 large (pE6) were obtained by 

cloning E6 wt, E6*I, or E6 large, respectively, in frame with the N-terminal Flag-tag and 

the C-terminal C-myc-tag into the pFlag-myc CMV-22 vector (Sigma-Aldrich). To 

produce stable cell lines expressing E6, pE6*, or the vector control, the appropriate 

plasmids were transfected into SiHa or C33A cells using the TransIt-LT1 Transfection 

Reagent (MirusBio), as directed by the manufacturer. Forty-eight h post-transfection, 

G418 (500 μg/ml) was applied to cells and antibiotic selection applied for 3 weeks. 

Expression of the desired protein was assessed by immunoblot.  

 

Cell Viability & Growth Assays 

To measure cell survival following TNF-α treatment, SiHa-derived cells were 

seeded at a density of 104 cells per well on a 96-well plate and allowed to adhere 

overnight. TNF-α (50 ng/ml) was applied in the presence or absence of 10 μg/ml of 

cycloheximide (Cx), and cells were incubated for 16 h prior to measuring cell viability by 

CellTiter-Glo Luminescent Cell Viability Assay (Promega).  

To estimate cell growth, 5x103 cells were seeded into four 96-well plates and 

allowed to adhere overnight. The next day (day 0) and for the 3 days following, cells 

were fixed in 10% formaldehyde. Staining of cells was performed using crystal violet 
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solution (Sigma-Aldrich). Absorbance at 570 nm was measured after dissolving crystal 

violet in 100 μl of 10% acetic acid (Fisher Scientific). 

 

Immunoblotting & Co-immunoprecipitation 

 For immunoblot analysis, cells (106) were lysed in 100 μl of Laemmli lysis buffer, 

then lysates were sonicated and loaded onto a SDS-PAGE gel. After protein transfer to 

Immobilon P membranes (Millipore Corporation) and blocking the membrane with 1% 

BSA, primary antibodies were applied in TBST containing 1% BSA. After incubation 

with primary antibodies overnight at 4°C, membranes were washed with TBST. 

Secondary ImmunoPure Antibodies (α-mouse or α-rabbit) conjugated with horseradish 

peroxidase (Fisher Scientific) were applied to the membrane for 1 h, and the detection of 

signals was performed using the chemiluminescent SuperSignal West Dura or Pico 

Maximum Sensitivity substrate (Fisher Scientific).   

 For immunoprecipitation and co-immunoprecipitations, cells were treated with 5 

or 10 μM MG132 for 16 h prior to preparation of lysates. For co-immunoprecipitation 

107 U2OS cells were co-transfected with pFlag or pFlag-E6* together with pHA-E6 for 

48 h, Flag-tagged proteins were precipitated using Flag-agarose, and bound proteins were 

subjected to SDS-PAGE, then transferred to a PVDF membrane and detected by 

immunoblot. For the SiHa- and C33A-related experiments, 5x106 pooled cells were 

lysed, then the Flag-E6* proteins were precipitated using Flag-agarose. Detection of 

Flag-E6* was performed using α-Flag-HRP antibodies.  
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PCR 

Total RNA from cells was isolated using TrizolR, then tissues were homogenized 

in TrizolR using a Tissue Miser homogenizer (Fisher Scientific). cDNA was synthesized 

using SuperScript II reverse transcriptase (Invitrogen) according to the manufacturer’s 

protocols. Semi-quantitative RT-PCR was performed using:  

5’-GCACCAAAAGAGAACTGCAATGT-3’ and  

5’-TGGGTTTCTCTACGTGTTCTTGAT-3’ primers  

to detect both E6 isoforms (E6 primers), or  

Flag-F 5’-CCAAAATCAACGGGACTTTC-3’ and  

Flag-R 5’-CACAGGGATGCCACCCGGG-3’  

to detect FlagE6* transcripts.  

Quantitative real-time PCR was performed to measure the concentration of E6 

isoforms using primers designed by Hafner et al. (106), using the iTaq Universal SYBR 

Green Supermix kit according to the manufacturer’s protocol (Bio-Rad). Concentrations 

of cDNAs were normalized using GAPDH or β-actin expression.  

 

Implantation of Tumor Xenografts in Mice 

Five–week old female Crl:CD-1-Foxn1nu nude mice were obtained from Charles 

Rivers (Cambridge, MA), maintained in pathogen-free conditions and fed a standard 

irradiated chow diet while housed within the Animal Research Facility of the Loma 

Linda VA Medical Center (Loma Linda, CA). Mice were kept at 25o C, with a 12 h light-

dark schedule and free access to food and water. All experiments were done under 

protocols approved by the Institutional Animal Care and Use Committee.   
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Six mice were injected subcutaneously with 31 Ga. needles in the flanks 

bilaterally. On the left side, 7.5 x106 SiHa pFlag cells or 5x106 C33A pFlag cells were 

injected; and on the right side, 7.5 x106 SiHa E6* cells or 5x106 C33A pE6* cells were 

injected, forming two tumors per mouse. Tumor formation and size were evaluated at 4-

7day time intervals for approximately 13 weeks for SiHa-derived tumors and for 8 weeks 

for C33A-derived tumors. Tumors were measured using calipers for two perpendicular 

measurements, and tumor volume was calculated according to the formula: Width2 x 

Length/2. In one mouse injected with SiHa-derived cells, and in one mouse injected with 

C33A-derived cells, both tumors gradually decreased until they disappeared. These mice 

were excluded from the reported averages. 

All mice were killed by CO2 inhalation followed by thoracotomy. Tumors were 

explanted and dissected to obtain 2 samples from each xenograft: formalin-fixed for 

paraffin-embedding for morphological and immunohistochemical assays, and snap frozen 

in liquid nitrogen for RNA isolation.  

 

Histochemistry & Immunohistochemistry 

Tumor pieces fixed in formalin were embedded in paraffin, and sections were cut 

from tumors.  For histochemical analysis, sections were stained with haematoxylin-eosin 

and analyzed under a light microscope. Localization of VEGFR-1 was performed using 

immunohistochemistry. Rabbit monoclonal antibodies (Epitomics) specific to VEGFR-1 

(N-term) were applied to tissue sections at 1:100 dilutions. Visualization of VEGFR-1 

was performed using Vestastain Elite ABC kit (Vector Laboratories). Slides were 

counter-stained by haematoxylin and analyzed under a light microscope.  
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p53 ELISA 

 The procedure for performing the p53 ELISA has been previously described 

(139). The protein concentration in the cell lysates was measured using the Bio-Rad DC 

protein assay (Bio-Rad). 

 

Results 

E6*I is Expressed at a Higher Level than is E6*II in Both CaSki & SiHa Cells 

When expressed in mammalian cells, the high-risk E6 oncoprotein is expressed as 

both full-length and smaller isoforms, with the smaller isoform comprising approximately 

one-third of the full-length sequence from the N-terminus of E6 (Figure 1A, highlighted 

residues). Because the two smaller isoforms expressed from the E6 gene differ only in the 

last 7 aa of their C-terminus (Figure 1A), the difference in size between them is too small 

to be distinguished by immunoblot (Figure 1B). At the RNA level, however, 3 transcripts 

of ~0.5 kb, ~0.3 kb and ~0.2 kb can be detected, which can be respectively translated into 

3 proteins: the full length isoform of 158 aa and two smaller isoforms of 50 aa (E6*I) and 

55 aa, (E6*II) (Figure 1A). To determine which transcript corresponds to the smaller 

protein band (Figure 1B), we estimated the relative levels of E6*I and E6*II expression 

using qRT-PCR. qRT-PCR of E6*I and E6*II transcripts was performed using mRNA 

isolated from the cervical cancer cell lines, CaSki and SiHa (Figure 1C), as well as from 

U2OStetE6 cells (18, 135) (Figure 1D). In these U2OStetE6 cells, E6*I and E6*II are 

expressed from a stably-transfected plasmid expressing the wild-type sequence for E6 

(pE6 wt). Expression of E6 wt is under control of the tet response element, and high and 

low levels of HA-E6 expression are regulated by the concentration of doxycycline in the 
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culture medium (Figure 1D bottom panel). As shown in Figure 1C and D, the E6*I 

transcript is several times more abundant than the E6*II transcript in CaSki, SiHa and 

U2OS cells, and the ratio of the levels of the E6*I transcript to the E6* II transcript does 

not depend on the level of E6 expression in U2OStetE6 cells. This data, therefore, 

suggests that the smaller E6 band detected by immunoblot (Figure 1B) is translated 

primarily from the E6*I transcript. The prevalence of E6*I over E6*II expression 

allowed us to focus on E6*I in the following experiments, and this gene and its 

corresponding protein are henceforth referred to as E6*. 

 

E6* Expression Increases Levels of Caspase 8, p53 & E-cadherin 

& Sensitizes SiHa Cells to TNF 

To assess the properties of E6* during tumor formation, we first created and 

characterized cervical cancer-derived cell lines expressing E6* in the context of both an 

HPV+ and an HPV- background. SiHa cells stably transfected with the empty vector 

pFlag are HPV+ cells with a low level of E6* expression (control), while SiHa cells 

stably transfected with pE6* are HPV+ cells with a high level of E6*. A similar pair of 

cell lines originating from the HPV- C33A cervical cancer cell line was also created by 

stably transfecting these cells with either pFlag (C33A pFlag, control) or pE6* (C33A 

E6*). After selection in G418, pE6*-expressing SiHa-derived lines were analyzed for 

their level of E6* expression by immunoblot. Eighteen clonal lines were expanded and 

screened, and of these, six were selected on the basis of high levels of E6* expression 

(data not shown). An equal number of cells from each of these six lines were combined, 

and the resulting pooled cells (SiHa pE6*) were used for further study.  
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Figure 1. Alignment and expression of E6, E6*I and E6*II.  A)  Alignment of the protein 

sequences for E6, E6*I, and E6*II. The common amino acids for these three proteins are 

highlighted. B) Expression of Flag-E6 wt, Flag-E6, and Flag-E6*I at the protein level. 

U2OS cells were transiently transfected with Flag-E6 wt, Flag-E6, or Flag-E6*I. Forty-

eight h post-transfection, expression was analysed by immunoprecipitation using α-Flag 

agarose, followed by detection using antibodies directed against Flag-HRP. C and D)  
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Figure 1. C and D) Expression of E6*I is higher than expression of E6*II in cervical cancer 

cell lines (C) and in U2OS cells stably transfected with pHA-E6 wt under the control of 

the tet promoter (UtetE6wt) (D).  qRT-PCR was performed using primers designed 

specifically for E6*I and E6*II. 5’ primers for E6*I and E6*II were homologous to exon-

exon splicing regions, while the 5’ primer for E6 was designed for intron I of E6. The 3’ 

primer used for each of the three isoforms was homologous to the C-terminus of E6. 

Primers for GAPDH were used to normalize input of cDNA. C) The ratio between the 

levels of mRNA expression of E6, E6*I, and E6*II in CaSki and SiHa cells is presented as 

a fold-change relative to E6 expression in CaSki cells. D) UtetE6wt cells were grown in 

media without Doxycycline (Dox) (high level of E6 expression), or in media containing 

100 ng/ml of Dox (low level of E6 expression). The level of E6*I expression in UtetE6wt 

cells at low and high levels of Dox was set at 100%, and the level of mRNA expression of 

E6*II was expressed as a percentage of E6*I expression. The lower panel of (D) shows the 

expression of E6 and E6* in UtetE6wt cells in the presence and absence of 100 ng/ml Dox, 

as determined by immunoblot using antibodies directed against the N-terminus of E6. 
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The use of pooled cells was employed in order to minimize the possible impact of site-

specific integration events. Figure 2A shows expression of E6* in the pooled SiHa pE6* 

cells as compared to those in the pooled SiHa pFlag cells, demonstrating increased 

expression levels of E6* in cells harboring the pE6* plasmid. The relative levels of E6 

and E6* expression at the mRNA level are shown in Figure 2B, and demonstrate that the 

level of the full-length E6 transcripts does not change significantly following over-

expression of E6*. Expression of E6* in the analogous pooled C33A-derived lines is 

shown in Figure 2C. To create these cells, 24 stable cell lines were isolated, 

characterized, and equal numbers of the six C33A-derived lines with the highest 

expression of E6* were pooled.  

We have previously demonstrated that E6 protects U2OS cells from TNF-induced 

apoptosis by decreasing the level of procaspase 8. In contrast to E6, E6* stabilizes 

procaspase 8, sensitizing these cells to TNF-induced apoptosis (18, 135), and we found 

this to be true in SiHa cells as well. Figures 2D and 2E demonstrate that increasing the 

level of E6* expression in SiHa cells (SiHa pE6*) leads to higher levels of procaspase 8 

as well as p53, and Figure 2F shows that this increase in E6* sensitizes cells to TNF. 

With regards to cells derived from C33A, it is known that mutant p53 is expressed in 

these cells at high levels (140); thus, over-expression of E6* was unable to change the 

levels of p53 in these cells (data not shown). We also found that E6* expression causes 

an increase in E-cadherin levels in SiHa cells, though not to the level observed in CaSki 

cells (Figure 2G).  E-cadherin is a marker of epithelial cell-cell adhesion and its function 

is lost in many epithelial cancers (141). C33A cells expressed no detectable E-cadherin, 
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initially, and expression of E6* did not increase expression of the adhesion protein in 

these cells (data not shown). 

 

Expression of E6* in HPV16+ SiHa Cells Dramatically Reduces 

Tumor Formation in a Xenograft Mouse Model 

To determine whether expression of E6* affects tumor formation in vivo, 7.5 x 

106 cells of SiHa pFlag and of SiHa pE6* were injected subcutaneously into each of five 

nude mice. SiHa pFlag cells were injected on the left side, while SiHa pE6* cells were 

injected on right side of the same mouse. Tumor formation was assessed by measuring 

the tumor size approximately every four or five days with calipers. On the 88th day, mice 

were sacrificed, and the tumor was isolated and divided into two pieces. One piece was 

paraffin embedded, sectioned, and stained using haematoxylin-eosin, or used for 

immunohistochemical detection of VEGFR-1; the other part was used for RNA isolation.  

Figure 3A shows a representative mouse with developed tumors. On the left side of each 

mouse, a large tumor derived from SiHa pFlag cells developed, while on the right side of 

the same mouse, a tumor derived from SiHa pE6* cells was in most cases barely 

noticeable. The relative size of the two tumors following dissection is shown in the 

bottom panel. Figure 3B shows the relative tumor growth for SiHa pFlag and SiHa pE6* 

tumors, calculated as a percent of the tumor size on day 4 when measurements began. 

During the first 19 days following injection, the size of all tumors decreased and 

remained fairly constant until day 34. SiHa pFlag and SiHa pE6* tumors experienced a 

similar pattern of reduction in size, probably due to a gradual decrease in the 

inflammation that accompanied the initial injection of the cells. 

  



 

58 

 

 

Figure 2. Expression and activity of E6* in SiHa and C33A cells. A and C) Pooled SiHa 

pE6*(A) and C33A pE6* (C) cells express Flag-E6*. PVDF membranes carrying the SDS-

separated proteins were probed with α-Flag-HRP antibodies, and α-β-actin antibodies were 

used to normalize for protein load or immunoprecipitation input, respectively (A and C) 

(bottom panels).  B) The ratio between the levels of mRNA expression of E6 and E6* in 

SiHa pFlag and SiHa pE6* cells is presented as a fold-change relative to β-actin expression 

as determined by qRT-PCR. D, E, F and G) Expression of E6* in SiHa cells affects the 

level of expression of procaspase 8 and p53 as detected by immunoblot (D) and by p53-

ELISA (E), as well as TNF-α-induced apoptosis (F) and expression of E-cadherin (G). D) 

Cell lysates prepared from SiHa pFlag and SiHa pE6* cells were treated with 10 uM MG 

132 for 16 h prior to lysis. Detection of p53 and caspase 8 was performed by immunoblot, 

β-actin was used for normalization. E) 106 SiHa pFlag or SiHa pE6* cells were treated with 

either mitomycin C or DMSO (control) for 16 h prior to lysis. p53 ELISA was performed 

as described in Material and Methods. Data is presented as the optical density at 405 nm 

per mg protein in cells treated with mitomycin C, minus that same measurement in cells 

not treated with mitomycin C. Measurements were made in triplicate, and the error bars 

represent the standard deviation. * indicates a 0.98 level of confidence. F) 104 cells per 

well were seeded onto a 96-well plate. Cells were treated with 10 ug/ml of cycloheximide 

in the presence or absence of 50 ng/ml of TNF-α for 16 h. Cell viability was monitored 

using the CellTiter-Glo Luminescent Cell Viability Assay (Promega). ** indicates a 0.99 

level of confidence.  
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Figure 2. G) The E-cadherin level was detected by immunoblot in lysates prepared from 

SiHa pFlag, SiHa pE6* and CaSki cells, normalized by β-actin.  
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Following day 34, tumors derived from the SiHa pFlag cells began a rapid period of 

growth, reaching an average volume of more than 320 mm3, (650% of the day 4 value) by 

the 88th day. In contrast, tumors derived from the SiHa pE6* cells did not grow until day 

74. Following this, a slow growth of SiHa pE6* tumors was observed, reaching an 

average volume of 67 mm3 (less than 200% of the day 4 value) by day 88 (Figure 3B). 

Overexpression of E6* in the tumors derived from the SiHa E6* cells was 

demonstrated by RT-PCR (Figure 3C). Sections from corresponding tumors were pooled 

and used for RNA isolation. When the Flag F and Flag R primers were used, 

corresponding to sequences in the cloning vector, the product detected in the SiHa pFlag 

tumors was less than 0.1 kb in size, while in the SiHa pE6* tumors, the PCR product was 

greater than 0.3 kb (left and middle panels). When primers designed for the E6 gene were 

used, both the full-sized E6 and the E6* isoform were detected in both types of tumors 

(right panel). However, E6* was detected at a much higher level in tumors derived from 

the SiHa pE6* cells than in tumors derived from the control cells, demonstrating that this 

over-expression had not been lost during in vivo passage.   

Analysis of cross-sectioned tumors stained with haematoxylin-eosin revealed that 

tumors derived from SiHa pFlag and SiHa pE6* cells differ in their morphological 

characteristics (Figure 4). The large tumors derived from SiHa pFlag cells were 

consistently heterogeneous with sheets and nests of squamous cell carcinoma combined 

with extensive leukocytic cell infiltration and large areas of unstructured necrotic masses 

with imbedded damaged cells (Figure 4A and 4B, left-side panels). 

In contrast, the tumors derived from SiHa pE6* cells were significantly smaller 

than the SiHa pFlag tumors. These smaller tumors were more consistently well 
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circumscribed and encapsulated, and the structure was more homogenous, with the 

majority of the tumor being composed of squamous cells (Figure 4A and 4B, right-side 

panels). One dramatic difference between the SiHa pFlag and SiHa pE6*-derived tumors 

was in the size of necrotic areas; only a small focal amount of this necrosis was observed 

in 3 of the 5 SiHa pE6*-derived tumors. 

In addition, we employed immunohistochemistry to assess VEGFR-1 expression 

in these tumor sections because the distribution and level of expression of this molecule 

has frequently served as a marker of tumor angiogenesis (142). In tumors derived from 

the SiHa pFlag cells, high levels of VEGFR-1 expression were observed in large areas of 

the tumor, where cells presumably had a low oxygen supply, while areas with healthy 

squamous cells exhibited low levels of VEGFR-1 (Figure 4C, middle panel). However, in 

tumors derived from the SiHa pE6* cells, where tumors consisted primarily of healthy 

cells, expression of VEGFR-1 was nearly undetectable (Figure 4C, right panel). Only a 

slight staining was observed in areas where necrotic cells were also found. 

 

Expression of E6* Also Reduces Tumor Formation  

When Expressed in HPV- C33A Cells 

To determine whether expression of E6* would be able to reduce tumor formation 

in the absence of HPV proteins, we repeated the in vivo experiment using the HPV-

negative C33A pFlag and C33A pE6* cell lines (Figure 2C). In this experiment, 5 x 106 

cells of C33A pFlag and C33A pE6* cells each were injected subcutaneously into five 

nude mice. C33A pFlag cells were injected on the left side, and C33A pE6* cells were   
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Figure 3. Overexpression of E6* in SiHa cells reduces tumor growth in a tumor xenograft 

model. A) A representative mouse bearing a tumor derived from SiHa pFlag cells on the 

left side and a tumor derived from SiHa E6* cells on the right side (upper panel). The 

bottom panel shows representative tumors following isolation the 88th day post-injection. 

B) The relative average tumor volume observed for the SiHa pFlag and SiHa pE6* tumors. 

The volume of the tumor at day 4 was set at 100%, and error bars represent the standard 

error of the mean. ** indicates that the mean tumor volumes at day 88 were significantly 

different between the two groups (P>0.99).   
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Figure 3. C) Expression of E6 and E6* at the mRNA level in dissected tumors derived 

from SiHa pFlag and SiHa pE6*. Expression of Flag-E6* and Flag-E6 transcripts in tumors 

was detected by RT-PCR using primers specific for Flag-E6* (Flag F and Flag R primers) 

(left and medium panels) and for E6 (E6-5’ and E6-3’) (right panel). 1, 3 – RNA; 2, 4, 5 

and 6 – cDNA.  
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injected on right side of the same mouse. Tumors produced by C33A cells were observed 

to grow more rapidly than the tumors derived from SiHa cells. Two mice were sacrificed 

at day 48 due to the rapid growth and resulting size (>1500 mm3) of the tumor, and the 

other three mice were sacrificed when tumor size reached 1500 mm3. Figure 5A shows a 

representative mouse with tumors. On the left side of each mouse a large tumor derived 

from C33A pFlag cells developed, while on the right side of the same mouse a smaller 

tumor derived from C33A pE6* cells was formed. The relative size of the two tumors 

following dissection is shown in the bottom panel of Figure 5A.  

Figure 5B shows the relative tumor growth for C33A pFlag and C33A pE6* 

tumors, which is calculated as a percent of the tumor size on day 7 when measurements 

began. In contrast to the growth of tumors induced by SiHa-derived cells, the tumors 

derived from C33A cells did not show a reduction in size at the beginning. Tumors 

started to grow a week after cell injection and gradually enlarged, with more rapid tumor 

growth observed following day 45 post-injection. At day 53, the average size of tumors 

derived from C33A pFlag reached >900 mm3, corresponding to more than 1200% of their 

size at day 7. However, tumors derived from the C33A pE6* cells reached a size of only 

273 mm3, slightly exceeding a 400% increase (Figure 5B). 

 Cross-sectioned tumors derived from C33A pFlag and C33A E6* cells and 

stained with haematoxylin-eosin were characterized by consistently heterogeneous sheets 

and nests of squamous cell carcinoma combined with large areas of unstructured necrotic 

masses with imbedded damaged cells and patches of connective tissues.   
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Figure 4. Sectioned SiHa tumor xenografts were stained with haematoxylin-eosin (A and 

B), and VEGFR-1 was detected by immunohistochemistry (C). A) Objective x10; B and 

C) Objective x40. Arrows indicate live cells, necrotic cells, and connective tissues. C) α-

VEGFR-1 antibodies were applied to the indicated sections, while no primary antibodies 

were applied to negative controls. Sections were then counter-stained with haematoxylin. 
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Differences between C33A pFlag and C33A E6* included larger areas of necrotic masses 

and connective tissues and smaller areas of squamous cells in C33A pFlag tumors (Figure 

6A and B). However, no significant difference in the expression of VEGFR-1 between 

C33A pFlag and C33A pE6* tumors was detected by immunohistochemistry (Figure 6C, 

middle and right panels). 

 

Reduction of Tumor Growth by E6* in Tumors Derived from HPV+ SiHa Cells  

is Greater than in Tumors Derived from HPV- C33A Cells 

A comparison of the growth curves (Figures 3B and 5B) revealed that the development of 

tumors from the SiHa and C33A cells followed different dynamics. To determine how 

expression of E6* impacted these dynamics in both the HPV+ SiHa and the HPV- C33A 

cells, the average relative sizes of E6*-expressing tumors as a percentage of the control 

pFlag tumors (in the same mouse) in SiHa and C33A cells were compared. For this 

comparison, we selected the time period beginning when tumors were first detectable and 

ending just prior to sacrifice (days 40 – 88 post-injection for SiHa cells, Figure 3B; and 

days 17 – 48 post-injection for C33A cells, Figure 5B), during which exponential tumor 

growth occurred. Figure 7A shows the relative sizes of the E6*-expressing tumor as 

compared to the corresponding control tumor during this period. Interestingly, the trends 

differed between the two cell lines. While the relative sizes of the E6*-expressing SiHa 

tumors were relatively low throughout this period of exponential growth with the ratio 

changing less than two-fold, the relative sizes of the E6*-expressing C33A tumors were 

higher throughout the experiment, and decreased more than two-fold over this time 

period.  
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Figure 5. Over-expression of E6* in C33A cells reduces tumor growth in a tumor xenograft 

model. A) A representative mouse bearing a tumor derived from C33A pFlag cells on the 

left side and a tumor derived from C33A E6* cells on the right side (upper panel). The 

bottom panel shows representative tumors following isolation on day 53 post-injection. B) 

The relative average tumor volume observed for the C33A pFlag and C33A pE6* tumors. 

The volume of tumor at day 7 was set at 100%. Error bars represent the standard error of 

the mean. ** indicates that the mean tumor volumes at day 53 were significantly different 

between the two groups.  
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Figure 6.  Sectioned C33A tumor xenografts were stained with haematoxylin-eosin (A and 

B), and VEGFR-1 was detected by immunohistochemistry (C). A) Objective x10; B and 

C) Objective x40. Arrows indicate live cells, necrotic cells, and connective tissues. C) α-

VEGFR-1 antibodies were applied to the indicated sections, while no primary antibodies 

were applied to negative controls. Sections were then counter-stained with haematoxylin. 
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One conclusion from this comparison is that the control SiHa tumors grew 

significantly faster than did the corresponding SiHa E6* tumors, with the relative 

difference remaining somewhat constant over time. In contrast, the difference between 

the size of control C33A-derived tumors and those derived from the corresponding E6*-

expressing cells was smaller and increased over time, implying increasing effectiveness 

of the viral protein. In particular, the E6*-mediated reduction in size in the context of 

SiHa cells ranged from 67% to 92% on day 88, (average of 79%), while the 

corresponding values for the C33A cells ranged from 44% to 72% at day 53 (average of 

56%), a difference of more than 20% (Figure 7B). The significance of the difference in 

these curves was estimated by one-way ANOVA (P-value = 2.51 x 10-7). These results 

suggest that E6* may act through a different set of pathways in the two cell lines. In 

summary, E6* appears to be more effective in suppressing tumor growth in the presence 

of E6 (SiHa cells) than in its absence (C33A cells). 

 

E6* Binds to & Inactivates the Full-length Isoform 

One possible explanation for the greater reduction of tumor size caused by E6* in 

SiHa as compared to C33A cells is that the shorter isoform inhibits the oncogenic 

activities of the full-length isoform.  It is known, for example, that E6* proteins from 

both HPV16 (135) and 18 (26) can bind to E6 and modify its activities.  Figure 7C 

demonstrates this binding. In this co-immunoprecipitation experiment, U2OS cells were 

co-transfected with either pFlag or pFlag-E6* together with HA-E6.  Flag-tagged proteins 

were precipitated using Flag-agarose, and the co-immunoprecipitated HA-E6 was 

detected by immunoblot. The results show that HA-E6 was precipitated by Flag 
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antibodies from cell lysates where Flag-E6* was expressed, confirming the binding 

interaction between the proteins.   

Inactivation of E6 activity by E6* has the potential to affect cell viability and 

growth. To determine if this was likely to account for the difference in tumor growth, the 

growth rates of both SiHa and C33A control cells and cells expressing E6* were 

compared. Cells from each line were plated and allowed to grow for 3 days, and the 

number of viable cells measured every 24 h using crystal violet. These results (Figure 

7D) demonstrate a difference in growth rate between SiHa pE6* as compared to SiHa 

pFlag cells, as well as a lack of variance in the growth rate between C33A pFlag and 

C33A pE6* cells. Because the SiHa pE6* cells grow slower than SiHa pFlag cells, an 

E6*-mediated reduction in growth rate could contribute to the observed difference in 

SiHa-derived tumor formation from SiHa cells, though this is unlikely to be the case for 

C33A-derived tumors. Colony-forming assays also suggest that the over-expression of 

E6* in SiHa cells impedes the formation of colonies, though this trend is not apparent in 

C33A cells (data not shown).          

 Overall, these data show that E6* can bind to the larger protein, and that its 

expression reduces the growth rate of HPV+, but not of HPV- cells. Clearly, this 

mechanism has the potential to contribute to the reduction of tumor size in our HPV+ 

SiHa xenograft model. However, the C33A data (Figure 5) indicates that additional 

mechanisms, which are independent of the interaction(s) of E6* with other HPV proteins, 

participate as well.      
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Figure 7. Expression of E6* resulted in a greater reduction of tumor volume in tumors 

derived from SiHa cells than in tumors derived from C33A cells. A) The relative volume 

of pE6* tumors in each cell line was calculated as a percentage of the volume of the pFlag 

tumor in the same mouse during exponential tumor growth, and the average relative size 

of the E6* tumors was plotted along with the linear trend. B) The average reduction in 

tumor volume was calculated as the difference between the volume of the pE6*-derived 

tumor and the volume of the pFlag-derived tumor from the same mouse at the date of 

harvest, expressed as a percentage of the volume of the corresponding pFlag tumor. The 

significance of A) and B) was determined by one-way ANOVA. ** indicates that the means 

of tumor volume reduction at day 53 were significantly different between the two groups. 
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Figure 7. C) E6* binds to E6. 107 U2OS cells were co-transfected with pFlag or pFlag-

E6* together with pHA-E6 for 48 h, and cells were treated with 10 μM MG132 for 16 h 

prior to preparation of lysates. Flag-tagged proteins were precipitated by Flag-agarose, and 

HA-E6 was detected using HRP-coupled antibodies directed against HA (upper panel). 

Input levels of E6 and E6* in the lysates (lower panel) were determined by immunoblot 

using antibodies directed against the N-terminus of E6. D) E6* inhibits cell growth in SiHa 

but not C33A cells. 5 x 103 cells per well were seeded into four 96-well plates.  Twenty-

four h later (day 0) and on the following three days, cells were fixed in 10% formaldehyde.  

Staining of live cells was performed using crystal violet. Absorbance at 570 nm was 

measured after dissolving the crystal violet in 100 μl of 10% acetic acid. Measurements 

were made in triplicate, and error bars represent the standard deviation.  
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Discussion 

Studies over the past few decades have focused intensively on the activities and 

roles of E6 proteins from high-risk types of HPV during the process of cellular 

transformation, clearly implicating E6 as a major transforming agent. However, the role 

of the smaller splice isoform, E6*, in the carcinogenic process (if any) has not yet been 

established. In the present study, we provide insight into the behavior of the E6* protein 

during tumor growth in an in vivo nude mouse xenograft model demonstrating that E6* 

displays both E6-dependent and E6-independent anti-tumor activity. The difference in 

tumor size observed in the presence and absence of E6*, when expressed in both HPV+ 

(SiHa) and HPV- (C33A) cells (Figures 3 and 5), is dramatic and consistent, strongly 

indicating an anti-oncogenic role for E6* in this context.  

Opposing functions of alternatively spliced variants have previously been 

demonstrated for a large number of cellular and viral genes, including many that are 

associated with cancer (21, 143). Alternative splicing of viral transcripts is a well-known 

phenomenon, as it provides a way to increase the encoding capacity of viral genomes, 

and thus to enhance viral versatility and adaptability. Although alternatively spliced HPV 

transcripts for the E6 isoforms have been known for over two decades (reviewed in 

(Zheng, 2006 #190)), an appreciation of the opposing biological functions of the full-

length and truncated isoforms is relatively recent (25, 135, 144). One reason for this 

delayed appreciation has been the historical difficulty of demonstrating significant 

expression of E6* at the protein level. Indeed, it was only after the availability of 

appropriate antibodies (Euromedex, France) that our laboratory was able to document, for 
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the first time, endogenous expression of E6* as a protein in cervical cancer cells at levels 

comparable to that seen for expression of the full-length isoform (135). 

Cellular models have previously been used to demonstrate opposing functions of 

E6 and E6* on components of cellular apoptotic pathways. In particular, we have 

reported that E6 expression protects cells from apoptosis induced by members of the TNF 

superfamily (such as TNFα, FasL and TRAIL) by accelerating the degradation of 

procaspase 8. In contrast, the binding of E6* to procaspase 8 leads to its stabilization and 

increased cellular levels of the protein (18, 116). Consistent with these differential 

effects, we found that E6 and E6* actually bind to different sites on procaspase 8 (20). 

Extending and supporting these findings, we demonstrate here that plasmid-expressed 

Flag-E6* is able to re-sensitize SiHa cells to TNFα–induced apoptosis (Figure 2F) 

through an increase in the level of endogenous procaspase 8 (Figure 2D). Radio-

sensitization by HPV 16 E6*I has previously been reported in cells derived from 

oropharyngeal squamous cell carcinoma (145), again indicating that E6* can enhance 

apoptosis. In addition, the negative influence of E6* on cell growth in lines transformed 

both by HPV and by other mechanisms has been demonstrated for HPV18 E6* (25), in 

good agreement with the data from our SiHa model (Figure 7D). Interestingly, E6* 

expression can affect functions in addition to apoptosis and cell growth. During the 

transformation process, epithelial cells frequently lose their epithelial cell-cell contacts 

(146). One of the epithelial adhesion proteins involved is E-cadherin, which is 

responsible for Ca2+-dependent cell-cell adhesion (147). We found that expression of E6* 

was partially able to restore the level of E-cadherin in SiHa cells (Figure 2G), although 

not in C33A cells. 
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Interestingly, E6* can sometimes mimic E6 activity in the absence of E6. Banks 

and coworkers found that E6* from HPV 18 can accelerate the degradation of some PDZ-

containing proteins, including Akt, Dlg, and MAGI-1 (17, 25, 26, 144). In the absence of 

the full-length isoform, it may be that E6*, corresponding to the N-terminal half of E6, 

can mimic E6 through self-oligomerization and in this way down-regulate the expression 

levels of certain PDZ-proteins. Together, these data indicate that E6* is not simply a 

smaller version of E6, capable of carrying out only a subset of the biological activities 

executed by E6, but that E6* can act independently of full-length E6. 

The in vivo studies described here deepen and expand our understanding of E6*, 

and build on previous cellular data by showing that E6* activity can indeed reduce tumor 

growth in a xenograft nude mouse model (Figures 3 and 5). Interestingly, we found that 

tumor growth inhibition by E6* is greater in tumors derived from SiHa cells, which are 

HPV16-positive, than in tumors produced by C33A, which are HPV-negative (Figure 3B, 

5B 7A and 7B). This difference implies that E6* acts by interfering with the oncogenic 

activity of the full-length protein as well as through one or more HPV-independent 

mechanisms. Consistent with this idea, we found that E6* does indeed bind to the full-

sized isoform (Figure 7C) and inhibits its ability to accelerate degradation of p53 (Figures 

2D and 2E). Together, the biological activities of E6* reduce the growth rate of SiHa 

pE6* cells (Figure 7D), contributing to a reduced growth rate of E6*-expressing tumors. 

These findings are consistent with earlier studies showing inhibition of tumor growth in a 

xenograft model following expression of shRNA directed against E6 (148). In another 

study, the inhibition of both E6 and E7 expression led to reduced cell growth and 

invasive ability for SiHa cells both in vitro and in vivo (149). 
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E6* also displays HPV-independent anti-tumor activity, as it was able to reduce 

the size of tumors derived from HPV- C33A cells (Figure 5). Interestingly, this anti-

tumor activity is likely not p53-related because C33A cells express mutant p53 (140). In 

addition, we found that the over-expression of E6* in C33A cells does not affect cellular 

growth, at least in vitro (Figure 7D). In this case, therefore, it is likely that E6* engages 

one or more other mechanisms to reduce tumor growth. For example, activation of 

AMPK, a cellular metabolic sensor that modulates normal and cancer cell metabolism, 

inhibits cervical cancer cell growth through a decrease in FOXM1 levels. FOXM1 is a 

transcription factor reported to be abnormally upregulated in human cervical squamous 

cell carcinomas, and is involved in down-regulating p27 and p21 (150). Since the 

phenomenon of growth inhibition through decreased levels of FOXM1 by AMPK 

activation was observed in four different cervical carcinoma cell lines, including C33A 

(150), we speculate that perhaps oncogenic factors such as FOXM1 could play an 

important role in the mechanisms through which E6* inhibits growth of C33A-derived 

tumors in our in vivo system as well. In addition to this possibility, we note that the 

deregulation of Wnt/B-catenin signaling is prevalent in many cancers of epithelial origin, 

including cervical cancer (151, 152), and it may be that expression of E6* leads to 

Wnt/B-catenin dysregulation. Our future studies will focus on elucidating the 

mechanisms through which E6* mediates inhibition of tumor growth in both C33A and 

SiHa cells by identifying pathways affected by E6* expression. 

Epidemiological studies of actual cases of cervical cancer have shown differential 

splicing in the E6/E7 region for both HPV 16 and HPV 18 (153, 154), and demonstrated 

that patterns of HPV18 E6/E7 splicing associated with E6 variants can be related to 
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differences in cancer aggressiveness and prognosis for treatment. For example, cells 

isolated from tumors expressing the African variant of E6, which express relatively high 

levels of E6*, formed tumors in nude mice more slowly than did cells possessing the 

Asian-Amerindian variant of E6, which express relatively low levels of E6* along with 

high levels of E6 (154). In addition, the data reported by De la Cruz-Hernandez and 

coworkers linked E6* expression in patient samples to higher levels of p53, which is also 

consistent with our data.   

The role of E6* in the virus life cycle has not yet been established. It is known, 

however, that splicing of the E6/E7 transcript enhances E7 expression (134), suggesting 

that the potential for alternative splicing is of functional significance. Furthermore, 

HPV16 E6 alternative splicing in the epithelia depends on the level and presence of EGF, 

indicating that the splicing of E6 is not a random process (11). E6* may work by 

regulating the activity of E6 (and/or other HPV proteins such as E2), as well as cellular 

proteins through protein-protein interactions within the differentiating epithelium. Such 

questions await further research. In summary, we report here for the first time that the 

smaller isoform of E6, E6*, possesses anti-oncogenic activities that can be demonstrated 

in vivo. Importantly, these biological activities are distinguishable from those of E6. 

Future work will focus on the significance of these findings in the context of human 

cancers, where we will explore the possibility of mimicking or replicating the anti-

oncogenic activity of E6* in such a way as to provide therapeutic benefit.  Another 

direction for future research will be to determine what role E6* plays in the viral life 

cycle. 
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Abstract 

High-risk human papillomaviruses (HPV) cause nearly all cases of cervical 

cancer, as well as many types of oral and anogenital cancer. Alternative splicing 

increases the capacity of the HPV genome to encode the proteins necessary for successful 

completion of its infectious life cycle. However, the roles of these splice variants, 

including E6*, the smaller splice isoform of the E6 oncogene, in carcinogenesis are not 

clear. SiHa (HPV16+) and C33A (HPV−) cells were transfected with the E6* plasmid, and 

tandem mass taglabeled protein levels were quantified by mass spectrometry. Proteomic 

analyses identified pathways affected by E6* in both HPV+ and HPV− cells, and 

pathways were validated using in vitro methods. A total of 4,300 proteins were identified 

and quantified in lysates of SiHa and C33A cells with and without HPV16 E6* 

expression. SiHa and C33A cells expressing E6* underwent changes in protein 

expression affecting integrin signaling and mitochondrial dysfunction pathways, 

respectively. Subsequent experiments were performed to validate selected E6*-mediated 

alterations in protein levels. E6* modifies the expression of proteins involved in 

mitochondrial dysfunction and oxidative phosphorylation in C33A cells, and β-Integrin 

signaling in SiHa cells.  
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Introduction 

High-risk human papillomaviruses (HR-HPVs) cause cervical cancer in 

approximately 500,000 women annually, making it the third most common cancer in 

women worldwide (155, 156). Nearly half of these women will not survive. In addition to 

cervical cancer, HR-HPVs are the cause of malignancy in 60% of oropharyngeal cancer 

cases; 90% of anal cancer; 40% of vaginal, vulvar, and penile cancer; and cancer of other 

regions of the body such as the skin, colon, and rectum (157, 158). Numerous studies 

agree that the transformative properties of E6 and E7 are central to HPV-induced 

carcinogenesis, and the oncogenic roles of E6 and E7 have been well-characterized.

 Increased cellular oxidative stress has been proposed to increase the likelihood 

that the virus will integrate into the host genome (8). This event often leads to up-

regulation of E6 and E7 expression via disruption of the E2 gene, causing increased cell 

survival and division through the weakening of pro-apoptotic processes and cell-cycle 

regulation, respectively. Although E6 and E7 are both considered indispensable for 

transformation efficiency, E6 can, in some instances, immortalize cells in the absence of 

E7, indicating that E6-dependent mechanisms underlying cervical carcinogenesis are of 

vital importance (13, 14, 159).   

Interestingly, high- but not low-risk HPVs generate multiple transcripts of full-

length E6 mRNA via alternative splicing (11, 15). In mammalian cells, the HR-HPV E6 

oncoprotein is expressed as both full-length and spliced isoforms, with the smaller 

isoforms (generally referred to as E6*) corresponding approximately to the N-terminal 

third of the full-length protein. Relatively little is known about the smaller variants as 

compared to the full-length isoform, and E6 splicing patterns vary between HR-HPV 
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types (17, 18, 160). Alternative splicing enables the virus to expand its proteome from a 

modestly-sized genome, thereby increasing the genetic diversity and persistence of 

the virus against host immunity and raising its chance of survival (16).  

Previously, our group demonstrated that the overexpression of E6* reduced tumor 

growth by both HPV+ SiHa and HPV− C33A cervical carcinoma cells in a nude mouse 

xenograft model (160), raising the question of what changes in cellular pathway 

activation might contribute to the E6*-mediated decrease in tumor size. In the present 

study, proteomic analyses of HPV+ (SiHa) and HPV– (C33A) cervical carcinoma cells 

were used to demonstrate how E6* influences protein expression, and to examine the 

impact such modifications have on the activation of cellular pathways in vitro. 

Additionally, we sought insight into how E6* may affect tumor growth through its effects 

on these pathways. 

 

Materials & Methods 

Reagents 

Monoclonal antibodies against Kindlin-1 and polyclonal β-1 Integrin were 

obtained from Millipore Chemicon (Temecula, CA, USA), while those to RAS homolog 

gene family, member A (RHOA) and glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) were acquired from Cell Signal Technology (Beverly, MA, USA). α-Flag 

agarose, α-Flag-HRP antibodies, MG132, a reversible proteasome inhibitor, and α-β-actin 

were purchased from Sigma-Aldrich (St. Louis, MO, USA). Secondary fluorescent 

antibodies were obtained from LI-COR Biosciences (Lincoln, NE, USA). 
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Cell Culture 

SiHa and C33A cells, derived from human cervical carcinomas, were obtained 

from the American Type Culture Collection (Manassas, VA, USA). All cells were 

cultured in modified Eagle’s medium (MEM) (Thermo Fisher Scientific, Hanover Park, 

IL, USA) and supplemented with 10% fetal bovine serum (Invitrogen, Carlsbad, CA, 

USA), penicillin (100 μg/ml), and streptomycin (100 μg/ml) (Sigma-Aldrich, St. Louis, 

MO, USA). 

 

Plasmids, Transfection, & the Creation of Stable Cell Lines 

The pFlag-E6* (pE6*) plasmid was constructed by cloning E6*I in frame with the 

N-terminal Flag-tag and the C-terminal C-myc-tag into the pFlag-Myc CMV-22 vector 

(Sigma-Aldrich). Stable cell lines expressing pE6* or vector control (e.g. pFlag) were 

produced using the Mirus Bio transfection kit, TransIt-LT1 Transfection reagent (Thermo 

Fisher Scientific), to transfect the appropriate plasmids into SiHa and C33A cells, as 

directed by the manufacturer. G418 (neomycin, which is an aminoglycoside antibiotic) 

(500-800 μg/ml) was added to cells 48 h post-transfection and antibiotic selection was 

carried out for 3 weeks. Subsequently, expression of E6* was evaluated by immunoblot 

analysis. 

 

Immunoblot Analysis 

Approximately 106 cells were lysed in ~100 μl lysis buffer, and lysates were 

sonicated and separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis 

followed by protein transfer onto polyvinylidene difluoride membranes (Thermo Fisher 

Scientific). Membranes were blocked with 1% bovine serum albumin, and primary 
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antibodies (α-mouse or α-rabbit) in Trisbuffered saline and Tween 20 (TBST) were 

applied overnight at 4˚C. Membranes were washed with TBST the following day. 

Secondary Immunopure Antibodies (α-mouse or α-rabbit) conjugated to horseradish 

peroxidase (Thermo Fisher Scientific) were incubated with the membrane for 1 h. 

Chemiluminescent SuperSignal West Dura and Pico Maximum Sensitivity substrates 

were used to detect signals. In the case of fluorescent secondary antibodies (LI-COR, 

Lincoln, NE, USA), signals were detected using the Odyssey imaging system and relative 

densities were quantified against standard controls using ImageJ software analysis 

[v1.48; see reference (161)]. 

 

Microscopy 

Morphological analysis of SiHa and C33A cells was conducted using an Olympus 

IX70 inverted microscope (Olympus America, Center Valley, PA, USA). Cells were 

seeded at a density of 103 per 100×20 mm tissue culture-treated dish 3-7 days prior to 

imaging. Live images, using Hoffman Modulation contrast, were captured with a digital 

SPOT RT3™ camera and SPOT Insight software (SPOT Imaging, Sterling Heights, MI, 

USA). All images were acquired with uniform settings and magnification (×20). 

 

Mitochondrial Membrane Depolarization 

The Mito-ID membrane potential detection kit (Enzo Life Sciences, Farmingdale, 

NY, USA) was used as directed by the manufacturer. Mitochondrial membrane 

depolarization was estimated using the dual-emission mitochondrial membrane potential 

(MMP)-sensitive dye, cationic carbocyanine. Following treatment, cells were collected in 
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1X phosphate buffered saline and analyzed on a Becton-Dickinson FACSCalibur FLOW 

cytometer (Becton-Dickinson, San Francisco, CA, USA). The FL-1 channel detected 

depolarized mitochondria, indicated by green fluorescence, while the FL-2 channel 

gathered orange fluorescence from energized mitochondria. The data were collected and 

analyzed using Flow-Jo software (Ashland, OR, USA). 

 

Secreted Embryonic Alkaline Phosphatase Analysis 

Alkaline phosphatase activity was measured using the Great EscAPe SEAP 

Detection Kit provided by BD Biosciences (Clontech, Mountain View, CA, USA) as 

directed by the manufacturer. Lysates of SiHa and C33A cells were collected and a 

luminometer was used to detect signals produced by the phosphatase/substrate reaction. 

This measured activity was normalized against total protein concentration, which was 

acquired by a spectrophotometer plate reader. 

 

Proteomic Analysis 

Protein lysates were collected from ~5×106 cells from each of the cell lines (SiHa 

pFlag, SiHa E6*, C33A pFlag, and C33A E6*). Samples were sonicated, denatured, 

reduced, and alkylated as recommended by the directions provided with the TMT Mass 

Tagging Kit (Thermo Fisher Scientific,). Cell lysates were prepared, run on an LTQ-

Orbitrap Velos mass spectrometer (Thermo Fisher Scientific) and analyzed as previously 

described (162). Protein identification from each mass spectrometry raw data file was 

performed against the human library using Proteome Discoverer 1.2 software (Thermo 

Fisher) with a signal to noise threshold of 1.5. A false-discovery rate of less than 1% was 
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applied and detection included that of unique peptides only. A fold change cut-off value 

of 1.5, comparing one group of cells (e.g. E6* overexpressing cells) to a control group of 

cells, (e.g. pFlag vector-containing cells) was applied during Ingenuity Pathway 

Analyses. 

 

Comet Assay 

To measure nuclear DNA damage in SiHa and C33A cells, the Comet assay kit 

was obtained from Trevigen (Trevigen, Gaithersburg, MD, USA) and used according to 

the manufacturer’s instructions as previously described (163). Briefly, cells were lysed 

and gel electrophoresis was carried out under alkaline conditions. SYBR gold from 

Invitrogen was used to stain cells. One hundred DNA tails were photographed and 

analyzed on a BIOREVO fluorescence microscope (BZ-9000) (Keyence Corporation, 

Itasca, IL, USA) with Comet IV software (Perceptive Instruments Ltd., St Frances House, 

Bury St Edmunds, UK) using uniform magnification (×10 for counting; ×20 for 

photographs) and settings. 

 

Glutathione (GSH) Assay 

The GSH-Glo assay from Promega (Madison, Wisconsin) was used to quantify 

glutathione levels in SiHa and C33A cells. Cell lysates were placed in 96-well plates and 

GSH levels were detected by luminescence following a coupled reaction between firefly 

luciferase and GSH-S-transferase. Background luminescence was subtracted from that for 

GSH for each sample and the values were converted to molar GSH concentrations based 

on a standard curve. Total protein concentration was measured using a spectrophotometer 
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plate reader. The average GSH concentration from each sample well was divided by the 

same well’s corresponding total protein concentration to yield the reported ratio 

(μM/mg). 

 

Statistics 

All experiments were repeated at least three times with results reported as 

mean±standard deviation. Student’s t-test was used to analyze differences, and a p-value 

of less than 0.05 was considered significant. 

 

Results 

E6* Expression Alters Pathway Activation in Both HPV+ & HPV− Contexts 

Our first task in determining how E6* affects the cellular proteome was to 

overexpress E6* in both HPV+ and HPV− systems. Therefore, HPV+ SiHa and HPV− 

C33A cervical cancer cells were stably transfected with either the empty vector pFlag, or 

with pE6* to create clones with either very low/lack of (SiHa pFlag and C33A pFlag, 

respectively) or high (SiHa pE6* and C33A pE6*, respectively) E6* expression. 

Following selection of the E6* cells using G418, equal numbers of cells from the three 

clones with the highest levels of E6* expression were combined (SiHa pE6*; C33A 

pE6*) (Figure 1A and B, respectively).  

To determine the effect of HPV16 E6* on the levels of cellular proteins, and to 

thereby gain insight into how this small viral protein orchestrates cellular activities in the 

presence and absence of full-length E6, protein expression in SiHa pFlag, SiHa pE6*, 

C33A pFlag and C33A pE6* cells was evaluated using mass spectrometry followed by 
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pathway analysis as indicated by the scheme shown in Figure 2. Data were analyzed 

through the use of QIAGEN’s Ingenuity Pathway Analysis (164), (Redwood City, 

www.qiagen.com/ingenuity). 

Mass spectroscopy identified a total of 4,300 proteins. Based on a 1.5-fold change 

as the cut-off value, 253 proteins for SiHa cells and 328 proteins for C33A cells were 

selected for further IPA investigation. Together, the analyses for SiHa and C33A cells 

revealed a total of 75 pathways whose proteins exhibited statistically significant changes 

in expression (using a fold change cut-off value of 1.30=negative log of 0.05 as the p-

value) in the presence of E6*. The top 10 cellular pathways affected by E6* for SiHa and 

C33A cells are presented in Tables I and II, respectively. IPA revealed that integrin-

linked kinase signaling was the pathway most altered by E6* overexpression in SiHa 

cells, while oxidative phosphorylation (OXPHOS) and mitochondrial dysfunction 

pathways were influenced the most in C33A pE6* cells. 

 

E6* Expression in SiHa Cells 

Affects the β-Integrin Pathway & Cell Morphology  

IPA analysis suggested involvement of β-Integrin signaling, via ILK, in response 

to E6* overexpression in SiHa cells (Figure 3A). ILK is known to bind the cytoplasmic 

domain of β1-Integrin (165). To verify the biological effect of E6* on β-Integrin 

pathways in SiHa cells, immunoblot and phase-contrast microscopy analyses were 

conducted. Immunoblot data suggest that overexpression of E6* in SiHa cells increased 

cellular levels of β1-Integrin (Figure 3B), a finding consistent with the proteomic data. 

To confirm activation of β1-Integrin, we probed for the expression of kindlin-1, a co-

http://www.qiagen.com/ingenuity)
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stimulatory molecule of β1-Integrin. We found that kindlin-1 expression in SiHa pE6* 

cells was significantly (p<0.05) increased (Figure 3C), reinforcing the notion that E6* 

stimulates the β-Integrin signal cascade in SiHa cells, but not in C33A cells, consistent 

with the mass spectroscopic analysis.  

Notably, Kindlin-1 regulates cytoskeleton components by targeting Rho family 

GTPases (166). Therefore, E6*-expressing SiHa and C33A cells were evaluated for 

RhoA GTPase (RhoA) expression to further investigate the possible downstream effects 

of β-Integrin signaling. Figure 3D shows that SiHa E6* cells express reduced levels of 

RhoA as compared to SiHa pFlag cells (p<0.05). C33A pE6* cells also exhibited a slight 

decrease in RhoA levels compared to C33A pFlag cells, although statistical significance 

was not achieved. Interestingly, RhoA is implicated in cell motility (167) and cytoskeletal 

reorganization (168), suggesting that E6* might operate through kindlin-mediated RhoA 

expression to regulate cell shape (169) in SiHa cells. 

To test whether E6* causes changes in morphology of cervical cancer cells with 

active β-Integrin signaling, we analyzed SiHa and C33A cells by microscopic imaging 

using Hoffman Modulation contrast, which showed conspicuous morphological changes 

resembling cell spreading and outward membrane protrusion of SiHa E6* cells as 

compared to SiHa pFlag cells (Figure 4A), although these changes were not seen in C33A 

cells (Figure 4B). Collectively, the data presented here suggest that E6* may directly or 

indirectly affect key components of the integrin signaling pathway in SiHa, but not C33A 

cells. 
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Figure 1. Expression of E6*I (E6*) in HPV+ SiHa (A) and HPV– C33A (B) cells. Cells 

were stably transfected with Flag-E6*I or empty pFlag vector, and E6*-expressing clones 

were selected by resistance to G418. E6* expression of cells in pooled clones was analyzed 

by immunoprecipitation with α-Flag agarose, followed by detection using antibodies 

directed against Flag-Horseradish peroxidase. α-β-Actin antibodies were used to normalize 

for immunoprecipitation input.  
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Table I. Top 10 canonical pathways affected by E6* overexpression in SiHa cells. 

Ingenuity Pathway Analysis revealed that E6* expression in SiHa cells significantly 

influences multiple pathways including the Integrin-linked kinase (53) pathway.  
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Table II. Top 10 canonical pathways affected by E6* expression in C33A cells. 

Overexpression of E6* in C33A resulted in significant changes to several pathways, 

including the oxidative phosphorylation (OXPHOS) and mitochondrial dysfunction 

pathways.  
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Figure 2. Workflow for the relative quantitative analysis of SiHa and C33A cell lysates by 

mass spectrometry and Ingenuity Pathway Analysis. Proteins from cell lysates were 

reduced and alkylated for subsequent trypsinization, and the resulting peptides were 

labeled using multi-plex tandem mass tags (TMT) for quantitation of proteins from each 

sample. Labeled peptides were combined and fractionated using strong cation exchange in 

increasing concentrations of KCl solution. Sample enrichment was performed using Pierce 

C18 tips. Identical proteins from the different samples were separated and quantified 

according to isobaric tag labeling. Proteins identified by mass spectrometry were compared 

against the Proteome Discoverer human library. Raw Data files were uploaded to IPA and 

a fold-change of 1.5 was applied to filter insignificant changes in protein levels between 

cells expressing E6* and those not expressing E6*. Core analysis revealed that the levels 

of 581 proteins from SiHa and C33A cells were affected by E6* expression and that 75 

pathways were involved in these cellular proteomic changes. 
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Figure 3. Activation of β-Integrin signaling by overexpression of E6* in SiHa cells. A: 

Increased expression of several members of the β-Integrin signaling pathway in SiHa 

cells overexpressing E6* (pE6*) compared to SiHa pFlag cells; red color tones suggest 

an up-regulation of molecules compared to control cells. B: Immunoblot of SiHa cells 

showed increased expression of β1-Integrin in cells overexpressing E6* compared to 

controls. C33A cells expressing and not expressing E6* displayed no discernible 

difference in β1-Integrin levels. C: Increased expression of an upstream regulator of β-

Integrin signaling, Kindlin-1, was detected in SiHa pE6* cells compared to SiHa pFlag 

cells. C33A cells exhibited no measurable difference in Kindlin-1 expression. 
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Figure 3.  D: A decrease in Ras homolog gene family, member A (RhoA) expression, 

which is downstream of β1-Integrin and Kindlin-1 regulation, was also detected in SiHa 

pE6* cells, with the same trend observed in C33A pE6* cells. The relative density of three 

repeats is presented in the graphs, and error bars represent the standard deviations. 

*Significantly different at p<0.05. 
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Alkaline Phosphatase Activity is Significantly Reduced in SiHa, 

but not in C33A Cells Following E6* Overexpression 

In addition to the β-Integrin pathway analysis, several individual SiHa cellular 

proteins affected by the overexpression of E6* were noted; placental ALPP was one of 

these proteins. ALPP was of particular interest because this was one of the proteins with 

the highest fold-change; moreover, high ALPP is correlated with pluripotency and 

undifferentiated cell phenotypes, while low ALPP implies differentiation (170). 

Furthermore, the tumors of patients with decreased ALPP levels tend to progress more 

slowly than those with higher ALPP levels (171, 172). The secreted embryonic AP assay 

was utilized to investigate the effect of E6* on ALPP activity in SiHa cells, since 

embryonic AP is a truncated form of ALPP. Our data demonstrate that E6* reduces the 

activity of ALPP in HPV+ SiHa cervical cancer cells (p<0.05; Figure 5), which is 

consistent with a predicted association between lower serum ALPP levels and better 

clinical outcomes in certain cancers (173). However, ALPP activity was not greatly 

affected in HPV− C33A cervical cancer cells expressing E6*. 

 

E6* Impairs Mitochondrial Function in SiHa pE6* Cells  

& Affects the Mitochondrial Dysfunction Pathway in C33A Cells 

Proteomic analysis revealed that expression of E6* in C33A cells interferes with 

the overlapping mitochondrial dysfunction and OXPHOS pathways. 
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Figure 4. Morphological analysis of SiHa pFlag and SiHa pE6* cells by microscopy. A: 

Images of SiHa cells captured using Hoffman modulation contrast (×20) show differences 

in cell appearance between cells overexpressing E6* and those transfected with the empty 

vector. Top panels show SiHa pFlag cells approximately 3-6 days following seeding at a 

cell density of 103 while the bottom panels show images of SiHa pE6* cells acquired at the 

same time. SiHa pE6* cells can be described as exhibiting more cell spreading and 

membrane protrusion (black arrows) as compared to the more closely positioned SiHa 

pFlag cells. B: Images of C33A pFlag and C33A pE6* cell obtained under the same 

conditions (Hoffman modulation contrast at 3-7 days; (×20) as SiHa cells did not 

demonstrate cell spreading behavior.  
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Figures 6A and B illustrate that the proteins most perturbed due to E6* expression in 

C33A cells are involved in the electron transport chain (174), located in the inner 

mitochondrial membrane, and that these proteins play roles in both the mitochondrial 

dysfunction and OXPHOS pathways. Since mitochondrial function is linked to the 

maintenance of mitochondrial membrane depolarization (175), we measured MMP in 

SiHa and C33A cells by the Mito ID assay and flow cytometry. 

 Mito ID analysis demonstrated a modest increase in mitochondrial membrane 

depolarization in C33A pE6* cells compared to C33A control cells. Mitochondrial 

membrane depolarization was detected by the FL-1 channel and is indicated by the 

migration of carbocyanine dye out of the organelle (Figure 7A, left bars and histogram). 

Additionally, our data suggest an increase in energized mitochondria in C33A pE6* cells 

compared to controls, as shown by the FL-2 channel (Figure 7A, right bars and 

histogram). The FL-2 channel detects orange fluorescence caused by dye aggregation in 

mitochondria with an intact membrane potential, therefore implying an increase in 

energized mitochondria. Surprisingly, although proteomic analysis did not detect changes 

in the expression of proteins involved in mitochondrial dysfunction in SiHa pE6* cells as 

compared to SiHa controls, Mito ID analysis of the MMP in SiHa cells demonstrated that 

mitochondrial membrane depolarization was modestly more pronounced in SiHa pE6* 

cells compared to SiHa pFlag cells (Figures 7B, left bars and histogram). This finding is 

indicated by an increase in membrane permeability and a reduction in dye aggregation in 

the organelle (FL-1 channel). Furthermore, SiHa pE6* cells exhibited decreased orange 

fluorescence (FL-2 channel, right bars and histogram), implying a less energized 

population of mitochondria compared to SiHa pFlag cells. 
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Figure 5. E6* overexpression reduces alkaline phosphatase (AP) levels in SiHa but not 

C33A cells. Cell lysates were collected to measure AP levels in triplicate, and the Great 

EscAPe SEAP Detection Kit by BD Biosciences was used to detect E6*-mediated changes 

in AP expression in cells. When AP was normalized against protein concentration, we 

found that AP levels in SiHa pE6* cells were greatly reduced compared to SiHa pFlag 

cells. No decrease in AP was detected in C33A cells. The relative light units of triplicate 

measurements are presented in the graphs, and error bars represent the standard deviations. 

*Significantly different at p<0.05.  
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Figure 6. Expression of E6* in C33A cells affects mitochondria. A: Pathway analysis 

comparing over-/under-expression of proteins in C33A pE6* cells compared to C33A 

pFlag cells indicates considerable involvement of the mitochondrial dysfunction pathway 

in E6*-expressing C33A cells. Molecules affected by E6* in C33A pE6* cells include 

those associated with the protein complexes of the electron transport chain within 

mitochondria, with the red color tones denoting increased expression in C33A pE6* cells.  
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Figure 6. B: The oxidative phosphorylation canonical pathway, which is closely related to 

the mitochondrial dysfunction pathway, also experienced changes in protein expression 

due to E6* expression in C33A cells. Consistent with mitochondrial dysfunction pathway 

analysis, the oxidative phosphorylation pathway demonstrated increased levels of 

molecules involved in the electron transport chain of mitochondria.  
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Figure 7. Mitochondrial changes following E6* expression. Analysis of mitochondrial 

dysfunction by Mito ID assay and flow cytometry. Mito ID detects changes in 

mitochondrial activity. A: E6* caused greater depolarization of mitochondria in C33A 

pE6* cells compared to those in C33A pFlag cells. The FL2 channel, on the other hand, 

detected a substantial shift in orange fluorescence, inferring increased dye aggregation and 

suggesting that a large population of mitochondria in C33A pE6* cells were energized. 

Mean Fluorescence Intensity .  
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Figure 7. Mitochondrial changes following E6* expression. Analysis of mitochondrial 

dysfunction by Mito ID assay and flow cytometry. Mito ID detects changes in 

mitochondrial activity. B: Mitochondrial membrane depolarization in SiHa pE6* cells was 

augmented compared to SiHa pFlag cells, which is demonstrated by the detection of 

increased green fluorescence in the FL1 channel. The increased mitochondrial membrane 

depolarization in SiHa pE6* cells was accompanied by a decrease in energized 

mitochondria, as indicated by a decrease in the orange fluorescence signal detected by the 

FL2 channel. Triplicate measurements of the mean fluorescence intensity of carbocyanine 

were performed to generate the bar graph. The mean fluorescence intensity of C33A pFlag 

and SiHa pFlag cells was set at 100%. Error bars represent the standard deviations. 

*Significantly different at p<0.05. MFI: Mean fluorescence intensity.  
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Increased DNA Damage in C33A E6* and SiHa E6* Cells 

Accompanies a Reduction in GSH Levels 

Increased reactive oxygen species (ROS) due to mitochondrial dysfunction 

causes cellular oxidative stress and DNA damage (163, 176). Therefore, markers of 

oxidative stress, such as a decrease in expression of antioxidant enzymes, or the presence 

of DNA damage, can be harbingers of a cell population’s inability to manage oxidative 

stress that surpasses the tolerance threshold. We, therefore, employed the comet assay to 

measure DNA damage and assessed GSH levels to estimate antioxidant defense in E6*-

expressing SiHa and C33A cells. 

 Figure 8A shows representative images from the comet assays performed on SiHa 

and C33A cells transfected with pFlag or pE6*. We found that SiHa and C33A pFlag 

cells had approximately the same amount of DNA damage and an equivalent distribution 

of cells with minimal to medium migration patterns (scores of 50-100 or 100-150, 

respectively) (Figure 8B). However, when the E6*-expressing cells were compared with 

each other and to their pFlag controls, different trends emerge. SiHa pE6* cells displayed 

the most severe DNA damage among the four lines tested, with greater than ~60% of the 

cell population displaying medium DNA damage (score of 100-150), and the remaining 

40% divided between undamaged and minimal damage (scores of 0-50 or 50-100, 

respectively). In contrast, the DNA damage observed in SiHa pFlag cells was divided 

evenly into thirds between the varying levels of comet tail lengths. Surprisingly, C33A 

pE6* cells displayed slightly less medium DNA damage than did the C33A control cells, 

although C33A pE6* cells overall suffered more minimal to medium DNA injury than 

did the C33A pFlag cells.  
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Figure 8. E6*-mediated changes in DNA damage and glutathione (GSH) levels. A: 

Measurement of DNA damage in SiHa and C33A cells by the comet assay. Representative 

images from comet assay showing variations in tail length between E6*-expressing cells 

and control cells. SiHa pE6* cells displayed the most severe DNA damage of all the groups. 

B: Percentage of cells with different degrees of DNA damage. SiHa pE6* and C33A pE6* 

cells exhibited comparable levels of DNA damage overall. However, a greater percentage 

of SiHa pE6* cells had more severe DNA damage than did SiHa pFlag, C33A pFlag, and 

C33A pE6* cells. C33A pE6* cells suffered more DNA injury compared to C33A pFlag 

cells, although the distribution of the extent of DNA damage was different. C: 

Measurement of GSH level in SiHa and C33A cells by GSH-Glo assay. Although SiHa 

pFlag cells displayed more glutathione than C33A pFlag cells, E6* appeared to reduce the 

amount of GSH in both SiHa and C33A cells proportional to their initial levels of GSH. 

Triplicate measurements of GSH concentration were performed to generate the graph, and 

error bars represent the standard deviations. *Significantly different at p<0.05.  
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Interestingly, SiHa and C33A pE6* cells, with more DNA damage compared to 

their controls, displayed significantly lower GSH levels (Figure 8C; p<0.05). Therefore, 

the findings presented herein further endorse the inverse relationship between cellular 

DNA damage and antioxidant capacity. Of note, GSH levels in C33A pE6* cells were the 

lowest of all four groups of cells. This observation is congruent with the fact that C33A 

pE6* cells are the most likely to display DNA damage (8B), although the extent of this 

DNA damage is less severe in these cells compared to the other three cell lines. 

 

Discussion 

Over the years, major discoveries in virology and oncology have allowed us to 

grasp the transformative impact of the E6 oncoprotein. Although a wealth of information 

exists regarding the roles of full-length HPV16 E6 in pathways involving apoptosis (136, 

137, 177-179) and the mechanisms used by this virus to evade the immune system (180), 

much less is known of the activities of its splice variants that are present only in HR-

HPVs, collectively known as E6*.  

In this report, we analyzed the proteomes and cellular pathways of HPV+ and 

HPV− cervical carcinoma cells expressing HPV16 E6* to gain a better understanding of 

the anti-oncogenic mechanisms by which E6* reduces tumor formation, as previously 

reported (160). SiHa and C33A cells were selected as models to determine how E6* 

interacts with its cellular host in the presence and absence of other HPV proteins. 

Because these two cell lines are derived from very different patients with cervical 

carcinoma and differ in both HPV status and p53 level (C33A has mutant p53 and other 

structural abnormalities) (164), we expected to see variations in the changes to the 
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cellular proteome observed following expression of E6*. Indeed, proteomic analysis 

revealed that E6* produces unique effects in different cellular environments. For 

example, the top canonical pathways affected by E6* in SiHa cells included the ILK 

pathway, whereas mitochondrial dysfunction and OXPHOS pathways were most affected 

in C33A cells (Tables I and II). 

Proteomic analysis demonstrated that the β-Integrin pathway via ILK was 

activated in SiHa cells (Table I, Figure 3A), but not in C33A cells that expressed E6* 

(Table II), and immunoblotting analysis suggested that the level of β1-Integrin in SiHa 

cells was increased (Figure 3B). The integrin family, in general, mediates interactions 

between the extracellular matrix (ECM) and cells, as well as cell-to-cell communications. 

Kindlin-1, a co-stimulatory molecule of β1-Integrin inside-out signaling (as well as a 

mediator for outside-in communication) (181), was also up-regulated (Figure 3C), and 

the increase in its expression is consistent with the amplification of β1-Integrin 

expression. Kindlin-1 is known to regulate actin cytoskeleton remodeling during cell 

translocation, circumferential actin assembly and cell spreading via Rho GTPase 

signaling (166). Therefore, we probed further downstream of the β-Integrin pathway and 

found that E6* expression in SiHa cells reduced RhoA GTPase expression, although this 

change was not as prominent in C33A pE6* cells (Figure 3D). Importantly, RhoA 

operates under the regulation of numerous molecules to execute cellular changes. 

Changes in RhoA expression mediated by kindlin-1 are reported to assist in actin 

cytoskeleton remodeling and the formation of stress fibers (166). Of note, RhoA is 

capable of integrating and transducing cell-shape and soluble growth-factor cues into 

regulatory signals that influence cell lineage (169), which may induce the expression of 
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early differentiation markers (166). Interestingly, our data suggested that E6* may also 

slightly increase RhoA levels in C33A pE6* cells, although direct stimulation of RhoA 

by Kindlin-1 in these cells was lacking (Figure 3C). This may reflect subtle, yet 

significant, differences in the upstream molecules controlling RhoA activity and 

subsequent cellular behavior. For example, it has been shown that changes in Rho 

activity mediated by kindlin are distinct from Rho activity mediated by G protein-coupled 

receptor or tumor necrosis factor (182-184). Such complexity may be necessary for 

ubiquitous, downstream molecules. Clearly, an E6*-mediated increase, via ILK, in ECM 

interactions and in cell–cell communication would have the potential to reduce tumor 

growth in SiHa cells. 

The involvement of these particular proteins from the β-Integrin signaling 

pathway in our system inferred that cell shape could be affected by the expression of E6*. 

Indeed, morphological analysis allowed the detection of a visible difference between 

SiHa pE6* cells, with reduced RhoA and increased β1-Integrin expression, and SiHa 

pFlag cells (Figure 4A). These morphological observations are harmonious with previous 

research linking cell spreading and outward membrane protrusion to reduced RhoA 

activity and cell migration (174), and these observed differences might be attributed to 

changes in expression of β-Integrin pathway components mediated by E6*. 

The expression of E6* in SiHa cells may, indeed, affect cell differentiation factors 

by modifying the expression pattern of β-integrin signaling molecules. According to our 

proteomic data and supporting experiments, ALPP levels and activity were significantly 

reduced in SiHa pE6* cells due to the increased expression of E6* (Figure 5). ALPP is a 

ubiquitous membrane-bound enzyme and is categorized into a family of four isoenzymes, 
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each with different functions and biochemical properties. Some ALPPs can be found in 

normal, as well as cancerous tissues (170). High ALPP is correlated with pluripotency 

and undifferentiated cell phenotypes, whereas low ALPP activity implies differentiation 

(170). Moreover, ALPP is currently most recognized and valued as a prognostic factor in 

cancer (such as ovarian and colorectal carcinomas) (171, 172), with a decrease in ALPP 

being defined as a positive indicator of patient survival. A reduction in ALPP activity is 

reported to accompany overexpression of the tumor suppressor protein phosphatase 2 

(PP2A) (185). Although our investigation did not include validation of an E6*-mediated 

increase in PP2A, a previous study reported the co-localization of β1-Integrin and PP2A 

(186). Furthermore, one investigation reported that the up-regulation of colonic ALPP in 

response to inflammation might serve as a protective mechanism against oxidative stress 

(187), implying that the down-regulation of ALPP might render cells more susceptible to 

insult. Together, these observations, as well as those studies classifying certain forms of 

ALPP as stem cell markers and a target of developmental and differentiation processes 

(170, 185), make it a fascinating subject of study in the context of cancer research. 

Therefore, the investigation of their expression in diverse conditions could prove 

important, and this study may assist in such efforts. 

The mitochondrial dysfunction and OXPHOS pathways are closely related and 

are profoundly affected by the overexpression of E6*, particularly in C33A cells (Figure 

6A and B). The study of both pathways led to the conclusion that electron transport chain 

complex molecules are highly activated in E6*-expressing C33A cells compared to 

control C33A cells. Our data showed that mitochondria in C33A pE6* cells experienced 

more depolarization, and were more energized compared to those in C33A pFlag cells 
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(Figure 7A). It is possible that the up-regulation of electron transport chain molecules, as 

seen in C33A pE6* cells, could reflect the mitochondria’s attempt to adapt to the stresses 

imposed by E6*-mediated increases in ROS production (163). Some researchers 

speculate that certain conditions in the mitochondria (such as alkalization) can cause 

transient depolarization, which is repetitive and reversible (188), leading to suppression 

of ROS generation (189). In fact, protective mechanisms engaging the mitochondria have 

been described in other types of epithelial-derived cancer (190). 

We were somewhat surprised to find that mitochondrial injury was greatest in 

SiHa pE6* cells, as determined by Mito ID analysis (Figure 7B), since significant 

changes in the associated protein levels were not detected by our proteomic data when 

SiHa pE6* cells were compared to SiHa controls. It is possible that the expression of E6* 

might stress SiHa cells enough, through increased ROS (163), to cause harm to 

mitochondria that is beyond repair. Therefore, it is reasonable to suppose that such cells, 

experiencing oxidative stress and continued ROS production, could undergo sustained 

MMP (188), rather than less-damaging transient depolarization. Therefore, these two 

mitochondrial mechanisms might contribute to the different effects E6* has on MMP in 

SiHa and C33A cells. 

The mechanisms regulating MMP fluctuations in mitochondria have not been 

fully elucidated because the dynamics controlling the depolarized and energized states 

are highly complex. According to the mitochondrial life-cycle model summarized in 

Figure 9 [see (191, 192)], our data may suggest that mitochondria in C33A pE6* 

experience transient, reversible depolarization, resulting in a larger population of re-

energized mitochondria, whereas those in SiHa pE6* cells may suffer more harm by 
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sustained depolarization. The differences detected in mitochondrial depolarization 

between the SiHa and C33A cell lines may help explain cell type-specific vulnerabilities 

to E6*-mediated increases in oxidative stress. Our studies suggest that understanding the 

role of mitochondrial dysfunction in cancer is essential to the study of cancer cell 

behavior and possibly overcoming therapy resistance (193). 

Boland et al. describe several types of mitochondrial dysfunction that can occur in 

response to cell stress: i) loss of MMP leading to membrane depolarization, ii) opening of 

mitochondrial membrane pores causing mitochondrial membrane permeability; iii) 

altered expression of molecules in the electron transport chain (174), resulting in 

defective respiration and oxygen consumption; iv) an imbalance in the expression of 

mitochondrial versus nuclear proteins, leading to initiation of the unfolded mitochondrial 

protein response; v) oxidative damage of the mitochondrial genome; and vi) 

inappropriate release of cytochrome c, causing pre-mature apoptosis (193). Our 

proteomic studies, and the subsequent experiments performed to validate those results, 

detected the first three out of these six mechanisms of mitochondrial dysfunction, 

although many of them overlap. For example, defective respiration might be associated 

with mitochondrial membrane depolarization, since the proton gradient is coupled to the 

redox reactions occurring along the electron transport chain and is dependent on the 

MMP. This premise is further illustrated by our own data, that show involvement of both 

the OXPHOS and mitochondrial dysfunction pathways in C33A cells under the stresses 

of E6* expression. 
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Figure 9. The mitochondrial life cycle. This schematic of the mitochondrial life cycle was 

adapted from Hyde and Twig et al. (191). E6*-mediated changes in mitochondrial function 

may be cell-specific and may activate different mechanisms affecting cell survival and cell 

death in SiHa and C33A cells. Mitochondrial dynamics are highly complex and determine 

the condition and fate of mitochondria within a cell. Mitochondria in the same cell can be 

at different stages of the mitochondrial life cycle. Among the multiple states mitochondria 

can assume, mitochondrial membrane depolarization is key and may be reversible. MMP: 

Mitohondrial membrane permeabilization.  
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While our study did not test the possibility that oxidative stress caused by E6* 

induces mitochondrial DNA damage (see mechanism v above), our data do show that 

E6* overexpression increases nuclear DNA damage in both SiHa and C33A cells, with 

the damage more severe in SiHa E6* cells (Figure 9A and B). Intriguingly, nuclear DNA 

damage has been linked to mitochondrial dysfunction in chronic disease (194). Thus, we 

could speculate that the mitochondrial dysfunction detected by Mito ID in SiHa pE6* 

cells (Figure 7B) may correspond to the increased severity of DNA damage. Because the 

cell is dependent on antioxidants for protection from oxidative stress, GSH is essential for 

cell survival. Not surprisingly, GSH levels were affected by E6* expression in both SiHa 

and C33A cells (Figure 9C), as cellular oxidative stress is well known to deplete the GSH 

level. However, researchers are now realizing that a reduced GSH level may also be an 

early marker of cell death and essential to apoptosis (195). The same reports also state 

that GSH is accompanied by cytochrome c release, suggesting the presence of a more 

permeable mitochondrial membrane. Furthermore, studies reveal that GSH interacts with 

the cytoskeleton through glutathionylation, causing changes in organization and function 

(196, 197). However, more research is required to investigate whether E6* facilitates 

interactions between antioxidant and cytoskeleton components. In any case, the reduction 

in GSH seen following E6* overexpression in both SiHa and C33A cells has the potential 

to predispose the expressing cells to DNA damage and to apoptosis, thereby potentially 

contributing to reduced tumor growth. 

Additionally, it might be the fact that the increased level of DNA damage in 

C33A pE6* cells, in particular, reaches a degree of chronic oxidative stress that depletes 

GSH stores to a greater extent (198). Because the GSH level in C33A cells is lower than 
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that in SiHa cells this observation may highlight the influence and efficacy of additional 

intact compensatory antioxidative stress mechanisms in C33A cells other than those 

involving GSH (199). These mechanisms may be more intrinsically linked to 

mitochondria, as discussed earlier, evoking mitohormetic responses (200). 

Overall, our pathway analysis suggests that the mechanisms by which E6* 

reduces tumor growth in SiHa cells may include an increase in the activation of β1-

Integrin-mediated pathways, thereby increasing ECM and cell–cell communication; 

reduction of ALPP expression, thus enhancing differentiation and sensitivity of 

expressing cells to insults; changes in mitochondrial function and an increase in more 

severe DNA damage, thereby compromising cell viability; and a decrease in the 

protective molecule, GSH. E6* may reduce tumor growth in C33A cells by increasing the 

amount of moderate DNA damage, consequently forfeiting cell viability (but to a lesser 

extent than the impact of DNA damage to SiHa cells). Overexpression of E6* in C33A 

cells also reduces the level of GSH, which might activate other protective responses not 

triggered in SiHa cells, and involve mitochondrial dysfunction pathways. Differences in 

the cellular response to E6*, as exemplified here, may also help explain why SiHa pE6* 

tumors exhibited a greater growth reduction than did C33A pE6* tumors, as previously 

reported (160). This investigation has, therefore, added to our knowledge of the cellular 

pathways through which HPV16 E6* influences cell behavior, while suggesting possible 

avenues for explanation into novel and effective therapeutic options. 
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CHAPTER FOUR 

DISCUSSION 

 

Summary of Findings 

High-risk papillomavirus infections remain a significant cause of morbidity and 

mortality, both within the U.S. and worldwide. Although three HPV vaccines are now 

available (Cervarix, Gardasil, and Gardasil 9), their projected impact will not become 

fully apparent for 20-30 years, since most women become infected in their late 

teens/early twenties, while cancer appears in their late forties/early fifties. Furthermore, 

with the introduction of the 9-valent vaccine, ~30% of HR-HPVs with the potential to 

cause cancer are not covered. For these reasons and others, the development of novel and 

effective therapeutic interventions for established cases of cervical cancer remains an 

urgent and unmet need. Importantly, this need remains profoundly disproportionate 

worldwide amongst individuals of diverse populations. The data presented here, as well 

as other novel breakthroughs in virology pertaining to virus-associated cancers (e.g. 

EBV, KSHV, HBV, CMV, and MCPyV), continue to underscore the importance of 

persistent research in clarifying how viruses interact with and usurp host molecules and 

pathways to enhance completion of the infectious cycle and carcinogenesis. 

In the experiments described in chapter two, we presented data demonstrating 

that, of the multiple E6* splice variants from HPV16, E6*I (E6*) is produced at greater 

levels compared to the E6 and E6*II splice products in our HPV+ CaSki and SiHa cell 

systems. But E6* was significantly lower in SiHa cells compared to CaSki cells, which 

could be related to the aggressiveness of the cell lines. We also found that expression of 

E6* increases the levels of caspase 8, p53, and E-cadherin. Furthermore, E6* sensitized 
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SiHa cells to TNF-induced apoptosis, which corroborates previous experiments using 

U2OS cells. These findings are also consistent with earlier findings that E6* may act 

antagonistically to its parent molecule, the full-length E6 oncoprotein (20). The 

involvement of such molecules suggests that E6* is capable of impacting apoptotic, cell 

cycle, and extracellular matrix signaling mechanisms, which are essential for normal 

cellular function, and implies a link to cell transformation processes. 

Based on our cellular results, we predicted that E6* would reduce tumor growth 

in vivo. As anticipated, we found that SiHa cells overexpressing E6* produced smaller 

tumors in mice than did SiHa pFlag cells. Consistent with these results, increased levels 

of caspase, p53, and E-cadherin levels) were also observed. Surprisingly, the 

overexpression of E6* in HPV- C33A cells also produced smaller tumors than did the 

C33A pFlag cells.  This particular result was unanticipated yet intriguing, because E6* 

was unable to increase the levels of caspase 8, p53, or E-cadherin in HPV- C33A cervical 

cancer cells. In comparing the sizes of the tumors generated by SiHa and C33A E6* cells 

and their controls, we found that there was less of a difference in size between the C33A 

control tumors and the corresponding E6* tumors than between the SiHa E6* and SiHa 

pFlag tumors; that is, we found that E6* reduced tumor size in SiHa cells to a greater 

degree. 

 Confirmatory RT-PCR was performed on tissue harvested from the mice, which 

showed that E6* expression had been maintained within the cells during in vivo passage, 

and that this E6* expression could be linked to reduced tumor formation. Further 

histologic examination of the xenograft tissue by haematoxylin-eosin staining revealed 

that SiHa control cells exhibited larger necrotic regions than did tissue derived from SiHa 
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E6*-expressing cells, though this difference was not detected between the C33A tumors. 

In addition to the difference in histologic organization, SiHa E6* tumors demonstrated a 

decrease in VEGFR-1 expression, indicating that E6* has a permeating influence on the 

SiHa tumor phenotype, since no difference in VEGFR-1 expression in C33A tumors was 

detected.  

Co-immunoprecipitation experiments confirmed that E6* was able to bind the 

full-length E6 molecule, thus disrupting its cancer-promoting functions. This is consistent 

with the SiHa E6* cells exhibiting a significantly decreased growth rate compared to 

SiHa pFlag cells, C33A E6*, and C33A pFlag cells (C33A cells naturally lack viral 

proteins including full-length E6). This data is significant, because it is the first report 

that HPV16 E6* can impact tumor growth using an in vivo model, and suggests that HR-

HPV have mechanisms available that can control tumor formation by impeding cellular 

growth rates and interacting to oppose actions of the E6 oncoprotein. Importantly and 

surprisingly, some of these E6* activities are independent of the presence of the E6 

oncoprotein in their reduction of tumor growth, thereby demonstrating the versatility of 

E6* in influencing cellular anti-oncogenic mechanisms in various milieus, a desired 

quality for cancer therapeutics.  

In chapter three, we utilized proteomic analysis by mass spectrometry to detect 

differences in cellular protein expression resulting from E6* overexpression in SiHa and 

C33A cells. We observed that of the many pathways affected by E6* in SiHa cells, the β-

Integrin signaling pathway was the most prominent. Up-regulation of β-Integrin 

activation in SiHa E6* cells was confirmed by immunoblot, which demonstrated 

increased expression of β-Integrin in SiHa E6* cells as compared to SiHa control. This 
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increased expression was not seen in the C33A system. SiHa cells were also probed for 

Kindlin-1 expression, since Kindlin-1 is a co-stimulatory molecule of β-Integrin. These 

findings verified integrin pathway activation. The expression of RhoA, a downstream 

signaling molecule of the β-Integrin pathway, was decreased in SiHa E6* cells as 

compared to controls. These findings were harmonious with cell morphology 

experiments showing SiHa E6* cells to exhibit more cell spreading and membrane 

protrusion, and are characteristic of an inhibited capacity to proliferate mediated by 

RhoA (201). Once again, no difference in the morphology or expression of β-Integrin 

signaling components were observed despite low basal levels of RhoA between the C33A 

pFlag and C33A E6* cells. ALPP levels in SiHa E6* cells were noted to be significantly 

reduced, which is also consistent with the potential role of E6* in cell transformation.  

Although components of the β-Integrin signaling pathway were not significantly 

altered in E6*-expressing C33A cells, the oxidative phosphorylation and mitochondrial 

dysfunction pathways were profoundly affected. In fact, mitochondrial membrane 

depolarization was increased in C33A E6* cells as compared to C33A control cells. In 

addition to this disturbance of mitochondrial electrophysiology, IPA analysis detected 

increased expression of protein complexes of the electron transport chain, which might 

reflect the organelle’s attempt to compensate for the dysfunction of other critical cellular 

mechanisms. Our data describing increased DNA damage in C33A E6* and SiHa E6* 

cells, accompanied by a reduction in GSH levels (202), supports this hypothesis. 

Interestingly, proteomic analysis did not detect significant changes in the mitochondrial 

or oxidative phosphorylation proteins in SiHa cells. However, in vitro experiments 

showed mitochondrial membrane depolarization to be more pronounced in SiHa E6* 
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cells as compared to the control group, with the SiHa E6* cells experiencing more DNA 

damage along with reduced GSH levels. This data agrees with previous findings from our 

laboratory that linked E6* expression with ROS generation and oxidative stress (163). 

Importantly, these findings elucidate potential mechanisms that may be targeted by small 

molecular inhibitors mimicking the anti-tumor properties of E6*. 

 

Conclusions 

In the studies preceding the data presented here, HPV16 E6* was known to bind 

to and stabilize procaspase 8, thus opposing the action of the parent molecule to 

accelerate the degradation of the apoptotic protein (18). The importance of the ratio of 

expression between the full-length E6 and E6* on extrinsic apoptotic pathways was also 

determined, and led to the discovery that E6* sensitizes U2OS, NOK, and CaSki cells to 

TNF-mediated apoptosis through the formation of a pseudo-death-inducing signaling 

complex (135). Williams et al. demonstrated that this E6*-induced cell death is, in part, 

mediated by increased ROS generation and a decrease in cellular antioxidants such as 

superoxide dismutase 2 and glutathione peroxidase (163). This investigation stressed the 

important link between oxidative stress and virus-induced mutagenesis, which ultimately 

contributes to damaged cellular DNA and favorable conditions for HPV DNA integration 

into the host genome (163). Previous studies also reported HPV18 E6* as capable of 

inhibiting E6-mediated p53 degradation by binding to E6, a similar interaction between 

HPV16 E6 and E6* as described in chapter two (25, 26). More recently, the same group 

reported direct degradation of cellular proteins by E6* in the absence of other viral 

proteins, agreeing with our observation of E6* activity in the C33A model (17). Other 
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studies also contributed to our current knowledge of E6*. Examples include its strict 

association with cancer-causing types of HPVs (203, 204) and its acceleration of cell 

differentiation in normal oral keratinocytes (unpublished data from our lab). However, 

this body of work describing the activities of E6* is much smaller than that available for 

the full-length E6 oncoprotein.  

To expand our understanding of this important splice variant, therefore, we sought 

to determine: 1) Whether the previously reported anti-oncogenic qualities of E6* could 

be detected in an in vivo context? This question was addressed affirmatively in chapter 

two. 2) What cellular mechanisms are engaged by E6* to produce the anti-tumor effect, 

and do the effects of E6* on tumor growth match the molecular patterns? This question 

was answered in chapters two and three. 

In summary, the results from the experiments supporting this dissertation show 

for the first time that E6* reduces the in vivo formation of tumors by HPV16+ SiHa cells 

and HPV- C33A cells. Furthermore, we found that the mechanism principally driving the 

E6*-mediated reduction in SiHa E6* tumor size involves the β-Integrin signaling 

pathway. Conversely, the E6*-mediated growth reduction in C33A E6* tumors is 

primarily due to E6* engaging with mitochondrial dysfunction and oxidative 

phosphorylation mechanisms. Thus, the overall findings of these studies state that HPV16 

E6* overexpression reduces SiHa and C33A tumor growth by engaging the β-Integrin 

signaling pathway and the mitochondrial dysfunction and oxidative phosphorylation 

pathways, respectively. 
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Future Directions 

In this dissertation, we established that the overexpression of E6* in cervical 

cancer cells influences distinct cellular mechanisms, such as the β-integrin signaling and 

mitochondrial dysfunction and oxidative phosphorylation pathways, to slow the 

formation of SiHa and C33A tumors in vivo, respectively. To date, we are the first to 

describe these phenomena linking E6* directly to HR-HPV carcinogenesis.  

Intriguingly, Tseliou et al. newly reported that silencing RhoA reduced the growth 

of human CMV (HCMV)-infected and uninfected glioblastoma cells. Glioblastoma cells 

are taken from gliomas, and glioblastoma multiforme is the most aggressive and most 

common of all the glial tumor types and arises from astrocytes in the central nervous 

system (CNS).  These researchers observed that Rho GTPases are important in 

determining glioblastoma cell migration, proliferation, and morphology, as demonstrated 

here with SiHa and C33A cervical carcinoma cells (201). This finding corresponds to the 

RhoA and cell morphology data presented here (see chapter three) and suggests a vital 

connection between the virus’ ability to hijack cellular processes throughout 

carcinogenesis and the host cell’s response to its environment via extracellular and 

intracellular cues. Additionally, researchers are now detecting HR-HPVs in glioblastoma 

samples (205) though this relationship is controversial. Therefore, it may be beneficial to 

use specific approaches, such as a Rho knockdown model, to determine how this might 

affect HPV16 E6/E6* levels within cervical cancer cells. In observing these 

complementary findings in two very different virus-host systems we obtain only a 

preview of the great utility of continued, rigorous research on all virus-associated 

cancers. However, among these malignancies, HPV-mediated cervical cancer represents 
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one of the best-defined models of virus-mediated carcinogenesis, and any improvements 

in our understanding of how to treat it will be far more meaningful and relevant than 

redundant, as illustrated here. 

The Neurofibromatosis type 2 tumor suppressor protein (NF2) is also implicated 

in the growth of CNS tumors. In fact, inactivation of the NF2 gene results in the 

autosomal dominant neurofibromatosis syndrome, which is characterized by the 

development of Schwannomas. Loss of NF2 leads to decreased contact inhibition and a 

gain of anchorage independence, which is crucial to promote the invasion of malignant 

cells (206). NF2, also called Merlin, belongs to a large family of proteins containing the 

FERM domain, resembling the kindlin protein family (207). The FERM domain localizes 

proteins to the plasma membrane and can be found in cytoskeletal-associated proteins 

linking the cell membrane to the cytoskeleton. Though Merlin has been documented to 

regulate cell proliferation and differentiation, it can also control antiangiogenic factors 

(208) and, if participating in the mechanisms here, may be able to partly explain E6*-

mediated changes in tumor VEGFR-1 expression. Merlin has also been linked to the 

Hippo signaling cascade, which was another pathway that appeared in our proteomic 

analysis (although the fold changes in the expression of its constituents were not 

consistently significant). While known for regulating organ size in animals, the Hippo 

pathway promotes cell death and differentiation and inhibits cell proliferation, as well 

(207).  

As the field of prevention continues to advance, one might ask why additional 

resources should be directed towards the discovery of small molecule HPV inhibitors. 

The short answer is that due to the timeline of disease progression, it will be a few 
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decades before these preventative measures will make a significant impact on the disease 

burden. In the meantime, infected women and others who do not benefit from these 

approaches have access to only a limited, and frequently inadequate, set of options such 

as lesion removal. In addition to the obvious drawbacks of surgical treatment, such as 

invasiveness and cytodestruction, it is well established that viral persistence is mainly 

responsible for disease, especially among the elderly and the immunodeficient (209). 

Hence, lesions do frequently recur. Therefore, it is essential that we maintain a sense of 

urgency with regards to developing more comprehensive and long-lasting approaches.  
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