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ABSTRACT OF THE THESIS 

 

 

Influence of Low Temperature Degradation on Microstructural Integrity of Zirconia 

Dental Implants 

By 

Mona Monzavi Rahimi 

Master of Science, Advanced Specialty Education in Periodontics and Implant Surgery 

Loma Linda University, March 2016 

Dr. Erik Sahl, Chairperson 

 

Zirconia dental implants have become more popular in the field of implant 

dentistry. However, concerns have been raised regarding low temperature degradation 

and its influence on phase stability and micro-structural integrity in terms of increased 

micro-crack formation. In the case of dental implants, this could possibly result in 

delamination and interference with bone to implant contact and eventually lead to loss of 

integration and failure. Nevertheless, no study has reported the effects on commercially 

available Zirconia dental implants. 

The primary aims of this study was to determine if there is a correlation between 

ageing duration and 1) depth of tetragonal-monoclinic phase transformation (t-m 

transformation), 2) micro-crack formation of commercially available Zirconia dental 

implants. A secondary aim was to compare the depth of t-m transformation, micro-crack 

formation as the result of ageing between different commercially available Zirconia 

dental implants. 

Accelerated aging at increased temperature, moisture and pressure were 

performed using an autoclave technique to artificially age Zirconia dental implants. There 

were a total of 36 implants from four companies, three of which were commercially 



 

xi 

available. Each group had nine implants, with three samples evaluated prior to aging and 

three at 15 and 30 hours of aging. Focused ion beam-scanning electron microscopy 

analysis was performed to determine the microstructural features of the surface and bulk 

of as-received implants and to investigate the aging effect on microstructural integrity 

defined by the t-m transformation and formation of micro-cracks on the aged implants. 

Pre-existing grain transformation around surface porosities and micro-cracks were 

most evident in types A, B, C and were significantly higher in A compared to C (p ≤ 

0.05). No significant differences were found among groups at 15 hours. At 30 hours, the 

depth of the t-m transformation and quantity of micro-cracks increased for A, C and D 

and a significantly higher transformation was found for type A compared to type B (p ≤ 

0.05). Type B microstructure seemed to be least affected by LTD at 30 hours.  A strong 

correlation between ageing duration and depth of t-m transformation at 15 and 30 hours 

was found (p ≤ 0.01) for all implants combined. 

Within the limitations of this study we concluded that aging led to loss in micro-

structural integrity described by transformation of grains and increased number of 

porosities and microcracks for types A, C and D, a finding most apparent at 30 hours.  

The effect of aging on microstructural integrity is likely more related to composition and 

structural details of implants, than their surface treatment. 
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CHAPTER ONE 

INTRODUCTION AND LITERATURE REVIEW 

 

Zirconia Microstructural Properties 

The name of the metal Zirconium is taken from the mineral name Zircon, which 

comes from a Persian word Zargun meaning gold colored. Zirconia, the metal dioxide 

(ZrO2) was discovered from Zircon in 1789 by the German chemist Martin Heinrich 

Klaproth and it was mainly used in combination with various earth oxides as a pigment 

for ceramics [1].  

Pure Zirconia oxide is a polymorph that exists in three distinctive crystal phases at 

different temperatures [2]. At room temperature it exists in a monoclinic phase (largest), 

but transforms into a tetragonal phase (smallest) above 1170C and at 2370C it becomes 

cubic (intermediate) [2]. During cooling, a T-M transformation takes place in a 

temperature range of about 100C below 1070C. The phase transformations at the time 

of cooling are accompanied by a substantial volume increase of approximately 4.5% and 

thus shear strain. Stresses produced by the volume expansion originate cracks in pure 

zirconia ceramics that, after sintering in the range of 1500-1700 C, it breaks into pieces 

at room temperature leading to catastrophic failure [3,4]. Consequently, this enormous 

volume expansion prevented use of Zirconia as a bulk material. Nevertheless, later an 

important discovery revealed that the tetragonal, or even the cubic form could be retained 

metastably at room temperatures by alloying zirconia with other stabilizing oxides such 

as CaO, MgO, Y2O3, CeO2, Er2O3, Eu2O3, Gd2O3, Sc2O3, La2O3 and Yb2O3, thus 

preventing the catastrophic failure of pure zirconia [5,6]. Currently, the most studied 

stabilizers for biomaterials applications are CaO [7], MgO [8], Y2O3 [9], and CeO2 [10], 
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and of these stabilizers, yttria (Y2O3) is the most frequently used for dental applications.  

When stabilized with approximately 3 mol% yttria, zirconia is composed of metastable 

tetragonal phase. This type of material is referred to as yttria-stabilized tetragonal 

zirconia polycrystals (3Y-TZP), which can be used as a bulk material [11]. 

 

Stressed-induced Transformation Toughening 

In the mid to late 1970’s, it was further revealed that the t-m transformation with 

its subsequent volume expansion could be used to enhance the fracture toughness of 

Zirconia-based materials. This led to discovery that the metastable Zirconia displays a 

stress-induced transformation toughening mechanism, which resists crack propagation 

[12, 13].  This mechanism involves transformation of a metastable tetragonal to 

monoclinic phase during mechanical stress. Since the phase transformation is 

accompanied by the volume expansion of grains, compressive stress is generated in 

localized areas around micro-cracks, resulting in arrested crack propagation [12, 13]. 

Therefore, these metastable tetragonal ceramics demonstrate remarkable toughness when 

the transformation to monoclinic phase is triggered by a propagating crack [14]. In Fig 1 

a schematic illustration of this phenomenon is shown.  

 

 



 

3 

 

 

 

 

 

 

 

 

 

Figure 1. Schematic presentation of stress-induced transformation toughening 

phenomenon of Y-TZP. The figure is modified from (piconi and Maccauro, 1999) 

 

This discovery led to the development of high toughness ceramics namely Yttria-

stabilized Tetragonal Zirconia Polycrystal (Y-TZP), in order to stabilize the tetragonal 

phase at room temperature [14]. These metastable tetragonal ceramics demonstrate 

remarkable toughness when the transformation to monoclinic phase is triggered by a 

propagating crack [14]. 

 

Low Temperature Degradation (LTD) 

It was later revealed that in presence of moisture and lack of mechanical stress the 
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metastable tetragonal phase in Y-TZP suffers a spontaneous tetragonal-monoclinic phase 

transformation (t-m transformation) at the sample surface, which continues to the bulk of 

the material. This process occurs at much lower temperatures (65º C-300 ºC) than it 

normally occurs (1000 º C) and was referred to as “ageing” or “LTD” [15]. 

Transformation first occurs at a specific grain on the surface that is more susceptible to 

the phase transformation because of a disequilibrium state, which may include lower 

content of stabilizer, presence of residual stress or a large grain size [16]. Since the 

transformation is accompanied by volume expansion of crystalline structure, it causes 

surface uplift and micro cracks, leading to surface roughening and grain delamination.  

The formation of micro cracks then allows water to penetrate below the surface, thus 

propagating the t-m transformation to the interior of the sample [17]. Finally, it leads to 

development of major cracks and failure of the material [18]. 

Despite numerous attempts, the exact mechanism of slow t-m transformation triggered by 

water molecules is still under question [19]. Nonetheless following steps have been 

proposed [20, 21, 22]: 

-Chemical adsorption of H2O on ZrO2 surfaces 

-Formation of Zr-OH bond disrupting Zr-O-Zr bond 

-Penetration of OH- and/or O2- into the inner part by grain boundary diffusion 

-Filling of oxygen vacancies by OH- and/O2- 

-Reduction of the oxygen vacancies destabilizing tetragonal phase 

 

LTD Related Problems of Bio-ceramics 

The problem of LTD in zirconia (Y-TZP) was first reported in an in vitro study in 



 

5 

1981 [15] and along with other studies it was found that LTD progresses most rapidly at 

temperatures of 200-300 C. Hence its effect on zirconia biomaterials was considered to 

be negligible at body temperature (37  C) [21, 23] and in the late 1980’s, Y-TZP gained 

popularity for the manufacture of femoral heads for hip prosthesis application [24]. 

Nevertheless, in 2001 a series of Zirconia femoral head failures were reported as a result 

of LTD, and its usage in orthopedics was terminated [19] with major companies 

switching to two phased alumina-zirconia composites (Al2O3-YSZ) [22]. To present, the 

influence of LTD on prosthetic femoral heads has been well studied for many years and 

has demonstrated a progressive increase in surface roughness, delamination/grain pullout 

and eventually fracture, due to extension of micro-cracks and generation of large cracks 

[19, 25]. The kinetics of LTD is thought to be highly dependent on the processing 

conditions and the resulting microstructure of the material. For instance, it is widely 

accepted that large grain size as a result of high sintering temperatures generally triggers 

transformation. Similarly, low density and open porosities due to incomplete sintering 

allow water to diffuse towards greater depth and increase susceptibility to LTD [19, 22]. 

In terms of dental applications, LTD is a relatively new subject with only few studies 

available. Nevertheless, due to its superior esthetic properties, biocompatibility, 

mechanical properties, and low plaque affinity, Y-TZP has gained greater popularity in 

dental applications, including dental implants, and restorative prostheses [26, 27, 28]. 

However, review articles have emphasized that long-term investigations are greatly 

needed to properly evaluate Zirconia for clinical application [26, 29].  

Current research on zirconia dental ceramics have focused on their mechanical properties 

[30], fatigue resistance [31], and surface modification to enhance bone in-growth [32]. 
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The investigation for better implant osseointegration has led researchers to develop 

methods to increase surface roughness and/or microporosity. Though surface 

modifications may improve bone in-growth, it could also trigger t-m transformation with 

associated volume increase leading to formation of surface compressive stress thereby 

altering the phase integrity of the material and increasing the susceptibility to aging [11]. 

One is reminded that Zirconia (Y-TZP) in dental applications can be expected to be as 

susceptible to LTD as orthopedic applications with exhibiting the same dependency 

against process variation [22, 27]. 

Recent in vitro studies have concluded that Y-TZP dental ceramic is susceptible 

to LTD, which results in increased surface roughness [33, 34], and micro-cracking in the 

bulk [35] or both bulk and porous coating [27]. The practical consequences of such 

extensive micro-cracking in terms of dental implants may be exfoliation of the surface 

porous layer and delamination from the bulk, which may further result in loss of 

integration [27]. Therefore, it was advocated that generalizations must be avoided when 

considering aging of zirconia dental products and that every new material/process 

combination should be tested before drawing conclusions [35, 27] 

In terms of the effects of LTD on the strength of Zirconia, the results are quite 

variable. A review article on orthopedic implants revealed that strength of Zirconia could 

decrease or increase by aging with time [1]. Other studies revealed a reduction in 

Young’s modulus and hardness [33, 36], and reduction of flexural strength [37]. Further 

recent studies demonstrated that a considerable degree of t-m transformation did not lead 

to a decrease in strength [38] or even led to a significant increase in strength [35, 27, 39]. 

Regardless of available contradictory results on strength, its verified influence on 
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structural integrity in terms of micro-cracking and increased surface roughness may 

influence its interaction with surrounding bone and soft tissue. Therefore, it is important 

to accurately characterize the effect of LTD on surface coating and bulk of dental 

implants. 

 

Current Techniques to Evaluate Influence of LTD  

X-ray diffraction (XRD) technique has long been a common approach for 

evaluation of t-m transformation following LTD. A recent study evaluated the t-m 

transformation following accelerated ageing, utilizing Focused Ion Beam (FIB)-Scanning 

Electron Microscopy (SEM) experiments in addition to XRD technique [35]. Results 

revealed that XRD was unable to properly characterize the transformation rate features 

throughout the bulk of the implant below its coating as it only penetrates between 5-15 

microns, with coating thickness being 10-15 microns. Focused Ion Beam (FIB) 

experiments showed that the t-m transformation did not occur in the coating but initiated 

at the interface of coating to bulk. This finding revealed that XRD data would result in a 

high underestimation of the transformation in the bulk material. Therefore, if it is utilized 

alone as in most studies, XRD can result in incorrect data, which can be misleading for 

clinical applications. This study urged the use of FIB/SEM instruments to enable precise 

investigation of the t-m transformation [35]. 

Currently available zirconia dental implant systems have considerable differences 

with regards to their surface preparation and processing [26]. These existing differences 

may influence their vulnerability or resistance to aging. The search for improved 

osseointegration has led to emergence of methods to increase surface roughness and 
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micro-porosities. Increased surface roughness may positively influence bone apposition 

and in-growth, but could also facilitate water penetration into the bulk and lead to 

modification of tetragonal phase under humid atmosphere and thus facilitate aging [35]. 

Previous studies have indicated that the low temperature degradation of every new 

surface modification should be carefully evaluated. Generalizations may be avoided by 

testing all new material/process combinations, before drawing conclusions. Any 

modification in the process could dramatically change the LTD resistance [27, 35]. 

 

Study Aim 

There are currently no studies, which have attempted to compare the effects of 

LTD on these commercially available dental implant systems, considering their 

differences in surface treatment, bulk composition and micro-structure. The available 

studies are concerned with medical grade Zirconia and have been performed on bending 

bars or discs, which are polished and therefore not relevant for dental implants. 

A recent investigation has proposed a protocol to validate the functionality and safety of 

Zirconia dental implants prior to their clinical use [40]. To our knowledge, this present 

study will be the first to utilize this protocol to evaluate the effect of LTD on micro- 

structural properties of four commercially available Zirconia dental implant systems. 

Therefore, the primary aim of the present study is to assess the effect of ageing on 

microstructure of commercially available Zirconia dental implants in terms of extent of 

phase transformation and micro-crack formation. The secondary aim is to compare the 

micro-structural changes between these four groups as a result of ageing. 
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CHAPTER TWO 

MATERIALS AND METHODS 

 

LTD of four types of Y-TZP implant systems were examined and compared via: 

• Accelerated aging test conducted for 15 and 30 hours at 134 ◦C and 2-bar pressure 

• FIB-SEM analysis to obtain 3 dimensional (3D) insights into the micro-structural 

features of the surface and the bulk on 12 as-received implants (n=3 per group), and in-

depth effects of ageing on 24 aged implants (n=6 per group). 

 

Implant Description 

Four different types of zirconia dental implants were investigated (Type A, Type 

B, Type C, and Type D; 9 implants, respectively). Amongst these implants type A, B and 

C are commercially available and type D was discontinued in 2010 due to increased 

fracture. In each group (n=9 per group) three implants were examined prior to aging, 

followed by three implants at 10 hours of aging and three implants at nine hours of aging.  

 Type A implants (Z systems, Z5c Zircolith, Basel) comprised of Z-system 

Full Ceram implants made from ZrO2 TZP-A HIP bio-ceramics according to ISO 13356. 

Implants had a screw design shape with a tapering thread and widened core diameter in 

the upper part of the thread. Implants had a shoulder diameter of 6.0mm, outer diameter 

of 5mm and length of 12mm. The surface of type B implants has been sand blasted and 

laser-modified with a patented laser process. The material composition and processing of 

type A implants are described in Figure 1 and Table 1 respectively. 
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 Fig 2. Type A processing information 
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Table 1. Information on properties and material composition of type A implants 

 

 

 Type B implants (Straumann Pure Ceramic Implant, Basel) were monotype 

Straumann Full Ceram implants made from yttria-stabilized zirconia (in accordance with 

ISO 13356). The implants consisted of a tissue level platform with a 1.8 mm 

transmucosal neck, a 4.8 mm shoulder diameter, an abutment as an inherent part of the 

implant body and a cylindrical endosseous part with a screw design and a coronal tapered 

thread core diameter (known from Straumann Bone Level implants). The outer diameter 
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including the threads was 4.1 mm, the thread pitch 0.8 mm, the abutment height 4mm and 

the total endosseous length 12 mm. From the limited information provided from the 

manufacturer, the processing of Type B implants consisted of powder preparation, spray 

drying, cylinder pressing, sintering, HIP, machining, with sand blasting and etching of 

the surface.  

Type C implants (Ceraroot, Barcelona) were Ceraroot Full Ceram implants 

made from yttria-stabilized zirconia: ZrO2 (95%) + Y2O3 (3%). The ceramic raw 

material was first pressed and molded into cylinders then pre sintered and machined to 

final shape with CAD/CAM, and finally sintered to full density [41]. The surface of type 

C implants had an acid etched ICE surface topography. Implants consisted of one-piece 

tissue level implant in different lengths and diameters.  

 Type D implants (Zeramex Dental point, Zurich) a full ceramic implant system 

made from Yttria-stabilized zirconia, ZrO2/Y2O3 (95/5). Surface of implants were 

sandblasted with Al2O3 and acid etched with H3PO2 [42].  Implants consisted of 

combination of one-piece and two-piece in different lengths and diameters. According to 

the manufacturer these implants were discontinued in 2010 due to increased fracture rate 

and replaced with alumina toughened zirconia (ATZ). 

 

Accelerated Aging Test  

 Aging kinetics was evaluated by performing accelerated aging tests on a series of 

36 implants (six from each company) in water steam at 134C, under two bar pressure for 

15 and 30 hours (n=3 at each interval). It has been reported that one hour at 134C would 

approximately correspond to two years at body temperature (37C) under no pressure. 
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This is a rough estimation that can be debated but gives an idea of treatment durations 

pertinent for the application [23]. Moreover, effects of aging were specially examined 

after zero, 15 and 30 hours of artificial aging (n=3 per interval), because this aging 

duration approximately represents the range of the lifetime expected for endosseous 

implants corresponding to 30 years and above in vivo [23]. A new set of implants was 

examined at each interval, as examining the same area each time could have resulted in 

more extensive phase transformation and micro-cracking and biased result. 

 

FIB-SEM Investigation 

 FIB-SEM experiments were performed on non aged followed by aged implants, to 

obtain insights into the microstructural features from the surface to the bulk and to follow 

in depth the effects of aging on t-m transformation and micro-crack formation. A fixation 

mount was fabricated for different sizes of dental implants. Dental implants were fixated 

with copper tape and portion of their surface were coated with platinum gold to provide 

surface conductivity. Samples were rotated to have the threads along the y-axis as shown 

in Figure. 2. SEM images made from the surface at different magnifications. FIB cross-

sectional scans were made specifically at the crest of the second thread to investigate the 

endo-osseous portion of the implant. FIB imaging was performed using FIB (FEI 

DB235 Dual-Beam, Eindhoven) w/ Energy Dispersive X-ray Spectroscopy (EDAX 

EDS, Mahwah). A Schottkey emitter(FEI, Thermal Field Emitter, Eindhoven) was 

used for SEM under 200-300 kV, whereas Gallium liquid metal was used for focus ion 

beam (FIB) operated at 5 to 30 kV. The resolution was 3 nm for SEM and 7 nm for FIB. 

In brief, the FIB used a liquid metal ion source of Ga+ ions accelerated between two and 
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30 KeV that were focused to the surface to cut slices of materials. SEM images were then 

taken from the cross sectional slice. FIB/SEM analysis therefore produced images from 

the cross sectional slices from the bulk of dental implants.  Analysis was made in TLD 

immersion mode, secondary electron, imaging 9.7 pA, digging 9.3 pA, 5 Kv surface 

cleaning. Depth of t-m transformation and micro-crack formation were measured for each 

implant and averaged for each implant group (N=3) at 0, 15, 30 hours.           

 

 

A.     B.     C.  

                 D.   

Figure. 3. A. Implants prior to coating, B. Implants coated with platinum 

gold, C. Coated implants fixated with lead tape. D. Samples rotated to 

have the threads along the Y-axis 



 

15 

                   

Fig. 4. FEI DB235 Dual-Beam Focus Ion Beam System (FIB) with EDS 

 

Statistical Analysis 

 Longest depth of micro-crack formation and t-m transformation were measured 

and averaged for different time points within each group. The sample size was based on 

past publications and resources [24]. Small sample size and lack of normality warranted 

the use of non-parametric Spearman’s rho correlation coefficient to evaluate the 

correlation between duration of aging and depth of t-m transformation and micro-crack 

formation. Independent sample Kruskal-Wallis test was performed to determine 
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significant differences between groups. Dunn Bonferroni Pairwise comparison analysis 

was completed at different time points to determine differences between groups. 

Hypotheses related to each predictor were tested at an alpha level of 0.05 and 95% 

confidence interval were constructed around each beta coefficient.  All analysis was 

performed using SPSS 23 V (SPSS Inc, Chicago, IL). 
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CHAPTER THREE 

RESULTS 

 

Microstructural Features of “As-received Implants”- SEM analysis 

 SEM images of the 4 types of implants and their typical surface features are given 

in Figure. 4-7, at different magnifications. High magnification images have been taken 

from crest of the second thread.  

Type A implants exhibits a v-shaped thread design with rounded edges and 

symmetrical sides inclined at equal angle. SLM® (surface laser modified) procedure was 

completed only on the crest and flanks of the thread. Laser modified roughened surfaces 

had a melting structure characterized by symmetrical parallel grooves at the crest of the 

threads. High magnification showed few micro-cracks and micro-porous surface structure 

with pore size ranging from 0.3 to 5 µm. 
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a) Type A (Low Magnification)           b)   Type A (Low Magnification) 

     
c)  Type A- High Magnification (50 µm)     d)    Type A- High Magnification (10 µm) 

 

 
                                      e)  Type A. High Magnification (5 µm)      

 

 Figure. 5 - SEM images of type A (Z systems, Z5c Zircolith, Basel) from 

lowest to highest magnification. 
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Type B implants with sand blasted and an acid etched surface had a buttress-

shaped thread design with sharp square edges and non-symmetrical sides. High 

magnification showed numerous micro pits with sharp and rounded edges. Micro-pores 

were visible with in pits and over flat surfaces.  

 

      
a) Type B. Low Magnification                    b)  Type B. Low Magnification (200 µm) 

 

       
b) Type B. High Magnification (50 µm)       c)    Type B. High Magnification (10 µm) 

 

Figure. 6- SEM images of type B implants (Straumann Pure Ceramic Implant, Basel) 
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d)  Type B. High Magnification (5 µm) 

 

Figure. 6- (Continued) SEM images of type B implants (Straumann Pure Ceramic 

Implant, Basel) 

 

Type C implants with acid etched surface had a square shaped thread design with 

symmetrical sides perpendicular to the axis of the screw head. Low magnification images 

showed repeating patterns of multiple grooves with a divergent design forming half or 

full circles. High magnification showed a very prominent heterogeneous surface 

topography consisting of combination of grooves, pits and micro-pores. 
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a) Type C- Low Magnification           b)    Type C- Low Magnification (200 µm) 

  

       
c) Type C- High Magnification (50 µm)         d)    Type C- High Magnification (10 µm)        

 

Figure. 7- SEM images of as received type C implant (Ceraroot, Barcelona) from 

lowest to highest magnification 
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                                   Type C- High Magnification (5 µm) 

 

Figure. 7- (Continued) SEM images of as received type C implant (Ceraroot, 

Barcelona) from lowest to highest magnification  

 

 

 

Type D implants exhibited a v-shaped thread design with flat, curved edges and 

symmetrical sides inclined at equal angle. The SEM image of the sand blasted and acid 

etched surface showed relatively smoother surface compared to the last three implant 

types. Surface roughness consisted of a regular pattern of shallow grooves with few 

micro-cracks. Aluminum-rich particles were seen on the surface resulting from the 

blasting process. 
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a) Type D- Low Magnification               b)  Type D- Low Magnification 

 

   
b) Type D- High Magnification (50 µm)    c)   Type D- High Magnification (10 µm)          

 

Figure. 8- SEM images of as received type D implant (Zeramex Dental point, Zurich) 

from lowest to highest magnification 
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                                     d) Type D- High Magnification (5 µm) 

                                

Figure. 8- (Continued) SEM images of as received type D implant (Zeramex Dental 

point, Zurich) from lowest to highest magnification 

 

 

Microstructural Features of “As-received Implants”- FIB analysis 

 Cross sectional (FIB) images were taken from 12 implants in four groups (n=3). 

Figure 2 provides a low magnification image, demonstrating the location of ionic 

sectioning of implant at the crest of second thread. High magnification images of FIB 

slices for each implant are shown in Figure 3. Transformation of grains from tetragonal to 

monoclinic phase was determined by a modified contrast with presence of twining or loss 

of grain boundaries.  

Type A implant presented with pre-existing surface porosities and micro-cracks, 

which extended an average depth of 0.5 µm, also observed on surface SEM images. 

Surface micro-pores were interconnected in few areas, which could allow access for fluid 

to enter the bulk during accelerated aging procedure. Zirconia grains showed evidence of 
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twining around cracks and pores, which expanded an average distance of 2.6 µm with in 

the bulk. Hence, as-received type A implants were already partially transformed at the 

surface. The bulk presented with average grain size of 0.35 µm and a dense 

microstructure with only a few micro-pores, which indicates efficient sintering of the 

bulk.   

Type B implants presented with the smallest grain size (0.25 µm) compared to 

other types. Micro-pores were also present along the surface but were isolated with no 

interconnectivity. Surface micro-cracks extended an average depth of 0.5 µm. T-m 

transformations were also visible around micro-cracks and pores at the surface for 

average distance of 1.1 µm. The interior portions showed a dense microstructure without 

presence of cracks or pores.  

Type C implants presented with average grain size of about 0.35 µm. Few micro 

pores and micro-cracks with depth of 0.3 µm were visible. Compared to the last two 

implants the as received type C implants presented with shallower (0.9 µm) and in most 

areas no evidence t-m transformation at the surface. The bulk of the material presented 

with few isolated porosities similar to type A.  

Type D implants presented with average grain size of 0.35 µm. Surface presented 

with micro cracks, but no surface porosities, also consistent with surface SEM findings. 

Micro cracks ran along and parallel to the surface in a continuous pattern and extended 

from surface to bulk for average depth of 0.7 µm. Twining of grains were consistently 

visible along pre-existing micro-cracks and extended for an average depth of 1.8 µm 

within the bulk. Few pores were also visible within the bulk of the implant. 
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Figure 9. Low magnification of FIB image showing the location of ionic sectioning at the  

crest of the thread 
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a) FIB cross section of type A implant 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) FIB cross section of Type B implant 

 

Figure 10. High magnificatioon of FIB cross section of as received implants 
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                 c)      FIB cross section of type C implant 

 

                 

                                                                  
                d)       FIB cross section of type D implant 

 

Figure 10. (Continued) High magnificatioon of FIB cross section of as received implants 
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Microstructual Features of Aged Implants 

 Figure 4 provides the FIB cross-sections taken near the surface of 24 implants. 

Six implants were examined from each company, after an aging duration of 15 and 30 

hours, with three implants with in each time interval. 

Type A implants at 15 hours, presented with numerous nano scale porosities 

visible all along the surface. A higher number of micro-cracks were present parallel to 

each other and perpendicular to the surface and in some areas continuous with surface 

porosities. Within the bulk, the average depth of micro-cracks and t-m transformation 

slightly increased to 0.9 µm and 3.1 µm, respectively.  At 30 hours, the microstructural 

changes as a result of aging became very clear. Surface porosities and micro-cracks 

increased in size and number respectively. Micro-cracks remained shallow (1 µm) and 

were continuous with micro-porosities. Zone of t-m transformation increased to a 

distance of 4.7 µm. Within this zone there were few grains that seemed to be unaffected 

and remained in their tetragonal phase. Overall, increased duration of aging led to greater 

quantity and dimension of surface cracks and porosities and consequently deeper 

penetration of transformed layer within the bulk. This result confirms previous findings 

[23] and illustrates that pre-existing porosities may have provided a pathway for water to 

penetrate within the bulk, which led to deeper layer of grain transformation at 15 hours. 

With longer aging time, deterioration of surface layer further facilitated the moisture 

entrance and led to higher extent of grain transformation.   

Type B implants at 15 hours of aging presented with similar presentation to as 

received implants with shallow depths of micro-cracks (0.7 µm) and grain transformation 

(1.2 µm). At 30 hours, these features consistently remained superficial at depths of 0.6 
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µm and 1.5 µm, respectively. Extent of micro-cracks and porosities seemed to be 

comparable to as received implants throughout different aging durations. From our 

observation, it appeared that hydrothermal aging did not have much influence on 

microstructural integrity of type B implants, despite presence of pre-existing micro-

cracks and surface porosities. 

Type C implants presented with micro-cracks remaining shallow at the surface 

with depth of 0.3 microns at 15 hours. The extent and depth of porosities and micro-

cracks remained similar to as-received implants and the depth of t-m transformation 

slightly increased to 1.4 µm. At 30 hours, number of micro-cracks clearly increased at the 

surface and its depth to an average distance of 1.5 µm. The micro-cracks extended from 

the surface towards the bulk, following borders of the grains and appeared to be 

interconnected and continuous with micro-porosities.  Depth of t-m transformation also 

increased to an average distance of 2.5 µm. An important observation at 30 hours was the 

uplift of the surface and delamination of its portion, which is expected to happen as a 

result of aging. The results in this particular sample indicated that similar to type A, 

hydrothermal aging seemed to be gradual at 15 hours, but at 30 hours there was an 

obvious loss of structural integrity on the microstructure of the material.  

Lastly, at 15 hours, micro-cracks remained superficial (0.8 µm) for type D 

implants and depth of t-m transformation slightly increased to 2.3 µm. The pattern of 

micro-cracks at the surface was similar to as-received implants with long continuous 

cracks parallel to the surface with no porosities. At 30 hours the depth of micro-crack 

increased to average depth of 1.3 µm with increased number of isolated micro-cracks, 

followed by increased t-m transformation to a depth of 4.1 µm. Pattern of grain 
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transformation seemed to be homogeneous with almost all grains appearing to be 

transformed with in the zone.  The effect of LTD on microstructure of this group of 

implants was similar to type A and C.  

 

 

                 

A.                                                                  B. 

                  
           

C.                                                                  D. 

 

Figure 11. High magnifications of FIB cross sectional slices of aged implants at 15 and 

30 hours. A: type A, B: type B, C: type C, D: type D  

 

 

Statistical Results 

 Spearman’s rho correlations among the measured variables for the entire sample 

(36 implants) showed significant correlation at p ≤ 0.01. Increase in duration of aging 

was significantly and strongly correlated with increase in depth of t-m transformation in 

all aging durations (table 2). Nevertheless, no correlation was found in terms increased 

duration of aging and depth of micro-crack formation. We reject the null hypothesis that 
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there is no correlation between increasing period of aging and the depth of t-m 

transformation. Furthermore, we retain the null hypothesis that there is no correlation 

between increasing period of aging and depth of micro-crack formation. 

Independent sample Kruskal-Wallis test showed no significant difference between groups 

in terms of depth of micro-crack formation at different duration of aging (Table. 3). 

However, significant differences were found between groups with regards to depth of t-m 

transformation at different duration of hydrothermal aging (p ≤ 0.05) as shown in table. 4. 

We rejected the null hypothesis that there are no significant micro-structural differences 

between groups at 0 hour, 15 hours and 30 hours of aging. 

Dunn-Bonferroni pair wise analysis showed significantly higher depth of t-m 

transformation in type A at zero hours compared to type C (Table. 5) . No significant 

differences were found among samples at 15 hours of aging, but at 30 hours, there was a 

significantly increased depth of t-m transformation in type A compared to type B (p ≤ 

0.05) as shown in table. 6. Presence of small sample size did not warrant further analysis 

with in each group. 
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Table 2. Spearman’s rho correlation for entire sample of implants, between increase in 

aging duration and depth of t-m transformation and microcrack formation 

** p≤0.01 

 

 

Table 3. Independent samples Kruskal-Wallis test among samples:  

 microcrack formation 

Null Hypothesis H
°
 Test Sig.  Decision         

Micro-crack at 0 hours is 

the same  

Kruskal-Wallis test 0.507       Retain H
°
 

Micro-crack 15 hours is 

the same  

Kruskal-Wallis test 0.062 Retain H
°
 

Micro-crack at 30 hours 

is same  

Kruskal-Wallis test 0.104 Retain H
°
 

*

p≤0.05 

 

 

 

 

 

 

 

 

 

 

 

 

 

T-M transformation 0 hours 15 hours 30 hours 

0 hours Rho 

N 

_ 

  12 

0.751
**

 

   12 

0.715
**

 

   12 

15 hours Rho 

N 

0.751
**

 

 12 

  _ 

    12 

0.769
**

 

   12 

30 hours Rho 

N 

0.715
**

 

   12 

0.769
**

 

   12 

 _ 

   12 
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Table 4. Independent sample Kruskal-Wllis test among samples: t-m transformation 

Null Hypothesis H
°
 Test Sig.  Decision         

T-m transformation at 0 hours is 

the same  

Kruskal-Wallis test .015       Reject H
°

*

 

T-m transformation at 15 hours 

is the same 

Kruskal-Wallis test .043 Reject H
° 

*

 

T-m transformation at 30 hours 

is the same  

Kruskal-Wallis test .021 Reject H
°
 
*

 

*

p≤0.05 
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                          Table 5. Dunn-Bonferroni pairwise comparison after adjustment for multiple testing at 0 hours                  

 

 

 

 

 

 

 

 

 

 

 

 

                        * p≤0.05 

 

 

 

 

 

 

Depth of t-m 

transformation 

(0 hours) 

Test Statistic Std. Error 

  

Std. Test Statistic     Sig. Adj. Sig 

C-B 3.000 2.934 1.023 0.306 1.000 

C-D -6.000 2.934 -2.045 0.41 0.245 

C-A 9.000 2.934 3.068 0.002 0.013
*

 

B-D -3.000 2.934 -1.023 0.306 1.000 

B-A 6.000 2.934 2.045 0.041 0.245 

D-A 3.000 2.934 1.023 0.306 1.000 
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 Table 6. Dunn-Bonferroni pairwise after adjustment for multiple testing at 30 hours 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

      

                        * p≤0.05 

 

Depth of t-m 

transformation (0 

hours) 

Test Statistic Std. Error 

  

Std. Test Statistic     Sig. Adj. Sig 

B-C -3.000 2.939 -1.021 0.307 1.000 

B-D -5.500 2.939 -1.872 0.061 0.368 

B-A 8.833 2.939 3.006 0.003 0.016
*

 

C-D -2.500 2.939 -0.851 0.395 1.000 

C-A 5.833 2.939 1.985 0.047 0.283 

D-A 3.333 2.939 1.134 0.257 1.000 
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CHAPTER 4 

DISSCUSSION 

 

The present set of data confirmed previous findings [35, 40], that FIB cross 

sectioning enabled a detailed characterization of zirconia implant’s microstructure. 

Furthermore, it provided direct evidence of the effect of LTD on microstructure of the 

material as shown by extent of grain transformation, micro-cracks and microporosities. It 

also provided additional evidence to support previous data [43], that gentle preparation 

method by FIB milling did not induce t-m transformation due to mechanical stress, which 

was the main problem from previous approaches of mechanical cutting, grinding and 

polishing of samples for SEM analysis. This was apparent from FIB cross sectional 

images of as-received type C implants, which showed no evidence of t-m transformation 

in majority portion of their surfaces. However, FIB analysis was not without limitations. 

This process was very time-consuming (~6 hr/sample), technique sensitive and an 

expensive way to prepare cross sections. Consequently, we were restricted from having a 

large sample size, which was a weakness of our study. Having acknowledged that, the 

few available studies [35, 40, 43] with similar technique have completed FIB analysis on 

much smaller sample sizes due to limitations mentioned earlier. In addition, XRD 

analysis was not performed as it was reported earlier that due to reduced depth of x-ray 

penetration and the lack of precision of this type of analysis can give rise to under 

estimation of the result and generate misleading data [35, 40]. Furthermore, XRD 

analysis is not very precise for monoclinic contents lower than 5%, making it unsuitable 

for monitoring the beginning of transformation [19]. Moreover, it only gives an average 

monoclinic content over the penetration depth of the x-ray (which depends on the 
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density/porosity of the surface) and makes comparisons impossible on the pattern of 

transformation [35, 43]. Therefore, all the efforts were concentrated on FIB cross 

sectional images of implants to provide visual presentation of the effect of LTD on the 

microstructure of the material. 

With regards to our result, FIB/SEM investigation revealed that after 15 hours of 

accelerated aging the effect of LTD on microstrucure of all implants was minimal. Also, 

no significant differences were found among groups at 15 hours as it was illustrated by 

our pair-wise comparisons. At 30 hours, the effect of LTD became very clear for types A, 

C and D with increased surface porosities, microcracks, surface uplift, delamination and 

deep layer grain transformation. Accelerated aging however did not seem to effect the 

microstructure of type B implant at 30 hours.  With regards to their pre-existing surface 

features, type B showed pre-exising microcracks, which seemed to be in higher amount 

compared to as-received type C. Type B also presented with surface porosities, which 

were absent in type D. While type B showed similar amount of surface porosities and 

microcracks to type A, it had a significantly shallower depth of t-m transformationat at 30 

hours compared to A. Previous reports have indicated that surface porosities and 

microcracks formed by surface roughening procedures, leads to reduction of surface 

density, which has been proposed to be the most important parameter in aging [6]. These 

open porosities and cracks offer water molecules easy access to the bulk, resulting in 

aging not only on the surface but also in the interior of the material [19, 40]. An earlier 

study with similar FIB analysis showed that the implant with a porous surface had a high 

number of transformed grains around the pores prior to accelerated aging, and that the 

porous surface increased the susceptibility of the implant to aging when it was compared 
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to another implant with polished dense surface [35]. We found similar results with 

regards to type A. However, one would expect type B to be similarly (compared to A) or 

even more extensively (compared to C and D) effected by accelerated aging. This was 

not the case in our results. This observation indicated that factors other than surface 

modification and density may have played an important role with regards to susceptibility 

of these implants to LTD. 

In addition to density and surface treatment, other factors such as grain size and 

stabilizer’s size, type and content have been indicated to effect susceptibility of zirconia 

ceramics to LTD [6, 44].  It has been widely accepted that reducing the grain size has a 

beneficial effect on stability of tetragonal phase and resistance to LTD [44]. However, 

decreasing the grain size may also reduce the stress induced transformation and lead to a 

decrease in fracture thoughness, mainly because of less efficient phase transformation 

toughening [36, 44]. In our analysis Type B implants presented with smallest grains size 

averaging to about 0.25 µm compared to 0.35 µm for other implants. This property could 

be a contributing factor to its higher resistance to LTD at 30 hours. 

With regards to chemical stabilizer, Y2O3 is the most widely used stabilizer and 

typically 3 mol % is used to stabilize the tetragonal phase to room temperature [44]. 

Increasing Y2O3 content improves resistance to LTD, but it can also inhibit the t-m 

transformation, thus decreasing the mechanical properties of the material [45]. Doping Y-

TZP with other oxides specifically Ceria and Alumnia (between 0.15% and 3%) has 

shown to provide satisfactory balance between aging resistance and mechanical 

properties [43, 22]. Chemical stabilizers, stress and grain size have been shown to be 

interlinked and to effect one another in a complex way. It is establised that an increase in 
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content of stabilizer induces a reduction of the grain size while a larger grain size leads to 

higher local stress [44]. This may indicate that type B implants have a higher content of 

stabilizer, which has led to their smaller grain size and more resistance to aging. The 

larger grain sizes of other types could account for higher local stress and contribute to 

their susceptibility to aging. Neverthless these are speculations, which can not be proven 

at this point, as we do not have information on specific concentration of stabilizers and 

other additives and it is beyond the effort of this study to evaluate this. However, our 

assessment provided some evidence that factors other than surface modification, such as 

the material’s structural detail (grain size) and its composition (stabilizer, impurities, 

additives) may be more imperative than surface features for the increased 

resistance/susceptibility of zirconia ceramics to aging.  

Finally, the present study was the first to provide visual data on the influence of 

LTD on microstructure of these commercially available zirconia implants. It also 

provided further evidence that T-M transformation starts from the surface and proceeds 

inwards with increasing number of microcracks, which opens the possibility for water to 

penetrate deeper triggering increased t-m transformation as shown in A,C and D.  
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CHAPTER 5 

CONCLUSION 

 

With in the limitations of this study we conclude that: 

 FIB/SEM provided direct evidence of the transformation behavior for different 

zirconia dental implants following increasing aging durations.  

 Aging showed a loss in structural integrity described by  

o Grain transformation evident by loss of grain boundaries and twining between 

grains 

o Increased number of micro-porosities (A) and microcracks (A, C, D)  

o Surface uplift, grain pull out/delamination (C)  

 LTD following accelerated aging minimally influenced the microstructure of implants 

at 15 hours, while at 30 hours, it had a more severe impact on types A, C and D 

compared to type B. 

 The resistance to LTD could be more related to structural detail and composition of 

our currently investigated zirconia ceramics than the features of surface topography 

as a result of surface roughening procedures  

Future research is needed to evaluate the effect of LTD on fatigue resistance of 

these implants. In addition, later invivo studies are needed to investigate the effect of 

mastication force on extent of LTD and the influence of surface changes such as 

delamination on surrounding hard and soft tissue. 
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