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ABSTRACT OF THE THESIS 

 
Depositional Model of a Late Cretaceous Dinosaur Fossil Concentration, Lance 

Formation  

by 

Summer Rose Weeks 

Master of Science, Graduate Program in Geology 
Loma Linda University, September 2016 

Leonard Brand, PhD, Chairperson 

 

A large Maastrichtian, nearly monospecific bonebed in the Lance Formation in 

eastern Wyoming has yielded 13,000 bones and fragments since 1996. Though 

excavation of the site continues, little is known of the circumstances and processes of 

deposition. This study aims to provide a depositional model for the bonebed. To 

accomplish this task we utilized 1D facies analysis of surrounding units and 3D analysis 

of the bonebed. The nature of the outcrop limited facies analysis to 1D. Four measured 

stratigraphic sections, each containing the bonebed unit, were taken and used in facies 

analysis. In addition, laterally continuous units were observed and mapped using real 

time kinematic (RTK) GPS equipment. For 3D analysis of the bonebed, we unitized a 

large GPS dataset collected over 20 years of excavation. Displaying and manipulating the 

points in ArcGIS allowed investigation of bone arrangement vertically and laterally 

within the bonebed.  

Facies analysis indicates that the local sediments of the Lance Formation were 

deposited on a relatively flat depositional plain as part of or near a delta. Facies 

assemblages are compatible with both a proximal to shore delta plain distributary and 



 

xvii 

interdistributary environment and with a relatively low sinuosity meandering stream 

environment with periodic swampy conditions in the flood plain. The bonebed is 

proposed to be a result of a mass flow process resulting from the fluidization and 

mobilization of sediment due to seismic activity. 
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CHAPTER ONE 

INTRODUCTION 

 

Many workers have studied the deposits of the Late Cretaceous Lance Formation 

in western Wyoming near the Green River and Wind River Basins (Breithaupt, 1982; 

Flemings and Nelson, 1991; Gillespie and Fox, 1991; Keefer, 1965; MacLeod, 1981), 

however, few studies have focused attention on the deposits of the Lance Formation in 

eastern Wyoming. This study focuses on a portion of the Lance Formation on the 

southeast rim of the Powder River Basin of eastern Wyoming. For many years, 

researchers have found sedimentological and stratigraphic studies in the Lance Formation 

challenging due to the presence of vegetative cover, lack of good exposure, and shallow 

dip which makes measuring a complete stratigraphic section a formidable task (Connor, 

1992), however, many discoveries in the realm of paleontology have been made in this 

area of the country (Dalman, 2013; Elzanowski et al., 2001; Gilmore, 1946; Lockley et 

al., 2004; Longrich, 2008; McLain et al., 2016).  

Southwestern Adventist University leads an annual expedition to the Lance Fm in 

eastern Wyoming, about 40 km southwest of Newcastle, WY. The school’s efforts have 

led to the discovery of ~20,000 Late Cretaceous vertebrate and invertebrate bones and 

fossil specimens. With the increasing number of bones available for paleontological 

study, a model for the genetic history of the bonebed is vital. This study proposes a 

depositional model consistent with the paleoenvironmental indicators at the Hanson 

Research Station.  
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This research focuses on the information gleaned from seven quarries excavated 

into the main bonebed on the Hanson Ranch. The main bonebed is a mostly 

monospecific assemblage of Edmontosaurus annectens, that houses an abundance of 

very well-preserved bones. Almost 13,000 bones and recorded fragments from the main 

bonebed have been discovered since the first of the quarries was opened in 1996 (Turner, 

2015).  

 

Significance  

The study site is located on what used to be the western edge of the Western 

Interior Seaway. During the Late Cretaceous, the site underwent a dramatic 

environmental shift as the sea abated from the area and left the formerly marine site as a 

terrestrial environment. The Lance Fm records this transition from a marine to terrestrial 

environment making it a potential exemplar for numerous other transitional sites recorded 

in the geologic record. Figure 1 shows maps produced by Colorado Plateau Geosystems, 

Inc. that illustrate the shift of the shoreline of the Seaway during the Late Cretaceous.  
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Figure 1. Paleo time slice maps of the Western Interior Seaway from early Maastrichtian up to the K-T 
Boundary. Red dot enhanced with red arrow indicates the study location in eastern Wyoming 
(Geosystems, 2012). 

 

 

The Lance Formation, as a Maastrichtian (Late Cretaceous) deposit, also 

represents a piece of the uppermost portion of the geologic column to contain dinosaur 

fossils, and as such, represents some of the final records of the largest land animals to 

live on earth. Diverse theories for the demise of the dinosaurs have been proposed 

(Schulte et al., 2010), but much remains to be deciphered regarding their extinction at the 

K-T boundary. The sites to be studied contain dinosaur bones that may shed light on the 

question of why the dinosaurs went extinct.  

 

Goal and Aims  

The goal of this study is to interpret the depositional history for the main bonebed 

on the Hanson Ranch. In order to achieve this goal, two aims were developed.  
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The first aim is to determine the stratigraphic relationship between quarries on 

the Hanson Ranch.  

The second aim is to compare facies and facies assemblages of the Lance Fm on 

the Hanson Ranch to facies assemblages of various paleoenvironemental models.  

 

Background  

A General Description of the Area 

The study site is located in east central Wyoming in the Maastrichtian (Late 

Cretaceous), Lance Formation. See Figure 2 and Figure 3 for study location. In this 

region of the Powder River Basin of eastern Wyoming, the Lance Formation, equivalent 

to the Hell Creek Formation of North and South Dakota, is the uppermost formation (see 

Figure 4) of the Cretaceous (Connor, 1992). The Lance unconformably overlies the 

marginal marine Fox Hills (Dobbin and Reeside, 1929; Lloyd and Hares, 1915) and 

underlies the continental Fort Union Formation (Connor, 1992). It crops out in Montana, 

Wyoming, North Dakota, and South Dakota.   

 

Sedimentary Description 

Most of the lithologic units are siliciclastic mudstone and very-fine- to medium-

grained sandstones. Lithic fragments larger than coarse sand are uncommon, but large 

fossil clasts are present in many localities. Occasional ochre carbonate layers appear as 

well as log-shaped, carbonate cemented sandstone concretions mentioned by Connor 

(1992) For the most part, the units show low levels of bioturbation. 
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Figure 2 Location of study area. Image A: Location relative to Newcastle, Wyoming. Image B: general 
location in Wyoming. Image C: locations of quarries. N = Neufeld, M = Main Quarries (includes North, 
South, West, Southeast, and Teague Quarries), T = Toe Quarry. These are the quarries used in this study. 
Other quarries, which may be encountered in other studies include Iverest (I), Rose (R), Gar Ridge (G), 
and Stair (S). Base map accessed in ArcGIS (Program, 2015) 
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Figure 4 Stratigraphy of the PRB. The study area is located on the east side of the PRB where the Lance 
Fm is overlain by the Fort Union Fm. Image reproduced from the USGS digital data series (Higley et al., 
1997). 

 

Figure 3. Modern Wyoming basins (light brown) and uplifts (dark brown). Approximate location 
of study site shown with red square. Image reproduced from (Survey, 2014) 
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Tectonic Setting 

The study area in eastern Wyoming borders the Powder River Basin with the 

Black Hills to the northeast, the Casper Arch to the west and the Hartville Uplift to the 

south (see Figure 3). In the Maastrichtian, the Laramide orogeny was just beginning to 

make changes to the landscape of the Rocky Mountain region (Dickinson et al., 1988). 

Thrusting and subsequent tectonic loading caused subsidence forming basins adjacent to 

uplifts. The mechanism of subsidence in many of these basins is attributed to flexural 

deformation resulting from tectonic loading (Hagen et al., 1985). Prior to the Laramide, 

this region of the country was covered by more or less continuous marine facies and 

marginal marine facies deposited within the Western Interior Basin (Kauffman, 1977). 

During Mid to Late Cretaceous, this rather continuous depositional basin started to break 

up into smaller more isolated basins (Dickinson et al., 1988). In addition to more local 

episodes of subsidence and uplift, during Late Cretaceous, the Sevier orogenic thrusting 

on the western edge of Wyoming was still causing regional subsidence of the foreland 

area at large (Dickinson et al., 1988; Wiltschko and Dorr, 1983).   

Sediments of the Lance Formation of southwest Wyoming originated at the 

Wyoming- Idaho thrust belt on the western edge of  Wyoming (Montgomery and 

Robinson, 1997). But with the breakup of the Western Interior foreland basin, 

intervening uplifts between the western end of the state and the study area in eastern 

Wyoming might have blocked this source area. Additionally, Crowley et al (2002) noted 

that isopach maps and paleocurrent data from the Powder River Basin sediments indicate 

that the PRB was not fed by the Bighorn Mountains to the west and might not have been 

a separate basin in Late Cretaceous time. The prevailing paleocurrent direction recorded 
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for the Lance in the south part of the Powder River Basin is toward the east and east-

south-east farther north in the Lance (Connor, 1992). It is also reported that 

paleocurrents in the Lance on both the east and west of the Bighorn Mountains as well as 

paleocurrents measured on the east side of the Powder River Basin are to the east 

(Connor, 1992). This suggests that the basin and mountain range were not formed when 

the Lance Fm was deposited. Of all the Laramide-formed basins, the Powder River Basin 

was the last basin to have marine depositions occurring (Dickinson et al., 1988). Marine 

deposition in the Powder River Basin persisted until the latest part of the Maastrichtian.  

Petrographic analysis of minerals and mineral abundances indicate multiple 

source areas for sediments of the Lance Fm in the Powder River Basin. The southern 

portion of the Lance Fm in the Powder River Basin contains abundant monocrystalline 

quartz (~57%), rock fragments (~34%), and variety of feldspars with higher amounts of 

potassium feldspars than plagioclase feldspars (Connor, 1992). This composition data, 

along with the paleocurrent directions, indicates a granitic source area west of the basin. 

The Granite Mountains (see Figure 3) are thus a likely candidate (Connor, 1992). 

Isopach maps of the northern end of the Powder River Basin indicate that the 

Lance formation thickens dramatically (nearly doubling) from the Wyoming – Montana 

border to about 50 miles south of the border (Ploeg et al., 2003).  

 

Previous Personal Experience 

Prior to this study, I participated, in the summer of 2009. as an undergraduate 

student at the Hanson Research Station (HRS). I enrolled in the dinosaur class offered at 

the dig site and engaged in excavation of the dinosaur bones. The following four years, I 
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returned in the summers to assist in and conduct research with the project director, Dr. 

Arthur Chadwick. The focus of my research was to decipher the local stratigraphy which 

led to the use of a seismite as a stratigraphic marker (Weeks and Chadwick, 2011, 2012). 

In addition to participating in summer research projects, I also held the position of 

curator for two years over the collection of fossils from the HRS housed at Southwestern 

Adventist University.   

 

Stratigraphy 

The stratigraphy of the Lance Formation in eastern Wyoming poses many 

difficulties. Beds are transient and poorly exposed with an apparent lack of stratigraphic 

markers. In 2011, Weeks and Chadwick started investigating the use of a seismite as a 

local stratigraphic marker. The perceived benefit of using a seismite as a marker bed was 

that it could readily be identified by the contorted bedding (Figure 3) and also that it 

could be recognized across facies transitions (Figure 4). With a seismite as a marker bed, 

we initially determined a local dip of ~2-3° and were able to plot the seismite, with a few 

exceptions, as a plane. However, in subsequent surveys it became apparent that more 

than one seismically altered layer could be present in the area. In addition, the suggestion 

was made, that seismic alteration may be lithologically selective (Nick, 2015); the 

seismite has only been observed in sandstones. Thus, the record of seismic activity might 

not represent a single contemporaneously exposed horizon but simply a lithology under 

the right conditions to be disturbed at the time of seismic activity whether or not it was at  
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Figure 5 Seismite images showing contorted bedding. Image A is the original, and Image B  
shows line marking contorted sediment 

 

the surface. Research on the seismite has been postponed for the present because of these 

issues. However, consideration of the flat, slightly dipping plane in which the seismite 

lies has led to the hypothesis that the area may represent a mostly in situ geological 

environment in which elevation may serve as a proxy for stratigraphic position. 
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Figure 6 Contorted bedding extending into a mixed sandstone and mudstone facies. 

 

 

Depositional Environments Proposed for the Lance Formation 

Interpretations for the depositional environment of the Lance Formation range 

from braided stream to marine. The following is a review of the depositional 

environments presented in the literature for the Lance. The interpretations are 

geographically organized from west to east across Wyoming.   

Starting in western Wyoming in Sublette County, Montgomery and Robinson 

(1997) described the Lance as an “eastward-prograding wedge of siliciclastic material”. 

Montgomery and Robinson interpret the sedimentary rocks in the area as a meandering 

and braided fluvial depositional environment. They also recorded a dominant flow 

direction of west to east. Moving farther east, past the Rock Springs Uplift in 
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Sweetwater County, Breithaupt (1982) reports various areas with meter-thick coal 

seams, rain prints, brackish oysters and dinosaur tracks in the Lance. He describes the 

sedimentary rocks of the Lance as riparian floodplain deposits. However, Dodge and 

Powell (1975) described the Lance Formation in northeastern Wyoming, Crook County, 

as deltaic-distributary channel sandstone and interdistributary mudstone. Moving toward 

eastern Wyoming and western North and South Dakota, the Lance was divided into two 

members by Lloyd and Hares (1915). They interpret the upper member as marine and the 

lower as nonmarine additionally stating that the upper marine portion is stratigraphically 

equivalent to a lignite member toward the west in the Lance Formation. In “A Geologic 

History of Powder River Basin” the Wyoming Geological Association Technical Studies 

Committee reports a permanent regression of the intercratonic sea in the Powder River 

Basin directly preceding the deposition of the Lance, thus they interpret the Lance as 

continental deposits of coastal plains, meandering streams, and associated flood plains 

(Committee, 1965). These differing interpretations are inferably due to variability in 

environments as the Lance changed through time or across geographic locations. This 

variation necessitates establishing a unique depositional model for the study area in the 

Lance Formation.  

 

Facies Models 

Introduction 

Facies is a term used to refer to the combination of all aspects of a geologic unit 

or rock. Facies take into consideration the lithology, paleontology, sedimentary 

structures, and chemical properties of a rock unit (Dalrymple and James, 2010). Facies 
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can suggest an aspect of the depositional history of the area, but they are not, taken 

individually, diagnostic of a specific paleoenvironment. To decipher the depositional 

environment, the unique assemblage of facies for a particular area must be considered 

together. Facies assemblages of associations are defined as “groups of facies genetically 

related to one another and which have some environmental significance (Collinson, 

1969). 

This section will provide background on facies assemblages considered 

possibilities for the study area. The sedimentary processes, structures, architectures, and 

facies models for each will be presented. 

 

Deltas 

Introduction 

Deltas are unique geologic environments distinguished from others by exhibiting 

the process of sediment transport in a confined channel to an open water body within a 

basin. Deltas are defined as “the subaerial landforms and their subaqueous extensions 

produced by a river meeting a body of standing water”(Dalrymple and James, 2010). The 

unique depositional processes involved in the transition from confined flow to open 

standing or almost standing water result in unique facies and bed geometry and 

architecture which can be distinguished in ancient deposits.  

By their very nature, deltas are progradational. Continuous deposition at the 

mouth of the river results in sediment accumulation at the interface between fluvial and 

marine environments. Consequently, deltas exhibit a coarsening up succession from 

marine shelf to fluvial/distributary facies. In addition, deltas produce prograding, 
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basinward-dipping clinoforms comprised of a shallow dipping topsets, steep forests, and 

nearly flat bottomsets (Error! Reference source not found.) (Dalrymple and James, 

010). Deltaic bed geometries can be identified in outcrop as well as in seismic profiles.  

 

 

Figure 7 A diagram showing the geometrical elements of a delta. 
 

Parts of the Delta 

Three major divisions of a delta are recognized on the basis of their morphology, 

relation to shore (tidal shoreline, wave base, etc.), and the type of sediment deposited. 

These divisions are delta plain, delta front, and prodelta. Figure 8 shows a schematic of 

the spatial relationship between these parts.  
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Figure 8 Schematic of deltaic divisions showing their 2-D, lateral spatial relations. 

 

 

Delta Plain 

The delta plain is the subaerially exposed or partially exposed, landward portion 

of the delta extending from point of separation in the river to the high-tide shoreline 

(Bhattacharya, 2010). The delta plain can be, in turn, subdivided into the upper and lower 

delta plains demarcated by the bayline or landward limit of bays and lagoons within the 
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delta plain. The delta plain houses the distributary channels, inter-distributary marshes, 

swamps, tidal flats, lagoons, and bays. Distributary channels of the upper delta plain are 

essentially fluvial channels. However, the lower delta plain distributary channels exhibit 

varying characteristics and are affected greatly by basinal processes. These distributary 

channels may form from scouring and channel cutting, but they also, and perhaps more 

frequently, form by the coalescing of mouth bars. When this happens, a channel 

morphology and lag deposit may be difficult to distinguish or absent. Lower delta plain 

distributary channels of shoal river dominated delta systems often undergo more frequent 

avulsion and migration compared to deep water river dominated deltas. Also, tide and 

wave dominated deltas generally form longer-lived distributary channels than river 

dominated deltas due to the removal of sediment at the distributary mouth (Bhattacharya, 

2010).  

 

Delta Front 

The delta front is the steepest portion of the delta and includes a portion of the 

subtidal platform between the shoreline and fair-weather wave-base. This is where the 

coarsest material of the delta is deposited. The deposits of river dominated systems 

include mouth bars and terminal distributaries extending to the lower delta front. Wave 

dominated delta fronts may resemble other shorefaces but will contain greater 

proportions of mud and less bioturbation. Tidal dominated delta fronts contain reworked 

mouth bar deposits elongated parallel to slope. 
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Prodelta 

The distal portion of the delta, or prodelta region, comprises the often fine-grained 

deposits between the sandy delta front and the fine-grained hemipelagic sediments. The 

beds of the prodelta can be rhythmically deposited beds or silty to sandy graded beds 

depending on the dominant processes involved. Hyperpycnal flows, storm wave action, 

and turbidity flows can all contribute to the facies of the prodelta. Also, due to the high 

sedimentation rates and subsequent over pressuring by delta front sands above, the 

prodelta is a prime location for dewatering and soft-sediment deformation structures 

(Bhattacharya, 2010).  

Each of the three sub-environments of the delta creates its own suite of facies, the 

co-existence of which make up the deltaic geologic environment which can be recognized 

in the ancient outcrop.  

 

Types of Deltas 

Deltas are classified, after Galloway, on the basis of the dominant process 

forming the framework sands of the delta (1975). Both basinal processes and fluvial 

processes are at play within the delta. Processes acting within the delta have been divided 

into two broad categories: constructive and destructive (Galloway and Hobday, 1983).  

 

Constructive Processes 

Constructive processes include deposition at the channel mouth, crevassing within 

the distributary portion of the delta, and channel avulsion leading to lobe formation. 

Deposition of sediment induces grain-size segregation as bedload is deposited as mouth 
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bars while the suspended load is transported farther into the basin and deposited on the 

prodelta. Deposition of the suspended load may occur as a hyperpycnal or hypopycnal 

flow depending on the differential density of basin water and inflowing sediment-laden 

waters of the delta. Highly sediment-laden river water is likely to be denser than basin 

water and thus be transported as a hyperpycnal flow. Friction as a function of basin 

geomorphology and basin roughness helps to slow the flow and induce sedimentation. 

Incurrent suspended load as a hypopycnal flow is virtually independent of basin 

morphology. The contact of the flow with marine basinal water on the bottom of the flow 

helps to induce sedimentation by flocculation of clays (Prothero, 2004). The crevassing 

process creates a mini delta in the interdistributary embayments of the delta plain. 

Crevassing occurs more readily in the lower delta plain than the upper because the 

channel levees are less developed and even small flooding events can break the channel 

margins. Channel avulsion occurs as the flow seeks the steepest gradient. Multiple 

avulsions in turn produce a delta lobe. The geometry of the delta lobe after channel 

avulsion and subsequent reworking may help to identify the dominant process within the 

delta.  

 

Destructive Processes 

Destructive processes are the second major category of processes involved in the 

formation of a delta. One process is the work of wave and basinal currents acting to 

redistribute sediment deposited as mouth bars. This process tends to widen the delta at its 

seaward face as sediment is deposited in the direction of longshore drift. Another 

destructional process occurs as a result of rapid sedimentation in the prodelta and 
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subsequent deposition of delta front sands on top of the uncompacted prodelta mud. This 

overpressuring on the prodelta induces mass gravity processes and compaction. Thus 

deformed sediments and growth faults are common features of the deltaic settings. These 

processes cause local subsidence near the loci of mouth bar formation and allow 

continued deposition in the area until the sediment has compacted enough to produce a 

stable platform. The channel can continue feeding the area until this happens. The flow 

then abandons that channel and seeks a location that can accept deposition. The final 

process discussed by Galloway and Hobday (1983) is that of lobe-abandonment and 

cyclic destruction. This process deals with channel migration of higher order than 

discussed previously. This process acts to diminish or even remove fluvial sediment 

supply from an area of the delta due to migration of the river to a new lobe. The 

abandoned lobe still experiences basin processes including tidal currents and waves 

which rework and destroy part or all of the mouth bar deposits.  

 

Deltaic Facies 

Depending on the type of delta or the relative proportion of processes at play, the 

facies within the different segments of a delta will vary. However, all delta front and 

prodelta facies coarsen upward while the delta plain facies fines upward. The delta front 

and lower delta plain portions tend to show the most variation, thus these segments may 

be more helpful in discriminating between delta type and determining the dominant 

processes that form a delta.  
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Delta Front Facies 

Delta front facies within a fluvial dominated delta include sandstones with 

unidirectional ripples, trough crossbedding, planar stratification or massive graded beds. 

Occasionally facies may include Bouma sequences. Mud drapes and siderite nodules also 

occur. These delta front facies commonly have abundant macerated plant matter 

intermixed in the sandstones and mudstones (Bhattacharya, 2010). The more distal 

portion of the delta front will be more heavily bioturbated and finer grained. The distal 

delta front may also show evidence of storm wave action in the form of hummocky cross 

stratification. Organic layers will also be more numerous and thicker in the distal 

direction (Olariu et al., 2012). Usually river deltas form on a low gradient, and contain 

some evidence of oscillating current. Delta plain deposits contain interdistributary facies 

and distributary channel facies, which can look very similar to other fluvial facies. 

However, Reading (2009) states that delta distributaries differ from other fluvial channels 

in several ways. First they are more influenced by basinal processes than ordinary fluvial 

channels. Second, deltaic channels undergo more frequent avulsions. Third, the width to 

depth ratio is lower in deltaic fluvial settings.  

Wave-influenced delta front facies may look very similar to fluvial deltas in their 

downdrift portions, but the succession is typically thinner. Thin, shell rich units might 

appear between muddy layers. On the updrift side of the wave-influenced delta, the facies 

typically include more mature sandy units with structures including wave ripples and a 

greater proportion of cross-stratification (Bhattacharya, 2010). 

Tide-influenced deltas, on the other hand, appear more distinct from the other two 

types. Their delta front facies typically show a cyclic pattern of some kind. Beds may 
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form tidal bundles with 14 or 28 day cyclic patterns. Mud drapes and wavy bedded 

mudstones are also common. Rhythmic, heterolithic strata and tidal bundles of mud 

draped crossbedded sandstone are thus characteristic of tide-influenced delta front facies. 

Tide deltas also show the lowest level of burrowing and bioturbation of all the delta 

types. This is a result of the harsh conditions induced by frequent environmental changes 

from tidal incursions of marine water followed by fresh water at low tides. Harsh, rapidly 

fluctuating conditions also diminishes the variety of microfossils that will be found in 

these facies.  

 

Delta Plain Facies 

Delta plain facies, especially those of the lower delta plain, can vary between 

delta types though not as much as the delta front facies. The upper delta plain looks 

nearly identical to a fluvial environment while the lower delta plain may show variation 

from fluvial character. The lower delta plain may exhibit tidal bundling of sediment or 

herringbone crossbedding and contain marine fossils (Galloway and Hobday, 1983). 

Crevasse splays forming mini deltas are common in the lower delta plain. 

Crevasse splay deposits will thicken away from the main channel and will overlie 

embayment muds and silts. Further, these facies are often capped by a siderite rich layer. 

Structures vary widely in crevasse splay deposits, but climbing ripple lamination is quite 

common (Galloway and Hobday, 1983). 

The interdistributary areas of a delta plain consist of muddy facies capped by coal, 

carbonaceous shales, or paleosols (Dalrymple and James, 2010). This is the facies over 

which crevasse splay facies lie. The marine influence, indicated by heterolithic strata and 
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a decrease in ichnofauna variety, over the interdistributary region increases shoreward, 

whereas, distal to shore delta plains are far more alluvial in character.  

 

Braided Streams 

Introduction 

Braided streams are distinguished from other fluvial environments by their having 

multiple active channels that together make up a relatively straight channel system. The 

formation of multiple channels or braiding is promoted by the high sediment load within 

the stream. Braided streams have sediment loads that exceed the competence of the 

stream flow, thus sediment is deposited in the channel as channel bars which split the 

channel and increase braiding (Prothero, 2004). These channel bars, as opposed to point 

bars in meandering streams, migrate in a downstream direction (Reineck, 1973) Braided 

streams also show constant reworking of sediments and frequent channel avulsion. This 

is partly a result and cause of having unstable banks which are easily erodible. In general, 

braided streams are shallow in comparison to other fluvial systems, but discharge may 

vary seasonally allowing times of deeper flow during certain parts of the year. Channel 

bars may be completely submerged during flooding. 

 

Channel Bars 

Channel bars in braided streams may be distilled to two main types: transverse 

bars and longitudinal bars (Prothero, 2004; Smith, 1970). The differences between these 

two types are summarized in Table 1. Bar types may be differentiated on the basis of 

method of formation and on the morphology and internal structures of the bar. Transverse 
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bars are tabular in cross section and lobate in plan view. A transverse bar forms as 

sediment is entrained in a depression and therefore low energy point in the stream. It 

grows via downstream accumulation of cross bed foresets. Since the foresets build in a 

downstream direction, they show the flow direction perpendicular to the bed form. 

Longitudinal bars are more elongate in plan view and tend to form a convex bar top. This 

type of bar forms when a large particle in the channel becomes entrained and causes 

trapping of smaller particles on the downstream side of the entrained particle. As the bar 

continues to grow, the sediment on the upstream side of the bar is eroded, leaving coarser 

material behind on the upstream end. Contemporaneously, the downstream end continues 

to trap smaller particles. Thus the bar migrates downstream. Avalanching may create 

crude cross stratification on the downstream end of the bar.  

 

Table 1 Bar characteristics of longitudinal and transverse bars (Prothero, 2004; Smith, 1970). 

 

 

Both types of bars contribute to braiding of the channel. Transverse bars may 

become exposed during periods of low discharge allowing erosion and dissection of the 

bar as mini channels cut through the bar. This splits the channel and increases braiding. 

Longitudinal bars may contribute to braiding by aggrading until the channel is split.  
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Facies and Occurrence of Braided Streams 

Braided streams often form in mountainous areas, but they can also develop on 

continental plains and on deltaic plains. The South Platte River in Colorado and Nebraska 

is an example of a braided river formed on a plain (Smith, 1970). The Brahmaputra is 

cited as a braided river on a deltaic plain (Coleman, 1969; Reineck and Singh, 2012). In 

addition, the role of fines and the possibility of preservation of fines in braided streams 

has been emphasized by Bentham and colleagues (Bentham et al., 1993). Generally, 

however, the presence of extensive floodplain fines in a fluvial paleoenvironement is 

evidence against a braided stream interpretation. Typical facies present in braided stream 

environments is shown in Table 2. 

 

Table 2 The expected facies in braided stream environments (Prothero, 2004; Reineck, 1973; Smith, 
1970). 

 
 
 
 

Meandering Streams with Comparison and Contrast to Braided Streams 

Introduction 

Meandering fluvial environments differ from braided environments in sinuosity of 

the channel, type of bedforms preserved, and proportion of fine-grained material present 
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(Bridge, 1985; Brierley and Hickin, 1991). Meandering streams typically show a high 

sinuosity as compared to braided stream systems. Meandering is caused by and 

contributes to the development of point bars, the most important depositional component 

of the meandering fluvial system. Though point bars occur in braided streams, mid-

channel bars occur in far greater abundance (Miall, 2010). This difference in bar type for 

the different types of fluvial systems may be helpful in distinguishing between 

meandering and braided systems. Typically point bars show accretionary structures with 

strikes nearly parallel to the flow direction of the stream, while mid-channel bars tend to 

show accretionary structures with dip direction nearly parallel to flow (Miall, 1985).  

 

Facies Model 

Meandering streams, with sandy bedload and extensive floodplains, are typically 

finer grained environments than braided streams which are more often composed of 

gravely bedloads with little to no floodplain deposits (Miall, 2010). Galloway and 

Hobday (1983) divide fluvial facies into three broad categories based on the 

subenvironment: channel fill, channel margin, and flood plain.  

 

Point Bar Facies 

The channel fill facies for a meandering stream are dominated by point bars, 

which form by transport of finer bedload and suspended load up the slope of the inner 

bank of the stream. As a point bar develops, the stream floor migrates laterally and 

subsequently leaves behind a coarse-grained channel lag of the material which the stream 

was incompetent to carry. This material may be pebbles, cobbles, water saturated plant 
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material, or mudclasts from bank collapse or rip ups. If the channel is aggrading in 

addition to its lateral migration, some trough cross bedded bedload may be preserved.  

During flooding, a large point bar may be dissected and a second channel initiated 

that cuts and erodes the bar. These processes may form structures such as imbricated 

cobbles, planar lamination, mud lenses, and trough cross stratification. When the flow 

reaches the main channel again, the flow separation will cause deposition of the bedload 

forming a chute bar. Chute bars may be preserved as planar bedded or avalanche cross 

stratified bedload sediments (Galloway and Hobday, 1983).  

 

Channel Margin Facies 

Channel margin facies include facies of the natural levees and crevasse splay 

deposits. Natural levees form adjacent to stream margins and typically show evidence of 

varying flow conditions in the form of mud drapes. They also may show evidence of 

rapid sedimentation as a consequence of flow separation when flooding water leaves the 

confines of the channel and flows unconfined over the bank. Climbing ripples, small 

ripples, wavy, and planar lamination are common structures. Since the channel margins 

are subaerially exposed part of the time, soil formation and plant growth occur in both 

levee and crevasse splay deposits. Crevasse splay deposits also show climbing ripples, 

planar, wavy, and ripple laminated sedimentary structures, but additional structures that 

may form include trough cross bedding,  scour-and-fill structures, graded beds, and mud 

drapes. Crevasse splay deposits often accumulate large amount of plant material, 

mudclasts, and other debris (Galloway and Hobday, 1983). 
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Flood Plain Facies 

The final fluvial facies subenvironment is the flood plain. This is the location of 

the most plant growth, soil formation, and bioturbation due to the slow sediment 

accumulation rates. These processes often completely destroy the primary sedimentary 

structures that were present. Flood plain may also form the location for small, 

intermittent swampy or lacustrine environments associated with the fluvial system.   

 

Mass Flow Processes 

Introduction 

Mass flow processes define those processes by which sediment is transported 

under the influence or by the force of gravity. In contrast, fluid flow processes are those 

processes by which sediment is transported by the action of a moving fluid. It is 

important to note that mass transport does not mean that the sediment cannot be 

transported in conjunction with a fluid. Two mass transport processes will be considered 

and compared in this section: debris flows and hyperconcentrated flows. 

 

Hyperconcentrated flows 

The term hyperconcentrated flow has sometimes been used a catch-all for flows 

that could not easily be classified. Here the term will be used, as described by Nemec 

(2009), to refer to a dense deposit with rheological characteristic between mud flows and 

stream flows. In particular he describes hyperconcentrated flows as a dense, terrestrial, 

turbulent flow which deposits non stratified beds. The fact that hyperconcentrated flows 

make non-stratified beds indicates that they are also non-tractional flows. Their deposits 
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are normally graded or reverse graded (Costa, 1988; Nemec, 2009). Sedimentation is 

rapid, but the flow does not freeze en masse. Like normal stream flow, hyperconcentrated 

flow proceeds as a two phase (i.e fluid and solid) flow (Costa, 1988). Particles are thus 

suspended by turbulence, buoyancy, and dispersive pressure. Some hyperconcentrated 

flows can exhibit some sheer stress with high concentrations of fines especially with ~3-

13% by volume of kaolinite and montmorillonite clays. 

Characteristics of deposits made by hyperconcentrated deposits vary somewhat 

but in general the deposits are massive. They may display crude or faint stratification. 

They are clast supported, and in general show characteristic of noncohesive flow. They 

may be either reverse or normally graded (Costa, 1988). 

 

Debris Flows 

Debris flows act as Newtonian fluids. A debris flow may be classified as cohesive 

or non-cohesive based on the amount of clay within the flow. Cohesive debris flow are 

the focus here, but most of the following discussion could apply to any debris flow. 

Debris flows, in contrast to stream flows or hyperconcentrated flows, are one phase flows 

because the fluid and the solid flow as a single mass (Costa, 1988). In hyperconcentrated 

flows, fluid may flow around particles or flow at a faster rate.  

The distinguishing characteristic of debris flows is a fine-grained matrix 

surrounding coarse clasts (Blackwelder, 1928; Crandell, 1971). They also can show 

uniform distribution of clast sizes since suspension of sediment is a result of cohesion, 

buoyancy, dispersive stresses, and structural support of the dense flow (Costa, 1988). 

Similarly, light weight clasts such as wood or spongy bone that might float in a stream 
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flow or hyperconcentrated flow can be entrained in a debris flow. Elongated clasts 

generally show no or very poorly preferred orientation (typically with the long axis 

parallel to flow direction) (Lawson, 1982). Debris flows are typically cited as 

structureless, but they can show different types of inverse grading or normal grading 

(Costa, 1988). 
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CHAPTER TWO 

METHODS 

Fieldwork for this thesis was conducted in June of 2015 with several photos taken 

in the summer of 2016 by Michael Harriss. However, the Hanson Research Station has 

been actively studied and excavated since 1996, and data accumulated over that time was 

also used for this study. The field research area is located approximately 50 km southeast 

of Newcastle, Wyoming.  

 

Stratigraphic Sections 

Four stratigraphic sections (see Figure 9) (two long sections of 35 and 20 meters 

and two short sections each 4 meters in length) form the basic dataset of this thesis. The 

sections were measured within an area of 90,000 m2. The locations for the two longer 

sections were chosen to obtain the largest continuous sections that also contained the 

bonebed. The locations of the two shorter sections were chosen to obtain information 

about the immediate overlying and underlying sedimentary rocks of the main bonebed at 

midway points between the longer sections. Each section was measured using an RTK 

GPS unit to obtain bed thicknesses. This method was deemed as precise as a Jacob’s staff 

for this area due to the very low angle dip and presence of often subparallel bed surfaces. 

Often plants, weathering of the surface, or sediment cover hid the outcrop from view. 

While measuring sections, step-wise trenches were dug about 0.5m deep to obtain fresh 

outcrop exposures. These trenches were buried at the conclusion of the field work to 

ensure the safety of cattle on the ranch. Lateral movement was necessary during the 
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measurement of sections 1 and 2 for the sake of finding the best outcrops and for the 

purpose of obtaining longer sections.  

 

 
Figure 9 Map showing GPS points taken along stratigraphic sections. 

 
 

Quarries and Bones 

Seven quarries have been excavated into the main bonebed. These quarries were 

all utilized in this study. Figure 10 shows the location of each of these quarries. Other 

quarries are active at the Hanson Research Station, but their stratigraphic relationship to 

the main bonebed has yet to be established. Most of them also show very different 
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sedimentological characteristics than the main bonebed. Only the quarries known to be 

from the main bonebed are shown in Figure 10 and included in this study. 

Bones from the Hanson Research Station are curated for study and storage at the 

Drake Paleontology Museum on the campus of Southwestern Adventist University in 

Keene, Texas.  

Excavation at the Hanson Research Station takes place for one month each year 

with an average of 1000 elements recovered during that month. The recovered bones and 

fragments are measured and identified in the field and cleaned and re-identified at the 

preparatory lab at Southwestern Adventist University. With the use of RTK GPS 

technology, the 3D position, and thus orientation, of each element is recorded along with 

a photograph for curation into the online database at fossil.swau.edu. The in situ 

photograph and GPS points are combined into a 3D virtual quarry for future study. 

Photographs of specimens used in this thesis were obtained from the online database of 

the Drake Paleontology Museum. Information concerning the taphonomic condition and 

weathering of fossil specimens was gleaned from and can be accessed at the online 

museum database (Chadwick et al., 2016). Personal experience handling the bones in the 

quarries as well as in the museums was also useful in understanding the preservation of 

fossil specimens. 
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Figure 10 Map showing numbered quarry locations. 
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Samples of bonebed matrix were taken from each quarry to use for grain size 

analysis. These samples were collected from fresh surfaces of the quarry at vertical 

intervals of 10 cm. The samples from South Quarry were analyzed with a Beckmam 

Coulter LS 13-320 Particle Size Analyzer. The samples showed a bimodal distribution, 

thus the modal peaks from each grain size were plotted separately in Excel to determine 

vertical grain size variations within the matrix of the bonebed. 

 

Paleocurrent Measurements 

Paleocurrent measurements were taken on various structures throughout the study 

area. The measurements taken within the 90,000 m2 study area include measurements 

from cross beds as well as ripple structures. Care was taken to ensure quality of 

measurements. Outcrops with three dimensional exposures of structures or clear plan 

views were utilized for current measurements while those with only two dimensional, 

vertical exposure, or poorly preserved structures were not used.  

 

Lithologic Facies 

In the determination of facies, grain size was the primary criteria for delineating 

different facies. Sedimentary structures may vary within a particular facies with the 

exception of facies 3 which is defined on the basis of sedimentary structure.  

Several line drawings were made to illustrate the sedimentary history of a 

sandstone hoodoo directly above the bonebed. These were rendered on Abobe Illustrator 

referencing field marked photographs of the hoodoos.  
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Maps 

ArcGIS was used to make most of the maps in this thesis. Elevation maps for 

different stratigraphic units were created with the raster interpolation method of inverse 

distance weighting (IDW). This method of interpolation determines the cell value based 

on a specified number of nearest neighbor data points weighted as a function of inverse 

distance. The data points for these maps were obtained by walking out certain beds with a 

roving GPS unit. For beds that cropped out and were easily visible, the GPS was set to 

automatically take readings at specified distances while in motion. For beds that were not 

easily seen in outcrop, readings were manually taken where the bed cropped out. The top 

of the bonebed was approximated by taking readings of the highest stratigraphic 

occurrences of in situ bones and fragments on the hillsides.  
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CHAPTER THREE 

RESULTS 

This study aimed to answer how a unique layer of dinosaur bones was deposited 

in the Lance Formation. The proposed model should be consistent with the characteristics 

of the bone bearing layer itself as well as with the determined paleoenvironment of the 

local area. The results presented here contain information about these two avenues of 

research: the sedimentological surroundings of the bonebed and the bonebed facies itself.  

 

Sedimentology  

Sedimentological aspects to be presented include facies analysis, paleocurrent 

information, and stratigraphic sections. 

 

Facies Analysis 

Facies analysis of the study area in the Lance Fm indicate six distinct lithologic 

facies: planar and cross bedded sandstone, interlaminated mudstone and sandstone, 

climbing ripple sandstone, brown-grey mudstone, red shale, and bonebed facies. Facies 

are defined primarily on the basis of lithology. Sedimentary structures were used to 

distinguish two sandstone facies. Two fine-grained facies are distinguished partly on the 

basis of sediment size (facies 5 is generally more silty than facies 4), and partly on the 

basis of color, which reflects abundance of organic content or chemical composition. 
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Facies 1: Planar and Cross Bedded Sandstone 

 Facies 1 consists of white, very fine- to medium-grained, cross bedded, planar 

laminated, or ripple cross laminated sandstone. Mudclasts and mud rip ups as well as rare 

small bones, fish scales, teeth, or wood fragments may be found at the base of some cross 

bedded sets. On well exposed outcrops, channel scouring may be observed.  

Few large-scale cross bed units were observed in the study area, but many 

sandstone units, equivalent of facies 1, in the vicinity around the study area show 

successions of large scale trough cross stratification (Figure 11). Paleocurrent data for 

one of these large cross bedded sandstone units is given in Appendix F but was 

considered beyond the scope of this research because the location could not be 

stratigraphically correlated with the study area. Ripples, where outcrop allows 
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identification, are mainly linguoid ripples with rare straight crested to undulatory ripples. 

Planar and very low-angle cross bedding is also apparent. 

 

 
Figure 11 Facies 1 sandstone from northeast of section 2 shows well developed tabular cross stratification 
(image A) and cross trough stratification (images B and C). C is a close up of the center of image B. 
Abundant mudclasts appear at the base of trough cross beds. 

 

 

Faint climbing ripples are sometimes present within these sandstones, however, 

they are not classified as facies 3 for three reasons. First, they appear sandwiched 

between sandstones clearly identified as facies 1. Second, no break in sedimentation 

seems to have separated them from the surrounding sandstone, and third, the appearance 

of the sandstone, in terms of cementation and color, is the same as the rest of facies 1.  
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In some locations, beds of facies 1 show large scale deformations, which have 

been identified as seismites (Figure 12) and previously utilized as stratigraphic markers 

(Weeks and Chadwick, 2011, 2012).  

 

 
Figure 12 Contorted bedding. Image A is located outside the study area but is from a nearby location on 
the ranch. Image B shows contorted bedding of facies 1 sandstone seen in section 1. Refer to measured 
section #1 for specific stratigraphic location. 

 

 

Much of facies 1 sandstone is soft and easily weathered, but many outcrops are protected 

by a hard, carbonate cemented cap which typically ranges in thickness between 20cm and 

40cm. These carbonate cemented caps are typically of facies 1 but also may be carbonate 

mudstones classified under facies 4. 
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Some outcrops of facies 1 sandstone show convex up scoured surfaces and 

structural features. Figure 13 shows a panoramic picture of an outcrop of facies 1 

sandstone with several low relief convex up structures. 

 

 

Figure 13 Stitched photo of the lowest facies 1 interval in stratigraphic section 1. Several convex up, 
channel-like structures. 

 
 

Large exposures of facies 1 show both vertical and lateral sedimentary structural 

transitions often depicting an upward decrease in energy of flow. Figure 14 to Figure 16 

show different angles of the same sandstone hoodoo, which lies directly over the bonebed 

between Quarries 2 and 4 (i.e. South and Teague Quarries). They depict typical facies 1 

sandstone with various structures of planar bedding, cross bedding, and ripple cross 

lamination. Figure 16 especially shows an ideal vertical succession of facies 1 

sedimentary structures from planar bedding to cross bedding to ripple cross lamination. 

Figure 15 clearly shows the relationship of this outcrop of facies 1 sandstone to the 

bonebed below. A 20-30cm bed of mudstone and sandstone with 10cm clasts of mud, 
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sand and bones and fragments separates the bonebed from the overlying sandstone. An 

erosional surface half way up the outcrop contains abundant mudclasts at its base.  

 

Facies 1: Interpretation of Processes 

Sandstones of facies 1 represent mostly continuous episodes of deposition with 

varying flow energy, which produced different sedimentary structures.  

 

 
Figure 14 Line Drawing of hoodoo above the bonebed shows several sedimentary transitions in 
depositional structures in the sandstone. Original photo is shown to the right (image B) of the line drawing 
for comparison. 
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Figure 15 Line Drawing of hoodoo above the bonebed shows a mudclast and bone fragment conglomerate 
deposit just above the bonebed. Subsequent eroded depositional surface is seen halfway up the photo with 
another lag of mudclasts at its base. Original photo is given on the right (Image B). 
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Figure 16 Photograph of sandstone hoodoo above the bonebed. Image A has lines drawn illustrating 
structures seen during field observations. The bonebed is the lowest unit visible. Image B is the 
photograph without lines for comparison. 

 

Facies 2: Interlaminated Mudstone and Sandstone 

Mud is incorporated into the sandstone as broken muddy layers or stringers or as 

mud drapes over ripple cross lamination or small scale cross beds. Mud drapes occur over 

small scale cross bedding and ripple cross lamination. Facies 2 sediments give the 

appearance of flaser bedding. This facies exhibits pervasive soft sediment deformation 

structures in some localities while it appears undisturbed in other locations. Some of the 

deformation may be due to bioturbation (burrowing or trackways). Macro-scale fossils 

are not a defining element of this facies, and micro-fossils have not been studied. 

Facies 2: Interpretation of Processes 
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Facies 2 represents periods of high suspended load such that even small changes 

in the energy of flow allowed clays to settle out of suspension. Fine sediment settled 

either by flocculation of clays or, in some cases, sufficient time elapsed for clays and silt 

to settle by the slow action of gravity.  

 

Facies 3: Climbing Ripple Sandstone 

Facies 3 comprises relatively pure tabular sandstone bodies with climbing ripple 

lamination. Facies 3 typically occurs as carbonate cemented, ~30 cm thick sandstone 

beds. Generally the climbing ripples preserve the lee side as well as most of the stoss side 

forming Type 1 ripple laminae-in-drift climbing ripples (Reineck and Singh, 2012).  

 

Facies 3: Interpretation of Processes 

Sandstones of facies 3 preserve a record of periods of high sedimentation rate 

with water depth and velocity appropriate for formation of ripple cross lamination. 

Sedimentation rates were high enough to allow upward aggradation of ripple structures. 

Sedimentation rate exceeded the rate of erosion.  

 

Facies 4: Brown-Grey Mudstone 

 Facies 4 is a sticky, clay-rich mudstone. It often appears structureless, but 

structures might be lost due to diagenetic alteration or bioturbation. Facies 4 contains 

sparse root traces (Figure 18 image B) and macerated plant material. In the beds with root 

traces, often larger (10-20 cm long) plant fragments are nearby. Orange laminations are 

present in some beds and may be a result of diagenetic processes or reflect primary 
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sedimentary structures (see Figure 18 image C). The mudstone breaks apart in chunks 

with orange stain on the surfaces of natural blocks though the inside is gray. Iron staining 

surrounding grey mud balls, which may or may not be cemented hard, are common. 

Small dipping coal veins are locally present. One facies 4 bed contains an interval of 

Unio bivalves preserved as closed, whole shells. The bivalves form a one-shell thick 

horizon at the base of a mudstone bed. 

 

Facies 4: Interpretation of Processes 

Facies 4 represents locations or episodes of quiet, standing water. The water was 

saturated with suspended clays and tiny, macerated plant fragments which settled out. 

Coalified plant roots are very rare but, when present, appear in living position indicating 

that some areas or periods had conditions suitable for plant growth. No mud cracks were 

evident indicating the environment stayed near saturation or episodes of prolonged 

subaerial exposure did not occur or were not preserved.  

 

Facies 5: Red Shale 

Facies 5 is a distinctly red silty to muddy shale which sometimes appears as a bed 

of very thin flakey siltstone or as a blockier mudstone. A thin (~0.5cm), almost 

continuous layer of coal often forms the upper contact of the beds of this facies. 

Compared to facies 4, the red shale contains higher concentrations of macerated plant 

debris. Though this facies is repeated in the measured section, it serves as a very local 

stratigraphic marker bed occurring approximately 2m below the bonebed. Its distinct red 

color allows it to be spotted on the hillsides.  
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Facies 5: Interpretation of Processes 

Sediments of facies 5 are slightly coarser than that of facies 4, but the two facies 

probably represent similar conditions. Quiet water allowed small suspended particles and 

plant material to settle out of the water. The coal at the upper contact may indicate a 

small amount of plant growth at this interval. The presence of this plant material may 

contribute to the red color, or the coal may be from influx of plant material as an event 

over the top of a siltstone bed. Since no root traces were discovered, the latter 

interpretation may be more likely. 

 

Facies 6: Bonebed 

Facies 6 is a unique facies occurring only once in the entire length of section 

measured. Its characteristics will be presented in more detail later. It is a 1m thick bed of 

mudstone with abundant dinosaur bones, some plant material, and coal pieces. The bones 

are arranged in a normally graded distribution. Specific information on fossil species 

found in the bed are available in the online database provided by Southwestern Adventist 

University (Chadwick et al., 2016). A list of species is also provided in Appendix D. 

Table 3 gives a summary of the information presented above as well as some 

information about facies 6 that will be given in greater detail later in this thesis. 
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Table 3 Summary of Facies 
 

  

Facies Lithology Inorganic 

Sedimentary 

Structures 

Biofacies Distribution and 

vertical facies 

transitions 

 
 
 
1 

Sandstone Ripples: straight 
crested to linguoid 
ripples 
Cross bedding: trough 
cross bedding and 
planar cross bedding 
Mudclasts 

Rare bone 
fragments, 
various 
tetrapod teeth, 
and wood 
fragments 

Within facies 
vertical transition 
from high to low 
energy.  

 
 
2 

Heterolithic; 
sandstone 
and 
mudstone 

Mottled textures 
Abundant mud drapes 
Ripple cross 
lamination 
Trough cross bedding 

Possible 
bioturbation 
causing 
mottled texture 

Within facies 
vertical succession 
generally fine 
upward 

 
3 

Sandstone Climbing Ripples: 
Type 1 in-drift 

None Rare, typically 
appears above 
facies 4 

 
4 

Mudstone to 
Claystone 

Ochre colored 
laminations rare 

Macerated 
plant material 
Unio bivalves  

 

 
 
5 

Mudstone to 
Siltstone 

None apparent  Leaf imprints 
Capping coal 
vein 
Root traces 
Macerated 
plant material 

 

 
 
 
 
 
 
6 

Mudstone Structureless, bones 
are normally graded 

Dinosaur 
bones and 
teeth 
Crocodile teeth 
and small 
bones 
Fish scales and 
teeth 
Turtle scouts 
and rare bones 
Skate and Ray 
teeth 
Seeds 

Unique facies 
Flat upper contact 
and sharp lower 
contact in places 
where sandstone is 
in contact with 
bonebed 
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Figure 17 Facies photos. A: facies 1, clean sandstone showing small-scale, low-angle cross-bedded lamination; B: Facies 1, large 
scale cross-bedding in a clean sandstone; C: facies 2, mud-rich sandstone showing mud in the form of clasts and thick, brecciated, 
mud drapes; D: facies 2, muddy sandstone with ripple lamination and small-scale cross-bedding with mud drapes and ~2cm thick 
mud intervals. 
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Figure 18 Facies photos. A: facies 3, super critically-climbing ripples in a very clean, carbonate cemented sandstone; B: facies 4, rare, coalified roots in growth 
position within a drab-grey mudstone; C: facies 4, drab-grey mudstone with orange laminations possibly indicating primary structure; D: facies 5, red, shaley 
siltstone with abundant macerated plant material and a thin <1 cm coal lamination at the upper contact (visible ~4 cm below the scale) 
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Paleocurrent Data 

Paleocurrent measurements from ripples and dunes are plotted in Figure 19 on 

separate rose diagrams. The rose diagrams indicate a mostly unidirectional flow to the 

southeast for the area. Comparison of this flow direction with the maps of the Western 

Interior Seaway of Figure 1 show that the determined paleocurrent of the Lance Fm here 

is toward the center of a water inlet of the Western Interior Seaway. 

Paleocurrent data were obtained mostly from ripples and dunes of facies 1 

sandstones. A few measurements were obtained from facies 3 climbing ripples, and one 

measurement was taken in facies 4 mudstone of several coal and orange dipping 

laminations that resemble cross bedding. The laminations showed a direction consistent 

with other measurements. The measurements that were taken from beds during the 

logging of sections are indicated on the stratigraphic columns of                               

Figure 22-                         Figure 24. 

 

 

Figure 19 Rose diagrams of paleocurrent indicators depict a mostly unidirectional flow. Measurements 
on ripples and dunes are plotted separately. n=21 
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Stratigraphic Sections 

Four stratigraphic sections were measured (Figure 21-                       Figure 25). 

Table 4 shows the UTM coordinates for each section. Sections 1 and 2 are each fairly 

long (section 1 = 35m and section 2 = 19 m) while sections 3 and 4 are shorter (~4 m 

each). Figure 20 shows the outcrop on which section 1 was measured. This photo typifies 

the outcrop of the Lance Fm in the study area. 

 

Table 4 UTM Zone 13N coordinates for beginning and end of each stratigraphic section. 

 

Section 

No. 

1 2 3 4 

Start 
(Northing 
Easting) 

4815209 

543649 
 

4815496  
543912.
9  

 

4815283  
543860 

4815457  
543804.8 
 

End 

(Northing 
Easting) 

4815269  
543802.7 

4815427  
543977.3 

4815289  
543858.8 

4815467  
543814.2 
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Figure 20 Typical Lance Fm outcrop. Section 1 was measured from the bottom left side of this 
photo to the upper right. 

 

The legend for all stratigraphic sections is given in Figure 21. The Four sections 

were correlated (see                        Figure 25) using the bonebed and a carbonaceous, red, 

flakey shale (facies 5) which lies ~2m below the bonebed. The combined, 

nonoverlapping length of Lancian section measured totals ~45.5m. Over the area studied, 

no faults were evident, however, lateral variations in sedimentary structure, lithology, and 

thickness of beds are apparent. 
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Figure 21 Legend for all four stratigraphic sections. 



 

 

54 

 

 
                              Figure 22 Stratigraphic section 1 split into three columns for ease of viewing. Legend is in Figure 21. 
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Figure 23 Stratigraphic section 2 is shown in two panels for ease of viewing Legend is in Figure 21.. 
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                         Figure 24 Stratigraphic sections 3 and 4. Legend is on Figure 21. 
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                       Figure 25 Stratigraphic sections correlated with the bonebed. Complete versions of sections 1 and 2 can be found in previous figures.
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Bonebed Facies 

The bonebed is a unique facies. The other five facies occur repeatedly throughout 

the observed portion of the Lance, but the bonebed facies appears only once. The 

bonebed, except for short intervals where Quaternary alluvium covers the hill, crops out 

continuously around several fingers of a large hill. The bonebed can be observed in these 

outcrops as well as from several quarries probing into the bonebed.  

There are many active quarries on the Hanson Ranch, but, for the purposes of this 

study, only seven of these quarries have been included. Figure 26 is a map that shows the 

position of the quarries used in this study. Other quarries not utilized in this study are 

located some lateral distance away from the studied quarries. The excluded quarries did 

not crop out in the study area, and thus, they are not in the presented stratigraphic 

columns. Most of the seven studied quarries have been under excavation for many years. 

They represent the totality of quarries, to date, dug into the main bonebed. These seven 

quarries were correlated by walking out the bonebed. The bed is easily identified by the 

presence of abundant dinosaur bones lying on the surface of the hillside. The 

sedimentology and spatial data of the bonebed are presented below.  
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Figure 26 Map showing location of bonebed. Bright red dots indicate quarry locations. Dark red dots 
indicate position of bones found in quarries. Green dots indicate location of bones in outcrop.  

 

Sedimentology 

The bonebed, studied from seven quarries, is a 0.5 to 1.5 meter thick bed of 

structureless mudstone with abundant dinosaur bones and teeth and small bones of other 

animals. On the south end, it is bounded on the bottom by a muddy sandstone (facies 2) 

and on the top by a fine-grained ripple cross laminated and cross-bedded sandstone 

(facies 1). On the north end, it is bounded by a mudstone (facies 4) on the bottom and a 

fine-grained, ripple cross laminated and small-scale cross bedded sandstone (facies 1) on 
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the top. The contact between the bonebed and the overlying sandstone is sharp and flat 

(Figure 27 images A, B and D). 

 

 
Figure 27 Bonebed Contacts. The contact between the bonebed and overlying sandstone is a flat contact. 
Small mudclasts and concretions sit just above the mudstone in some locations. The basal surface of the 
bonebed makes a sharp contact where it meets underlying sandstone (image C), but where it overlies 
mudstone toward the north, a contact is indistinguishiable.  

 

The upper contact of the bonebed, though flat, contains concentrations of 

mudclasts in the immediately overlying sandstone. In some locations, there are sparse 

bone fragments, and teeth incorporated in the overlying sandstone. These are mostly 

restricted to the ~20-30cm of sediment directly above the bonebed. However, a few 

fragments may appear 1-2m above the bonebed incorporated in mudclast-rich intervals at 

the base of cross bed sets or individual cross beds. No bone material has been observed in 

the underlying sandstone when it is present, and when the bonebed is underlain by 

mudstone, the basal contact is imperceptible.  
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Where sandstone underlies the bonebed, the basal contact is uneven and less 

distinct than the top, but a sharp, dark line marks the boundary between sandstone and 

mudstone. This contact shows some possible small scours or tool marks indicated by 

short breaks in the dark demarcating line of the contact.  

 

Vertical Distribution of Bones 

It is evident from excavating the bonebed and from observing the 3-D generated 

quarry images of the bed (see Figure 28), that the bones appear in a normally graded 

distribution with the largest bones resting on the floor of the bed and smaller bones 

suspended in the matrix. Most of the bonebed is matrix supported, but in Southeast 

Quarry (Quarry 8), bones at the bottom of the bed are in contact with each other and 

might represent a clast supported area of the bed or at least a more densely populated area 

of the bed forcing larger bones to be in contact. 
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Figure 28 Horizontal slices of a portion of the bonebed showing vertical distribution of bones. The basal 
most 0.2m is shown at the top followed by successive 0.2m slices. 
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Matrix Grain Size Analysis  

The mudstone matrix of the bonebed exhibits no apparent grading. Figure 29 

shows the vertical distribution of grain sizes of clay and silt within the matrix. The graph 

in Figure 30 was generated from the size analysis of the lowest matrix sample taken from 

South Quarry. The majority of particles in the matrix are silt with ~20-25% clay and a 

small fraction of very fine-grained sand. 

 

 

Figure 29 Grain size analysis of mudstone matrix from South Quarry shows little apparent vertical size 
variation. 
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Figure 30 Sample grain size analysis graph showing obvious bimodal distribution. 

 

Bone Orientation 

Elongated bones (i.e. limb bones, ribs, meta carpals, etc.) show no preferred 

orientation. Figure 31 shows long bone orientations. No imbrication of bones has been 

observed, nor does the bed show any sedimentary structures. The matrix appears 

structureless with the exception of a horizontal color difference between top and bottom 

half of the quarry seen in South Quarry. This may be due to recent water movement in the 

quarry or may represent primary structure.  
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Figure 31 Pictorial rose diagrams showing long bone orientation from three quarries. No preferred 
orientation is evident.  

 

 
Spatial Data 

The bonebed has been sampled from 7 quarries within an area of ~ 0.1 km2. The 

average thickness of the bed is 1m. The bonebed thickens to the south (see Figure 32). At 

its thinnest it is ~0.5-0.6m, and at its thickest it is ~1.5m. The lateral distribution of bones 

shows that bone concentrations increases slightly toward the south, (Figure 32-            

Figure 34) while the vertical distribution is normally graded. The quantity of bone 

material in the bottom 0.5m of the bonebed in quarries 1, 2, 4, and 8 is far greater than in 

the top 0.5m (Figure 35).  
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Figure 32 Plan and cross sectional view of three quarries illustrating thickness differences and variation 
of bone concentration from quarry to quarry. 
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The bonebed, though fairly planar, exhibits a dip of approximately 3° to the NW 

(dip measured from GPS data of the top of the bonebed). This is roughly 180° opposed to 

the average paleocurrent direction of surrounding beds. Relief within the bed is minimal. 

Figure 36 shows an IDW elevation map of the bonebed. Within the study area, the 

maximum and lowest elevation difference of the top of the bonebed is ~11m.  Figure 37 

shows the elevation map of a red shale layer (facies 5) that lies ~2m below the base of the 

bonebed. It is the most prominent, mappable layer in the vicinity of the bonebed. Both 

beds appear to have nearly the same topographic architecture.  

Modern drainages truncate the bonebed on the southwest, southeast, and 

northwest. (See Figure 26 for a map of GPS points taken on the bonebed.) It is possible 

but unknown whether the same bonebed may crop out on other hills at more distant 

localities. The northeastern edge of the bonebed becomes untraceable where Pleistocene 

alluvium covers the outcrop. However, another bonebed, not included in this study, 

appears north of the Pliestocene cover at approximately the same elevation. It may 

eventually be shown to correlate with the main bonebed. The fossil assemblage of this 

northern bonebed is more articulated and contains remains of taxa which are scarce to 

absent in the main quarries.  
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Figure 33 Georeferenced images of bones from each quarry show the lateral distribution of bones within the bed. Where bones are exposed, the height of the 
bed has been excavated. Black areas are either unexcavated or eroded portions of the bonebed due to modern drainages. 
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             Figure 34 Georeferenced bone images from each quarry, quarries 6, 7, & 11. 
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Figure 35 Diagrams generated from accumulated GPS data points taken on the periphery of each excavated bone. A is an aerial view, and B is a cross sectional 
view of the same quarries.
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Mapping Data 

Several lithologic units were mapped during field research. Units mapped are 

presented in Appendix E. To establish the dip and learn about the topographic relief of 

the bonebed, the bonebed and uppermost mappable unit below the bonebed were mapped 

and displayed below (Figure 36 and Figure 37). Though initially the goal was to map the 

bottom of the bonebed, this was deemed impractical because of the obscurity of the 

bottom contact of the bonebed mudstone with the underlying mudstone. Instead, the 

highest stratigraphic occurrence of in situ bone material was mapped as a proxy for the 

top of the bonebed. An easily identified, mappable unit below the bonebed was mapped 

in order to compare its relief to that of the bonebed. 

The dip of both beds, the bonebed and the red shale, is very shallow (~2-3°) to the 

NW. They also show very similar patterns in terms of topographic relief. Both beds have 

fairly low topographic relief. Based on this evidence, it seems reasonable to say that the 

bottom of the bonebed displays little topographic relief.  
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Figure 36 Elevation contour map of the bonebed. Quarries are indicated by red dots. GPS points used to 
make the IDW are indicated by green dots. 
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Figure 37 Elevation contour map of red shale (facies 5) layer below the bonebed. Quarries are indicated 
by red dots. Data points used to create the IDW are green. 
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CHAPTER FOUR 

DISCUSSION 

 

Interpretation of Depositional Environment 

Introduction 

One of the aims of this research was to determine the paleoenvironment of the 

study area so that the depositional history of the bonebed could be discussed in the light 

of the determined paleoenvironment. The tools utilized in determining the depositional 

environment are the four stratigraphic sections (                              Figure 22-                         

Figure 24), which helped to define facies present in the study area, and published facies 

models for environments similar to what might have created the Lance Fm. The facies 

models are discussed in detail in Chapter One. 

 

Facies Analysis 

Interpreting the facies assemblage yields one piece of the puzzle. A single facies 

alone is not indicative of a specific environment, but the association of individual facies 

may lead to a unique paleoenvironmental interpretation. 

 

Fossil Assemblages from Mudstone Facies 

Most fossils are restricted to mudstone facies (facies 4, 5, and 6) with rare 

fragments in facies 1. The fossils in the area indicate that the environment was freshwater 

and not marine, assuming these fossils are in place. Unio bivalves are known from 

terrestrial fluvial, lacustrine, lagoonal, and flood plain environments as well as from 
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marginal marine settings (Fossilworks, 2016). This is probably the best fossil indicator 

for environment because these bivalves appear to be an autochthonous concentration. 

Most of the bivalves are found in the closed position indicating they were not dead long 

enough before burial to allow decaying of soft tissue because the relaxed position of the 

bivalve is open (Ray, 2008). They are found at one horizon of a muddy bed and are in 

exceptional condition with the mantle still intact and whole shells present. The bivalves 

are in a one bivalve-thick, sparse concentration but confined to a single stratigraphic 

horizon, whereas the bonebed, as a fossil concentration, is a thicker, deposit of 

disarticulated fossils. To have a thicker or more concentrated deposit indicates 

preferential accumulation of animal material compared to inorganic sediments. Most 

fossil material, excluding the bivalves, was likely transported at least some distance from 

its original habitat. Whether transport was long distance or short, is not determined for 

the other deposits. The presence of articulated skeletons or at least partially articulated 

skeletons would give evidence of an accumulation of fossils buried soon after death, but 

the bonebed contains only a small number of articulated artifacts of two or three bones 

and no articulated skeletons. This fact, in addition to the lack of disarticulated but 

associated skeletons, indicates that sufficient time elapsed for disarticulation of skeletons, 

and also the material was transported a distance sufficient to disassociate the skeletal 

elements. 

The crocodiles, turtles, rays, and fish (pieces of which are found in the main 

bonebed) are also known from freshwater environments but might be consistent with a 

marginal marine environment such as a delta, delta distributaries, or estuary. The 

dinosaur assemblage points to a terrestrial environment, probably low elevation alluvial 



 

76 

or marginal marine. A more comprehensive list of taxa present in the study area is given 

in Appendix D. 

 

Interpretation of Facies 1 

Facies 1, planar and cross bedded sandstone, is a clean, fine-grained sandstone 

occasionally housing mudclasts and bone fragments. Facies 1 sandstone beds show 

varying sedimentary structures produced by traction transport processes. Longer vertical 

successions of facies 1 sediment show structures indicative of waning flow conditions 

(i.e. changes in sedimentary structures from planar bedding to cross bedding to ripple 

cross lamination up section). Vertical grain size variations are not evident within these 

successions. This may be an artifact of the limited variety of grain sizes available. The 

convex up structural features of Figure 13 suggest channel margin scouring, and the 

outcrop of facies 1 sandstone directly overlying the bonebed shows evidence of erosional 

scouring by channel cutting processes (see Figure 15).  

Large clasts in the sandstones of facies 1, when they appear, are likely due to 

undercutting of muddy banks and subsequent bank collapse into a channel. Some small 

mudclasts could be a result of erosion of larger mudclasts or traction transport and 

aggregation of tiny particles which pick up mud from the channel floor. Sometimes 

mudclasts are entrained in the flow for a while allowing the edges of the clasts to become 

rounded. Some mudclasts show lamination, an indication of primary structure in the 

original mud layer. The mudclasts deposited and buried in the channel allowed the 

lamination to be preserved while the original remaining mudstone layer was bioturbated 
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or diagenetically altered to the point of becoming mostly structureless (see discussion of 

facies 4 below).  

The structures and motifs of facies 1 sandstone are compatible with channel fill 

sandstones. Planar bedding might indicate the top of a transverse bar form or a very low 

angle point bar. Mudclasts make up the channel lag deposits in some locations and are 

found at the base of cross bed sets. Most cross beds show paleocurrent directions 

comparable to directions measured on ripples suggesting they are within channel 

bedforms instead of point bar deposits. They are either avalanche surfaces of longitudinal 

bars or forward migrating, lobate transverse bars. Ripple cross lamination might form on 

the tops of these bars or on the channel floor during low energy flow conditions.  

Though channel fill seems a good interpretation of this facies, channel 

architectural elements are scarce to absent in the study area. Lens-shaped channel fills are 

either not present or obscured by modern vegetation.  

 

Interpretation of Facies 2 

Facies 2, interlaminated mudstone and sandstone, is a heterolithic facies 

indicating fluctuation in flow velocity or energy. The alternating deposition of clay and 

sand is reminiscent of flaser to wavy bedding but may not be representative of implied 

tidal influence that the term flaser carries. This facies does, however, indicate periods of 

slack water. 

It is possible facies 2 indicates tidally forced fluctuation in flow conditions, 

however, the alternation between sand and mud does not give the appearance of rhythmic 

fluctuations or cyclicity as might be expected for a tidally influenced facies. Other 
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processes may complicate an otherwise regular cycle of sedimentation enforced by tidal 

currents.  

Another possibility for this facies is that it represents the flood plain deposits of 

an alluvial fluvial system. Both levee and crevasse splay deposits have heterolithic 

bedded units due to the fluctuation between flowing water during flooding and standing 

water or arid conditions between flooding events. Some of the beds of facies 2 show a 

mottled texture that may be partially due to bioturbation, which would be expected to 

occur between flooding events in the flood plain deposits of a fluvial environment. 

However, facies 2 outcrops generally show preservation of much, if not all, of the 

primary structures indicating that bioturbation plays only a minor role. In addition, plant 

material is not present in facies 2. Deposits proximal to fluvial environments should 

contain plant material if enough time elapses between flooding events. Thus, if facies 2 

represents natural levees or distal crevasse splay deposits, not much time elapsed between 

flooding events.  

Facies 2 represents fairly rapid deposition of both sand and mud indicating highly 

saturated water that deposits mud fairly quickly as soon as slack water conditions occur. 

Rapid deposition is indicated by the often complete lack of bioturbation, and saturated 

water is indicated because mud drapes over sand occur at such small scale as the ripple. 

These conditions might occur in either proximal flood plains of alluvial fluvial channels 

where crevassing produces rapid deposition and fluctuating conditions or in distributary 

channels of deltas where deposition often occurs rapidly and tidal influence produces 

fluctuations in flow conditions. 
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Interpretation of Facies 3 

Facies 3, climbing ripple sandstone, is the least abundant of the facies identified. 

It represents periods of rapid sedimentation. This facies is interpreted as proximal 

crevasse splay deposits of some kind of channel. It often appears above mudstones 

indicating deposition on overbank fines, which is consistent with crevasse splays. 

 

Interpretation of Facies 4 

Facies 4, brown-grey mudstone, makes up the bulk of the fines in the stratigraphic 

sections. Concretions, iron stained lamination, and macerated plant material characterize 

this facies. Delta front deposits often contain abundant macerated plant material and 

siderite nodules (Bhattacharya, 2006).This facies may fit well within a delta 

interpretation, but it could also represent channel plugs, however, there is no reason to 

suspect this because no channel architectural elements indicate facies 4 was deposited 

within abandoned channels. 

One facies 4 bed contains a concentration of bivalves at its base which points to 

an interchannel lagoon or embayment depositional environment. This facies could be 

produced in either a meandering stream flood plain or deltaic interdistributary 

environment. The absence of strictly marine fossils indicates that, if the environment was 

deltaic, this location was a more distal to shore location. 

 

Interpretation of Facies 5 

Facies 5, red shale, warrants a different classification from facies 4 due to its 

appearance and weathering. Red shale weathers as a papery or blocky shale. It often 
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contains more organic material in the form of macerated plants and occasional tiny, well-

preserved leaves. It very rarely contains root traces. Red shale often underlies mudstone 

of facies 4 with a thin, prevalent but discontinuous coal seam ~0.5cm thick forming the 

contact between facies. The thin coal above this facies indicates the growth of plant 

material at this horizon, or that plant material was washed in at this horizon.   

This facies could represent a paleosol which was subaerially exposed for long 

enough to accumulate plant material in growing position. The papery weathering of some 

of these units could be a result of higher concentrations of plant matter than facies 4, 

however, facies 5 contains, in general, less clay than facies 4. Interdistributary 

environments of delta plains are noted to contain fine-grained facies capped by coals or 

paleosols (Dalrymple and James, 2010). However, this facies is not incompatible with a 

more alluvial meandering stream environment.  

 

Interpretation of Facies 6 

Facies 6, bonebed facies, will be considered in more depth later, but it can be 

noted here that the bonebed represents a unique mass transport facies.  

 

Interpretation of Paleoenvironment 

The facies assemblage is compatible with either a meandering fluvial environment 

or delta plain distributary environment. The absence of coarse material and the 

abundance of fine material precludes interpretation as a braided stream system. The 

sandstone facies indicates that channel fill deposition was more prominent than bar 

accretion and migration. The setting was highly aggradational. The fossil assemblage is 
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compatible with either terrestrial alluvial or marginal marine environments. Channel 

cutting and channel lens formation are not a major feature of the environment. This fact 

gives credence to the deltaic distributary hypothesis since channels can form from 

coalescing of mouth bars instead of by channel cutting. However, several places indicate 

scouring and lag deposits. The facies are characterized by low levels of bioturbation also 

pointing to a fast sedimentation rate. Soft sediment deformation is present in small scale 

and large scale. This might be due to seismic activity, or, if this is a deltaic environment, 

to slumping as a result of over pressuring unconsolidated, rapidly deposited sediment that 

may also be seismically triggered or induced (Weeks and Chadwick, 2012).  

Either a delta plain or alluvial fluvial environment of a coastal plain fit very well 

in the historical geological setting of the Powder River Basin of the Late Cretaceous. As 

the Seaway regressed, the landscape transitioned from marine to terrestrial. The Lance 

Fm was deposited during this transitional period. Flow directions of the Lance Fm 

indicate drainage into the marine basin toward the east.  

 

Depositional Model for Bonebed 

Perhaps the most obvious and intriguing aspect of the bonebed is the number of 

large herbivorous dinosaurs preserved in the layer. Based on the number of curated left 

surangulars, a minimum number of individuals of Edmontosaurus, is 28 (Siviero, 2016), 

and the bonebed is minimally sampled to date. The question immediately arises, “How 

did these bones get here?” A discussion of the evidence presented in Chapter Three will 

hopefully yield a satisfactory answer to this question.  
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Elements excavated from the seven quarries considered in this study number 

~13,000 bones, fragments, teeth, and tendons measuring more than 10cm. (Tendons 

smaller than 10cm are discarded from the quarry.) Bones are almost exclusively from 

adult Edmontosaurus annectens while teeth from scavengers such as Tyrannosaurus 

rex, Troodon, Dromaeosaurus, and Nanotyrannus are common in the bonebed 

(Chadwick, 2016). The assemblage of Edmontosaurus bones are primarily sub adult to 

adult – very few bones are from juvenile Edmontosausus – however, this data has not 

been quantified and is beyond the scope of this project. Bones, teeth, and scutes appear in 

pristine condition; bones show minimal surface abrasion, rounding, or weathering 

(Chadwick et al., 2016). However, many ribs and spinal processes are broken possibly 

from trampling, and caudal vertebrae and ribs have occasional tooth marks from 

predation or aggression. The bones display similar weathering characteristics across the 

bonebed as well as across skeletal types indicating that this is an event concentration.  

Also of interest, is that teeth and bones of the skull and mandible are found in the 

same deposit along with vertebrae, ribs, and sacra. These two groups of bones are in 

different Voorhies categories (Voorhies, 1969). The first set of bones are thought to form 

a lag-type deposit if transported and deposited in stream flow. The second group is less 

dense and typically are transported easily or perhaps even float.  

Skeletal elements from the entire animal are distributed in the deposit such that 

taking only a portion off the top of the bonebed would not yield all the bones of the 

animal. Theoretically, to construct a dinosaur from the bones in the bonebed, the whole 

vertical depth of the bed would need to be excavated. This offers a unique look into the 

mode of deposition in the quarry. It indicates that the deposit represents a single event.  
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From the previous discussion of facies and paleoenvironment, the model for 

bonebed deposition must fit within the broad picture of a terrestrial deltaic or coastal 

plain fluvial environment, and, based on the distribution of bones in the quarry, it appears 

obvious that the deposit represents a single event. The bones are distributed with the 

largest bones at the base of the deposit and successively smaller bones are found higher 

in the bed. If this were a multiple event bed, it is expected that bones of several animals 

might be found in the top portion of the bed and then the bones of several more animals 

would be found below that, but instead, the bones that comprise all the bones of a 

dinosaur skeleton are distributed throughout the vertical depth of the quarry.  

Also, bones are matrix supported which indicates that some mass transport 

mechanism deposited these bones. Two likely candidates for mass transport are debris 

flow and hyperconcentrated flow.  

The bonebed rests on mudstone or heterolithic mudstone and sandstone (facies 2 

and 4 respectively). These are flood plain or interdistributary facies. The lateral transition 

from facies 2 to facies 4 might indicate distance from the channel. Heterolithic, facies 2, 

deposits could be the medial portion of a crevasse splay which transitions distally to 

mudstone, facies 4. The sediments directly above the bonebed are facies 1, channel 

sandstone. Directly on top of the bonebed is a lag-like deposit of mudclasts and bone 

fragments. It might be suggested that the bonebed represents a lag deposit, but instead, 

the lag deposit sits directly on top of the bonebed, and a lag deposit would not be 

expected to contain so much mud. 

It is difficult to determine whether the base of the bonebed is erosional or not. It 

does seem to have some very shallow divots or scours, but these may be a result of tool 
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marking along the base of the flow. Debris flows typically don’t show erosional bases 

simply because they are non-turbulent flows. Hyperconcentrated flows are more turbulent 

and can cause erosion along the base of the flow. The underlying sediment changes 

lithology from one quarry to the next, but within a quarry, the base of the bonebed 

appears fairly flat. These transitions in lithology have not yet been excavated and studied.  

Hyperconcentrated flows are expected to deposit clasts differentially based on 

size. This means that a hyperconcentrated deposit should be clast supported. The flow 

should not freeze en-masse with bones suspended in the matrix. However, a debris flow 

acts as a one phase flow and can freeze with clasts suspended in the matrix. This points to 

a debris flow mechanism of deposition. But debris flows typically require steep slopes to 

initiate and continue movement. Based on paleotopographic literature review, there were 

no uplifts in the vicinity of the study area. Perhaps an erosional escarpment could be 

invoked that would provide the relief necessary for initiation of a debris flow.  

Other lines of evidence point to a debris flow process of deposition. One evidence 

is that the bones do not show preferential orientation. Though some debris flows can 

induce orientation in elongated clasts, it is not always present or may be poorly 

preserved. However, the two phase flow of a hyperconcentrated flow often induces 

preferred orientation in elongated clasts. Another evidence is that debris flows can entrain 

light weight or low density clasts in the same flow as heavy or high density clasts. 

Objects like wood and light weight, spongy bone might float in a hyperconcentrated flow 

and would not be preserved in the deposit or at least not below the surface of the deposit, 

but in the bonebed we have found many fragments of wood, seeds, vertebrae, and ribs.  
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Figure 38 Large wood fragment found within the bonebed. 

 

There are a few pieces of evidence that point away from a debris flow 

interpretation. For instance, debris flows typically show a uniform distribution of grain 

sizes. The bonebed is made up of a very fine matrix of silt and clay with large bone clasts 

many orders of magnitude larger than the matrix particles. There are, of course, very 

small (millimeter-sized) teeth and bones also present as clasts in the bonebed. But 

sediment of intermediate size, fine-medium sand which is abundant in the surrounding 

units, is absent in the bonebed. Another more glaring evidence against a debris flow is 

that the bones are arranged in a normally graded distribution. Debris flows typically show 

either no grading or inverse grading. However, hyperconcentrated flows often show 

normal grading, but their depositional mechanisms shouldn’t produce a bed with a matrix 

supported framework.  
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The model proposed for the deposition of the bonebed is as follows, and Figure 

39 displays a diagram of the proposed depositional setting of the Lance Formation. 

Large, local accumulations of dinosaur bodies rested subaerially for a time during which 

the flesh decayed, but before sun bleaching and surface weathering could take place, the 

bones were entrained in a mud slurry which could be classified as a pseudoplastic debris 

flow. Likely this slurry was initiated by an earthquake which caused liquefaction and 

mobilization of fluid-rich mud of a local escarpment left from stream erosion. The clay 

rich matrix was diluted with water enough to make a viscous style of flow. Yield strength 

is relatively low providing enough lift for smaller bones but inadequate for the largest 

bones. The viscous style of flow kept the bones from making many collisions, thus 

keeping the bones in pristine condition during transport. Though the flow moved as a 

viscous, dominantly one phase flow, the fine-grained matrix and relatively low 

concentration of clasts failed to provide the inertial forces to cause kinematic sieving to 

occur. Thus the large bones were allowed to migrate down to the bottom of the flow 

while smaller bones remained higher in the flow. The slurry traveled over the level 

terrain of the interchannel flood plain until liquefaction ceased and frictional forces 

brought the slurry to rest, freezing it mid flow with many bones suspended in the matrix. 

Subsequent aggradation and migration of streams eroded the very top of the bonebed 

creating a flat upper surface to the deposit. Some of the eroded material was consolidated 

and left as a lag on top of the bonebed.  

Observations of a similar deposit have been published by Shultz for the Cutler Fm 

of western Colorado (1984). He describes a normally graded, matrix supported 

diamictite. The bed is less than a meter in thickness with a fine-grained matrix and coarse 
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grained clasts, most of which are not larger than cobbles. The interpretation for this bed is 

a pseudoplastic debris flow which has relatively low shear strength due to high water 

content, thus the matrix supports only the smaller clasts which the others being moved 

during periods of high velocity flow in which turbulence provides the means of 

movement.  

 

 
Figure 39 Depositional model of the Lancian landscape prior to proposed mobilization and final 
deposition of dinosaur bones. 

 

The bonebed on the Hanson Ranch displays many of the same characteristics of 

Shultz’s graded matrix-supported diamictite. The bonebed provides further support for 

the flow mechanism and rheological properties Shultz proposed.  
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CHAPTER FIVE 

CONCLUSIONS 

 

The goal of this project was to determine a depositional model for the main 

bonebed at the Hanson Research Station. To achieve this goal, two main avenues of 

research were pursued: the paleoenvironment of the area and the specific depositional 

indicators of the bonebed itself.  

In light of the geologic setting, it was expected that the depositional environment 

would show indications of a transitional environment between the marine setting of the 

Western Interior Seaway and the terrestrial environment that followed the regression of 

the Seaway. The sedimentological evidence was not extremely conclusive. Facies 

analysis showed that either an alluvial fluvial environment or a marginal marine deltaic 

distributary environment is compatible with the evidence. However, several 

environments, which were cited as possibilities for the Lance, have been ruled out. These 

include marine and braided stream environments. The former is ruled out because of the 

lack of marine fossils and apparent subaerial exposure of sediments for the growth of 

plants. The latter is ruled out based on the absence of coarse-grained material and 

presence of abundant fine material indicating overbank deposits. Braided streams are well 

known for their general lack of fine material. 

With these paleoenvironmental limits in mind, the deposition of the bonebed was 

considered. The bonebed’s characteristics are indicative of mass transport processes. 

Mass transport deposits having a structureless, fine-grained matrix with large clasts 

suspended by the matrix indicates a debris flow-type of deposition, however, the tectonic 
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setting yields no topographic relief which might have induced the sediment gravity flow. 

Hypothesizing a local erosional relief solves this problem for the moment until further 

investigation can be done. The presence of multiple layers showing large scale 

deformation indicates the area was plagued by earthquakes, which may have helped to 

trigger a sediment gravity flow on a shallow slope that otherwise might not have initiated 

a depositional event.  

This area is still a rich research ground and can support many more projects 

including supplementary projects to this thesis. 

  



 

90 

REFERENCES 

 
Bentham, P. A., Talling, P. J., and Burbank, D. W., 1993, Braided stream and flood-plain 

deposition in a rapidly aggrading basin: the Escanilla Formation, Spanish 
Pyrenees: Geological Society, London, Special Publications, v. 75, no. 1, p. 177-
194. 

Bhattacharya, J. P., 2006, Deltas: Special Publication-SEPM, v. 84, p. 237. 

-, 2010, Deltas, in James, N. P., and Dalrymple, R. W., eds., Facies Models 4: Canada, 
Geological Association of canada. 

Blackwelder, E., 1928, Mudflow as a geologic agent in semiarid mountains: Geological 
Society of America Bulletin, v. 39, no. 2, p. 465-484. 

Breithaupt, B. H., 1982, Paleontology and paleoecology of the Lance Formation 
(Maastrichtian), east flank of Rock Springs Uplift, Sweetwater County, 
Wyoming: Contributions to Geology, v. 21, no. 2, p. 123-151. 

Bridge, J. S., 1985, Paleochannel Patterns Inferred From Alluvial Deposits: A Critical 
Evaluation Perspective: Journal of Sedimentary Research, v. 55, no. 4. 

Brierley, G. J., and Hickin, E. J., 1991, Channel planform as a non-controlling factor in 
fluvial sedimentology: the case of the Squamish River floodplain, British 
Columbia: Sedimentary geology, v. 75, no. 1, p. 67-83. 

Chadwick, A., 2016, Personal communication about fossil taxa and fossil preservation. 

Chadwick, A., Woods, J., and Turner, L., 2016, Online Fossil Museum. 

Coleman, J. M., 1969, Brahmaputra River: channel processes and sedimentation: 
Sedimentary Geology, v. 3, no. 2, p. 129-239. 

Collinson, J. D., 1969, The sedimentology of the Grindslow Shales and the Kinderscout 
Grit: a deltaic complex in the Namurian of northern England: Journal of 
Sedimentary Research, v. 39, no. 1. 

Committee, W. G. A. T. S., 1965, Geologic History of Powder River Basin: AAPG 
Bulletin, v. 49, no. 11, p. 1893-1907. 

Connor, C. W., 1992, The Lance Formation; petrography and stratigraphy, Powder River 
basin and nearby basins, Wyoming and Montana: U. S. Geological Survey : 
Reston, VA, United States, 8755531X. 

Costa, J. E., 1988, Rheologic, geomorphic, and sedimentologic differentiation of water 
floods, hyperconcentrated flows, and debris flows: Flood Geomorphology. John 
Wiley & Sons New York. 1988. p 113-122. 5 fig, 2 tab, 54 ref. 



 

91 

Crandell, D. R., 1971, Postglacial lahars from Mount Rainier volcano, Washington: US 
Govt. Print. Off., 2330-7102. 

Crowley, P. D., Reiners, P. W., Reuter, J. M., and Kaye, G. D., 2002, Laramide 
exhumation of the Bighorn Mountains, Wyoming: an apatite (U-Th)/He 
thermochronology study: Geology, v. 30, no. 1, p. 27-30. 

Dalman, S. G., 2013, New examples of Tyrannosaurus rex from the Lance Formation of 
Wyoming, United States: Bulletin - Peabody Museum of Natural History, v. 54, 
no. 2, p. 241-254. 

Dalrymple, R. W., and James, N. P., 2010, Facies Models 4: Newfoundland Canada, 
Geological Association of Canada. 

Dickinson, W. R., Klute, M. A., Hayes, M. J., Janecke, S. U., Lundin, E. R., 
McKITTRICK, M. A., and Olivares, M. D., 1988, Paleogeographic and 
paleotectonic setting of Laramide sedimentary basins in the central Rocky 
Mountain region: Geological Society of America Bulletin, v. 100, no. 7, p. 1023-
1039. 

Dobbin, C. E., and Reeside, J. B., 1929, The contact of the Fox Hills and Lance 
formations, US Government Printing Office. 

Dodge, H. W., Jr., and Powell, J. D., 1975, Depositional environments and uranium 
potential of upper Cretaceous Fox Hills and Lance formations, Crook County, 
northeastern Wyoming: AAPG Bulletin, v. 59, no. 5, p. 908-908. 

Elzanowski, A., Paul, G. S., and Stidham, T. A., 2001, An avian quadrate from the Late 
Cretaceous Lance formation of Wyoming: Journal of Vertebrate Paleontology, v. 
20, no. 4, p. 712-719. 

Flemings, P. B., and Nelson, S. N., 1991, Paleogeographic evolution of the latest 
Cretaceous and Paleocene Wind River basin: Mountain Geologist, v. 28, no. 2/3, 
p. 37-52. 

Fossilworks, 2016, Gateway to the Paleobiology Database. 

Galloway, W. E., 1975, Process Framework for Describing the Morphologic and 
Stratigraphic Evolution of Deltaic Depositional Systems, in Broussard, M. L., ed., 
Deltas, Models for Exploration: Houston, TX, Houston Geological Society, p. 87-
98. 

Galloway, W. E., and Hobday, D. K., 1983, Terrigenous Clastic Depositional Systems: 
Applications to Petroleum, Coal, and Uranium Exploration, New York, NY, 
Springer-Verlag New York, Inc. 

Geosystems, C. P., 2012, Western Interior Seaway Cretaceous Late Maastrichtian. 



 

92 

Gillespie, J. M., and Fox, J. E., 1991, Tectonically influenced sedimentation in the Lance 
Formation, eastern Wind River basin, Wyoming: Mountain Geologist, v. 28, no. 
2-3, p. 53-66. 

Gilmore, C. W., 1946, New Carnivorous Dinosaur from the Lance Formation of 
Montana: Smithsonian Miscellaneous Collections, v. 106, no. 13, p. 1-19. 

Hagen, E. S., Shuster, M. W., and Furlong, K. P., 1985, Tectonic loading and subsidence 
of intermontane basins: Wyoming foreland province: Geology, v. 13, no. 8, p. 
585-588. 

Higley, D., Pantea, M., and Slatt, R., 1997, 3-D Reservoir Characterization of the House 
Creek Oil Field, Powder River Basin, Wyoming, V1. 00, US Geological Survey, 
Digital Data Series DDS-33. 

Kauffman, E. G., 1977, Geological and biological overview; Western Interior Cretaceous 
basin: Mountain Geologist, v. 14, no. 3-4, p. 75-99. 

Keefer, W. R., 1965, Stratigraphy and geologic history of the uppermost Cretaceous, 
Paleocene, and lower Eocene rocks in the Wind River Basin, Wyoming: USGS, 
2330-7102. 

Lawson, D. E., 1982, Mobilization, movement and deposition of active subaerial 
sediment flows, Matanuska Glacier, Alaska: The Journal of Geology, p. 279-300. 

Lloyd, E. R., and Hares, C. J., 1915, The Cannonball Marine Member of the Lance 
Formation of North and South Dakota and Its Bearing on the Lance-Laramie 
Problem: The Journal of Geology, v. 23, no. 6, p. 523-547. 

Lockley, M. G., Nadon, G., and Currie, P. J., 2004, A diverse dinosaur-bird footprint 
assemblage from the Lance Formation, Upper Cretaceous, eastern Wyoming: 
implications for ichnotaxonomy: Ichnos, v. 11, no. 3-4, p. 229-249. 

Longrich, N., 2008, Small theropod teeth from the Lance Formation of Wyoming, USA, 
in Sandkey, J. T., and Baszio, S., eds., Vertebrate microfossil assemblages: Their 
role in paleoecology and paleobiogeography: Bloomington, Indiana, Indiana 
University Press, p. 135-158. 

MacLeod, M. K., 1981, The Pacific Creek Anticline; buckling above a basement thrust 
fault: Rocky Mountain Geology, v. 19, no. 2, p. 143-160. 

McLain, M., Siviero, B., Nelsen, D., Brand, L. R., and Chadwick, A. V., 2016, 
Tyrannosaur Cannibalism: A Case of a Tooth-Traced Tyrannosaur Bone in the 
Lance Formation of Eastern Wyoming, Geological Society of America, Volume 
47: Maltimore, MD, Geological Society of America, p. 68. 

Miall, A., 1985, Architectural-Element Analysis: A New Method of Facies Analysis 
Applied to Fluvial Deposits: Earth-Science Reviews, v. 22, no. 4, p. 261-308. 



 

93 

-, 2010, Alluvial Deposits, in James, N. P., and Dalrymple, R. W., eds., Facies Models 4: 
Canada, Geological Association of Canada c/o Department of Earth Sciences 
Memorial University of Newfoundland. 

Montgomery, S. L., and Robinson, J. W., 1997, Jonah field, Sublette county, Wyoming: 
Gas production from overpressured upper Cretaceous lance sandstones of the 
Green River basin: Aapg Bulletin-American Association of Petroleum Geologists, 
v. 81, no. 7, p. 1049-1062. 

Nemec, W., 2009, What is a Hyperconcentrated Flow, Lecture Abstracts, International 
Association of Sedimentologists Annual Meeting: Alghero, Sardinia. 

Nick, K., 2015, Oral communitation about seismite as stratigraphic marker, in Weeks, S. 
R., ed.: Loma Linda University. 

Olariu, M. I., Carvajal, C. R., Olariu, C., and Steel, R. J., 2012, Deltaic process and 
architectural evolution during cross-shelf transits, Maastrichtian Fox Hills 
Formation, Washakie Basin, Wyoming: Aapg Bulletin, v. 96, no. 10, p. 1931-
1956. 

Ploeg, A. J. V., Bruin, R. H. D., Lyman, R. M., Jones, N. R., and Case, J. C., 2003, 
Structure Contours and Isophach Maps of the Lance Formation, Northern Powder 
River Basin, Northeastern Wyoming: Wyoming State Geological Survey. 

Program, U. N. G., 2015, USGS Topo Base Map: U. S Geological Survey. 

Prothero, D. R., 2004, Sedimentary Geology : An Introduction to Sedimentary Rocks and 
Stratigraphy, in Schwab, F. L., ed.: New York, W.H. Freeman. 

Ray, A. K., 2008, Fossils in Earth Sciences, New Delhi, PHI Learning Pvt. Ltd. 

Reading, H. G., 2009, Sedimentary environments: processes, facies and stratigraphy, 
Maiden, MA, Blackwell Publishing Ltd. 

Reineck, H. E., 1973, Depositional sedimentary environments; with reference to 
terrigenous clastics [by] H.-E. Reineck [and] I. B. Singh, Berlin, New York, 
Springer-Verlag, v. Accessed from http://nla.gov.au/nla.cat-vn363939. 

Reineck, H. E., and Singh, I. B., 2012, Depositional sedimentary environments: with 
reference to terrigenous clastics, Springer Science & Business Media. 

Schulte, P., Alegret, L., Arenillas, I., Arz, J. A., Barton, P. J., Bown, P. R., Bralower, T. 
J., Christeson, G. L., Claeys, P., Cockell, C. S., Collins, G. S., Deutsch, A., 
Goldin, T. J., Goto, K., Grajales-Nishimura, J. M., Grieve, R. A. F., Gulick, S. P. 
S., Johnson, K. R., Kiessling, W., and Koeberl, C., 2010, The Chicxulub Asteroid 
Impact and Mass Extinction at the Cretaceous-Paleogene Boundary: Science, v. 
327, no. 5970, p. 1214-1218. 



 

94 

Shultz, A. W., 1984, Subaerial debris-flow deposition in the upper Paleozoic Cutler 
Formation, western Colorado: Journal of Sedimentary Research, v. 54, no. 3. 

Siviero, B., 2016, Minimum Number of Animals Represented, in Weeks, S. R., ed. 

Smith, N., 1970, The braided stream depositional environment: comparison of the Platte 
River with some Silurian clastic rocks, north-central Appalachians: Geological 
Society of America Bulletin, v. 81, no. 10, p. 2993-3014. 

Survey, W. S. G., 2014, Wyoming Stratigraphy. 

Turner, L., 2015, Dinosaur Excavation and Taphonomic Research Project. 

Voorhies, M. R., 1969, Taphonomy and population dynamics of an early Pliocene 
vertebrate fauna, Knox County, Nebraska: Rocky Mountain Geology, v. 8, no. 
special paper 1, p. 1-69. 

Weeks, S. R., and Chadwick, A. V., 2011, A prominent seismite in the Upper Cretaceous 
Lance Formation in Northeastern Wyoming as a Stratigraphic Marker: Geological 
Society of America, Abstracts with Programs, v. 43, no. 5, p. 1. 

-, 2012, A Regionally Extensive Lancian Seismite Serves as a Time Synchronous 
Stratigraphic Marker for Mapping Dinosaur Bonebeds in Northeastern Wyoming, 
Society of Vertebrate Paleontology, Volume 32, p. 191-191. 

Wiltschko, D. V., and Dorr, J. A., Jr., 1983, Timing of deformation in Overthrust Belt 
and foreland of Idaho, Wyoming, and Utah: AAPG Bulletin, v. 67, no. 8, p. 1304-
1322. 

 



 

95 

APPENDIX A 

LIST OF FACIES 

 

Facies 1    Traction Sandstone 

Facies 2    Heterolithic Mudstone and Sandstone 

Facies 3    Climbing Ripple Sandstone 

Facies 4    Green/Grey Mudstone 

Facies 5    Red Shale 

Facies 6    Bonebed 
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APPENDIX B 

LIST OF QUARRIES 

 

Quarry 1     North Quarry 

Quarry 2     South Quarry 

Quarry 4    Teague Quarry 

Quarry 6    West Quarry 

Quarry 7     Neufeld Quarry 

Quarry 8    Southeast Quarry 

Quarry 11    TOE Quarry  
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APPENDIX C 

GRAIN SIZE ANALYSIS 

 

The following graphs are grain size plots for South Quarry. Each sample (a-i) 

were taken from one vertical section of the quarry. Sample a was taken at the base of the 

quarry followed by sample b taken 10 cm above sample a and so on till sample i which 

was taken at the top of the quarry. 

 
                 Figure 40 Sample a 
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                     Figure 41 Sample b 

 

 
         Figure 42 Sample c 
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              Figure 43 Sample d 

 

 
        Figure 44 Sample e 
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          Figure 45 Sample f 

 

 
              Figure 46 Sample g 
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          Figure 47 Sample h 

 

 
             Figure 48 Sample i 
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APPENDIX D 

TAXONOMIC ASSEMBLAGE 

 

Taxonomic information presented in this appendix was obtained from 

Southwestern Adventist University’s online fossil museum (Chadwick et al., 2016) and 

from personal communication with Arthur Chadwick (Chadwick, 2016). Information 

concerning weathering status of fossil specimens can also be found on the online fossil 

museum. 

 The most abundant fossils in the study area are from hadrosaurids 

(Edmontosaurus), duckbilled dinosaurs. These are ~12m long herbivorous archosaurs. 

The quarries also yield teeth, bones, and fragments from other archosaur genera such as 

Tyrannosaurus, Triceratops, Pachycephalosaurus, Dromaeosaurus, Nanotyrannus, and 

Nodosaurus. Non-archosaur taxa include Rhombodus (stingray, teeth found), Rajiformed 

(ray, teeth found), Brachychampsa (crocodilian; teeth, skull fragments, and other small 

bones found), Actinopterygii (ray-finned fish, teeth and scales found), Myledaphus 

(guitar fish, teeth found), Testudines (plastron and carapace fragments and small bones), 

and several genera of Chondrichthyes (teeth found). Several small mammalian teeth have 

also been recovered from the bonebed and surrounding anthills. In addition to the animal 

fossil remains, fossil plant material is also abundant. Plant material, in the form of coal, is 

present in small pockets in the bonebed, as well as, in small veins in surrounding 

mudstones. Leaf impressions and seeds have been recovered from the quarries and 

surrounding units as well. Fragments of fossil wood are present in mudstones and 

sandstones in the area.  
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Freshwater bivalves (family Unionidae and likely genus Unio) have been found in 

the quarries as well as in the surrounding layers. The bottom of a mudstone bed 

approximately 1.5m below the bonebed houses a small concentration of these bivalves in 

good condition (Figure 49). Complete shells with mantle material still intact appear as a 

sparse, one bivalve thick interval just above a red shale (facies 5) layer.  

 
Figure 49 Fossils excavated from the bonebed and surrounding layers show good preservation. A shows 
several seeds from the bonebed. B shows a tooth from a cartilagenous fish (shiney gold pin head for scale). 
C shows 2 gar fish scales. D and E show several Unio bivalves. 
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APPENDIX E 

MAPPED LITHOLOGIC UNITS 

 
                                  Figure 50 Map of GPS data points taken on prominent lithologic units within the study area.
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APPENDIX F 

ADDITIONAL PALEOCURRENT DATA 

 

Figure 51 shows paleocurrent data taken from large cross beds located roughly at 

UTM 13N 544590.28m E 4816468.879m N. 

 

Figure 51 Paleocurrent data from large cross beds located outside the study area show a mostly 
unidirectional current but roughly perpendicular to other paleocurrent data presented. N=7 
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APPENDIX G 

BURROWS 

 

Surrounding sediments exhibit minimal to no bioturbation. However, one 

sandstone unit contains several burrow structures (Figure 52). Due to the difficulty in 

tracing layers in the Lance Formation, the vertical and temporal relationship between this 

unit and the bonebed has not been determined. However, it does crop out below the 

elevation of the bonebed and could represent a penecontemporaneous event with the 

deposition of the bonebed.   

 
Figure 52 Photo plate of rare burrows. Stratigraphic position is uncertain, but position is lower in elevation 
than main bonebed. A-C were taken in the same ripple cross laminated sandstone. 
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APPENDIX H 

EXAMPLE DINOSAUR BONES 

 

The state or conditions of fossil elements is beyond the scope of this thesis, but 

Figure 53 shows four example bones from the main bonebed that, at first glance, appear 

in good preservation condition. 

 
Figure 53 Example bones found in the main quarries. Image A: caudal vertebra; Image B: pubis; Image 
C: surangular; Image D: ulna. All scales in cm. All bones from Edmontosaurus. 
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