

Loma Linda University TheScholarsRepository@LLU: Digital Archive of Research, Scholarship & Creative Works

Loma Linda University Electronic Theses, Dissertations & Projects

9-2016

# Ricketts Analysis Using Conventional and DolphinTM Generated CBCT Lateral Cephs

Yeganeh Parhizkar Jewell

Follow this and additional works at: https://scholarsrepository.llu.edu/etd

Part of the Orthodontics and Orthodontology Commons

#### **Recommended Citation**

Jewell, Yeganeh Parhizkar, "Ricketts Analysis Using Conventional and DolphinTM Generated CBCT Lateral Cephs" (2016). *Loma Linda University Electronic Theses, Dissertations & Projects*. 417. https://scholarsrepository.llu.edu/etd/417

This Thesis is brought to you for free and open access by TheScholarsRepository@LLU: Digital Archive of Research, Scholarship & Creative Works. It has been accepted for inclusion in Loma Linda University Electronic Theses, Dissertations & Projects by an authorized administrator of TheScholarsRepository@LLU: Digital Archive of Research, Scholarship & Creative Works. For more information, please contact scholarsrepository@llu.edu.

LOMA LINDA UNIVERSITY School of Dentistry In conjunction with the Faculty of Graduate Studies

Ricketts Analysis Using Conventional and Dolphin<sup>TM</sup> Generated CBCT Lateral Cephs

by

Yeganeh Parhizkar Jewell

A Thesis Submitted in partial satisfaction of the requirements for the degree Master of Science in Orthodontics and Dentofacial Orthodpedics

September 2016

© 2016

Yeganeh Parhizkar Jewell All Rights Reserved Each person whose signature appears below certifies that this thesis in his opinion is adequate, in scope and quality, as a thesis for the degree Master of Science.

, Chairperson

V. Leroy Leggitt, Professor of Orthodontics and Orthopedics

Joseph M. Caruso, Professor of Orthodontics and Dentofacial Orthopedics

Kitichai Rungcharassaeng, Professor of Orthodontics and Dentofacial Orthopedics

#### ACKNOWLEDGEMENTS

Completion of this research project would have not been possible without the guidance of my committee members and the support from my family, husband, and friends.

I owe my deepest gratitude to the members of my committee who helped me accomplish and complete this thesis. I appreciate Drs. Leroy Leggitt, Kitichai Rungcharassaeng, and Joseph Caruso for all their advice and commentary throughout the progress of this thesis. I would also like to thank Dr. Udo Oyoyo for his help in formulating the statistics of this research project as well as Mr. Seth Myhre for his help in construction radiographic phantom and operation of the CBCT machine.

I would like to dedicate this thesis to my parents, Abdollah Parhizkar and Zohreh Barati, who believed in me and sacrificed so much to help support me throughout my education.

| Approval Page                                                                                                      | iii    |
|--------------------------------------------------------------------------------------------------------------------|--------|
| Acknowledgements                                                                                                   | iv     |
| Table of Contents                                                                                                  | v      |
| List of Tables                                                                                                     | vii    |
| List of Figures                                                                                                    | ix     |
| List of Abbreviations                                                                                              | X      |
| Abstract of the Thesis                                                                                             | xii    |
| Chapter                                                                                                            |        |
| 1. Review of Literature                                                                                            | 1      |
| <ol> <li>Ricketts Analysis Using Conventional and Dolphin<sup>TM</sup> Generated CBCT<br/>Lateral Cephs</li> </ol> | 7      |
| Abstract<br>Introduction                                                                                           | 7<br>9 |
| Sources of Cephalometric Error in Conventional Digital                                                             | 0      |
| Cephalograms                                                                                                       | 9      |
| Common variations in Measurements                                                                                  | 10     |
| Stotement of the Drohlem                                                                                           | 11     |
| Null-Hypothesis                                                                                                    |        |
| Materials and Methods                                                                                              | 12     |
| Phantom Construction                                                                                               | 12     |
| Positioning the Phantom for Panoramix X-ray                                                                        | 14     |
| Positioning the Phantom for CBCT Imaging                                                                           | 15     |
| Phantom Measurements                                                                                               | 15     |
| Clinical Data Collection                                                                                           | 16     |
| Intraexaminer and Interexaminer Reliability<br>Statistical Analysis                                                |        |
| Results                                                                                                            | 20     |
| Discussion                                                                                                         |        |

# CONTENT

|         | Conclusions                                          | 37 |
|---------|------------------------------------------------------|----|
| 3. I    | Extended Discussion                                  | 38 |
|         | Study Limitations and Future Study Directions        | 38 |
| Referen | ces3                                                 | 19 |
| Append  | ices                                                 |    |
| A.      | Phantom Cross Measurements (mm)4                     | 12 |
| B.      | Clinical Data Collection – Sirona4                   | 17 |
| C.      | Clinical Data Collection – CBCT Orthogonal 100%      | 50 |
| D.      | Clinical Data Collection – CBCT Orthogonal 101%      | ;3 |
| E.      | Clinical Data Collection – CBCT Orthogonal 102%      | 56 |
| F.      | Clinical Data Collection – CBCT Orthogonal 103%      | ;9 |
| G.      | Clinical Data Collection – CBCT Perspective          | 52 |
| H.      | Repeated Clinical Data Measurements by Two Examiners | 55 |

# TABLES

| Tables | Page                                                                                                                                                                                                                                                      |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.     | Angular and linear measurements                                                                                                                                                                                                                           |
| 2.     | Reliability of measurements on radiographic phantom using correlation test                                                                                                                                                                                |
| 3.     | Comparison of Mean $\pm$ Standard Deviation (mm) of vertical measurements using Related Samples Wilcoxon Signed Rank Test at $\alpha = 0.05$                                                                                                              |
| 4.     | Comparison of Mean $\pm$ Standard Deviation (mm) of horizontal measurements using Related Samples Wilcoxon Signed Rank Test at $\alpha = 0.05$                                                                                                            |
| 5.     | Comparison of mean ± standard (mm) deviation and % magnification compared to the grid                                                                                                                                                                     |
| 6.     | Intraexaminer reliability- Sirona                                                                                                                                                                                                                         |
| 7.     | Interexaminer reliability- Sirona25                                                                                                                                                                                                                       |
| 8.     | The agreement between linear measurements from Sirona Orthophos XG Plus and Dolphin <sup>TM</sup> generated CBCT perspective lateral cephalograms via One-Sample Wilcoxon Signed Rank test at $\alpha = 0.05$ 26                                          |
| 9.     | The agreement between angular measurements from Sirona Orthophos XG Plus and Dolphin <sup>TM</sup> generated CBCT perspective lateral cephalograms via One-Sample Wilcoxon Signed Rank test at $\alpha = 0.05$ 27                                         |
| 10.    | The agreement between linear measurements from Sirona Orthophos XG Plus and Dolphin <sup>TM</sup> generated CBCT orthogonal lateral cephalograms at 100%, 101%, 102%, and 103% magnification via One-Sample Wilcoxon Signed Rank test at $\alpha = 0.05$  |
| 11.    | The agreement between angular measurements from Sirona Orthophos XG Plus and Dolphin <sup>TM</sup> generated CBCT orthogonal lateral cephalograms at 100%, 101%, 102%, and 103% magnification via One-Sample Wilcoxon Signed Rank test at $\alpha = 0.05$ |

| 12. | Comparison of Sirona Orthophos XG Plus and Dolphin <sup>TM</sup> generated |    |
|-----|----------------------------------------------------------------------------|----|
|     | CBCT orthogonal at various adjusted magnifications based on two linear     |    |
|     | measurements of Nasion to Basion and Nasion to Menton.                     | 31 |

# FIGURES

| Figures | I                                                                                                  | Page |
|---------|----------------------------------------------------------------------------------------------------|------|
| 1.      | Exploded view of the radiographic phantom                                                          | 13   |
| 2.      | Radiographic phantom box                                                                           | 14   |
| 3.      | Phantom measurements                                                                               | 16   |
| 4.      | Construction of left lateral cephalogram with x-ray beam centered on porion                        | 17   |
| 5.      | Sirona lateral cephalogram and Dolphin <sup>TM</sup> generated CBCT cephalograms                   | 17   |
| 6.      | Landmarks and reference planes                                                                     | 19   |
| 7.      | Pairwise comparison of Sirona LC and Dolphin <sup>TM</sup> generated CBCT in orthogonal projection | 32   |

### ABBREVIATIONS

| CBCT     | Cone Beam Computed Tomography |
|----------|-------------------------------|
| 2D       | Two-Dimensional               |
| 3D       | Three-Dimensional             |
| PA       | Periapical                    |
| TMJ      | Temporomandibular joint       |
| Na       | Nasion                        |
| Or       | Orbitale                      |
| Р        | Porion                        |
| FH       | Frankfort horizontal          |
| ANS      | Anterior nasal spine          |
| Ро       | Pogonion                      |
| Gn       | Gnathion                      |
| Go       | Gonion                        |
| Me       | Menton                        |
| Ba       | Basion                        |
| T1       | Initial records               |
| T2       | Finishing records             |
| VT       | Total vertical                |
| HT       | Total horizontal              |
| S ½ VT   | Superior vertical half        |
| I ½ VT   | Inferior vertical half        |
| L ½ HT   | Left horizontal half          |
| R 1⁄2 HT | Right horizontal half         |

| MIP       | Maximum intensity projection |
|-----------|------------------------------|
| I-I Angle | Interincisal angle           |
| U1 Prot   | Upper incisor protrusion     |
| L1 Prot   | Lower incisor protrusion     |
| L1 to APo | Lower incisor to APo         |
| U6 – PTV  | Upper molar to PT Vertical   |
| Mnd Arc   | Mandibular Arc               |
| MPA       | Mandibular plane angle       |
| Mx Depth  | Maxillary depth              |
| F-Axis    | Facial axis                  |
| F-Depth   | Facial Depth                 |
| C-Length  | Cranial length               |
| C-Def     | Cranial deflection           |
| LFH       | Lower face height            |
| LL-E      | Lower lip to E-plane         |
| N-Me      | Nasion to menton             |
| N-Ba      | Nasion to basion             |

#### ABSTRACT OF THE THESIS

#### Ricketts Analysis Using Conventional and Dolphin<sup>TM</sup> Generated CBCT Lateral Cephs

by

#### Yeganeh Parhizkar Jewell

Master of Science Graduate Program in Orthodontics and Dentofacial Orthopedics Loma Linda University, September 2016 Dr. V. Leroy Leggitt, Chairperson

**Purpose:** The aim of this study was to evaluate the difference between Ricketts analysis measurements made on Sirona Orthophos XG Plus (Sirona Dental Systems, Charlotte,NC) lateral cephalograms, and Dolphin<sup>TM</sup> generated perspective and orthogonal lateral cephalograms from CBCT (NewTom 5G; QR srl, Verona, Italy).

Materials and Methods: A Sirona digital lateral cephalogram and Dophin<sup>™</sup> synthesized CBCT lateral cephalograms of a radiographic phantom in orthogonal and perspective projections were created. Horizontal and vertical measurements were made in multiple planes on the radiographic phantom to compare each imaging modality.

Twenty-five lateral cephalometric radiographs were selected retrospectively from the records of patients of the LLUSD Graduate Orthodontic Clinic who had both CBCT and Sirona digital lateral cephalograms. Radiographs were excluded from the study if they displayed significant occlusal plane discrepancy (>2 mm), or missing first molars. All lateral cephalograms were digitized into Dolphin<sup>TM</sup> (version 11.8; Dolphin Imaging & Management Solutions, Chatsworth, Calif) and traced using Ricketts cephalometric analysis in addition to measurements from Nasion to Menton and Nasion to Basion. Eight

xii

linear and nine angular measurements from each imaging modality were compared and analyzed using one sample Wilcoxon signed rank test and pairwise comparison.

**Results:** Statistically significant differences were found in percent magnification of horizontal and vertical measurements between the scanned grid and the various imaging modalities. No significant single plane perspective distortion (SPPD) was detected in the vertical and horizontal directions. Multiplane perspective distortion (MPPD) was only noted in Sirona images.

Ricketts Analysis linear measurements were all statistically different except for lower lip to E-plane (P =0.544). The Ricketts Analysis angular measurements were not statistically different (P <0.05) with the exception of facial axis (P =0.004) and maxillary depth (P =0.025). Dolphin<sup>TM</sup> generated CBCT lateral cephalograms with orthogonal projection, adjusted to 101% magnification had the closest agreement to Sirona images.

**Conclusions:** No clinically significant perspective distortion was found in the vertical and horizontal direction in the three modalities that were studied. Dophin<sup>TM</sup> synthesized CBCT lateral cephalogram in perspective projection does not produce perspective images. CBCT Lateral cephalograms generated by Dophin<sup>TM</sup> in orthogonal projection at 101% magnification is compatible with images from Sirona for clinical evaluation.

xiii

#### **CHAPTER ONE**

#### **REVIEW OF LITERATURE**

Since the introduction of cephalostat by Broadbent in 1931, cephalometry has been commonly used by orthodontists.<sup>1</sup> A significant portion of diagnostic assessment of skeletal and dental problems, and evaluation of treatment progress in orthodontic patients is dependent on radiographic images. Cephalometric analysis requires identifying specific landmarks and calculation of multiple angular and linear measurements. These measurements are then compared to normal values that have been obtained from two dimensional (2D) cephalograms based on different age, sex and ethnical groups. Cephalometric radiographs have a number of limitations. Just like any other transmission radiographs, lateral cephalometric radiographs collapses a three-dimensional (3D) structure into a two-dimensional plane. This results in difficult landmark identification especially for bilateral structures. Furthermore, due to non-parallel x-ray projection, the structures that are more proximal to the x-ray source appear more magnified than those proximal to the detector. Moreover, patient positioning in lateral cephalograms limits the ability of reproducing and superimposition of consecutive images. These three factors alone can cause significant variation on cephalometric measurements.<sup>2</sup>

From the beginning Broadbent stressed the importance of combining the lateral and postero-anterior head films to have more than a 2D image of the skull. In most cases however this principal is not used in orthodontic practice. In 1998, Cone beam computed tomography (CBCT) was developed specifically for imaging the structures relevant to dentistry.<sup>3</sup> CBCT imaging has specially been valuable in TMJ studies, implant placements, orthognathic surgeries, and cases with impacted teeth.<sup>4-7</sup> One of the main

advantages of current CBCT machines lies in their reduced radiation dose compared to CT.<sup>8</sup> The radiation dose to the patient with CBCT is 40% less than conventional CT and 3 to 7 times more than panoramic doses.<sup>9</sup> Therefore, conventional images still delivers lowest doses to patient. One needs to keep in mind that the CBCT does varies substantially depending on the device, field of view (FOV), and selected technique factors.<sup>10</sup>

Because of the advantages and possibilities of CBCT more orthodontists are using it routinely for orthodontic patient assessment. In the near future, as the radiation dose of CBCT diminishes, it may replace conventional 2D imaging. However, in order to be able to use previously collected data that was based on conventional cephalograms, a way of comparing the two should be established. Furthermore, a proper diagnosis in orthodontics leads to logical treatment plan which needs to be evaluated and revised as necessary as the treatment progresses.<sup>11</sup> Since CBCT radiation doses have not reached that of conventional imaging, it is not recommended to be used for treatment progress evaluation. Therefore, if initial records are taken by CBCT, an orthodontist needs to be able to directly compare subsequent progress records taken by conventional techniques to that of CBCT. Luckily, 2D images can be synthesized from CBCT 3D data and these synthesized images may bridge the gap between 2D and 3D. Current literature is focused on the compatibility of conventional cephalograms and CBCT synthesized cephalograms and their similarity and/or difference in magnification, distortion, and landmark identification.

In general, when comparing cephalometric measurements between conventional and CBCT derived lateral cephalograms, differences in linear measurements are greather

than angular measurements.<sup>12-17</sup> In a study by Kumar et al.,<sup>12</sup> a sample of ten dry skulls were imaged by both conventional cephalometry (Wehmer cephalostat) and CBCT (NewTom 3G). Orthogonal cone bean CT projection with no magnification and perspective projection with 7.5% simulated magnification were obtained. Differences between the modalities were found not to be statistically significant except for the mandibular unit length (Go-Gn). When the midsagittal linear measurements were compare to the actual skull measurements however, conventional imaging was found to underestimates the actual skull dimensions while the perspective CBCT overestimated the skull dimensions. Furthermore, orthogonal CBCT was found to provide measurements that were closest to the actual measurements. In a vivo study of thirty-one patients, kumar et al.,<sup>13</sup> compared angular measurements and found no significant differences in angular measurements in orthogonal, perspective and conventional lateral cephalometry with the exception of the Frankfort-mandibular angle. Lamichane et al.,<sup>14</sup> used a radiographic phantom and found that perspective lateral cephalograms from CBCT could replicate the inherent magnification of a conventional lateral cephalograms with high accuracy, and that the measurements on the orthogonal projections were closer to the actual measurements. Park et al.,<sup>15</sup> however found statistical differences in linear measurements for U1 to facial plane distance and angular differences in gonial angle, ANB difference, and facial convexity. Hilger et al.,<sup>16</sup> also found all CBCT measurements to be accurate close to anatomical truth, however LC measurements of condylar length, condylar height, and lateral pole of gonion were different from the anatomic truth by 2.28 mm (25.9%), 1.97 mm (10.1%) and 8.99 mm (17.5%) respectively. Moshiri et al.,<sup>17</sup> found that nine linear measurements conventional lateral cephalograms were accurate for Po-Or and ANS-N measurements, whereas CBCT images were accurate for all the measurements except Pog-Go, and Go-Me.

Unlike two dimensional cephalometric norms, no three dimensional standards from large untreated population analyzed by way of 3D examinations are available today. In a study by Gribel et al.,<sup>18</sup> authors opted to test a mathematical model to convert the normal values of 2D lateral films into 3D measurements. Using the algorithm stated in their article, they were able to correct for both magnification and image distortion (mean difference of 0.1mm) between CBCT and lateral films. Authors suggest that this simple algorithm can be used to convert existing cephalometric growth studies into 3D normal values without further radiation of untreated subjects.

Landmark identification is one of the major areas of error in tracing. In most cases this error is related to specific landmarks which may be harder to identify. Generally higher errors are associated with 2D imaging.<sup>19,20</sup> Intraexaminer and interexaminer reliabilities in landmark identification was studied by Lagrave et al.,<sup>19</sup> on a sample of 10 adolescent patients on the x,y, and z coordinates. Intraexaminer and interexaminer reliabilities for the x, y, and z coordinates for all landmarks in CBCT were greater than 0.9. Intraexaminer and interexaminer of most landmarks in the lateral cephalograms were greater than 0.9, except porion, basion, and condylion had moderate intraexaminer reliability for the x-axis and mild interexaminer reliability for the y-axis.

In 2009 Chien et al.,<sup>20</sup> also studied the difference in landmark identification in vivo. Errors were generally larger in 2D rather than 3D. Two dimensional images also have more errors that were greater than 1mm and included A-point, ANS, basion, condylion,

L6 occlusal, midramus, orbital, porion, ramus point and sigmoid notch. The errors in 3D that were greater than 1mm were the condylion, orbital, gonion, and midramus.

Landmark identification has been studied in a number of researches. Change et al.,<sup>21</sup> compared landmark identification in conventional lateral cephalograms and CBCT derived cephalograms. In this study, image modality was not the significant variable in the final generalized estimating equations model. The regression coefficient estimates of the significant landmarks for the overall identification error ranged from -0.99 (Or) to 1.42 mm (Ba). The difficulty of identifying landmarks on structural images with multiple overlapping such as Or, U1R, L1R, Po, Ba, UMo, and LMo, increased the identification error by 1.17 mm, and some of them, including ANS, A, B, Go, Ba, and PNS, reached error close to clinical significance (0.5 mm). In the CBCT modality, the identification errors significantly decreased at Ba (-0.76 mm).

Delamer et al.,<sup>22</sup> studied a programme of professional calibration (PPC) that provided a lecture of cephalometric analysis presented by a PhD graduate in oral radiology and specialist in orthodontics and practical discussion session on cephalometric landmark identification. Authors concluded that a PCC was more influential in reduction of variability than type of imaging used. Yu et al.,<sup>23</sup> also found significant difference between observers in identifying landmarks such as porion, pogonion and R1. Cattaneo et al.,<sup>24</sup> also compared cephalometric measurements made on CBCT-synthesized lateral cephalograms in orthogonal projection and conventional cephalograms using Bjork analysis. In this study the influence of two different techniques used to obtain CBCTsynthesized lateral cephalograms, maximum intensity projection (MIP) and RayCast,

were also evaluated. They found that measurements did not differ between the three imaging techniques.

Damstra et al.,<sup>25</sup> used a midsagittal approach to position the bilateral structures by indicating a point on the midsagittal plane where a line joining the left and right anatomical structures met. Ten human skulls were used in which anatomical landmarks were marked by spherical metal markers. They found no significant difference between the two and three-dimensional measurements.

The findings of this review cannot be directly compared to each other due to large number of variables. The CBCT machine and software used to generate images need to be accounted for, thus the results cannot be extrapolated to all available CBCT machines and imaging softwares.

#### **CHAPTER TWO**

# RICKETTS ANALYSIS USING CONVENTIONAL AND DOLPHIN<sup>TM</sup> GENERATED CBCT LATERAL CEPHS

#### Abstract

**Purpose:** The aim of this study was to evaluate the difference between Ricketts analysis measurements made on Sirona Orthophos XG Plus (Sirona Dental Systems, Charlotte,NC) lateral cephalograms, and Dolphin<sup>TM</sup> generated perspective and orthogonal lateral cephalograms from CBCT (NewTom 5G; QR srl, Verona, Italy).

Materials and Methods: A Sirona digital lateral cephalogram and Dophin<sup>™</sup> synthesized CBCT lateral cephalograms of a radiographic phantom in orthogonal and perspective projections were created. Horizontal and vertical measurements were made in multiple planes on the radiographic phantom to compare each imaging modality.

Twenty-five lateral cephalometric radiographs were selected retrospectively from the records of patients of the LLUSD Graduate Orthodontic Clinic who had both CBCT and Sirona digital lateral cephalograms. Radiographs were excluded from the study if they displayed significant occlusal plane discrepancy (>2 mm), or missing first molars. All lateral cephalograms were digitized into Dolphin<sup>TM</sup> (version 11.8; Dolphin Imaging & Management Solutions, Chatsworth, Calif) and traced using Ricketts cephalometric analysis in addition to measurements from Nasion to Menton and Nasion to Basion. Eight linear and nine angular measurements from each imaging modality were compared and analyzed using one sample Wilcoxon signed rank test and pairwise comparison.

**Results:** Statistically significant differences were found in percent magnification of horizontal and vertical measurements between the scanned grid and the various

imaging modalities. No significant single plane perspective distortion (SPPD) was detected in the vertical and horizontal directions. Multiplane perspective distortion (MPPD) was only noted in Sirona images.

Ricketts Analysis linear measurements were all statistically different except for lower lip to E-plane (P =0.544). The Ricketts Analysis angular measurements were not statistically different (P <0.05) with the exception of facial axis (P =0.004) and maxillary depth (P =0.025). Dolphin<sup>TM</sup> generated CBCT lateral cephalograms with orthogonal projection, adjusted to 101% magnification had the closest agreement to Sirona images.

**Conclusions:** No clinically significant perspective distortion was found in the vertical and horizontal direction in the three modalities that were studied. Dophin<sup>TM</sup> synthesized CBCT lateral cephalogram in perspective projection does not produce perspective images. CBCT Lateral cephalograms generated by Dophin<sup>TM</sup> in orthogonal projection at 101% magnification is compatible with images from Sirona for clinical evaluation.

#### Introduction

Since the introduction of the cephalometer by Broadbent in 1931, cephalometric analysis has become a standard diagnostic method in the field of orthodontics and dentofacial orthopedics. Growth and treatment changes can be evaluated accurately only by obtaining sequential cephalograms. <sup>1, 26</sup> Three dimensional (3D) imaging technique are becoming increasingly popular and have opened new possibilities for orthodontic diagnosis and treatment assessment. <sup>3</sup> Although CBCT scans provide abundant information, conventional two dimensional (2D) lateral cephalograms are still used by most clinicians. Most importantly, these images are necessary for comparison to earlier databases. Additionally, since the radiation dose of most current CBCT machines is still higher than conventional imaging, the use of CBCT to obtain progress records is not feasible. <sup>9,10</sup>

#### Sources of Cephalometric Error in Conventional Digital Cephalograms

Landmark identification in cephalometric analysis has been studied in a number of published articles. In general, some landmarks are more reproducible than others and each landmark has been identified to have a characteristic envelope of error. In the literature, the magnitude of the clinical significance for cephalometric measurements varies but is usually regarded as a difference of less than 1 or 2 measuring units, while some authors have suggested that a difference of up to 5% is clinically acceptable.<sup>27-29</sup> With more recent methods of radiography, an average error of 0.6 mm on the xy coordinate represents a clinically acceptable level of accuracy.<sup>2</sup>

Patient head positioning is also one of the contributors to error in radiography. Lee et al.,<sup>30</sup> evaluated the effect of cephalometer misalignment on posteroanterior (PA) cephalograms and found out that images of landmarks near the ear rod plane will be shifted approximately 1 mm towards the contralateral side for each 10mm of shift in the horizontal position of the focal spot. Similar conclusion was also made in another study in which influence of rotational changes in head were evaluated on lateral cephalograms and were found to be between 16.1 to 44.7 per cent changes in the horizontal and angular measurements for a 14 degree rotation of the head.<sup>31</sup> Furthermore, Ahlqvist et al.,<sup>32</sup> consider 5 degrees of rotation or less to be acceptable in head positioning, as this would only result in an insignificant error (less than 1 per cent) in lateral cephalometric distance measurements.

#### **Common Variations in Measurements**

Variation in linear and angular measurements is common in the current orthodontics litarture.<sup>12-17</sup> Using different lateral cephalogram machines with various methods of conversion of 3D images to 2D can result in a range of findings. Damstra et al.,<sup>25</sup> used a mid-sagittal approach to position the bilateral structures and found no significant difference between the two and three-dimensional measurements. Oz et al.,<sup>33</sup> compared measurements from Planmeca PM 2002 cc Proline and NewTom 3G and concluded that both modalities yielded similar results. Pittayapat et al.,<sup>34</sup> also did not find 3D images to be any superior to 2D images in terms of accuracy of linear cephalometric measurements other than more accurate reproducibility with CBCT; whereas, Moshiri et al.,<sup>17</sup> found that out of the 9 linear measurements conventional lateral cephalograms were only accurate for porion-orbitale (Po-Or) and anterior nasal spine-nasion (ANS-N) measurements, and that the CBCT images were accurate for all the measurements except pogonion-gonion (Pog-Go), and gonion-menton (Go-Me).

#### Comparison of Siorna and NewTom Lateral Cephalograms

In a thesis study conducted by Da Lee, statistically significant differences were found in percent magnification in the horizontal and vertical measurements made on lateral cephalograms taken by Sirona Orthopos XG Plus and NewTom 5G CBCT using a radiographic phantom. Even though the Ricketts cephalometric analysis on a sample of forty patients were found to be clinically comparable, the difference in magnification was concluded to impose difficulty in obtaining accurate superimposition between images produced by the two machines.<sup>35</sup>

#### Statement of the Problem

The continued use of previously published cephalometric data can only be done if CBCT images are found to be comparable to conventional 2D imaging. Furthermore, 2D lateral cephalograms taken as progress records could be compared to initial records (T1) taken with 3D imaging, which could eliminate the need for 3D cephalometric progress records.

#### Null-Hypothesis

#### **Pilot Study**

- There is no perspective magnification in lateral cephalograms from Siorna Orthophos XG Plus and Dophin<sup>TM</sup> generated NewTom 5G CBCT perspective and orthogonal projections.
- There is no difference in linear measurements of N-Ba and N-Me between Dophin<sup>TM</sup> generated NewTom 5G CBCT in orthogonal projection adjusted to 100%,101%, 102%, and 103% magnification and Sirona Orthophos XG Plus.

#### Main Study

There is no difference in Ricketts analysis lateral cephalometric measurements between Sirona Orthophos XG Plus and Dophin<sup>TM</sup> generated NewTom 5G Orthogonal projection at varying magnification.

#### **Material and Methods**

#### **Phantom Construction**

This study was approved by Institutional Review Board (IRB) at Loma Linda University, Loma Linda, CA. Because of the inherent difficulty in measuring landmarks on lateral cephalograms, an imaging phantom was constructed. A 15x15x15 cm 3D imaging phantom was constructed using six 2.5 cm thick styrofoam slabs arranged in parasagittal planes (Fig 1). This allowed placement of a 15x15 cm metallic plastics (alumide) gird at selected midsagittal and parasagittal planes. The grid had 0.5x0.5 cm elements and was computer generated and printed to maximize uniformity of grid cell size. Spacers were added to the parasagittal planes closest to the midsagittal plane so that the distance between those planes would simulate the average intermolar distance (5.7 cm). Before imaging procedures, the grid could be moved to one of these three sagittal planes (left, center, right). During panorex imaging procedures, the right side parasagittal plane was always positioned closest to the x-ray sensor.



Figure 1. Exploded view of the radiographic phantom. This graph shows alumide grid in the three sagittal planes.

A custom acrylic box was fabricated to accommodate the phantom elements

(Fig 2). A 3.0 cm by 0.7 cm rectangular slot was designed at the location of Nasion.

Porion location was marked on the two outer styrofoam blocks. A 3.0x0.7 cm rectangular

slot was cut into the acrylic box at the location of nasion.



Figure 2. Radiographic phantom box. Three sagittal planes were designed for placement of aumide grid. A Nasion slot was designed to match the nose piece of the Sirona machine. The location of Porion was marked on the two outer styrofoam blocks to symmetrically position the phantom between the ear rods.

#### Positioning the Phantom for Panoramic X-ray

In order to eliminate inter-operator error, all panoramic images were taken by one person (Y.J.). The Acrylic box was positioned on a stand and adjusted for the ear rods to be positioned on the outer surfaces of the styrofoam blocks where Porion was marked, and the nose piece of the panorex machine was aligned with the nasion slot of the acrylic box. The light localizer of the Sirona Orthophos XG Plus (Sirona Dentral Systems Inc, NY) was used to ensure passage of the x-ray beam through the center of the phantom in both horizontal and vertical dimensions. Once the ideal position of the acrylic box was established, the box was attached to the stand to prevent any unwanted movement. Only the grid position was changed from right to center to left.

#### Positioning the Phantom for CBCT Imaging

The NewTom 5G CBCT (NewTom 5G; QR srl, Verona, Italy) was equipped with two cross shaped laser guides that were used to properly position the phantom in the xray beam. Phantom position was adjusted so that the vertical guide passed through the midsagittal plane and the horizontal guide passed through the central axial plane. Scout images were taken to evaluate the symmetrical positioning and exposure of the phantom.

#### **Phantom Measurements**

Digital lateral cephalograms, Sirona Orthophos XG and synthesized CBCT lateral cephalograms in orthogonal and perspective projections were imported into Dolphin<sup>TM</sup> 3D (version 11.8; Dolphin Imaging & Management Solutions, Chatsworth, Calif.). The total horizontal, total vertical, mid-horizontal, and mid-vertical distances were measured in each plane using National Institute of Health (NIH) ImageJ 1.50b program (Fig 3). The aumide grid was also scanned outside of the phantom and measured using the same program. These measurements were repeated by the same person for a total of ten times at one week intervals.



Figure 3. Phantom measurements. L  $\frac{1}{2}$  HT (left horizontal half), R  $\frac{1}{2}$  HT (right horizontal half), S  $\frac{1}{2}$  VT (superior vertical half), I  $\frac{1}{2}$  VT (inferior vertical half), HT (total horizontal), VT (total vertical).

#### **Clinical Data Collection**

This study was approved by Institutional Review Board (IRB) at Loma Linda University, Loma Linda, CA. Twenty-five lateral cephalometric radiographs were selected retrospectively from the records of patients of the Loma Linda University School of Dentistry, Graduate Orthodontic Clinic from December 1, 2015 to March 30, 2016. The radiographs must have been taken according to standard head positioning methods: 1) Sirona, using ear rods and alignment of the frontal Frankfort plane with the optical guide, 2) NewTom, using laser guides to align the sagittal and occlusal planes to the xray beam. Radiographs were excluded from the study if they displayed occlusal plane discrepancy (>2 mm), or missing first molars.

CBCT synthesized lateral cephalograms in the perspective and orthogonal projections with the projection center at porion were produced in Dolphin<sup>TM</sup> 3D. The

resulting constructed images were then flipped horizontally to match the orientation of the Sirona lateral cephalograms (Figs 4,5). Images were traced in Dolphin<sup>TM</sup> using the Ricketts analysis. Additionally, two linear measurements, Nasion to Basion (N-Ba) and Nasion to Menton (N-Me) were used to evaluate magnification on a larger scale (Table 1).



Figure 4. Construction left lateral cephalogram with x-ray beam centered on porion (A). Image A being horizontally flipped (B).



Figure 5 Sirona lateral cephalogram and Dolphin<sup>TM</sup> generated CBCT cephalograms. Sirona Orhthophos lateral cephalogram (A) and mirrored images of construction left lateral cephalogram in perspective (B) and Orthotogonal projection (C).

| Tab | le | 1. | Angu | lar | and | linear | measurements. |
|-----|----|----|------|-----|-----|--------|---------------|
|-----|----|----|------|-----|-----|--------|---------------|

| Angular Measurements (°)           | Linear Measurements (mm)         |
|------------------------------------|----------------------------------|
| 1. Cranial Deflection (N-Ba to FH) | 1. Convexity (A-NPo)             |
| 2. Facial Depth (FH-NPo)           | 2. Cranial Length (CC-N)         |
| 3. Facial Axis (NaBa-PtGn)         | 3. L1 Protrusion (L1-APo)        |
| 4. Mandibular Plane (GoGn-FH)      | 4. Lower Lip to E-Plane          |
| 5. Interincisal Angle (U1-L1)      | 5. U-Incisor Protrusion (U1-APo) |
| 6. L1 to A-Po                      | 6. U6-PT Vertical                |
| 7. Lower Face Height (ANS-Xi-Pm)   | 7. Nasion to Basion (N-Ba)       |
| 8. Mandibular Arc (PmXi-XiDC)      | 8. Nasion to Menton (N-Me)       |
| 9. Maxillary Depth (FH-NA)         |                                  |

#### Intraexaminer and Interexaminer Reliability

To test intraexaminer reliability, five randomly selected Sirona lateral cephalograms were digitized three times, by the same examine (Y.J) with one week intervals between digitizing sessions. Digitizing was done with Dolphin<sup>TM</sup> 3D and Ricketts analysis measurements were used to evaluate repeatability. The same set of five cephalograms was digitized by another examiner to evaluate inter-examiner repeatability. The Ricketts Analysis points and planes and additional N-Me and N-Ba planes are shown in Figure 6.



Figure 6. Landmarks and reference planes. Two additional planes, N-Ba and N-Me are also shown.

#### Statistical Analysis

Statistical analysis was performed using IBM SPSS 21.0 (IBM Corp., Armonk, NY, USA) at  $\alpha = 0.05$ . The reliability of measurements on radiographic phantom was analyzed using a correlation test. The agreement among the vertical and horizontal measurements on the metal grid, the Sirona Orthophos XG Plus digital lateral

cephalogram, the Dolphin<sup>TM</sup> generated CBCT lateral cephalogram in the perspective and orthogonal projections were analyzed using the Wilcoxon signed rank test. Intraclass correlation coefficient tests were used to determine intraexaminer and interexaminer reliability. The sample size (n=25) was justified at the power of 95%, alpha value of 0.05 to determine the effect size of 1.3 when comparing the Ricketts measurement of the pre and post adjusted CBCT images (Alpha pre and Alpha post) to the non-adjusted Sirona.

The measurements between the Sirona Orthophos XG Plus digital lateral cephalograms and the adjusted CBCT lateral cephalograms in orthogonal projection were compared using one sample Wilcoxon signed rank text. Nonparametric tests were performed to adjust for measurements in which the data did not show a normal distribution.

#### Results

Table 2 shows the reliability of repeated measurements by a single operator. High reliability for the repeated measurements on the radiographic phantom is indicated by the high intra-class correlation values. Tables 3 and 4 show the comparison of means and standard deviation for vertical and horizontal halves measurements between the right, center and left side grid using each imaging modality as well as the measurements made on the scanned grid. The differences between the means for each modality is also shown. Slightly greater differences were detected for repeated measurements in the vertical halves. Difference in the vertical direction varied between -0.01 mm to -0.38 mm, whereas the difference in the horizontal direction varied between -0.01 mm to -0.27 mm. None of these however, reached clinical significance (0.6 mm).

| Intraclass |                          | 95%                 |                |
|------------|--------------------------|---------------------|----------------|
| Modality   | Correlation <sup>b</sup> | Confidence Interval |                |
|            |                          | Lower<br>Bound      | Upper<br>Bound |
| Grid       | 1.000 <sup>a</sup>       | 1.000               | 1.000          |
| Sirona R   | 1.000 <sup>a</sup>       | 1.000               | 1.000          |
| Sirona C   | 1.000 <sup>a</sup>       | 1.000               | 1.000          |
| Sirona L   | 1.000 <sup>a</sup>       | 1.000               | 1.000          |
| CBCT PR    | 1.000 <sup>a</sup>       | 1.000               | 1.000          |
| CBCT PC    | 1.000 <sup>a</sup>       | 1.000               | 1.000          |
| CBCT PL    | 1.000 <sup>a</sup>       | 1.000               | 1.000          |
| CBCT OR    | 1.000 <sup>a</sup>       | 1.000               | 1.000          |
| CBCT OC    | 1.000 <sup>a</sup>       | 1.000               | 1.000          |
| CBCT OL    | 1.000 <sup>a</sup>       | 1.000               | 1.000          |

Table 2. Reliability of measurements on radiographic phantom using correlation test.

Two-way random effects model where both people effects and measures effects are random.

a. The estimator is the same, whether the interaction effect is present or not.

b. Type A intraclass correlation coefficients using an absolute agreement definition.

|          |              |              | Difference      |         |
|----------|--------------|--------------|-----------------|---------|
|          | S ½ VT       | I ½ VT       | S ½ VT - I ½    | 5.11.1  |
|          | Mean±SD (mm) | Mean±SD (mm) | V I<br>Mean+SD  | P-Value |
|          | (IIIII)      | (IIIII)      | (mm)            |         |
| Grid     | 64.20±0.14   | 64.12±0.17   | 0.08±0.23       | 0.497   |
| Sirona R | 64.22±0.29   | 64.19±0.25   | 0.03±0.19       | 0.733   |
| Sirona C | 65.28±0.19   | 65.66±1.05   | -0.38±1.18      | 0.674   |
| Sirona L | 66.51±0.30   | 66.51±0.26   | -0.01±0.47      | 1.000   |
| CBCT PR  | 70.76±0.26   | 70.93±0.24   | -0.17±0.21      | 0.036*  |
| CBCT PC  | 71.00±0.31   | 70.65±0.22   | 0.35±0.39       | 0.028*  |
| CBCT PL  | 71.06±0.33   | 71.05±0.27   | 0.02±0.39       | 0.767   |
| CBCT OR  | 64.82±0.22   | 64.44±0.19   | 0.38±0.36       | 0.021*  |
| CBCT OC  | 64.74±0.21   | 64.61±0.38   | $0.14 \pm 0.47$ | 0.241   |
| CBCT OL  | 64.55±0.23   | 64.92±0.27   | -0.37±0.23      | 0.007*  |

Table 3. Comparison of Mean  $\pm$  Standard Deviation (mm) of vertical measurements using Related Samples Wilcoxon Signed Rank Test at  $\alpha = 0.05$ .

Asymptotic significances are displayed. The significance level is  $\alpha = 0.05$ . \* Denotes statistical difference.
|          | L ½ HT<br>Mean±SD<br>(mm) | R ½ HT<br>Mean±SD<br>(mm) | Difference<br>L ½ HT - R ½ HT<br>Mean±SD<br>(mm) | P-Value |
|----------|---------------------------|---------------------------|--------------------------------------------------|---------|
| Grid     | 64.37±0.23                | 64.27±0.19                | 0.10±0.17                                        | 0.345   |
| Sirona R | 64.24±0.34                | 64.18±0.19                | 0.06±0.31                                        | 0.674   |
| Sirona C | 65.34±0.13                | 65.37±0.19                | -0.03±0.22                                       | 0.612   |
| Sirona L | 66.39±0.10                | 66.43±0.22                | -0.04±0.19                                       | 0.324   |
| CBCT PR  | 70.46±0.18                | 70.27±0.30                | 0.19±0.29                                        | 0.091   |
| CBCT PC  | 70.90±0.17                | 70.50±0.20                | -0.21±0.16                                       | 0.018*  |
| CBCT PL  | 70.44±0.27                | 70.67±0.25                | -0.24±0.31                                       | 0.061   |
| CBCT OR  | 64.30±0.15                | 64.02±0.19                | 0.27±0.20                                        | 0.011*  |
| CBCT OC  | 64.20±012                 | 64.28±0.16                | -0.09±0.20                                       | 0.144   |
| CBCT OL  | 64.52±0.24                | 64.53±0.23                | -0.01±0.16                                       | 0.932   |

Table 4. Comparison of Mean  $\pm$  Standard Deviation (mm) of horizontal measurements using Related Samples Wilcoxon Signed Rank Test at  $\alpha = 0.05$ .

Asymptotic significances are displayed. The significance level is  $\alpha = 0.05$ . \* Denotes statistical difference

Table 5 shows the comparison of means and standard deviations for total vertical and total horizontal measurements taken from the scanned grid, Sirona Orthophos XG Plus lateral cephalogram, Dolphin<sup>TM</sup> generated CBCT lateral cephalogram in the perspective and orthogonal projections. The percent magnification between the grid and each imaging modality is also displayed. For images obtained by Sirona Orthophos XG Plus, the magnification gradually increases as grid is moved from right (closest to the sensor) to left (farthest from the sensor). Greatest magnification changes are observed when comparing the image of scanned grid to the images from Dolphin<sup>TM</sup> generated CBCT in perspective projection. Magnification differences vary from 110.22% to 110.60% in the vertical direction and 109.60% to 109.67% in the horizontal direction. Furthermore, when images from right, center and left sides are compared, Dolphin<sup>TM</sup> generated CBCT lateral cephalogram in perspective projection produces images with only slight difference in the magnification, therefore, it does not result in a truly perspective image. Right side grid on Sirona Orthophos XG Plus and NewTom 5G CBCT orthogonal had the closest agreement to the grid for both vertical and horizontal measurements.

| compared | to the grid.               |                 |                             |                  |                           |                |
|----------|----------------------------|-----------------|-----------------------------|------------------|---------------------------|----------------|
|          | Mean ± SD<br>(mm)<br>Right | % Mag*<br>Right | Mean ± SD<br>(mm)<br>Center | % Mag*<br>Center | Mean ± SD<br>(mm)<br>Left | % Mag*<br>Left |
|          |                            | Total V         | Vertical Measur             | ements           |                           |                |
| Grid     | 128.38±0.18                | 100             | 128.38±0.18                 | 100              | 128.38±0.18               | 100            |
| Sirona   | 128.20±0.32                | 99.87           | 130.69±0.26                 | 101.80           | 133.03±0.25               | 103.63         |
| CBCT P   | 141.63±0.43                | 110.32          | 141.49±0.26                 | 110.22           | 142.01±0.37               | 110.62         |
| CBCT O   | 129.30±0.13                | 100.72          | 129.36±0.23                 | 100.77           | 129.56±0.27               | 100.63         |
|          |                            | Total H         | orizontal Measu             | urements         |                           |                |
| Grid     | 128.34±0.22                | 100             | 128.34±0.22                 | 100              | 128.34±0.22               | 100            |
| Sirona   | 128.36±0.33                | 100.02          | 130.63±0.27                 | 101.79           | 132.97±0.28               | 103.61         |
| CBCT P   | 140.66±0.43                | 109.60          | 140.75±0.28                 | 109.67           | 141.09±0.41               | 109.94         |
| CBCT O   | 128±0.25                   | 100.07          | 128.57±0.22                 | 100.18           | 129.14±0.47               | 100.93         |

Table 5. Comparison of mean  $\pm$  standard (mm) deviation and % magnification compared to the grid.

\* % Magnification is calculated for each modality compared to grid.

Tables 6 and 7 summarizes the reliability test on repeated measurements by the two examiners. High intraclass correlation coefficients indicate strong intraexaminer and interexaminer reliability for the Ricketts analysis measurements.

| Table 6. I | Intraexaminer | reliability- | Sirona |
|------------|---------------|--------------|--------|
|------------|---------------|--------------|--------|

|                  | Intraclass               | 95% Confider | nce Interval |
|------------------|--------------------------|--------------|--------------|
|                  | Correlation <sup>b</sup> | Lower Bound  | Upper Bound  |
| Single Measures  | .999 <sup>a</sup>        | .999         | 1.000        |
| Average Measures | 1.000                    | 1.000        | 1.000        |

a. The estimator is the same, whether the interaction effect is present or not.

b. Type A intraclass correlation coefficients using an absolute agreement definition.

### Table 7. Interexaminer reliability- Sirona

|                  | Intraclass               | 95% Confide | nce Interval |
|------------------|--------------------------|-------------|--------------|
|                  | Correlation <sup>b</sup> | Lower Bound | Upper Bound  |
| Single Measures  | .999 <sup>a</sup>        | .998        | .999         |
| Average Measures | .999                     | .999        | 1.000        |

a. The estimator is the same, whether the interaction effect is present or not.

b. Type A intraclass correlation coefficients using an absolute agreement definition.

The agreement between measurements from Sirona Orthophos XG Plus and

Dolphin<sup>TM</sup> generated CBCT perspective lateral cephalograms is summarized in Tables 8

and 9. The linear and angular measurements are analyzed separately. Statistically

significant differences were found between all linear measurements with the exception of

lower lip to E-plane. Overall, the difference ranged from 0.20 mm to -8.36 mm and

measurements including, cranial length, U-incisor protrusion, U6-PTV, N-Ba, and N-Me reached clinical significance (0.6 mm). When comparing the angular measurements between these two modalities, statistically significant difference was only found for the facial axis (P = 0.015).

| Linear<br>Measurements  | Sirona<br>Mean ± SD<br>(mm) | CBCT<br>Perspective<br>Mean ± SD<br>(mm) | Mean of<br>Difference<br>± SD<br>(mm) <sup>a</sup> | P-Value  |
|-------------------------|-----------------------------|------------------------------------------|----------------------------------------------------|----------|
| Convexity               | $3.42\pm3.03$               | $3.69\pm3.24$                            | -0.25±0.46                                         | 0.004*   |
| Cranial Length          | $56.26\pm2.89$              | $60.66 \pm 3.25$                         | -4.07±1.66                                         | <0.001*  |
| L1 Protrusion           | $2.82\pm2.17$               | $3.20\pm2.28$                            | -0.38±0.44                                         | <0.001*  |
| Lower Lip to<br>E-Plane | $-1.07 \pm 2.65$            | -1.33 ± 2.82                             | 0.20±0.86                                          | 0.088    |
| U-Incisor<br>Protrusion | $5.92\pm2.37$               | $6.58 \pm 2.62$                          | -0.64±0.52                                         | <0.001*  |
| U6-PT Vertical          | $18.38\pm3.40$              | $19.35\pm2.64$                           | -0.92±0.76                                         | < 0.001* |
| Nasion to<br>Basion     | $100.51\pm4.67$             | $108.64\pm4.71$                          | -7.59±2.55                                         | <0.001*  |
| Nasion to<br>Menton     | $104.94\pm7.90$             | $113.94 \pm 8.35$                        | -8.36±2.59                                         | <0.001*  |

Table 8. The agreement between linear measurements from Sirona Orthophos XG Plus and Dolphin<sup>TM</sup> generated CBCT perspective lateral cephalograms via One-Sample Wilcoxon Signed Rank test at  $\alpha = 0.05$ .

Asymptotic significances are displayed. The significance level is  $\alpha = 0.05$ .

a. Difference was found by subtracting CBCT measurements from Sirona.

\* Denotes statistical difference.

| Angular<br>Measurements   | Sirona<br>Mean ± SD<br>(deg) | CBCT<br>Perspective<br>Mean ± SD<br>(deg) | Mean of<br>Difference<br>± SD<br>(deg) <sup>a</sup> | P-Value |
|---------------------------|------------------------------|-------------------------------------------|-----------------------------------------------------|---------|
| Cranial Deflection        | 29.66±1.72                   | 29.66±2.03                                | -0.06±0.88                                          | 0.500   |
| Facial Angle              | 89.74±2.64                   | 89.54±2.80                                | 0.18±0.51                                           | 0.046   |
| Facial Axis               | 88.70±3.94                   | 88.26±3.95                                | 0.34±0.90                                           | 0.015*  |
| Mandibular plane<br>angle | 21.34±4.82                   | 21.40±5.17                                | -0.06±0.93                                          | 0.401   |
| Interincisal angle        | 127.34±12.64                 | 127.34±12.47                              | 0.01±0.73                                           | 0.490   |
| L1 to A-Po                | 24.40±5.92                   | 24.39±5.98                                | $0.06 \pm 1.05$                                     | 0.472   |
| Lower Face Height         | 43.46±4.07                   | 43.50±4.13                                | -0.12±0.83                                          | 0.408   |
| Mandibular Arc            | 35.96±5.33                   | 35.95±4.87                                | $0.06 \pm 1.81$                                     | 0.484   |
| Maxillary Depth           | 93.06±3.21                   | 92.90±3.43                                | $0.18 \pm 0.60$                                     | 0.108   |

Table 9. The agreement between angular measurements from Sirona Orthophos XG Plus and Dolphin<sup>TM</sup> generated CBCT perspective lateral cephalograms via One-Sample Wilcoxon Signed Rank test at  $\alpha = 0.05$ .

Asymptotic significances are displayed. The significance level is  $\alpha = 0.05$ .

a. Difference was found by subtracting CBCT measurements from Sirona.

\* Denotes statistical difference.

Tables 10 and 11 summarize the agreement between measurements from Sirona Orthophos XG Plus and Dolphin<sup>TM</sup> generated CBCT orthogonal lateral cephalograms at 100%, 101%, 102% and 103% magnification. The linear and angular measurements are analyzed separately. At 100% of magnification, statistically significant difference was found in all linear measurements except for lower lip to E-plane. Cranial length, U6-PTV, N-Ba, and N-Me reached clinical significance (0.6 mm). The angular measurements only showed statistically significant difference in facial axis measurement (P =0.004).

Table 10. The agreement between linear measurements from Sirona Orthophos XG Plus and Dolphin<sup>TM</sup> generated CBCT orthogonal lateral cephalograms at 100%, 101%, 102%, and 103% magnification via One-Sample Wilcoxon Signed Rank test at  $\alpha = 0.05$ .

| Linear                   | Sirona            | Diffe             | rence    | Diffe             | rence    | Differ            | rence    | Difference        |         |
|--------------------------|-------------------|-------------------|----------|-------------------|----------|-------------------|----------|-------------------|---------|
| Measurements             | Mean $\pm$ SD     | Sirona -          | - CBCT   | Sirona -          | - CBCT   | Sirona – CBCT     |          | Sirona – CBCT     |         |
|                          | (mm)              | 100               | )%       | 10                | 1%       | 102               | 2%       | 103%              |         |
|                          |                   | Mean ±<br>SD (mm) | P-Value  | Mean ±<br>SD (mm) | P-Value  | Mean ±<br>SD (mm) | P-Value  | Mean ±<br>SD (mm) | P-Value |
| Convexity                | $3.42\pm3.03$     | 0.2±0.32          | 0.002*   | 0.2±0.30          | 0.006*   | 0.1±0.30          | 0.013*   | 0.1±0.29          | 0.046*  |
| Cranial Length           | $56.26 \pm 2.89$  | 1.2±1.15          | <0.001*  | 0.6±1.13          | 0.012*   | 0.1±1.12          | 0.678    | -0.4±1.13         | 0.113   |
| L1 Protrusion            | $2.82\pm2.17$     | 0.2±0.35          | 0.008*   | 0.2±0.34          | 0.009*   | 0.1±0.34          | 0.019*   | 0.1±0.34          | 0.039*  |
| Lower Lip to E-<br>Plane | $-1.07 \pm 2.65$  | 0.1±0.86          | 0.544    | 0.1±0.85          | 0.435    | 0.1±0.86          | 0.399    | 0.2±0.86          | 0.360   |
| U-Incisor<br>Protrusion  | $5.92 \pm 2.37$   | 0.1±0.33          | 0.027*   | 0.1±0.34          | 0.083    | 0.0±0.33          | 0.250    | -0.1±0.35         | 0.870   |
| U6-PT Vertical           | $18.38\pm3.40$    | 0.7±0.49          | <0.001*  | 0.6±0.48          | < 0.001* | 0.4±0.46          | < 0.001* | 0.2±0.44          | 0.024*  |
| Nasion to Basion         | $100.51 \pm 4.67$ | 1.3±0.84          | <0.001*  | 0.3±0.73          | 0.006*   | -0.6±0.75         | 0.007*   | -1.5±0.83         | <0.001* |
| Nasion to Menton         | $104.94\pm7.90$   | 1.1±0.86          | < 0.001* | $0.1 \pm 0.81$    | 0.875    | $-0.9\pm0.84$     | 0.001*   | -1.9±0.96         | <0.001* |

Asymptotic significances are displayed. The significance level is 0.05.

a. Difference was found by subtracting CBCT measurements from Sirona.

\* Denotes statistical difference.

| Angular                   | Sirona        | Diffe        | rence   | Diffe        | rence   | Differ    | rence   | Differ         | rence   |
|---------------------------|---------------|--------------|---------|--------------|---------|-----------|---------|----------------|---------|
| Aliguiai                  | Mean $\pm$ SD | Sirona -     | - CBCT  | Sirona -     | - CBCT  | Sirona –  | - CBCT  | Sirona –       | - CBCT  |
| Measurements              | (deg)         | 100          | )%      | 10           | 1%      | 102       | 2%      | 103            | 3%      |
|                           |               | Mean ±       | P-Value | Mean ±       | P-Value | Mean ±    | P-Value | Mean ±         | P-Value |
|                           |               | SD (deg)     |         | SD (deg)     |         | SD (deg)  |         | SD (deg)       |         |
| Cranial                   | 29.66±1.72    | -0.3±0.92    | 0.411   | -0.3±0.92    | 0.411   | -0.3±0.92 | 0.411   | -0.3±0.92      | 0.411   |
| Deflection                |               |              |         |              |         |           |         |                |         |
| Facial Angle              | 89.74±2.64    | $0.1\pm0.49$ | 0.277   | $0.1\pm0.48$ | 0.310   | 0.1±0.48  | 0.310   | $0.1 \pm 0.48$ | 0.310   |
| Facial Axis               | 88.70±3.94    | 0.5±0.91     | 0.004*  | 0.5±0.91     | 0.004*  | 0.5±0.90  | 0.004*  | 0.5±0.90       | 0.004*  |
| Mandibular<br>plane angle | 21.34±4.82    | -0.2±0.89    | 0.182   | -0.2±0.89    | 0.182   | -0.2±0.89 | 0.189   | -0.2±0.88      | 0.189   |
| Interincisal angle        | 127.34±12.64  | -0.1±0.51    | 0.253   | -0.1±0.51    | 0.253   | -0.1±0.51 | 0.253   | -0.1±0.51      | 0.308   |
| L1 to A-Po                | 24.40±5.92    | -0.3±1.12    | 0.319   | -0.3±1.12    | 0.319   | -0.3±1.12 | 0.319   | -0.3±1.12      | 0.319   |
| Lower Face<br>Height      | 43.46±4.07    | 0.1±0.81     | 0.253   | 0.1±0.81     | 0.253   | 0.1±0.81  | 0.253   | 0.1±0.81       | 0.253   |
| Mandibular Arc            | 35.96±5.33    | 0.1±1.80     | 0.658   | 0.1±1.80     | 0.657   | 0.1±1.80  | 0.647   | 0.1±1.80       | 0.647   |
| Maxillary Depth           | 93.06±3.21    | 0.2±0.46     | 0.025*  | 0.2±0.45     | 0.025*  | 0.2±0.45  | 0.025*  | 0.2±0.45       | 0.025*  |

Table 11. The agreement between angular measurements from Sirona Orthophos XG Plus and Dolphin<sup>TM</sup> generated CBCT orthogonal lateral cephalograms at 100%, 101%, 102%, and 103% magnification via One-Sample Wilcoxon Signed Rank test at  $\alpha = 0.05$ .

Asymptotic significances are displayed. The significance level is 0.05.

a. Difference was found by subtracting CBCT measurements from Sirona.

\* Denotes statistical difference.

At 101% magnification, statistically significant differences were found in all linear measurements except for lower lip to E-plane, upper incisor protrusion and Nasion to Menton. Only two of them, including cranial length and U6-PTV reached clinical significance (0.6 mm). When CBCT orthogonal at 102% and 103% magnification were compared to Sirona, statistically significant differences were found in all linear measurements except for cranial length, lower lip to E-plane and upper incisor protrusion. Clinically significant differences were only found in N-Ba and N-Me measurements. Statistical differences in two angular measurements, facial axis (P =0.004), maxillary depth measurements (P =0.025) were found in all adjusted CBCT orthogonal cephalograms.

Comparison between Sirona Orthophos XG Plus and NewTom 5G CBCT orthogonal at various magnification based on Nasion to Basion and Nasion to Menton measurements indicated statistically significant differences between the two entities at all magnifications except the orthogonal projection at 101% magnification (Table 12). When Sirona and CBCT orthogonal lateral cephalograms are compare by combining N-Ba and N-Me measurements, CBCT orthogonal at 101% magnification has the mean difference closest to zero (Fig 7).

| NewTom<br>5G CBCT<br>Orthogonal % | Nasion to<br>Basion<br>Mean $\pm$ SD<br>(mm) <sup>a</sup> | P-Value          | Nasion to<br>Menton<br>Mean ± SD<br>(mm) | P-Value         |
|-----------------------------------|-----------------------------------------------------------|------------------|------------------------------------------|-----------------|
| 100%                              | 1.3±0.84                                                  | < 0.001*         | 1.1±0.86                                 | < 0.001*        |
| 101%<br>102%                      | 0.3±0.73<br>-0.6±0.75                                     | 0.006*<br>0.007* | 0.1±0.81<br>-0.9±0.84                    | 0.875<br>0.001* |
| 103%                              | -1.5±0.83                                                 | <0.001*          | -1.9±0.96                                | <0.001*         |

Table 12. Comparison of Sirona Orthophos XG Plus and Dolphin<sup>TM</sup> generated CBCT orthogonal at various adjusted magnification based on two linear measurements of Nasion to Basion and Nasion to Menton.

a. The difference was calculated by subtracting CBCT measurements from Sirona.

\* Denotes statistical difference.

Pairwise Comparison of Sirona LC and NewTom Orthagonal CBCT



Figure 7. Pairwise comparison of Sirona LC and Dolphin<sup>TM</sup> generated CBCT in orthogonal projection. Adjusted magnifications are compared based on two linear measurements of Nasion to Basion and Nasion to Menton.

### Discussion

Cone-beam computed tomography (CBCT) is becoming established as an alternative tool and, in many aspects, superior radiographic technique to conventional radiography in orthodontics.<sup>3</sup> However, cephalometric analysis is still an important tool for treatment planning because 3-dimentional analyses are still not established. The purpose of this study was to determine whether Ricketts cephalometric analysis performed on Dolphin<sup>TM</sup> generated CBCT synthesized lateral cephalograms could provide the same measurements as of those on the Sirona Orthophos XG Plus digital.

To eliminate patient positioning as well as landmark identification errors described by Lee et al.,<sup>30</sup> a radiographic phantom was custom-made to represent an

average adult skull. The radiographic phantom was then used to analyze the possible magnification differences as well as single plane and multiplane perspective distortion between lateral cephalograms obtained from Sirona Orthophos XG Plus and Dolphin<sup>TM</sup> generated CBCT in perspective and orthogonal projections. One would expect that the measurements of the grid to be the same as the measurements obtained from CBCT in orthogonal view since the orthogonal projection by definition creates 1:1 images, regardless of the object to receptor distance. We also expected to get images that would magnify gradually as the grid was moved farther away from the receptor (multiplane perspective distortion) in the Sirona and Dolphin<sup>TM</sup> generated CBCT with perspective projection.

The analysis of the difference among the vertical halves and horizontal halves was the method used in this study to evaluate the presence of single and multiplane perspective distortion. If there was a perspective distortion, we would expect to see differences between these measurements. The differences among the vertical halves and horizontal halves showed statistically significant differences for Dolphin<sup>TM</sup> generated images in CBCT perspective center grid and CBCT orthogonal right grid in the vertical direction, and CBCT perspective left, right and CBCT orthogonal right and left in the horizontal direction (Tables 3 and 4). The calculated difference ranged as low as -0.01±0.16 mm to as high as  $0.38\pm0.36$  mm, with the greatest difference being in the vertical direction. These differences, although statistically significant, did not reach clinical significance (0.6 mm).<sup>2</sup>

Furthermore, for imaging techniques that use non-parallel beam (Sirona and Dolphin<sup>TM</sup> CBCT perspective), if the x-ray beam passed through porion, we expected to

see single plane perspective distortion in the areas away from porion. Our findings based on the measurements of the vertical and horizontal halves, however, rejects this analogy. This may suggest that the algorithm used in these two imaging modalities corrects for single plane perspective distortion.

When comparing actual grid measurements to each of the three imaging modalities (Table 5), Sirona with the alumide grid on the right side was found to have the best agreement to the grid followed by Dolphin<sup>TM</sup> generated CBCT lateral cephalograms in orthogonal projection with the alimude grid on the right side. In this case Sirona presented a multiplane perspective distortion, meaning that measurements enlarged by roughly 1% as the alumide grid was moved farther away from the sensor. As expected, no multiplane perspective distortion was observed in orthogonal projection. When comparing the images from Sirona to those of Dolphin<sup>TM</sup> generated CBCT in orthogonal projection, images of the right side grid were least magnified and these measurements were closest to the actual grid measurements. This finding suggests that in order to get the most accurate measurements, in cases with bilateral structures, the structures on the side closest to the film should be selected, as these would represent the real measurements more closely. Unlike the other two modalities, Dolphin<sup>TM</sup> generated CBCT lateral cephalograms in perspective projection produced images with the highest magnification ( $\sim 10\%$ ) when compared to the grid. Furthermore, the images from Dolphin<sup>TM</sup> generated CBCT in perspective projection did not represent multiplane perspective distortion, as measurements were enlarged in three different planes by the same magnification (~10%). This suggests that the algorithm used by Dolphin<sup>TM</sup> 3D to

synthesize images in perspective projection uses a magnification similar to that of the analog films without replicating the perspective distortion.

For the patient group used in this study, operator error was controlled at multiple levels. All images were taken by the same person. In order to reduce projection error described in literature,<sup>30,32</sup> patients were positioned in the Sirona Orthophos XG Plus and NewTom 5G machine according to the standard head positioning methods. Patient positioning was further evaluated in the NewTom 5G machine via scout images. To reduce landmark identification error, exclusion criteria were also used to eliminate cases with occlusal plane discrepancy of >2 mm, and missing first molars. NewTom 5G 3D volumes were adjusted to produce images in the same orientation as that of Sirona Orthophos XG Plus. Images from each patient were also traced at the same setting by the same person. The analysis of error (correlation coefficient, Tables 6 and 7) showed high correlation of the repeated measures, meaning that there was a high agreement among the two examiners as well as within the measurements made by one examiner. Lastly, because the majority of linear measurements in Ricketts analysis were over short distances and would have made them more sensitive to magnitude of differences between measurements, two additional linear measurements of N-Ba and N-Me were included in this study to allow for a greater standard error.

As expected, the statistical results of one-sample Wilcoxon signed rank test showed significant difference in linear measurements, whereas angular measurements were least affected by changes in imaging modality and magnification. Similar to the results in Da Lee's study no significant difference was found in reproducibility of the measurement for lower lip to E-plane.<sup>35</sup> Statistically significant differences detected in

facial axis, the angle between nasion-basion plane and foramen rotundum-gnathion, is justified based on the difficulty in identifying the landmarks compromising these angular measurements. Difficulty in locating basion has been reported in previous studies.<sup>20-21</sup> Locating basion has been found to have a mean coefficient of variation as large as 2.60 mm. The landmark Ba was also found to have the largest regression coefficient estimate (1.42 mm).<sup>21</sup> These findings indicates that identification of Ba has a statistically and clinically greater error compared with other landmarks.

The low agreement that was found between Sirona Orthophos XG Plus and Dolphin <sup>TM</sup> generated CBCT lateral cephalograms in perspective projection as a result of the phantom study was further confirmed in our patient sample (Tables 8 and 9). Similar to Da Lee's observation, linear measurements in Dolphin <sup>TM</sup> generated CBCT lateral cephalograms were overestimated.<sup>35</sup> Because of poor correlation between these two techniques, no further adjustments were made on perspective projection images.

The result of the pairwise comparison test, based on combined effect of N-Ba and N-Me (Fig 7) indicates that Dolphin<sup>TM</sup> generated CBCT lateral cephalograms in orthogonal projection adjusted to 101% magnification has the closest agreement to Sirona Orthophos XG Plus. At the 101% magnification the difference of means is closest to zero  $(0.2\pm0.77 \text{ mm})$ . Similarly, the difference of means for Ricketts analysis measurements were found to be closest to zero at 101% magnification (Tables 10 and 11). Only two of the measurements, cranial length and U6-PTV reached clinical significance (0.6 mm). The difference of means for these measurements were  $0.6\pm1.13 \text{ mm}$  and  $0.6\pm1.48 \text{ mm}$  respectively. Foramen rotundum is a common landmark used in both of these measurements. This is a bilateral structure, and difficulty in its identification may have

contributed to the statistically significant differences noted in cranial length and U6-PTV measurements.

### Conclusions

- Perspective distortion was not detected in single sagittal plane images obtained from Sirona Orthophos XG Plus and constructed images from NewTom 5G CBCT.
- Perspective distortion is present in Sirona Orthophos XG Plus only as the object is moved away from the radiographic sensor.
- 3. NewTom 5G CBCT in perspective projection results in images that are magnified with the same ratio in all planes, therefore it does not produce truly perspective images.
- Lateral cephalograms obtained from NewTom 5G CBCT in orthogonal projection at 101% magnification closely resembles lateral cephalograms taken by Sirona Orthophos XG Plus.

#### **CHAPTER THREE**

### **EXTENDED DISCUSSION**

### **Study Limitations and Future Study Directions**

The limitations of this study should be considered in order to further interpret its results. Landmark identification plays a major role in accuracy of the collected data; in this study however, absolute measurements between the modalities were made and variability of landmark identification was only assessed for five randomly selected Sirona lateral cephalograms. The identification error and systematic differences in landmark position should be taken into account when conventional digital cephalograms and CBCT derived cephalograms are being compared for future ability to superimpose

In this study measurements made on Dolphin<sup>TM</sup> generated CBCT lateral cephalograms were compared to Sirona digital lateral cephalograms and not to those of conventional analog. Since most of the growth studies, as well as, the cephalometric norms in the past have been done on analog images, a future study can compare CBCT image to analog images to find an algorithm to convert the norms established by previous data.

In retrospective, since Dolphin<sup>TM</sup> generated CBCT in orthogonal projection produces images with the least amount of distortion in all sagittal planes, it is more reasonable to not alter these images and instead make magnification correction to Sirona images for future studies.

An interesting future study could also evaluate the accuracy of superimposition of lateral cephalograms obtained from Sirona Orthophos XG Plus on Dolphin<sup>TM</sup> generated NewTom 5G CBCT images in orthogonal projection adjusted for 101% magnification.

### REFERENCES

- 1. Broadbent BH. A new x-ray technique and its application to orthodontia. Angle Orthod 1931;1:45–66.
- 2. Baumrind, S. and Frantz, T.C. The reliability of head film measurements. 1. Landmark identification. Am J Orthod. 1971; 60: 111–127.
- 3. Mozzo P, Procacci C, Tacconi A, Martini PT, Andreis IA. A new volumetric CT machine for dental imaging based on the cone-beam technique: preliminary results. Eur Radiol 1998;8:1558-64.
- 4. Honda, K., Larheim, T.A., Matsumoto, K., and Iwai, K. Osseous abnormalities of the mandibular condyle: diagnostic reliability of cone beam computed tomography compared with helical computed tomography based on an autopsy material. Dentomaxillofac Radiol. 2006; 35: 152–157.
- 5. Tsilakis, K., Syriopoulos, K., and Stamatakis, H.C. Radiographic examination of the temporomandibular joint using cone beam computed tomography. Dentomaxillofac Radiol. 2004; 33: 196–201.
- Nakajima, A., Sameshima, G.T., Arai, Y., Homme, Y., Shimizu, N., and Dougherty, H. Two- and three-dimensional orthodontic imaging using limited cone beamcomputed tomography. Angle Orthod. 2005; 75: 895–903.
- 7. Maki, K., Inou, N., Takanishi, A., and Miller, A.J. Computer-assisted simulations in orthodontic diagnosis and the application of a new cone beam x-ray computed tomography. Orthod Craniofac Res. 2003; 6: 95–101.
- Swennen, G.R.J. and Schutyser, F. Three-dimensional cephalometry: spiral multislice vs cone-beam computed tomography. Am J Orthod Dentofacial Orthop. 2006; 130: 410–416.
- Ludlow, J.B., Davies-Ludlow, L.E., Brooks, S.L., and Howeerton, W.B. Dosimetry of 3 CBCT devices for oral and maxillofacial radiology: CBMercuray, NewTom 3G and i-CAT. Dentomaxillofac Radiol. 2006; 35: 219–226.
- 10. Ngan DC, Kharbanda OP, Geenty JP, Darendeliler MA. Comparison of radiation levels from computed tomography and conventional dental radiographs. Aust Orthod J 2003;19:67–75.
- 11. Faubion B.H. Treatment analysis and diagnosis: A review of the literature. Am J Orthod Dentofacial Orthop. 1966; 52: 103-125.
- 12. Kumar V, Ludlow JB, Mol A, Cevidanes L. Comparison of conventional and cone beam CT synthesized cephalograms. Dentomaxillofac Radiol 2007;36:263-9.

- 13. Kumar V, Ludlow J, Cevidanes LH, Mol A. In vivo comparison of conventional and cone beam CT synthesized cephalograms. Angle Orthod 2008;78:873-9.
- Lamichane M, Anderson NK, Rigali PH, Seldin EB, Will LA. Accuracy of reconstructed images from cone-beam computed tomography scans. Am J Orthod Dentofacial Orthop 2009;136:156-7.
- 15. Park CS, Park JK, Kim H, Han SS, Jeong HG, Park H. Comparison of conventional lateral cephalograms with corresponding CBCT radiographs. Imaging Sci Dent 2012;42:201-5.
- Hilgers ML, Scarfe WC, Scheetz JP, Farman AG. Accuracy of linear temporomandibular joint measurements with cone beam computed tomography and digital cephalometric radiography. Am J Orthod Dentofacial Orthop 2005;128:803-11.
- Moshiri M, Scarfe WC, Hilgers ML, Scheetz JP, Silveira AM, Farman AG. Accuracy of linear measurements from imaging plate and lateral cephalometric images derived from cone-beam computed tomography. Am J Orthod Dentofacial Orthop 2007;132:550-60.
- Gribel B, Gribel MN, Manzi FR, Brooks SL, McNamara JA. From 2D to 3D: an algorithm to derive normal values for 3-dimensional computerized assessment. Angle Orthod 2011;81:3-10.
- Lagravère MO, Low C, Flores-Mir C, Chung R, Carey JP, Heo G, Major PW. Intraexaminer and interexaminer reliabilities of landmark identification on digitized lateral cephalograms and formatted 3-dimensional cone-beam computerized tomography images. Am J Orthod Dentofacial Orthop 2010;137:598-604.
- 20. Chien PC, Parks ET, Eraso F, Hartsfield JK, Roberts WE, Ofner S. Comparison of reliability in anatomical landmark identification using two-dimensional digital cephalometrics and three-dimensional cone beam computed tomography in vivo. Dentomaxillofac Radiol 2009;38:262-73.
- 21. Chang ZC, Hu FC, Lai E, Yao CC, Chen MH, Chen YJ. Landmark identification errors on cone-beam computed tomography-derived cephalograms and conventional digital cephalograms. Am J Orthod Dentofacial Orthop 2011;289-297.
- 22. Delamare EL, Liedtke GS, Vizzotto MB, Silveira HL, Ribeiro JL, Silveira HE. Influence of a programme of professional calibration in the variability of landmark identification using cone beam computed tomography-synthesized and conventional radiographic cephalograms. Dentomaxillofac Radiol 2010;39:414-23.
- Yu Sh, Nahm Ds, Baek Sh. Reliability of landmark identification on monitordisplayed lateral cephalometric images Am J Orthod Dentofacial Orthop 2007; 133: 790-796.

- 24. Cattaneo PM, Bloch CB, Calmar D, Hjortshoj M, Melsen B. Comparison between conventional and cone-beam computed tomography-generated cephalograms. Am J Orthod Dentofacial Orthop 2008;134:798–802.
- 25. Damstra J, Fourie Z, Ren Y. Comparison between two-dimensional and midsagittal three-dimensional cephalometric measurements of dry human skulls. Br J Oral Maxillofac Surg 2011;49:392-5.
- 26. Proffit WR, Fields HW, Jr, Sarver DM. Contemporary orthodontics. 4th ed. St. Louis: Mosby; 2007. pp. 201–202.
- 27. Richardson, A. A comparison of traditional and computerized methods of cephalometric analysis. Eur J Orthod. 1981; 3: 15–20.
- 28. Rakosi, T. An atlas of cephalometric radiology. Wolfe Medical Publications, London, United Kingdom; 1982.
- 29. Waitzman AA, Posnick JC, Armstrong DC, Pron GE. Craniofacial skeletal measurements based on computed tomography: Part 1. Accuracy and reproducibility. Cleft Palate Craniofac J 1992;29:112–117.
- Lee KH, Hwang HS, Curry SR, Boyd L, Norris K, Baumrind S. Effect of cephalometer misalignment on calculations of facial asymmetry. Am J Orthod Dentofacial Orthop 2007;132:15-27.
- Trokova B, Major P, Prasad N, Nebbe B. Cephalometric landmarks identification and reproducibility: A Meta analysis. Am J Orthod Dentofac Orthop 1997;112:165-70.
- Ahlqvist J, Eliasson S, Welander U 1986 The effect of projection errors on cephalometric length measurements. European Journal of Orthodontics 1986; 8: 141–148.
- Oz U, Orhan K, Abe N. Comparison of linear and angular measurements using twodimensional conventional methods and three-dimensional cone beam CT images reconstructed from a volumetric rendering program in vivo. Dentomaxillofac Radiol 2011;40:492-500.
- 34. Pittayapat P, Bornstein MM, Imada TS, Coucke W, Lambrichts I, Jacobs R. Accuracy of linear measurements using three imaging modalities: two lateral cephalograms and one 3D model from CBCT data. Eur J Orthod 2015;37:202-8.
- 35. Lee Da. Comparison of digital and CBCT synthesized lateral cephalograms. A master thesis. Loma Linda University School of Dentistry 2013; 1-45.

# **APPENDIX A**

# PHANTOM CROSS MEASUREMENTS (MM)

| Modality      | HT      | L 1/2 HT | R 1/2 HT | VT      | S 1/2 VT | I 1/2 VT | UL-LR   | UR-LL   |
|---------------|---------|----------|----------|---------|----------|----------|---------|---------|
| Grid (1)      | 128.844 | 64.422   | 64.422   | 128.592 | 63.919   | 64.171   | 181.858 | 181.315 |
| Grid (2)      | 128.001 | 64       | 64       | 128.25  | 64       | 64       | 180.666 | 181.196 |
| Grid (3)      | 128.208 | 64.229   | 64.231   | 128.459 | 64.229   | 64.23    | 181.668 | 181.846 |
| Grid (4)      | 128.459 | 64.23    | 64.231   | 127.957 | 64.229   | 64.229   | 181.67  | 181.315 |
| Grid (5)      | 128.208 | 64.728   | 64.728   | 128.208 | 64.482   | 63.989   | 181.668 | 181.138 |
| Grid (6)      | 128.157 | 64.779   | 64.329   | 128.459 | 64.23    | 63.679   | 181.491 | 181.315 |
| Grid (7)      | 128.459 | 64.229   | 64.229   | 128.459 | 64.229   | 64.231   | 181.568 | 181.137 |
| Grid (8)      | 128.459 | 64.48    | 64.078   | 128.461 | 64.231   | 64.229   | 181.668 | 181.137 |
| Grid (9)      | 128.357 | 64.229   | 64.23    | 128.459 | 64.229   | 64.229   | 181.446 | 181.128 |
| Grid (10)     | 128.208 | 64.378   | 64.229   | 128.459 | 64.23    | 64.229   | 180.96  | 181.492 |
| Sirona R (1)  | 128.23  | 64.231   | 64.231   | 127.997 | 64.231   | 64.231   | 181.443 | 181.304 |
| Sirona R (2)  | 127.941 | 63.933   | 63.976   | 127.845 | 64.063   | 63.803   | 181.045 | 180.892 |
| Sirona R (3)  | 127.807 | 63.969   | 63.969   | 127.808 | 64.035   | 63.969   | 181.086 | 180.839 |
| Sirona R (4)  | 128.14  | 64.157   | 63.983   | 127.88  | 63.724   | 64.027   | 181.081 | 181.003 |
| Sirona R (5)  | 128.162 | 63.843   | 64.233   | 128.205 | 63.973   | 63.973   | 181.25  | 181.003 |
| Sirona R (6)  | 128.796 | 64.66    | 64.398   | 128.796 | 64.398   | 64.372   | 181.96  | 181.59  |
| Sirona R (7)  | 128.796 | 64.912   | 64.136   | 128.403 | 64.398   | 64.66    | 182.216 | 182.13  |
| Sirona R (8)  | 128.534 | 64.398   | 64.136   | 128.534 | 64.66    | 64.398   | 181.962 | 181.778 |
| Sirona R (9)  | 128.534 | 64.396   | 64.6     | 128.513 | 64.66    | 64.398   | 181.961 | 181.319 |
| Sirona R (10) | 128.646 | 63.902   | 64.123   | 128.065 | 64.062   | 64.062   | 181.496 | 181.828 |

| Modality      | НТ      | L 1/2 HT | R 1/2 HT | VT      | S 1/2 VT | I 1/2 VT | UL-LR   | UR-LL   |
|---------------|---------|----------|----------|---------|----------|----------|---------|---------|
| Sirona C (1)  | 130.686 | 65.365   | 65.278   | 130.643 | 65.191   | 65.365   | 184.897 | 184.81  |
| Sirona C (2)  | 130.730 | 65.365   | 65.365   | 130.730 | 65.300   | 65.430   | 184.974 | 184.800 |
| Sirona C (3)  | 130.389 | 65.195   | 65.324   | 130.129 | 64.935   | 68.745   | 184.278 | 184.429 |
| Sirona C (4)  | 131.054 | 65.331   | 65.331   | 131.054 | 65.201   | 65.723   | 185.494 | 185.339 |
| Sirona C (5)  | 130.903 | 65.452   | 65.452   | 130.642 | 65.234   | 65.234   | 184.882 | 184.695 |
| Sirona C (6)  | 130.469 | 65.104   | 65.625   | 130.729 | 65.365   | 65.104   | 184.514 | 184.327 |
| Sirona C (7)  | 130.809 | 65.274   | 65.536   | 131.071 | 65.535   | 65.535   | 185.179 | 185.178 |
| Sirona C (8)  | 130.729 | 65.365   | 65.104   | 130.469 | 65.625   | 65.104   | 184.514 | 184.695 |
| Sirona C (9)  | 130.469 | 65.625   | 65.644   | 130.729 | 65.104   | 65.325   | 185.251 | 185.064 |
| Sirona C (10) | 130.052 | 65.285   | 65.026   | 130.657 | 65.285   | 65.026   | 184.655 | 184.305 |
| Sirona L (1)  | 132.297 | 66.106   | 66.117   | 132.449 | 66.149   | 66.192   | 188.971 | 188.859 |
| Sirona L (2)  | 133.008 | 66.406   | 66.406   | 133.16  | 66.406   | 66.667   | 188.395 | 188.378 |
| Sirona L (3)  | 132.943 | 66.406   | 66.667   | 132.943 | 66.71    | 66.406   | 188.426 | 188.286 |
| Sirona L (4)  | 133.16  | 66.45    | 66.406   | 133.138 | 66.016   | 66.927   | 188.334 | 188.071 |
| Sirona L (5)  | 133.319 | 66.507   | 66.681   | 133.015 | 66.985   | 66.203   | 188.358 | 188.542 |
| Sirona L (6)  | 132.981 | 66.406   | 66.406   | 133.333 | 66.667   | 66.667   | 188.563 | 188.93  |
| Sirona L (7)  | 132.812 | 66.406   | 66.146   | 133.073 | 66.406   | 66.927   | 188.195 | 188.378 |
| Sirona L (8)  | 133.073 | 66.406   | 66.667   | 133.073 | 66.406   | 66.406   | 188.38  | 188.194 |
| Sirona L (9)  | 133.333 | 66.406   | 66.667   | 133.334 | 66.406   | 66.406   | 188.563 | 188.378 |
| Sirona L (10) | 132.812 | 66.406   | 66.146   | 132.812 | 66.927   | 66.346   | 188.563 | 188.93  |

Phantom Cross Measurements (Mm) Continued.

| Modality     | HT      | L 1/2 HT | R 1/2 HT | VT      | S 1/2 VT | I 1/2 VT | <b>UL-LR</b> | <b>UR-LL</b> |
|--------------|---------|----------|----------|---------|----------|----------|--------------|--------------|
| CBCT PR (1)  | 141.494 | 70.747   | 70.686   | 142.478 | 71.288   | 71.214   | 200.521      | 201.14       |
| CBCT PR (2)  | 140.391 | 70.416   | 69.976   | 141.565 | 70.562   | 71.149   | 199.338      | 200.152      |
| CBCT PR (3)  | 140.35  | 70.175   | 70.175   | 140.984 | 70.468   | 70.809   | 199.106      | 199.693      |
| CBCT PR (4)  | 141.275 | 70.539   | 70.932   | 141.716 | 70.981   | 71.225   | 199.723      | 200.348      |
| CBCT PR (5)  | 140.989 | 70.666   | 70.274   | 142.214 | 70.764   | 71.156   | 199.666      | 200.187      |
| CBCT PR (6)  | 140.469 | 70.381   | 70.381   | 141.642 | 70.968   | 70.981   | 199.483      | 199.899      |
| CBCT PR (7)  | 140.351 | 70.468   | 69.983   | 141.228 | 70.453   | 70.468   | 199.143      | 199.315      |
| CBCT PR (8)  | 140.556 | 70.571   | 69.985   | 141.728 | 70.864   | 70.864   | 199.398      | 199.778      |
| CBCT PR (9)  | 140.643 | 70.468   | 70.175   | 141.228 | 70.76    | 70.76    | 199.106      | 199.521      |
| CBCT PR (10) | 140.058 | 70.175   | 70.175   | 141.521 | 70.468   | 70.689   | 199.279      | 199.521      |
| CBCT PC (1)  | 140.834 | 70.257   | 70.774   | 141.943 | 70.971   | 70.971   | 199.848      | 200.166      |
| CBCT PC (2)  | 140.412 | 70.206   | 70.206   | 141.592 | 71.091   | 70.796   | 199.442      | 199.517      |
| CBCT PC (3)  | 141.037 | 70.518   | 70.815   | 141.629 | 71.704   | 70.822   | 200.207      | 200.298      |
| CBCT PC (4)  | 141.124 | 70.414   | 70.71    | 141.42  | 71.006   | 70.71    | 199.999      | 200.839      |
| CBCT PC (5)  | 141.003 | 70.501   | 70.501   | 141.298 | 71.386   | 70.206   | 199.41       | 200.037      |
| CBCT PC (6)  | 140.708 | 70.206   | 70.501   | 141.593 | 70.796   | 70.796   | 199.617      | 200.039      |
| CBCT PC (7)  | 140.294 | 70.059   | 70.294   | 141.176 | 70.882   | 70.394   | 199.613      | 199.886      |
| CBCT PC (8)  | 141.003 | 70.501   | 70.501   | 141.593 | 70.886   | 70.501   | 199.825      | 200.039      |
| CBCT PC (9)  | 140.501 | 70.103   | 70.398   | 141.679 | 70.692   | 70.692   | 198.906      | 199.952      |
| CBCT PC (10) | 140.588 | 70.148   | 70.294   | 140.982 | 70.588   | 70.588   | 198.822      | 199.867      |

Phantom Cross Measurements (Mm) Continued.

| Modality     | HT      | L 1/2 HT | R 1/2 HT | VT      | S 1/2 VT | I 1/2 VT | <b>UL-LR</b> | <b>UR-LL</b> |
|--------------|---------|----------|----------|---------|----------|----------|--------------|--------------|
| CBCT PL (1)  | 141.204 | 70.456   | 70.968   | 142.156 | 71.115   | 70.968   | 200.661      | 200.52       |
| CBCT PL (2)  | 141.056 | 70.088   | 70.674   | 142.229 | 70.968   | 71.261   | 200.937      | 200.52       |
| CBCT PL (3)  | 140.546 | 69.981   | 70.76    | 142.154 | 71.444   | 71.296   | 201.082      | 200.244      |
| CBCT PL (4)  | 141.575 | 70.678   | 70.678   | 142.232 | 71.116   | 71.554   | 200.684      | 200.837      |
| CBCT PL (5)  | 141.886 | 70.833   | 71.053   | 142.325 | 71.053   | 71.211   | 200.971      | 201.277      |
| CBCT PL (6)  | 140.643 | 70.468   | 70.76    | 141.52  | 71.637   | 70.76    | 200.142      | 200.14       |
| CBCT PL (7)  | 141.228 | 70.468   | 70.468   | 142.398 | 70.76    | 70.637   | 200.558      | 200.761      |
| CBCT PL (8)  | 140.936 | 70.76    | 70.468   | 142.105 | 71.345   | 71.053   | 200.141      | 200.554      |
| CBCT PL (9)  | 141.228 | 70.468   | 70.76    | 141.813 | 70.468   | 71.003   | 200.555      | 200.554      |
| CBCT PL (10) | 140.611 | 70.16    | 70.16    | 141.194 | 70.742   | 70.742   | 199.885      | 199.266      |
| CBCT OR (1)  | 128.364 | 64.244   | 64.272   | 129.457 | 64.729   | 64.618   | 182.336      | 182.376      |
| CBCT OR (2)  | 128.319 | 64.436   | 64.159   | 129.204 | 65.044   | 64.159   | 182.566      | 182.878      |
| CBCT OR (3)  | 128.146 | 64.345   | 64.054   | 129.105 | 64.679   | 64.407   | 181.919      | 181.889      |
| CBCT OR (4)  | 128.469 | 64.566   | 63.903   | 129.353 | 65.229   | 64.124   | 182.31       | 181.995      |
| CBCT OR (5)  | 128.477 | 64.238   | 63.797   | 129.139 | 64.68    | 64.238   | 182.162      | 181.695      |
| CBCT OR (6)  | 128.318 | 64.159   | 63.938   | 129.424 | 64.823   | 64.602   | 182.252      | 182.098      |
| CBCT OR (7)  | 129.047 | 64.523   | 64.302   | 129.233 | 64.967   | 64.445   | 182.97       | 182.814      |
| CBCT OR (8)  | 128.54  | 64.159   | 63.938   | 129.204 | 64.823   | 64.602   | 182.409      | 182.254      |
| CBCT OR (9)  | 128.54  | 64.159   | 64.159   | 129.425 | 64.823   | 64.602   | 182.252      | 182.41       |
| CBCT OR (10) | 128.097 | 64.159   | 63.717   | 129.425 | 64.381   | 64.602   | 182.566      | 182.41       |

Phantom Cross Measurements (Mm) Continued.

| Modality     | HT      | L 1/2 HT | R 1/2 HT | VT      | S 1/2 VT | I 1/2 VT | <b>UL-LR</b> | <b>UR-LL</b> |
|--------------|---------|----------|----------|---------|----------|----------|--------------|--------------|
| CBCT OC (1)  | 128.742 | 64.371   | 64.201   | 129.338 | 64.67    | 64.669   | 182.389      | 182.714      |
| CBCT OC (2)  | 128.281 | 64.027   | 64.027   | 129.412 | 64.253   | 65.058   | 182.037      | 182.095      |
| CBCT OC (3)  | 128.63  | 64.213   | 64.213   | 129.243 | 65.031   | 64.008   | 181.91       | 182.492      |
| CBCT OC (4)  | 128.425 | 64.213   | 64.417   | 129.244 | 64.622   | 64.417   | 182.055      | 182.492      |
| CBCT OC (5)  | 128.747 | 64.271   | 64.271   | 129.809 | 64.887   | 65.298   | 182.368      | 182.953      |
| CBCT OC (6)  | 128.291 | 64.083   | 64.334   | 129.068 | 64.56    | 64.108   | 181.646      | 181.969      |
| CBCT OC (7)  | 128.217 | 64.108   | 64.108   | 129.12  | 64.786   | 64.408   | 181.646      | 181.808      |
| CBCT OC (8)  | 128.798 | 64.046   | 64.626   | 129.479 | 64.853   | 64.626   | 182.17       | 182.273      |
| CBCT OC (9)  | 128.798 | 64.399   | 64.399   | 129.705 | 64.853   | 64.779   | 182.469      | 182.797      |
| CBCT OC (10) | 128.733 | 64.253   | 64.253   | 129.185 | 64.932   | 64.713   | 182.057      | 182.38       |
| CBCT OL (1)  | 129.224 | 64.543   | 64.626   | 129.801 | 64.68    | 64.902   | 183.305      | 183.04       |
| CBCT OL (2)  | 129.075 | 64.758   | 64.537   | 129.735 | 64.753   | 65.098   | 183.163      | 183.162      |
| CBCT OL (3)  | 129.581 | 64.68    | 64.901   | 129.801 | 64.901   | 65.121   | 183.256      | 183.411      |
| CBCT OL (4)  | 129.801 | 64.68    | 64.459   | 129.801 | 64.68    | 65.342   | 183.881      | 183.411      |
| CBCT OL (5)  | 129.295 | 64.537   | 64.537   | 129.736 | 64.758   | 64.978   | 183.01       | 183.163      |
| CBCT OL (6)  | 129.043 | 64.356   | 64.226   | 129.373 | 64.356   | 64.256   | 182.962      | 182.962      |
| CBCT OL (7)  | 129.801 | 64.9     | 64.9     | 129.801 | 64.569   | 64.9     | 183.368      | 183.332      |
| CBCT OL (8)  | 128.429 | 64.016   | 64.215   | 129.225 | 64.215   | 64.811   | 182.613      | 182.47       |
| CBCT OL (9)  | 128.486 | 64.343   | 64.542   | 129.084 | 64.343   | 64.84    | 182.412      | 182.27       |
| CBCT OL (10) | 128.685 | 64.343   | 64.343   | 129.283 | 64.243   | 64.919   | 182.836      | 182.553      |

Phantom Cross Measurements (Mm) Continued.

## **APPENDIX B**

| CLINICAL | DATA | <b>COLLECTION</b> - | - SIRONA |
|----------|------|---------------------|----------|

| Patient # | 501   | 502   | 503   | 504   | 505   | 506   | 507     | 508   | 509   |
|-----------|-------|-------|-------|-------|-------|-------|---------|-------|-------|
| TTA: 1.   | 1077  | 120.2 | 117.0 | 122 7 | 110 5 | 101 7 | 1 4 2 4 | 100 ( | 161.0 |
| I-I Angle | 127.7 | 139.2 | 117.8 | 132.7 | 119.5 | 121.7 | 142.4   | 122.0 | 101.8 |
| U1 Prot   | 6.6   | 2.4   | 7.1   | 4.8   | 10.0  | 6.4   | 4.4     | 6.4   | 1.9   |
| L1 Prot   | 3.0   | 5.7   | 3.2   | 2.0   | 6.2   | 3.8   | 1.3     | 3.6   | -1.3  |
| L1 to APo | 22.9  | 21.4  | 25.7  | 26.9  | 25.9  | 23.9  | 18.3    | 27.4  | 12.2  |
| U6 - PTV  | 18.5  | 22.0  | 19.7  | 23.7  | 15.0  | 22.6  | 20.8    | 16.7  | 20.8  |
| Convexity | 3.6   | -2.9  | 4.8   | 2.0   | 8.8   | 4.5   | 2.8     | 1.1   | 2.5   |
| Mnd Arc   | 41.5  | 47.0  | 40.9  | 41.4  | 25.3  | 31.6  | 46.4    | 35.1  | 28.4  |
| MPA       | 21.3  | 16.9  | 21.8  | 22.3  | 34.6  | 23.1  | 14.8    | 17.5  | 24.8  |
| Mx Depth  | 94.4  | 86.9  | 93.2  | 90.5  | 95.9  | 95.6  | 95.5    | 88.6  | 93.9  |
| F-Axis    | 88.5  | 89.2  | 86.3  | 86.3  | 82.1  | 89.9  | 88.1    | 92.9  | 89.5  |
| F-Depth   | 90.8  | 89.3  | 88.7  | 88.4  | 87.1  | 91.1  | 92.8    | 87.3  | 91.2  |
| C-Length  | 55.0  | 58.9  | 59.6  | 58.6  | 55.3  | 60.1  | 54.1    | 57.3  | 53.6  |
| C-Def     | 30.1  | 27.1  | 29.4  | 31.2  | 31.5  | 29.8  | 32.3    | 27.9  | 29.0  |
| LFH       | 42.5  | 38.8  | 46.2  | 43.9  | 50.7  | 47.6  | 39.9    | 43.4  | 51.5  |
| LL-E      | 0.5   | 1.1   | -2.0  | -4.4  | 5.4   | -0.8  | 0.1     | -3.7  | -3.5  |
| N-Me      | 105.5 | 118.7 | 117.6 | 109.4 | 106.4 | 113.7 | 105.8   | 91.9  | 102.4 |
| N-Ba      | 104.7 | 102.4 | 109.0 | 100.5 | 97.8  | 106.9 | 102.3   | 100.2 | 98.0  |

| Patient # | 510   | 511   | 512   | 513   | 514   | 515   | 516   | 517   | 518   |
|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| I-I Angle | 115.0 | 128.0 | 132.0 | 130.0 | 99.0  | 110.7 | 122.6 | 121.8 | 123.7 |
| U1 Prot   | 8.4   | 6.1   | 6.1   | 8.5   | 8.8   | 9.4   | 8.2   | 5.0   | 2.4   |
| L1 Prot   | 5.7   | 2.7   | 2.9   | 4.1   | 5.7   | 7.1   | 4.0   | 1.8   | 0.0   |
| L1 to APo | 33.3  | 26.3  | 23.2  | 24.8  | 39.3  | 28.4  | 25.0  | 24.4  | 32.5  |
| U6 - PTV  | 9.8   | 15.6  | 18.2  | 18.8  | 22.2  | 16.1  | 17.9  | 18.7  | 13.1  |
| Convexity | 5.7   | 3.9   | 2.1   | 4.9   | 2.6   | 0.4   | 2.3   | 10.9  | 0.5   |
| Mnd Arc   | 32.3  | 35.7  | 34.5  | 35.7  | 38.5  | 28.8  | 31.3  | 36.2  | 39.9  |
| MPA       | 31.7  | 16.4  | 22.1  | 23.2  | 15.4  | 23.7  | 23.3  | 24.6  | 23.1  |
| Mx Depth  | 88.0  | 97.0  | 89.0  | 94.8  | 95.4  | 89.4  | 93.6  | 95.2  | 88.2  |
| F-Axis    | 77.1  | 92.7  | 88.3  | 87.4  | 90.4  | 92.5  | 93.4  | 84.1  | 86.4  |
| F-Depth   | 83.0  | 93.0  | 87.1  | 90.0  | 92.9  | 89.0  | 91.0  | 85.0  | 87.7  |
| C-Length  | 52.5  | 52.3  | 62.9  | 59.1  | 55.4  | 57.7  | 56.0  | 56.9  | 56.4  |
| C-Def     | 29.4  | 28.9  | 29.0  | 30.3  | 30.7  | 27.4  | 27.9  | 29.6  | 29.0  |
| LFH       | 52.0  | 40.4  | 42.8  | 47.2  | 41.3  | 42.0  | 41.4  | 44.3  | 43.1  |
| LL-E      | 2.2   | -0.6  | -2.8  | -0.1  | -2.5  | 4.8   | 1.0   | -1.2  | -3.8  |
| N-Me      | 113.2 | 95.7  | 111.0 | 114.1 | 106.5 | 98.1  | 97.8  | 105.2 | 107.3 |
| N-Ba      | 96.6  | 94.3  | 107.7 | 105.7 | 99.6  | 98.5  | 96.5  | 101.4 | 99.0  |

Clinical Data Collection – Sirona. Continued.

| Patient # | 519   | 520   | 521   | 522   | 523   | 524   | 525   |
|-----------|-------|-------|-------|-------|-------|-------|-------|
| I-I Angle | 125.3 | 132.4 | 110.8 | 141 4 | 144.1 | 136.7 | 124.7 |
| U1 Prot   | 3.5   | 4.7   | 9.4   | 2.1   | 5.1   | 6.1   | 4.1   |
| L1 Prot   | 0.4   | 1     | 3.5   | 0     | -0.5  | 2.1   | 2.4   |
| L1 to APo | 23    | 16.5  | 29    | 19.1  | 13.5  | 19.3  | 27.9  |
| U6 - PTV  | 22.6  | 20    | 14.6  | 13    | 18.8  | 19.0  | 21.2  |
| Convexity | 8.6   | 3.3   | 4.3   | 1.3   | 5.6   | 3.7   | -1.8  |
| Mnd Arc   | 36.5  | 34.3  | 35.5  | 39.7  | 40.7  | 29.6  | 32.3  |
| MPA       | 16.3  | 20.6  | 20.4  | 18.3  | 15.6  | 25.8  | 16.0  |
| Mx Depth  | 99.3  | 95.1  | 93.2  | 90.5  | 96.6  | 93.9  | 92.8  |
| F-Axis    | 90    | 86.1  | 89.4  | 93.6  | 89.6  | 87.4  | 96.4  |
| F-Depth   | 92.5  | 92    | 88.9  | 89    | 90.8  | 90.0  | 94.9  |
| C-Length  | 61.1  | 53.5  | 53.2  | 51.5  | 55.6  | 53.9  | 55.9  |
| C-Def     | 30.8  | 32.9  | 28.1  | 25.6  | 32.4  | 30.3  | 30.8  |
| LFH       | 43.2  | 42.2  | 44.8  | 39.7  | 35.1  | 45.3  | 37.3  |
| LL-E      | -3.0  | -5.2  | 0.5   | -3.9  | -2.5  | 0.3   | -2.7  |
| N-Me      | 115.0 | 105.5 | 100   | 91.4  | 96.2  | 103.2 | 92.0  |
| N-Ba      | 110.1 | 92.6  | 95.5  | 92.9  | 99.7  | 100.2 | 100.6 |

# Clinical Data Collection – Sirona. Continued.

# **APPENDIX C**

# **CLINICAL DATA COLLECTION – CBCT ORTHOGONAL 100%**

| Patient # | 501   | 502   | 503   | 504   | 505   | 506   | 507   | 508   | 509   |
|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| I-I Angle | 127.7 | 139.4 | 117.1 | 132.4 | 120.4 | 122   | 142.5 | 122.2 | 161.8 |
| U1 Prot   | 6.3   | 1.7   | 7.3   | 4.3   | 10.6  | 6.1   | 4     | 6.3   | 1.9   |
| L1 Prot   | 2.6   | 5.4   | 3.6   | 1.4   | 6.4   | 3.8   | 1.2   | 3.4   | -1.1  |
| L1 to APo | 23.9  | 19.8  | 27.4  | 27.5  | 27.0  | 24.9  | 19.3  | 26.4  | 13.1  |
| U6 - PTV  | 18.0  | 21.4  | 17.7  | 22.1  | 14.0  | 21.8  | 19.9  | 16    | 20.6  |
| Convexity | 3.7   | -2.7  | 4.5   | 1.8   | 8.4   | 4.1   | 2.4   | 1     | 2.1   |
| Mnd Arc   | 39.4  | 47.0  | 37.7  | 40.5  | 26.9  | 35.7  | 43.4  | 35.7  | 30.3  |
| MPA       | 19.5  | 16.6  | 22.6  | 22.8  | 35.3  | 23.6  | 15.6  | 17.9  | 25.9  |
| Mx Depth  | 94.2  | 86.5  | 93.2  | 89.8  | 95.5  | 96.4  | 95.5  | 88.2  | 93    |
| F-Axis    | 87.9  | 88.1  | 85.0  | 85.8  | 81.5  | 87.5  | 89    | 90    | 88.1  |
| F-Depth   | 90.6  | 88.8  | 89.1  | 88.0  | 86.9  | 91.8  | 93.2  | 87.1  | 90.7  |
| C-Length  | 54.9  | 58.3  | 57.7  | 56.0  | 52.5  | 56.1  | 53.9  | 55.2  | 53.3  |
| C-Def     | 31.1  | 27.6  | 30.4  | 31.0  | 30.5  | 31    | 31.8  | 29.4  | 29.5  |
| LFH       | 41.1  | 37.8  | 45.8  | 43.7  | 49.8  | 47.5  | 38.7  | 42.6  | 51.3  |
| LL-E      | -0.8  | 0.0   | -1.4  | -3.3  | 5.5   | -1.8  | -0.4  | -2    | -4.7  |
| N-Me      | 103.2 | 117.7 | 116.4 | 105.4 | 105.4 | 112.9 | 105.8 | 91.8  | 102.2 |
| N-Ba      | 102.8 | 102.7 | 106.7 | 97.7  | 95.8  | 104.3 | 101.9 | 98.7  | 96.4  |

| Patient # | 510   | 511   | 512   | 513   | 514   | 515   | 516  | 517   | 518   |
|-----------|-------|-------|-------|-------|-------|-------|------|-------|-------|
| I-I Angle | 116   | 128.5 | 131.9 | 130.9 | 99.6  | 110.2 | 122  | 122.4 | 123.8 |
| U1 Prot   | 8     | 5.8   | 5.8   | 8.4   | 8.2   | 9.2   | 8    | 5.7   | 2.3   |
| L1 Prot   | 4.7   | 2.4   | 2.9   | 3.7   | 5.6   | 6.6   | 3.5  | 2.8   | -0.3  |
| L1 to APo | 30.5  | 25.2  | 24.3  | 23.7  | 40.7  | 28.9  | 24.9 | 25.5  | 33.8  |
| U6 - PTV  | 9.2   | 15.2  | 17.4  | 18    | 21.4  | 15.3  | 16.5 | 18    | 13.5  |
| Convexity | 6.4   | 4.1   | 1.8   | 4.4   | 2.3   | 0.1   | 2.3  | 10.2  | 0.1   |
| Mnd Arc   | 31.1  | 34.9  | 32.9  | 36.6  | 37    | 27.3  | 34.9 | 36.1  | 37.4  |
| MPA       | 30.1  | 16.9  | 23.5  | 24.7  | 15.9  | 23.8  | 24.1 | 25    | 22.9  |
| Mx Depth  | 88.3  | 96.7  | 87.9  | 94.1  | 95.4  | 89.2  | 92.9 | 94.3  | 88.1  |
| F-Axis    | 77.2  | 92.3  | 88    | 85.2  | 89.7  | 92.5  | 91.9 | 84.4  | 86.3  |
| F-Depth   | 82.6  | 92.5  | 86.2  | 89.8  | 93.2  | 89.1  | 90.2 | 84.6  | 88    |
| C-Length  | 50.9  | 51.5  | 61.5  | 58.6  | 54.3  | 53.9  | 53.4 | 57.2  | 57.5  |
| C-Def     | 28.8  | 28.8  | 28.5  | 31.7  | 31.6  | 26    | 27.8 | 29.4  | 30    |
| LFH       | 52.3  | 41.5  | 42.2  | 47.7  | 41.1  | 44.3  | 40.4 | 43.7  | 43.8  |
| LL-E      | 1.2   | -0.5  | -3    | 0.2   | -1.9  | 3.8   | 0.5  | -0.9  | -3.9  |
| N-Me      | 112.3 | 94.4  | 108.5 | 113   | 104.4 | 97    | 96.1 | 104.7 | 107.2 |
| N-Ba      | 95    | 92.2  | 106.5 | 103.2 | 97.8  | 97.6  | 94.4 | 101   | 98.8  |

Clinical Data Collection – Cbct Orthogonal 100%. Continued.

| Patient # | 519   | 520   | 521   | 522   | 523   | 524   | 525   |
|-----------|-------|-------|-------|-------|-------|-------|-------|
| T T A 1   |       |       |       |       |       |       |       |
| I-I Angle | 125.2 | 132.3 | 110.9 | 141.8 | 143.5 | 136.5 | 126.2 |
| U1 Prot   | 3.8   | 4.7   | 9     | 1.7   | 4.9   | 6.1   | 4     |
| L1 Prot   | 0.1   | 0.8   | 3.2   | -0.4  | -0.7  | 2     | 2     |
| L1 to APo | 23.3  | 18.2  | 29.6  | 17.1  | 14.2  | 18.9  | 27.1  |
| U6 - PTV  | 21.1  | 19.5  | 14    | 12.5  | 18.3  | 18.7  | 20.6  |
| Convexity | 7.7   | 3     | 4.1   | 1.2   | 5.2   | 3.9   | -2    |
| Mnd Arc   | 37.1  | 36.6  | 33.6  | 40.6  | 39.7  | 29.4  | 34.8  |
| MPA       | 17.5  | 21    | 20.1  | 16.4  | 14.3  | 26.9  | 15.4  |
| Mx Depth  | 98.8  | 94.9  | 93.8  | 90.8  | 97.2  | 93.1  | 92.4  |
| F-Axis    | 89.7  | 86.4  | 89.8  | 93    | 87.9  | 87    | 97    |
| F-Depth   | 92    | 92    | 89.6  | 89.4  | 91.9  | 88.9  | 94.8  |
| C-Length  | 60.1  | 52.5  | 51.5  | 50.9  | 54.3  | 52.7  | 56.1  |
| C-Def     | 30.7  | 32.5  | 27.5  | 26.6  | 34.9  | 29.1  | 30.5  |
| LFH       | 43.2  | 41.3  | 43.6  | 40.8  | 35.2  | 46.4  | 37    |
| LL-E      | -4.7  | -4.5  | 0.7   | -3.8  | -1    | 0.6   | -4.6  |
| N-Me      | 112.7 | 104.4 | 99.2  | 90.7  | 95.4  | 102.5 | 91.7  |
| N-Ba      | 108.3 | 91.6  | 93.8  | 91.8  | 99.1  | 99    | 100.7 |

# Clinical Data Collection – Cbct Orthogonal 100%. Continued.

## **APPENDIX D**

# **CLINICAL DATA COLLECTION – CBCT ORTHOGONAL 101%**

| Patient # | 501   | 502   | 503   | 504   | 505   | 506   | 507   | 508   | 509   |
|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| I-I Angle | 127.7 | 139.4 | 117.1 | 132.4 | 120.4 | 122   | 142.5 | 122.2 | 161.8 |
| U1 Prot   | 6.4   | 1.7   | 7.4   | 4.4   | 10.7  | 6.1   | 4     | 6.3   | 1.9   |
| L1 Prot   | 2.6   | 5.4   | 3.6   | 1.4   | 6.5   | 3.9   | 1.2   | 3.4   | -1.2  |
| L1 to APo | 23.9  | 19.8  | 27.4  | 27.5  | 27    | 24.9  | 19.3  | 26.4  | 13.1  |
| U6 - PTV  | 18.2  | 21.7  | 17.9  | 22.3  | 14.1  | 22    | 20.1  | 16.2  | 20.8  |
| Convexity | 3.8   | -2.8  | 4.5   | 1.8   | 8.5   | 4.6   | 2.4   | 1     | 2.2   |
| Mnd Arc   | 39.4  | 47.1  | 37.7  | 40.5  | 26.9  | 35.7  | 43.4  | 35.7  | 30.3  |
| MPA       | 19.5  | 16.6  | 22.6  | 22.8  | 35.3  | 23.6  | 15.6  | 17.9  | 25.9  |
| Mx Depth  | 94.2  | 86.6  | 93.2  | 89.8  | 95.5  | 96.4  | 95.5  | 88.2  | 93    |
| F-Axis    | 87.9  | 88.1  | 85.0  | 85.8  | 81.5  | 87.5  | 89    | 90    | 88.1  |
| F-Depth   | 90.6  | 88.9  | 89.1  | 88.0  | 86.9  | 91.8  | 93.2  | 87.1  | 90.7  |
| C-Length  | 55.5  | 58.9  | 58.3  | 56.6  | 53    | 56.7  | 54.4  | 55.7  | 53.9  |
| C-Def     | 31.1  | 27.6  | 30.4  | 31.0  | 30.5  | 31    | 31.8  | 29.4  | 29.5  |
| LFH       | 41.1  | 37.8  | 45.8  | 43.7  | 49.8  | 47.5  | 38.7  | 42.6  | 51.3  |
| LL-E      | -0.8  | 0.0   | -1.4  | -3.4  | 5.5   | -1.8  | -0.4  | -2.1  | -4.8  |
| N-Me      | 104.3 | 118.9 | 117.5 | 106.5 | 106.5 | 114   | 106.9 | 92.7  | 103.2 |
| N-Ba      | 103.8 | 103.7 | 107.8 | 99.5  | 96.8  | 105.4 | 102.9 | 99.7  | 97.3  |

| Patient # | 510   | 511   | 512   | 513   | 514   | 515   | 516  | 517   | 518   |
|-----------|-------|-------|-------|-------|-------|-------|------|-------|-------|
| I-I Angle | 116   | 128.5 | 131.9 | 130.9 | 99.6  | 110.2 | 122  | 122.4 | 123.8 |
| U1 Prot   | 8.1   | 5.8   | 5.8   | 8.5   | 8.3   | 9.3   | 8.1  | 5.8   | 2.3   |
| L1 Prot   | 4.8   | 2.5   | 2.9   | 3.7   | 5.6   | 6.7   | 3.5  | 2.8   | -0.3  |
| L1 to APo | 30.5  | 25.2  | 24.3  | 23.7  | 40.7  | 28.9  | 24.9 | 25.5  | 33.8  |
| U6 - PTV  | 9.3   | 15.4  | 17.6  | 18.2  | 21.7  | 15.4  | 16.7 | 18.2  | 13.7  |
| Convexity | 6.4   | 4.1   | 1.8   | 4.4   | 2.3   | 0.1   | 2.4  | 10.3  | 0.1   |
| Mnd Arc   | 31.1  | 34.9  | 32.9  | 36.6  | 37    | 27.3  | 34.9 | 36.1  | 37.4  |
| MPA       | 30.1  | 16.9  | 23.5  | 24.7  | 15.9  | 23.8  | 24.1 | 25    | 22.9  |
| Mx Depth  | 88.3  | 96.7  | 87.9  | 94.1  | 95.4  | 89.2  | 92.9 | 94.3  | 88.1  |
| F-Axis    | 77.2  | 92.3  | 88    | 85.2  | 89.7  | 92.5  | 91.9 | 84.4  | 86.3  |
| F-Depth   | 82.6  | 92.5  | 86.2  | 89.8  | 93.2  | 89.1  | 90.2 | 84.6  | 88    |
| C-Length  | 51.4  | 52    | 62.1  | 59.2  | 54.8  | 54.5  | 53.9 | 57.8  | 58.1  |
| C-Def     | 28.8  | 28.8  | 28.5  | 31.7  | 31.6  | 26    | 27.8 | 29.4  | 30    |
| LFH       | 52.3  | 41.5  | 42.2  | 47.7  | 41.1  | 44.3  | 40.4 | 43.7  | 43.8  |
| LL-E      | 1.2   | -0.5  | -3.1  | 0.2   | -1.9  | 3.8   | 0.5  | -0.9  | -4    |
| N-Me      | 113.4 | 95.3  | 109.6 | 114.1 | 105.4 | 97.9  | 97   | 105.8 | 108.3 |
| N-Ba      | 96    | 93.1  | 107.6 | 104.2 | 98.8  | 98.6  | 95.3 | 102   | 99.8  |

Clinical Data Collection – Cbct Orthogonal 101%. Continued.

| Patient #  | 519   | 520   | 521   | 522   | 523   | 524   | 525   |
|------------|-------|-------|-------|-------|-------|-------|-------|
| I-I Angle  | 125.2 | 120.2 | 110.0 | 141 0 | 1425  | 1265  | 126.2 |
| I-I Aligic | 123.2 | 152.5 | 110.9 | 141.8 | 145.5 | 150.5 | 120.2 |
| UI Prot    | 3.8   | 4.8   | 9.1   | 1.7   | 5     | 6.1   | 4.1   |
| L1 Prot    | 0.1   | 0.8   | 3.2   | -0.4  | -0.7  | 2     | 2     |
| L1 to APo  | 23.3  | 18.2  | 29.6  | 17.1  | 14.2  | 18.9  | 27.1  |
| U6 - PTV   | 21.3  | 19.7  | 14.1  | 12.6  | 18.4  | 18.9  | 20.8  |
| Convexity  | 7.8   | 3     | 4.2   | 1.3   | 5.3   | 3.9   | -2.1  |
| Mnd Arc    | 37.1  | 36.6  | 33.6  | 40.6  | 39.7  | 29.4  | 34.8  |
| MPA        | 17.5  | 21    | 20.1  | 16.4  | 14.3  | 26.9  | 15.4  |
| Mx Depth   | 98.8  | 94.9  | 93.8  | 90.8  | 97.2  | 93.1  | 92.4  |
| F-Axis     | 89.7  | 86.4  | 89.8  | 93    | 87.9  | 87    | 97    |
| F-Depth    | 92    | 92    | 89.6  | 89.4  | 91.9  | 88.9  | 94.8  |
| C-Length   | 60.7  | 53    | 52    | 51.4  | 54.9  | 53.3  | 56.7  |
| C-Def      | 30.7  | 32.5  | 27.5  | 26.6  | 34.9  | 29.1  | 30.5  |
| LFH        | 43.2  | 41.3  | 43.6  | 40.8  | 35.2  | 46.4  | 37    |
| LL-E       | -4.8  | -4.6  | 0.7   | -3.8  | -1    | 0.6   | -4.6  |
| N-Me       | 113.9 | 105.4 | 100.2 | 91.6  | 96.4  | 103.6 | 92.6  |
| N-Ba       | 109.3 | 92.6  | 94.8  | 92.7  | 100.1 | 100   | 101.7 |

# Clinical Data Collection – Cbct Orthogonal 101%. Continued.

## **APPENDIX E**

# CLINICAL DATA COLLECTION – CBCT ORTHOGONAL 102%

| Patient # | 501   | 502   | 503   | 504   | 505   | 506   | 507   | 508   | 509   |
|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| I-I Angle | 127.7 | 139.4 | 117.1 | 132.4 | 120.4 | 122   | 142.5 | 122.2 | 161.8 |
| U1 Prot   | 6.4   | 1.8   | 7.4   | 4.4   | 10.8  | 6.2   | 4.1   | 6.4   | 1.9   |
| L1 Prot   | 2.7   | 5.5   | 3.7   | 1.4   | 6.5   | 3.9   | 1.2   | 3.4   | -1.2  |
| L1 to APo | 23.9  | 19.8  | 27.4  | 27.5  | 27    | 24.9  | 19.3  | 26.4  | 13.1  |
| U6 - PTV  | 18.4  | 21.9  | 18.1  | 22.5  | 14.2  | 22.3  | 20.3  | 16.3  | 21    |
| Convexity | 3.8   | -2.8  | 4.6   | 1.8   | 8.5   | 4.6   | 2.4   | 1     | 2.2   |
| Mnd Arc   | 39.4  | 47.1  | 37.7  | 40.5  | 26.9  | 35.7  | 43.4  | 35.7  | 30.3  |
| MPA       | 19.5  | 166   | 22.6  | 22.8  | 35.3  | 23.6  | 15.6  | 17.9  | 25.9  |
| Mx Depth  | 94.2  | 86.6  | 93.2  | 89.8  | 95.5  | 96.4  | 95.5  | 88.2  | 93    |
| F-Axis    | 87.9  | 88.2  | 85.0  | 85.8  | 81.5  | 87.5  | 89    | 90    | 88.1  |
| F-Depth   | 90.6  | 88.9  | 89.1  | 88.0  | 86.9  | 91.8  | 93.2  | 87.1  | 90.7  |
| C-Length  | 56    | 59.4  | 58.9  | 57.2  | 53.5  | 57.2  | 54.9  | 56.3  | 54.4  |
| C-Def     | 31.1  | 27.6  | 30.4  | 31.0  | 30.5  | 31    | 31.8  | 29.4  | 29.5  |
| LFH       | 41.1  | 37.8  | 45.8  | 43.7  | 49.8  | 47.5  | 38.7  | 42.6  | 51.3  |
| LL-E      | -0.8  | 0.0   | -1.4  | -3.4  | 5.6   | -1.8  | -0.4  | -2.1  | -4.8  |
| N-Me      | 105.3 | 120.1 | 118.7 | 107.5 | 107.6 | 115.1 | 107.9 | 93.6  | 104.2 |
| N-Ba      | 104.9 | 104.8 | 108.8 | 100.5 | 97.8  | 106.4 | 103.9 | 100.7 | 98.3  |

| Patient # | 510   | 511   | 512   | 513   | 514   | 515   | 516  | 517   | 518   |
|-----------|-------|-------|-------|-------|-------|-------|------|-------|-------|
| I-I Angle | 116   | 128 5 | 131.9 | 130.9 | 99.6  | 110.2 | 122  | 122.4 | 123.8 |
| U1 Prot   | 8.2   | 5.9   | 5.9   | 8.6   | 8.3   | 9.4   | 8.2  | 5.8   | 2.4   |
| L1 Prot   | 4.8   | 2.5   | 2.9   | 3.8   | 5.7   | 6.7   | 3.6  | 2.8   | -0.3  |
| L1 to APo | 30.5  | 25.2  | 24.3  | 23.7  | 40.7  | 28.9  | 24.9 | 25.5  | 33.8  |
| U6 - PTV  | 9.4   | 15.5  | 17.8  | 18.4  | 21.9  | 15.6  | 16.8 | 18.4  | 13.8  |
| Convexity | 6.5   | 4.2   | 1.8   | 4.5   | 2.3   | 0.1   | 2.4  | 10.4  | 0.1   |
| Mnd Arc   | 31.1  | 34.9  | 32.9  | 36.6  | 37    | 27.3  | 34.9 | 36.1  | 37.4  |
| MPA       | 30.1  | 16.9  | 23.5  | 24.7  | 15.9  | 23.8  | 24.1 | 25    | 22.9  |
| Mx Depth  | 88.3  | 96.7  | 87.9  | 94.1  | 95.4  | 89.2  | 92.9 | 94.3  | 88.1  |
| F-Axis    | 77.2  | 92.3  | 88    | 85.2  | 89.7  | 92.5  | 91.9 | 84.4  | 86.3  |
| F-Depth   | 82.6  | 92.5  | 86.2  | 89.8  | 93.2  | 89.1  | 90.2 | 84.6  | 88    |
| C-Length  | 52    | 52.5  | 62.7  | 59.8  | 55.3  | 55    | 54.4 | 58.3  | 58.7  |
| C-Def     | 28.8  | 28.8  | 28.5  | 31.7  | 31.6  | 26    | 27.8 | 29.4  | 30    |
| LFH       | 52.3  | 41.5  | 42.2  | 47.7  | 41.1  | 44.3  | 40.4 | 43.7  | 43.8  |
| LL-E      | 1.2   | -0.5  | -3.1  | 0.2   | -1.9  | 3.9   | 0.6  | -1    | -4    |
| N-Me      | 114.6 | 96.2  | 110.7 | 115.2 | 106.4 | 98.9  | 98   | 106.8 | 109.3 |
| N-Ba      | 96.9  | 94    | 108.7 | 105.3 | 99.8  | 99.6  | 96.3 | 103   | 100.8 |

Clinical Data Collection – Cbct Orthogonal 102%. Continued.

| Patient # | 519   | 520   | 521   | 522   | 523   | 524   | 525   |
|-----------|-------|-------|-------|-------|-------|-------|-------|
| T T A 1   |       |       |       |       |       |       |       |
| I-I Angle | 125.2 | 132.3 | 110.9 | 141.8 | 143.5 | 136.5 | 126.2 |
| U1 Prot   | 3.8   | 4.8   | 9.2   | 1.8   | 5     | 6.2   | 4.1   |
| L1 Prot   | 0.1   | 0.8   | 3.2   | -0.4  | -0.7  | 2     | 2.1   |
| L1 to APo | 23.3  | 18.2  | 29.6  | 17.1  | 14.2  | 18.9  | 27.1  |
| U6 - PTV  | 21.5  | 19.9  | 14.3  | 12.8  | 18.6  | 19    | 21    |
| Convexity | 7.8   | 3     | 4.2   | 1.3   | 5.3   | 4     | -2.1  |
| Mnd Arc   | 37.1  | 36.6  | 33.6  | 40.6  | 39.7  | 29.4  | 34.8  |
| MPA       | 17.5  | 21    | 20.1  | 16.4  | 14.3  | 26.9  | 15.4  |
| Mx Depth  | 98.8  | 94.9  | 93.8  | 90.8  | 97.2  | 93.1  | 92.4  |
| F-Axis    | 89.7  | 86.4  | 89.8  | 93    | 87.9  | 87    | 97    |
| F-Depth   | 92    | 92    | 89.6  | 89.4  | 91.9  | 88.9  | 94.8  |
| C-Length  | 61.3  | 53.5  | 52.5  | 51.9  | 55.4  | 53.8  | 57.2  |
| C-Def     | 30.7  | 32.5  | 27.5  | 26.6  | 34.9  | 29.1  | 30.5  |
| LFH       | 43.2  | 41.3  | 43.6  | 40.8  | 35.2  | 46.4  | 37    |
| LL-E      | -4.8  | -4.6  | 0.7   | -3.9  | -1    | 0.6   | -4.7  |
| N-Me      | 115   | 106.5 | 101.2 | 92.5  | 97.3  | 104.6 | 93.5  |
| N-Ba      | 110.4 | 93.5  | 95.7  | 93.6  | 101.1 | 101   | 102.7 |

# Clinical Data Collection – Cbct Orthogonal 102%. Continued.
#### **APPENDIX F**

### **CLINICAL DATA COLLECTION – CBCT ORTHOGONAL 103%**

| Patient #  | 501   | 502   | 503   | 504   | 505   | 506   | 507   | 508   | 509   |
|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| I I Angle  | 1277  | 130 / | 117 1 | 132 / | 120.4 | 122   | 142.5 | 122.2 | 161.8 |
| I-I Aligie | 127.7 | 139.4 |       | 132.4 | 120.4 | 122   | 142.3 | 122.2 | 101.0 |
| UI Prot    | 6.5   | 1.8   | 7.5   | 4.4   | 10.9  | 6.3   | 4.1   | 6.4   | 1.9   |
| L1 Prot    | 2.7   | 5.5   | 3.7   | 1.4   | 6.6   | 3.9   | 1.2   | 3.5   | -1.2  |
| L1 to APo  | 23.9  | 19.8  | 27.4  | 27.5  | 27    | 24.9  | 19.3  | 26.4  | 13.1  |
| U6 - PTV   | 18.6  | 22.1  | 18.3  | 22.8  | 14.4  | 22.5  | 20.5  | 16.5  | 21.2  |
| Convexity  | 3.8   | -2.8  | 4.6   | 1.8   | 8.6   | 4.7   | 2.5   | 1     | 2.2   |
| Mnd Arc    | 39.4  | 47.1  | 37.7  | 40.5  | 26.9  | 35.7  | 43.4  | 35.7  | 30.3  |
| MPA        | 19.5  | 168   | 22.6  | 22.8  | 35.3  | 23.6  | 15.6  | 17.9  | 25.9  |
| Mx Depth   | 94.2  | 86.6  | 93.2  | 89.8  | 95.5  | 96.4  | 95.5  | 88.2  | 93    |
| F-Axis     | 87.9  | 88.2  | 85.0  | 85.8  | 81.5  | 87.5  | 89    | 90    | 88.1  |
| F-Depth    | 90.6  | 88.9  | 89.1  | 88.0  | 86.9  | 91.8  | 93.2  | 87.1  | 90.7  |
| C-Length   | 56.6  | 60.0  | 59.5  | 57.7  | 54.1  | 57.8  | 55.5  | 56.8  | 54.9  |
| C-Def      | 31.1  | 27.6  | 30.4  | 31.0  | 30.5  | 31    | 31.8  | 29.4  | 29.5  |
| LFH        | 41.1  | 37.8  | 45.8  | 43.7  | 49.8  | 47.5  | 38.7  | 42.6  | 51.3  |
| LL-E       | -0.8  | 0.0   | -1.4  | -3.4  | 5.6   | -1.8  | -0.4  | -2.1  | -4.9  |
| N-Me       | 106.3 | 121.2 | 119.9 | 108.6 | 108.6 | 116.3 | 109   | 94.5  | 105.5 |
| N-Ba       | 105.9 | 105.8 | 109.9 | 101.5 | 98.7  | 107.5 | 104.9 | 101.6 | 99.3  |

| Patient # | 510   | 511   | 512   | 513   | 514   | 515   | 516  | 517   | 518   |
|-----------|-------|-------|-------|-------|-------|-------|------|-------|-------|
| I-I Angle | 116   | 128.5 | 131.9 | 130.9 | 99.6  | 110.2 | 122  | 122.4 | 123.8 |
| U1 Prot   | 8.3   | 6     | 5.9   | 8.6   | 8.4   | 9.5   | 8.3  | 5.9   | 2.4   |
| L1 Prot   | 4.9   | 2.5   | 3     | 3.8   | 5.8   | 6.8   | 3.6  | 2.9   | -0.3  |
| L1 to APo | 30.5  | 25.2  | 24.3  | 23.7  | 40.7  | 28.9  | 24.9 | 25.5  | 33.8  |
| U6 - PTV  | 9.5   | 15.7  | 18    | 18.5  | 22.1  | 15.7  | 17   | 18.6  | 13.9  |
| Convexity | 6.6   | 4.2   | 1.9   | 4.5   | 2.4   | 0.1   | 2.4  | 10.5  | 0.1   |
| Mnd Arc   | 31.1  | 34.9  | 32.9  | 36.6  | 37    | 27.3  | 34.9 | 36.1  | 37.4  |
| MPA       | 30.1  | 16.9  | 23.5  | 24.7  | 15.9  | 23.8  | 24.1 | 25    | 22.9  |
| Mx Depth  | 88.3  | 96.7  | 87.9  | 94.1  | 95.4  | 89.2  | 92.9 | 94.3  | 88.1  |
| F-Axis    | 77.2  | 92.3  | 88    | 85.2  | 89.7  | 92.5  | 91.9 | 84.4  | 86.3  |
| F-Depth   | 82.6  | 92.5  | 86.2  | 89.8  | 93.2  | 89.1  | 90.2 | 84.6  | 88    |
| C-Length  | 52.5  | 53    | 63.3  | 60.4  | 55.9  | 55.6  | 55   | 58.9  | 59.3  |
| C-Def     | 28.8  | 28.8  | 28.5  | 31.7  | 31.6  | 26    | 27.8 | 29.4  | 30    |
| LFH       | 52.3  | 41.5  | 42.2  | 47.7  | 41.1  | 44.3  | 40.4 | 43.7  | 43.8  |
| LL-E      | 1.1   | -0.5  | -3.1  | 0.2   | -1.9  | 3.9   | 0.6  | -1    | -4.1  |
| N-Me      | 115.7 | 97.2  | 111.8 | 116.4 | 107.5 | 99.9  | 99   | 107.9 | 110.4 |
| N-Ba      | 97.9  | 94.9  | 109.7 | 106.3 | 100.7 | 100.6 | 97.2 | 104   | 101.8 |

Clinical Data Collection – Cbct Orthogonal 103%. Continued.

| Patient # | 519   | 520   | 521   | 522   | 523   | 524   | 525   |
|-----------|-------|-------|-------|-------|-------|-------|-------|
| I-I Angle | 132.2 | 110.9 | 141.8 | 143.5 | 136.5 | 126.2 | 132.2 |
| U1 Prot   | 4.9   | 9.3   | 1.8   | 5.1   | 6.3   | 4.1   | 4.9   |
| L1 Prot   | 0.8   | 3.3   | -0.4  | -0.7  | 2.1   | 2.1   | 0.8   |
| L1 to APo | 18.2  | 29.6  | 17.1  | 14.2  | 18.9  | 27.1  | 18.2  |
| U6 - PTV  | 20.1  | 14.4  | 12.9  | 18.8  | 19.2  | 21.2  | 20.1  |
| Convexity | 3.1   | 4.3   | 1.3   | 5.4   | 4     | -2.1  | 3.1   |
| Mnd Arc   | 36.6  | 33.6  | 40.6  | 39.7  | 29.4  | 34.8  | 36.6  |
| MPA       | 21    | 20.1  | 16.4  | 14.3  | 26.9  | 15.4  | 21    |
| Mx Depth  | 94.9  | 93.8  | 90.8  | 97.2  | 93.1  | 92.4  | 94.9  |
| F-Axis    | 86.4  | 89.8  | 93    | 87.9  | 87    | 97    | 86.4  |
| F-Depth   | 92    | 89.6  | 89.4  | 91.9  | 88.9  | 94.8  | 92    |
| C-Length  | 54    | 53    | 52.4  | 56    | 54.3  | 57.8  | 54    |
| C-Def     | 32.5  | 27.5  | 26.6  | 34.9  | 29.1  | 30.5  | 32.5  |
| LFH       | 41.3  | 43.6  | 40.8  | 35.2  | 46.4  | 37    | 41.3  |
| LL-E      | -4.6  | 0.7   | -3.9  | -1.1  | 0.6   | -4.7  | -4.6  |
| N-Me      | 107.5 | 102.2 | 93.4  | 98.3  | 105.6 | 94.4  | 107.5 |
| N-Ba      | 94.4  | 96.6  | 94.6  | 102.1 | 102   | 103.7 | 94.4  |

Clinical Data Collection – Cbct Orthogonal 103%. Continued.

### **APPENDIX G**

| Patient # | 501   | 502   | 503   | 504   | 505   | 506   | 507   | 508   | 509   |
|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|           |       |       |       |       |       |       |       |       |       |
| I-I Angle | 128.3 | 139.4 | 116.7 | 132.4 | 120.6 | 122.4 | 141.6 | 121.6 | 161.5 |
| U1 Prot   | 7.1   | 2.5   | 8.1   | 4.4   | 11.6  | 6.8   | 4.2   | 7.0   | 2.9   |
| L1 Prot   | 3.2   | 6.5   | 4.4   | 1.4   | 7.2   | 3.8   | 1.0   | 3.7   | -0.3  |
| L1 to APo | 23.9  | 19.5  | 26.4  | 27.5  | 26.2  | 22.9  | 19.5  | 25.6  | 10.7  |
| U6 - PTV  | 19.6  | 25.1  | 19.3  | 23.6  | 15.6  | 24.0  | 22.1  | 17.1  | 22.6  |
| Convexity | 4.1   | -3.5  | 5.2   | 2.0   | 9.6   | 5.1   | 3.2   | 1.4   | 2.3   |
| Mnd Arc   | 39.7  | 47.5  | 39.4  | 38.6  | 24.0  | 33.5  | 44.1  | 35.5  | 30.0  |
| MPA       | 19.7  | 16.3  | 22.2  | 23.6  | 35.1  | 22.4  | 14.5  | 17.9  | 24.7  |
| Mx Depth  | 93.8  | 85.9  | 93.5  | 89.3  | 95.2  | 95.8  | 95.8  | 88.1  | 93.0  |
| F-Axis    | 87.1  | 89.5  | 86.7  | 85.9  | 81.1  | 88.2  | 89.2  | 90.6  | 87.9  |
| F-Depth   | 90.1  | 88.5  | 89.1  | 87.4  | 86.3  | 91.1  | 93.0  | 86.7  | 90.6  |
| C-Length  | 59.5  | 66.2  | 63.8  | 63.8  | 58.8  | 62.7  | 58.7  | 59.5  | 57.7  |
| C-Def     | 30.9  | 27.0  | 29.1  | 30.9  | 30.7  | 30.1  | 31.7  | 28.3  | 29.3  |
| LFH       | 41.2  | 38.2  | 45.8  | 43.6  | 50.8  | 47.3  | 39.3  | 42.9  | 51.6  |
| LL-E      | -0.4  | 0.5   | -1.5  | -3.7  | 6.2   | -2.2  | 0.3   | -2.3  | -5.3  |
| N-Me      | 113.4 | 128.6 | 128.0 | 117.3 | 116.4 | 123.7 | 114.4 | 99.8  | 114.1 |
| N-Ba      | 113.2 | 111.8 | 117.5 | 107.8 | 105.1 | 114.8 | 110.6 | 107.4 | 107.3 |

#### **CLINICAL DATA COLLECTION – CBCT PERSPECTIVE**

| Patient # | 510   | 511   | 512   | 513   | 514   | 515   | 516   | 517   | 518   |
|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| I-I Angle | 116.5 | 128.4 | 131.6 | 130.6 | 99.2  | 110.7 | 121.9 | 122.0 | 123.6 |
| U1 Prot   | 9.6   | 6.8   | 7.2   | 9.0   | 9.1   | 10.6  | 8.8   | 6.6   | 2.6   |
| L1 Prot   | 6.3   | 2.9   | 3.2   | 3.9   | 6.4   | 7.6   | 4.6   | 2.8   | 0.0   |
| L1 to APo | 33.2  | 26.5  | 25.2  | 23.5  | 39.5  | 29.4  | 25.1  | 25.0  | 32.0  |
| U6 - PTV  | 10.3  | 16.9  | 19.5  | 19.7  | 23.1  | 15.4  | 18.7  | 18.8  | 14.8  |
| Convexity | 5.7   | 4.3   | 1.8   | 6.0   | 2.9   | 0.1   | 2.7   | 11.8  | 0.7   |
| Mnd Arc   | 32.6  | 36.2  | 32.5  | 37.2  | 35.9  | 29.0  | 35.0  | 37.8  | 38.6  |
| MPA       | 30.5  | 16.9  | 24.0  | 24.8  | 14.3  | 23.8  | 23.9  | 24.9  | 22.2  |
| Mx Depth  | 87.5  | 97.8  | 88.1  | 94.5  | 96.1  | 88.8  | 92.7  | 95.2  | 88.9  |
| F-Axis    | 77.4  | 92.4  | 88.3  | 87.7  | 89.2  | 92.4  | 92.6  | 83.6  | 86.2  |
| F-Depth   | 82.6  | 93.6  | 86.5  | 89.2  | 93.6  | 88.7  | 89.9  | 84.9  | 88.3  |
| C-Length  | 57.0  | 57.2  | 67.2  | 65.1  | 58.6  | 58.7  | 60.1  | 62.0  | 62.5  |
| C-Def     | 29.1  | 30.2  | 28.1  | 29.3  | 32.0  | 25.6  | 27.6  | 29.8  | 30.1  |
| LFH       | 53.5  | 41.1  | 43.7  | 46.9  | 42.1  | 43.1  | 40.9  | 42.9  | 44.1  |
| LL-E      | 2.2   | -1.2  | -3.8  | 0.0   | -2.3  | 3.3   | 0.6   | -0.7  | -4.1  |
| N-Me      | 122.3 | 103.1 | 119.1 | 123.2 | 114.6 | 104.9 | 105.6 | 115.3 | 117.4 |
| N-Ba      | 104.2 | 101.5 | 114.9 | 108.2 | 107.1 | 105.7 | 103.8 | 111.3 | 108.6 |

# Clinical Data Collection – Cbct Perspective. Continued.

| Patient # | 519   | 520   | 521   | 522     | 523   | 524   | 525    |
|-----------|-------|-------|-------|---------|-------|-------|--------|
| II Amela  | 1045  | 101.0 | 110 6 | 1 4 1 4 | 140 6 | 105.6 | 10 < 0 |
| I-I Angle | 124.5 | 131.9 | 110.6 | 141.4   | 143.6 | 135.6 | 126.9  |
| U1 Prot   | 4.6   | 5.4   | 10.2  | 2.1     | 5.9   | 7.1   | 4.3    |
| L1 Prot   | 0.4   | 1.5   | 3.8   | 0.2     | 0.4   | 2.7   | 2.3    |
| L1 to APo | 23.2  | 18    | 29.4  | 17.5    | 14.1  | 20    | 25.9   |
| U6 - PTV  | 24.7  | 20.5  | 15.5  | 14.2    | 19.9  | 20.2  | 22.6   |
| Convexity | 8     | 3.7   | 5.2   | 1.8     | 5.5   | 4.4   | -1.8   |
| Mnd Arc   | 37.1  | 39.3  | 34.7  | 38.2    | 39.3  | 28.2  | 34.8   |
| MPA       | 16.1  | 21.5  | 21    | 17.2    | 14.4  | 27.9  | 15.1   |
| Mx Depth  | 99    | 94.7  | 94.4  | 91.1    | 96.3  | 94.1  | 92.8   |
| F-Axis    | 89.4  | 86.4  | 89.1  | 94.1    | 86.9  | 87.3  | 97.3   |
| F-Depth   | 92.4  | 91.5  | 89.6  | 89.2    | 91.3  | 89.8  | 94.7   |
| C-Length  | 65.2  | 58.5  | 57.3  | 54.6    | 61.7  | 57.4  | 62.6   |
| C-Def     | 31.4  | 32    | 28.5  | 25.2    | 34.7  | 29.4  | 30.4   |
| LFH       | 42.9  | 41.1  | 43.8  | 40.9    | 36.2  | 46.2  | 37.5   |
| LL-E      | -4.4  | -5.3  | 0.9   | -4.5    | -1.5  | 0.8   | -4.9   |
| N-Me      | 122.3 | 116.1 | 109.2 | 98      | 108.8 | 112   | 100.9  |
| N-Ba      | 118.2 | 102.6 | 103.8 | 100.5   | 111.8 | 107.4 | 111.0  |

# Clinical Data Collection – Cbct Orthogonal 103%. Continued.

#### **APPENDIX H**

| Patient # | 501 Y.J.1 | 501 Y.J.2 | 501 Y.J.3 | 501 L.L. | 502 Y.J.1 | 502 Y.J.2 | 502 Y.J.3 | 502 L.L. |
|-----------|-----------|-----------|-----------|----------|-----------|-----------|-----------|----------|
|           |           |           |           |          |           |           |           |          |
| I-I Angle | 130.6     | 126.3     | 128.7     | 126.9    | 139.2     | 138.0     | 141.3     | 136.8    |
| U1 Prot   | 7.0       | 6.4       | 6.6       | 6.6      | 2.4       | 3.6       | 3.3       | 2.7      |
| L1 Prot   | 4.0       | 3.6       | 4.1       | 3.7      | 5.7       | 7.0       | 7.2       | 5.5      |
| L1 to APo | 22.1      | 24.2      | 24.9      | 25.0     | 21.4      | 21.8      | 21.6      | 20.2     |
| U6 - PTV  | 18.5      | 17.8      | 17.9      | 17.0     | 22.0      | 23.9      | 22.8      | 21.7     |
| Convexity | 4.1       | 3.7       | 2.2       | 3.4      | -2.9      | -3.5      | -3.8      | -2.7     |
| Mnd Arc   | 42.9      | 39.8      | 38.6      | 37.4     | 47.0      | 46.2      | 44.3      | 43.6     |
| MPA       | 21.3      | 19.4      | 18.9      | 22.6     | 16.9      | 12.5      | 14        | 15.5     |
| Mx Depth  | 94.9      | 94.2      | 93.0      | 93.0     | 86.9      | 86.8      | 84.9      | 89.1     |
| F-Axis    | 88.5      | 88.4      | 89.2      | 89.9     | 89.2      | 88.0      | 88.8      | 90.2     |
| F-Depth   | 90.8      | 90.5      | 90.9      | 89.6     | 89.3      | 90.6      | 89.2      | 89.2     |
| C-Length  | 55.0      | 55.3      | 56.1      | 56.0     | 58.9      | 58.2      | 59.7      | 60.4     |
| C-Def     | 30.1      | 30.1      | 29.8      | 29.0     | 27.0      | 29.3      | 27.6      | 27.2     |
| LFH       | 41.2      | 41.6      | 42.8      | 41.6     | 38.8      | 40.5      | 39.7      | 37.8     |
| LL-E      | 0.5       | 1.0       | 0.1       | 0.4      | 1.1       | 1.7       | 1.1       | 1.7      |
| N-Me      | 105.5     | 105.9     | 106.6     | 103.4    | 118.7     | 118.7     | 119.1     | 117.3    |
| N-Ba      | 104.7     | 105.4     | 106.5     | 102.7    | 102.4     | 103.2     | 103.8     | 99.7     |

#### **REPEATED CLINICAL DATA MEASUREMENTS BY TWO EXAMINERS**

| Patient # | 503 Y.J.1 | 503 Y.J.2 | 503 Y.J.3 | 503 L.L. | 504 Y.J.1 | 504 Y.J.2 | 504 Y.J.3 | 504 L.L. |
|-----------|-----------|-----------|-----------|----------|-----------|-----------|-----------|----------|
|           |           |           |           |          |           |           |           |          |
| I-I Angle | 116.3     | 119.0     | 117.4     | 111.9    | 132.1     | 128.3     | 129.6     | 127.7    |
| U1 Prot   | 7.5       | 8.2       | 8.0       | 8.9      | 4.5       | 4.4       | 4.8       | 5.3      |
| L1 Prot   | 4.1       | 4.8       | 4.1       | 5.2      | 1.1       | 1.7       | 2.3       | 2.4      |
| L1 to APo | 28.2      | 26.4      | 27.7      | 28.7     | 24.3      | 31.8      | 31.0      | 29.3     |
| U6 - PTV  | 19.7      | 18.5      | 18.9      | 17.8     | 23.2      | 24.9      | 24.3      | 21.9     |
| Convexity | 4.9       | 3.9       | 4.3       | 3.1      | 2.6       | 1.6       | 1.5       | 2.1      |
| Mnd Arc   | 40.6      | 35.7      | 36.5      | 38.2     | 36.8      | 38.9      | 39.1      | 34.2     |
| MPA       | 21.4      | 20.6      | 21.1      | 23.3     | 25.8      | 24.9      | 25.4      | 29.7     |
| Mx Depth  | 93.5      | 93.1      | 93.9      | 92.4     | 90.4      | 90.5      | 90.2      | 89.0     |
| F-Axis    | 87.3      | 86.6      | 87.1      | 86.4     | 87.3      | 88.4      | 87.4      | 87.6     |
| F-Depth   | 89.0      | 89.5      | 89.8      | 89.3     | 87.9      | 88.9      | 88.7      | 86.8     |
| C-Length  | 59.1      | 60.3      | 60.5      | 58.9     | 58.5      | 58.7      | 58.0      | 56.0     |
| C-Def     | 28.7      | 30.2      | 29.9      | 30.2     | 29.4      | 29.7      | 30.1      | 27.9     |
| LFH       | 46.5      | 47.8      | 47.6      | 48.3     | 44.7      | 44.2      | 43.8      | 44.8     |
| LL-E      | -2.0      | -2.0      | -2.6      | 0.6      | -4.4      | -3.9      | -4.9      | -4.9     |
| N-Me      | 117.8     | 118.9     | 118.7     | 116.3    | 109.4     | 108.6     | 108.6     | 105.4    |
| N-Ba      | 109.0     | 110.4     | 109.7     | 107.9    | 100.5     | 97.6      | 98.8      | 95       |

# Repeated Clinical Data Measurements By Two Examiners. Continued.

| Patient #  | 505 Y.J.1 | 505 Y.J.2 | 505 Y.J.3 | 505 L.L. |
|------------|-----------|-----------|-----------|----------|
| I I Angle  | 117.0     | 1177      | 118 1     | 117 5    |
| I-I Aligie | 10.0      | 117.7     | 10.2      | 10.0     |
| UIProt     | 10.0      | 10.4      | 10.3      | 10.0     |
| L1 Prot    | 6.2       | 6.4       | 6.6       | 5.8      |
| L1 to APo  | 27.3      | 27.0      | 25.1      | 24.9     |
| U6 - PTV   | 14.3      | 14.4      | 13.7      | 12.1     |
| Convexity  | 8.9       | 8.2       | 8.6       | 8.7      |
| Mnd Arc    | 24.5      | 24.2      | 25.2      | 19.9     |
| MPA        | 34.1      | 34.9      | 36.4      | 38.1     |
| Mx Depth   | 95.9      | 95.1      | 94.0      | 93.3     |
| F-Axis     | 82.7      | 83.7      | 83.1      | 83.3     |
| F-Depth    | 87.0      | 86.8      | 85.5      | 84.5     |
| C-Length   | 54.8      | 55.4      | 55.6      | 53.5     |
| C-Def      | 30.6      | 29.5      | 28.9      | 27.8     |
| LFH        | 51.5      | 48.8      | 48.6      | 49.7     |
| LL-E       | 5.4       | 5.5       | 5.8       | 6.5      |
| N-Me       | 106.4     | 106.9     | 106.5     | 104.9    |
| N-Ba       | 97.8      | 99.4      | 99.4      | 96.6     |

# Repeated Clinical Data Measurements By Two Examiners. Continued.