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Memory is a complex process that requires the translation of information from an 

external sensory experience into an internal representation. Once information has been 

translated into memory, there is little agreement regarding the cognitive structure of 

memory storage and maintenance. Baddeley (1966) developed a model based on a multi-

storage structure which suggested that as information entered through the sensory system, 

it was relayed by a cognitive control center and placed into storage units based on 

information type (i.e. auditory, visual, etc.).  Baddeley’s (1966) multi-store memory 

model hypothesized that content translated into memory by two phases: short-term and 

long-term memory. More recent research supports a unitary model that better accounts 

for the translation of information from short term memory (STM) to long term memory 

(LTM) (Jost et al., 2012; Jonides et al., 2008).  However, there is still uncertainty of a 

unitary memory model due to disagreement of the role of distractions during memory 

translation. The impact of distraction on this process is largely unknown.  Understanding 

the role of distraction during STM encoding and how it affects the formation of LTM can 

potentially inform treatment for impaired memory. We explored the impact of temporal 

distractions on short-term memory and delayed recognition for visual content within a 

modified behavioral task based on Sternberg’s recognition task. Results indicated a 



 

xi 

negative impact of distractors on memory translation.   Implications for future research 

were discuss to include clinical populations.  
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CHAPTER ONE 

INTRODUCTION 

Memory is a complex process that requires the translation of information from an 

external sensory experience into an internal representation. Once information has been 

translated into memory, there is little agreement regarding the cognitive structure of 

memory storage and maintenance. Baddeley (1966) developed a model based on a multi-

storage structure which suggested that as information entered through the sensory system, 

it was relayed by a cognitive control center and placed into storage units based on 

information type (i.e. auditory, visual, etc.).  Baddeley’s (1966) multi-store memory 

model hypothesized that content translated into memory by two phases: short-term and 

long-term memory. More recent research supports a unitary model that better accounts 

for the translation of information from short-term memory (STM) to long-term memory 

(LTM) (Jost et al., 2012; Jonides et al., 2008).  However, there is still uncertainty of a 

unitary memory model due to disagreement regarding the role of distractions during 

memory translation. Some believe that when distractors appear, the timing of distractor 

presentation with respect to initial encoding and the length of the memory delay can 

greatly influence memory formation. The impact of distraction on this process is still 

largely unknown.  Understanding the role of distraction during STM encoding and how it 

affects the formation of LTM can potentially inform treatment for impaired memory.  

In the literature review, I will provide a brief overview of the definition of STM 

and LTM, highlight the difficulties in these definitions, explain the major processes of 

memory translation, and discuss the importance of interference. With a foundation of 

knowledge of the mechanisms that form memory, I will then discuss two of the most 
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prominent models of memory: multi-store and unitary-store models. Finally, I will review 

the neuropsychological findings that suggest associations with memory processes such as 

activation with the prefrontal cortex, hippocampus, and medial temporal lobe during 

STM and LTM processes and the role of interference to suggest that a unitary model of 

memory may be a better fit for memory translation.  

 

What are STM and LTM? 

STM is traditionally thought of as the amount of information a person can retain 

over a brief interval of time (Shipstead, Redick, & Engle, 2012). Some suggest that STM 

is a temporary storage and is experimentally defined through the longest list of items a 

person can accurately recall within a short period of time (Shipstead et al., 2012). The 

idea of a dual store unit was started by Atkinson and Shiffrin (1971). They thought that 

information was coded deeper into memory as it moves from short-term into long-term 

memory. They were some of the first pioneers to suggest a multiple unit memory system 

or a dual memory model. They posited that environmental information was processed by 

sensory registers in the various physical modalities and entered into the short-term store 

(STS; Atkinson & Shiffrin, 1971). As information remained temporarily in STM, the 

length of the stay depended on cognitive control processes. In terms of visual stimuli, a 

picture goes from the STS to the long-term store (LTS) whereas the verbal label of the 

picture is transferred from LTS and associated with the picture in STS (Atkinson & 

Shiffrin, 1971). As the information is transferred or remains in the STS or LTS, a series 

of control processes help to maintain and regulate information in their proper unit. 

Cognitive control is thought of as a regulator of information.  
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 There has been further anatomical and distraction-based evidence to 

suggest STM is a separate unit. Anatomical evidence for STM as a separate unit is 

demonstrated with anterograde amnesia, where memories can form within a 60 second 

interval and disappear soon after. This suggests that there is no transfer of information to 

LTM or a disruption of rehearsal that occurs to transfer information from STM to LTM. 

Therefore, STM appears to be an independent unit from LTM due to the isolated effects 

of the anterograde amnesia (Davelaar, Goshen-Gottstein, Ashkenazi,  Haarmann & 

Usher, 2005).  

Other forms of evidence come from experimental studies in which manipulations 

such as distractors disrupt memory encoding. The Brown-Peterson procedure requires 

participants to listen to a target list of words, then count by 3’s until told to stop and 

recall a word previously given by the examiner.  However, when the distractor task 

(counting by 3’s) is given towards the end of a word list, memory for the recent words 

were worse than memory for words at the beginning. This task demonstrated that recall 

for words earlier on the list were stored in the long-term memory, while 3-5 words most 

recently learned were remembered less so because of the distraction. Likewise, recall of 

the words presented in the beginning of the list suggests that cognitive processes are used 

to transfer information from STM to LTM. These results show that different factors may 

affect short-term recall (disruption of rehearsal) and long-term recall. One reason that 

may explain participant’s long-term recall is the semantic similarity between the words. 

As words have more semantic similarity, deeper associations help to encode the 

information into LTM store. Together, these findings suggest that long-term memory and 

short-term memory can vary independently of each other. 



 

4 

Maintenance processes occur to offset the decay of information while in STM. 

Rehearsal is a process where one would repeat information to keep it in memory and 

prevent decay. It is estimated that decay of information occurs in approximately 18 

seconds without the use of cognitive processes like rehearsal to maintain the information 

(Revlin, 2012). However, some authors describe decay as several types of information 

(i.e. words, digits, pictures) competing to be recalled during STM (Oberauer & Kliegl, 

2006). Therefore, new content gradually pushes current content out of memory, causing 

the encoding of this new information, otherwise known as “interference” (Oberauer & 

Kliegl, 2006).  

Although it is postulated that STM may be limited in immediate retrieval, LTM is 

thought to be limitless. LTM forms by maintaining and retrieving information by 

associations. Stronger encoding is postulated to include semantic associations connected 

to the information (Craik & Watson, 1973). Based on his research, Baddeley (1966) 

believed that as information was coupled with semantic associations, the information was 

moved into long-term storage. According to Baddeley (1966), the translation of 

visuospatial information from STM to LTM requires an extra mechanism known as 

working memory. Working memory is defined as a limited capacity system that 

temporarily maintains, stores information, and provides an interface between perception, 

and long-term memory that generally occurs before information is stored in STM or LTM 

(Baddeley, 2003). Encoding visuospatial information into LTM is thought to be 

dependent on working memory’s efficiency and capacity. This is evidenced by the fact 

that the speed with which visual information is stored into long-term memory is 
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determined by the amount of information that can fit, at each step, into visual working 

memory.  

Therefore, remembering is more than an activation of a memory trace. Often, 

retrieval cues are not uniquely related to one specific memory entry. Control processes 

increase one’s flexibly to search memory for behaviorally relevant memory 

representations while ignoring irrelevant ones (Jost et al., 2012). Over time, memory is 

thought to have a slow decline of details as new information is learned subsequent to the 

presented stimuli. This decline in the detailed quality of the memory represents 

interference. The main assumption of interference theory is that the stored memory is 

intact but unable to be retrieved due to competition created by newly acquired 

information (Tomlinson, Huber, Rieth & Davelaar, 2009). The presentation of 

distractions is one form of interference. As the collection of more information enters into 

the mind, it replaces the existing information. Rehearsal is one method that can be 

employed to keep information readily available for retrieval in either STM or LTM. 

Therefore, for information to remain in LTM, some form of maintenance, such as 

rehearsal and/or semantic associations is necessary. 

 

Memory Processes: Encoding, Maintenance, Retrieval 

The processes of memory formation include encoding, maintenance operations, 

rehearsal, shifts of attention from one part of the representation to another, and retrieval 

mechanisms (Jonides et al., 2008). The three that are of interest for the purposes of this 

research project are encoding, maintenance, and retrieval. It is these three processes that 

impact the quality of memory and are present during both STM and LTM. 
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The first of the cognitive processes involved in memory formation is encoding. 

Encoding includes a component called cognitive focus that is assumed to have immediate 

access to contents from the present and the past. This process can be implicit or explicit 

(in awareness or out of awareness; Craik & Tulving, 1975). Each item or piece of 

information that comes into the cognitive focus assumes the most recent perceptual 

encoding and displaces the previous items in focus (Jonides et al., 2008). Cognitive focus 

is the function of the “mind” as it assumes a state of awareness of content. In order to 

increase cognitive focus, more attention is given to the incoming information to better 

encode content. For example, in McElree (2001)’s single-item focus model, each 

incoming item not only had its turn in the focus, but it also replaced the previous item. As 

each single item came into focus, the mind encodes the information and replaces the 

information from the last single item with the next single item. Moreover, content with 

semantic associations tends to encode into memory better than content without semantic 

associations. For example, in a list of words with “tooth, honey, chocolate, cake” better 

recognition for sweet words were made because participants had created a category to 

associate all “sweets” together (Purves et al., 2014). The recognition was so strong that 

false recognition for the word “sweet” was often made (Purves et al., 2014). Finally, it is 

important to note that encoding is modulated by the amount of attention one gives the 

content being encoded. If one gives certain content more attention, the cognitive focus 

will stay more intensely focused on that specific content with increased retention over 

time. This directly follows the assumption that there are severe limits on focus capacity, 

which is modulated by controlling the perceptual present or focused state. 
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 Encoding processes can be further explored using interference paradigms such as 

the Stroop task (Warren, 1972). The Stroop task requires a participant to read color words 

printed in a different color. In this particular task, increased interference was found when 

the base word in the Stroop task was the category name for a set of words being 

remembered. For example, in the task the word “blue” would be printed in red ink and 

the participant would be asked to read aloud the printed word, “blue.”   By utilizing a 

category word that was the same as the base, the association for the category word 

increased and interference increased during immediate retrieval. However, interference 

declined rapidly within the first 15 sec after presentation of either the present words or 

when their category name was used as the base item in the color-naming task. Therefore, 

an association to the content is made as part of the encoding process.  For example, if a 

presentation of the color word “blue” was in red ink and next presented color word was 

“red” in blue ink and the word “blue” was read out loud, that means “blue” interfered or 

encoded into memory stronger than the next color word, “red”. Further, interference can 

occur more often if encoding happens between two similar content items within a 

category. A study by Zacks and colleagues (1987) that investigated story recognition with 

two different stories supported this finding. In the group that experienced increased 

interference, presentation of the recognition questions was provided in the same domain 

(orally) as the story presentation, compared to questions provided in the written domain 

(Zacks, Hasher, Doren, Hamm & Attig, 1987). It appeared as if the mere presentation of 

similar information in the same modality interfered with the previously encoded 

information. As information is encoded into memory, it begins the cycle of long-term 

retrieval. 
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With respect to visual encoding, images and visual sensory information are 

traditionally thought to be temporarily placed in working memory before being encoded 

into permanent long-term storage (Sperling, 1963). Visual content retrieval was stronger 

for individuals who used word associations and rehearsal to “better encode” information 

(Sperling, 1963). In this case, visual memory is encoded through a dual process that 

includes auditory rehearsal of information and auditory information storage. The 

encoding specificity principle posits that retrieval is highly dependent on semantic cues 

assigned to content (Tulving & Thomson, 1973). For example, in a word-list learning 

task, the target word “chair” can have interference words such as “table” because they are 

a part of the same category word furniture (Tulving & Thomson, 1973). 

  Another process in memory formation is called maintenance. During the 

maintenance phase of memory, the item of focus is held “in the mind” for the purpose of 

future retrieval after the perceptual input is gone (Jonides et al., 2008).  Maintenance 

occurs after the onset of encoding. Evidence from primate models and from imaging 

studies on humans show that active maintenance keeps representations alive and protects 

them from irrelevant incoming stimuli or intruding thoughts (Postle, 2006). With active 

maintenance, memories are more easily retrieved and protected from decay.   

Considerable fMRI data suggests an association with the prefrontal -posterior 

circuits underlying active maintenance (Jonides et al., 2008; Goldman-Rakic, 1987). 

Evidence from fMRI data shows activation in the prefrontal area 8 (Rowe, Toni, Josephs, 

Frackowiak & Passingham, 2000). Activity in areas 9 and 46 has been reported 

previously during delay periods in working memory studies of visual, verbal, and spatial 

material even without the need for manipulation of items (Courtney, Petit, Maisog, 
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Ungerleider & Haxby, 1997; D’Esposito et al., 2000; Postle and D’Esposito, 1999). In a 

spatial working memory task consisting of randomly placed colored dots, participants 

were asked to look at the first set of dots and were not told about a delayed recognition 

component. During the time between stimulus presentation and delayed recognition task, 

activity in the prefrontal area 8 was activated (Rowe et al., 2000).  Areas 46, 9/46, 8, and 

9 are seemingly involved in different parts of memory translation. For instance, activation 

in area 46 is dominated by selection of the target of a response inherent in manipulation 

and monitoring paradigms. In contrast, activation of more posterior areas (such as 

posterior parietal cortex) is dominated by sustained passive maintenance (Rowe & 

Passingham, 2001). Activation of prefrontal area 8 is related to spatial attention and may 

be associated with the increased attention that occurs during delayed maintenance for 

spatial content (Courtney et al, 1998). This may suggest some association with a system 

widely used for maintenance throughout STM and LTM. Perhaps the most striking data is 

found in the single-cell recordings that show neurons in prefrontal cortex that selectively 

fire during the delay period in delayed-match-to-sample tasks (Funahashi, Bruce & 

Goldman-Rakic, 1989; Fuster, 1973). As mentioned above, early interpretations of these 

frontal activations link them directly to STM representations (Goldman-Rakic, 1987), but 

more recent theories suggest they are part of a frontal-posterior STM circuit that 

maintains representations in posterior areas (Pasternak & Greenlee, 2005; Ranganath, 

2006; Ruchkin, Grafman, Cameron & Berndt., 2003).  

Another process that is active within the maintenance phase of STM is called 

rehearsal. Rehearsal is the internal repetition of information in an attempt to ward off 

decay of the memory. Rehearsal is often implicitly assumed as a component of active 
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maintenance, but formal theoretical considerations of STM typically take the opposite 

view. For example, Cowan and colleagues (2000) provides evidence that although first-

grade children do not use verbal rehearsal strategies, they nevertheless have measurable 

focus capacities, which suggests some form of rehearsal method for memory 

maintenance. It may be that people contain a lexical representation of content and 

search/create through a series of associations for rehearsal, rather than articulation of 

word repetition (Craik & Watson, 1973).   

Baddeley and colleagues (2003) investigated rehearsal in a two-phase experiment. 

The first phase required the rehearsal of words, while the second phase required the 

rehearsal of visual content, prior to word-list and visual memory tasks. The results 

demonstrated that rehearsal of verbal content was beneficial for retrieval (Baddeley, 

Thomson, & Buchanan, 2003).  In a task that measured retrieval performance at different 

presentations (slow, 1 word every 2 sec; medium, 1 word every sec; and fast, 1 word 

every half sec) several words were presented while a single word with a selected letter 

was held in short-term storage until the next target letter was presented (Craik & Watson, 

1973). For example, participants were told to remember all the words that start with “c” 

as they hear a long list of unrelated words. The results showed that, on average, 

participants recognized 23 of the 27-target letter-words (Craik & Watson, 1973).  During 

the last retrieval, participants were asked to retrieve as many words as they could from 

the list. They found that the probability of recalling an item from long-term store 

remained independent and inverse of its predicted recall value (the probability of the 

critical words divided by the total word list). This finding was contrary to the hypothesis 

that recall would be the same duration as its presentation, as consistent with the dual 
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process model (Craik & Watson, 1973).  Therefore, the longer duration the item is 

presented, the easier it is for quicker item retrieval.  Craik and Watson hypothesized that 

the longer information stayed present in the STM store, the deeper the encoding process. 

They also hypothesized that information would have to go through the STS then LTM 

store in order to be retrieved; therefore, longer stimulus presentation duration makes it 

more likely that these processes will be accurate. This is very similar to a serial-

processing retrieval found in a multi-store model.  In terms of the unitary model, it is 

speculated that the longer presentation time is used to process the information better and 

create more associations, leading to faster retrieval. The authors interpreted these findings 

to support rehearsal as part of a unitary model of memory.   

Rehearsal can be an ambiguous and difficult process to delineate because it can be 

challenging to control for what occurs during the retention interval. Many experiments 

include an attention-demanding task to prevent participants from using rehearsal that 

would presumably circumvent decay. However, this attention-demanding task introduces 

interference. As indicated above, interference occurs when incoming information 

interrupts either rehearsal or another maintenance process. The interfering information 

eventually replaces the previous content by moving current information into cognitive 

focus which initiates maintenance of this new, interfering information. Previous studies 

have demonstrated that working memory for spatial location can be significantly 

disrupted by concurrent eye or limb movement (Baddeley, 1986; Smyth, Pearson, & 

Pendleton, 1988). Therefore, shifts of any attention can lead to interference. For example, 

in a study by Smyth (1996), subjects’ eye movements were measured while they were 

asked to rehearse spatial content.  While they maintained a sequence of spatial items in 
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memory before recalling them in order, Smyth found that eye fixation on visual stimuli 

did not affect recall (Smyth, 1996).  In fact, auditory spatial stimuli presented during the 

targeted stimuli decreased performance (Smyth. 1996). In their second experiment, the 

authors found that the effects of auditory spatial stimuli had no effect on retrieval, which 

indicates that spatial salience of the target content leads to interference when asked to 

rehearse items even without eye movements (Smyth, 1996). These results indicate that 

more salient items engage cognitive focus more than less salient items, and may therefore 

be more impactful in the process of memory maintenance.  

The relative success of encoding and maintenance processes can be investigated 

during retrieval. STM retrieval of information is a quick, simultaneous, and a content-

focused process.  Within retrieval, memory is gathered from LTM and placed in STM to 

remain accessible.  The current theoretical models emphasize parallel search processes, 

which are quite different from the earliest STM retrieval models that postulated a serial 

scanning process (Sternberg, 1966; McElree, 2006). Mathematical models of behavioral 

data indicate that STM retrieval is a rapid, parallel and content-addressable process. A 

parallel search differs from earlier models of STM retrieval in that it focuses on several 

simultaneous searches, rather than set methods of searching through different 

associations one at a time (Sternberg, 1966; McElree, 2006). A task by McElree and 

Dosher (1989) administered an altered Sternberg recognition task that manipulated the 

deadline for responding, and was used to determine retrieval effects on serial scanning. 

They found that participants had faster retrieval rates for the last item in the study list and 

a slower retrieval rate for the items initially presented, a finding known as the “recency 

effect” (McElree & Dosher, 1989). These findings were independent of serial position 
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and set size (McElree & Dosher, 1989). Therefore, retrieval may be affected by the 

temporal order in which information was presented. The time course of retrieval 

(accuracy as a function of response deadline) can be separately plotted for each position 

within the presentation sequence, allowing independent assessments of accessibility (how 

fast an item can be retrieved) and availability as a function of set size and serial position. 

Many experiments yielded a uniform rate of access for all items except for the most 

recent item, which is accessed more quickly. The uniformity of retrieval rate is 

interpreted as evidence for parallel access, instead of serial scanning (McElree & Dosher, 

1989; Burgess & Hitch, 1999; Paulsen & Moser, 1998). 

As part of the retrieval process, a parallel search may occur through a subcategory 

of declarative memory called recognition (Medina, 2008). Recognition is the ability to 

identify previously encountered events, objects, and people. The most parsimonious 

model regards recognition memory as a unitary process directly linked to other forms of 

explicit memory and hence dependent on the same systems (Haist & Shimamura, 1992; 

Hirshman & Master, 1997; Donaldson, 1999). When previously experienced events are 

re-experienced in exact or similar presentation, salient content activates what are known 

as ‘match signals’ in response to stored memory representations. Matched memory 

representations then aid the retrieval processes (Norman & O'reilly, 2003). Once retrieval 

is activated, a two-component process occurs where recollection or familiarization with 

the event takes place. Recollection is the retrieval of details associated with the 

previously experienced events, while familiarity is the feeling that the event happened 

(Medina, 2008). It is still uncertain whether recollection or familiarity contributes to the 

accuracy of recognition. There is some evidence to support the activation of hippocampal 
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neurons regardless of successful recollection (Rutishauser, Schuman, & Mamelak, 2008).  

However, one study suggested that hippocampal activation does not necessarily lead to 

conscious recollection (Hannula & Ranganath, 2009). In this object-scene associative 

recognition study, hippocampal activation was not related to successful associative 

recollection; it was only when the prefrontal cortex and the hippocampus were activated 

in concert that successful performance was observed. Similar evidence suggests that such 

brain regions are tied to LTM. Therefore, the association between prefrontal cortex and 

hippocampal activation may suggest that recognition is a systematic response that occurs 

uniformly throughout STM and LTM memory. 

 

The Role of Interference  

As mentioned earlier, interference can impact retrieval (Axmacher, Haupt, Cohen, 

Elger, & Fell, 2009). The mechanisms that explain how interference affects retrieval are 

the recency and primacy effects. The regency effect is the phenomenon where the last 

few items in a list tend to be recalled first, regardless of list length (Bjork & Whitten, 

1974).  However, when item retrieval duration is delayed by a distractor activity longer 

than the holding time for STM (15-30 sec or more), the recency effects are deleted 

altogether (Bjork & Whitten, 1974). In this way, distraction can negate serial position 

effects.  Primacy effects reflect the greater likelihood that items presented at the 

beginning of the list are stored in long-term memory and subsequently more likely to be 

recalled. Primacy effects are not disrupted when recall is delayed by means of a distractor 

activity, and they are not invariant to list length. The primacy effect decreases with 

increasing list length, indicating that retrieval from LTM is a decreasing function of the 

number of items from the list stored in LTM. If participants are forced to process all 
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items in the list equally, by requiring them to repeat each item aloud a fixed number of 

times, there are only slight effects of primacy, if any, in recall (Bjork & Whitten, 1974).  

More recently, Bancroft and Servos (2011) and Bancroft and colleagues (2011) 

provided experimental evidence that interference stimuli are encoded into STM, 

interfering with the previously stored target stimulus (Bancroft et al., 2013). Using 

Bancroft and Servo’s experimental findings, the authors found that a computational 

model of prefrontal neurons showed there was an overwriting of information in working 

memory. Furthermore, their model results indicated that the prefrontal activation acts to 

protect the contents of STM.  

Although somewhat controversial (Cowan, 1999), there is evidence that physical 

movement such as tapping and eye movements may interfere with encoding (Borst, 

Niven, & Logie, 2012; Smyth, 1996). Borst and colleagues (2012) found impairment in 

the maintenance of visual mental images of letters. When letters were presented visually 

and participants were asked to perform a tapping task simultaneously, there was more 

impairment in memory performance compared to the condition that required participants 

to draw the letter. A possible reason for the impairment may be that spatial movement 

(finger tapping task) interfered with the encoding of the images as visual mental images 

are created to translate into memory.  Further, as interference tasks were presented just 

before the target, recall for the letters were impaired (Borst et al., 2012). Although visual 

or oral representations of the letter were rehearsed to prevent decay of content until 

subsequent letters in the sequence were presented, interference tasks disrupted the 

rehearsal (Borst et al., 2012).  
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Pattern cues and PFC activation may be associated with control of interference 

and aid in improved long-term retrieval of facial content. Jost and colleagues (2012) 

created a task of long-term retrieval for facial content with irrelevant information as 

distractors. During their task for long term retrieval of facial representations, results from 

EEG and fMRI demonstrated the medial and lateral PFC were active while controlling 

for interference during the task and had a positive correlation with retrieval accuracy 

(Jost et al., 2012). This data suggests that coactivation of medial and lateral PFC may aid 

in defending against retrieval interference by helping us ignore irrelevant material. The 

authors proposed that spatial cues were associated with facial content and that if similar 

spatial patterns were presented, participants would accurately recognize the target face 

(Jost et al., 2012). Therefore, the PFC may be associated with controlling for interference 

by creating associations to mitigate interference of novel content.  

Further physiological evidence in support of interference in memory is 

demonstrated through findings of behavioral and electrophysiological dissociation 

between recognition during active maintenance and recognition during intervening items 

(James, Morand, Barcellona‐Lehmann, Michel, & Schnider, 2009).  James and colleagues 

(2009) developed a continuous recognition task composed of 120 concrete black on white 

drawings all of which were repeated once, either immediately following a 2-second 

stimulation-free interval or after the initial presentation. Participants indicated new 

pictures by pressing a button. The authors found that pictures immediately repeated after 

an unfilled interval were better recognized than pictures repeated after intervening items. 

After 30 min, however, the immediately repeated pictures were significantly less well 

recognized than pictures repeated after intervening items. Rehearsal was a processing 
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advantage at immediate repetition, but a disadvantage for long-term storage. Given 

retrieval performance had an electrophysiological correlate, the EEG showed that 

immediate repetition induced a strikingly different electrocortical response after 200–300 

ms, compared to that period of time directly after new stimuli or delayed repetitions 

(James et al., 2009). These results demonstrated that novel information immediately 

initiated the consolidation process, but memories remained vulnerable to interference 

during active maintenance with a decrease in activation of EEG activity thought to be 

generated in the MTL (medial temporal lobe; James et al., 2009). The MTL is an area of 

the brain thought to be associated with long-term memory formation. However, MTL 

activations increased as increases in encoding content continued to improve during off-

line processing (James et al., 2009). The consolidation phase of novel information 

maintenance is vulnerable to interference.  

Further support for physiological associates with the PFC was recognized during 

another experiment in the study cited above by Jost and colleagues (2012). In that 

paradigm, the investigators measured PFC activation through EEG and fMRI while 

controlling for interference in a task of facial content retrieval (Jost et al., 2012). The 

topography of slow EEG potentials and the fMRI BOLD signal in the posterior storage 

areas was active during presentation of both relevant and irrelevant stimuli. Similar to the 

results from the other experiments in that study, these results demonstrated that 

interference triggered control processes mediated by the medial and lateral PFC, which 

are presumably involved in narrowing target representations by focusing on the task-

relevant material and ignoring irrelevant stimuli (Jost et al., 2012). The PFC appears to 

have a strong role in the process of interference. 
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Memory Models 

Most models of memory fall between two extremes: Multistore models view STM 

and LTM as architecturally separate systems that rely on distinct representations, and 

unitary models which view memory as a continuous process with no separate units 

(Jonides et al., 2008). According to Baddeley’s multi-store model, there are separate 

buffers for different forms of information. These buffers, in turn, are separate from LTM. 

A verbal buffer, the phonological loop, is assumed to hold information that can be 

rehearsed verbally (e.g., letters, digits). The visual buffer, the visuospatial sketchpad, 

maintains visual information and can be further fractionated into visual/object and spatial 

stores (Repov & Baddeley, 2006; Smith et al., 1995; Jonides et al., 2008). The episodic 

buffer draws on the other buffers.  LTM was added to the multi-store model to account 

for the retention of multimodal information (Baddeley, 2000). In addition to the storage 

buffers described above, a central executive is proposed to organize the interplay between 

the various buffers and LTM, and is implicated in controlled processing.  

Evidence for a two-component multi-store memory architecture comes from 

amnesic patients with deficits in STM, but not LTM (Baddeley, 2003; Shallice & 

Warrington, 1970).   Baddeley and Warrington (1970) looked at immediate and delayed 

digit sequence recall tasks and found that amnesic patients had normal digit span/STM 

(4-5 digits; a measure of working memory) and defective LTM recall. This may suggest a 

dichotomy between STM and LTM (Baddeley & Warrington, 1970). However, when 

looking at well-known amnesic patients like, K.F. (a patient with intact LTM, but STM 

amnesia; Shallice & Warrington, 1970), the idea of STM as a necessary means for 

encoding LTM is not supported. K.F.’s STM amnesia provides evidence that LTM can 
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exist without STM.   To support a unitary model, patients with STS impairment should 

show little capacity for long-term learning or for everyday cognitive activities. Such 

patients were identified, but had few cognitive problems beyond grossly impaired STM. 

It is often claimed that patients with medial temporal lobe (MTL) damage demonstrate 

impaired LTM but preserved STM, which supports a multi-store model (Baddeley & 

Warrington, 1970; Scoville & Milner, 1957; Jonides et al., 2008).  Furthermore, this 

study showed a double dissociation: verbal tasks interfered with verbal STM but not 

visual STM, and visual tasks interfered with visual STM but not verbal STM, lending 

support to separable memory systems (Baddeley, 1986; Baddeley & Hitch, 1974; Jonides 

et al., 2008). Conversely, the opposite pattern was found in patients previously diagnosed 

with conduction aphasia (Shallice & Warrington, 1970).  This hypothesis fits the existing 

literature by assuming an exclusive STM deficit.  

Further, there is evidence to support an episodic buffer that includes the discovery 

of chunking information (Baddeley, 2000; Jonides et al., 2008).  Chunking is the 

consolidation and grouping of information by adding associations between content 

(Cowan, 1999). Cowan (1999) posited that content held in memory for short durations 

(generally in the STM) can include four to seven items. As more associations are made, 

encoding and retrieval are strengthened (Cowan, 1999). For example, in the traditional 

digit-span task, participants are read or shown a list of digits and asked to recall them in 

order. Recognition of familiar sequences in the list, such as one’s telephone number or 

address, and the ability to do verbal rehearsal have a large effect on success in this task 

(Engle, 2002). Therefore, mechanisms such as rehearsal help associate and transfer 

information into long-term store. 
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More recently, research has gravitated towards a unitary model. According to a 

unitary-store model, STM and LTM rely largely on the same representations, but differ 

by (a) the level of activation of these representations and (b) some of the processes that 

normally act upon them (Jonides et al., 2008). Some postulate that STM and LTM are not 

separate units due to the variability in discrete durations for each type of memory 

(Brown, Neath & Chater, 2007). The exact duration of STM to be more or less a certain 

duration has been debated with several studies showing similar patterns of recall for 

information no matter the duration (Brown et al., 2007). Nairne and Dutta (1992) looked 

at the detailed pattern of recall errors and found that participants had similar recall after 

24 hours when compared to their immediate recall.   

Additional evidence to contradict a separate STM comes from distraction-based 

research from Robert Bjork and William B. Whitten (1974). They presented subjects with 

word pairs to be remembered; however, before and after each word pair, subjects had to 

do a simple multiplication task for 12 seconds. After the final word-pair, subjects were 

asked to do the multiplication distractor task for 20 seconds. They found that the recency 

effect (the increased probability of recall of the last items studied) and the primacy effect 

(the increased probability of recall of the first few items) still remained (Bjork & 

Whitten, 1974). These results appear inconsistent with a multistore memory since in this 

model, items presented at the beginning of the list would be stored in LTM and would 

therefore be expected to exhibit best retrieval performance. Given that the recency effect 

remained, the multi-store model is not supported by this data. Therefore, a more 

appropriate explanation is that participants created associations for the items retrieved 

from LTM, which better fits a unitary memory model.  Although the distraction task was 
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predicted to replace word-pairs as hypothesized in a multistore memory process, Bjork 

and Whitten (1974) found that the results were better attributed to encoding and 

maintenance for long-term memory retrieval as a unitary model. Maintenance appears to 

occur in both the traditional STM encoding and LTM process, which may question the 

potential impact of the temporal presentation of interference tasks that occurs during this 

maintenance phase. 

Although some data from neuropsychology supports a separate short-term and 

long-term system, there is also biological evidence to support a unitary model (Jonides et 

al., 2008). Traditionally research has focused on amnesic patients and the contrast 

between STM and LTM impairment. One critical contrast highlights patients who show 

severely impaired LTM with apparently normal STM (Cave & Squire, 1992, Scoville & 

Milner, 1957) and those who show impaired STM with apparently normal LTM (e.g., 

Shallice &Warrington 1970).  Although the distinct impairments in STM and LTM 

suggest a multistore system, questions have been raised on whether neuropsychological 

data truly supports separate memory units. The role of the medial temporal lobe (MTL) 

may provide an explanation. The MTL has been historically linked to long term 

declarative memory storage and retrieval (Gabrieli, Brewer, Desmond & Glover, 1997). 

However, Ranganath & Blumenfeld (2005) have summarized evidence showing that 

MTL is engaged in short-term tasks (Ranganath & D’Esposito, 2005; Nichols, Kao, 

Verfaellie, & Gabrieli, 2006).  MTL activation has been associated with using novel 

relations for STM retrieval (Klimesh, Doppelmayr, Yonelinas et al., 2001; Jonides et al., 

2008). Novel relations are the details or features of a person, place, event, or thing that 

helps memory encoding and retrieval. An example of this includes the ability to relate a 
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list of words to one’s personal experiential context to create novel relations. Moreover, 

MTL activation has been found to specifically play a part in binding novel relations to 

episodic memories (Klimesh et al., 2001). In particular, there is growing evidence to 

suggest that the MTL is involved in establishing memory representations that include 

episodic memories (Klimesch et al., 2001). Episodic memory is memory for 

autobiographical events (times, places, associated emotions, and other contextual who, 

what, when, where, why knowledge) and explicitly retrieves that information (Tulving & 

Thomson, 1973). Thus, if STM is preserved in amnestic patients with MTL lesions, this 

reflects an ability to maintain and retrieve information without using novel relations for 

retrieval. Instead, one can theoretically retrieve remote memories previously consolidated 

before the amnesia-inducing lesion (Jonides et al., 2008). Taken together, the MTL 

appears to operate in both STM and LTM to bind novel relations to items and therefore 

aid in the retrieval of those memories.  

 Some evidence suggests that more specific types of memory fit with the 

multi-store model, but this is still uncertain and data could possibly support a unitary 

model better. Other forms of memory such as procedural memory, declarative memory, 

episodic memory, and semantic memory are outcomes from memory translation; 

however, it may be difficult to understand which memory model best fits in forming 

these types of memories. Procedural memory is a non-consciously accessible memory 

formed through skill conditioning, while declarative memory is consciously accessible 

information (Wood, Baxter & Belpaeme, 2012). Although some speculate that procedural 

memory is unconscious, it becomes difficult to understand whether unconscious 

awareness is possible in a dual-store model because there is no definitive way to measure 
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unconscious awareness and awareness is dependent on subjective report which may or 

may not be accurate (Baddeley, 2001). Thus, the procedural–declarative division may fit 

a framework comprising of multiple memory subsystems with the term non-declarative 

covering a set of additional, non-conscious memory functions comprising adaptations to 

previously learned behavior systems (Wood et al., 2012). Non-declarative procedural 

memory is thus subdivided into four types: skills and habits, priming, classical 

conditioning, and non-associative learning (Baddeley, 2001). It appears that procedural 

memory may be a LTM that is consistently in “STM” because of its accessibility; 

however, it is difficult to determine this process due to varying performance outcomes 

from studies that test memory translation (Wood et al., 2012). A more parsimonious 

explanation is a unitary-store model due to the fluid function of procedural memory. The 

idea of no separate units from which memory would move back and forth for 

accessibility (i.e. information moving from LTM to STM for present use) better explains 

the process behind procedural memory because it captures memory accessibility without 

conscious awareness. Procedural memory does not appear to require conscious awareness 

or attention to modulate information for retrieval. Therefore, it seems as though 

procedural memory may be less consistent with a multi-store model as we understand it 

now, which requires conscious attention to pull the memory for a particular procedure 

from LTM to STM for present use (Baddeley & Warrington, 1970). 

Episodic memory (personally experienced event information, spatially and 

temporally organized) and semantic memory (context independent information, facts, and 

concepts) both fall within the broader category of declarative memory. The multi-store 

model put forth by Baddeley and Hitch (1974), suggests that information can be 
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processed into different memory storage systems based on the type of sensory 

information presented (e.g. visuospatial scratch pad, phonological loop). Based on the 

mechanisms that process information into memory, there is evidence to show that 

declarative memory is better suited for a unitary model because the role of interference is 

conflicted (Bjork & Whitten, 1974).  For example, in a set of picture-word interference 

tasks, distractor words that belong to the same semantic category as the pictures produced 

more interference than either unrelated words or nonsense trigrams (Rosinski, 1977). The 

results were interpreted as reflecting two different sensory modalities that access 

information in a single store unit (Rosinski, 1977). Although most of the existing studies 

exploring declarative memory are informative, the majority are older and more definitive 

research is needed to corroborate with recent findings. 

Some evidence points to a model in which STM consists of temporary activations 

of long-term representations to support a unitary model. According to this and similar 

models, STM can be viewed as functionally consisting of LTM representations that are 

either in the focus of attention or at a heightened level of activation. Unitary-store models 

focus on central capacity limits, regardless of modality, but they do allow for separate 

resources (Cowan, 2000) or feature components (Lange & Oberauer, 2005; Oberauer & 

Kliegl, 2006) that occur at lower levels of perception and representation. Multi- and 

unitary-store models thus both converge on the idea of modality-specific representations 

(or components of those representations) supported by distinct posterior neural systems. 

That is, the same neural representations initially activated during the encoding of a piece 

of information show sustained activation during STM (or retrieval from LTM into STM; 

Wheeler, Petersen, & Buckner, 2000) and are the source of long-term representations. 
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Functionally, memory in the short term seems to consist of items in the focus of attention 

along with recently attended representations in LTM. In a review by Cowan (2000), he 

concluded from several studies that memory capacity in general is four items, plus or 

minus one. These items in the focus of attention number no more than four, and they may 

be limited to just a single representation (consisting of items bound within a functional 

context). While expanding upon the idea of four or more items under attentional focus, 

we can postulate how attention switches between information to form memories. In one 

study, the main finding that one-back items in a set of items presented were recognized 

equally rapidly and more accurately than single presentation items infer that immediate 

repetition of pictures during learning prevented consolidation from repetition (James et 

al., 2009).  Further participants were able to accurately identify up to nine items with no 

retroactive detrimental effect on initial consolidation during the one-back items (James et 

al., 2009). This demonstrates that perhaps consolidation occurs at the beginning of 

memory and encodes into LTM without decay; therefore, LTM encoding can occur at any 

time without the need of passing through the STM. Immediate consolidation of 

information into LTM is support for a unitary, rather than a multistore model of memory.  

There is evidence to suggest that the unitary-store model is supported when 

encoding visual content. In a study that looked at visual STM and LTM using paired 

association between faces of famous people and words, they found that similar networks 

of brain regions activated for LTM were active during STM encoding and recall (Lewis-

Peacock & Postle, 2008). This directly tested the idea that there may be patterns of brain 

activity initiated when participants perceived and evaluated visual stimuli (drawing on 

semantic and episodic LTM). During a delay period after presented stimuli for STM 
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retrieval, brain activity demonstrated patterns similar to the learning trial for LTM 

activity. These results suggest that short-term retention of information can be supported 

by the temporary activation of LTM representations.  

 

Unitary-Store Model: Neuroanatomical Evidence 

Several different brain regions are posited to be linked to the translation of 

memory from STM to LTM. Likewise, LTM is dependent upon the synthesis of new 

proteins (Costa-Mattioli & Sonenberg; 2008). This occurs within the cellular body, and 

concerns particular transmitters, receptors, and new synapse pathways that reinforce the 

communicative strength between neurons within certain brain regions such as the 

hippocampus, medial temporal lobe (MTL), and prefrontal cortex (PFC). The production 

of new proteins devoted to synapse reinforcement is triggered after the release of certain 

signaling substances (such as calcium within hippocampal neurons) between cell 

communication (Costa-Mattioli, Sonenberg & Sonenberg, 2008). 

As mentioned, new protein formations devoted for synapse reinforcement occurs 

in the hippocampus when LTM is formed. A prominent theory of hippocampal function 

proposes that the hippocampus is involved in relating or binding together separate pieces 

of information to form an episodic representation (Olson, Page, Moore, Chatterjee & 

Verfaellie, 2006). Specifically, many studies have established that hippocampal neuronal 

responses carry information, particularly spatial information, about one’s environment. 

The extensive literature on place fields (areas of brain activation) establishes that 

hippocampal neurons encode a rat’s position in space, although there is also evidence that 
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they signal information about other types of relationships between stimuli (Eichenbaum, 

Schoenbaum, Young & Bunsey, 1996). 

To investigate the role of the hippocampus in recognition memory, research has 

utilized focal hippocampal lesions. It is predicted that hippocampal lesions induce 

anterograde amnesia for episodic information, but certain types of recognition memory 

tasks should be relatively spared. This rare occurrence should be most evident for tests 

that can be solved by discriminating the familiarity or recency of discrete items. By 

contrast, tests that can only be solved by using spatial or associative information should 

be more impaired, even when task difficulty is equated. Of note, is a patient with 

perirhinal cortex damage and a delayed global memory deficit, who was found to have 

bilateral shrinkage of the hippocampus but apparent preservation of adjacent regions 

(Mayes, Van Eijk, Gooding, Isaac & Holdstock, 1999). This patient showed a persistent 

deficit in episodic memory, but preserved recognition memory, particularly in tests that 

can be solved by judging the prior occurrence of individual items. When recognition 

memory deficits were observed, they were most evident in associative recognition 

memory tasks (such as recognizing that item A has been paired with item B but not with 

item C, in contrast to recognizing the prior occurrence of individual items A, B or C 

(Mayes et al., 1999).  

Further, monkey models have provided evidence for sensory input reaching the 

hippocampus. Stimuli were first processed through their respective cortical regions, then 

reached the perirhinal (P) 35/36 (i.e. Brodmann’s areas 35/35) or parahippocampal 

TH/TE, next the entorhinal or polysensory (cingulate, retrosplenial, frontal, and STS 

dorsal), and eventually to the hippocampus (Brown & Aggleton, 2001). Visuospatial 
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information is sent to the parahipocampal TH/TE, perirhinal 35/36, entorhinal cortex, and 

lastly to the hippocampus. Activation in the above-mentioned neural pathways was 

associated with the recognition of spatial and verbal content in monkey and rat models 

(Brown & Aggleton, 2001).  Further, hippocampal and PFC activation were associated 

when familiar stimuli were presented, even if stimuli were novel (Hannula & Ranganath, 

2009). Hippocampal activation alone has a direct impact on LTM recognition, but when 

paired with other regions, such as MTL or PFC, it may have a more substantial impact in 

immediate memory (Brown & Aggleton, 2001). 

Another region associated with memory processes is the medial temporal lobe 

(MTL). The MTL was traditionally thought to be important for LTM encoding, but has 

recently been found to support working memory maintenance for novel items in STM 

(Ranganath & D’Esposito, 2001; Stern, Sherman, Kirchhoff & Hasselmo, 2001; Nichols 

et al., 2006) and associations between item features (Hannula et al., 2006; Olson et al., 

2006; Piekema et al., 2006). The function of the MTL in memory was discovered through 

the study of patients with MTL lesions. These patients failed to remember new events 

that were set in an autobiographical context (an episode), and as a result, had impaired 

recognition (Brown & Aggleton, 2001). The MTL is active during memory tasks that 

require the maintenance of novel items (Hannula & Ranganath, 2009) and faces 

(Ranganath & D’Esposito, 2001). Therefore, patients with MTL lesions may exhibit 

impairment on tasks with novel items because the stimuli were no longer associated with 

the contextual information required for recognition.  

Further evidence for the involvement of the MTL in memory was reported by 

James et al. (2009). They found that picture stimuli presented after an unfilled interval 
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were better recognized than pictures repeated after intervening items. However, during a 

30-minute delay, the immediately repeated pictures were significantly less well 

recognized than pictures repeated after intervening items (James et al., 2009). Both tasks 

activated the MTL, and thus, MTL activity was associated with ongoing consolidation 

process after immediate repetition (James et al., 2009). These results suggest that rapid, 

initial consolidation may be important for detailed information retrieval from long term 

memory and complex mental manipulations (James et al., 2009).  Furthermore, the 

degree to which the MTL is recruited during STM tasks predicts subsequent LTM 

formation (Ranganath et al., 2005), indicating that MTL involvement in STM plays an 

important function. Hence, MTL-mediated dynamic binding of items may form the basis 

of new LTM encoding (Nee & Jonides, 2013). 

Another area of the brain involved in memory processes is the prefrontal cortex 

(PFC). It is commonly held that the PFC plays a role in cognitive control (Koechlin, Ody, 

& Kouneiher, 2003; Botvinick, et al., 2001; Miller & Cohen, 2001). According to Miller 

and Cohen (2001), task goals are maintained in the PFC in the form of active connections 

with other brain structures. These connections guide the flow of information in many 

cognitive systems, such as visual processing and response execution.   

Emerging data indicates that the hippocampus, MTL, and PFC interact with one 

another other during memory processes. Nee and Jonides (2013) postulated that all three 

of the aforementioned brain regions should demonstrate qualitatively distinct activation 

during different stages of memory. Using a paradigm that investigated memory formation 

from initial encoding to long-term retrieval, the authors found inferior parietal and 

inferior temporal activations when the Focus of Attention (FA) was accessed, the MTL 
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was active during working memory, and the ventrolateral prefrontal cortex (VLPFC) was 

activated when LTM was accessed (Nee & Jonides, 2013). Similar patterns have been 

documented in related studies (Nee & Jonides, 2013; Öztekin, McElree, Staresina & 

Davachi, 2009, 2010) and provide support for the theory that communication among 

these distinct neuroanatomical areas is involved in memory formation (Nee & Jonides, 

2013).  

 

Neuropsychological Tasks of Visual Memory 

To investigate recognition and memory, researchers have used the Sternberg Item 

Recognition Paradigm (SIRP) in which a small group of items, called the “positive set”, 

is presented for the participant to memorize (Brodziak, Kołat, & Różyk-Myrta, 2014). 

After a delay, a single item is presented that may or may not have been shown before. 

The subject is asked to respond ‘yes’ or ‘no’, indicating their recognition of the item. 

This procedure is repeated over several trials in which numbers are distractors used to 

interfere with maintenance of the targeted stimuli (Brodziak et al., 2014).  Since this task 

has the potential to delineate the effects of distractors throughout immediate and delayed 

recognition, perhaps it may also provide information on the role of interference 

throughout the processes of encoding, maintenance and retrieval.  

The Brief Visuospatial Memory Test–Revised (BVMTR) is a standardized and 

well-established measurement of immediate and delayed recognition of visuospatial 

information as it relates to memory translation (Brodziak et al., 2014).  There have been 

limited studies to highlight the association between visuospatial memory in the BVMTR 

and a modified version of Sternberg’s task; however, this may lead to additional 
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information on an exclusive measure of visual memory. Further, finding a potential 

association may provide evidence to support the validity and consistency of such tasks. 

Matrix Reasoning is one of four subtests in Perceptual Reasoning Index on WAIS 

-III given to assess Gf (or fluid intelligence). Results suggest that the temporary retention 

of visual mental images and of visual information may be supported by the same visual 

short-term memory store (Borst et al., 2012; Stephenson & Halpern, 2013). Jaeggi and 

colleagues (2010) investigated the transfer effects on working memory capacity and Gf 

comparing the two training groups' performance to controls who received no training of 

any kind. The results indicated that both training groups improved more on Gf than 

controls (Jaeggi et al., 2010).  Further working memory capacity was significantly 

correlated with matrix reasoning performance (Jaeggi et al., 2010).  For example, training 

with another task of working memory (N-Back) improved Matrix reasoning performance 

(Jaeggie et al., 2010). This indicated that general fluid intelligence is positively related to 

STM improvement. The exact direction of impact is still uncertain and can be explored 

further with our study. In a task with a series of abstract figures arranged in a grid, one 

piece of the grid is missing. Participants were asked to select the missing piece from 

several options (Shipstead et al., 2012). Results indicated that participants with memory 

training had an increase in STM performance for visual content and a positive association 

with fluid intelligence in a sample of children (Shipstead et al., 2012). Therefore, since 

adults have similar brain mechanisms, a positive correlation between STM and fluid 

intelligence may occur in an adult sample.  
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Summary and Specific Aims 

Memory is a complex process with little agreement regarding the cognitive 

structure of memory storage and the different processes for retrieval. Past evidence has 

pointed to a multi-storage structure (Baddeley, 1966), where content is translated into 

memory by two phases: short-term and long-term memory (Baddeley, 1996). More recent 

research supports a unitary model that better accounts for the translation of information 

from STM to LTM (Jost et al., 2012; Jonides et al., 2008).  Evidence regarding different 

memory processes such as encoding, maintenance and retrieval occurring throughout 

STM and LTM suggests a unitary store model. More specifically, LTM encoding occurs 

during immediate memory presentation (James et al., 2009).   

However, there is still controversy between these models due to the disagreement 

about the role of interference during memory translation (Bancroft et al., 2013). The 

impact of distraction on this process is largely unknown. However, we do know that 

neuroanatomical evidence such as MTL activation during STM maintenance (Ranganath 

& D’Esposito, 2001; Stern et al., 2001), interference and encoding associations with PFC 

activation (Ranganath & D’Esposito, 2001; Stern et al., 2001) and with PFC/hippocampal 

activation (Nee & Jonides, 2013) during STM encoding and LTM retrieval suggests a 

unitary model. The temporal presentation of the interference and accuracy of retrieval 

may provide a way to further study this translation process. Understanding the role of 

distraction during STM encoding and how it affects the formation of LTM can potentially 

inform treatment for impaired memory. Further, comparing our behavioral task with 

established measures of visual memory and fluid intelligence will give exploratory 

information on correlations of cognitive functioning and STM. 
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In this study, we attempt to investigate the temporal role of distractors on STM 

performance and LTM recognition. The following are our aims: 

Specific Aim 1: Determine whether distractors affect STM performance during a 

modified SIRP task; and whether placement of the distractor during the STM delay 

interval differentially affects performance as measured through accuracy and reaction 

time. 

Hypothesis 1a: Distractors (early and late) will negatively impact 

performance (accuracy and reaction time) compared to no-distractor trials.  

Bancroft and colleagues (2013) provided evidence to suggest that 

interference during any stage of encoding was a part of STM and LTM 

(Bancroft et al., 2013).  A repeated measures ANOVA was conducted to 

compare STM accuracy between distractor trials (none, early, and late) 

and trial type (matched and non-matched).  Additionally, a second 

repeated measures ANOVA was conducted to compare STM reaction time 

between distractor trials (non, early, and late) and trial type (matched and 

non-matched). A main effect of distractor for STM reaction was expected, 

where no distractor trials would have faster reaction times than early and 

late distractor trials.   

Hypothesis 1b: Distractors late in the STM delay will negatively impact 

performance more than those presented early in the delay interval (Jonides 

et al., 2008). Jonides and colleagues (2008) highlighted how STM and 

LTM are a part of a unitary system and temporal differences in encoding 
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is the determining factor between STM and LTM. Therefore, late 

distracters will impede in the LTM memory encoding. Pairwise 

comparisons within the repeated measures ANOVAs for STM reaction 

time and accuracy was expected to indicate differences between distractor 

trials. Further, we expected early distractor trials to be more accurate and 

faster than late distractor trials.  

Specific Aim 2: Determine whether there is a relationship between performance on the 

STM task and performance on the surprise delayed recognition task. 

Hypothesis 2a: Across all trial types (no, early, and late distracters), 

Delayed Recognition Task performance (accuracy) will improve when 

participants were previously accurate on the STM task. A Repeated 

Measures ANOVA compared LTM performance when participants were 

previously correct on the corresponding STM trial and performance when 

participants were previously incorrect on the corresponding STM trial  

Hypothesis 2b: Participants will be more accurate on delayed recognition 

trials that included no distractors in the STM task compared to trials that 

contained early or late distractors (Bancroft et al., 2013).  Bancroft and 

colleagues (2013) provided evidence to suggest that interference during 

any stage of encoding became a part of STM and LTM. Further 

interpretation of the interaction between STM-accuracy and STM-

distractor type will be discussed.  
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Specific Aim 3: Investigate whether STM accuracy is associated with the BVMT-R, an 

established measure of visual memory. 

Hypothesis 3a: The behavioral performance on the STM task will be 

associated with BVMTR performance. This is an exploratory hypothesis, 

given there is limited research to support a modified visuospatial memory 

oriented version of the Sternberg (1966) task with an established measure 

of visual memory.  This was conducted with correlation analyses of STM 

task and BVMTR.  

Specific Aim 4: Investigate whether performance on STM accuracy is associated with 

Matrix Reasoning, a measure of visual higher order thinking.  

Hypothesis 4a: The behavioral performance on the STM task will be 

associated with Matrix Reasoning performance (Shipstead et al., 2012). 

This was conducted with correlation analyses between STM task 

performance and Matrix Reasoning performance. 
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CHAPTER TWO 

METHODS 

Participants 

Ninety-one undergraduates (18 male; mean age 21) at the University of British 

Columbia provided informed consent. Participants had normal or corrected vision of 

20/40 or better, were free of self-reported history of head injury, neurological disorders, 

attention-deficit disorder, learning disorders, substance-related disorders, Axis-I disorders 

or illicit substance use within 24 hours of testing. Those participants (N = 10) who 

reported having consumed alcohol within 24 hours of testing all had fewer than four 

drinks. Participants were further excluded from the study for smoking during the break 

between tasks (N = 1) or an obvious lack of attention to the tasks (N = 1). Further, 

participants that ran out of time during test administration (N=13) were missing data from 

the BVMT-R assessment and matrix reasoning. Mean scores from measures and 

demographic details are presented in Table 1. 
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Table 1. Descriptive statistics of performance on neuropsychological and behavioral 

tests. 

  N Minimum Maximum Mean SD 

Age 78 18 43 21.15 4.31 

BVMTTotal 
78 8 36 25.13 6.10 

BVMTScaled 78 20 61 42.37 9.91 

BVMT2 78 2 12 9.09 2.51 

BVMT3 78 3 12 10.37 2.02 

Matrix_Reasoning 

78 11 25 20.09 3.19 

MR_Scaled 
78 6 15 11.50 1.97 

STM-No Distractors 
91 7 24 18.38 3.65 

STM-Early Distractors 
91 7 24 18.03 3.46 

STM-Late Distractors 
91 7 23 17.86 3.13 

Delayed Recognition 

STM-No Distractors 91 3 22 10.80 3.42 

Delayed Recognition 

STM-Early Distractors 91 3 18 10.32 3.22 

Delayed Recognition 

STM-Late Distractors 91 4 18 9.69 2.74 

 

 

Stimuli 

Greyscale images of Greebles were used as novel object stimuli (Gauthier & Tarr, 

1997). A single viewpoint was used for each of the 288 unique Greeble stimuli, all 

presented at a visual angle of 14.90°. The distracter stimulus was a slide with overlying 

greyscale geometric figures, presented at a visual angle of 17.19°, see Figure 1. 
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Figure 1. Behavioral Task. 

 

Measures 

Spatial Reasoning  

Matrix Reasoning subtests of the Wechsler Intelligence Scale for Adults-Third 

Edition (WAIS-III; Wechsler, 1997).  The items are presented in a matrix with all but one 

of the cells containing colored figures. Below the matrix are five boxes that each contain 

a figure. The Matrix Reasoning subtest presents figures in a matrix where each figure 

either remains constant or changes in each cell. The participants' task is to choose the 

answer from one of the five boxes to complete the sequence.  

 

Visuospatial Memory 

The Brief Visuospatial Memory Test-Revised (BVMT-R; Benedict, 1996). It is a 
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measure of visual memory with three learning trials. The participant is shown an 8/11 

plate containing six geometric visual designs in a 2 x 3 matrix. The stimulus is presented 

for 10s and the participants are instructed to reproduce as many designs as possible after 

the stimulus is removed from view. Participants are shown two additional learning tasks 

and a delayed recall of 25 minutes, followed by 12 individuals designs for recognition (6 

target and 6 non-target designs).  The BVMTR was constructed to test for visuospatial 

processing and memory and have been correlated strongly with tests visual memory 

(revised Hopkins Verbal Learning Test, r = .74 for delayed recall; Visual Reproduction 

subtest of the Wechsler Memory Scale—Revised, r = .80 for delayed recall, respectively) 

rather than verbal memory and visuospatial construction, and most weakly with 

expressive language (Benedict et al., 1996).   

 

Behavioral Visuospatial STM and LTM Task  

Greebles were selected as stimuli for visual memory.  Within the STM version, 

the Greeble stimulus (S1) was displayed for 1000 ms followed by a 5000 ms delay 

interval with a fixation cross. Distracter stimuli delay were presented for 1000 ms either 

early (1000 ms after S1) or late (3000 ms after S1) in the. The second Greeble stimulus 

(S2) was then presented for 1000 ms. Participants indicated on a 1-4 scale their 

confidence in recognizing S2 as the same or different from S1 (Surely Same (1), Maybe 

Same (2), Maybe Different (3), Surely Different (4)). The inter-trial interval varied from 

5500 to 6500 ms. One hundred forty-four trials were divided into 72 match and 72 

mismatch trials. There were 24 trials for each of the three conditions: no distracter, early 

distracter, and late distracter. 
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Overall Procedure 

The study procedures were divided into two parts consisting of a modified 

behavioral task and a short battery of neuropsychological measures given after the 

behavioral task. The following is a description of the behavioral task that was separated 

into two parts, the first as the learning and STM task and the latter as the unprompted 

LTM recognition task. 

 

Part 1 Procedure 

The first Greeble stimulus (S1) was displayed for 1000 ms followed by a 5000 ms 

delay interval with a fixation cross. Distracter stimuli were presented for 1000 ms either 

early (1000 ms after S1) or late (3000 ms after S1) in the delay interval. The second 

Greeble stimulus (S2) was then presented for 1000 ms. Participants indicated on a 1-4 

scale their confidence in recognizing S2 as the same or different from S1 (Surely Same 

(1), Maybe Same (2), Maybe Different (3), Surely Different (4)). The inter-trial interval 

varied from 5500 to 6500 ms. One hundred forty-four trials were divided into 72 match 

and 72 mismatch trials. There were 24 trials for each of the three conditions: no 

distracter, early distracter, and late distracter.  

During the break between Part 1 and Part 2, a demographic and personality questionnaire 

was administered. 

 

Part 2 Procedure  

Following the DMTS task and a 12-minute delay, participants were given an 

unexpected delayed recognition task. Stimuli included the 72 Greebles used in 'match' 
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trials and 72 new Greebles, all presented for 2000 ms. Participants indicated on a 1-4 

scale their confidence in having seen the objects in the first task (Surely Old (1), Maybe 

Old (2), Maybe New (3), Surely New (4)).  

Next, a short neuropsychological examination was conducted using the Matrix 

Reasoning subtest of the Wechsler Intelligence Scale for Adults-Third Edition (WAIS-

III; Wechsler (1997) for the assessment of spatial reasoning. No other subtests of the 

WAIS-III were used. The Brief Visuospatial Memory Test-Revised (BVMT-R; Benedict 

(1996) was administered to assess visual memory. 

 

Data Analysis 

Covariates were not used due to the homogeneity of the sample (i.e. similar 

variability in age, IQ, and education). Data hygiene was conducted to ensure 

homogeneity within the data. Data points within skewness and kurtosis value of 

acceptable limits of ±2 were kept (Trochim & Donnelly, 2006; Field, 2000 & 2009; 

Gravetter & Wallnau, 2014).  Outliers were identified using the outlier labeling method 

where a formula was applied to the first and third quartile of the variable and multiplied 

by a “g” value. Extreme values from the high and low end that met or exceeded these 

values were considered outliers and removed from the dataset (Hoaglin, Iglewicz & 

Tukey, 1986). In cases where sphericity could not be assumed, Greenhouse-Geisser 

corrections were reported.  

Repeated Measures ANOVAs was conducted to evaluate accuracy and reaction 

time data for aims 1-4.  To address aim 1, two Repeated Measures ANOVAs were used, 

to first investigate differences in STM accuracy within three different Distractors (none, 
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early, late) and Trial Types (match, non-match). Interactions between the different 

distractor types and trial types were included in the analysis. Then a second repeated 

measures ANOVA was conducted to find differences in STM reaction time with three 

different Distractors (none, early, late) and Trial Type (match, non-match).  

To address aim 2, a third Repeated Measures ANOVA was used to measure 

Delayed Recognition accuracy with three STM-distractor types (none, early, late) and 

STM performance (correct, incorrect). Interactions between the different STM-distractor 

types and STM-trial types on delayed recognition performance were included in the 

analysis.  

Finally, Pearson product moment correlation coefficients with Bonferroni 

correction was used to test aim 3 and 4 to evaluate the relationship between accuracy and 

values on the matrix reasoning and BVMTR performance. A power analysis was 

conducted with GPower to determine the power of the statistical value. A sample size of 

91 has significance at a power of .88 and large effect size of .48.  
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CAHPTER THREE 

 

RESULTS 

 
 

Repeated measures analyses of variance (RM-ANOVA) were conducted with 

IBM SPSS v.20. If sphericity is observed, the RM-ANOVA procedure provides a 

powerful test of repeated measures. In cases where sphericity could not be assumed, 

Greenhouse-Geisser corrections were reported.  

To address hypothesis 1a regarding accuracy, two Repeated Measures ANOVAs 

were conducted to compare the effect of Distractor Types (none, early, late) and Trial 

Type (match vs non-match) on STM accuracy. There was a main effect of Distractor 

type, Wilk’s Lambda = .910, F (2, 89) = 4.40, p = .015, η2 =.090. To address hypothesis 

1b, three paired samples t-test were used to make post hoc comparisons between 

conditions.  These comparisons indicated that participants were significantly more 

accurate on no distractor trials compared to late distractor trials, p = .015 (see Figure 2). 

There was also a significant distractor x trial type interaction, Wilk’s Lambda = .711, F 

(2, 89) = 18.13, p = .000, η2 =.289. STM accuracy for no and early distractor trials during 

matched trial types were more accurate than non-matched trials. However, for late 

distractor trials, non-matched trials were more accurate than matched trials (see Figure 3). 

The main effect of Trial Type (match or non-match) was not significant Wilk’s Lambda = 

.969, F (1, 90) = 2.835, p = .096.  
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Figure 2. STM Accuracy by Distractor Type. 
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Figure 3. Interaction Effects of Distractors and Trial Type on STM Accuracy. 

 

A second Repeated Measures ANOVA was conducted to examine the effect of 

Distractors (none, early, late) and Trial Type (match, non-match) on STM reaction time 

to address hypothesis 1a regarding reaction time.  The results indicated a significant main 

effect of STM Distractor, Wilk’s Lambda = .764, F (2, 84) = 12.97, p = .000, η2 =.236. To 

address hypothesis 1b a within-subjects comparison indicated that participants had 

significantly longer STM reaction time during no distractor trials than with early 

distractors, p = .002 and late distractors, p = .000) which did not significantly differ from 

each other (p = .18, see Figure 4).   
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Figure 4. STM Reaction Time by Distractor Type. 

 

To address aim 2, we examined whether Delayed Recognition accuracy was 

affected by the distractor type of the corresponding STM trial (none, early, late) and the 

participant’s accuracy on the corresponding STM trial (correct, incorrect). Results 

indicated a significant main effect of STM-accuracy, Wilk’s Lambda = .189, F (1, 89) = 

383.14, p = .00. Delayed recognition accuracy that was previously correct on STM (M = 

10.27, SE = .276) was significantly greater than delayed recognition accuracy that was 

previously incorrect on STM (M = 2.850, SE = .171). There was no significant main 

effect of STM-distractor type on delayed recognition accuracy, Wilk’s Lambda = .982, F 

(2, 88) = .788, p = .503, see Figure 5. Further, there was a significant interaction between 

STM-distractor x STM-accuracy on delayed recognition performance, Wilk’s Lambda = 

.812, F (2, 88) = 10.21, p = .000, η2 =.188, see Figure 6.   Paired-samples t-tests for each 

distracter type indicated a significant difference between STM-correct and STM-incorrect  
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Figure 5. Delayed Recognition Accuracy by STM-Distractor.  

 

for all distracter types, although the difference was larger for no distracter (STM-correct 

M = 10.80, SD = 3.43, STM-incorrect M = 2.52, SD = 3.19), and early distracter trials 

(STM-correct M = 10.38, SD = 3.19, STM-incorrect M = 2.58, SD = 1.98), compared to 

late distracter trials (STM-correct M = 9.70, SD = 2.75, STM-incorrect M = 3.31, SD = 

1.91, see Figure 6-7). The results demonstrated a decline in performance with late 

distractors. 

Finally, Pearson product moment correlation coefficients with Bonferroni 

correction (p = .017) were used to evaluate the relationship between STM accuracy and 

values on the matrix reasoning and BVMTR performance (Aims 3 and 4). There was no 

significant association between BVMTR and STM accuracy (Pearson correlation for 

early distractor, p = .30, late distractors, p = .67, and no distractors, p = .48) No 

significant associations were found with Matrix Reasoning and memory performance 
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(Pearson correlation for early distractors, p = .18, late distractors, p = .15, and no 

distractors, p = .25). 

 

 

Figure 6. Interaction Effects of Delayed Recognition Accuracy by STM 

Distractor and Trial Type.  
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Figure 7. Delayed Recognition Accuracy by STM Distractor and Trial Type.  
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CHAPTER FOUR 

 

DISCUSSION 

 

In this study, we investigated the role of distractors and their temporal position 

during the memory delay interval of a short-term memory and delayed recognition task. 

This study employed a novel delayed match-to-sample behavioral task using visual 

stimuli called greebles. Greebles have a visual complexity similar to faces and are not 

easily translated into verbal or semantic units, making these purely visual memory tasks 

(Gauthier & Tarr, 1997). In addition, visual distractor stimuli were placed either early or 

late in the delay interval during the short-term memory task to investigate the impact of 

the temporal position of the distractor on the corresponding process in the stream of 

translating information from an external stimulus to an internal representation. 

Our results indicated a significant main effect of distractor type (none, early, late) 

on short-term memory accuracy for both match and non-match trial types. While there 

were no significant differences in STM accuracy between no-distractor and early-

distractor trials, there was a significant decrease in STM accuracy between no-distractor 

and late-distractor trials.  These results suggested that the presentation of late distractors 

in the memory delay interval had a negative impact on short-term memory performance. 

Therefore, our first hypothesis of distractors having a negative impact on short-term 

memory performance was only partially supported. Further, a significant interaction 

effect was found between distractor and trial type on STM accuracy performance. These 

findings indicated that for no- and early distractor trials, participants were more accurate 

on matched compared to non-matched trials. However, if the distractor was presented late 
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in the delay interval, participants were more accurate on non-matched compared to match 

trials (see Figure 2).    

These findings suggested there was interference created by a distractor within the 

maintenance process during the latter phase of the behavioral task. This is similar to 

findings presented by Bancroft and colleagues’ (2013) that found interference occurred 

shortly after distractors, when non-targeted stimuli (the distractors) were encoded into 

memory (Bancroft et al., 2013). Since non-targeted stimuli (the distractors) were 

presented shortly before targeted stimuli (the second greeble stimulus) in the late 

distractor condition, it is likely that the detriment in performance was due to interference.  

One possible explanation for how interference decreased STM accuracy in late 

distractor trials may be that participants performed poorly due to insufficient time to 

recover the target information that was displaced by the interfering distractor.  For 

example, in a study that looked at recollection of visual stimuli, Wais and colleagues 

(2010) found that the introduction of visual distractors when participants were asked to 

recollect visual information yielded an interference effect as lower accuracy performance 

compared to trials with no attention towards visual distractors. In this sense, participants’ 

cognitive focus may have miss-identified the distractor for a prompt and created false 

confidence to respond accurately. Our findings are also consistent with those of Oberauer 

(2002), who presented two numbers for participants to remember, only one of which 

required active processing. Increasing set-size increased reaction time only for the 

actively manipulated number, but there was no increase for the passively remembered 

number. These data suggest that shifting the focus of attention from one mental object to 

another within the focus region yielded "object switching costs", as the manipulated 
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items competed for resources within this node. It is possible that our task required the 

greeble stimuli to be held in the focus of attention throughout the delay interval, and that 

distracters replaced the stimulus as the focus of attention during their presentation 

(Barrouillet, Portrat, & Camos, 2011; Unsworth & Engle, 2007). Once the distracter 

disappeared, participants were required to call the original stimulus into the focus of 

attention again to facilitate the template-matching decision. On late distracter trials the 

presentation of the probe may have occurred before this process was completed (Oztekin, 

Davachi, & McElree, 2010). The switch costs associated with replacing the distracter 

with the stimulus in the focus of attention so temporally close to the probe may have led 

to more incorrect responses, especially for match trials, on the STM task (Oberauer, 

2002; Oztekin et al., 2010). 

Additionally, we compared STM reaction time over three different distractors 

(none, early, late) and trial type (match or non-match).  The results showed decreasing 

reaction time with the addition of distractors; with no distractor trials yielding the longest 

reaction time (M= 899.21) followed by early distractors (M = 840.35) and late distractors 

(M = 809.64). It appears that the late distractors, regardless of trial type, resulted in 

participants reacting faster compared to early or no distractor trials. While these results 

were unexpected, the reason for such quick reaction times may be due to late distractors 

acting as prompts to response (Nee & Jonides, 2013). This may have reduced reaction 

time, but did not necessarily improve retrieval accuracy. Moreover, there was no 

significant difference between early and late distractors in terms of STM reaction time, p 

= .180. These results suggest that distractors, regardless of their temporal placement in 

the delay interval, may have acted as response cues.  Similarly, Nee & Jonides (2011, 
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2013) serially presented verbal and visual information prior to a brief mask and a probe 

stimulus and reported that participants responded quicker and more accurately in 

response to trials with a previously presented probe and where the focus of attention was 

on the last item compared to earlier items.  

In another study that developed a modeling system to predict reaction times for 

decision-making, Drugowitsch and colleagues (2014) found that people make rapid 

decisions when they have acquired sufficient evidence. The distractors may have acted as 

cues that triggered participants to feel they had sufficient evidence to react faster and 

make a rapid decision.  However, these results are contrary to other studies that found 

visual cues delayed response selection for visual recognition or reaction time (Souza, 

Rerko, & Oberauer, 2016; Ward et al., 2016). Given the increase in reaction time for 

trials without distractors compared to trials with distractors, and lack of significant 

difference between the early and late distractor types, our hypothesis of distractors having 

a negative impact on STM performance was supported, but in the opposite direction than 

originally proposed.   

In regards to our hypothesis 2a which investigated delayed recognition accuracy 

with three STM-distractor types (none, early, late) and STM performance (correct, 

incorrect), results indicated significant differences based on previous STM-accuracy. 

Thus, our hypothesis that delayed recognition performance was dependent upon STM 

accuracy was supported.  That is, if encoding did not occur during STM, then it was 

unlikely that the memory could be recognized at a later time.  

To address hypothesis 2b, this study looked at the differences in delayed 

recognition performance as a function of previous STM performance and previous STM 
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distractor type. We predicted that there would be higher delayed recognition accuracy on 

previous STM-no distractor trials compared to other distractor types. Our analyses did 

not support this hypothesis, as we found no significant difference in STM-distractor type 

on delayed recognition accuracy (figure 5). However, there was a significant interaction 

between STM-distractor type and STM-accuracy on delayed recognition performance, 

indicating that participants were more accurate on delayed recognition trials that were 

previously presented as no-distractor trials in the STM task and in which the participant 

responded to correctly. This same response pattern that we found in both STM and 

delayed recognition performance is similar to results reported by Bjork and Witten 

(1974). They found similar interference patterns in working memory and long-term 

memory retrieval. It is possible that a buffer of time is necessary to recover the target 

stimulus into focused attention after it has been displaced by a distractor, such as in the 

case of the “object switch cost” (Oberaur, 2002).  

Uniquely, the results indicated that as the interference-causing distractor occurs 

early in the delay interval, participants may have time to move the target stimulus into 

focused attention again before having to make a decision. It is possible that this process 

led to a deeper level of processing of the initial stimulus (Craik & Lockhart, 1972; Rose 

& Craik, 2012). Stimuli that are encoded more deeply are recalled more accurately on 

delayed recall tasks (Rose & Craik, 2012; Rose, Myerson, Roediger, & Hale, 2010), 

indicating that deeper processing during the immediate memory task may have enabled a 

more stable long-term memory trace with which to guide delayed recognition 

performance. On the contrary, if the distractor occurred late in the delay interval, 

participants have less time to recover the target stimulus into focused attention before the 
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probe stimulus is presented and a decision must be made (Oberaur, 2002). Distracters 

presented late in the delay interval may have interfered with the ability to perform the 

template matching task, and the absence of the additional processing associated with 

template matching procedure may have contributed to a less stable long-term memory 

trace. Therefore, it is possible that successful delayed recognition performance required 

additional processing during the STM task in the form of a completed shift of the 

stimulus back into the focus of attention (i.e. early distracters) so that the effortful act of 

template matching could lead to a more enduring memory trace. 

With respect to a possible biological basis for this phenomenon, Oztekin and 

colleagues’ (2010) reported a similar effect in that trials with the most recent serial 

position were associated with the least amount of the hippocampus activation. It may be 

that hippocampus activation, which is widely known to be associated with LTM 

encoding, is associated with bringing the target stimulus back into the attentional focus 

prior to decision-making. Further evidence suggested that along with the hippocampus, 

the MTL and PFC are activated in the retrieval of both STM and LTM (Nee & Jonides, 

2013).   During imaging, participants were asked to perform a behavioral task that 

consisted of item-recognition for faces with black boxes over spaces with faces (a mask), 

and probes. Although their behavioral data only differentiated between items in the focus 

of attention and those not, the differential areas of fMRI activation between items 

seemingly held in the three different neuroanatomical areas such as the hippocampus, 

MTL, and the PFC that was previously associated with processing STM and delayed 

retrieval. They also reported a triple dissociation of fMRI activation patterns based on 

early, intermediate and recently presented items (Nee & Jonides, 2013). Although we did 
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not have access to neuroanatomical data in the current study, research suggests activation 

in these three areas may be associated with the kind of memory translation required by 

the current memory tasks.  

Finally, Pearson product moment correlation coefficients with Bonferroni 

correction (p = .017) were conducted to evaluate the relationship between accuracy and 

values on BVMTR performance and on matrix reasoning. There was no significant 

association found between BVMTR and memory performance (p > .17). And, no 

significant associations were found with Matrix Reasoning and memory performance (p 

> .017). These results suggest that for this sample, perceptual reasoning had limited to no 

association with memory performance, as assessed by the current memory paradigm and 

neuropsychological measures. Since no associations were found between the test 

measures and STM performance, it is possible that the neuropsychological tests were not 

related to the form of memory required by our behavior memory paradigm.  A possible 

explanation may be that our behavioral task was capturing a different type of visual 

memory than that captured in these neuropsychological measures.  

 

Study Limitations  

There are several limitations to this study. First, this study used archival data. As 

such, we were unable to include a more heterogeneous sample that would have included 

individuals from a variety of educational backgrounds and ethnicities, and greater balance 

of gender. Modifications to the behavioral task may have added another level of 

explanation by including additional presentation times for distractions. Extra distraction 

presentation times (i.e. adding a middle distraction) could provide information about 
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possible timeframes that memory is most at risk for interference. Further, expanding the 

distractor variation to include target-similar (e.g. complex visual stimuli) and target-

dissimilar distraction stimuli (e.g. auditory stimuli) would have provided further details 

on the negative impact of distractors from different sensory modalities on memory. 

Additionally, a broader neuropsychological measure of perceptual reasoning may 

have provided a better estimate of visual intelligence. Relying solely on Matrix 

Reasoning as a single measure of the perceptual reasoning domain may have made it 

difficult to fully assess this construct.  

Furthermore, testing with the same behavioral task to assess memory patterns in 

children and older adults may be helpful to understand the trajectory of memory. Testing 

different age groups can provide information for age norms and adjusting the stimuli to 

reflect different complexity levels can better fit the developmental age of the participant. 

For example, in a child population, the stimuli may have less detail and take on a more 

round or smooth appearance to accommodate appropriate developmental capacities for 

processing visual information. As such, children before the age of 12 years old may have 

difficulties processing complexities in visual stimuli that are similar to faces (Tanaka, 

Kay, Grinnell, Stansfield, & Szechter, 1998). Although the greeble images are universally 

understood as complex images, reassessing the qualities and complexity of the distraction 

can aid in understanding the learning and retrieval of visual information.  For example, 

testing the differences between the families of greebles may increase understanding on 

processing information for more complex figures versus less detailed greebles. This may 

lend to information about the visual memory systems and face recognition (Gauthier & 

Tarr, 1997).  
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Clinical Implications 

Clinical implications of our results arise from the descriptive data on a cognitive 

paradigm for memory in a healthy young adult population. Results from this study may 

suggest how to optimally address memory concerns by providing a baseline of 

performance from a healthy college population; however, future research in clinical 

populations is necessary to understand how these populations would perform. Given this 

study’s strong focus on memory processes, data collected from the behavioral task may 

provide information on how memory is formed and how distractors can negatively impact 

memory encoding and retrieval. Our results indicated correct stimulus encoding was 

necessary in order to recognize information later on; therefore, initial learning/encoding 

into memory is important to sustain recognition at a later time. We also know that the 

initial environment for successful memory recognition should be free of distractors 

(Thomas & Hasher, 2012), especially distractors that occur just prior to decision-making. 

Thomas and Hasher (2012) found that distractors can be especially impairing for older 

adults compared to young adults. Therefore, similar to results from Thomas and Hasher 

(2012), we know that distraction can interfere with learning information and having a 

distraction free environment, especially in the later part of memory translation, may 

provide optimal conditions for learning.  However, at this stage we remain uncertain 

about the impact of distractors in a clinical population with memory impairments. Future 

research on the role of temporal distractors on a clinical population with cognitive 

impairment or neuropsychological issues may provide further information on how 

distractors affect the kinds of memory impairment specific to different 

neuropsychological conditions and psychiatric disorders.  
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Research on specific clinical populations using our cognitive paradigm may lead 

to valuable information about what processes are disrupted in different conditions. For 

instance, if a group of patients with clinical levels of depression were to show disrupted 

performance on early distractor trials, we may interpret this data to indicate that 

individuals with depression may require a longer period of time to initially encode 

information. Further, based on our results, it is likely that depressed individuals will also 

show disrupted delayed recognition of the information as well. Similarly, if a group of 

clinical patients were to demonstrate worse performance on all trials that include a 

distractor (early and late) for both STM retrieval and delayed recognition, we may 

interpret this to indicate that this particular clinical population is especially susceptible to 

the effects of interference. This may indicate that no amount of time would allow them to 

pull the information back into the focus of attention. Thus, the addition of compensatory 

strategies early on (i.e. writing notes) may help these people rehearse the information to 

mitigate the effects of interference.  

Further, practical applications for our cognitive paradigm for clinical populations 

include remembering therapeutic skills/strategies to use later in life. Encoding 

information to memory during a therapy session and the ability to recognize that 

information at a later date and location when necessary can be challenging if one has 

memory issues, difficulty with concentration, and emotion dysregulation. Understanding 

how memory impairment occurs can help clinicians to structure therapy sessions for 

better information recall and skill application in their patient’s daily life. Moreover, 

additional study is recommended to determine whether memory performance during the 

most distracting of conditions (just prior to decision-making) can be improved with 
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practice.  This may lead to the understanding of which types of strategies may help with 

mitigating the impairing effects of distractors and if strategies can apply in a clinical 

population to reduce switch-cost effects. Moving forward, memory compensatory 

strategies should continue to focus on the maintenance phase of memory and any 

reminders (cues) similar to the stimuli that can provide accurate and quick retrieval.  

Further research in memory maintenance in visual memory in a clinical population is 

necessary for a well-rounded informed recommendation for treatment. 
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