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Loma Linda University, June 2018 

Christopher G. Wilson, Chairperson 

 

The autonomic brainstem generates and modifies breathing rhythm by integrating 

inputs from chemo- and mechanosensors in the viscera while coordinating descending 

outputs from higher CNS structures. Hypoglossal motoneurons (XII MNs) receive inputs 

from respiratory premotor neurons in the medulla. Previous studies in rodents have 

demonstrated significant changes in breathing control during the first three weeks of life, 

with a sensitive period at 10 to 13 days post-birth (P10–P13) characterized by 

pronounced changes in neurotransmitters, receptors, excitation-inhibition balance, and 

breathing. However, age-dependent morphological changes of XII MNs during the first 

three weeks post-birth and especially during this sensitive period, have not been 

thoroughly studied. In this study, we comprehensively characterized and quantified the 

postnatal morphological changes in rat XII MNs. We hypothesized that morphological 

changes occur in XII MN morphology and arbor complexity corresponding to the 

functionally-defined sensitive period observed at P10–P13. To test this hypothesis, we 

used innovative statistical approaches to quantify and compare developmental changes in 

Golgi-Cox stained XII MNs at nine postnatal ages between P1–P21. Additionally, we 

performed 3D reconstructions of the neurons importing these geometries into the 



 

xv 

modeling environment NEURON to simulate the biophysical properties of XII MNs. 

Soma size increased ~40% from P1 to P21, with no significant change in shape. 

However, dendritic arborization increased in extent and complexity with branching of 

neurons significantly increasing from P1 through P13, with the greatest increase at P10–

P13 based on the Sholl method. Three age groups 1) P1–P5, 2) P7–P12, and 3) P13–P21 

were found as possible windows of development. We also found that at specific ages 

certain parameters such as soma size and dendritic complexity were non-normally 

distributed. I found support for differences in the density of selected voltage-gated ion 

channels with age and correlations between passive electrophysiological properties and 

morphology. Although a direct relationship was not found between morphology and the 

active properties, I did find support for an indirect relationship. Our detailed 

characterization of XII MN morphological development establishes a foundation for the 

study and elucidation of morphological changes caused by maternal and perinatal 

conditions using a rigorous approach. 
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CHAPTER ONE 

BACKGROUND 

At birth, autonomic regions in the brainstem, which generate and control 

respiratory rhythm, which is critical throughout life, are not fully developed (Feldman et 

al., 2013; Feldman and Del Negro, 2006; Feldman and Smith, 1995). Normal control of 

breathing develops in the first few weeks after birth with motoneurons (MNs) of the 

hypoglossal nucleus (XII) and other brainstem nuclei providing the drive to the tongue 

and upper airways and are used in in vitro models to provide an index of fictive 

inspiratory effort (Feldman et al., 2013; Feldman and Del Negro, 2006). The coordination 

of the tongue and upper airway between speech and breathing is also an important aspect 

that motivates the study of XII MN development. Because 80% or more of the neurons in 

the XII are MNs that are readily distinguishable from the interneurons and play an active 

role in inspiration during development, they are a convenient and accessible population 

of neurons for morphological and electrophysiological study (Cooper, 1981; McClung 

and Goldberg, 1999). Although the effects of various factors such as nicotine and 

inflammation on respiratory development have been studied (Fregosi and Pilarski, 2008; 

Powell et al., 2016; Rourke et al., 2016), very little is known about these conditions on 

morphological development. One possible reason for this is that changes in the normal 

maturation of breathing patterns has been studied (Liu et al., 2009, 2006), but little is 

known about the normal maturation of XII MN morphology. 

Therefore, in this work my objective was to comprehensively characterize and 

quantify the normal maturation of somatic and dendritic tree morphology as has been 

done for breathing pattern. In addition, I simulated the electrophysiological behavior of 
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XII MNs based on measured 3D geometries comparing these results to results from 

electrophysiological experiments. I employed Golgi-Cox staining, 2D Sholl analysis, 3D 

reconstructions, and the NEURON simulation environment to measure morphology and 

simulate electrophysiology.  

 

 

Golgi, Cajal and Neuron Morphology 

In the late 1800’s into the early 1900’s two main theories of the nervous system 

were debated. On the one hand some such as Golgi believed that the nervous was 

comprised of a diffused network formed by anastomosis of axonal processes (reticular 

doctrine). Others such as Cajal believed that the nervous system was composed of 

individual nerve cells that were connected (neuron doctrine) (De Carlos and Borrell, 

2007). Although Cajal and Golgi defended different concepts of the nervous system 

organization, Cajal’s work was based on the utilization of modified versions of Golgi’s 

histological techniques for staining neurons first published in 1873 (De Carlos and 

Borrell, 2007). Since then the Golgi staining technique has been utilized, improved, 

adapted to other application, and still in some respects the Gold Standard in studying 

neuron morphology (Koyama, 2013). The original Golgi stain and the variety of modified 

techniques such as Golgi-Cox and Rapid Golgi has been used in bright-field microscopy, 

electron microscopy, and to differentially stain glia cells (Koyama, 2013; Koyama et al., 

2013; Levine et al., 2013; Martinez-Tellez et al., 2005; Ranjan and Mallick, 2012). Some 

of the advantages of Golgi staining is the resolution obtained while dendrites along with 

dendritic spines are identified with good detail. Despite the advantageous of modern 

histological and staining methods, the utility and benefits that the variety of Golgi stains 
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have allows it to still be a commonly employed technique in the study of neuron 

morphology. 

 

Respiration 

Respiration is a fundamental autonomic function that involves the coordination of 

the diaphragm, lung volume, airway tone, and control of the tongue to be maintained 

continuously over the duration of an organism’s life. Even though the control of 

breathing is fundamental to all mammals, our knowledge of the underlying neural 

circuitry that generates breathing rhythm is still nascent (Feldman et al., 2013; Feldman 

and Del Negro, 2006). Whether an individual breaths through the nose or mouth and its 

impact on health has been the subject of study (Fujimoto et al., 2009; Leal et al., 2016; 

Macari et al., 2012; Padzys et al., 2011). However, developmental changes in the 

breathing mode (nasal versus mouth) has received very little, if any study (Hall, 2005; 

Mortola and Fisher, 1981). Although breathing mode is clinically important, details on 

shifts between obligate mouth to nasal breathing during postnatal development are 

lacking. The neural network that generates and transmits breathing motor pattern is 

located in the brainstem and must be functional prior to birth (approximately embryonic 

day 15 in rats and mice (Thoby-Brisson and Ramirez, 2001, 2000) and continues to 

develop and remodel in the first weeks of life (Harper and Kinney, 2010; Kinney, 2009; 

Wong-Riley and Liu, 2005). If the breathing neural network fails or is unable to generate 

a physiologically appropriate rhythm, pathological breathing patterns can result, and 

these can impair the animal’ s well-being. During early life, breathing disorders such as 

apnea of prematurity, periodic breathing, and Sudden Infant Death Syndrome (SIDS) 
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(Erickson et al., 2007; Kinney, 2009; Martin and Wilson, 2009). Historical work in 

breathing control has provided an understanding of how metabolic rate affects breathing 

across the stages of development—from birth to adulthood (Liu et al., 2006; Mortola, 

1984), but we do not yet understand how breathing regulation and control are correlated 

with anatomical structure and synaptic remodeling of neurons embedded within the 

breathing circuit (Feldman et al., 2013; Feldman and Del Negro, 2006; Wong-Riley et al., 

2013). Understanding how the breathing neural network is remodeled during early life is 

key to a deeper understanding of the role that morphology plays in reliable transmission 

of breathing rhythm in the perinatal period.  

 

Respiratory Control 

Regions of the brainstem such as the nucleus tractus solitarii (nTS), PreBötzinger 

Complex (pBC), and hypoglossal nucleus (XII) are key to the generation and 

transmission of the breathing pattern (Lindsey et al., 2012; Wong-Riley and Liu, 2005), 

however we understand very little about the structural changes across the early 

developmental window of autonomic circuitry. While it has been known for some time 

that neural network behavior is influenced by the morphology of neurons and 

connectivity is altered due to changes in neurotransmitter release and receptor up- and 

down-regulation (Ascoli et al., 2009; Donohue and Ascoli, 2008; Krichmar et al., 2002). 

Yet, even fundamental knowledge about these changes in the brainstem are limited 

(Fregosi, 2011; R. Kanjhan et al., 2016). The motoneurons of the hypoglossal nucleus 

(XII) provide the drive to the tongue and upper airways and are used in in vitro models to 

provide an index of fictive inspiratory effort (Koizumi et al., 2008; Smith et al., 1991). It 
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has previously shown that there are age-dependent changes in hypoglossal motoneuron 

output drive (Fietkiewicz et al., 2011). 

Detailed studies of the development of respiration and respiratory control have 

been conducted in only the past couple of decades. During the first three weeks post-birth 

(P0–P21) cytochrome oxidase generally increases in the pBC, nTS, XII, and other nuclei 

of the brain stem (Liu and Wong-Riley, 2003, 2001). However, at P3 and P4 there is 

plateau in the level of cytochrome oxidase that occurs at P3 and P4 in the pBC, while 

there is a prominent decrease at P12. These changes at P3, P4, and P12 in the pBC also 

exhibit increases of inhibitory drive mediated by GABA and glycine and decreased in 

excitatory drive mediated by glutamate activity (Liu et al., 2006; Wong-Riley and Liu, 

2005). In brainstem nuclei such as the XII, nTS, and pBC there is mostly a steady 

increase in cytochrome oxidase up to P7 (Liu and Wong-Riley, 2003). During the second 

week of postnatal life (P8–P14), there are shifts in excitation-inhibition balance (both 

neurotransmitters and receptors) and cytochrome oxidase levels, especially on days 10, 

11, 12, and 13 in most brainstem nuclei (Liu et al., 2006; Liu and Wong-Riley, 2003).  

Ventilatory changes are also seen from P0 to P21 with an increase in breathing 

frequency during the hypoxic ventilatory response at P0–P6 (Liu et al., 2009, 2006). At 

P10–P21 there is a decrease in breathing frequency, but an increase in tidal volume while 

there is a decrease in minute volume at P10–P13 with an increase at P14–P21 (Liu et al., 

2009, 2006). Postnatal days P10–P13 have been referred to as a “sensitive period” in 

which respiratory development exhibits pronounced changes in frequency and variability 

of breathing pattern. This “sensitive period” is a window of transitional change from the 

early more variable breathing (P0–P7) to later less variable breathing pattern during P15–
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P21. Finally, the third week represents changes leading to adolescence and respiratory 

control similar to that of an adult. Although there are changes in cytochrome oxidase, 

respiratory control, neurotransmitters, and neural function, the most notable changes are 

usually seen during the P10–P13 period and this period seems to be when chemoreflexes 

have matured and have a more pronounced effect on breathing pattern (Wong-Riley et 

al., 2013). However, very little information is available concerning the potential role that 

morphological changes may have on these developmental windows. 

 

Hypoglossal Motoneurons 

Morphology 

It has been estimated that the hypoglossal nucleus (XII) contains approximately 

3500 motoneurons (Lewis et al., 1971). Of the neurons in the XII at least 80% are 

motoneurons with a small population of interneurons (Boone and Aldes, 1984; Cooper, 

1981; Takasu and Hashimoto, 1988). It has been suggested that the size, shape, and 

dendritic orientation differentiate motoneurons in different regions of the XII (Aldes, 

1995; Boone and Aldes, 1984; Cooper, 1981; Kitamura et al., 1983; McClung and 

Goldberg, 1999; Odutola, 1976). In the dorsal region MNs appear fusiform, orientated 

along the mediolateral axis and range from 18–40 m in diameter. Those XII MNs in the 

dorsal region, which innervate intrinsic muscles are reported as significantly smaller 

(mean = 26 m) compared to the MNs innervating extrinsic muscles (mean = 30 m) 

(McClung and Goldberg, 1999). In the central portion of the ventral subdivision MNs 

that innervate intrinsic muscles are on average smaller (mean = 23 m) and more 

globular in shape than the larger more lateral multipolar MNs in the ventral division 
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(mean = 28.7 m) (Kitamura et al., 1983). Therefore, as with other nuclei the hypoglossal 

nucleus has separate pools of motoneurons which innervate specific muscles and the 

morphological differences may relate to the function of the specific muscle innervated 

(McClung and Goldberg, 1999). For adults XII MNs are further classified based on 

dendritic morphology. Dendrites of MNs in the dorsal region can be either be confined to 

the XII region (internal) or extend beyond the borders of the XII (external) (Odutola, 

1976).  

Although there have been in vitro studies investigating postnatal development of 

XII motoneuron morphology demonstrating anatomical changes with age, detailed 

information on the age-related development is lacking. A small number of studies have 

studied developmental changes in XII MN morphology, but these have not focused on the 

functional sensitive window (Carrascal et al., 2005; Refik Kanjhan et al., 2016). 

Morphological differences have been shown between neonatal and adults as well as 

corresponding electrophysiological changes (Cameron et al., 1991; Fulton and Walton, 

1986; Nunez-Abades et al., 1994, 1993; Nunez-Abades and Cameron, 1995).  

 

Electrophysiology 

The electrophysiology of neurons from certain regions of the brain is well known 

in adults and to a lesser extent in neonatal animals. Much study has also been given to 

XII MNs in examining the hyperpolarization-activated current as well as different types 

sodium and potassium voltage-gated channels (Berger et al., 1996; Cameron and Nunez-

Abades, 2000; Ekberg and Adams, 2006; Yoshimoto et al., 2015; Yu and Catterall, 

2003). However, there is little work on the electrophysiology of hypoglossal 
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motoneurons (XII MNs) during the neonatal period (P1–P21) with one or two studies 

(Carrascal et al., 2005; Nguyen et al., 2004; Nunez-Abades et al., 1993). Essentially 

nothing known about the possible relationship between the electrophysiology and 

morphology for any age except between biophysical properties for four age groups. The 

sensitive period does not seem to have been studied, but it would be interesting to know 

if there are electrophysiological changes relating to this developmental window. 

There are a few studies which modeled the electrophysiological behavior of 

motoneurons using a single compartment model (soma) for the neuron (Engel et al., 

1999; Fietkiewicz et al., 2011; Purvis and Butera, 2005). However, there are no studies in 

which the entire morphology of actual XII MNs were modeled. There is a wealth of data 

on the expression of various voltage-gated channels and the hyperpolarization-activated 

current and some work on differences in the expression of specific ion channels such as 

sodium channels with age from P1–P21 (Beckh et al., 1989; González-Castillo et al., 

2017).  

 

Data Analysis 

Traditional 

 A variety of morphologic measures such as volume, surface area, diameter, 

length, branch order, and number of dendrites have been reported in the literature 

(Fukunishi et al., 1999; Refik Kanjhan et al., 2016; Nunez-Abades et al., 1994; Nunez-

Abades and Cameron, 1995). In the past, most morphological studies simply applied 

parametric statistics producing graphs showing means and standard deviations sometimes 

including the data points for each individual neurons (Refik Kanjhan et al., 2016; Nunez-
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Abades et al., 1994; Nunez-Abades and Cameron, 1995). A few studies have employed 

nonparametric statistics for comparing different groups (Refik Kanjhan et al., 2016). 

Previous studies have also grouped data from a range of ages such as P1–P3, P5–P9, or 

P15–P30 without any statistical testing or quantitative rationale (Refik Kanjhan et al., 

2016; Nunez-Abades et al., 1994; Nunez-Abades and Cameron, 1995). However, these 

studies used as few as five to ten neurons for the entire group, a mere one or two animals 

at each age and a couple of neurons per animal. Therefore, previous studies of XII MN 

morphology utilized relatively small numbers of neurons across age ranges with very 

little, if any support for the grouping. 

 

Conventional  

 For any parametric statistical test one of the key assumptions is of course, that the 

data is normally distributed for every group being tested. Another assumption for almost 

any statistical test is that the data is represented by a unimodal distribution. Although, 

there are readily available statistical tests and analyses (graphical and numerical) for 

examining whether a set of data is normally distributed or not as well as identifying what 

type of distribution represents the data (Ghasemi and Zahediasl, 2012; Le Boedec, 2016), 

their use in neuron morphology studies have not been reported. Graphical methods such 

as Q-Q plots, Cullen-Frey (skewness versus kurtosis) plots, and cumulative distributions 

can allow for visual evaluation of whether the data set is normally distributed 

(Delignette-Muller and Dutang, 2015). Statistical tests such as the Kolmogorov-Smirnov 

(K-S), Shapiro-Wilk test, Anderson-Darling test, Cramer-von Mises test, and the Jarque-

Bera test can determine the statistical significance of a data set being normally distributed 
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(Ghasemi and Zahediasl, 2012; Le Boedec, 2016). There is also one test for determining 

whether a data set is unimodally distributed or not. The Hartigan dip-test provides a 

numerical evaluation of how well the data distribution fits a unimodal distribution 

(Hartigan and Hartigan, 1985). There are in addition several methods for non-parametric 

ANOVA and multiple comparison tests (García et al., 2010). The conventional battery of 

tests and statistical methods pertaining to non-parametric data (non-normally distributed) 

easily allows for thorough testing and evaluation of data regardless of the nature of the 

distribution and assumptions that the data satisfies. Although sample size is still 

important the variety of non-parametric tests allows for selection of the appropriate test in 

respect to the data. One other advancement in statistical analysis is the ability to examine 

and test for different distributions assessing what type of distribution (normal, log-

normal, gamma, Weibull, etc…) best fits the data (Delignette-Muller and Dutang, 2015). 

 

Distribution Analysis 

In addition to comparative tests and validating their assumptions, the type of 

distribution which best represents the data for each group in an experiment can be 

valuable in understanding and interpreting the results. There are number of graphical 

techniques as mentioned above to evaluate the data relative to a number of different 

distributions (Delignette-Muller and Dutang, 2015). There are also programs such as Fit-

Dist which can be used to fit a data set to a specific distribution providing a measure of 

the “goodness-of-fit” for that distribution. These programs usually also provide both 

graphical and numerical results comparing the data set to a specific single unimodal 

distribution. Knowing that two sets of data have different distributions (such as log-
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normal versus gamma) can have a profound influence on the type of comparative 

statistical tests (such as using the Kolmogorov-Smirnov test) to be employed as well as 

indicating that the two sets of data may represent different stochastic processes. 

Data which may be represented by more than one overlapping distributions is also 

important in that it suggest that the data is more complex than is represented by a single 

distribution. Finite mixture modeling is a methodology for examining and testing 

different multi-distribution models and determining the “goodness-of-fit” for each model 

(Everitt, 1996). Finite mixture modeling allows the data to be fitted to two or more 

distributions of a specific type such as normal, log-normal, or gamma while providing a 

measure of the “goodness” of that fit. A finite mixture model is simply a weighted sum of 

a number (N) of a specific type of distribution given by the equations 

𝑓(𝑥) =∑𝑤𝑖

𝑁

𝑖=1

∙ 𝑓𝑖(𝑥) 

∑𝑤𝑖

𝑁

𝑖=1

= 1 

 

Where f(x) is the sum of the individual sub-distributions, N is the number of 

distributions, and fi(x) is each sub-distribution, and wi is the weight (wi < 1) for each sub-

distribution with the sum of the weights equal to 1 (100% of the distribution f(x)). Figure 

1 illustrates examples of three different distributions resulting from the sum of two 

normal distributions. Although only one of the three (Figure 1a) is not unimodal 

(Bimodal), all three would test to be non-normal. As is seen, one of the three results in a 

very skewed distribution (Figure 1b) while the third results in a distribution with large 
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than expected tails as compared to a normal, log-normal, or other single skewed 

distribution. 
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Figure 1. Graphs illustrating examples of different finite mixture model. The PDF and 

CDF for mixture models of two normal distributions showing (A) a bimodal distribution, 

(B) a skewed distribution, and (C) an increase in the tails. The blue and magenta lines 

represent the two theoretical distributions while the black lines represent the summation 

of the two distributions. 
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Present Study 

In the previous developmental studies of breathing control during the first three 

weeks post-birth measurements were performed on a daily basis (Liu et al., 2006). 

However, there are no developmental studies of XII MN morphology with similar 

temporal resolution (measurements on a daily or semi daily basis). Also, the sensitive 

period as previously described for respiration has not be examined. Therefore, I 

performed the present study investigating the morphological changes in XII MNs in a 

developing rat model. My specific aims were 1) Quantify developmental changes in the 

morphology of hypoglossal motoneurons in the respiratory region of the brainstem with 

postnatal age, and 2) Model development changes in the electrophysiological behavior of 

hypoglossal neurons in the respiratory region of the brainstem as related to age and 

morphology. Our hypothesis was that there is a morphology change corresponding to the 

sensitive period that has been shown for neurochemical and respiratory control.  

I examine nine separate time points during the first three weeks of development in 

a rat model to determine the changes in MN morphology in the hypoglossal nucleus with 

age. We utilized the Golgi-Cox technique to stain XII MNs to visualize the neurons for 

morphological analysis at each of the nine separate time points (Figure 2). We also 

employed conventional statistics and other methodologies to perform detailed analysis of 

the morphological data. I used nonparametric statistics to compare the nine ages pooling 

data at ages which were not significantly different. In addition, we utilized the simulation 

environment NEURON to investigate the potential role of morphology in the 

electrophysiology of XII MNs with age (Figure 2). Among the innovations of my study 

were the temporal resolution (individual days), comprehensive statistical (testing for 

normality and unimodality) and data (finite mixture models) analysis. Another innovation 
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was modeling then electrophysiology using actual XII MN morphologies instead of 

simple single compartment models and models with three none branching dendrites as 

has been done previously. I simulated previous electrophysiological experiments and 

compared my results with those experimentally obtained. The last innovation is exploring 

the possible relationship between XII MN morphology and the passive and active 

electrophysiological properties. 
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Figure 2. Flowchart of the project showing the morphology, electrophysiology, and 

overview of the work. 
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Abstract 

The autonomic brainstem generates breathing rhythm by integrating inputs from 

chemo- and mechanosensors in the viscera and coordinating descending outputs from 

higher structures in the central nervous system. Hypoglossal motoneurons (XII MNs) 

receive inputs from respiratory premotor neurons, important for maintaining airway 

patency. Previous studies in rodents report significant changes in breathing control during 

the first three weeks of life, with a sensitive period at 10 to 13 days post-birth (P10–P13) 

characterized by pronounced changes in neurotransmitters, excitation-inhibition balance, 

and breathing physiology. However, age-dependent morphological changes of XII MNs 

during the first three weeks post-birth and especially this sensitive period are under-

studied. Here, we comprehensively characterize and quantify the early morphological 

changes in rat XII MNs. We hypothesized that there are morphological changes in the 

soma size and dendritic tree complexity of XII MNs corresponding to the functionally-

defined sensitive period observed at postnatal day 10–13 (P10–P13). To test this 

hypothesis, we used an innovative contemporary statistical approach to analyze Golgi-

Cox stained XII MNs at nine postnatal ages between P1–P21. Our findings reveal two 

sub-populations of XII MNs, which are dependent on age and morphological feature. 

Soma size increased ~40% from P1 to P21, without changing shape. However, dendritic 

arborization increased in extent/distance and complexity. Dendritic branching of 

developing neurons significantly increased from P1 through P13, with the greatest 

increase at P10–P13 based on the Sholl method.  Our detailed characterization of XII MN 

morphological development establishes a foundation for the study and elucidation of 

morphological changes caused by maternal and perinatal conditions. 
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Introduction 

Respiration is a fundamental autonomic behavior that requires coordination of the 

diaphragm, intercostal muscles, upper airway, and tongue to ensure breathing matches 

metabolic need. Even though the control of breathing is fundamental to higher organisms, 

our knowledge of the underlying neural circuitry that generates breathing rhythm is still 

nascent (Feldman et al., 2013; Feldman and Del Negro, 2006). Importantly, we do not yet 

understand how breathing regulation and control are influenced by anatomical structure 

and synaptic remodeling of neurons within the central respiratory circuitry early in 

development (Feldman et al., 2013; Feldman and Del Negro, 2006; Wong-Riley et al., 

2013). The neural network in the brainstem that generates, shapes, and transmits 

breathing motor pattern must be functional prior to birth (Thoby-Brisson et al., 2005) and 

continues to develop and remodel in the first weeks of life (Harper and Kinney, 2010; 

Kinney, 2009; Wong-Riley and Liu, 2005). If the breathing neural network fails to 

generate a physiologically appropriate rhythm during early postnatal life, pathological 

breathing patterns can occur—such as apnea of prematurity, periodic breathing, and 

sudden infant death syndrome (SIDS) with impaired gas exchange that could threaten the 

life of the newborn (Erickson et al., 2007; Kinney, 2009; Martin and Wilson, 2009). 

Brainstem regions such as the nucleus tractus solitarii (nTS), preBötzinger 

Complex (pBC), and hypoglossal motor nucleus (XII) are necessary for the generation 

and transmission of breathing rhythm and modification of breathing pattern in response to 

sensory input (Lindsey et al., 2012; Wong-Riley and Liu, 2005). Early work by other 

investigators has shown that development of the respiratory network plays a key role in 

changing breathing pattern (Liu et al., 2006; Mortola, 1984). Understanding how the 

breathing neural network is remodeled during early life is key to elucidating the synergy 
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between morphology and the transmission of breathing rhythm in the perinatal period. 

Other reports have shown that neural network behavior is influenced by the morphology 

of neurons, and that connectivity is altered due to changes in neurotransmitter release and 

receptor up- and down-regulation (Ferrante et al., 2013; Komendantov and Ascoli, 2009). 

Hypoglossal motoneurons (XII MNs) supplying the tongue and upper airways are used in 

in vitro models to provide an index of fictive inspiratory transmission (Koizumi et al., 

2008; Purvis and Butera, 2005; Smith et al., 1991, 2000), and our laboratory has 

previously shown age-dependent changes in the distribution of drive latencies in 

hypoglossal motoneuron output (Fietkiewicz et al., 2011).    

Within the past two decades developmentally-related changes in breathing 

physiology have been characterized. During the first weeks after birth, changes in 

cytochrome oxidase occur in the pBC, nTS, XII, and other nuclei of the brainstem (Liu 

and Wong-Riley, 2001; Wong-Riley and Liu, 2003). Additionally, during postnatal days 

10 through 13 there are increases in inhibitory drive, mediated by GABA and glycine, 

and decreased glutamatergic excitatory drive (Liu and Wong-Riley, 2002, 2006; Wong-

Riley and Liu, 2005). Ventilatory changes have been described from P0 to P21 with an 

increase in the hypoxic ventilatory response at P0–P6 (Liu et al., 2006, 2009). At P10– 

P21 there is a decrease in overall breathing frequency, but an increase in tidal volume 

(Liu et al., 2006, 2009). Postnatal days 10–P13 have been referred to as a “sensitive 

period” in which respiratory development exhibits pronounced changes in frequency and 

variability of breathing pattern. This “sensitive period” is an intermediate window of 

transition from the early more variable breathing (P0–P7) to later less variable breathing 

pattern seen during P15–P21. Finally, the third week represents changes leading to 
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adolescence and respiratory control similar to that of an adult. Although changes in 

cytochrome oxidase, respiratory control, neurotransmitters, and neural function, occur 

during the P10–P13 period, a major component of the breathing changes are likely due to 

the maturation of chemoreflexes (Wong-Riley et al., 2013). However, little information is 

available concerning the potential role that morphological changes may have on these 

developmental windows. 

Morphological and electrophysiological differences have previously been shown 

between neonate and adult animals (Cameron et al., 1991; Fulton and Walton, 1986; 

Nunez-Abades et al., 1993, 1994; Nunez-Abades and Cameron, 1995). Although in vitro 

studies investigating postnatal development of XII motoneuron morphology showed 

anatomical changes with age, a detailed description of age-related development is 

lacking. The few developmental studies investigating changes in XII MN morphology 

(Carrascal et al., 2005; Kanjhan et al., 2016a) did not focus on the functionally sensitive 

window, P10–P13. Previous studies have collapsed data across age ranges or windows 

based on arbitrary grouping (Kanjhan et al., 2016a), or omitted certain windows or age 

ranges, which have been indicated as important in respiratory control, particularly P10–

P13 (Nunez-Abades et al., 1994; Nunez-Abades and Cameron, 1995). The ages we 

studied are based on postnatal days when significant respiratory and neurotransmitter 

changes have previously been reported in the developing brainstem of rats (Liu et al., 

2006; Wong-Riley and Liu, 2005).  Previous studies have suggested that there is little if 

any difference in normal development between genders for the ages investigated in this 

study (Kanjhan et al., 2016a; Wong-Riley et al., 2013), thus we did not differentiate 

between genders.        
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Our aim in these experiments was to study the maturation of XII MNs within the 

context of previously reported physiological and neurochemical changes around postnatal 

days 10 to 13. Our objective in this study was to comprehensively characterize and 

quantify the somatic and dendritic morphological features of XII MNs across the first 

three weeks of life. We hypothesized that there are morphological changes in XII MNs 

which correspond to the functionally-defined sensitive period observed at P10–P13. We 

tested this hypothesis using Golgi-Cox staining to visualize neuronal morphology for 

quantitative examination of somata and dendritic arbor of developing XII MNs at nine 

separate postnatal ages from P1–P21 in a rat model. We employed two-dimensional (2D) 

Sholl analysis to quantify morphological metrics including the maximum number of 

intersections, radius at which the maximum number of intersections occur, ramification 

index, and enclosing radius for the dendritic tree of XII MNs from P1 to P21. We tested 

for both normality and unimodality of the data distribution as well as nonparametric 

statistics and contemporary statistical methodology including finite mixture distribution 

models to determine how the data was distributed. Previous studies have not 

comprehensively reported the use of normality or unimodality testing of their data, so 

applying contemporary statistical methods to our data has the potential of revealing a 

greater understanding of XII MN development during the first three weeks post-birth. 

 

Materials and Methods 

Animals 

Pregnant Sprague-Dawley dams (Charles River Laboratories International, Inc., 

Wilmington, MA) obtained approximately 18 days after the start of pregnancy (E18) 

were allowed to deliver naturally in the Loma Linda University Animal Care Facility. To 
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determine how many time points to use a minimal litter size of 9 rat pups was assumed, 

therefore we selected nine postnatal ages across the first three weeks of development for 

this study. To adequately reflect the early period of development when several changes 

occur P1, P3, P5, and P7 were chosen (Liu et al., 2006; Liu and Wong-Riley, 2002, 2006, 

2001; Wong-Riley and Liu, 2005). For the second week the sensitive developmental 

period was the focus, so P10, P12, and P13 were chosen. This only left two time points 

for the third week of development, so we chose P17 and P21 as the period of maturation 

prior to the adult respiratory pattern. As a result, rat pups at nine postnatal ages (P1, P3, 

P5, P7, P10, P12, P13, P17, and P21 days) were used in the study. Typical litter size was 

approximately 9–14 pups (Table 1) and no distinction was made between genders. When 

two litters were used they were balanced if needed so that the number of pups per litter 

were similar if not the same. All procedures and protocols used in this study were 

approved by the Institutional Animal Care and Use Committee at Loma Linda University 

and followed the guidelines by the National Institutes of Health Guide for the Care and 

Use of Laboratory Animals (http://www.ncbi.nlm.nih.gov/books /NBK54050).  

 

Golgi-Cox Staining 

On the appropriate developmental day, animals were weighed, euthanized, and 

the brain extracted. For postnatal ages P1 through P7 the pups were anesthetized with 

isoflurane (Western Medical Supply). When unresponsive to toe pinch, their brains were 

rapidly extracted and placed in chilled 0.9% saline. For postnatal ages P10 through P21, 

animals were placed in an induction chamber with oxygen (100%) flow at 0.65 L/min 

and isoflurane administered at a concentration of 3 to 4% based on the postnatal age. 

After the animal was unresponsive to toe pinch it was removed from the induction 
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chamber and placed on a platform with the oxygen and isoflurane continuously 

administered via a nose cone. The animal was perfused with 0.9% saline for 

approximately two minutes and then the brain was removed. For ages P1 through P7, the 

whole brain was maintained intact while for P10 through P21 the brain was sectioned 

coronally into two tissue blocks. 

After removal, the brains were immediately transferred from 0.9% saline to 

impregnation solution from a commercial kit (superGolgi Kit, Bioenno Tech, LLC, Santa 

Ana, California). Impregnation solution was changed after two days then the specimens 

were left in the solution for five more days according to the supplier’s instructions and 

previous reported methods (Das et al., 2013). Sections impregnated at different time 

durations showed that the best results were obtained with 7 days of impregnation 

changing the solution after the initial two days. After a total of 7 days in impregnation 

solution at room temperature, the brains were placed in two changes of post-impregnation 

buffer at room temperature (changed each day for two days). We performed coronal 

sectioning of tissue at 150 m with a vibratome (Vibratome Series 1000 Classic–Tissue 

Sectioning System, Leica, St. Louis) (Gibb and Kolb, 1998). Sections were mounted onto 

gelatin-coated slides and allowed to dry slowly in a humidified chamber overnight (Das 

et al., 2013). The slides were then allowed to dry at room temperature and humidity for 

approximately one hour and then rehydrated in phosphate buffered saline, stained, placed 

in post-staining buffer, and then washed, dehydrated, and cleared in xylene as per the 

supplier’s instructions and previous reported methods (Das et al., 2013). After staining, 

Permount (Fisher Scientific, SP-15) was applied to the slides which were then cover-

slipped and allowed to fully dry. 
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Imaging 

All sections were imaged using a 2x objective and compared with atlases 

(Khazipov et al., 2015) corresponding to the appropriate postnatal period to identify the 

sections containing the XII nucleus from each animal (Figure 3). We used a 40x objective 

to acquire image stacks for each XII motor neuron. For the P1–P7 animals single image 

stacks with one image every 2 μm in the z-direction were obtained using a microscope 

(Ziess Axio Imager, Carl Zeiss Microscopy, LLC One Corporation Way 1 Peabody, MA 

USA) with a motorized stage (Applied Scientific Instrumentation, Eugene, OR) and 

imaging software (Stereologer, Stereology Resource Center, Tampa FL). For the P10–

P21 animals, we acquired single and multiple stacks with one image every 2 m in the z-

direction. Multiple z-stacks are required for many of the P10–P21 animals in order to 

image the entire dendritic morphology of a single neuron at 40x, so we used another 

microscope (Keyence, BZ-9000, Itasca, IL) to capture the arborization for these neurons. 

The resolution for the Ziess Axio Imager was 0.402 m/pixel while for the Keyence the 

resolution was 0.271 m/pixel. 

 

Morphological Measurements 

After the images were processed in ImageJ (https://imagej.nih.gov/ij/), the Sholl 

analysis plug-in (Ferreira et al., 2014) was used to perform 2D measurements. For the P1 

through P7 animals, image stacks were converted to z-projections, thresholding was 

applied to the z-projections, and single neurons with minimal or no overlapping dendrites 

and minimal artifacts were selected, isolated, and measured. For the P10 through P21 

animals, single image stacks were processed the same as in P1 through P7 animals, but 
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multiple stacks were stitched together using the ImageJ stitching plug-in (Preibisch et al., 

2009). Based on power analysis (G*Power, http://www.gpower.hhu.de/en.html) we 

determined that approximately 36 XII MNs (in each postnatal age group) would provide 

sufficient statistical power. We obtained at least 5–7 pups per age from seven litters. 

Litter size ranged from 9 to 14 (average of about 12 pups per litter, Table 1).  A total 

number of 30 or more neurons were obtained for each postnatal age (Table 2). The 

morphology of the soma was measured by determining the area, perimeter, minor 

diameter, and major diameter based on the approximate border of the soma. From these 

measurements the equivalent circular diameter (ECD = [4 x Area/π] ½), form factor (FF = 

(4π x Area)/Perimeter2), and aspect ratio (AR = maximum diameter/ minimum diameter) 

of the soma were calculated (Fukunishi et al., 1999; Standard Practice for 

Characterization of Particles, 2003). Two-dimensional Sholl analysis (Ferreira et al., 

2014; Sholl, 1950) was performed by creating concentric circles at 10 m increments 

from the soma and then the number of dendrites intersecting these circles were counted. 

From these counts Sholl profiles are generated as the number of intersections at each 

circle and the following parameters are determined: maximum number of intersections 

(max intersections), radius at which maximum number of intersections occur (max 

intersection radius), ramification index (the ratio between max intersections and the 

number of primary branches), and enclosing radius (the largest radius at which a dendrite 

intersects) (http://imagej.net/Sholl_Analysis).   
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Table 1. Number of animals available for measurement per litter for the nine 

postnatal ages. The numbers in parentheses are the number of pups born in that litter, 

but usually only 9 to 12 pups in a single litter were used.  Animals in which the 

specimen or sections were lost are designated by N/A.   
 

  

Age 

(days) 

Litter Total # 

of 

Animal

s 

1 

(N=12) 

2  

(N=9) 

3 

(N=12) 

4 

(N=10) 

5 

(N=14) 

6 

(N=14) 

7 

(N=10) 

P1 N/A N/A 2 1 1 N/A 2 6 

P3 N/A 1 1 1 1 1 2 7 

P5 1 1 N/A 1 2 1 N/A 6 

P7 N/A 1 1 1 1 2 N/A 6 

P10 1 1 1 1 2 1 N/A 7 

P12 1 1 1 1 1 1 1 7 

P13 1 1 1 1 1 1 N/A 6 

P17 N/A N/A 1 2 1 2 N/A 6 

P21 1 1 1 1 N/A N/A 1 5 

Total 5 7 9 10 11 8 6 56 
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Figure 3. Morphology of hypoglossal motoneurons for the rat pups at P3, P10, and P21 

postnatal ages. Shown are the images of the corresponding atlas (Left) for P3, P10, & P21 

[R. Khazipov et al., 2015], as well as the low magnification (2X) micrographs of the 

sections (center), and high magnification (40X) images of the Golgi-Cox stained 

hypoglossal motoneurons. The high magnification image for the P3 is a single stack while 

for the P10 & P21 the high magnification images are six stacks stitched together as 

described in the methods.  
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Table 2. Number of XII MN’s analyzed (per litter) for the nine postnatal ages. For 

ages and litters in which the specimen or sections were lost are designated by N/A.  

 

 

  

Age 

(days) 

Litters Total # of 

Neurons 
1 2 3 4 5 6 7 

P1 N/A N/A 18 3 8 N/A 19 48 

P3 N/A 5 6 8 17 7 15 58 

P5 9 4 N/A 6 22 6 N/A 47 

P7 N/A 9 10 7 10 25 N/A 61 

P10 19 6 9 10 13 5 N/A 62 

P12 4 6 5 7 4 24 8 58 

P13 3 6 13 13 11 5 N/A 51 

P17 N/A N/A 9 21 6 8 N/A 44 

P21 5 8 6 6 N/A N/A 6 31 

Total 40 44 76 81 91 80 48 460 
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Location and Selection of Neurons 

Mapping of Neuron Locations  

Figure 3 shows photomicrographs from atlases (Khazipov et al., 2015) of P3, P10, 

and P21 (left panel) with low (2x) and high (40x) magnification images of Golgi-stained 

XII MNs representative sections (center and right panels, respectively). The estimated 

lambda for the low magnification images was used to match the images to the atlas 

image. The position of each XII motoneuron was measured with ImageJ to acquire the 

length and angle of a line from the apex of the fourth ventricle (rostral) or central canal 

(caudal). Then the length and angle were converted to x (horizontal) and y (vertical) 

distance with the x representing the medial-lateral and the y representing the dorsal-

ventral direction. These points were projected on a plot relative to this anatomical 

reference point and the boundary of XII determined in a similar manner, as previously 

described (Kanjhan et al., 2016a; Koizumi et al., 2008).  Points from both left and right 

hemispheres were mapped to one side of the section for the purpose of determining the 

total number and location of neurons in each section. For the rostral-caudal extent of XII, 

sections were matched with a representative rat atlas for each postnatal age (Khazipov et 

al., 2015) and the lambda coordinate along with the y distance (dorsal-ventral direction) 

was used to project the point in a sagittal plane similar to that previously described 

(Kanjhan et al., 2016a). Due to size differences between the postnatal ages, lambda was 

normalized by the lambda value at the obex. Neurons located in the XII nucleus for both 

the coronal and sagittal maps were measured while any neurons outside the XII were 

excluded from analysis. 
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Selection of Motoneurons 

Although the majority of neurons in the XII nucleus are motoneurons, there are a 

few interneurons (Boone and Aldes, 1984; Cooper, 1981; Takasu and Hashimoto, 1988).  

Because of this we needed criteria to determine if the measured neuron was a 

motoneuron. In the adult rat motoneurons are larger in diameter (19-50 m) than the 

interneurons (10–18 m) (Boone and Aldes, 1984; Cooper, 1981; Takasu and Hashimoto, 

1988).  For mouse XII MNs it has been shown that there was approximately a 25% 

decrease in major diameter at P1–P4 as compared with P14–P28 (Kanjhan et al., 2016a). 

Adult interneurons have been described as fusiform or oval in shape with few primary 

dendrites from both poles and from the center, while motoneurons were multipolar in 

shape (Boone and Aldes, 1984; Takasu and Hashimoto, 1988). However, this has not 

been as well established for neonatal XII neurons (Kanjhan et al., 2016a; Nunez-Abades 

et al., 1994; Nunez-Abades and Cameron, 1995).  Therefore, our main criteria for 

determining a motoneuron was that from P1 to P7 the size needed to be at least 18 m 

and at least 20 m at P10 to P21. The shape (oval, fusiform, multipolar) of the neuron as 

previously described was used as a secondary criterion as needed (Boone and Aldes, 

1984; Cooper, 1981; Fukunishi et al., 1999; Kanjhan et al., 2016a; Nunez-Abades et al., 

1994; Nunez-Abades and Cameron, 1995; Takasu and Hashimoto, 1988). 

 

Data Analysis 

General Analysis and Comparisons 

For all neurons at each postnatal age, individual Sholl profile measurements were 

averaged and plotted with their standard deviation (Std). Cumulative distributions of 
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selected parameters were plotted to examine the distribution shape of that parameter for 

each age of interest. Box plots with median and quartiles were also graphed for ready 

comparison. The Shapiro-Wilk test for normality (Ghasemi and Zahediasl, 2012; Le 

Boedec, 2016) and Q-Q plots were used to determine if the data were normally 

distributed.  Hartigan’s dip test (Hartigan and Hartigan, 1985) was used to assess 

unimodality of the data (diptest package in R; https://cran.r-project.org/web/packages/ 

diptest/index). For normality and unimodality, statistically significant differences were 

set at the p<0.01 level. Non-parametric one-way analysis using the Kruskal-Wallis test 

was performed on morphological measures and non-parametric pairwise post-hoc testing 

using Dunn’s test for multiple comparisons (PMCMR package in R; https://cran.r-

project.org/web/packages/PMCMR/) with statistical significance set at the p<0.05 level 

(García et al., 2010).  For the non-parametric comparison, a difference at p<0.05 level 

was considered sufficient, but to conclude that data was not normally or unimodally 

distributed (key assumptions for statistics) a p<0.01 level was chosen.  

 

Distribution Analysis 

For cases in which the data was not unimodal, finite mixture distribution models 

were employed to fit the data to more than a single distribution (Everitt, 1996; Forbes et 

al., 2011). For morphometric parameters that were non-normally distributed, distribution 

analysis (fitdistrplus package in R; https://cran.r-project.org/web/packages/fitdistrplus 

/index.html) was used to determine whether a single distribution provided a good-fit 

(Delignette-Muller and Dutang, 2015). Non-normally distributed data was examined 

using Q-Q plots for different distributions such as log-normal or gamma as well as 
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Cullen-Frey (skewness/kurtosis) plots which also show data relative to normal, log-

normal, and gamma distributions. Goodness of fit measures for several distributions were 

generated for the data to determine quantitatively which type of distribution best fit the 

data. For cases in which a single distribution fit was not found, finite mixture distribution 

models (mixdist package in R; https://cran.r-project.org/web/packages/mixdist/ 

index.html) were employed to fit the data to more than a single distribution. The 

distribution model was chosen on goodness-of-fit and the consistency of the model to fit 

across several parameters and age ranges. All statistical analyses were performed using R 

(https://www.r-project.org/). 

 

Results 

The mean body weights of animals for each postnatal age are shown in Figure 4. 

Rat pup body weight increased relatively linearly with postnatal age. The coefficients of 

variation (CV; inset Figure 4) for the different ages were ≤ 17%.  We measured 460 

neurons in 56 pups (Table 1 and Table 2). Topographical maps of the measured XII 

neurons created for P1, P3, and P5 neurons (Figure 5A), P7, P10, and P12 (Figure 5B), 

and P13, P17, and P21 (Figures 5C) for both the medial-lateral (coronal) and rostral-

caudal (sagittal) orientations showed that selected XII neurons for each postnatal day 

were essentially uniformly distributed in the medial, lateral, dorsal, ventral, rostral, and 

caudal extent of the XII nucleus. Photomicrographs of P3, P12, and P21 XII MNs (Figure 

6) illustrated dendritic spines (Figure 6A, 6B, and 6C), which were observed at all ages. 

Dendrites extending across the midline were also observed at P3 (Figure 6A) and all 

other ages. Dendrites extending beyond the border of the XII nucleus were observed at 

P21, (Figure 6D) as well as the other ages. Additionally, while some XII MNs exhibited 
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near symmetry in dendritic branching across the primary branches, in general the 

dendritic branching for XII MN were asymmetrical across primary branches (Figure 6). 

 

Soma Size, but Not Shape Changes with Age 

Figure 7 shows representative examples of neuron somata for the nine postnatal 

ages at the same magnification. The images for Figure 7 were selected based on their 

quantitative values as compared with the corresponding mean and median values for that 

parameter and postnatal age. Qualitative evaluation of XII MNs suggested a progressive 

increase in the size of the perikarya, thickness of their proximal dendrites, and an increase 

in primary dendrites. We also saw that some neurons appeared globular while others were 

multipolar. Figure 8 shows the cumulative distributions of the size and shape for each of 

the nine postnatal ages.  There was a progressive rightward shift in size distribution of the 

somata with increasing postnatal age, based on equivalent circular diameters, ECD 

(Figures 6A) and their major diameter (Figure 8B). However, there was not much change 

in distribution with shape based on the aspect ratio (Figures 8C) and a small rightward 

shift in form factor (Figure 8D).  The ECD (Figure 8A) and to a lesser extend the major 

diameter (Figure 8B) seemed to show three groups with P1, P3, and P5 as one group, P7, 

P10, and P12 as a second, and P13, P7, and P21 as the third group. The aspect ratio 

(Figure 8C) showed very little if any change while the form factor showed some change 

(Figure 8D). Some cumulative distributions such as the ECD at P21 (Figure 8A) 

demonstrated a shape in the distribution that does not appear to represent a normal 

distribution. 
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Figure 4. Mean () and standard deviation (in blue) of animal body weight at each postnatal 

age with a gray line connecting the mean values.  Weight data for each individual animal is 

shown as a circle (), but some values do overlap. A complete listing of the number of 

animals by age and litter is provided in Table 1.  The coefficient of variance and the number 

of animals at each postnatal day (age) is provided in the inset. 
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Figure 5. Maps of the location of measured neurons in the dorsal-ventral, medial-lateral, 

and rostral-caudal directions for a) P1, P3, & P5; b) P7, P10, & P12; and c) P13, P17, & 

P21.  The number of data points for each chart is given in Table 2 and the hypoglossal region 

is shown as the dashed region.  The coronal maps on the left show the medial-lateral and 

dorsal-ventral directions while the sagittal maps on the right show the dorsal-ventral and 

rostral-caudal directions.  For the coronal maps the scale bars apply, but for the sagittal maps 

the rostral-caudal direction is a normalized value of lambda given by the horizontal axis 

where 1 approximately indicates the obex. 
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Figure 6. Photomicrographs of XII MNs: a) a P3 neuron illustrating dendrites crossing 

the midline (vertical dashed line) and dendritic spines (arrows), b) a P12 neuron 

demonstrating spines (arrows), c) a P21 neuron exhibiting spines (arrows), and d) a P21 

neuron showing dendrites extending beyond the border of the XII nucleus (dashed arc). 
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Figure 7. Representative threshold images of various XII MN soma and their respective 

values for ECD, major diameter, aspect ratio, and form factor.  The ECD and major 

diameter (MajDia) provide information on size while the aspect ratio (AR) and form factor 

(FF) provide information on the shape of the soma.  Images were chosen based on the 

quantitative values (means & medians) for the morphometrics. Legend: P1 – ECD = 18.47 

m, MajDia = 21.34 m, AR = 1.336, FF = 0.695; P3 – ECD = 20.28 m, MajDia = 29.40 

m, AR = 2.102, FF = 0.502; P5 – ECD = 22.55 m, MajDia = 25.60 m, AR = 1.289, FF 

= 0.543; P7 – ECD =28.87 m, MajDia = 33.10 m, AR = 1.315, FF = 0.582; P10 – ECD 

= 40.06 m, MajDia = 68.44 m, AR = 2.918, FF = 0.510; P12 – ECD = 48.37 m, MajDia 

= 80.82 m, AR = 2.792, FF = 0.524; P13 – ECD =44.96 m, MajDia = 54.12 m, AR = 

1.449, FF = 0.358; P17 – ECD = 54.53 m, MajDia = 56.37 m, AR = 1.069, FF = 0.413; 

P21 – ECD = 55.56 m, MajDia = 67.14 m, AR = 1.460, FF = 0.494. The 20 m scale 

bar for all images is shown at bottom of figure under the P17 XII MN. 
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Figure 8. Cumulative distributions of the soma morphology showing the a) equivalent 

circular diameter, b) major diameter, c) aspect ratio, and d) form factor.  The y-axis shows 

the cumulative fraction such that 0.2 is 20%, 0.6 is 60%, and 1 is 100%. Results from the 

Shapiro-Wilks test for normality are in Table 3 and all distributions were found to be 

unimodal as determined by Hartigan’s dip test. 
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The mean and median for the soma of the XII MNs increased in size with 

increasing age (Figures 9A and 9B) but did not significantly change in shape (Figures 9C 

and 9D). The soma size increases linearly, leveling off around P17–P21 (Figures 9A and 

9B). The ECD for the P12–P21 ages was significantly larger from those of the P1–P5 

neurons by approximately 40% (Figure 9A). There was also a statistically significant 

(p<0.05) difference between the ECD of P13–P21 neurons and the P10 neurons with the 

P13–P21 neurons having approximately a 15% increase in ECD (Figure 9A). The major 

diameter of the neurons from rats at P12–P21 were statistically significantly (p<0.05) 

larger than those from rats at P1–P5 by about the same percent as with ECD (Figure 8B).  

The aspect ratio (Figure 9C) was not significantly different across any age. However, the 

form factor (Figure 9D) was significantly lower at P7 and P10 compared with neurons at 

P1 with a decrease of about 16% and P13 was significantly lower (18%) than P1, P3, or 

P5.  

 

Soma Morphology is Unimodal, but not Necessarily Normally 

Distributed 

The Shapiro-Wilk test for normality (Table 3) showed that at specific days (P1, 

P5, P12, and P17) the size distribution was significantly (p<0.01) different from a normal 

distribution. Although the aspect ratio was significantly different from normal, it is a ratio 

of two numbers (quotient of two distributed variates) which may result in a non-normal 

distribution (Marsaglia, 2006). Hartigan’s dip test for unimodality suggest that all soma 

morphometric parameters were not significantly (p>0.25) different from a unimodal 

distribution. Although all the morphometric parameters were found to be unimodal, 
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parameters at one or more postnatal ages were found to be non-normally distributed 

(Table 3).  Therefore, distribution fitting and finite mixture modeling was used to 

characterize the data distribution. To improve the model fit our data was pooled into three 

groups 1) P1–P5, 2) P7–P12, and 3) P13–P21 based on no statistically significant 

differences within each of the three age groups. Summary statistics (Table 4) for these 

three groups demonstrate the increase in soma size (ECD and Major Diameter) while 

very little change, if any in shape (Aspect Ratio and Form Factor). There was a 21% 

increase in ECD from P1–P5 to P7–P12 and a 19% increase from P7–P12 to P13–P21. 

No statistically significant difference was seen for aspect ratio between any of the age 

groups. Although the form factor was significantly different between age groups, there 

was a 14% increase from P1–P5 to P13–P21. Testing for normality and unimodality the 

ECD showed non-normality (Table 3) for two of the three groups, although unimodality 

was demonstrated for all three. For all three groups a mixture of two normal distributions 

was found to be a good-fit for the data (Tables 5–7, Figure 10). The two distributions 

demonstrated changes in mean values and the proportion of each distribution (Figure 10). 

Figure 10A shows the grouped cumulative distributions for ECD with their 

corresponding normal distributions. Fitting the ECD to the sum of two weighted normal 

distributions showed that both normal distributions changed at each stage (Figure 10B–D 

and Tables 5–7). The small right-skew at P1–P5 seems to be a result of the second 

normal distribution (Figure 10B) with an increasing tail at P7–P12 (Figure 10C) and 

P13–P21 (Figure 10D). Since we saw no significant differences in aspect ratio across 

these groups, all of the ages were pooled for the mixture model in which two normal 

distributions (distribution 1: proportion = 0.844, mean = 1.62, std = 0.524, and 
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distribution 2: proportion = 0.156, mean = 2.70, std = 0.87; Chi-Square (χ2) = 0.391, p = 

0.822) were found to fit the data.  After subdividing the XII MNs based on their 

anatomical location into dorsal-ventral and lateral-medial quadrants for comparison of 

topographical differences, we found only the aspect ratio and form factors were 

statistically (p < 0.05) different for ages P1–P5. The aspect ratio for the dorsal-lateral 

region was approximately 36.5% higher than the dorsal-medial region. Although the form 

factor was significantly different, form factor for the dorsal-medial region was 0.6 while 

the dorsal-lateral region was 0.5. No statistically significant topographical differences 

were found for ECD or major diameter for P1–P5 group or for any parameter in the P7–

P12 or P13–P21 groups. The rostral-caudal extent of XII was divided into thirds (rostral, 

middle, or caudal).  At P1–P5 the ECD for the caudal region was 16% higher than for the 

rostral region and at P13–P21 the aspect ratio for the caudal region was about 17% higher 

than for the rostral region. Again, no differences were found for any other parameter 

along the rostral-caudal axis for any of the three groups. 

 

Extent and Complexity of the Dendritic Tree Increases with Age 

The P3 XII MNs had shorter dendrites with fewer branches than P10 or P12 

neurons (Figure 3). The average Sholl profiles (Figure 11) demonstrated changes in 

dendrite morphology as changes in shape and size of the profile. At P3, 28.8% of neurons 

had dendrites with longer radii of intersection (distance from soma >150 m) while about 

10% had dendrites with intersections extending to ≥ 200 m from the soma. In contrast, 

at P5 and P7 about 22% of the neurons extended to ≥ 200 m from the soma. At P10 and 

P12 the Sholl profiles showed 5% to 10% of neurons having dendrites with intersections 
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300 to 400 m from the soma, while at P13, 23.5% of neurons had intersections out 300 

to 500 m from the soma. For P17 and P21, 27.3% and 35.5% of the neurons, 

respectively, extended 300 to 500 m from the soma. Figure 12 shows representative 

images of dendrite morphology from MNs (upper panels) and their morphometric values 

(lower panels) at P3, P10, and P21. The size and complexity of the dendritic tree is 

reflected by various morphometric parameters, such as the maximum number of 

intersections, the radius at which the maximum number of intersections occur, and the 

enclosing radius. Although some XII MNs may seem near symmetrical in the 

arrangement of the dendritic trees extending from the soma (Figure 12, P3 and P21), the 

total dendritic length and branching of the primary branches extending from the soma 

was observed to be asymmetrical for most of the neurons (Figure 12, P10 and P21). 

Figure 13 shows the cumulative distributions for the maximum number of 

intersections (A), the radius at which the maximum number of intersections occur (B), 

ramification index (C), and enclosing radii (D). The maximum number of intersections 

(Figure 13A) and the enclosing radius (Figure 13D) demonstrated a separation between 

the ages with three stages defined as (1) P1, P3, and P5; (2) P7, P10, and P12; and (3) 

P13, P17, and P21.  The radius at which the maximum number of intersections occur 

(Figure 11B) and the ramification index (Figure 13C) did not show a statistical difference 

between the ages. For the maximum number of intersections, radius at which the 

maximum number of intersections occurred, ramification index, and enclosing radius 

(Figure 13D) there were grouping of age ranges seen in the distributions as was seen for 

ECD and major diameter (Figure 8).  
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Figure 9. Box plots of the neuron soma 2D morphometrics at each postnatal age.  The 

number of neurons for each age is found in Table 2.  Shown are the a) equivalent circular 

diameter (ECD), b) major diameter, c) aspect ratio (AR), and d) form factor. The 

horizontal lines (―) in the boxes are the median values, the diamonds () represent the 

mean values, the boxes and whiskers indicate the quartiles, and the circles (•) are points 

greater than 1.5 times the interquartile range (IQR).  Non-parametric Kruskal-Wallis with 

pairwise non-parametric multiple comparison were performed, statistical significance was 

determined as p<0.05, and denoted with an †. 
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Table 3. Shapiro-Wilk normality test results for soma morphology.  Shown for each 

parameter and age are the W-statistic and the corresponding p-value.  The three bottom 

rows are for the three groups. Cells in bold are significantly different at the p < 0.01 

level. 

 
 

  

Age 

(days) 

ECD (m) Major Dia (m) Aspect Ratio Form Factor 

W p-value W p-value W p-value W p-value 

P1 0.906 0.001 0.923 0.004 0.892 <0.001 0.964 0.145 

P3 0.980 0.455 0.971 0.183 0.883 <0.001 0.980 0.438 

P5 0.911 0.002 0.941 0.019 0.859 <0.001 0.991 0.966 

P7 0.983 0.554 0.973 0.200 0.909 <0.001 0.943 0.006 

P10 0.986 0.686 0.966 0.079 0.916 <0.001 0.974 0.202 

P12 0.944 0.010 0.896 <0.001 0.916 <0.001 0.985 0.669 

P13 0.980 0.528 0.956 0.055 0.799 <0.001 0.972 0.262 

P17 0.926 0.007 0.980 0.647 0.918 0.004 0.948 0.047 

P21 0.941 0.089 0.940 0.081 0.899 0.007 0.973 0.593 

P1–P5 0.948 <0.001 0.958 <0.001 0.881 <0.001 0.992 0.544 

P7–P12 0.980 0.010 0.950 <0.001 0.922 <0.001 0.977 0.007 

P13–P21 0.959 0.001 0.969 0.005 0.873 <0.001 0.975 0.019 
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Table 4. Soma morphology summary statistics (mean ± std) for the three age 

groups. 

 
  Parameter P1–P5 P7–P12 P13–P21 

Area (m3) 497 ± 230 729 ± 314 1028 ± 406 

Perimeter (m) 102 ± 25 129 ± 30 159 ± 35 

Major Diameter (m) 33.5 ± 8.9 39.6 ± 10.4 47.0 ±10.7 

Minor Diameter (m) 18.5 ± 4.9 23.0 ± 5.8 27.5 ± 7.0 

ECD (m) 24.6 ± 5.3 29.8 ± 6.2 35.6 ± 6.7 

Aspect Ratio 1.91 ± 0.69  1.81 ± 0.58 1.80 ± 0.60 

Form Factor 0.58 ± 0.11 0.54 ± 0.10 0.51 ± 0.10 
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Table 5. Results of fitting two normal distributions to various parameters for P1–P5 (P1, 

P3, & P5).  Shown are the proportion (prop) or weight for that distribution, the mean, the 

SD, and the p-value for the mixture distribution model. 

 

  

Parameters Normal Distribution 1 Normal Distribution 2 Chi-

Square 

 

p-value 
prop mean std prop mean std 

ECD (m) 0.971 24.28 4.59 0.029 43.74 8.26 3.77 0.152 

Maj Dia (m) 0.705 29.60 5.52 0.295 43.18 8.05 2.05 0.842 

FF N/A 0.59 0.11 N/A N/A N/A N/A 0.544 

Max Int 0.417 4.17 1.13 0.583 7.49 2.03 2.77 0.837 

Max Int R (m) 0.412 20.47 7.23 0.588 43.01 15.19 0.42 0.812 

Ram Index 0.768 1.19 0.41 0.232 2.33 0.80 0.72 0.697 

Encl Rad (m) 0.822 108.50 32.16 0.178 227.60 67.46 16.31 0.130 
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Table 6. Results of fitting two normal distributions to various parameters for P7–P12 (P7, 

P10, & P12).  Shown are the proportion (prop) or weight for that distribution, the mean, 

the SD, and the p-value for the mixture distribution model. 

 

  

Parameters Normal Distribution 1 Normal Distribution 2 Chi-

Square p-value 
prop mean std prop mean std 

ECD (m) 0.819 28.40 4.73 0.181 37.27 6.20 0.78 0.855 

Maj Dia (m) 0.293 32.94 4.33 0.707 41.33 10.38 3.65 0.456 

FF 0.626 0.49 0.07 0.374 0.63 0.09 14.05 0.900 

Max Int 0.822 7.64 2.18 0.178 13.08 2.63 1.20 0.752 

Max Int R (m) 0.545 35.24 17.68 0.455 66.01 33.12 3.19 0.867 

Ram Index 0.754 1.45 0.48 0.246 2.44 0.80 11.44 0.324 

Encl Rad (m) 0.899 177.60 51.45 0.101 328.30 95.13 19.93 0.462 
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Table 7. Results of fitting two normal distributions to various parameters for P13–P21 

(P13, P17, & P21).  Shown are the proportion (prop) or weight for that distribution, the 

mean, the SD, and the p-value for the mixture distribution model. 

 
 

  

Parameters Normal Distribution 1 Normal Distribution 2 Chi-

Square 

 

p-value 
prop mean std prop mean std 

ECD (m) 0.776 33.27 4.75 0.224 43.97 6.28 1.67 0.643 

Maj Dia (m) 0.108 35.17 0.84 0.892 47.87 9.97 14.10 0.723 

FF 0.791 0.47 0.09 0.204 0.62 0.11 5.14 0.526 

Max Int 0.785 9.59 2.77 0.215 15.15 4.38 19.01 0.165 

Max Int R (m) 0.898 63.05 25.95 0.102 128.07 52.70 13.21 0.432 

Ram Index 0.723 1.77 0.50 0.277 3.00 0.85 10.80 0.701 

Encl Rad (m) 0.363 185.10 35.19 0.637 282.60 103.23 6.97 0.324 



 

50 

 

 

 

 

 

 

 

 

 

 

Figure 10. Pooled distributions for the ECD showing the finite mixture distribution 

models.  a) Cumulative and corresponding normal distributions for ECD at P1-P5 (P1, P3, 

& P5), P7-P12 (P7, P10, & P12), and P13-P21 (P13, P17, & P21).  b-d) Histograms for the 

ECD and mixture distribution models showing the two normal distributions for b) P1-P5, 

c) P7-P12, and d) P13-P21.  The parameters for the two normal distributions are given in 

Tables 5, 6, and 7. 
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Figure 11. Sholl profiles for the nine postnatal ages. Each data point is the mean value 

with the error bars representing the standard error.  The number of neurons for each graph 

is shown in Table 2, however the number of neurons per data point may decrease with 

increasing distance due to some neurons having a shorter enclosing radius as compared to 

other neurons. For some profiles (P3, P10, and P12) the variance at the larger distances are 

due to only a few neurons having dendrites extending to that distance. 
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Figure 12. Representative threshold images of isolated XII MNs from P3, P10, and P21 

with their respective Sholl profile and values for the maximum number of intersections 

(Max Int), radius at which the maximum number of intersections occur (Max Int Rad), 

ramification index (Ram Index), and enclosing radius (Encl Rad).  For the arrows indicate 

the neurons which correspond to the Sholl profile. 
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Figure 13. Cumulative distributions for A) maximum number of intersections, B) radius 

at which maximum number of intersections occurred, C) ramification index, and D) 

enclosing radius at the nine postnatal ages (P1, P3, P5, P7, P10, P12, P13, P17, and P21). 

The y-axis shows the cumulative fraction such that 0.2 is 20%, 0.6 is 60%, and 1 is 100%. 

Results from the Shapiro-Wilks test for normality are in Table 8 and the results of the 

Hartigan’s dip test for unimodality are shown in Table 9. 
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The maximum number of intersections (number of dendrites intersecting a 

concentric circle) at P10–P21 were significantly higher than P1–P5 (Figure 14A) by 50% 

to 90%.  Similarly, the maximum intersection radius (radial distance from soma at which 

the maximum number of intersections occur) was age-dependent with a 30% or greater 

increase at P10–P21 (Figure 12B). The maximum intersection radius at P13, P17, and 

P21 were also significantly higher by about 40% or greater than P7 (Figure 14B). For the 

ramification index P13 and P17 were significantly higher by approximately 40% than 

P1–P7 (Figure 14C) which again may indicate that the increase in maximum number of 

intersections for P7–P12 may be mainly due to the increase in the number of primary 

branches, but not at P13 and P17 (Figures 14A and 14C). We did observe an increase in 

the number of primary branches from P1 to P21 with a statistically significant 25% to 

50% increase for P7–P17 compared with P1.  However, the number of primary branches 

increased gradually leveling off from P13–P21. For the enclosing radius P7–P21 were 

significantly increased by 50% or more from P1 and P3 while P13 through P21 were 

significantly increased by 40% compared with P7 and P10 (Figure 14D). The majority of 

the parameters showed significant increases starting between P10 and P13 and a few 

cases at P7. In the ventral-lateral region the enclosing radius for the P1-P5 group was 

found to be significantly (p<0.05) lower from the other three by approximately 29%, but 

there were no differences found for the other age groups. The ramification index for the 

dorsal-lateral region was significantly higher (approximately 33%) when compared with 

the ventral-medial region for the P13–P21 group. In the rostral-caudal direction 

ramification index for the P7–P12 group was significantly lower by 21.2% in the caudal 
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region as compared with the rostral region. No other differences were found for any 

parameter or age related to topographical location.  

 

Dendrite Morphology: Normality and Unimodality 

The Shapiro-Wilk test showed significant (p<0.01) deviation from normality for 

the P1, P10, and P12 groups for maximum number of intersections while the radius at 

which the maximum number of intersections occurred was significantly different from 

the normal distribution at P1 through P13 (Table 8). The ramification index was 

significantly different from a normal distribution for all ages (Table 8). For the enclosing 

radius at P1, P3, P5, P12, P13 and P17 the data is significantly different from a normal 

distribution, but not at P7, P10, or P21.  Applying the Hartigan’s dip test for unimodality 

to the radius at which the maximum number of intersections occurred revealed a 

distribution that was significantly different from a unimodal distribution at P1–P12, but 

not at P13, P17, or P21 (Table 9). For all ages, the other three morphometric parameters 

were not significantly different from a unimodal distribution (Table 9). In summary, 

depending on the specific parameter of interest, XII MN dendrite morphology at some 

postnatal ages exhibited a non-normal distribution while at other ages they were normally 

distributed.  

Figures 15A and 15B show examples of the cumulative distributions for data 

which were normally/non-normally distributed (Figure 15A) or were unimodally/non-

unimodally (bimodal or multimodal) distributed (Figure 15B).  Curve fitting the data for 

the maximum number of intersections for P10 yielded a log-normal distribution (Figure 

15C, dashed line) which seems to follow the same form as the data, or a mixture 

distribution model of two normal distributions (Figure 15C, solid line) both 
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demonstrating a good fit to the data. For the maximum number of intersections radius for 

P10 a mixture distribution of two normal distributions (Figure 15D) was found to fit the 

data best.  To provide sufficient numbers for fitting finite mixture distribution model the 

data was again pooled into three groups (P1–P5, P7–P12, and P13–P21). Summary 

statistics (Table 10) for the three groups showed an increase in number of primary 

branches from P1–P5 to P7–P12 with no significant change between P7–P12 and P13–

P21. However, the maximum number of intersections significantly increased from P1–P5 

to P7–P12 and from P7–P12 to P13–P21. Testing for normality and unimodality for the 

dendritic morphology of the pooled data showed that most of the data was non-normally 

distributed (Table 8), but most were unimodally distributed except for the radius of the 

maximum number of intersections and enclosing radius (Table 11). Figure 14A shows the 

cumulative distributions of the maximum intersection radii for the three groups with their 

corresponding normal distribution and demonstrates the non-normality of the data. Fitting 

the maximum intersection radius to the sum of two weighted normal distributions showed 

that at P1–P5 two distributions of comparable weights (Figure 16B and Tables 5–7) with 

shifts in both distributions at P7–P12 (Figure 14C) and one dominant distribution at P13–

P21 (Figure 16D). Figure 15 illustrates three sets of images in which two different 

neurons in proximity of each other have very different Sholl profiles. In some sections 

two neurons can be found which represent near minimum and maximum value (Figure 

17). Again, while a few XII MNs might exhibit some symmetry in total dendritic length 

and branching of primary branches extending from the soma (Figure 17, P3 left side of 

image), most XII MNs demonstrated asymmetrical total dendritic length and branching. 
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Figure 14. Box plots of the 2D Sholl analysis morphometrics measured at each of the nine 

postnatal ages.  The number of neurons for each age is found in Table 2.  Shown are the a) 

maximum number of intersections, b) radius at which the maximum number of 

intersections occurred, c) ramification index, and d) enclosing radius. The horizontal lines 

in the boxes are the median values while the diamonds are the mean values and the circles 

are points greater than 1.5 times the IQR. For each parameter Non-parametric Kruskal-

Wallis with pairwise non-parametric multiple comparison were performed to compare the 

different postnatal ages. Statistical significance was determined as p<0.05 and denoted 

with an †. 
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Table 8. Shapiro-Wilk normality test results for dendrite morphology. Shown for each 

parameter and age are the W-statistic and the corresponding p-value. The three bottom 

rows are for the three groups. Cells in bold are significantly different at the p < 0.01 

level. 

 

  

Age 

(days) 

Max 

Intersections 

Max Intersect 

Rad 

Ramification 

Index 

Enclosing 

Radius 

W p-value W p-value W p-value W p-value 

P1 0.928 0.006 0.904 0.001 0.829 <0.001 0.868 <0.001 

P3 0.975 0.266 0.890 <0.001 0.829 <0.001 0.908 <0.001 

P5 0.952 0.049 0.847 <0.001 0.706 <0.001 0.846 <0.001 

P7 0.974 0.219 0.848 <0.001 0.793 <0.001 0.975 0.253 

P10 0.924 0.001 0.902 <0.001 0.926 0.001 0.962 0.054 

P12 0.892 <0.001 0.896 <0.001 0.669 <0.001 0.901 <0.001 

P13 0.943 0.016 0.884 <0.001 0.917 0.002 0.888 <0.001 

P17 0.960 0.125 0.954 0.076 0.912 0.003 0.924 0.007 

P21 0.976 0.701 0.936 0.065 0.902 0.008 0.965 0.384 

P1–P5 0.966 0.001 0.901 <0.001 0.788 <0.001 0.862 <0.001 

P7–P12 0.913 <0.001 0.906 <0.001 0.798 <0.001 0.903 <0.001 

P13–P21 0.962 0.001 0.922 <0.001 0.925 <0.001 0.936 <0.001 
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Table 9. Results from Hartigans' dip test for unimodality/multimodality for dendrite 

morphology. Shown for each parameter and age are the D-statistic and the corresponding 

p-value.  The three bottom rows are for the three groups. Cells in bold are significantly 

different at the p < 0.01 level. 

 

Age 

(days) 

Max 

Intersections 

Max Intersect 

Rad 

Ramification 

Index 

Enclosing 

Radius 

D p-value D p-value D p-value D p-value 

P1 0.049 0.524 0.104 <0.001 0.051 0.469 0.052 0.416 

P3 0.054 0.224 0.112 <0.001 0.044 0.584 0.060 0.103 

P5 0.043 0.787 0.106 <0.001 0.054 0.361 0.053 0.395 

P7 0.049 0.325 0.098 <0.001 0.039 0.727 0.066 0.042 

P10 0.028 0.990 0.089 0.001 0.035 0.868 0.048 0.340 

P12 0.065 0.053 0.078 0.008 0.049 0.388 0.052 0.284 

P13 0.039 0.844 0.054 0.312 0.034 0.960 0.049 0.477 

P17 0.042 0.835 0.068 0.107 0.043 0.824 0.037 0.950 

P21 0.050 0.832 0.065 0.386 0.037 0.991 0.048 0.860 

P1–P5 0.033 0.293 0.111 <0.001 0.025 0.781 0.043 0.044 

P7–P12 0.026 0.539 0.083 <0.001 0.027 0.522 0.048 0.005 

P13–P21 0.031 0.571 0.058 0.003 0.026 0.831 0.036 0.297 
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Figure 15. Distributions showing normal unimodal, non-normal unimodal, and non-

normal non-unimodal data. a) Cumulative distributions of the maximum number of 

intersections with the P21 data demonstrating a normal unimodal distribution as compared 

to the normal line while the P10 data exhibits a unimodal, but not a normal distribution 

illustrated by the distance of the points from the normal line. b) Cumulative distributions 

of the maximum intersections radius with the P21 data showing a normal and unimodal 

distribution as compared to the line while the P10 data demonstrates a bimodal or 

multimodal distribution as exhibited by the distance and pattern of the points to the 

reference normal line. c) Histogram of the maximum number of intersections with a log-

normal distribution (log-mean=2.19, log-SD=0.37, p-value=0.6783) and finite mixture 

model (normal distribution-1: weight=0.806, mean=8.28, SD=2.55; distribution-2: 

weight=0.1941, mean=14.26.22, SD=4.40; Chi-sq=17.305, p-value=0.3010). d) Histogram 

of the maximum number of intersections radius with the two normal distributions and the 

finite mixture distribution model (normal distribution-1: weight=0.697, mean=41.85, 

SD=8.47; distribution-2: weight=0.303, mean=97.22, SD=19.69; Chi-sq=0.333, p-

value=0.5636). 

  



 

61 

 

 

 

 

 

 

 

 

 

 

Table 10. Dendrite morphology summary statistics (mean ± std) for the three age groups. 

 
  

Parameter P1–P5 P7–P12 P13–P21 

Number of Primary Branches 4.38 ± 1.72 5.37 ± 1.88 5.33 ± 1.42 

Max Number of Intersections 6.26 ± 2.31 8.94 ± 3.60 10.84 ± 3.78 

Radius at Max Intersections (m) 39.7 ± 17.6 56.2 ± 26.4 74.84 ± 34.7 

Ramification index 1.54 ± 0.65 1.77 ± 0.77 2.13 ± 0.81 

Enclosing Radius (m) 134.6 ± 60.7 197.7 ± 71.8 251.9 ±95.3 
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Figure 16. Pooled distributions for the maximum intersection radius showing the finite 

mixture distribution models.  a) Cumulative and corresponding normal distributions for 

maximum intersection radius at P1–P5 (P1, P3, & P5), P7–P12 (P7, P10, & P12), and P13–

P21 (P13, P17, & P21).  b-d) Histograms for the maximum intersection radius and mixture 

distribution models showing the two normal distributions for b) P1–P5, c) P7–P12, and d) 

P13–P21.  The parameters for the two normal distributions are given in Tables 5, 6. and 7. 
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Figure 17. Threshold images of P1, P10, and P12 sections which have two isolated 

hypoglossal neurons with different morphologies, yet the centers of any two soma were 

with 50 to 200 microns in distance from each other. The micrograph of the XII MNs are 

shown with the Sholl profiles for the two neurons and arrows pointing to the respective 

neuron for each profile. 
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Discussion 

In this study we found that the morphology of developing hypoglossal 

motoneurons appears to be more complex than indicated by previous studies and age 

dependent. For each of the three time windows the morphology seemed best represented 

by a mixture of two normal distributions suggesting that there are at least two 

distinguishable phenotypes of XII MNs during the first three weeks post-birth. Our data 

also suggests that significant differences in morphometry of XII MNs can begin as early 

as P7, but most of the largest changes seem to occur at P10–P13 providing morphometric 

support for a “sensitive period.” Statistical analyses of the morphological properties of 

460 XII MNs across nine postnatal ages revealed three discrete developmental windows: 

1) P1–P5; 2) P7–P12; and 3) P13–P21 and suggest that morphological changes proceeded 

significant functional changes (Liu et al., 2006, 2009; Wong-Riley et al., 2013; Wong-

Riley and Liu, 2005). The finding of three discrete development windows supports our 

hypothesis in that there is a transition period (P7–P12) between the early (P1–P5) and the 

late (P13–P21) developmental periods. However, our results suggest that this transitional 

period may start sometime between P7 and P10. Although we did examine P7, we did not 

examine morphology at P8 or P9, so it is uncertain exactly when the transition window 

begins. These findings uniquely provide morphological evidence supporting 

developmental windows that may have functional significance for critical periods of 

respiratory development in infants and represent the most comprehensive assessment of 

XII MN developmental changes in morphology yet undertaken (Carrascal et al., 2005; 

Kanjhan et al., 2016a; Liu et al., 2006; Nunez-Abades and Cameron, 1995; Wong-Riley 

et al., 2013). 
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Our findings extend research by other investigators who have studied the 

morphology of a small number of XII MNs after intracellular neurobiotin filling 

(Kanjhan et al., 2016a; Nunez-Abades et al., 1994; Nunez-Abades and Cameron, 1995). 

These previous studies only filled one or two neurons for each 300 m thick specimen, so 

sampling per animal was limited and the morphology of neighboring XII MNs was not 

measured. Because we sampled more neurons per animal, we have a more representative 

neuronal population for detailed morphological description at each postnatal day. Our 

statistical approach to XII MN morphology represents the most comprehensive 

quantitative assessment of developmental morphology in rat XII MNs yet undertaken. 

We report for the first time, age-dependent distributions of our morphometric variables, 

that allow us to determine whether the data are normally and unimodally distributed 

which are critical assumptions in statistical analyses. Our results suggest that not all 

neurons increase in size and complexity at the same time, but that some neurons change 

earlier with neighboring neurons changing later possibly indicating a more complex 

developmental model.  

Biometric data support our findings that analyzed XII MNs came from healthy rat 

pups since the mean body weights are comparable to previous reports from healthy 

Sprague-Dawley rats (Dotta and Mortola, 1992; Sant’Anna and Mortola, 2002, 2003) at 

all development stages. Therefore, litter size was not a confounding factor. Comparing 

differences between animals at each postnatal age we did not see any indications for 

stratification of any parameters between the sexes. Adult motoneuron soma are large 

(>19 m), multipolar and the predominant type in the hypoglossal nucleus (XII), but 

there are also smaller interneurons (10–18 m) which are round-to-oval in shape (Boone 



 

66 

and Aldes, 1984; Cooper, 1981; McClung and Goldberg, 1999). Another study reported 

interneurons in the XII as fusiform or ovoid in shape with a major diameter of 17.3 ± 2.5 

m with a few primary dendrites from the center and both poles (Takasu and Hashimoto, 

1988). Interneurons have previously been reported as distributed toward the lateral one-

fourth and ventral margin of the XII (Takasu and Hashimoto, 1988). In neonatal mice the 

XII MNs are smaller for the first 8 postnatal days, yet since postnatal days 9–13 were 

group and averaged we do not know if these smaller XII MNs persist later than 8 days 

(Kanjhan et al., 2016). Therefore, a threshold size of 18 m is the main criteria we used 

to define XII MNs, while shape and number of primary branches severed as secondary 

criteria. We found XII MNs representing two different shapes (Type I and II) as 

previously described in adult cats (Fukunishi et al., 1999). It has been suggested that the 

Type II XII MN dendrites in the cat are confined to the nucleus while the Type I have 

dendrites that are extranuclear (external) suggesting that Type I neurons receive inputs in 

addition to those that terminate within the XII suggesting a functional difference 

(Fukunishi et al., 1999). Our data suggests that these Type I and Type II XII MNs are 

present in rats during the first three weeks post-birth. However, due the enclosing radii 

being only 100 to 150 m, our results suggest these two neuronal types are present early, 

but the extranuclear extension of the Type I dendrites probably occur later (>P7). 

 

Postnatal Changes in Soma Morphology with Age 

The soma size of XII MNs increased progressively over the first three postnatal 

weeks, approaching adult size (>19 m) by P21, consistent with recently reported data in 

mice (Kanjhan et al., 2016a) with little change in shape as indicated by aspect ratio and 
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form factor. In rats and mice, pups are weaned at P21 and begin sexual maturation 

(adolescence in humans) leading to adulthood (Dutta and Sengupta, 2016; Sengupta, 

2013). Although previous studies have not tested their data for normality (normal 

distribution), we found that normality depends on the age and specific parameter 

investigated. Hartigan’s dip test for a unimodal distribution (single mode; not bimodal or 

multimodal) revealed that parameters for soma size and shape at each age were unimodal, 

but the Shapiro-Wilk test for normality support that specific parameters at specific ages 

were not normally distributed (Ghasemi and Zahediasl, 2012; Hartigan and Hartigan, 

1985; Le Boedec, 2016). Our findings provided criteria for pooling the somata (by size) 

into three groups that represented different stages in soma morphology based on non-

parametric comparisons and visual inspection of cumulative distributions. These groups 

were pooled into (1) P1, P3, and P5; (2) P7, P10, and P12; and (3) P13, P17, and P21. 

Interestingly, neuron location did not explain the separation of the soma size into two 

distributions since there was no significant (p<0.05) difference between the locations for 

either ECD or major diameter. The finite mixture distribution models suggest two sub-

groups of neurons with one sub-group representing a smaller percentage of the total 

number of neurons yet causing a right skew in the overall distribution. Because the 

proportions (percentage of the total data represented by each distribution) of the two 

distributions are not constant across the three age groups, the mixed distributions 

appeared to best characterize size shift—more neurons with larger soma—with increasing 

age. One possible explanation for this second distribution is that these neurons may be 

growing faster, earlier and the loss of this sub-group could relate to a delay or reduced 
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rate of development as has been suggested for perinatal nicotine exposure (Powell et al., 

2016). 

 

Postnatal Changes in Dendrite Morphology  

Dendrite morphology showed statistically significant age-dependent changes in 

both size and complexity. The size and complexity of the dendritic tree arbor relates 

functionally to the synaptic connectivity (Ferrante et al., 2013; Nunez-Abades et al., 

1994; Kanjhan et al., 2016). The premotor neuron connections can be either excitatory or 

inhibitory while connections by interneurons in the nucleus are excitatory (Kanjhan et al., 

2016). Little is known about the functional significance of the symmetry or asymmetry of 

dendritic arbors, but the asymmetry reported in this study has been previously reported 

for XII MNs in rats and mice (Nunez-Abades et al., 1994; Kanjhan et al., 2016). We 

found that both the enclosing radius and radius at the maximum number of intersections - 

increased with age, indicating increasing dendritic tree arborization with increasing age. 

The maximum number of intersections rose during P1–P5 and during P7–P12 without 

affecting the ramification index (maximum number of intersections/number of primary 

branches). Still, at P7–P12, both parameters (maximum number of intersections and 

number of primary branches) were higher than observed at P1–P5. At these two 

developmental windows, the increase in the maximum number of intersections revealed 

by Sholl analysis is best explained by an increase in the number of primary branches. In 

contrast, at P13–P21, the increased maximum number of intersections and ramification 

index (compared to P1–P5) cannot be explained by increased primary branching. Instead, 

our results suggest an increased maximum intersection number at P13–P21 when 

compared to P1–P5. This was mainly due to an increase in the number of primary 



 

69 

branches, while for P13–P21, the increase in maximum number of intersections was 

mainly due to increased branching distal to the primary dendrites. Therefore, our data 

show that size and complexity of the dendritic tree increased with age, but the change in 

complexity at P7–P12 was due to different processes (increased primary branching) than 

observed at P13–P21 (increased distal branching). The enclosing radius in the ventral-

lateral region of the XII was significantly lower (29%) than the three regions in the P1–

P5 group.  

Dendritic spines were observed on most XII MNs across all ages as previously 

reported for rats (Nunez-Abades et al., 1994) and mice (Kanjhan et al., 2016). Filopodia 

appeared more prominent at the earlier ages (P1–P7), decreasing with older neurons 

consistent with previous reports (Kanjhan et al., 2016b; Nunez-Abades et al., 1994). 

Dendritic spine morphology and density will be evaluated in a follow-up study. For all 

ages we also observed XII MNs with dendrites crossing the midline into the contralateral 

XII and neurons with dendrites extending outside the XII nucleus as has been previously 

reported (Kanjhan et al., 2016a; Koizumi et al., 2008; Nunez-Abades et al., 1994). We 

also observed that most of the dendrites of a neuron differed in their length and branching 

across the different primary branches as has been previously described by others (Nunez-

Abades et al., 1994). 

 

Hypoglossal Motoneuron Morphology: Normality, Unimodality, and 

Distribution 

Since the “sensitive period” represents a transitional time, any change in the 

distribution of parameters between age groups—such as differences in the mean, the type 
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of distribution, or a characteristic of the distribution (normal, unimodal, skewness, 

etc.…)—may be reflected in functional changes. In this study we utilized tests for 

normality and unimodality to determine key characteristics relating to the morphology 

data we obtained from the XII MNs we analyzed. The Shapiro-Wilk test for normality 

(Ghasemi and Zahediasl, 2012; Le Boedec, 2016) showed that some of the parameters at 

specific ages or age ranges were not normally distributed.  When a data set is non-

normally distributed, it is possible that it is also not unimodal. Despite statistical 

significance, changes in the characteristics of the distribution (normality and 

unimodality) may indicate differences between groups. Regardless of age or 

morphometric parameter, the morphology is unimodally distributed at all ages except for 

the maximum intersection radius for ages P1–P12. However, when the age groups were 

pooled, the maximum intersection radius was not unimodal for all three age ranges while 

for the enclosing radius the P7–P12 was not unimodal. The non-normal distribution of 

different parameters justified our use of the Kruskal-Wallis test and the Dunn test (García 

et al., 2010). The ratio of two normally distributed variables can result in a non-normal 

distribution (Marsaglia, 2006) which provides the simplest explanation for why the aspect 

ratio and ramification index are not normally distributed for most ages. 

From testing three single distribution models (normal, log-normal, and gamma) as 

well as a finite mixture model (two normal distributions) we found that the finite mixture 

model was more consistent across the three age groups for most parameters. The only 

exception appeared to be the form factor for P1–P5 which tested for normality and a 

single normal distribution was the better fit, however for P7–P12 and P13–P21 the finite 

mixture model was the better fit. Some parameters such as the maximum number of 
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intersections for P10 neurons fit a log-normal distribution as well (or better) than the 

mixed model of two normal distributions. However, other parameters such as the radius 

of the maximum number of intersections did not fit a log-normal distribution yet fit the 

mixed model. Overall, for the non-normally distributed data, the mixture model of two 

normal distributions appeared to be the best and most consistent fit for the data. This may 

not represent different types of neurons since the mean, standard deviations, and 

proportions are all changing, essentially continuously, with age. Topographical location 

could be the explanation, but there were no topological differences found for the 

maximum intersection radius. It may be that not all XII MNs are changing at the same 

rate with some somata and dendrites growing at earlier while other neurons are changing 

later. This was observed for most ages in that a given neuron had larger, more complex 

dendritic tree while another nearby neuron could have a smaller, less complex dendritic 

tree. 

Another implication of these mixture distributions is that the development of XII 

MNs may not be a simple uniform change in morphology, but a more complex sequence 

of intermediate, punctuated changes. Although little is known or understood about what 

influences dendrite growth, previous work has suggested that axonal connectivity and 

other factors can affect dendrite length (Cowan et al., 1984; Easter et al., 1985; Fogarty et 

al., 2016, 2016; Guadiana et al., 2013; Purves and Lichtman, 1980). Other investigators 

have proposed mathematical and computational models for neuron and dendritic growth, 

but they have not examined nonuniform or staggered growth in neighboring neurons 

(Marks and Burke, 2007a, 2007b; Zubler and Douglas, 2009). Therefore, dendritic 

growth during early postnatal development may not be linear as previously suggested by 
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others (Nunez-Abades et al., 1994; Nunez-Abades and Cameron, 1995) or uniform across 

neighboring XII MNs. 

 

Comparison with Previous Studies 

There are discrepancies in the existing literature regarding the age-related changes 

in soma and dendrite growth. Our study found progressive increases in soma size while 

dendrites increased in both size and complexity with increasing age, and we identified 

three distinct age groups for most morphometric parameters. Kanjhan and colleagues 

(2016) found changes in dendrite morphology and dendritic spine distribution in XII 

MNs from embryonic age E18 through postnatal age P28 in mice. Although there are 

morphological changes in somatic and dendritic morphology across age, most 

electrophysiological changes in motoneurons have been attributed to changes or 

differences in the type, subfamily, and distribution of ion channels (Carrascal et al., 

2005). Somata size increases during embryonic and early postnatal life in mice (Kanjhan 

et al., 2016a), although it has been suggested that soma size reaches typical adult sizes by 

birth in cat and rat (Cameron et al., 1991; Nunez-Abades et al., 1994; Nunez-Abades and 

Cameron, 1995). However, Kanjhan and colleagues (2016a) measured a 70% increase in 

soma volume from E17–P0 to P14–P28 while the studies in cat and rat only measured 

soma area by elliptical approximations. Our study agrees with Kanjhan and coworkers 

(2016a) in that we found that the equivalent circular diameter of the soma increased 40% 

from P1–P5 to P13–P21. One possible reason for the previous studies (Nunez-Abades 

and Cameron, 1995) not finding a difference in somata their small sample sizes (typically 

N=10 neurons per age group) that limited the power of this study. In contrast, the study 

on mice (Kanjhan et al., 2016) had an average of about 20 neurons per age group and our 
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study had an average of approximately 150 neurons for each of the three age groups. For 

each of the nine postnatal ages we had 30 to 60 neurons for each age providing sufficient 

statistical power. 

For mice the total dendrite length increased by approximately 26% from P1–P4 to 

P9–P13 (Kanjhan et al., 2016a) and in rats the maximum dendrite length increased by 

about 36% from P1–P2 to P19–P30 (Nunez-Abades et al., 1994). Our study found that 

the enclosing radius increased about 89% from P1–P5 to P13–P21. The mean dendrite 

length in the other two studies was around 300m, but the mean enclosing radius in our 

study was approximately 135 m for P1–P5. The other two studies (Kanjhan et al., 

2016a; Nunez-Abades et al., 1994) used ionophoretic injections of neurobiotin while our 

study employed Golgi-Cox staining resulting in the measurement of more neurons per 

animal as well as allowing multiple neighboring neurons to be measured in the same 

sections. 

We also found that non-parametric comparisons supported no significant 

differences allowing pooling of the data into three age ranges (P1–P5, P7–P12, and P13–

P21). One previous study in mice (Kanjhan et al., 2016a) grouped data into five groups 

(E17–P0, P1–P4, P5–P8, P9–P13, and P14–P28) while another study in rats (Nunez-

Abades et al., 1994; Nunez-Abades and Cameron, 1995) used four groups (P1–P2, P5–

P6, P13–P15, and P19–P30). Our data suggests that grouping ages between P1 and P6 

and P13–15 is appropriate but grouping P5–P8 or P9–P13 may result in missing 

important morphological differences that we have noted in our analysis. Previous studies 

(Kanjhan et al., 2016a; Nunez-Abades et al., 1994; Nunez-Abades and Cameron, 1995) 
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have not been focused on the functional impact of changes in XII MN morphology from 

the perspective of respiratory physiology.  

 

Impact of XII Morphology on Respiratory Function 

In addition to respiration, the tongue and upper airways play critical roles in 

speech, an important aspect of motor control that motivates our study of XII MN 

development (Kanjhan et al., 2016a; Nunez-Abades et al., 1994; Nunez-Abades and 

Cameron, 1995). In spite of the breathing phenotype changes previously reported for days 

10 to 13 (Liu et al., 2006, 2009; Wong-Riley et al., 2013; Wong-Riley and Liu, 2005)), 

there has been no comprehensive longitudinal investigation into the morphology of 

developing XII MNs prior to this study. The developmental pattern in respiratory 

regulation and control has been investigated (Liu et al., 2006, 2009) demonstrating the 

afore-mentioned sensitive period between P10 and P13 days post-birth where the hypoxic 

ventilatory response is altered. Wong-Riley and Liu (2005) have also found a shift in 

excitatory and inhibitory neurotransmitter expression during the P10–P13 sensitive 

period at P12.   

Neurotransmitters such as glutamate, GABA, glycine and catecholamines have 

been shown to change during development with pronounced shifts in expression during 

the sensitive period (Brust et al., 2014; Wong-Riley and Liu, 2005). Therefore, it is 

suggested that the sensitive period represents a transition period between the early 

postnatal ages (>P0) and the later ages (>P13) in which the animal is vulnerable to any 

event that could interfere with development. A recent study of postnatal exposure to 

lipopolysaccharide (LPS) in rats demonstrated that there was a heightened vulnerability 

to endotoxin exposure at P10, characterized by a depressed ventilatory response to acute 
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hypoxia when compared with P5 and P20 (Rourke et al., 2016).  This study also 

demonstrated increased inflammation and mortality in LPS-treated rats at P10 when 

compared with P5 and P20. This is one of the first studies to demonstrate that the 

sensitive period from P10 through P13 represents not only a window of time in which 

abrupt changes occur, but a vulnerable window in which heightened susceptibility to 

infection can occur.  Another recent study of perinatal nicotine exposure showed 

morphological changes in XII MNs for P0–P4 but did not extend to P10–P13 (Powell et 

al., 2016). Thus, there are very few, if any studies that have examined respiratory or 

related phenomena for perinatal nicotine exposure or maternal inflammation during P10–

P13.  In our study dendrite morphologies showed increases in morphometric parameters 

from P1–P5 to P13–P21 with the P7–P12 representing a transition period between the 

early and later developmental stages. Now that we have established a detailed pattern of 

morphological development differences in XII MNs due to perinatal nicotine exposure or 

maternal inflammation could be elucidated. 

 

Limitations and Future Directions 

In this study we have shown that soma and dendrite morphology changes with 

postnatal age; however, changes in 3D morphometric parameters such as dendrite length, 

branching, and dendritic spines, were not examined.  Therefore, based on the complexity 

of changes in the parameters with age seen in this study it may be of benefit to examine 

the 3D morphometric parameters and changes in synaptic spines to correlate morphology 

and function in the XII. Using a larger number of animals to yield sufficient numbers of 

neurons (N > 60) at specific individual ages to test the models would provide more 

extensive data regarding the distributions and changes between individual ages for 
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specific morphometric parameters. Three-dimensional reconstruction with modeling of 

the biophysical properties based on the 3D geometries in concert with 

electrophysiological measurements would provide a foundation for understanding the 

relationships between structure and function at the neuron level. An additional limitation 

is we are unable to address the targets of the XII MNs, because when cutting brain slices 

the cranial rootlets were cut proximal to the brainstem—making it impossible for us to 

address the number of motor units targeted by each XII MN. Future experiments 

therefore need to be performed in which the innervation of the tongue is retained and the 

connection from brainstem to tongue would allow us to assess which motoneurons 

innervate a given motor unit in the tongue, however, this is beyond the scope of the 

present study. Additionally, understanding the pattern of synaptic inputs to XII MNs 

would further our understanding of the role of developmental changes in respiratory 

control circuit. Despite these limitations, the detailed overview of developmental changes 

in XII MNs that we present in this study provides a foundation for future developmental 

morphology work in the XII nucleus.  

 

Summary and Conclusions 

We have shown that the soma size of XII MNs increases with postnatal age, but 

there is little, if any change in shape of the somata. In contrast, the dendritic arbor of XII 

MNs increases in size and complexity as postnatal age increases with increased 

branching, a larger maximum radius, and an increase in the radius at which the maximum 

number of intersections occurs. Three “stages” of development were identified for the 

morphology of XII MNs in this study with P1–P5, P7–P12, and P13–P21 being 

morphologically distinct. The functional sensitive period previously described is reflected 
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morphologically in the maturation of XII MNs especially for the maximum number of 

intersections and enclosing radius. Finally, our observations suggest that the development 

of XII MNs is more complex than previously described and further investigation 

correlating structure with function is needed. These findings and the detailed description 

of XII MN development in the first stages post-birth provides a better understanding of 

crucial windows during the development of respiratory control circuitry.  
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Abstract 

At birth, the autonomic brainstem, which generates and controls respiratory 

rhythm for normal breathing is not fully developed. Normal control of breathing develops 

in the first few weeks after birth. However, little is known about changes in the 

morphology and electrophysiological behavior of neurons in the respiratory regions of 

the brainstem during this early developmental period. We hypothesize that developmental 

changes in the morphology of motoneurons in the hypoglossal motor nucleus (XII) can 

lead to changes in biophysical properties that alter motor output. To test this hypothesis, 

we used Golgi-Cox staining to stain neurons in the brainstem and we quantified the 

morphology of the somata and dendritic tree of developing hypoglossal XII motoneurons 

(XII MNs) using Sholl analysis. We then used the computer simulation environment, 

NEURON, to model the biophysical properties from the digitally reconstructed neurons. 

At nine postnatal ages (P1, 3, 5, 7, 10, 12, 13, 17, and 21), we removed the brain from 

Sprague-Dawley rat pups, processed the tissue, sectioned, stained, imaged, and 

performed 3D reconstructions to quantify the morphometrics of XII MNs. We then used 

these 3D reconstructed geometries to model the biophysical properties of the neurons. 

The soma of XII MNs increases in size by approximately 50% from P1 to P21. The 

dendritic trees extend further, and branching becomes more complex with most of the 

statistically significant changes starting at P10 or P12 when compared to P1, P3, and P5. 

Morphology correlated with the passive electrophysiological properties of XII MNs. 

Although a direct relationship was not found between morphology and the active 

properties, there was evidence of an indirect relationship in that the passive properties 

correlated with the active properties.  
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Introduction 

Respiration is critical during development and throughout life and occurs 

rhythmically through an elaborate system of control. At birth, autonomic regions in the 

brainstem, which generates and controls respiratory rhythm are not fully developed 

(Feldman et al., 2013; Feldman and Del Negro, 2006; Feldman and Smith, 1995). Normal 

control of breathing develops in the first few weeks after birth. The motoneurons (MNs) 

of the hypoglossal nucleus (XII) and other brainstem nuclei provide the drive to the 

tongue and upper airways and are used in in vitro models to provide an index of fictive 

inspiratory effort (Feldman et al., 2013; Feldman and Del Negro, 2006). The critical role 

that the tongue and upper airway control plays in speech is also an important aspect that 

motivates the study of XII MN development. We have previously shown that there are 

age-dependent changes in XII MN output drive, but the contribution of developmental 

changes in neural morphology remains essentially unknown (Fietkiewicz et al., 2011). 

Because the XII MNs are easy to identify and play an active role in inspiration during 

development, they are a convenient and accessible population of neurons for 

electrophysiological study. Also, since 80% or more of the neurons in the XII are 

motoneurons that are readily distinguishable from the interneurons, the XII MNs are 

convenient for morphological studies (Cooper, 1981; McClung and Goldberg, 1999).  

Work by others have shown that development of the respiratory network plays a 

key role in the changing of breathing pattern (Liu et al., 2006; Mortola, 1984). 

Understanding the remodeling of the breathing neural network during early life is key to 

elucidating the synergy between changes in morphology and breathing rhythm in the 

perinatal period. It has been shown that neural network behavior is influenced by the 

morphology of neurons, and that connectivity is altered due to changes in 
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neurotransmitter release as well as receptor up- and down-regulation (Ferrante et al., 

2013; Komendantov and Ascoli, 2009). Hypoglossal motoneurons (XII MNs) which 

drive the tongue and upper airway musculature are used in in vitro models to provide an 

index of fictive inspiratory function (Koizumi et al., 2008; Purvis and Butera, 2005; 

Smith et al., 1991, 2000). Additionally, our laboratory has previously shown age-

dependent changes in the distribution of drive latencies in hypoglossal motoneuron 

output (Fietkiewicz et al., 2011).   There is a body of work on the morphology and 

electrophysiology of motoneurons with some work on hypoglossal motoneurons and a 

few studies on morphological changes during postnatal development (Carrascal et al., 

2005; Kanjhan et al., 2016; Lindsey et al., 2012; Nunez-Abades and Cameron, 1995). 

Morphological differences in XII MNs have been shown between neonatal and adults as 

well as corresponding electrophysiological changes (Berger et al., 1996; Carrascal et al., 

2005). It has also been demonstrated that the morphology and electrophysiology of 

motoneurons differ for various regions in the central nervous system (Carrascal et al., 

2005). Although most electrophysiological changes in MNs have been attributed to 

changes or differences in the type, subtype, and distributions of ion channels (Carrascal et 

al., 2005), other studies have shown a relationship between morphology and membrane 

properties that can influence electrophysiology (Nunez-Abades and Cameron, 1997). A 

recent study of XII MNs in mice found changes in dendrite morphology and dendritic 

spine distribution from embryonic age E18 through postnatal age P28 (Kanjhan et al., 

2016). In addition, a few studies have utilized single compartment models (soma) to 

model various aspects of XII MN electrophysiology (Fietkiewicz et al., 2011; Purvis and 

Butera, 2005). However, most studies (morphological or electrophysiological) have 
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examined only a single or small window of ages within the neonatal period, or group ages 

in a somewhat arbitrary manner (Kanjhan et al., 2016; Nunez-Abades and Cameron, 

1995). 

Therefore, there is a need to understand both electrophysiological behavior and 

morphology to assess the relationship between morphology and biophysical function in 

XII MNs. In this study we modeled passive and active electrophysiological properties 

based on actual morphological geometries of XII MNs. Our objective was to simulate 

actual electrophysiology experiments on morphologically accurate XII MNs and compare 

our simulation results with experimental results reported in the literature. Our hypothesis 

was that morphological characteristics can influence simulated passive and active 

electrophysiological behavior. We chose three ages ranging from the first, second, and 

third weeks of development. We utilized established single-compartment models and 

iterated the parameter values until experimental and computational results were 

comparable. Then we examined correlations between the electrophysiology and neuron 

morphology.  

 

Material and Methods 

Animals 

Pregnant Sprague-Dawley dams (Charles River Laboratories International, Inc., 

Wilmington, MA) obtained approximately 18 days after the start of pregnancy (E18) 

were allowed to deliver naturally in the Loma Linda University Animal Care Facility. Rat 

pups at nine postnatal ages (P1, P3, P5, P7, P10, P12, P13, P17, and P21 days) were 

initially used in the study. Typical litter size was approximately 9–14 pups and no 

distinction were made between genders. When two litters were used the two litters were 
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balanced to maintain consistent litter size (number of pups per litter) if needed. All 

procedures and protocols used in this study were approved by the Institutional Animal 

Care and Use Committee at Loma Linda University and followed the guidelines by the 

National Institutes of Health Guide for the Care and Use of Laboratory Animals 

(http://www.ncbi.nlm.nih.gov/books /NBK54050).  

 

Golgi-Cox Staining 

On the appropriate developmental day, animals were weighed, euthanized, and 

the brain extracted. For postnatal ages P1 through P7 the pups were anesthetized with 

isoflurane (Western Medical Supply, Arcadia, CA) until unresponsive to toe pinch, then 

their brains were rapidly extracted and placed in chilled 0.9% saline. For postnatal ages 

P10 through P21, animals were placed in an induction chamber with oxygen (100%) flow 

at 0.65 L/min and isoflurane administered at a concentration of 3 to 4% based on the 

postnatal age. Once the animal was unresponsive to toe pinch it was removed from the 

induction chamber, placed on a platform with the oxygen and isoflurane continuously 

administered via a nose cone, and perfused with 0.9% saline for approximately two 

minutes after which the brain was removed. For ages P1 through P7, the whole brain was 

maintained intact while for P10 through P21 the brain was sectioned coronally into two 

tissue blocks to maintain a more consistent tissue volume. 

The brains were immediately transferred from 0.9% saline to impregnation 

solution from a commercial kit (superGolgi Kit, Bioenno Tech, LLC, Santa Ana, 

California). Sections impregnated at different time durations showed that the best results 

were obtained with 7 days of impregnation at room temperature changing the solution 
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after the initial two days. Therefore, impregnation solution was changed after two days 

then the specimens were left in the solution for five more days according to the supplier’s 

instructions and previous reported methods with all steps performed at room temperature 

(Das et al., 2013). After a total of 7 days in impregnation solutions the brains were placed 

in two changes of post-impregnation buffer (changed each day for two days). We 

performed coronal sectioning of tissue at 150 m with a vibratome (Vibratome Series 

1000 Classic–Tissue Sectioning System, Leica, St. Louis, MO) mounting the sections 

onto gelatin-coated slides and then allowed to dry slowly in a humidified chamber 

overnight (Das et al., 2013; Gibb and Kolb, 1998). The slides were dried at room 

temperature and humidity for approximately one hour and then rehydrated in phosphate 

buffered saline, stained, placed in post-staining buffer, and then washed, dehydrated, and 

cleared in xylene as per the supplier’s instructions and the literature (Das et al., 2013). 

After staining, Permount (Fisher Scientific, SP-15, Waltham, MA) was applied to the 

slides which were then cover-slipped and allowed to fully dry. 

 

Imaging 

The XII nucleus from each animal was identified by comparing brainstem 

sections imaged using a 2x objective with atlases (Khazipov et al., 2015) corresponding 

to the appropriate postnatal period. We used a 40x objective to acquire image stacks for 

each XII MN with one image every 2 μm in the z-direction. For the P1–P7 animals a 

single image stack was obtained using a microscope (Ziess Axio Imager, Carl Zeiss 

Microscopy, LLC, Peabody, MA USA) with a motorized stage (Applied Scientific 

Instrumentation, Eugene, OR) and imaging software (Stereologer, Stereology Resource 
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Center, Tampa FL). For the P10–P21 animals, we acquired either a single image stack or 

several overlapping image stacks (multiple stacks). Multiple stacks were required for 

many of the P10–P21 animals in order to image the entire dendritic morphology of a 

single neuron at 40x, so we used another microscope (Keyence, BZ-9000, Itasca, IL) to 

image these neurons.  

 

Mapping of Neuron Locations 

The position of each XII MN was measured with ImageJ to acquire the length and 

angle of a line from the apex of the fourth ventricle (rostral) or center of the central canal 

(caudal). These lengths and angles were converted to x (horizontal) and y (vertical) 

distances with x representing the medial-lateral and y representing the dorsal-ventral 

direction. These points were plotted relative to the anatomical reference point along with 

the boundary of the XII nucleus determined in a similar manner, as previously described 

(Kanjhan et al., 2016). For the rostral-caudal extent of XII, sections were matched with a 

representative rat atlas for each postnatal age and the lambda coordinate along with the y 

axis (dorsal-ventral direction) was used to plot location in the sagittal plane similar to that 

previously described (Kanjhan et al., 2016; Khazipov et al., 2015). Due to size 

differences between the postnatal ages, lambda was normalized by the lambda value at 

the obex. Neurons located in the XII nucleus for both the coronal and sagittal maps were 

included while any neurons outside the XII were excluded from analysis. 
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Selection of Motoneurons 

The majority of neurons in the XII nucleus are MNs, yet there are a few 

interneurons (Boone and Aldes, 1984; Cooper, 1981; Takasu and Hashimoto, 1988). Due 

to the presence of these interneurons we needed criteria to determine if the measured 

neuron was a motoneuron. In the adult rat motoneurons are larger in diameter (19-50 m) 

than the interneurons (10–18 m) (Boone and Aldes, 1984; Cooper, 1981). For mouse 

XII MNs, it has been shown that the P1–P4 had a major diameter which was 25% lower 

than for the P14–P28 (Kanjhan et al., 2016). Therefore, our main criteria for determining 

a MN was that from P1 to P7 the size needed to be at least 18 m with the size being at 

least 20 m at P10 to P21. Adult interneurons have been described as fusiform or oval in 

shape with few primary dendrites from both poles and from the center, while 

motoneurons were multipolar in shape (Boone and Aldes, 1984; Takasu and Hashimoto, 

1988). However, this has not been as well established for neonatal XII MNs (Kanjhan et 

al., 2016; Nunez-Abades et al., 1994; Nunez-Abades and Cameron, 1995). Therefore, our 

main criteria for determining a MN was that from P1 to P7 the size needed to be at least 

18 m with the size being at least 20 m at P10 to P21. Neuronal shape (oval, fusiform, 

multipolar) was then used as a secondary criterion (Boone and Aldes, 1984; Cooper, 

1981; Fukunishi et al., 1999; Nunez-Abades et al., 1994; Nunez-Abades and Cameron, 

1995; Takasu and Hashimoto, 1988). 

 

3D Reconstructions 

For the P1 through P7 animals, single image stacks were obtained, however for 

the P10 through P21 animals, multiple stacks were stitched together using the ImageJ 
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stitching plug-in (Preibisch et al., 2009). We obtained at least 5–7 pups per age from 

seven litters. Litter size ranged from 9 to 14 (average of about 12 pups per litter). A total 

number of 30 or more MNs were obtained for each postnatal age. From the image stacks 

3D reconstructions were obtained For P3, P10, and P17 XII MNs using a software 

package (Neuromantic, Reading, UK) with volumes and surface areas measured (Myatt 

et al., 2012). For P3, P10, and P17 XII MNs with volumes equaled to or approximating 

the minimum, maximum, and average volume values for the soma or dendrites were 

selected. This provided XII MNs for each of the three ages with ten from the P3 XII MNs 

and six each from the P10 and P17 XII MNs resulting in a total of 22 neurons for 

simulation. Minimum, maximum, and average volumes were used to allow for the largest 

range of morphologies to accommodate the regression analysis. Although this decreased 

statistical power for comparison tests, a larger variance was more consistent for our 

objective and hypothesis which were focused on the regression analysis. 

 

Simulations 

Selected neurons were imported into the program NEURON and simulations run using 

the soma diameter of the neuron along with the actual dendritic tree morphology. A 

simplified model of one previously published was utilized with the following channels 

ionic currents: fast-sodium (INa), persistent sodium (INaP), fast-transient potassium (IA), 

potassium (IK), hyperpolarization-activated current (Ih), and potassium leakage (Ileak) 

(Engel et al., 1999; Fietkiewicz et al., 2011; Purvis and Butera, 2005). The Hodgkin-

Huxley formation for the membrane potential is given by the equation 
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𝐶𝑚
𝑑𝑉

𝑑𝑡
= 𝐼𝑙𝑒𝑎𝑘 + 𝐼𝑁𝑎𝑃 + 𝐼𝐴 + 𝐼𝑁𝑎(𝑠𝑜𝑚𝑎) + 𝐼ℎ(𝑠𝑜𝑚𝑎) + 𝐼𝐾(𝑠𝑜𝑚𝑎) + 𝐼𝑁𝑎(𝑑𝑒𝑛𝑑𝑟𝑖𝑡𝑒) + 𝐼ℎ(𝑑𝑒𝑛𝑑𝑟𝑖𝑡𝑒)

+ 𝐼𝐾(𝑑𝑒𝑛𝑑𝑟𝑖𝑡𝑒) 

Where V is the membrane potential, t is time, and Cm is the membrane capacitance. For 

an ionic current Ix, the current is expressed by the equation 

𝐼𝑥 = 𝑔
𝑥
⋅ 𝑦𝑥 ⋅ (𝑉 − 𝐸𝑥) 

Where ḡx is the maximum conductance, yx is the product of one or more activation or 

inactivation gating variables raised to integer powers, V is the membrane potential, and 

Ex is the equilibrium potential. The equations for each yx were taken from the literature 

(Fietkiewicz et al., 2011; Purvis and Butera, 2005). The initial values for the parameters 

were taken from previous work (Fietkiewicz et al., 2011) and then iterations performed to 

adjust values until there was a match to published experimental data. For both soma and 

dendrites, the cytoplasmic resistance was 100 Ohm-cm, the membrane capacitance was 

0.25 pF/cm2, and the passive properties were gpas=0.00025 S/cm2 with Epas = -70 mV, 

gleak=0.000125 S/cm2 with Eleak=-50 mV, gNaP=0.00003975 S/cm2, and gA=0.0025 S/cm2. 

For the soma gNa(soma)=0.0075 S/cm2 with ENa(soma)=60 mV, gK(soma)=0.032 S/cm2 with 

EK(soma)=-80 mV, and gh(soma)=0.00025 S/cm2 with Eh(soma)=-38.8 mV. For the dendrites 

gNa(dendrite)=0.00075 S/cm2 with ENa(dendrite)=60 mV, gK(dendrite)=0.0032 S/cm2 with 

EK(dendrite)=-80 mV, and gh(dendrite)=0.000025 S/cm2 with Eh(dendrite)=-38.8 mV.  

Two different experiments were simulated with the model replicating previous 

electrophysiological data from genioglossal MNs (Nunez-Abades et al., 1993). We 

selected one experiment that yielded passive properties from current-voltage plots from 
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current clamp. The experiment and our simulation injected currents from 0.1 to 0.6 nA 

for P3 XII MNs and from 0.1 to 1 nA for P10 and P17 both in increments of 0.1 nA. The 

other experiment generated single action potentials yielding active properties including 

the medium afterhyperpolarization (mAHP) potential (Nunez-Abades et al., 1993; Purvis 

and Butera, 2005). In the reported experiment the membrane was held at a fixed potential 

varying from -50 mV to -85 mV while a current was injected at a duration of 0.1 ms. In 

our simulation we chose to set the Epas to values of -50, -60, -70, -80, and -85 mV to 

generate the five values reported in the experiment. The results of the simulation were 

compared with those previously obtained from the reported experiments (Nunez-Abades 

et al., 1993).  

 

Data Analysis 

Descriptive summary statistics of simulation results were generated for each of 

the three ages. Correlation coefficients and regression analysis was performed for the 

electrophysiological measures as a function of the morphology (volume or surface area). 

Nonparametric statistics were performed using the Kruskal-Wallis test and Dunn multiple 

comparisons to compare measured and simulation results. The data was fitted with the 

equation Y = a  Xb, where ‘a’ is the intercept and ‘b’ is the exponent or slope of the 

curve. 
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Results 

3D Morphometrics and Electrophysiology 

Examples (average volume for either soma or dendrites) of 3D reconstructions 

and Sholl profiles for P3, P10, and P17 are shown in Figure 18. As can be seen by the 

Sholl profiles the morphology changes with increases in dendritic tree size and 

complexity. The total volume and surface area increased with age. The total volume 

increased by a factor of about 1.52 from P3 to P10 and 3.55 from P3 to P17 (Table 11). 

The total surface area increased by a factor of about 1.67 from P3 to P10 and 3.17 from 

P3 to P17 (Table 11). Statistically, only the P3 and P17 were significantly different for 

both volume and surface area. Power analysis suggested that approximately 75 P3 and 

P10 neurons each would be required for a power of 0.80. Examples of the simulation 

output from the current-voltage experiment for the P3, P10, and P17 XII MNs are shown 

in Figure 19. It was necessary to decrease the hyperpolarization-activated current (Ih) by a 

factor of 10 for both soma and dendrites, increase membrane capacitance by a factor of 2 

to match the P3 results with experimental results. With the decreased hyperpolarization-

activated current and increased membrane capacitance, the peak resistance did not change 

significantly, but the steady-state resistance did increase. Both peak and steady-state 

resistance decreased with age. From P3 to P17 the peak resistance decreased by 63% 

while the steady-state decreased by 71%. For the single action potential (Figure 20) we 

observed decreasing width in the action potential with increasing age and the mAHP 

amplitude decreased with increasing membrane potential (Figure 20). There was no 

obvious statistically significant change in mAHP amplitude or duration with age (Table 
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11), but power analysis suggested that for mAHP amplitude, a sample size of 75 for each 

age was required for a power = 0.8.  

 

Electrophysiology as a Function of Morphology 

The peak resistance (Rpeak) correlated with the total volume and surface area of 

the XII MNs (Figures 21A and 21B). The intercept of the curve for total volume versus 

Rpeak (Figure 21A) was 2212 with a slope of -0.38 (R=0.5462, p<0.01) while the total 

volume surface area versus Rpeak (Figure 21B) had an intercept of 8227 with a slope of -

0.53 (R-0.5831, p<0.01). Although the amplitude of the mAHP was not found to 

correlate (R=0.3375, p>0.20 for P3 and R=0.307, p>0.20 for P10/P17) with neuron 

morphology (Figure 21C), there was a correlation between Rpeak and the amplitude of the 

mAHP (Figure 21D) only for P10 & P17. For the P3 XII MNs the intercept for Rpeak 

versus the amplitude of the mAHP was 1.43 with a slope of 0.13 (R=0.4058. P>0.10) and 

for P10/P17 the intercept was 1.15 with a slope of 0.29 (R=0.6796, p<0.01). 
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Figure 18. Morphology of hypoglossal motoneurons at P3, P10, and P17. The 3D 

reconstructions (top) and their associated Sholl profiles (bottom) are shown. 
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Table 11. Summary statistics of morphological and biophysical properties from XII MNs. 

For each age the mean ± standard deviation is given for each parameter along with the 

median shown in (). Shown are the morphometric parameters (volume and surface area), 

passive properties (peak and steady-state resistance), and the active properties (amplitude 

and duration of the medium afterhyperpolarization potential, mAHP). 

 

Parameter P3 (N=10) P10 (N=6) P17 (N=6) 

Volume (m3) 
4766 ± 4510 

(3334) 

7259 ± 6104 

(5156) 

16904 ± 6997 

(17390) 

Surface Area (m2) 
4258 ± 3759 

(3320) 

7096 ± 3856 

(7112) 

13510 ± 3868 

(12822) 

Peak Resistance (M) 
143 ± 101 

(117) 

129± 50 

(126) 

53 ± 36 

(52) 

Steady-State Resistance (M) 
140 ± 101 

(114) 

102 ± 42 

(107) 

41 ± 26 

(39) 

mAHP amplitude (mV) 
2.77 ± 0.65 

(2.57) 

4.61 ± 1.21 

(4.57) 

3.69 ± 1.35 

(3.70) 

mAHP duration (ms) 
173 ± 37 

(183) 

205 ± 21 

(211) 

184 ± 34 

(190) 
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Figure 19. The I-V curves from P3, P10, and P17 XII MNs. On the left side are the voltage 

curves corresponding to the injected current (right side) and on the far right is the current-

voltage (I-V) curves for the three age groups showing the slopes (resistance). 
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Figure 20. Action potentials and mAHP from P3, P10, and P17 XII MNs. On the left are 

the action potentials with expanded views (right) showing the mAHP potentials at each 

of the membrane potentials. On the far right is a graph of the membrane potential versus 

the mAHP amplitude for each of the three postnatal ages.  
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Figure 21. Regression analysis of passive and active biophysical properties of XII MNs as 

a function of morphology. Shown are a) total neuron volume versus peak resistance (Rpeak) 

with regression line for P3, P10, and P17 combined, b) total neuron surface area versus 

Rpeak with regression line for P3, P10, and P17 combined, c) total neuron volume versus 

mAHP amplitude with regression for P3 only and regression for P10 and P17 combined, 

and d) Rpeak versus mAHP amplitude with regression for P3 only and regression for P10 

and P17 combined. All regression values are reported in the text. 
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Discussion 

In this study we have, for the first time, examined the potential relationship 

between the electrophysiological behavior and the morphology of XII MNs. We did not 

establish a direct relationship between the morphology of the neuron and amplitude of the 

mAHP, but we did show that mAHP amplitude is dependent on the neuron’s passive 

properties, which suggests an indirect relationship between morphology and active 

properties. We simulated XII MN electrophysiology behavior based on 3D morphology 

measured from XII MNs in a rat pup model comparing theoretical passive and active 

electrophysiology properties to previously reported experimental results (Nunez-Abades 

et al., 1993). Although there are other studies of hypoglossal motoneuron 

electrophysiology (Bayliss et al., 1994; Lamanauskas and Nistri, 2008; Lape and Nistri, 

2001; Powers and Binder, 2003), most studied specific ion currents. Simulating these 

studies could provide some insight into the ion currents, but do not provide information 

on morphology or differences in ion currents between soma and dendrites. Additionally, 

these studies did not examine the ages (P1–P2, P5–P6, P13–P15, and P19–P30) that 

Nunez-Abades et al. (1993) examined. The action potentials and mAHP amplitudes 

where similar to those in the literature (Nunez-Abades et al., 1993). To match the 

waveforms from published experimental results (Nunez-Abades et al., 1993) we had to 

alter the P3 XII MN parameters from those of the P10 and P17 XII MN parameters. We 

were able to demonstrate a relationship between neuron size (volume and surface area) 

and the passive properties showing decreased resistance (from I-V curves) with increased 

cell size. Because the resistance is mostly due to the passive biophysical properties there 

was little, if any differences between the P3 XII MNs and the P10/P17 XII MNs. With a 
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2-fold increase in total volume there was a 20% decrease in mAHP amplitude from P10 

to P17. Since the simulation parameters were the same this change in mAHP could be 

due to the increase in total volume.  

 

Electrophysiology 

Although the model we used was a single (somal) compartment, we incorporated 

dendrites using the tools provided in NEURON (Fietkiewicz et al., 2011; Purvis and 

Butera, 2005). In our model we utilized different values of fast sodium and potassium 

conductance for soma and dendrites with the dendrites being 10-fold lower than the 

soma, as well as, the hyperpolarization-activated current being 100-fold lower for 

dendrites than for soma. A previous model, which included three dendrites with the soma, 

also used different values for conductance of specific channels (Engel et al., 1999). In 

this study, we found that the passive and active properties used for postnatal day 3 (P3) in 

our model did not match experimental results unless the values for the hyperpolarization-

activated current and membrane capacitance were different from twice the value of those 

that used for P10 and P17 neurons. Purvis and Butera (2005) have suggested that the 

hyperpolarization-activated current is lower in neonates based on differences in mAHP 

duration between adults and neonates with approximately a ten-fold decrease in neonates 

compared with adults. Experimental data on membrane properties and cell size suggest 

that the membrane capacitance can decrease by one-half from P1–P2 to P19–P30 (Nunez-

Abades and Cameron, 1997) meaning that the value at P3 is not necessarily the same at 

P10 or P17. This may also be true for the P10 neuron since the membrane properties 

appear to change with age (Nunez-Abades and Cameron, 1997), and the mAHP changes 
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with age related to the hyperpolarization-activated current (Berger et al., 1996; Cameron 

and Nunez-Abades, 2000; Purvis and Butera, 2005; Yoshimoto et al., 2015). One study 

has shown that the electrophysiological properties of P10 XII MNs differs from that of 

P17 XII MNs (Nguyen et al., 2004). As a result, the electrophysiological properties of the 

P10 XII MNs in this study may be different from experimental, but the previous study we 

used for comparison did not measure P10 XII MNs (Nunez-Abades et al., 1993) so this 

is, as of yet, unknown. Therefore, the changes we made to the P3 model are supported by 

prior experimental work. 

 

Electrophysiology as a Function of Morphology 

We found that the peak resistance correlated with both the total volume and total 

surface area of the neuron. This has been previously demonstrated experimentally 

(Nunez-Abades and Cameron, 1997); however, we have shown that the proportion of a 

subset of modeled ionic conductances are different between the P3 neurons and the 

P10/P17 neurons. The membrane resistance (RM) decreases with increasing age, while the 

amplitude of the mAHP changes little and there is some change in mAHP duration with 

age. Although the amplitude of the mAHP did not correlate with the volume or surface 

area of the neuron, we saw a relationship between mAHP amplitude and resistance 

correlating with cell size. Therefore, while morphology may not directly influence the 

active properties it certainly indirectly affects the excitability of the neuron via the 

changes we report in the cell’s passive properties. Thus, our model provides a more 

rigorous foundation for understanding how the developmental changes in brainstem 
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neurons can contribute to changes in excitability and reliability of neural activity in the 

brainstem respiratory neural network. 

 

Comparison with Previous Studies 

Although this study is the first to relate biophysical properties and morphology in 

an extensive range of developing brainstem neurons, there are theoretical models and 

experimental studies that have focused on XII MNs. Our model is an extension of two 

previous models for XII MNs that were single compartment Hodgkin-Huxley style 

models (Fietkiewicz et al., 2011; Purvis and Butera, 2005). One main difference in our 

study was the use of morphological data from measured XII MNs to simulated 

experiments from electrophysiological studies published by others (Nunez-Abades et al., 

1993), then comparing our simulated results with the published experimental results. 

Although one other study modeled a soma with three non-branching dendrites (Engel et 

al., 1999), our study used neurons of different sizes, dendrite lengths, and degrees of 

branching. An electrophysiology study on rat vibrissa motoneurons assessed measured 

active and passive membrane properties as well as measuring neuron morphology 

(Nguyen et al., 2004). They showed differences in branch length and membrane 

impedance between P4–P5 and P15–P23 neurons but did not show correlations between 

the membrane properties and neuron morphology. 

 

Limitations of Model 

Our model was limited by gaps in our knowledge concerning the range of ionic 

conductances expressed and present in the membrane of XII MNs, as well as, differences 
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in channel density on the dendrite as compared with the soma and those changes 

occurring across the time course of early development. Other studies have established the 

location of some voltage-gated ion channels (Vacher et al., 2008), but little is known 

about which ion channels are expressed where for XII MNs. There are many studies of 

voltage-gated ion channel function (Ekberg and Adams, 2006; Jan and Jan, 2012; 

Johnston et al., 2010; Yu and Catterall, 2003) and XII MNs specifically (Bayliss et al., 

1994; Lape and Nistri, 2001; Powers et al., 1999; Powers and Binder, 2003), but there is 

no comprehensive information about ion channel relative densities on soma and dendrites 

in XII MNs. One study found that ion channel expression in the rat ventral respiratory 

column varies between adult and neonates with a subset of sodium, potassium, and 

calcium channels having a six-fold or more increase in adults when compared with 

neonates (González-Castillo et al., 2017). However, in our study we found that the 

surface area in P17 neurons was about 3-fold greater compared with P3 neurons, 

suggesting that the density may have about a 2-fold or more increase in our models. The 

different sub-types of voltage-gated ion channels and which are present on the somata 

and dendrites of XII MNs is another factor having a profound effect on 

electrophysiological behavior. Beckh and colleagues (1989) showed that from P1 to 

about P10 one sub-type of sodium channel III (Nav 1.3) is expressed on neurons while a 

different sub-type sodium channel I (Nav 1.1) is expressed from P10 through adults 

(Beckh et al., 1989). These two sodium channel sub-types (Nav 1.1 and Nav 1.3) exhibit 

different activation inactivation, and deactivation kinetics (Ekberg and Adams, 2006; 

Vacher et al., 2008). Although there are studies of expression of various channels 

(González-Castillo et al., 2017; Beckh et al., 1989), most are for the whole brain and very 
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few, if any studies of channel distribution on neurons are available for brainstem neurons 

and less for XII MNs.  

 

Future Directions 

In this study we have provided support for our hypothesis that morphological 

changes may have a direct or indirect role in changes of the biophysical properties and 

behavior of XII MNs. We also established support for changes in ion currents with age 

that were necessary for us to match our simulation results with previous experimental 

results. Therefore, both morphology and ion currents seem to be important in the 

biophysical behavior of XII MNs. However, major challenges in this study included our 

assumptions on channel location and density in the soma and dendrites. Studies 

employing immunohistochemistry to stain various channels, allowing quantification of 

numbers and location/density for XII MNs would aid in model development (Bocksteins 

et al., 2012) and these studies would be a fruitful avenue for future investigation. 

Although experimental electrophysiology on XII MNs using neurobiotin/biocytin fills 

have provided morphology in XII MNs, (Nguyen et al., 2004; Nunez-Abades and 

Cameron, 1997), there are few studies incorporating both electrophysiology and 

morphology for the same set of neurons at multiple ages. Combining this 

electrophysiology and morphology with modeling based on the morphology for direct 

comparison of modeling results with experimental results should provide detailed 

information about the relationship between morphology and biophysical properties in 

vitro. This information should also provide a better understanding of electrophysiological 
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behavior as more detailed and extensive computational models are developed for motor 

systems as well as higher CNS neural networks. 

 

Conclusions 

The results from this study suggests that the passive properties (resistance and 

capacitance) correlate with the deverlopmental morphology changes in hypoglossal 

neurons. Although the active properties were not found to correlate as significantly with 

morphology, particularly the amplitude of mAHP, more work must be done to address 

this feature of XII MN modeling. Our modeling results and experimental data reported in 

published literature suggest that the ion currents are changing with age—resulting in 

changes of the passive and active properties. However, very few if any studies have 

thoroughly studied the electrophysiology of developing neurons in functional motor 

networks. 
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CHAPTER FOUR 

DISCUSSION 

Brainstem regions including the nucleus tractus solitarii, ventral respiratory 

column, Bötzinger Complex, pre-Bötzinger Complex, and hypoglossal motor nucleus are 

necessary for the generation and transmission of breathing rhythm and modification of 

breathing pattern in response to sensory input (Feldman et al., 2013; Feldman and Del 

Negro, 2006; Lindsey et al., 2012; Wong-Riley and Liu, 2005). This respiratory network 

plays a key role in breathing pattern and control (Lindsey et al., 2012; Liu et al., 2006; 

Mortola, 1984). This neural network behavior can be influenced by the morphology of 

neurons, and connectivity can be altered due to changes in neurotransmitter release and 

receptor up- and down-regulation (Ferrante et al., 2013; Komendantov and Ascoli, 2009). 

Although not fully investigated, it has been suggested that morphology, neuron 

electrophysiology, connectivity, and neurotransmitter expression changes during 

development (Carrascal et al., 2005; Liu et al., 2009; Nunez-Abades et al., 1993; Wong-

Riley and Liu, 2005). Therefore, understanding how the breathing neural network is 

remodeled during early life is key to elucidating the synergy between morphology and 

the transmission of breathing rhythm in the perinatal period. 

 

Developmental Morphology of Hypoglossal Motoneurons 

In this work I have shown that the XII MN soma increases size with increasing 

age, but that the shape changes very little, if any with increasing age. This supports a 

recent study on XII MNs in mice (Refik Kanjhan et al., 2016) and suggest that the soma 

has a gradual, continuous growth during the first three weeks post birth. However, the 
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dendritic tree increases in both size and complexity with increasing age. More 

importantly, I have shown that there are at least three development windows: P1–P5, P7–

P12, and P13–P21. One of the main features of these three windows is the increase in the 

number of primary branches during the P7–P12 period while during the P13–P21 period 

there is only an increase in branching. This supports our hypothesis of the sensitive 

period in that the increase in primary branches specifically during this P7–P12 window 

represents a change which allows for more extensive branching influencing the surface 

area available for ion channels and receptors. Another result supporting my hypothesis is 

that the data could not be fitted to a single distribution, to a finite mixture model of two 

normal distributions with the parameters being age-window dependent. For example, the 

radius at which the maximum number of intersections occurred did not have the same 

distribution parameters at P7–P12 as at P1–P5. At P13–P21 the data was more 

represented as a single distribution, but the P7–P12 seems to represent a transition 

between the P1–P5 and P13–P21. Therefore, there does appear to be changes that are 

consistent with a morphological “sensitive period” or a transitional window between the 

first and third weeks post-birth.  

Except for the soma shape which did not change significantly with age, the size of 

the soma, dendritic tree size, and complexity of dendritic trees all increased with 

increasing age. The finite mixture model of two normal distributions was not consistent 

for the three developmental windows (except for aspect ratio and form factor) suggesting 

that soma size and dendrite development is not necessarily the same for all neurons at a 

specific age. Changes in soma size relates in part to the metabolic capacity and dendritic 

tree size and complexity relates partially to connectivity. If the dendritic tree lacks 
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sufficient surface area, then the number of synaptic contacts and ion channels is limited 

which may impact function. In the hypoglossal nucleus this could limit the drive and 

control of the tongue and upper airway potentially having a negative impact on upper 

airway function. 

 

Developmental Electrophysiology of Hypoglossal Motoneurons 

The principle goal of modeling is to provide some theoretical understanding of a 

phenomena and insight into testable hypotheses which can be tested experimentally. 

Computer simulation, done correctly, can simulate several experiments in a shorter time 

than actual experiments generating questions that can be addressed experimentally. 

Modelling is simply an adjunct to experimental work which should complement and 

enhance experimental data and results. I have shown that both passive and active 

properties change with increasing age. Important to the electrophysiology, I have shown 

that the passive properties correlate with morphology. Another important finding was that 

for the P3 XII MNs it was necessary in the model to double the membrane capacitance 

and decrease the hyperpolarization-activated current by ten to replicate the passive and 

active properties measured experimentally. This would suggest that there are 

developmental changes in at least some of the ionic currents such as the 

hyperpolarization-activated current as well as the membrane capacitance with age. Both 

of these have been suggested in previous studies (Nunez-Abades and Cameron, 1997; 

Purvis and Butera, 2005). However, very little is known about any changes in other ion 

currents such as the various types and sub-types of sodium and potassium currents with 

age. Further study of the ionic currents at individual ages might provide more 
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understanding of the functional changes in neurons. Especially if there are any changes 

during the sensitive period reflecting transitions in how the ion currents contribute to the 

neuron’s electrophysiology could provide clues into other functional changes.  

 

Limitations 

There are several limitations from each part of this work. The Golgi-Cox staining 

method is neuron selective, but what neurons are selectively stain and why are not 

apparent. The 3D reconstructions are from image stacks with each image take at intervals 

of 2 m. At a magnification of 40x the resolution in the x and y direction is about ±0.1 

m. Therefore, the reconstructions do not represent true 3D models since an orthogonal 

view is not acquired and the resolution in the z-direction is about ±1 m. This translates 

to lack of accuracy and loss of information on dendrites extending from the bottom and 

top of the soma. Neuromantic and other programs for 3D reconstruction generally assume 

cylinder and conical shapes which may not completely represent actual morphologies of 

the neuron soma or dendrite.  

The simulation environment NEURON assumes a spherical soma consisting of a 

single compartment, but this does not reflect the actual 3D morphology of XII MNs. 

Many of the parameters for the model such as the ionic current densities for XII MN 

soma and dendrites are not known. Previous electrophysiological studies cannot 

distinguish between soma and dendritic channels. Studies investigating the expression of 

voltage-gated channels usually process and examine the whole brain and not specific 

regions. There are some studies on localization for voltage-gated channels, however these 

studies are for neurons in general and not specific to XII MNs. I did not include calcium 
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channels nor the small-conductance calcium-activated potassium (SK) channel which are 

less important to single action potentials and more important to a train of action 

potentials. Therefore, an improvement to the present work would be to incorporate these 

ionic currents into the model for passive, single action potentials, and action potential 

trains.  

 

Future Studies 

One obvious extension of this work would be the 3D reconstructions and 

morphometric analysis of the XII MNs. This is presently being pursued for all 460 XII 

MNs reported in this study for later publication. Measures such as branch order, dendrite 

length and diameter at each branch order, and other 3D morphometrics are being obtained 

to generate dendrograms and graphs to summarize these geometric quantities.  

Some of the questions about changes in ion currents with age resulting from the 

electrophysiology simulations in this work could possibly be addressed by two strategies. 

Since there are antibodies for some types and sub-types of voltage-gated channels 

immunohistochemical techniques could be used to estimate the densities of these 

channels on soma and dendrites of XII MNs (Bocksteins et al., 2012). Although actual 

densities would be of benefit, estimates of the ratio of ion channel densities between 

soma and dendrites could provide a constraint in current densities for the simulation 

models. By increasing the number of known parameters, the number of solutions is 

constrained thereby providing a convergence of model parameters such that simulations 

optimally match experimental results. Another approach would be to use 

pharmacological techniques to block specific ion currents. Pharmacological agents such 
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as TTX can be used to block sodium channels while agents such as minocycline can 

block the hyperpolarization-activated current (Bayliss et al., 1994; Berger et al., 1996; 

Carrascal et al., 2005). Reducing the number of ionic currents in the experiment would 

also reduce the number of parameters in the simulation model reducing the number of 

iterations to match simulated and experimental results. By matching the simulated and 

experimental results with different ionic currents being blocked only specific ionic 

currents combinations would be acting for each scenario allowing for stepwise iteration 

of the parameters. Both approaches are limited due to lack of antibodies for all channels 

and methodological limits for immunohistochemistry, and the limitation of 

pharmacological agents targeting ionic currents. Therefore, by combining 

immunohistochemistry and pharmacological approaches most of the ionic current 

associated parameters could be worked out in the simulation model based on 

experimental data. 

Probably the most important direction for this work stems from the finding that 

morphology has an indirect influence on active electrophysiological properties. By 

determining the corresponding morphology of neurons with a specific 

electrophysiological behavior a better understanding of the electrophysiology could be 

obtained. One experiment to address this would be to perform electrophysiology on XII 

motoneurons in rat pups from the different developmental windows. After the experiment 

is completed fill the neuron with neurobiotin processing for either bright-field or 

fluorescence imaging, acquire image stacks, and perform 3D reconstructions obtaining 

3D morphology. These 3D geometrical models could then be imported into NEURON or 

another simulation program where the experiment would be replicated, and simulated 
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results compared with the experimental results. By having the morphology to normalize 

the comparison between simulated and experimental results any influence or variance 

added by the morphology is accounted for allowing for better iteration of the ion currents. 

However, it would be necessary to obtain a sufficient variance in the morphology to be 

able to ascertain the relationship between morphology and electrophysiological 

properties. Therefore, in this experiment both a suitable electrophysiological model for 

simulation, and sufficient sample size and morphological variance is required for curve 

fitting. 

Other experiments that would expand the findings of my work would be to repeat 

this work with different animals. This comparative morphology-electrophysiology could 

provide a broader understanding of XII MNs exploring conserved and non-conserved 

aspects of XII MNs. Differences in respiration and responses to conditions such as 

hypoxia and hypercapnia between various strains of rats has been reported (Golder et al., 

2005; Strohl et al., 1997; Yang et al., 1999). Therefore, the study of other rat strains, such 

as Brown Norway, Wistar, or Fischer compared to the Sprague-Dawley rats used in this 

study would provide more depth in our understanding of XII MNs and development. 

Establishing the pattern of maturation of XII MNs in two or more rat strains such as 

Brown Norway or Wistar could provide a deeper understanding of neuron development 

from the similarity and differences particularly in morphology, electrophysiology, and 

their relationship. Since the rat pup model is one of premature birth since several systems 

such as thermoregulation and respiration are not fully developed at birth another 

extension of this would be to investigate XII MN development in full-term animal 

models such as guinea pigs. Rats differ from other rodents such as mice (Mortola, 1991, 
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1984; Mortola and Lanthier, 2004), so characterization of the XII MN maturation in these 

species compared to rats would provide a wider understanding of XII MN morphology 

with age. Understanding the similarities and differences in animal models of full-term 

and preterm births could provide information directed to problems associated with 

preterm births.  

Finally, the effects of conditions such as perinatal nicotine exposure or maternal 

inflammation on the developmental maturation of XII MNs in a rat pup model could be 

more precisely determined since there is now a baseline for normal maturation. In 

conjunction with the previously mentioned studies a suitable simulation model for 

electrophysiological behavior for XII MNs and its relationship with morphology can be 

established. This foundation for understanding could allow for improved understanding 

of both the morphological and electrophysiological changes due to adverse conditions 

such as nicotine exposure or inflammation leading to better interpretation of short- and 

long-term implications of these conditions. One such implication from this present work 

is the differential morphology (finite mixture model results). One hypothesis for perinatal 

nicotine exposure or maternal inflammation could be the lack of the differential 

morphology. If certain morphological parameters which are non-normally distributed are 

found to be normally distributed in the perinatal nicotine exposure or maternal 

inflammation animals, then this could have implications even if there are no statistical 

differences due to sample size or variance. Having a complete and detailed understanding 

of the natural maturation of XII MNs could provide the foundation for adequate 

interpretation of perinatal, maternal, and even postnatal conditions such as nicotine and 

inflammation.  
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