Abstract
Alterations in brain metals homeostasis and particularly brain iron overload have been postulated to play a role in Alzheimer's disease, contributing to oxidative stress and neuronal injury; however, the source of this iron is not clear and may be due to metabolic derangement(s), failed iron clearance mechanisms or exogenous deposition such as through bleeding. This series of studies was designed to evaluate the extent of metals dyshomeostasis in the Alzheimer's disease brain and specifically whether microvascular bleeding is a major contributor to Alzheimer's disease-related iron overload. Cerebral amyloid angiopathy (CAA) is a vascular manifestation of Alzheimer's disease present to some degree in up to 95% of Alzheimer's disease patients. This vasculopathy results in vascular inflammation and fragility which produces clinically detectable bleeding (by susceptibility weighted MR imaging) in many Alzheimer's disease patients. We analyzed brain iron levels by gold-standard atomic absorption spectrometry in brain tissue from patients with severe CAA, in those with Alzheimer's disease without significant vascular involvement and in aged control tissue. We also observed iron, zinc and copper in these tissues histologically by novel techniques to qualitatively assess their association with vascular and perivascular abnormalities. Increased iron in the subset of Alzheimer's disease patients with CAA is accompanied by increased levels of heme degradation enzymes, heme oxygenase and biliverdin reductase. Finally, because the mechanism(s) underlying vascular fragility in CAA is unknown, we evaluated the role of terminal complement on cerebrovascular elements in the setting of CAA. This may provide mechanistic clues to how the structural stability of arterioles is undermined in this microangiopathy. If iron overload is a feature of CAA rather than a more general feature of Alzheimer's disease, it is possible that chelation therapies will be more effective for the subset of Alzheimer's patients with severe vasculopathy. This information combined with an effective clinical test for CAA has the potential to refine therapeutic strategies.
LLU Discipline
Biochemistry
Department
Basic Sciences
School
School of Medicine
First Advisor
Kirsch, Wolff M.
Degree Name
Doctor of Philosophy (PhD)
Degree Level
Ph.D.
Year Degree Awarded
January 2010
Date (Title Page)
12-1-2010
Language
English
Library of Congress/MESH Subject Headings
Alzheimer's Disease; Biochemistry; Metals
Subject - Local
Transition metals; Cerebral Amyloid Angiopathy; Brain metals homeostasis; Brain iron overload
Type
Dissertation
Page Count
160 p.
Digital Format
Application/PDF
Digital Publisher
Loma Linda University Libraries
Copyright
Author
Usage Rights
This title appears here courtesy of the author, who has granted Loma Linda University a limited, non-exclusive right to make this publication available to the public. The author retains all other copyrights.
Recommended Citation
Schrag, Matthew, "Cerebral Amyloid Angiopathy and Transition Metals in Alzheimer's Disease" (2010). Loma Linda University Electronic Theses, Dissertations & Projects. 10.
https://scholarsrepository.llu.edu/etd/10
Collection
Loma Linda University Electronic Theses & Dissertations
Collection Website
http://scholarsrepository.llu.edu/etd/
Repository
Loma Linda University. Del E. Webb Memorial Library. University Archives