Abstract
Each year 1 in 9 infants are born preterm in the United States. Preterm infants have a host of complications associated with prematurity, including respiratory distress syndrome. Dexamethasone, a synthetic glucocorticoid is the ‘gold standard’ intervention in the treatment of preterm infants and mothers at risk of preterm birth because it promotes organ maturation, particularly the lungs and aids in surfactant production. However, a growing body of evidence suggests perinatal dexamethasone exposure is associated with health consequences later in life including increased risk of cardiovascular disease. Cardiomyocytes are the functional unit of the heart and are unique in that they don’t have an infinite proliferative capacity. In fact, soon after birth myocytes exit the cell cycle and become terminally differentiated. It is therefore crucial that sufficient proliferation occurs before terminal differentiation takes place to ensure adequate cardiomyocyte endowment in the mature heart. The purpose of this study is to test the hypothesis that neonatal dexamethasone exposure causes premature cardiomyocyte terminal differentiation, to elucidate potential molecular targets, and evaluate the role of epigenetic modifications. In newborn rats, dexamethasone was administered in tapered, clinically relevant doses during the first three days of life. We found that newborn dexamethasone treatment induced premature terminal differentiation in cardiomyocytes resulting in reduced cardiomyocyte number in the mature heart, in a glucocorticoid receptor-dependent manner. In addition we demonstrated that an increase in DNA methylation is of importance in dexamethasone-mediated cardiomyocyte terminal differentiation. To further elucidate the molecular mechanisms involved, the effect of dexamethasone was determined in freshly isolated cardiomyocytes from newborn rats. We demonstrated that dexamethasone has a direct effect and induces hypermethylation of cyclin D2 gene promoter, resulting in epigenetic repression of cyclin D2 protein and mRNA expression in cardiomyocytes. Of importance, inhibition of DNA methylation reversed dexamethasone-mediated down-regulation of cyclin D2 expression and blocked dexamethasone-induced cardiomyocyte terminal differentiation. Furthermore, overexpression of cyclin D2 gene in cardiomyocyte rescued dexamethasone-mediated phenotype. Thus, we demonstrated a cause and effect relation of epigenetic repression of cyclin D2 gene and dexamethasone-mediated cardiomyocyte terminal differentiation in newborn rat hearts. These findings provided new insights in understanding the potential harmful effects of perinatal glucocorticoid treatment on reducing cardiomyocyte endowment in the heart and possible long-term adverse cardiovascular consequences.
LLU Discipline
Pharmacology
Department
Basic Sciences
School
School of Medicine
First Advisor
Zhang, Lubo
Second Advisor
Blood, Arlin B.
Third Advisor
Buchholz, John N.
Fourth Advisor
Ducsay, Charles A.
Fifth Advisor
Mata-Greenwood, Eugenia
Degree Name
Doctor of Philosophy (Medical Science)
Degree Level
Ph.D.
Year Degree Awarded
2016
Date (Title Page)
6-2016
Language
English
Library of Congress/MESH Subject Headings
Dexamethasone; Neonatalogy; Respiratory Distress Syndrome; Heart -- Growth and Development; Glucocorticoids
Subject - Local
Organ maturation; Surfactant Production; Cardiomyocytes; Terminal differentiation; Epigenetic Modifications
Type
Dissertation
Page Count
133
Digital Format
Digital Publisher
Loma Linda University Libraries
Copyright
Author
Usage Rights
This title appears here courtesy of the author, who has granted Loma Linda University a limited, non-exclusive right to make this publication available to the public. The author retains all other copyrights.
Recommended Citation
Gay, Maresha, "Effects of Neonatal Dexamethasone on the Maturation and Endowment of Cardiomyocytes" (2016). Loma Linda University Electronic Theses, Dissertations & Projects. 373.
https://scholarsrepository.llu.edu/etd/373
Collection
Loma Linda University Electronic Theses and Dissertations
Collection Website
http://scholarsrepository.llu.edu/etd/
Repository
Loma Linda University. Del E. Webb Memorial Library. University Archives