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ABSTRACT 

A DESCRIPTIVE CATALOG OF DIMMING CELLS 

IN THE PURPLE SHORE CRAB HEMIGRAPSUS NUDUS 

by Eugene Pak 

A population of cells responsive to the decrease or dimming of light 

was identified in the Purple shore crab Hemigrapsus nudus. Extra­

cellular pin electrode recordings from the optic nerve tract measured 

responses to decremental changes in relative light levels over the range 40 

to 0.08 lux. The observed activity revealed that these dimming cells could 

respond over this entire range. A catalog detailing the response charac­

teristics for each of the thirty dimming cells in the study was generated. 

The parameters measured the receptive field size; response to mechano­

receptive tactile stimuli; response to abrupt On or Off light level changes; 

response to object movement; and any changes in the dimming activity. 

The results indicate that Hemigrapsus nudus dimming cells comprise 

a number of response subgroups, in addition to the observed dimming 

response. The majority of dimming cells (n=20) shared a whole eye recep­

tive field, and all cells detected small changes or jitter in an object's spatial 

position. Dimming cells were found to respond to light termination only 

(n=12), or to both light termination and onset (n=9); no cells had a greater 

response for light onset than for its termination. The study population 

suggested that dimming cells had multimodal properties, since all cells 

responded to both tactile and visual stimuli. There also is evidence that 



some cells had regions of increased sensitivity to certain light levels that 

were more prominent than for the rest of its response range. Dimming 

cells with enhanced ranges were separated based on the extent of the 

increased sensitivity into Brief Range (BR) and Extended Range (ER) 

responses. BR cells had enhanced responses at very specific light levels; 

ER cells responded over a portion of their total response range. 

Dimming cell responses increased in number with decreasing light 

levels for almost all response groups. The only exception was for dimming 

cells responding to light Off only; these cells maintained a constant 

population (n=l 2) over all light levels measured. Dimming cells appear 

important for object movement detection rather than for feature perception 

in low light environments. 
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INTRODUCTION 

Crustacea, and in particular decapod crustaceans such as crabs, cray­

fish, and lobsters, have served in the study of visual information proces­

sing. These crustacea share a common visual organization: a compound 

eye situated at the end of an eyestalk. Besides allowing for a wide degree of 

rotation, the eyestalk also encloses the neural elements related to vision. 

Typically, the ommatidial photoreceptors cover the distal or terminal, sur­

face of the eyestalk; within the distal eyestalk segment itself are four optic 

ganglia-- the lamina ganglionaris, medulla externa, medulla inter­

medialis, and medulla terminalis. The proximal segment supports the 

distal segment, and provides the muscle attachment sites necessary for 

eyestalk movement. The optic nerve tract passes through these eyestalk 

segments, connecting the optic ganglia to the supraesophageal ganglia of 

the crustacean protocerebrum (Figure 1). The optic nerve is best described 

as a nerve tract, since it carries both descending afferent visual inter­

neurons and ascending efferent motor interneurons. 

The study of visual responses in crustaceans developed from research 

on the crayfish central nervous system. Recordings taken by Waterman 

and Wiersma (1954,1963), and by Wiersma, Ripley and Christensen (1955) 

from esophageal commissural interneurons indicated that some of these 

interneurons carried visual signals. Wiersma and Mill (1965) concluded 

that the visually responding interneurons in the crayfish commissures 

responded to three modes of stimulation: movement within a given 

receptive field; changes in relative illumination levels; and changes in total 

illumination levels. Despite the relatively simple neural organization of 

1 
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Figure 1. Diagrammatic representation of Hemigrapsus nudus. An 
enlargement of the right eyestalk with the underlying optic neural ganglia is 
projected over the body in the drawing. The five shaded regions represent the 
neural structures related to visual processing. No attempt is made to show 
interneuron connections between these ganglia, or with the optic tract fibers 
leading to the central supraesophageal ganglion (not shown). 
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this visual system, it has been difficult to correlate behavioral responses to 

the anatomical structures. The optic ganglia, with their connecting 

interganglion fibers, have been difficult to study directly since the eyestalk 

carapace is difficult to penetrate without disturbing the underlying neural 

elements. Instead, recordings are taken below these optic ganglia, at the 

level of the optic nerve tract. Secondary and tertiary responses to visual 

stimuli have been correlated to afferent visual interneuron responses 

observed in this optic tract. The method of random probing has provided 

detailed and reproducible observations concerning crustacean visual 

processing. 

Allowing for certain morphological differences between lobsters, cray­

fish, and crabs, decapod crustaceans share functional physiological res­

ponses. Certain characteristic properties of crustacean vision have been 

established. These responses correspond to different classes of visual 

interneurons; indeed York and Wiersma (1975) catalog fourteen separate 

types of distinct visual responses, not including various optokinetic and 

otherwise mechanoreceptive responses. Each of these visual responses is 

defined by a particular receptive field. A receptive field represents that 

topographic region of the total ommatidial surface which is stimulated by a 

given stimulus. These receptive fields serve as markers for a certain 

stimulus and its response. Wiersma and Yamaguchi (1966), for example, 

identified crayfish optic fiber 038 as a homolateral sustaining fiber, whose 

receptive field is at the upper back rim of the eye. Optic fiber 038 identifies 

then a specific interneuron fiber with a characteristic receptive field and 

response. 
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These visual fibers respond to a variety of signals, ranging from object 

movement, spatial-horizon orientation, and to changes in light intensities. 

The two sets of fibers that respond to changing illumination levels are the 

sustaining fibers and dimming fibers. Both fiber types have action potential 

frequencies that are proportional to the amount of dimming. Sustaining 

fibers increase their discharge rate to increasing light intensity; dimming 

fibers, however, increase their discharge rates to decreased illumination. 

Wiersma (1966) noted that dimming fibers are clearly separate from 

"OFF" fibers and certain movement fibers which can respond to lowered 

light levels. Even though Waldrop and Glantz (1985) chose to describe dim­

ming fibers as "tonic OFF optic tract intemeurons", Waterman, Wiersma, 

and Bush (1964) concluded that OFF fibers in themselves displayed only 

initial transient discharges to decreasing illumination. Dimming fibers 

also respond to frequent or rapid movement or shadows across the receptive 

field without noticeable adaptation (Wiersma and Yamaguchi 1967a). This 

property is also shared by sustaining fibers. Their joint response to 

shadowing is unique, as all other visual fiber classes invariably habituate to 

such movement (Wiersma and Yanigasawa, 1971 ). Like dimming fibers, 

sustaining fibers respond to jittery movement, and both share similar 

receptive fields (Waterman and Wiersma, 1963; Wiersma and Yamaguchi, 

1967a; York and Wiersma, 1975). 

Unlike sustaining fibers, however, the receptive field size of dimming 

fibers in crayfish are smaller in size (Wiersma and Yamaguchi, 1967 a). 

These receptive fields are located predominantly along the central axis of 

the eyestalk, as either whole eye (total surface), or as a smaller, more 

localized central receptive fields (Wiersma and Yamaguchi, 1966). Cray-
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fish dimming fibers have also been documented along the upper back half 

of the eye, and also along its top dorsal rim. The discharge rate for a dim­

ming fiber is dependent on the level of background ambient illumination, 

the absolute light level, and on the preceding relative light level. 

Yamaguchi and Ohtsuka (1973), in addition to these conclusions, also 

report that the rate of discharge can be enhanced by illumination of a 

corneal region complementary to the receptive field. That is, stimulating 

the appropriate region outside a given receptive field can increase the 

reactivity of that particular receptive field, by coactivating the surround 

field for a given fiber type (Wiersma and Yamaguchi, 1967 a; Waldrop and 

Glantz, 1985). Both sustaining fibers and dimming fibers respond to 

changes in illumination. While sustaining fiber responses have been well 

documented, dimming fibers have been poorly described. Little is known, 

for example, of the response characteristics of these cells, nor of associated 

responses to either purely visual, or to multimodal stimuli. Further, while 

dimming cell responses appear to be a small subset of all visual responses, 

their overall significance to the animal requires further investigation. 

Their infrequent appearance, and possible misidentification may have 

contributed to the lack of descriptive information regarding these fibers. 

The purpose of this research is to study these dimming fibers, and to 

establish a descriptive catalog of their properties, as determined by extra­

cellular recordings. Wherever these fibers in the optic nerve tract present 

clearly distinguishable responses, these responses will be described in 

detail. 



MATERIALS and METHODS 

Both male and female specimens (carapace breadth 4.5 - 6 cm.) of the 

low to mid-intertidal Purple Shore crab Hemigrapsus nudus were used. 

The animals were personally collected near San Simeon on the central 

California coast, and were maintained for research in a recirculating salt­

water tank (15° C) under a 12:12 light/dark regimen. 

The experimental protocol followed that of previous researchers, and 

has been adapted to meet current requirements (Waterman and Wiersma, 

1963; Waterman,Wiersma and Bush, 1964). Only minor adjustments were 

made to existing procedures. During experimentation, each subject was 

immobilized by rubber-banding the legs and cheliped on each side of the 

body. This prevented the crab from dislodging the recording electrode, and 

also served to reduce background noise levels from active motor neurons. 

Also, at the medial and lateral borders of the eyestalk orbit, the carapace 

was trimmed with clippers. This procedure permitted clearer deter­

mination of receptive fields whenever the eyestalk was protectively with­

drawn inside the orbit. The immobilized crab was held suspended in air 

(28° C) by a clamp. A narrow strip of moist toweling covered the mouth­

parts, permitting gas exchange during the experiment. 

Following the protocol of Waterman and Wiersma (1963), the recording 

electrode was electrolytically etched from a stainless steel insect pin 

(Elephant brand, #000) to produce a secondary taper to the pin shaft. This 

taper reduced the overall tip diameter, and helped prevent the electrode 

from shifting within the optic tract, since the penetrated membranes sealed 

around the electrode shaft. Usable tip diameters ranged from 1 to 5 

7 



microns, and averaged between 3 and 4 microns. A fine copper wire 

(Beldenamel A WG #38, Belden Cable Co.) was soldered to the pin 

8 

shaft approximately 1 cm. from the tip. The needle was then coated with a 

high dielectric compound (Insl-X.) to insure overall electrical isolation, in a 

modification of existing protocol. The coated needle was then baked in an 

oven (70° C) for a minimum of one hour to assure complete curing of the 

dielectric compound. The electrode was cut from the needle shaft above the 

solder joint, and completed by covering the severed end of the shaft and 

exposed solder joint with acrylic nail polish. 

After clamping the prepared animal in the holder, either an #0 or #00 

unaltered insect pin was inserted through the fibrous membrane imme­

diately below the medial margin of the proximal eyestalk carapace, at a 

diagonal along the midline axis towards the ommatidial surface. This 

additional step not only permitted a better orientation to the optic fibers than 

did perpendicular penetration, but also helped to protect the recording 

electrode from incidental damage. The unaltered pin was inserted 2 to 3 

mm. within the optic tract, at a level below that of the optic ganglia. No 

penetrations or recordings were attempted within these ganglia. The probe 

was removed, and then replaced by the recording electrode. A simple 

needle ground electrode was passed through the membrane between the 

metus and carpus joints of the fifth leg. The recording and ground elec­

trode leads passed through a preamplifier (Grass P5) to an oscilloscope 

(Textronix DlO) and audio generator (Grass AM6). The largest cell res­

ponses were recorded on a reel-to-reel FM recorder (Ampex SP300), along 

with a reference time base signal of 10 milliseconds (Textronix 180A) 
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recorded simultaneously on a separate channel. These taped records were 

analyzed later on a separate storage oscilloscope, (Textronix 564B). 

Various response characteristics were cataloged once a fiber type was 

found and identified. These cells were compared against previous descrip­

tions of visual response modalities (Wiersma, 1966; Wiersma and 

Yamaguchi, 1966, 1967a; York and Wiersma, 1975). Determination of 

receptive field size involved correlating evoked action potential discharges to 

motion passing over the surface of the eye. This was initially accomplished 

by simple hand or finger-waving over the eye, as performed by Wiersma 

and Yamaguchi (1966, 1967a). Further determination of receptive field 

dimensions relied on the use of optical wands that subtended 1° and 5° of 

arc, respectively, and on a light pen that provided a point source of light 

(approx. 1 ° ). 

Relative illuminance levels were measured by a light meter (Minolta 

AutoMeter II) and recorded against the Exposure Value (EV) scale. This 

photographic scale corresponded to the logarithmic decay of light inten­

sities (lux) according to the relationship: 

Illuminance (lux) = 2.5 x 2EV' 

Use of the EV scale allowed for greater clarity and simplicity in discussing 

the relationship of dimming fiber responses to decreasing values of illumi­

nation. The relationship between Lux and Exposure Values is presented in 

Figure 2. 

Mechanoreceptive sensitivity was evaluated by stroking the legs and 

carapace with a camel hair brush. Since the optic ganglia can function as 
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"lateral brains", testing for tactile sensitivity measured any centrifugal 

optomotor or sensory acthtj.ty present in the visual pathway (Wiersma, 

C.A.G., Yanigasawa, K., 1971). Use of the brush prevented any ground 

path interference. 
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Once established, a particular cell could remain active for a period of 

several hours, if the toweling over the mouth,parts was moistened periodi­

cally with oxygenated saltwater. Although the exact times of duration of 

each preparation were not recorded, a typical preparation lasted between 3 

to 4 hours; the longest for almost 6 hours. It appeared that the duration of a 

preparation correlated to the overall health of the specimen. Generally, 

freshly captured crabs lasted longer than those crabs maintained in the 

research tank for 4 to 6 weeks. Furthermore, the quality of the data 

obtained late in any preparation diminished. To avoid loss of information, 

the response par~ip.eters were collected within the first half-hour. The 

preparation often was maintained for several hours to determine if the 

response characteristics changed with time. 

Responses did remain stable until late in the preparation, when the 

onset of tissue hypoxia led to an increase in the overall background dis­

charge levels. The animal's general responses at this point became weak, 

accompanied by the diminution and loss of previously observed visual 

responses. Waterman, Wiersma, and Bush (1964) noted similar concomi­

tant response failures in both the eye and the CNS proper of the crab 

Podophthalamus vigil, as either heart beat or respiration was stopped by 

excess substitution of the hemolymph by perfusion fluids. 
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To facilitate experimenter orientation, only the right eyestalk of each 

crab was used; signals collected from the left eyestalk indicated no differen-
' 

ces in observed responses in all visual fiber types encountered. For all cell 

records except for the first three, only one cell of a single subject was 

analyzed. Use of only one cellrecord from a crab prevented repeating a pre­

viously examined optic fiber response. All crabs were sacrificed following 

experimentation. 



RESULTS 

Analysis of Hemigrapsus nudus visual neurons confirmed the 

presence of dimming cell. These dimming cells are identified based on 

their capacity to increase their tonic discharge rate relative to decreasing 

light levels. Information on thirty dimming cells was collected. Para­

meters for each dimming cell included the visual receptive field, type of 

movement response, ipsilateral or contralateral hair cell sensitivity, and 

any distinct repeatable responses over a range of different light intensities. 

The observed responses for all visual cell types, including dimming 

cells, encountered matched descriptions reported by Waterman and . 

Wiersma (1954), Wiersma (1966), and Wiersma and Yamaguchi (1966, 

1967a). Non-dimming cell responses were identified throughout the study, 

but are not discussed here. No differences were observed between records 

taken from male and female specimens. Signals obtained from the left 

eyes talk were not different from those of the right eyestalk. Although more 

than thirty dimming cells were encountered, only the most distinct records 

are considered in this study. 

Receptive Fields 

The receptive field for each dimming cell is numbered chronologically 

in Table 1. The most common receptive field is that of the whole eye recep­

tive field (n=20), which defines the entire ommatidial surface as the area 

responsive to dimming. These cells correspond to the 050 receptive field 

described by Wiersma and Yamaguchi (1966). The next most common field 

13 



Dimming Cell Characteristics 

eceptive Fields 
Movement Sensory Light Enhanced Pacemaker 
Detection Sensitivity Response Ranges Presence 

...J : Jittery + :Ipsi > Contrl +:Off>On BR: Brief Range RECEPTIVE +:Strong O:Ipsi = Contrl '1: Present 
FIELD SHAPE 

0: Off=On ER: Extended 
Zplane - :lpsi < Contrl -:Off<On Range 

OFF: Off Only 

1. ce ..J + + BR 

2. Q¥D ..J + + BR 

co X-YFast 
3. Movement + + 

Not 
..J + OFF BR 4. Determined 

5. ..J + + BR 

6. ..J + + BR 

7. ..J ++ + BR 

8. ..J + + 

9. ..J + + BR 

Table 1. Response characteristics of Dimming Cells. The parameters meas­
ured receptive field size; movement detection; ipsilateral and contralateral 
mechano- receptive sensitivity; response to abrupt light changes; enhanced 
range regions; and pacemaker activity. Dimming Cell Nos. 1, 3, 5, and 8 are 
variable receptive fields; Nos. 2, 9, 18, 24, and 25 are "Octopus fiber" fields; 
the remainder represent whole eye receptive fields. Cell No. 4 was not deter­
mined (see text). 
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Dimming Cell Characteristics 

Movement Sensory 
eceptive Fields Detection Sensitivity 

Light Enhanced Pacemaker 
Response Ranges Presence 

+: Off>On ...J : Jittery +:Ipsi > Contd 
RECEPTIVE S O·. Off-- On BR: Brief Range _ 1. Activity 

+ : trong O:Ipsi = Contd " FIELD SHAPE - : Off< On ER: Extended . Present 
Z plane -:Ipsi < Contd FF: Off Only Range 

16. 
v ++ 0 

17. 
v + + 

18. v + OFF BR 

19. v + 0 ER 

21. 

22. v ++ + v 
23. v not detmnined OFF ER v 
24. v + OFF 

26. 

27. ++ OFF ER 

28. v + + ER 

29. v ++ + ER 

30. 
++ OFF BR v 

Table 1 (continued). Response characteristics of Dimming Cells. The parame­
ters measured receptive field size; movement detection; ipsilateral and 
contralateral mechanoreceptive sensitivity; response to abrupt light changes; 
enhanced range regions; and pacemaker activity. Dimming Cell Nos. 1, 3, 5, 
and 8 are variable receptive fields; Nos. 2, 9, 18, 24, and 25 are "Octopus 
fiber" fields; the remainder represent whole eye receptive fields. Cell No. 4 
was not determined (see text). 
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present was the octopus fiber (n=5). The response characteristics for this 

fiber type were first described by Wiersma (1966). The octopus receptive 

field is not constant or regular; instead, it oscillates over time. The limits of 

this particular field shifts periodically between two extremes. At its 

smallest defined field, the octopus fiber maps a circular field, whose radius 

is from the apparent center of the eye, covering between one-half to one­

third of the total ommatidial surface. At its maximum, the field radius is 

larger, covering roughly two-thirds of the whole eye surface. The exact 

borders of this field remains undefined; as the fiber response changes, the 

receptive field described by the response changes concomitantly. 

The remaining five receptive fiE~lds were not repeated during the 

experiments. Two of these cells appeared to match dimming cells 

previously described by Wiersma and Yamaguchi (1966). Cell No.l 

corresponded to the description of 086, and cell No.8 matched that of083. 

Cell No.4 had no receptive field identified, since it appeared to respond to 

both whole eye and octopus fiber receptive fields. Because of its otherwise 

clear response to dimming stimuli, this cell is included in the study 

although its receptive field remains undetermined. 

Movement Responses 

Responses to movement within the receptive field of each cell indicated 

that most cells (n=29) shared a common "jittery" response. Jittery 

movement responses, as described by Wiersma (1966), indicates an ability to 

discriminate both rapid and slow target movement on all three spatial 

planes with no directional preference. When an object remained stable 

within the receptive field, the cell's firing rate returned to its previous level, 
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as the cell adapted to the stationary target. Subsequent target movement 

caused the cell to respond again with increased discharges to the apparent 

shift, or "jitter" in the target's spatial position. The single exception was 

cell No.3 which responded only to fast movement in the X-Y plane. 

Mechanoreception 

The majority of cells (n=26) indicated a greater mechanoreceptive 

ipsilateral sensitivity than for contralateral sensitivity. Brushing the hair 

cells of the carapace, cheliped, or legs increased the action potential 

frequency in the active "dimming" cell. Testing was done both before and 

during the course of the experiment. 

Responses to Light Termination or Onset 

Dimming cells also responded to abrupt changes in light intensity, both 

to its onset and offset. Most cells (n=28), responded more vigorously to light 

termination (offset), while only two cells demonstrated equal responses to 

both light onset and offset. No cell in the study was observed to have a 

greater response to light onset versus light offset. 

Pacemaker Cell Activity 

"Pacemaker" responses were also noted among dimming cells (n=6). 

With the lights off for a period of time, rhythmic pulsatile discharges 

became distinct. These pacemaker cells started firing after a brief lag of 

thirty seconds to a minute following the onset of darkness. Brushing 

carapace hair cells, or presenting a light flash inhibited pacemaker activity 

for one to two minutes; the pacemaker response then recovered. 
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Uninterrupted pacemaker discharges continued for a variable amount of 

time, ranging from one to five minutes in duration. Past this point, the 

response became indistinct against the normal background activity. 

Dimming cell pacemaker activity was noted only occasionally, and 

described only when clearly identifiable. No correlation between the visual 

stimuli presented in the experiments and pacemaker activity was 

established. 

Dimming Cell Population Characteristics 

Except for pacemaker responses, which had variable and ill-defined 

activity, all other dimming cell responses in the study population remained 

stable and consistent during each experiment. Visual responses became 

attenuated and inconsistent only at the later stages of an experiment, when 

the animal's general health and nervous activity declined as previously 

described. 

Data from this study is plotted as number of active cells present at a 

given Exposure Value (EV). For the dimming cell population, Figure 3 

indicates that a greater number of cells are found at -5EV, the lower limit of 

measurable sensitivity of the light meter used. Only 29 of the total thirty 

cells in the study are shown in Figure 2, since cell No.9 began its observable 

response at -5EV, and continued to lower immeasurable levels approaching 

total darkness. Because of this extreme range, cell No.9 is present in Table 

1, but is not included in Figure 3. 

In considering the total cell population, a directly proportional 

relationship exists between the number of active dimming cells and 

increasing darkness. Due to the low sample size, no statistical tests were 
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Figure 3. Dimming Cell population response to different light levels. Each 
vertical bar represents a discreet measurement of the total number of 
Dimming Cells present at that specific light level. 



performed on the data. Despite this lack of statistical analysis, Figure 3 

strongly suggests that an increasing number of dimming cells are present 

with increasing darkness. 

Brief Ran~e and Extended Ran~e Responses 

A contribution of this research has been the identification of enhanced 

ranges of sensitivity in dimming cells. While all cells of the population 

responded over a range of light levels, a subset of these dimming cells 

increased their discharge frequency abruptly after passing some specific 

light level (Figure 4). This increase in discharge rate was related to distinct 

thresholds of illuminance. Further, these threshold values were consistent 

in each cell, and remained independent of the rate of dimming both above 

and below the threshold level. 

In the study population, the majority (n=23) exhibited this enhanced 

range sensitivity. This group of dimming cells can be further classified, 

based on the relative extent or range of enhanced sensitivity. These 

response subtypes of dimming cells will be considered as Brief Range (BR), 

and Extended Range (ER) responses. 

Dimming cells with BriefRange (BR) responses (n=ll) were found to 

have increased discharge rates only at specific light values. These 

threshold levels are quite distinct, and clearly represented specific 

illuminance values. For each cell, the discharge frequency increased only 

at the observed level, and returned to the normal relative level of activity on 

either side of the threshold value. BR responses sometimes occurred more 

than once in a particular cell (n=3). All four of these cells were consistent 

in having a second BR response at -5EV. Extended Range (ER) responding 
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Figure 4. Distribution of Dimming Cell responses over the measured 
range of light values (EV). Shaded horizontal bars represent the limits of 
the observed visual response; the black banding within indicate areas of in­
creased discharge sensitivity to certain EV levels. The narrow black bands 
are Brief Range (BR) responses; the wider black bands are Extended Range 
(ER) responses. 



cells (n=12) maintained their increased discharge rates over a well-defined 

range of light levels. This characteristic served to separate the ER response 

from the BR response, which had distinct and isolated values of increased 

sensitivity. The majority of ER cells (n=lO) continued their enhanced 

discharge rates from a specific light level through to -5EV, the lowest light 

level measured. The other two ER responses in the population were found 

to end their ranges at some value above -5EV, returning to their non­

enhanced discharge rate beyond that value. The distribution of both BR and 

ER responding cells relative to the total dimming cell population is 

presented in Figure 5. Both types of Range responses are present at lower 

illumination levels, with the exception of cell No.29 (Figure 4), which had 

an ER response between +4 to OEV. Figure 6 represents the number of each 

response subtype present at different light levels. BR responses appear 

more variable in the dimming cell population, while ER responding cells 

consistently are more apparent at lower light levels. 

Off-only and Off/On Light Responses 

Another contribution of this research has been the study of associated 

responses to both light onset and offset in dimming cells. Dimming cell 

responses to both 1 )the termination of light; and 2)the onset of light after a 

period of darkness, indicated differences within the total population. 

All dimming cell~ in this study (n=30) responded to abrupt changes in 

light levels. The most common response (n=l 6) was to both the offset and 

onset of light. These cells reacted to abrupt light level changes with a brief 

increase in discharge frequency that adapted rapidly. Because they pre­

ferentially had stronger responses to light offset than to onset, they will be 
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Figure 5. Distribution of Enhanced Sensitivity Cells relative to the total 
Dimming Cell population. These Enhanced Sensitivity Cells are comprised 
of Brief and Extended Range Cells. 
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considered as "Offi'On" responses. Figure 7 suggests that, for this 

response, more cells are active at lower light levels. 

The other subset of dimming cells reacted to light offset only (n=l 2). 
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Turning the lights back on abruptly or gradually had no effect on the level of 

activity. These "OFF-only" responses were found to maintain a constant 

population throughout all light levels (Figure 8). In testing for light offset 

or onset responses in BR or ER identified dimming cells, 9 of the 12 OFF­

only cells were found to have enhanced sensitivity for changes in relative 

illumination. In Figure 9, no distinction is made between BR or ER 

responses, but instead are considered together. Again there is a consistent 

increase in the number of active cells and increasing darkness. 

The remaining two dimming cells in the study were found to be equally 

responsive to light onset and light offset. These two cells are therefore 

excluded from the previous figures. No variation from the response 

characteristics for either Offi'On or OFF-only were noted in these two cells. 
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DISCUSSION 

These results indicate that dimming cells possess distinct and charac­

teristic responses. These cells clearly exist in Hemigrapsus nudus and 

show that at the level of the optic tract, dimming responses have been 

processed by preceding neurons. The various responses recorded for these 

cells suggest that different responses are processed simultaneously from a 

given receptor. 

Receptive Fields 

Dimming cell characteristics correlated well with previous research, 

although analysis of their associated receptive fields reveals a notable 

exception. As discussed before, twenty of the thirty dimming cells in 

Hemigrapsus nudus had whole eye receptive fields, and two other cells 

were found to match receptive fields described by Wiersma and Yamaguchi 

(1966). These researchers identified 41 occurrences of homolateral dim­

ming fiber responses. Fully half of these cells (n=21) were identified as the 

079 receptive field, covering the upper back quadrant of the eye; only 20% 

(n=8) identified the crayfish whole eye receptive field 050. 

Other studies in crayfish (Yamaguchi and Ohtsuka, 1973; Waldrop and 

Glantz, 1985) and goldfish (N orthmore, Williams and Vanegas, 1983; 

N orthmore, 1984) indicate that dimming cell receptive fields are also found 

centered in a band along the horizontal midline, or else over the upper 

dorsal half of the eye. The striking predominance of whole eye receptive 

fields in Hemigrapsus may be explained in part by their habitat. Whereas 



crayfish enjoy a wide distribution in more aquatic freshwater niches, 

HemigrapBllS nudu~ is a prominent indicator species of the rocky mid-to-
i' ' ~· ., ~ 

high intertidal zone of the Pacific coastline (Ricketts, Calvin and 

Hedgepeth, 1985). These crabs typically live under large rocks, avoiding 

predators in the open. In such a visually complex environment, dimming 

cells in Hemigrapsus may serve to pool all available light. Since feature 

perception would be at a minimum under such conditions, the discrimi­

nation of object movement by means of shadow or total illuminance 

changes may be critical for dimming cells. 

The present research documents two observations of Hemigrapsus 

receptive fields. The first is the clear majority of whole eye fields; the 

second is the identification of octopus fiber receptive fields among dimming 

cell responses. The exact significance or need for an oscillating receptive 

field remains unclear, although it is possible that this field may extract a 

higher sensitivity to changes in relative illuminance, or to shadow move­

ment, from its differential field sizes. Further experiments with these cells 

is necessary to fully comprehend this response. 

Mechanoreception 

Many cells in the study displayed multimodal properties-- that is, the 

ability to respond to both visual and non-visual mechanoreceptive (tactile) 

stimuli. This finding recalls earlier findings by Waterman and Wiersma 

(1963), and Waterman, Wiersma and Bush (1964). Their research on the 

Hawaiian swimming crab Podopthalmus vigil established visual inter­

neurons having mixed response modalities. One pertinent feature in their 

study that they observed was mechanoreceptive sensitivity. 
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How this sensitivity relates to the visual processing of dimming cells is 

not apparent, although the results in Table 1 show that all dimming cells in 

the study exhibited clear associations with other responses, both visual and 

non-visual. This correlation demonstrates that dimming cells are not pure 

visual fibers, but instead are capable of processing visual and non-visual 

information concurrently. 

Crayfish studies indicate that the optic nerve tract has a distinct organ­

ization. In cross-section, different fiber types are separate and localized. 

Further, approximately two-thirds of all tract fibers are centrifugal, carry­

ing motor optokinetic and sensory mechanoreceptive information from the 

central supraesophageal ganglion to the eyestalk (Wiersma, 1966; Wiersma 

and Yamaguchi, 1966). In Hemigrapsus, no such organization exists; all 

fibers types are mixed throughout. Indeed, the presence of mechano­

receptive sensitivity in Hemigrapsus nudus is noteworthy, since experi­

mentally, the mechanosensitivity can be confirmed; yet histological 

preparations indicate a smaller proportion of actual centrifugal fibers than 

that expected from the observed response (Rafuse; personal comm.). 

Enhanced Ran~ Responses 

The existence of enhanced ranges of sensitivity in dimming cells has 

no.t been reported in the literature. The present study repeatably confirmed 

their presence, and the observed response can be separated into two distinct 

classes. The first is the Brief Range (BR) response. This dimming cell 

response appears in a small proportion of the study population. When 

encountered, BR responding cells demonstrate a consistent increase in 

discharge rate, which had no correlation to any experimental stimuli. 



32 

BR responding dimming cells typically were noted at narrow ranges of 

EV light values, while the Extended Range (ER) class of responses 

increased their tonic discharge rate over a wide range of values (Figure 4). 

Both ER and BR responses shared similar increases in discharge rates, but 

they were separated based on the extent or range of the enhanced response. 

While Figure 5 indicated that both dimming response subtypes are more 

prevalent at levels of increasing darkness, the enhanced range noted for 

Cell No.29 in Figure 4 provides a clear exception to this generalization. 

It was noted throughout the results that the number of active cell 

responses for enhanced range and all other cell types-- except OFF-only 

cells-- appeared to increase proportionately at -3EV (lux=0.31 ). Whether 

this observation is significant must be deferred until a larger sample size 

can be generated for a meaningful statistical interpretation of this 

perceived trend. 

Movement Responses 

The prominent dimming cell response to jittery movement noted in the 

study is well documented in the literature (Wiersma and Mill, 1965; 

Wiersma and Yamaguchi, 1967a,b; Wiersma and Yanigasawa, 1971; York 

and Wiersma, 1975). While jittery movement responses can occur in all 

classes of visually responding cells, this response is considered special in 

both dimming and sustaining fibers. These two fiber types respond to 

jittery movement without noticeable adaptation, while all other visual fibers 

"invariably habituate to such fast shadowing" (Wiersma and Yanigasawa, 

1971). Dimming and sustaining fibers may therefore maintain jittery 

movement responses as a means of determining object location, rather 
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than for specific feature or detail recognition. In Hemigrapsus, the 

associated jittery movement response of dimming cells matches reports 

from other crustacea. Like the rock lobster, this jittery response may 

increase general alertness levels regarding their environment rather than 

individual component features (York and Wiersma, 1975). 

Lig:ht Off and On Responses 

Another related characteristic of dimming cells was their detection of 

light onset and offset. Dimming cell responses have generally been 

considered as distinct from "Off/On" cells in the literature (Waterman, 

Wiersma and Bush, 1964; Wiersma, 1966; York and Wiersma, 1975). Yet 

the concomitant presence of responses to abrupt light onset and termi­

nation in dimming cells suggest different possibilities. One may be that 

Waldrop and Glantz's (1985) classification of dimming fibers as a "tonic 

OFF optic tract interneuron" may be more applicable; however, it cannot 

satisfactorily explain the observed capacity to measure light onset from 

darkness. It is clear from Table 1 that different types of light responses 

were established: response to both Off and On (Off/On); OFF-only responses; 

and equal responses to both conditions. To use Waldrop and Glantz's 

definition would exclude 60% (n=18) of the dimming cells in the present 

study. It would be more reasonable instead to consider the detection of light 

onset and offset as an additional response parameter of the multimodal 

dimming cell. 

Off and On responses to light have been noted in a number of inver­

tebrate and vertebrate studies, where the vertebrate system response is 

mediated by retinal ganglion cells for information regarding contrast 
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sensitivity and object spatial position (Waterman and Wiersma, 1963; 

Wiersma and Yamaguchi, 1967a; York and Wiersma, 1975; Hammond and 

Mackay, 1983; Ashmore and Copenhagen, 1983; Sclar, Ohzawa and 

Freeman, 1985). In vertebrates, the visual response is a product of inter­

acting visual interneurons of a given receptive field (Bailey and Gouras, 

1985). Similar interneuron relationships exist in invertebrates that not only 

may explain pure "On" and "Off' responses to light, but also the activity of 

dimming and sustaining fibers. 

Dimming Fiber and Sustaining Fiber Relationships 

Similarities in dimming and sustaining fiber properties have been 

recorded in previous research. An interesting observation from this 

literature has been the difficulty of studying dimming responses separate 

from those of sustaining fiber responses (Wiersma and Mill, 1965; 

Wiersma, 1966; Wiersma and Yamaguchi, 1967a,b; Wiersma and 

Yanigasawa, 1971; Yamaguchi and Ohtsuka, 1973; York and Wiersma, 

1975). Although dimming and sustaining fibers display opposite responses 

to light, they remain closely related in position (Wiersma and Yamaguchi, 

1967a). In addition, their response characteristics are quite similar. 

Dimming cell and sustaining cell responses share traits beyond that of 

jittery movement responses. Several studies concluded that sustaining 

fiber receptive fields are larger in size, and comprise larger diameter fibers 

of greater discharge amplitude than dimming fibers (Wiersma, 1966; 

Wiersma and Yamaguchi, 1966; Yamaguchi and Ohtsuka, 1973). 

Considering the close proximity noted for these two fiber types, the diffi-
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cul ties in analyzing dimming cell properties reported by these researchers 

can be understood. 

The present study, however, relates information about receptive field 

size that differs from past reports in other crustacea. The receptive field 

most commonly encountered was the whole eye receptive field, which was 

larger than those of sustaining fibers examined. While precise sustaining 

fiber records were not kept, all sustaining fibers identified in this study had 

receptive fields that were consistently smaller than those of dimming cells. 

Sustaining fiber receptive fields most often observed defined the central two­

thirds of the eye (01), the ventral half (09), and the medial and lateral 

dorsal quadrant receptive fields (021 and 02) identified by Wiersma and 

Yamaguchi (1966). The appearance of sustaining fibers in the study was 

highly variable; yet in all cases, receptive field sizes were smaller than 

those of dimming fibers. Although the dimming cell octopus fiber receptive 

field covers roughly the same surface area as sustaining field 01, by far the 

greater proportion pf cells in this study had whole eye fields (n=20). Only for 

five cells in the dimming population can sustaining fiber fields be consi­

dered larger. 

The discrepancy in the present results and past research is unresolved. 

Any factor, from an insufficient sample size, to an actual higher proportion 

of whole eye dimming fields in Hemigrapsus nudus, may account for these 

observations. 

Dimming Models in Other Species 

That dimming cells do in fact exist in Hemigrapsus is apparent from 

the present results and observations. While well documented among 
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crustacea, dimming responses have also been reported in a number of 

other invertebrate and vertebrate species, including the Lubber grass­

hopper (Northrop and Quinon, 1970), Orb Weaving spiders (Yamashita and 

Tateda, 1981, 1983), turtles (Ashmore and Copenhagen, 1983; Marchiafava, 

1983), goldfish (Northmore,Williams, and Vanegas, 1983; Northmore, 

1984), and catfish (Sakuranaga and N aka,1985). Among these and other 

animal studies, different mechanisms for the activity of dimming 

responses have been proposed. The mechanisms considered here all 

attempt to relate the observed physiologic responses to light, to underlying 

anatomical connections and activity. 

In early reports by Waterman et al. (1963, 1964), it was apparent that 

the visual responses measured from optic tract interneurons represented 

the transmission of a highly integrated channel of information: for a given 

visual field, several hundred ommatidia contribute to the primary sensory 

perception. How this perception of a stimulus is processed in the retina, 

and transmitted through the optic ganglia remains uncertain. In crus­

tacea, integration may occur through parallel routes, whereas vertebrate 

processing is generalized to be in series (Waterman,Wiersma and Bush, 

1963; Yamaguchi and Ohtsuka, 1973; York and Wiersma, 1975; Waldrop 

and Glantz, 1985). 

Given the close relationships established between sustaining and 

dimming fibers, any model of dimming cell activity must also consider 

sustaining fiber responses. Previous studies in barnacle, catfish, and 

crayfish suggest possible connections between visually active interneurons. 

These connections will be used to postulate a mechanism for dimming 

activity in Hemigrapsus. As all three of these animals have documented 



dimming responses, a brief summary of key features will be presented for 

each species, and then will be followed by proposition of a dimming 

mechanism for Hemigrapsus. 

Barnacle Vision 

Barnacle visual properties provides one such model for consideration. 

Shadows passing over barnacle photoreceptors elicit a withdrawal reflex of 

the animal into the shell. As studied by Stuart and Oertel (1978), this 

response comprises a three neuron serial pathway. The median eye detects 

changes in light intensity; this information is spread decrementally to the 

second order I cell; and then to the third order A cell before being conducted 

to the ventral nerve ganglion that mediates the muscle neurons associated 

with shell closure. In this pathway, the reflex is mediated by the activity of 

the second order I cell, which is held hyperpolarized in light, and is de­

polarized with the decrease or termination of light detected by the primary 

photoreceptor. The A cell reacts similarly to information conveyed to it by 

the I cell, but is more strongly depolarized in response to light diminution. 

Thus the I (inverting) cell transmits light dinuµing information to the A 

(amplifying) cell. 

Expanding on their previous findings, Oertel and Stuart (1981) found 

that dimming of light did in fact depolarize the I and A cells serially. They 

concluded that this activity was controlled through voltage-gated Ca2+ 

channels in the I cell membrane in response to the offset of light hyper­

polarization; that is, the release from light inhibition. 
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Catfish Amacrine Cells 

A similar vertebrate response was studied in catfish "amacrine" (axon­

less) cells (Sakuranaga and Naka, 1985). These researchers studied re­

sponses from the sustained class of amacrine type-N cells that were 

stimulated by light dimming. As in the postulated mechanism for 

barnacles, these cells responded with sustained hyperpolarization of 

resting membrane potentials to light bursts, and with pronounced 

depolarization to dimming. Type-N cells typically inverted the visual signal 

received from horizontal and bipolar cells, depolarizing only with 

decreasing in overall illumination. The authors suggested that this line of 

transmission allows the detection of "complex temporal patterns" in the 

visual input. 

Crayfish Surround Inhibition 

Another set of local interneurons in crayfish has been studied. A 

review of this particular mechanism suggests another possible model for 

dimming responses in crustacea. In examining the surround inhibition 

properties of crayfish sustaining fibers, Waldrop and Glantz (1985) describe 

the influence of local interneurons defined as "amacrine" cells. This term 

is somewhat misleading, as amacrine cells are more properly discussed in 

vertebrate visual organization. These crayfish interneurons are so named, 

however, for their lack of a projecting axonal process. Regardless of this 

terminology, "amacrine" cells are local interneurons with extensive 

horizontal bidendritic processes in the external medullary layer. These 

cells are also characterized by sustained hyperpolarization to light, and 

depolarization to its diminution. These "amacrine" cells acted as an 



inhibitory surround for sustaining fibers, where illumination of a com­

plementary region of these "amacrine" cells reduced the frequency of 

concomitant sustaining fiber recordings. These cells also affected dim­

ming cells conversely, by increasing dimming discharges from illumi­

nation of the "amacrine" surround. In its response, "amacrine" cells 

behave functionally like the barnacle I cells and the type-N cells of the 

catfish by inverting the primary response of light. 

Crayfish Dimming and Sustaining Fibers 

A comprehensive dimming mechanism is proposed by Yamaguchi and 

Ohtsuka (1973). The various component features presented in the above 

mechanisms is capably integrated in this mechanism. These researchers 

attempt to relate both the neural connections and physiological responses of 

both dimming fibers and sustaining fibers. Yamaguchi and Ohtsuka 

propose that visual information from both fiber classes are processed inde­

pendently via parallel channels, and are linked by reciprocal inhibitory 

pathways modulated by light intensity. This organization serves to explain 

the various functional similarities in responses between the two fiber types, 

and also their apparent reciprocal light responses. In their model, the 

surround inhibition is modulated by the other fiber type-- here, local inter­

neurons such as Waldrop and Glantz's "amacrine" cell could mediate the 

observed coactivation of the reciprocal system by inverting the primary 

photoreceptor response through hyperpolarization. In analyzing factors 

affecting the discharge frequency of both fiber types, the researchers deter­

mined that the relative light level, both present and preceding, the ambient 

background light level, and reciprocal coactivation between fiber types were 



critical in determining the discharge rates for dimming and sustaining 

fibers. 

Dimming Model for H emigrapsus 
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Yamaguchi and Ohtsuka's (1973) proposed mechanism offers much 

towards developing a dimming cell model in Hemigrapsus. It is note­

worthy that their mechanism focuses on the dimming and sustaining fiber 

interactions observed in the crayfish, since more recent work suggests that 

this interaction indeed is firmly established between the two cell types. 

Hemigrapsus nudus studies by Huang (1981) and Rafuse (personal comm.) 

indicate that a dimming cell bipolar dendritic intemeuron is located in the 

medulla externalis--the same ganglia layer as the "amacrine" intemeuron 

observed by Waldrop and Glantz (1985) in sustaining fibers. Although the 

two fiber types share a common interneuron location, the intemeurons are 

not identical. The "amacrine" interneuron has extensive dendritic 

branching in the most distal region of the medulla externalis; in dimming 

cells, the bipolar intemeuron has extensive branching in two distinct levels 

in the medulla extemalis, with both levels more proximal in position than 

that of the sustaining fiber "amacrine" cell. Here it is important to con­

sider that the synaptic integrity of each cell response remains whole, 

although collateral connections may occur between the two fiber types. 

Based on these findings, it may be proposed that the neuronal circuitry 

of both dimming and sustaining fiber responses are mediated in similar 

ways, but through separate pathways. Dimming fiber responses may then 

be mediated by a second-order interneuron with bi-level branching. 

Inhibition then may indeed be the key to understanding dimming activity, 



since inhibitory pathways typically require an additional synaptic con­

nection, relative to excitatory pathways. Dimming cell responses would 

then represent a three or four neuron path from the retinal cell, to the 

dendritic layer(s) of the bipolar interneuron, and then to the optic tract 

interneuron. Sustaining cell responses, however, would also present a 

three neuron path: retinal cell; "amacrine" cell; optic tract interneuron. 
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If coactivation, similar to that discussed by Yamaguchi and Ohtsuka (1973), 

was present, then any collateral interconnections between the two groups 

can account for the surround inhibition described by Waldrop and Glantz 

(1985) in sustaining fibers, and also the coactivation of receptive fields that 

overlap or remain outside a given dimming receptive field described by 

York and Wiersma (1975) and Yamaguchi and Ohtsuka (1973). 

Visual dimming responses in Hemigrapsus can then be considered as 

a serially conducted pathway with associated connections with a separate 

parallel pathway for sustaining fiber responses. 

Dimming Cells: Visual Sienificance 

For Hemigrapsus, its rocky mid-intertidal environment is visually 

complex. The ability to discriminate changes in light intensity may serve 

well to detect the displacement of an object within its visual field. If this is 

true, then the multimodal properties of dimming cells could be explained. 

If dimming cells detect illuminance changes caused by object shadow or 

outline movement, then the observed coupling between jittery movement 

perception and dimming fiber activity may increase awareness of object 

movements within their surroundings. 
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Recent research into the visual environment of semi terrestrial 

Brachyuran crabs suggest that different mechanisms are responsible for 

vision between the two main groups: broad-fronted species having short 

eyestalks, widely separated; and narrow-fronted species with close set, 

vertically elongated eyestalks (Zeil,Nalbach and Nalbach, 1986). The 

authors consider that in the relatively flat and open habitats of narrow­

fronted species, such as the Ocypodid Fiddler crab, an acute vertical 

resolving power determines object size and position. For broad-fronted 

Grapsid species, like Hemigrapsus, no such specialization exists. Instead, 

to analyze their more optically complex rocky intertidal habitat, other 

dimensional cues and mechanisms, including binocular vision 

(stereopsis), appear more important. 

Although Zeil, Nalbach and Nalbach (1986) strongly implicate the role 

of stereopsis for grapsid vision, the conclusion remains tenuous. Yet one of 

the other possible mechanisms may involve dimming cell responses. The 

ability to discriminate both shadows through illuminance changes, and 

movement via jittery responses, would be vital in comprehending object 

displacement in low light environments. 

Additionally, feature perception at low light levels is reduced as less 

visual information is available. Nalbach, Thier and Varju (1985) document 

that the pooling of low light visual information gains in importance for 

mediating optokinetic (eyestalk movement) sensitivity. Enhancement of 

orientation and tracking systems through dimming cell activity would be 

advantageous under these conditions. Dimming fibers appear then to be 

involved in mediating visual information at levels of low illuminance. The 

multimodal responses observed in dimming cells may therefore be the 
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result of coupling of simultaneous stimuli under low light conditions. 

These multimodal responses include enhanced light and mechanoreceptive 

sensitivity, and responses to light onset and termination. Further, while 

an exact mechanism for activity remains uncertain, recurrent inhibition is 

a strong possibility. The presence of horizontal cells in the medulla 

externalis may be responsible for processing dimming information before 

transmission to interneurons in the optic nerve tract. 



SUMMARY 

Extracellular recordings from optic tract interneurons of 

Hemigrapsus nudus prove the existence of dimming responses. These 

dimming cells respond to decremental decreases in ambient light levels, 

and appear to have primarily whole eye receptive fields. Associated with 

these fibers are different simultaneous responses, involving perception of 

jittery movement, mechanoreceptive sensitivity, and light on/off detection. 

Dimming cell populations are present in greater numbers at decreasing 

light levels, and have consistent, repeatable responses. Although no 

mechanism for activity is established, a pathway involving recurrent 

inhibition may be responsible for the processing of dimming responses. 

This pathway may involve the horizontal cells of the medulla extemalis as 

the second order interneuron between photoreceptors and tertiary inter­

neurons higher in the optic nerve tract. 
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