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Abstract

AUGMENTATION OF NATURAL KILLER CELL ACTIVITY

BY CORYNEBACTERIUM PARVUM: INVOLVEMENT OF

LIPOXYGENASE PATHWAY

by

Gregory D. Kuo

The 51Chromium release assay was used to measure natural killer (NK)

cell activity associated with Corynebacterium parvum (CP) injection

against YAC-1 and MBT-2 targets. The peritoneal exudate cells from
intraperitoneal treatment of CP at different dosages consistently gave
higher cytotoxicity than their respective spleen cell fractions. 1In
contrast, CP given intravenously showed the reversed effect. Our
results demonstrate that the route of administration and dosage of CP
are two crucial variables for determining the effectiveness of this
immunostimulant. In vitro manipulations of nordihydroguaiaretic acid,
indomethacin, and prostaglandin E2 on CP-stimulated NK cells suggest

that the lipoxygenase pathway is involved in NK lysis.
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INTRODUCTION

The immunotherapy of cancer with Corynebacterium parvum (CP) has

been studied in both human and animal models with conflicting and
sometimes disappointing results (1-3). It has been suggested that some
of the inconsistencies may be explained by differences in route of
administration and dosage of CP used (4,5).

Although the mechanism of action for CP immunotherapy remains
obscure, it has been suggested that its macrophage activating ability is
largely responsible for the observed effects (6,7). Other investigators
have suggested a role for T-cells in this regard (8).

More recently, it has been reported that natural killer (NK) cells
are stimulated by CP to become cytotoxic towards many tumors, including
lymphomas, carcinomas and sarcomas, both in vivo (9-11) and in vitro
(5,11,12).

Recent evidence suggests that lipoxygenase activity of arachidonic
acid (AA) metabolism is required for NK cell lysis. Rossi et al. (13)
have shown that NK lysis is suppressed by inhibitors of lipoxygenation
including nordihydroguaiaretic acid (NDGA), 5,8,11,l4-eicosatetraynoic
acid (ETYA), 3-amino-1-[m-(trifluoromethyl)-phenyl]-2-pyrazole (BW755C),
and indomethacin. They further observed that NK activity can be
restored by the addition of such lipoxygenase products as leukotriene B4
(LTB4) and its isomers.

In this report, we have extended these findings to provide evidence

that CP-stimulated NK cells require lipoxygenation of AA for lysis of



tumor target cells. We have also demonstrated that the route of

administration and dosage of CP are two crucial variables for |

determining the effectiveness of this immunostimulant in vitro.




MATERIALS AND METHODS

Animals. Eight to 12-week-old C3H/He mice were obtained from
Simonsen Laboratories, Gilroy, CA, and later housed in the animal care
facility of the Loma Linda University Medical Center. The mice were fed

Purina laboratory chow and tap water ad libitum.

Medium. RPMI 1640 medium (GIBCO, Grand Island, NY) was
supplemented with fetal calf serum (FCS) (10% for culture, 57 for NK
assay), glutamine (0.3 mg/ml), 250 U/ml penicillin and 125 pg/ml
streptomycin. For spleen cells incubated with or without interleukin-2
(IL-2), RPMI medium was additionally supplemented with 2-mercaptoethanol

(50 pM) and Hepes (20 mM).

Chemicals. Prostaglandin E2 (PGE2), nordihydroguaiaretic acid
(NDGA), and indomethacin were purchased from Sigma Chemical Co., St.

Louis, MO. PGE2 was dissolved in 957 ethanol at a final concentration

3

of 1.4 X 107~ M, and stored at -25° C until needed. Stock solutions of

NDGA and indomethacin were made fresh daily in 957 ethanol to yield

3

final concentrations of 1 X 10 ~ M and 1 X 10—2 M, respectively.

Further dilutions were made in FCS-free RPMI medium.

CP treatment. CP strain CN 6134 (7 mg/ml formalin-killed vaccine)

was obtained from Burroughs Wellcome Co., Research Triangle Park, NC.

All dilutions were made in sterile, physiological saline. Mice received



0.1 ml of the appropriate dilution administered either via the

intraperitoneal (IP), or intravenous (IV) route.

Interleukin-2 (IL-2). IL-2 was the kind gift of Dr. Chou-Chik Ting

from the National Cancer Institute, Bethesda, MD. This IL-2 was
produced by an EL-4 subline (a T-cell leukemia) pretreated with phorbol
myristic acetate, washed and ircubated for an additional 40 hrs at 5 X
-lO6 cells/ml (14). The supernatant was then harvested and stored at

-70° C. It contained 10,000 U/ml IL-2.

Chromium release assay (CRA) for NK activity. YAC-1 or MBT-2

(mouse bladder tumor) target cells were labeled by incubating 2-5 X 106

51

cells with 250 uCi/ml Na2

CrO4 (New England Nuclear, Boston, MA) for 2
hr at 37° C. Peritoneal exudate cells (PEC) were obtained by peritoneal
lavage with Hanks Balanced Salt Solution (HBSS). Cells were centrifuged
and resuspended in HBSS. Spleens were finely minced in supplemented
RPMI. The resulting cell suspension was filtered on sterile gauze and
washed with fresh media following centrifugation. Contaminating red
blood cells were removed by treatment with lysing buffer. Cells were
washed three times in HBSS and resuspended in RPMI with 57 FCS for use
in the CRA. Both PEC and spleen cells were allowed to adhere to sterile
plastic petri dishes (VWR Scientific Inc.) for 1 hr prior to collecting
the nonadherent cells. All effector cells were counted in a

hemacytometer and adjusted to the desired concentrations. They were

maintained at 4° C until needed.




Chromium-labeled target cells were aliquoted into flat-bottom

microtiter plates (Corning, NY). To these were added effector cells at

varying effector-to-target (E:T) ratios to a final volume of 200 ul per

well. The cells were incubated at 37° C in 5% CO, for 4 hr and

2
thereafter the supernatant was removed from each well with a Skatron

Supernatant Collection System (Skatron Inc., Sterling, VA) and

radioactivity determined in a gamma counter.
Percent cytotoxicity was calculated as

experimental CPM - spontaneous CPM

% Cytotoxicity =

X 100

total CPM - spontaneous CPM

where spontaneous CPM represents counts recorded from wells containing

target cells and medium alone. Total release was obtained by incubating

labeled cells with 107 sodium dodecyl sulfate.

Statistics. Statistical analyses were performed by the Student's t

Test.



RESULTS

Figure 1 shows time kinetics of cytotoxicity associated with IP
administration of different doses of CP. Peak activity was observed on
day 4 following injections of 50, 250 or 700 ng CP. For both PEC and
spleen cells, these 3 higher dosages declined to lower cytotoxic levels
by day 8. However, with the lowest dosage tested, namely 5 ug,
significant augmentation was not visible until day 8 for both PEC and
splenic cells, despite unusually high activity on day 2 with PEC. It
was found that CP treatment led to a significant augmentation
(p < 0.001) of cytotoxic activity associated with peritoneal cells.

This was also true with the 50, 250, and 700 ug dosages using spleen
cells (p < 0.05).

Figure 2 shows the effects of IP and IV administration of CP on NK
activity. Mice were injected with 5, 50, 250, or 700 ug of CP by either
the IP or IV route and NK activity measured 4 days later against YAC-1
targets. A 1400 ug dose was also included in the IV treatment. The PEC
fractions from IP treatment consistently gave higher cytotoxicity than
their respective spleen cell fractions. In contrast, spleen cells from
IV injection with 5, 50, and 250 ug dosages gave higher cytotoxicity
than their respective PEC fractions. Cytotoxicity attributed to PEC and
spleen cells from the 700 and 1400 ug dosages, however, were not
statistically different from each other.

Figure 3 shows NK activity associated with IP injection of CP

against MBT-2 cells. Significant cytotoxicities were seen with all
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10

dosages (5, 50, 250, and 700 ug), with the 250 ug dose giving the best
activity (p < 0.001). The activity of PEC was again greater than
splenic cells. IV injections elicited no significant NK cell activity
against MBT-2 cells (data not shown).

Figure 4 shows comparative effects of incubating normal untreated
and IL-2 treated spleen cells with time against YAC-1 and MBT-2 targets.
Augmentation of NK activity was seen with the IL-2 treated spleen cells
only. NK activity against YAC-1 targets for the time period tested
peaked at day 4 (67% lysis), but against MBT-2 cells it peaked at day 5
(57% 1lysis).

Table I shows the results of in vitro manipulation of CP-stimulated
NK cells with NDGA, indomethacin and PGE2. These chemicals were used to
determine whether the lipoxygenase and/or cyclooxygenase pathways were
involved with NK activity. A dose of 700 ng CP given IV was used to
activate splenic NK cells. Natural killing against YAC-1 target cells
was suppressed by NDGA in a dose dependent manner, with significant
inhibition between 8.3-33 uM concentrations tested (p < 0.05). The
addition of a high concentration of indomethacin (300 uM) gave
inhibition, whereas lower concentrations (less than 17 uM) showed
unaltered activities (same as the controls).

PGE2-induced inhibition was also dose dependent, giving higher
suppression of NK activity at more concentrated levels, with significant
inhibition at 4.7 and 47 uM tested (p < 0.05). The presence of varying
concentrations of indomethacin (0.03-300 pM) and 30 uM PGE2 also gave

significant suppression (p < 0.001) of NK activity.
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DISCUSSION

This report demonstrates that CP is capable of augmenting NK
activity. Both route of administration and dosage of CP were crucial in
determining the effectiveness of CP treatment.

CP injected IP resulted in significantly greater augmentation of
peritoneal NK activity, against YAC-1 and MBT-2 tumor cells in vitro,
than that found for spleen cells (Figs. 2 and 3). 1In contrast, IV
injection showed the reversed phenomenon. That is, spleen cells were
stimulated more, and in some instances suppressed PEC response. This
observation suggests that where CP is given determines how effective it
will be in stimulating NK cells. It appears then, that NK cells in the
immediate vicinity of the immunostimulant are more activated than
distant ones. Exactly how CP is able to stimulate such cells still
remains unknown.

At the highest IV dosage tested, 1400 ug, our results suggest
suppression rather than augmentation (Fig. 2). This indicates that by
considering the route of administration, high dosages of CP do not
always give better NK response. In fact, less may be more effective
(15). This may prove critical in considering the use of CP in
immunotherapy of cancer as seen by Lau et al., (In Press) on a murine
bladder tumor model (16).

The lymphokine IL-2 has been shown by many researchers to augment
NK activity (17-21). Our results on IL-2 incubated spleen cells against

YAC-1 and MBT-2 targets (Fig. 4) also support this observation. How

13
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IL-2 is able to augment NK activity is not fully understood. Chun et
al. have suggested that IL-2 enhances NK activity by interfering with
the negative feedback path of prostaglandin E production, which might
otherwise have regulated NK cell activation towards lysis (22). This
may suggest that PGE2, a product of the cyclooxygenase pathway of AA
metabolism, may be prevented from exerting its inhibitory role on NK
activity due to the presence of IL-2.

NDGA, an antioxidant with selectivity for 5-lipoxygenase (23-25),
and thus an inhibitor of the lipoxygenase pathway, suppressed
CP-activated NK cell activity against YAC-1 tumor cells in vitro (Table
I). Other investigators (13,26-28) have previously indicated that
lipoxygenation products may be necessary for NK lysis of tumor cells.
Our data indicate CP-stimulated NK cells may also require the
lipoxygenation pathway for their lytic activity, since in the presence
of high concentrations of NDGA (8.3-33 uM) suppression was observed.

Inhibition of the lipoxygenation pathway by possibly scavenging
hydroxyl radicals with NDGA resulted in marked inhibition of NK activity
as demonstrated by Suthanthiran et al. (29). Such radicals may also
exist for CP-stimulated NK cells and could therefore play a direct role
in NK lysis.

To see whether the involvement of the cyclooxygenase pathway exists
in our CP-stimulated NK cells, indomethacin and PGE2 were used.
Indomethacin at higher concentrations, such as 300 uM, acts as a
specific inhibitor of the lipoxygenase pathway. However, at lower

concentrations, such as 0.33-17 uM, it acts as a cyclooxygenase
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