
Loma Linda University Loma Linda University 

TheScholarsRepository@LLU: Digital TheScholarsRepository@LLU: Digital 

Archive of Research, Scholarship & Archive of Research, Scholarship & 

Creative Works Creative Works 

Loma Linda University Electronic Theses, Dissertations & Projects 

9-2021 

The Effects and Mechanisms of Phytochemicals on Alzheimer’s The Effects and Mechanisms of Phytochemicals on Alzheimer’s 

Disease Neuropathology Disease Neuropathology 

David Ross 

Follow this and additional works at: https://scholarsrepository.llu.edu/etd 

 Part of the Psychology Commons 

Recommended Citation Recommended Citation 
Ross, David, "The Effects and Mechanisms of Phytochemicals on Alzheimer’s Disease Neuropathology" 
(2021). Loma Linda University Electronic Theses, Dissertations & Projects. 1168. 
https://scholarsrepository.llu.edu/etd/1168 

This Doctoral Project is brought to you for free and open access by TheScholarsRepository@LLU: Digital Archive of 
Research, Scholarship & Creative Works. It has been accepted for inclusion in Loma Linda University Electronic 
Theses, Dissertations & Projects by an authorized administrator of TheScholarsRepository@LLU: Digital Archive of 
Research, Scholarship & Creative Works. For more information, please contact scholarsrepository@llu.edu. 

https://scholarsrepository.llu.edu/
https://scholarsrepository.llu.edu/
https://scholarsrepository.llu.edu/
https://scholarsrepository.llu.edu/etd
https://scholarsrepository.llu.edu/etd?utm_source=scholarsrepository.llu.edu%2Fetd%2F1168&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/404?utm_source=scholarsrepository.llu.edu%2Fetd%2F1168&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsrepository.llu.edu/etd/1168?utm_source=scholarsrepository.llu.edu%2Fetd%2F1168&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsrepository@llu.edu


 
 
 
 

LOMA LINDA UNIVERSITY 
School of Behavioral Health 

in conjunction with the 
Department of Psychology 

 
 
 

____________________ 
 
 
 
 

The Effects and Mechanisms of Phytochemicals on Alzheimer’s Disease Neuropathology 
 
 

by 
 
 

David M. Ross 
 
 
 

____________________ 
 
 
 
 

A Project submitted in partial satisfaction of 
the requirements for the degree 

Doctor of Psychology 
 
 
 

____________________ 
 
 
 
 

September 2021 
  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

© 2021 

 
David M. Ross 

All Rights Reserved





iv 

ACKNOWLEDGEMENTS 
 
 

 I would like to express my deepest gratitude to Dr. Hartman who presented me 

with the opportunity to take part in even a small part of the incredible work that he does. 

His contribution to the field as well as individual involvement with students in this 

department mean more than he likely knows. 

 I would also like to thank Dr. Lee for being willing to act as a second reader on 

this topic. Her incredible knowledge, insight, and warmth made this daunting process all 

the more achievable and I am grateful to have worked with her.   

To my family and friends, your love and support through this entire journey has 

made this all possible. I would like to especially acknowledge my father. Dr. Ross, your 

mind is a gift that I have marveled at my entire life. Your pursuit of scientific and 

spiritual meaning in this world sparked a level of interest and curiosity that drove me to 

pursue my dreams. I hope this project and this degree serve to honor the many gifts you 

have given our family. And finally, I would like to thank God for providing me the 

undeserved opportunity to study His creation and marvel in its complexity. 

 

 

 

 

 

  

  



v 

CONTENT 
 
 

Approval Page .................................................................................................................... iii 
 
Acknowledgements ............................................................................................................ iv 
 
Abbreviations .................................................................................................................... vii 
 
Abstract ............................................................................................................................ viii 
 
Chapter 
 

1. Introduction ..............................................................................................................1 
 

2. Alzheimer’s Disease Neuropathology .....................................................................2 
 

3. Phytochemicals and Alzheimer’s Disease ...............................................................9 
 
Epidemiological Evidence ...............................................................................10 
Experimental Evidence ....................................................................................13 

 
Polyphenols ................................................................................................13 

 
Phenolic Acids .....................................................................................14 
Stilbenoids............................................................................................19 
Flavonoids ............................................................................................20 
 

Flavans ...........................................................................................20 
Anthocyanidins ..............................................................................21 
Anthoxanthins ................................................................................22 
 

Terpenes .....................................................................................................26 
 

Ginkgolides and Bilobalides ................................................................26 
Huperzine A .........................................................................................26 
Cannabinoids........................................................................................27 
 

Organosulfurs .............................................................................................29 
Fatty Acids .................................................................................................30 
Phytovitamins ............................................................................................31 
Psychoactive Alkaloids ..............................................................................33 
 

Caffeine ................................................................................................33 
Nicotine ................................................................................................34 

 



vi 

4. Summary  ...............................................................................................................36 
 
References ..........................................................................................................................38 

 
 

 

  



vii 

ABBREVIATIONS 
 

 
Aβ    Amyloid Beta 

AChE    Acetylcholinesterase 

AD    Alzheimer’s Disease 

APP    Amyloid Precursor Protein 

BBB    Blood Brain Barrier 

CREB    cAMP response element binding protein 

EGCG    epigallocatechin-3-gallate 

NFT    neurofibrillary tangle 

sAPPα    soluble APP-α 

SAC    s-allyl cysteine 

  



viii 

ABSTRACT OF THE DOCTORAL PROJECT 
 

The Effects and Mechanisms of Phytochemicals on Alzheimer’s Disease Neuropathology 

by 

David M. Ross 

Doctor of Psychology, Graduate Program in Psychology 
Loma Linda University, September 2021 

Dr. Richard E Hartman, Chairperson 
 

Alzheimer’s disease effects millions of people, yet pharmacological treatments 

are limited. In the absence of effective treatments, identifying factors that can decrease 

the risk of developing Alzheimer’s disease is of significant interest. A growing body of 

epidemiological and experimental evidence suggests that dietary fruits and vegetables can 

have neuroprotective effects against the harmful effects of oxidative stress, 

neuroinflammation, and aging. These effects are mediated by various phytochemicals, 

which are compounds found in plants that can possess antioxidant, anti-inflammatory, 

and other beneficial properties. This review addresses epidemiological and experimental 

evidence for the effects and potential mechanisms of several commonly consumed 

phytochemicals on Alzheimer’s disease neuropathology and outcomes. The data suggest 

that regular consumption of bioactive phytochemicals from a variety of fruits and 

vegetables attenuates age- and insult-related Alzheimer’s disease neuropathology. 
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CHAPTER ONE 

INTRODUCTION 

 
Phytochemicals are compounds produced by plants, some of which (e.g., phenols, 

terpenes, and organosulfurs) result in pigmentation, odors, and irritants that can protect 

the plant from internal (e.g., metabolic) insults like protein overexpression and free 

radical reactive oxygen species (ROS), and external (e.g., environmental) insults like 

predators, pathogens, ultraviolet radiation, and other threats to the plants’ survival. 

Consumption of plants that produce these phytochemicals seems to produce health 

benefits for humans mediated by modulating several biological pathways, including 

inflammatory processes, neuronal cell death (apoptosis), neurogenesis, 

neurotransmission, and enzyme function (Rossi, Mazzitelli, Arciello, Capo, & Rotilio, 

2008; M. Singh, Arseneault, Sanderson, Murthy, & Ramassamy, 2008). Many of these 

pathways have a direct effect on the development of Alzheimer’s disease (AD) and other 

types of age-related neuropathology. This review will provide a brief overview of AD 

etiology, followed by an outline of dietary phytochemicals that have been shown to affect 

age- and AD-related neuropathology and functional outcomes. 
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CHAPTER TWO 

ALZHEIMER’S DISEASE NEUROPATHOLOGY 

 
Recent prevalence rates suggest that over 5 million Americans currently have AD 

(Alzheimer’s Association, 2014), which is behaviorally characterized by a presentation of 

memory, motor, language, and executive dysfunction. The neuropathological markers of 

AD were originally thought to be limited to the formation of amyloid plaques 

surrounding neurons and the presence of neurofibrillary tangles (NFTs) of tau protein 

inside neurons. However, in recent years, the significance of mitochondrial dysfunction, 

neuroinflammation, astrogliosis, microglial activation, synaptic loss, neuronal damage, 

apoptosis, disruption of blood brain barrier (BBB) permeability, bacterial and viral 

infections, and intestinal microbiota have all been identified as significant contributors to 

AD neuropathology (Alonso et al., 2014; Bayer & Wirths, 2010; Block & Hong, 2005; 

Borgesius et al., 2011; Bredesen, 2009; Cherry, Olschowka, & O’Banion, 2014; Devi & 

Anandatheerthavarada, 2010; Houlden et al., 2016; Moreira, Carvalho, Zhu, Smith, & 

Perry, 2010; Rubio-Perez & Morillas-Ruiz, 2012; Schindowski, Leutner, Kressmann, 

Eckert, & Müller, 2001; Soscia et al., 2010; Terwel et al., 2011; Xue, Sparks, & Streit, 

2007; Yao et al., 2004; Zlokovic, 2008).   

Plaque accumulation has been identified in the medial temporal lobe, particularly 

the hippocampus and entorhinal cortex, prior to the emergence of behavioral symptoms. 

These structures have been implicated in learning and memory processes, which explains 

the cognitive impairments associated with AD. The extracellular plaques consist mainly 

of amyloid-beta (Aβ) peptides cleaved from larger amyloid precursor proteins (APP) by 

γ-secretase and β-secretase enzymes. The increasing concentration of extracellular Aβ 
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monomers gradually results in their polymerization into diffuse aggregates and eventually 

dense-core amyloid plaques (Wirths, Multhaup, & Bayer, 2004). Other proteins (e.g., 

apolipoproteins) and non-proteins (e.g., metals, hemes, and ROS) have also been found 

within the plaques (Dong et al., 2003; Mohsenzadegan & Mirshafiey, 2012; Roher, 

Palmer, Yurewicz, Ball, & Greenberg, 1993; Rosen et al., 2016). An age related increase 

in cortical and subcortical amyloid plaque levels is one of the most salient AD 

biomarkers (Victor L. Villemagne et al., 2011). NFTs, another prevalent AD biomarker, 

are damaged tau-based microtubules that disrupt intracellular transport mechanisms. 

Typically, these damaged neurons are found in areas with higher Aβ concentrations. 

Eventually, these damaged neurons are unable to function properly, leading to neuronal 

death. One current hypothesis for the etiology of AD is that the gradual accumulation of 

Aβ between the neurons initiates inflammatory and oxidative processes that lead to the 

formation of synaptic loss, NFTs, and neurodegeneration, particularly in neurons that use 

acetylcholine and glutamate (Palop & Mucke, 2010; Selkoe, 2002; Wirths et al., 2004). 

Aβ neurotoxicity has been demonstrated in hippocampal cell cultures (Reifert, 

Hartung-Cranston, & Feinstein, 2011), and the deleterious effects of Aβ deposition on 

synaptic functioning in the brain have been demonstrated using long-term potentiation 

(LTP), an in vitro model of learning and memory (Kimura, MacTavish, Yang, Westaway, 

& Jhamandas, 2012; Shipton et al., 2011; Walsh et al., 2002). Aβ has also been shown to 

induce hypersensitivity to excitotoxicity (i.e., damage caused by dysfunctional firing of 

glutamate) and oxidative stress in vitro (Matos, Augusto, Oliveira, & Agostinho, 2008; 

Nakayama et al., 2011). Furthermore, the formation of Aβ-heme peroxidase complexes 

within Aβ plaques begins a neuroinflammatory cascade leading to release of ROS and 
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damage to muscarinic acetylcholine receptors within the brain (Atamna, Frey, & Ko, 

2009; Fawcett et al., 2002). Importantly, these damaging effects can be ameliorated by 

dietary antioxidants (Kiko et al., 2012; Ono, Hamaguchi, Naiki, & Yamada, 2006; Peake, 

Suzuki, & Coombes, 2007). Although the accumulation of extracellular Aβ plaques is a 

prominent feature of the AD brain, synaptic loss within and surrounding the plaques may 

be a better predictor of the cognitive dysfunction seen in AD than the total amount of Aβ 

plaque deposition (Giannakopoulos et al., 2003; Schmitz et al., 2004). Individuals may be 

biologically more or less susceptible to neuronal buildup of Aβ, which may explain why 

the overall Aβ plaque burden is generally not a direct indicator of AD symptom severity 

(Tosun et al., 2011; V L Villemagne et al., 2013). 

Although it is currently unclear whether Aβ deposition is a primary cause of the 

neurodegeneration and behavioral deficits associated with AD, the gradual accumulation 

of Aβ in the brain appears to be associated with progressive oxidative stress and various 

harmful downstream effects. Oxidative stress associated with AD is believed to be partly 

responsible for damage to neuronal structures that contributes to functional deficits and 

ultimately neuronal death. Furthermore, experimental evidence suggests that 

manipulating levels of Aβ deposition in the brain can influence the emergence of 

behavioral deficits. 

For example, accelerated Aβ plaque accumulation tends to increase the risk of 

developing behavioral deficits associated with AD (i.e., learning and memory problems). 

Pathophysiological conditions that accelerate Aβ accumulation in the brain have been 

shown to increase the risk of developing AD. These conditions include Down syndrome, 

which is characterized by an overproduction of APP in the brain, leading to elevated Aβ 
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production and deposition. Individuals with Down syndrome are typically diagnosed with 

some form of dementia by approximately 50 years of age (Head et al., 2001; Netzer et al., 

2010; Schupf et al., 2007). Additionally, several inheritable mutations in the genes for 

APP or γ-secretase lead to elevated APP production and Aβ deposition in the brain and 

an earlier onset of AD (Bird, 2008; Cacace, Sleegers, & Van Broeckhoven, 2016; Krüger, 

Moilanen, Majamaa, & Remes, 2012). Identification of these genes has resulted in the 

development of transgenic rodent models of AD that express high levels of human APP 

and develop age-related neuropathology and cognitive deficits congruent with Aβ 

aggregation and deposition in the brain (Cohen et al., 2013; Hochgräfe, Sydow, & 

Mandelkow, 2013; Kitazawa, Medeiros, & M. LaFerla, 2012; Morrissette, Parachikova, 

Green, & LaFerla, 2009). Transgenic rodent models of AD focused on Aβ plaque 

development appear to mirror the behavioral hallmarks of AD seen in humans diagnosed 

with AD (Richard E. Hartman, Lee, Zipfel, & Wozniak, 2005). Additionally, in vivo 

imaging shows that Aβ plaques can aggregate rapidly in transgenic rodent brains, and that 

markers of neurodegeneration around these Aβ plaques develop quickly (Meyer-

Luehmann et al., 2008; Yan et al., 2009). Finally, neuroinflammatory processes and 

oxidative stress can induce accumulation of APP and Aβ in the brain, increasing the risk 

for developing AD. Common sources of these insults include traumatic brain injury, 

stroke, chronic low-level hypoxia (e.g., due to breathing problems), the “Western” diet 

(Abdul-Muneer, Chandra, & Haorah, 2015; Beer, Blacker, Hankey, & Puddey, 2011; 

Candore et al., 2010; Chamorro, Dirnagl, Urra, & Planas, 2016; Fernández-García, 

Cardona, & Tinahones, 2013; Iturriaga, Moya, & Del Rio, 2015; Jelic & Le Jemtel, 2008; 

Pistell et al., 2010; Pradeep, Diya, Shashikumar, & Rajanikant, 2012; Stranahan, Cutler, 
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Button, Telljohann, & Mattson, 2011; Q.-G. Zhang et al., 2012), and (importantly) the 

accumulation of Aβ. Oxidative stress is a common component of all brain injury and can 

induce further Aβ accumulation, initiating a harmful cycle of progressive oxidative and 

inflammatory load in the brain (Castellano et al., 2011; Jofre-Monseny, Minihane, & 

Rimbach, 2008). 

In addition to the observation that accelerating Aβ accumulation can increase the 

risk of developing AD and associated behavioral deficits, experiments with transgenic 

rodent models of Aβ plaque accumulation in the brain have shown that reducing Aβ 

levels in the brain can improve behavioral outcomes. These experiments include systemic 

treatments with monoclonal anti-Aβ antibodies and dietary manipulations that prevent, or 

in some cases reverse, the neuropathology and behavioral deficits associated with AD 

(Bernardo et al., 2009; Demattos et al., 2012; Richard E. Hartman, Lee, et al., 2005; 

Richard E Hartman et al., 2006; Joseph, Cole, Head, & Ingram, 2009; E. B. Lee et al., 

2006; Mark, 2010; Patten, Moller, Graham, Gil-Mohapel, & Christie, 2013; Pop et al., 

2010; Steele, Stuchbury, & Münch, 2007; A. Wang, Das, Switzer, Golde, & Jankowsky, 

2011; J. Wang et al., 2005). Reducing oxidative load in the brain is another pathway to 

improving cognitive function in Aβ transgenic rodent models without reducing Aβ levels 

(Kotilinek et al., 2008; Ongali et al., 2014; Tong, Lecrux, & Hamel, 2012). These 

findings suggest that Aβ contributes to the process of oxidative stress overload that 

gradually impacts the function of brain structures that mediate learning and memory. 

In summary, AD is associated with an abnormal buildup of Aβ plaques in the 

brain, which ultimately induces even greater Aβ accumulation in the brain. This “amyloid 

cascade” process creates a damaging cycle of neurodegenerative decline, including the 
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formation of NFTs, synaptic dysfunction and loss, excitotoxicity and apoptosis (A. 

Armstrong, 2014; Barage & Sonawane, 2015; Musiek & Holtzman, 2015; Pimplikar, 

2009). Current pharmacological approaches for treating AD have focused on stabilizing 

glutamatergic activity by blocking NMDA channels (e.g., memantine) and inhibiting 

acetylcholinesterase (AChE), an enzyme that breaks down acetylcholine and has been 

shown to induce Aβ aggregation (e.g., galantamine, tacrine, donepezil, and rivastigmine). 

NMDA antagonists can slightly slow the progression of AD symptoms and may reduce 

the susceptibility of neurons to excitotoxic degeneration. AChE inhibitors have been 

shown in animal experiments to slow AChE’s promotion of Aβ aggregation. 

Nevertheless, pharmacological treatments that target glutamate and acetylcholine have 

ultimately yielded disappointing results. Other experimental approaches that have yielded 

mixed results. Active and passive Aβ immunotherapies in transgenic mouse models of 

AD have yielded promising results, even in the absence of significant reductions in Aβ 

burden (Buttini et al., 2005; Richard E Hartman, Izumi, et al., 2005; Wilcock et al., 

2004). Human immunotherapy treatment has been more problematic, due to significant 

toxicity and tolerability concerns (Gilman et al., 2005; Lemere, Maier, Jiang, Peng, & 

Seabrook, 2006; Mangialasche, Solomon, Winblad, Mecocci, & Kivipelto, 2010; Schenk, 

Hagen, & Seubert, 2004; Siemers et al., 2010; Winblad et al., 2012). Although theses 

pharmacological failures have raised questions about the amyloid cascade hypothesis of 

AD, it has also been proposed that Aβ may initiate a multi-faceted pathogenic cascade 

that causes AD, rather than acting as the sole causative factor (A. Armstrong, 2014; 

Imtiaz, Tolppanen, Kivipelto, & Soininen, 2014; Salomone & Caraci, 2012). These 

downstream processes include tau aggregation, extracellular senile plaque formations, 
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mitochondrial dysfunction, neuroinflammatory processes, blood brain barrier (BBB) 

permeability disruption, and gut microbiome disturbances (Biron, Dickstein, Gopaul, 

Jefferies, & Hendey, 2011; Devi & Anandatheerthavarada, 2010; Hedskog et al., 2013; 

Miao et al., 2016; Moreira et al., 2010; Musiek & Holtzman, 2016; Narasingapa et al., 

2012; Rom et al., 2016; V. Singh et al., 2016; T. Yuan et al., 2016). Despite the lack of 

significant progress towards effective pharmacological interventions for AD, mounting 

epidemiological and experimental evidence indicates that diet and other sources of 

bioactive phytochemicals can significantly decrease the risk of developing AD 

neuropathology and symptoms by several potential mechanisms (Barnard et al., 2014; R 

E Hartman, 2009; Kang et al., 2014; Lau, Shukitt-Hale, & Joseph, 2005).  
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CHAPTER THREE 

PHYTOCHEMICALS AND ALZHEIMER’S DISEASE 

 
 A growing body of literature demonstrates that several bioactive phytochemical 

compounds, including vitamins (e.g. tocopherols and folic acid) and other organic 

compounds (e.g. phenols, terpenes, and organosulfurs) can affect aspects of the AD 

disease process. Potential mechanisms for these effects include antioxidant / anti-

inflammatory properties and modulation of Aβ concentrations and toxicity. Indeed, 

several pharmacological interventions of interest in AD stem from traditional herbal 

medicines. For example, the AChE inhibitor galantamine is derived from daffodil plants, 

and the anti-inflammation drug aspirin is derived from salicylic acid, a polyphenol found 

in the bark of willow trees. Both phytochemicals have garnered interest in the treatment 

of AD. Additionally, the role of the gut microbiome has been of increasing interest in 

studying the activity and mechanisms of dietary phytochemical compounds. 

Approximately 100 trillion diverse species of very metabolically active bacteria line the 

intestinal tract and have a strong influence (both pro- and anti-) on neuroinflammation, 

neuromodulation, and neurotransmission in the brain and periphery. The role of the 

potentially neurotoxic and proinflammatory microbial activations and their relationship to 

age-related amyloidogenesis and neurodegeneration are of increasing interest (Petra et al., 

2015; Y Zhao, Dua, & Lukiw, 2015). In addition to the gut’s role in the disease process 

of AD, its microbiome is also highly implicated in the bioavailability and bioactivation of 

dietary phytochemicals. It has been shown that 5-10% of dietary phytochemicals are 

absorbed initially. The remaining phytochemicals reach the colon, where they undergo 

extensive metabolizing by microbiota. Although the metabolic pathways and the 
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molecular targets are not well understood, the intestinal microbiome’s breakdown of 

dietary polyphenols may enhance their beneficial properties (H. Chen & Sang, 2014; 

Chiou et al., 2014; Gasperotti et al., 2015; Marín, Miguélez, Villar, & Lombó, 2015; 

Parkar, Trower, & Stevenson, 2013). Recent studies of the pharmacokinetic activity of 

several microbiome-produced polyphenol metabolites found that many of them reached 

the brain in statistically significant concentrations (Gasperotti et al., 2015; D. Wang et al., 

2015; T. Yuan et al., 2016). The following sections provide a survey of the 

epidemiological and experimental evidence for the effects of various plants, 

phytochemicals, and their metabolites on AD processes. 

 

Epidemiological Evidence 

Several studies have demonstrated that regular consumption of a variety of fruits 

and vegetables can decrease the risk for developing AD and slow its progression. For 

example, a large Swedish study collected dietary questionnaires from young adults 

approximately 40 years before regular cognitive screenings began in older age. It was 

found that higher fruit and vegetable consumption in earlier life was associated with a 

decreased risk of dementia and AD (Hughes et al., 2010). Similarly, a study of Irish 

adults, aged 64-93 years, found that consuming more fruits and vegetables was associated 

with significantly better overall cognitive functioning (Power et al., 2015). However, 

another study reported that consumption of dietary tocopherols (isoforms of vitamin E), 

vitamin C, P-carotene, and tea were not correlated with the risk of developing AD (Dai, 

Borenstein, Wu, Jackson, & Larson, 2006). 

Additionally, epidemiological evidence that isolated phytochemicals can affect 
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AD remains elusive. A study of older American adults to identify dementia incidence and 

AD diagnoses found that the use of vitamins C and E alone or in combination did not 

reduce AD or dementia incidence after a 5-year follow-up (Gray et al., 2008). Another 

study examining the effects of vitamin E supplementation in mild cognitive impairment 

(MCI) and AD found no evidence that it was beneficial (Farina, Isaac, Clark, Rusted, & 

Tabet, 2012). However, one study of older Chinese adults reported that lower α-

tocopherol levels were found in those diagnosed with MCI than in healthy controls (L. 

Yuan et al., 2016), and another recent study found that higher dietary intake of vitamins 

A, C, and E is associated with protection from AD (Berti et al., 2015). Nevertheless, the 

evidence suggests that acquiring vitamins through a varied diet of vitamin rich foods may 

provide more protection from AD than the use of vitamin supplementation. A recent 

study of elderly French adults examined the association between dietary vitamin B 

consumption and long-term incidence of dementia. Higher intake of dietary vitamin B 

reduced the risk of dementia with an approximately 50% lower risk for individuals 

consuming the highest amounts compared to the lowest consumers (Lefèvre-Arbogast et 

al., 2016). 

Furthermore, growing epidemiological evidence suggests that dietary omega-3 

fatty acids, most commonly found in flax, nuts, algae, and oil from fish that eat algae, 

may protect against developing AD (Burkholder-Cooley, Rajaram, Haddad, Fraser, & 

Jaceldo-Siegl, 2016; Perim Baldo et al., 2016; Robertson et al., 2016; Song et al., 2016; 

Tavakkoli-Kakhki et al., 2014). The so-called “Mediterranean” diet, which is 

characterized by regular consumption of foods with high fatty acid content from fish, 

nuts, and oils, has been of increasing interest, due to the growing body of evidence that it 
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is associated with several health benefits, including a reduced incidence of AD. 

Consumption of dietary fatty acids appears to explain a portion of the diet’s 

neuroprotective characteristics (Trichopoulou et al., 2014), and several epidemiological 

studies have demonstrated that diets supplemented with olive oil and/or nuts are 

associated with improved cognitive function in older adults (Perim Baldo et al., 2016; 

Sjögren et al., 2010; Valls-Pedret et al., 2015). 

Other sources of bioactive phytochemicals include colorful, flavorful, and 

aromatic spices. These spices often contain high concentrations of various phenols, 

terpenes, and organosulfurs. For example, a study of elderly adults showed that those 

whose diets included curry performed significantly better on neuropsychological tests of 

cognitive performance (Ng et al., 2006). This spice mix includes turmeric, a bright 

yellow root that contains a high concentration of the polyphenol curcumin. Light to 

moderate wine consumption has also been associated with a reduced risk for AD, 

although it remains unclear whether the effect is due to grape polyphenols (e.g., 

resveratrol) or ethanol (which itself is derived from plants) (Arntzen, Schirmer, 

Wilsgaard, & Mathiesen, 2010; Covas, Gambert, Fitó, & de la Torre, 2010; Orgogozo et 

al., 1997). 

Phytochemicals can also be consumed by other methods other than diet. For 

example, smoking tobacco was previously thought to possibly offer protection from Aβ 

deposition and the occurrence of AD. This was in large part due to postmortem 

examinations of the brains of AD that showed significantly lower levels of Aβ in the 

entorhinal cortex of smokers (Court et al., 2005). However, recent epidemiological 

studies have identified smoking as a risk factor for the development of AD (Norton, 
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Matthews, Barnes, Yaffe, & Brayne, 2014). A large community study of adults in the US 

found that older individuals who currently smoke are more likely to develop AD than 

those who never smoked. Given that experimental evidence of nicotine administered in 

animal models of AD suggests that nicotine may be neuroprotective (see section on 

nicotine), it appears likely that the act of smoking tobacco, rather than consumption of 

nicotine itself, increases the risk for developing AD, despite evidence of decreased 

postmortem Aβ in smoker’s brains. 

 In summary, epidemiological evidence suggests that consuming a wide variety of 

fruits and vegetables that contain high concentrations of bioactive phytochemical 

compounds may work collectively and synergistically to lower the risk for developing 

AD. Relatively few experimental clinical trials have been published assessing the effects 

of plant/phytochemical consumption on AD in humans. Several experimental preclinical 

studies using transgenic animals and/or in vitro models have provided evidence that 

various aspects of AD neuropathology can be manipulated by plants and their 

phytochemicals. The following subsections outline recent experimental literature 

describing the varied potential benefits of bioactive phytochemicals on AD 

neuropathology. 

 

Experimental Evidence 
 

Polyphenols 

Many plants produce polyphenols (large assemblies of phenols, which are 

molecules that contain an aromatic ring bonded to a hydroxyl group). These include 

common phytochemicals like the phenolic acids, stilbenoids, and flavonoids. 
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Phenolic Acids 

Several phenolic acids have been shown to modulate neuropathological pathways 

related to AD. For example, rosmarinic acid (derived from rosemary) and 

nordihydroguaiaretic acid (derived from creosote) have been shown to prevent and 

reverse Aβ aggregation in vitro (Farr et al., 2016; Lucarini et al., 2013; Rahman, Ansari, 

Rehman, Parvez, & Raisuddin, 2011). Additionally, coffee and tea are plants with 

relatively high concentrations of phenolic acids that possess antioxidant and anti-

inflammatory properties, such as caffeic acid and various tannins (Brezová, Šlebodová, & 

Staško, 2009; Esquivel & Jiménez, 2012; Ludwig et al., 2012; Vignoli, Bassoli, & 

Benassi, 2011). Coffee and tea are also discussed in the section on psychoactive alkaloids 

(caffeine), and tea is discussed in more detail in the section on flavonoids (flavans). 

Diets containing high amounts of the spice mixture curry have been associated 

with improved cognitive performance in elderly individuals (Braskie et al., 2011; Ng et 

al., 2006). Curcumin is a phenolic acid found in the curry spice turmeric, which is a 

bright yellow root related to ginger. It is structurally similar to thioflavine-S and Congo 

red, which are histological stains used to visualize amyloid fibrils in brain tissue. 

Interestingly, curcumin will also bind to amyloid fibrils in brain tissue sections and can 

be visualized under a fluorescent microscope to observe Aβ plaques (Reinke & 

Gestwicki, 2007; Ringman, Frautschy, Cole, Masterman, & Cummings, 2005). In 

addition to its Aβ binding properties in tissue sections, it has also been demonstrated to 

prevent and reverse Aβ aggregation in vitro (Ono, Hasegawa, Naiki, & Yamada, 2004; 

Yang et al., 2005). 

Experimentally, dietary curcumin has been reported to prevent oxidative stress, 
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synaptic damage, cortical microgliosis, and learning deficits in rats after 

intracerebroventricular infusion of Aβ (Frautschy et al., 2001). It also decreased Aβ 

plaques and oxidative stress in APP transgenic mice (G. P. Lim et al., 2001; Ono et al., 

2004; Yang et al., 2005) and reduced heme-Aβ peroxidase damage to muscarinic ACh 

receptors (Atamna et al., 2009). More recent studies with both rats and mice have 

examined whether curcumin attenuates inflammation and mitochondrial dysfunction in 

models of neurological insult. The results suggested that curcumin reduced post-insult 

lesion sizes and inflammatory biomarkers in the brain, and improved mitochondrial 

function and behavioral outcomes (Laird et al., 2010; Miao et al., 2016). Additionally, a 

transgenic mouse study demonstrated increased levels of DNA damage relative to control 

mice, and reported that dietary supplementation with curcumin significantly reduced the 

damage (Thomas et al., 2009). Its experimental effects are not limited to rodent models. 

A recent drosophila (fruit fly) experiment found that curcumin reduced oxidative stress 

and protected against age-related neurodegeneration (Seong et al., 2015), and a study of 

elderly humans after 12 weeks of curcumin supplementation demonstrated improved 

artery endothelial function by increased vascular nitric oxide bioavailability, reduced 

overall oxidative stress, and improved conduit artery endothelial function (Parker et al., 

2016). Curcumin also inhibits the pro-inflammatory cytokine nuclear transcription factor-

κβ (NF-κβ) (B. B. Aggarwal & Shishodia, 2004) and modulates other cell-signaling 

pathways (B. B. Aggarwal & Shishodia, 2006). Curcumin also possesses potent 

antimicrobial properties which may possibly have direct or indirect effects on Aβ 

aggregation or other neuropathological pathways to AD. An In vitro study of curcumin 

demonstrated that curcumin dose-dependently inhibits the formation of Aβ fibrils and 
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destabilizes already formed Aβ fibrils. However, the mechanism by which Curcumin 

inhibits Aβ fibril formation and Aβ fibril destabilization remains unclear and could be 

due to a synergistic effect of curcumin’s anti-aging and anti-microbial properties 

(Kumaraswamy, Sethuraman, & Krishnan, 2013; Ono et al., 2004; Rai, Singh, Roy, & 

Panda, 2008). 

The anti-amyloid and antioxidant activity of curcumin has generated great interest 

for the treatment of AD. However, the insolubility of curcumin in water has restricted its 

use. This restriction may be overcome by the synthesis of curcumin nanoparticles that 

maintain anti-oxidative properties, are non-cytotoxic, and can destroy amyloid 

aggregates, thus approaching the treatment of Alzheimer's disease from several angles. 

Pomegranates have been consumed as food and used medicinally for millennia and 

contain high concentrations of punicalagins, which break down in water to smaller 

phenolic acids such as ellagic acid, ellagitannins, and gallic acid (Ambigaipalan, De 

Camargo, & Shahidi, 2016; Elfalleh et al., 2011; Heber, 2011; Johanningsmeier & Harris, 

2011; Larrosa et al., 2010; Legua et al., 2012; Masci et al., 2016; Sreekumar, Sithul, 

Muraleedharan, Azeez, & Sreeharshan, 2014; Venkata, Prakash, & Prakash, 2011; R. 

Wang, Ding, Liu, Xiang, & Du, 2010). Several animal and human studies have shown 

that pomegranate juice and extracts demonstrate significant bioactive properties, 

including antioxidant and anti-inflammatory effects (Al-Kuraishy & Al-Gareeb, 2016; M. 

Aviram et al., 2000; Michael Aviram et al., 2004; BenSaad, Kim, Quah, Kim, & Shahimi, 

2017; Bishayee et al., 2011, 2013; Cano-Lamadrid et al., 2016; de Nigris et al., 2005; 

Husari et al., 2016; Kaplan et al., 2001; Larrosa et al., 2010; Matthaiou et al., 2014; 

Mertens-Talcott, Jilma-Stohlawetz, Rios, Hingorani, & Derendorf, 2006; Rosenblat, 
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Volkova, Coleman, & Aviram, 2006; Rozenberg, Howell, & Aviram, 2006; Seeram et al., 

2005). Pomegranate juice, extracts, and their bioactive constituents suppress 

inflammatory cell signaling, reduce expression of oxidation-sensitive genes and pro-

inflammatory cytokines in response to cellular stress, reduce blood biomarkers of 

inflammation and oxidative stress, and modulate endothelial nitric oxide synthase 

expression (Adams et al., 2006; L. G. Chen, Liu, Hsieh, Liao, & Wung, 2008; Ghavipour 

et al., 2016). 

Animal experiments in which rodents have been given pomegranate extracts or 

had pomegranate juiced added to their drinking water have demonstrated the 

neuroprotective effects of the pomegranate’s bioactive phytochemicals. The amount of 

juice consumed was similar, on a mg/kg basis, to a human dose of 1 to 2 cups of pure 

pomegranate juice. Initially, pomegranate’s neuroprotective propertied were 

demonstrated when the offspring of pomegranate-supplemented pregnant mice were 

protected from neonatal hypoxic-ischemic brain injury (Loren, Seeram, Schulman, & 

Holtzman, 2005). These results prompted experiments with APP transgenic mice, in 

which 6 months of consumption reduced Aβ plaques in the hippocampus and improved 

maze performance (Richard E Hartman et al., 2006). Later experiments suggested that the 

reduction in Aβ levels likely resulted from modulations in APP enzymatic processing, 

presumably leading to less production of Aβ and increased production of soluble APP-α 

(sAPPα, an endogenous neuroprotective peptide produced by α-secretase processing of 

APP). Another study showed that ellagic acid derived from pomegranate rinds inhibited 

β-secretase activity in vitro (Kwak et al., 2005). More recent mouse studies examining 

the consumption of pomegranate peel extract showed increased brain-derived 
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neurotrophic factor expression and reduced Aβ plaque density, AChE activity, lipid 

peroxidation, and pro-inflammatory cytokine expression (Morzelle et al., 2016). These 

results were similar to other APP transgenic mouse studies in which pomegranate juice 

supplementation improved learning and memory and reduced Aβ plaque deposition 

(Rojanathammanee, Puig, & Combs, 2013) and showed significant improvements in 

memory, learning, and locomotor function while reducing anxiety (Subash et al., 2015). 

Another recent mouse study showed that pomegranate supplementation protected against 

proton irradiation-induced anxiety (Dulcich & Hartman, 2013). Finally, pomegranate 

supplementation has been experimentally demonstrated to improve cognitive 

performance in humans after heart surgery (Ropacki, Patel, & Hartman, 2013) and with 

mild cognitive impairment (Bookheimer et al., 2013). 

Overall, this growing body of experimental evidence shows that the phenolic 

acids found in pomegranates may directly or indirectly provide significant behavioral and 

neuropathological protection against age-related disorders, including AD, by multiple 

mechanisms that work together to prevent establishment and progression of Aβ 

deposition and neurodegeneration. Interestingly, in vitro experiments show that isolated 

phytochemical components may not provide as much benefit as the whole juice, 

suggesting that the wide variety of phenolic acid isoforms present in the whole fruit may 

provide synergistic benefits (Seeram et al., 2005). One study even showed that the 

conjugated sucroses, fructoses, and glucoses found in pomegranates also have antioxidant 

properties (Rozenberg et al., 2006). Some recent studies have shown that bacteria in the 

gut can metabolize the large punicalagins into smaller anti-inflammatory molecules like 

urolithin-A that may have higher bioavailability (Espín, Larrosa, García-Conesa, & 
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Tomás-Barberán, 2013; Larrosa et al., 2010; Seeram et al., 2006; T. Yuan et al., 2016). 

These findings suggest that further comparative studies of isolated phytochemical 

metabolites may lead to increased understanding of their true mechanisms of action and 

the mediating role of microbiome metabolism. Finally, numerous other studies have 

shown pomegranate and its bioactive constituents to be anti-carcinogenic, antibacterial, 

anti-apoptotic, and protective for the cardiovascular system (Ahmed, El Morsy, & 

Ahmed, 2014; Al-Kuraishy & Al-Gareeb, 2016; M. Aviram et al., 2000; Michael Aviram 

et al., 2004; Braga et al., 2005; K. Cao et al., 2015; Chavez-Valdez, Martin, & 

Northington, 2012; de Nigris et al., 2005; Howell & Souza, 2013; Kaplan et al., 2001; 

Riaz & Khan, 2016; Rosenblat et al., 2006; Rozenberg et al., 2006; Seeram et al., 2005; 

Shafik & El Batsh, 2016; Syed, Chamcheu, Adhami, & Mukhtar, 2013; L. Wang, Li, Lin, 

Garcia, & Mulholland, 2013), suggesting that consumption of pomegranates and their 

juice may protect against AD neuropathology and a several other age-related disease 

processes.  

 

Stilbenoids 

Resveratrol is a stilbenoid polyphenol found in grapes and nuts that has been 

shown to induce Aβ clearance and decrease Aβ levels in vivo in part via intracellular 

proteasome-facilitated degradation of Aβ (Karuppagounder et al., 2009). Additionally, 

resveratrol modulates several Aβ-related cell-signaling pathways (Capiralla et al., 2012; 

Köbe et al., 2017; Porquet et al., 2014), which may explain the epidemiological evidence 

for a decreased risk of developing AD among elderly individuals who drink small to 

moderate amounts of wine. Experimental models of traumatic brain injury have 
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demonstrated that treatment with resveratrol immediately after traumatic brain injury 

reduces oxidative stress and even reduces lesion volume (Ates et al., 2007). These 

findings are supported by resveratrol’s neuroprotective effects in adult and neonatal 

rodent models of ischemic stroke (Wan et al., 2016; West, Atzeva, & Holtzman, 2007). 

 

Flavonoids 

The flavonoid class of polyphenols includes the flavans and pigment compounds like the 

anthocyanidins and anthoxanthins. 

 

Flavans 

 The flavan class of polyphenols includes flavanols such as the catechins, which 

are found in high concentration in tea leaves. Catechins and phenolic acids (e.g., tannins) 

make up about 25% of the tea leaf, which also contains psychoactive compounds (e.g., 

caffeine; see psychoactive alkaloid section). Tea has been used medicinally for centuries, 

likely because of these bioactive phytochemicals. Tea consumption is still very common 

globally, but epidemiological evidence correlating tea consumption with the risk of 

developing AD has been mixed. However, multiple lines of experimental evidence 

suggest that tea may protect against oxidative stress (I. C. Burckhardt et al., 2008; Yan 

Xu et al., 2010) and that some of tea’s compounds may protect various AD-related 

pathways. For example, a transgenic mouse study demonstrated that an extract of black 

tea polyphenols significantly reduced memory impairment, oxidative damage, Aβ burden, 

and apoptosis (Mathiyazahan, Justin Thenmozhi, & Manivasagam, 2015). 

Isolated catechins found in tea have been studied more in depth. Epigallocatechin-
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3-gallate (EGCG) is a well-characterized catechin found in tea that has been shown to 

decrease behavioral impairments, reduce Aβ production, and decrease y-secretase activity 

in transgenic mice (H. J. Lim et al., 2013). In another transgenic mouse study, EGCG 

treatment restored respiratory rates and membrane potential, reduced ROS production, 

and increased ATP levels by 50 to 85% in mitochondria isolated from the hippocampus, 

cortex, and striatum (Dragicevic et al., 2011). In addition to the neuroprotective effects of 

ECGC, a recent study of aging rats examined a tea extract rich in other catechins, but 

poor in ECGC. The data demonstrated improved learning and memory and reduced 

oxidative stress, suggesting that tea consumption is associated with multiple catechins 

having a synergistic neuroprotective effect above and beyond isolated tea catechins 

(Rodrigues et al., 2013). Overall, the phenolic acids and flavonoids found in tea offer 

multi-faceted neuroprotection from AD via multiple mechanisms. 

 

Anthocyanidins 

Anthocyanidins are water soluble pigments with potent with antioxidant and anti-

inflammatory properties found in high concentrations in fruits such as the blueberry 

(Giacalone et al., 2015; Malin et al., 2011; Nica Sousa, Teixeira, & Soares, 2014). Rodent 

models of AD have shown that a blueberry enriched diet significantly reduced learning 

and memory impairments mediated by excitotoxicity and oxidative stress, decreased 

neuronal loss, and inhibited AChE activity (Duffy et al., 2008; Papandreou et al., 2009; 

Williams et al., 2008). In a recent study, a single drink containing blueberry flavonoids 

was given to 8-10-year-old children 2 hours before a brief memory assay and was 

associated with overall improved delayed recall, but increased susceptibility to proactive 
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interference (Whyte & Williams, 2015). 

 

Anthoxanthins 

 Anthoxanthins are another class of flavonoid pigment that includes compounds 

such as the flavones and flavonols. Luteolin is a flavone found in the leaves and rinds of 

many plants, including celery, broccoli and citrus fruits that acts on multiple pathways 

associated with the development of AD. Reported effects in transgenic mice include 

decreases in both Aβ deposition and tau phosphorylation (which can ultimately lead to 

NFTs in humans). Other studies using rat models of AD suggest that luteolin protects 

against Aβ-induced cognitive impairment by regulating the cholinergic system, inhibiting 

oxidative stress, and prevented hippocampal cell death in a chemically-induced model of 

AD (H. Wang, Wang, Cheng, & Che, 2016; T.-X. Yu, Zhang, Guan, Wang, & Zhen, 

2015). Additionally, luteolin has been shown to reduce neuroinflammation and Aβ 

deposition following experimental traumatic brain injury in transgenic mice (Sawmiller et 

al., 2014). Finally, luteolin demonstrates significant antioxidant action, regulates 

phosphorylation (R. Liu et al., 2009; Zhou, Chen, Xiong, Li, & Qu, 2012), inhibits 

mitochondrial dysfunction induced by myocardial insult, protects BBB permeability in 

AD rodent models, reduces apoptosis in Parkinson’s disease rodent models, alleviates 

obesity-induced cognitive impairment in a rodent model of type-2 diabetes mellitus, and 

has anti-carcinogenic properties in an animal model of lung cancer (Guo, Li, Yu, & Chan, 

2013; Y. Liu et al., 2014; Pratheeshkumar et al., 2014; D. Yu, Li, Tian, Liu, & Shang, 

2015; J.-X. Zhang et al., 2017). Thus, like other polyphenols, luteolin seems to be readily 

available in the diet and may provide protection from age-related neuropathology from 
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several different angles. 

Flavonols such as fisetin, quercetin, myricetin, and kaempferol have also 

demonstrated bioactive properties of interest to aging and AD research. For example, 

fisetin, which is found in strawberries and other fruits and vegetables, enhanced cognitive 

performance and reduced inflammation in a rodent model of induced neurodegeneration 

(Prakash, Gopinath, & Sudhandiran, 2013). Fisetin’s affects appear to be in part 

attributable to increases in cAMP response element binding (CREB), which plays an 

important role in learning and memory mechanisms and has been shown to reduce Aβ 

plaque formation. Additionally, isolated preparations of quercetin and myricetin have 

been shown to reduce Aβ-related damage to muscarinic acetylcholine receptors (Hu, 

Ding, Zhou, & Xu, 2015; Ramezani, Darbandi, Khodagholi, & Hashemi, 2016). 

Kaempferol and quercetin are flavonols found in especially high concentrations in 

the leaves of the gingko biloba tree, which have been used medicinally for centuries due 

to their purported cognitive enhancing properties. In addition to kaempferol and 

quercetin, ginkgo biloba also contains terpenes such as ginkgolides and bilobalides (see 

section on ginkgolides and bilobalides). It has most often been studied experimentally 

using an extract known as EGb761, which has been standardized to 24% polyphenol / 6% 

terpene content, allowing relatively easy comparisons between experimental studies. 

Multiple clinical trials have shown that daily treatment with EGb761 for a period of 12-

24 weeks can provide mild cognitive improvements in elderly and demented patients 

(Herrschaft et al., 2012; Ihl, Tribanek, & Bachinskaya, 2012; Napryeyenko, Sonnik, & 

Tartakovsky, 2009). A study of several thousand non-demented elderly adults compared 

the effects of EGb761 to piracetam on cognitive functioning over a 20-year period. 
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Results indicated less cognitive decline in subjects taking EGb761 than those who 

reported regular use of piracetam (Amieva, Meillon, Helmer, Barberger-Gateau, & 

Dartigues, 2013). Another recent randomized, placebo-controlled trial of several hundred 

outpatients was conducted to demonstrate the efficacy and safety of EGb761 treatment 

for 24 weeks in patients with AD or vascular dementia. EGb76 treatment produced 

significant and clinically relevant improvements in cognition, psychopathology, 

functional measures, and quality of life for patients and caregivers. Importantly, no 

significant toxicities were observed (Herrschaft et al., 2012). However, in another 

randomized, placebo-controlled trial, adults aged 70 years or older who presented with 

initial memory complaints were administered EGb761 daily and followed for conversion 

to probable AD diagnoses. In these subjects, EGb761 did not reduce the risk of 

progression to AD compared with controls given a placebo (Schneider, 2012; Vellas et 

al., 2012). However, like many failed clinical trials of AD treatments, it is possible that 

the intervention was simply started too late, since neuropathology generally precedes the 

clinical symptoms by several years. 

Several animal and in vitro studies have demonstrated that EGb761 can modulate 

multiple pathways related to both brain function and neuroprotection. For example, 

EGb761 has been shown to increase dopaminergic transmission in the rat PFC 

(Yoshitake, Yoshitake, & Kehr, 2010), increase production of brain derived neurotrophic 

factor in aged rats (Belviranlı & Okudan, 2014), improve mitochondrial respiration in 

vitro (Tendi et al., 2002), and attenuate lipid peroxidation and superoxide free radical 

production in a mouse model of Parkinson’s disease (Rojas et al., 2008). In addition to its 

potent antioxidant properties, EGb761 also acts as an AChE inhibitor, so several studies 



25 

have compared its clinical effects to pharmaceutical AChE inhibitors. One study found 

that combined treatment with EGb761 and donepezil was superior to either compound 

alone and produced fewer side effects than mono-therapy with donepezil (Yancheva et 

al., 2009). Although AChE inhibitors have demonstrated mostly disappointing results in 

the treatment of AD, research into the efficacy of the extract persists because of its 

minimal side effect profile and other potential mechanisms of action (Weinmann, Roll, 

Schwarzbach, Vauth, & Willich, 2010). EGb761 has also been shown to reduce Aβ 

deposition, enhance CREB phosphorylation, and promote cell proliferation in the 

hippocampi of young and aged transgenic mice (Tchantchou, Xu, Wu, Christen, & Luo, 

2007). In another study, transgenic mice that were given EGb761 for 20 weeks via 

dietary supplementation demonstrated significantly improved cognitive function, 

attenuated loss of synaptic proteins, inhibition of caspase-1, and less inflammation via 

microglia-induced secretion of TNF-α and IL-1β (X. Liu et al., 2015). This pattern of 

results suggests that the phytochemicals in EGb761 act on AD pathology via multiple 

synergistic mechanisms, including antioxidant, anti-inflammatory, and anti-AChE 

pathways (Eckert, 2012; Müller, Heiser, & Leuner, 2012). 

Concerns about the bioavailability of phytochemicals like EGb761, such as their 

ability to cross the BBB, have led to recent investigations on the pharmacokinetics of 

these compounds. A rat study found that repeated oral administration of standard EGb761 

doses for 1 week led to as much as a 10x increase in the plasma concentration of its 

flavonols components, which were also found in the hippocampus, frontal cortex, 

striatum, and cerebellum (Rangel-Ordóñez, Nöldner, Schubert-Zsilavecz, & Wurglics, 

2010). Thus, although gingko biloba is generally not considered a dietary plant, the 
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available evidence suggests that readily available concentrated extracts may provide 

beneficial anti-aging and anti-AD effects via multiple pathways with a minimal side 

effect profile. 

 

Terpenes 

Terpenes are hydrocarbon compounds produced by plants (and some insects) that 

often have strong odors and an oily consistency. Terpenes of interest to aging and AD 

research include the ginkgolides and bilobalides (found in ginkgo biloba), huperzine A 

(found in Chinese club moss), and the phytocannabinoids (found in cannabis). 

 

Ginkgolides and Bilobalides 

As mentioned above, gingko biloba is often studied using EGb761, an extract that 

has been standardized to contain 24% polyphenols and 6% terpenes (the ginkgolides and 

bilobalides). Studies using EGb761 are discussed in more detail in the previous section, 

and it should be noted that its polyphenols and terpenes seem to act together in a 

synergistic fashion to provide its neuroprotective effects (Eckert, 2012; Müller et al., 

2012). However, at least one study suggests that ginkgolide J, one of its terpenoid 

components, provided similar protection from the detrimental effects of Aβ on long term 

potentiation as the whole extract (Vitolo et al., 2009). 

 

Huperzine A 

Huperzine A is a terpene alkaloid with AChE inhibiting properties found in the 

toothed clubmoss plant. It has been shown to promote neurogenesis in the rodent dentate 
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gyrus (T. Ma et al., 2013) and protect mitochondria against Aβ deposition by preserving 

membrane integrity and improving energy metabolism (Gao, Zheng, Yang, Tang, & 

Zhang, 2009). Both huperzine A and Huprine X, which is synthesized by combining 

components of huperzine A with a synthetic AChE inhibitor, improved learning and 

memory in a transgenic mouse model of AD (X. Ma & Gang, 2008; Ratia et al., 2013). 

However, recent clinical trials have yielded mixed results, and the low availability of 

toothed clubmoss, along with the relatively poor performance of pharmaceutical 

acetylcholinesterase inhibitors, has slowed progress (Rafii et al., 2011). 

 

Cannabinoids 

Cannabis is a plant with long history of both medicinal and recreational use. 

Cannabis contains a wide variety of terpenes, collectively known as phytocannabinoids, 

that bind with CB1 and CB2 cannabinoid receptors. CB1 receptors are expressed mainly 

in the cerebral cortex and are thought to be responsible for cannabis’ well-documented 

psychoactive effects. CB2 receptors are expressed mainly in the periphery and are 

thought to play a role in a variety of inflammatory processes. These compounds, 

including tetrahydrocannabinol (THC), cannabidiol (CBD), and cannabinol (CBN), have 

structural similarity to endogenous cannabinoid neurotransmitters such as anandamide 

and 2-AG, and are antioxidant, anti-inflammatory, and neuroprotective against 

excitotoxicity and acute brain damage (Haghani, Shabani, Javan, Motamedi, & 

Janahmadi, 2012; Harvey, Ohlsson, Mååg, Musgrave, & Smid, 2012). Additionally, 

phytocannabinoids have been demonstrated to enhance mitochondrial functioning (C. 

Cao et al., 2014) and stimulate neurogenesis within the embryonic and adult 
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hippocampus (Jiang et al., 2005; Wolf et al., 2010). 

Aging is associated with dysregulation of cannabinoid receptor expression 

(Bisogno & Di Marzo, 2010), and stimulation of cannabinoid receptors with synthetic 

cannabinoids has been shown to attenuate these effects (Marchalant et al., 2009; 

Marchalant, Cerbai, Brothers, & Wenk, 2008). A recent study demonstrated that THC 

restored cognitive performance in older mice, but, interestingly, the opposite effect was 

observed in younger mice (Bilkei-Gorzo et al., 2017). Several studies have suggested 

multiple mechanisms by which cannabinoids, including the phytocannabinoids found in 

cannabis, can also affect AD process. There is currently no conclusive epidemiological 

evidence on long-term cannabis users and a reduced incidence of AD, but multiple lines 

of experimental evidence suggest a possible protective effect. Although the relationship 

between cannabinoid receptors and AD pathogenesis remains unclear, cannabinoid 

receptor expression and the activity levels of enzymes that control endogenous 

cannabinoid concentrations change with the development of AD (Marchalant et al., 

2009). Postmortem studies of AD and Down syndrome brains reveal consistently 

elevated levels of CB2 expression, whereas CB1 receptors are often reduced (J. H. Lee et 

al., 2010; Solas, Francis, Franco, & Ramirez, 2013) (Benito et al., 2003; Núñez et al., 

2008; Tolón et al., 2009). These and other observations suggest that endogenous 

cannabinoids such as 2-AG mediate inflammatory and neuroprotective processes (X. 

Chen, Zhang, & Chen, 2011; Piro et al., 2012). 

A study of transgenic mice that also lacked CB1 receptors reported that despite a 

decrease in Aβ plaque load, significant learning and memory deficits persisted, 

suggesting that CB1 receptor deficiency can worsen AD-related cognitive deficits 
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independent of Aβ plaque load (Stumm et al., 2013). Another study showed that the rate 

of Aβ clearance across the BBB was doubled by stimulation of the endogenous 

cannabinoid 2-arachidonoylglycerol (2AG) via inhibition of endogenous cannabinoid-

degrading enzymes (Bachmeier, Beaulieu-Abdelahad, Mullan, & Paris, 2013; Bisogno & 

Di Marzo, 2010). Furthermore, another study demonstrated that treatment with a 

synthetic CB2 agonist reduced Aβ-induced memory loss (Wu et al., 2013), and in vitro 

data shows that THC inhibits Aβ aggregation via indirect interaction with Aβ peptides 

(Eubanks et al., 2006). Finally, studies of synthetic cannabinoids have shown them to 

ameliorate cognitive impairment and neurodegeneration in multiple models of Aβ-

induced neurotoxicity and neuroinflammation independent of antioxidant and/or 

psychoactive properties (R. Chen et al., 2012; Martín-Moreno et al., 2012; Martin-

Moreno et al., 2011). Thus, cannabinoids, including those found in cannabis, seem to act 

on age-related and AD-specific neuropathological processes through multiple pathways, 

suggesting a potential role for exogenous (e.g., phyto- or synthetic) cannabinoids in the 

prevention and/or treatment of AD. 

 

Organosulphurs 

 Garlic contains many aromatic sulfur-containing phytochemicals, including s-allyl 

cysteine (SAC) and di-allyl disulfide, collectively known as organosulfurs. Adding an 

aged garlic extract, SAC, or di-allyl-disulfide to the diets of transgenic mice has been 

shown to ameliorate cognitive deficits, reduce Aβ plaque formation, reduce abnormal tau 

build-up, and reduce oxidative damage (Asdaq, 2015; Chauhan, 2006; Colin-Gonzalez, 

Ali, Tunez, & Santamaria, 2015; Javed et al., 2011; Qu, Mossine, Cui, Sun, & Gu, 2016). 
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SAC has been shown to inhibit and reverse Aβ aggregation in vitro and in transgenic 

mice by binding directly to the Aβ peptide (Ray, Chauhan, & Lahiri, 2011). Another in 

vitro study examining the neuroprotective potential of SAC found reduced apoptosis that 

was not attributable to antioxidant activity, but rather to suppression of calpain proteins 

(Imai et al., 2014, 2016). The isolated components of SAC also appear to have AD-

related neuroprotective properties, and may produce a synergistic effect in combination 

with di-allyl-disulfide. Together, these findings suggest that garlic and its organosulfur 

compounds may act on several pathways to reduce Aβ plaque formation and other AD 

neuropathology. 

 

Fatty Acids 

Omega-3 fatty acids, such as α-linolenic acid, docosahexaenoic acid (DHA) and 

eicosapentaenoic acid (EPA), are found mainly in flax, nuts, algae, and certain fish. DHA 

and EPA make up about 15% of the human brain’s total fatty acids and 30-40% of its 

gray matter. Consuming omega-3 fatty acids can reduce inflammation, improve learning 

and memory, increase gray matter volume, and alter gut microbiota composition. DHA 

has been shown to protect against Aβ-induced neurotoxicity in transgenic mice and has 

demonstrated anti-inflammatory and anticancer properties (Calon et al., 2004; Lebbadi et 

al., 2011; Yuhai Zhao et al., 2011). In vitro studies have shown that DHA and EPA can 

reduce Aβ aggregation, increase production of neurotrophic substances, and decrease 

production of pro-inflammatory cytokines (Hjorth et al., 2013). Additionally, omega-3 

derivatives can promote α-secretase processing of APP, which prevents the production of 

Aβ and leads instead to the production of the neuroprotective peptide sAPPα (Yuhai Zhao 
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et al., 2011). A recent study of AD patients found that 24 weeks of omega-3 

supplementation produced increased levels of EPA and DHA in plasma and cerebrospinal 

fluid (CSF) that were inversely correlated with CSF levels of phosphorylated tau (Freund 

Levi et al., 2014). However, another recent study demonstrated that Aβ pathology may 

limit the ability of DHA to readily cross the BBB, which may explain why several 

clinical trials have yielded inconclusive or negative results, despite the high 

bioavailability of DHA (M. Burckhardt et al., 2016; Yassine et al., 2016). 

 

Phytovitamins  

Epidemiological evidence mentioned in Chapter 3 suggests a protective effect of 

dietary vitamins against the risk of developing AD, and experimental evidence with 

humans and rodents tends to support this idea. Tocopherols (isoforms of vitamin E) and 

folic acid (an isoform of vitamin B9) are found in several commonly consumed plants. A 

recent clinical trial of vitamin E supplementation in AD patients taking AChE inhibitors 

reported a 19% per year delay in clinical progression (Dysken et al., 2014), but recent 

clinical trials of vitamin E in isolation have yielded less promising results, suggesting that 

vitamin E may be better suited as a complementary therapy for AD (Farina et al., 2012). 

However, in a study of aged rats, vitamin E-supplementation improved age-related 

cognitive deficits (Takatsu, Owada, Abe, Nakano, & Urano, 2009), and several 

transgenic mouse studies have demonstrated beneficial AD-related effects of 

supplementing with vitamin E. For example, dietary administration of vitamin E to 

transgenic mice reduced Aβ deposition (Hashimoto et al., 2005) along with its associated 

oxidative stress and neuritic dystrophy (Zimmermann, Colciaghi, Cattabeni, & Di Luca, 
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2002), and it ameliorated behavioral impairments, oxidative stress, and injury-accelerated 

Aβ formation resulting from repetitive traumatic brain injury (Conte et al., 2004). 

Therefore, the data suggest that dietary tocopherols may protect the brain from Aβ 

deposition and its associated functional decline. 

Other studies have focused on B vitamins, because dietary deficiencies have been 

associated with cognitive decline and an increase in AD-related neuropathology. For 

example, a study of elderly individuals with a vitamin B deficiency found that reversing 

the deficiency with folic acid (an isoform of vitamin B9 found in many fruits and 

vegetables) improved cognitive function after 14 weeks (Cheng et al., 2016). A 

transgenic mouse study looked at the effects of dietary folic acid deficiency on 

neuropathology in transgenic mice and reported significant neurodegeneration within the 

hippocampus, although Aβ levels were not affected (Kruman  II et al., 2002). An in vitro 

study of folic acid deprivation demonstrated increased expression of the genes involved 

in encoding the γ- and β-secretases along with increased levels of Aβ (Fuso, Seminara, 

Cavallaro, D’Anselmi, & Scarpa, 2005). In a study of high dose B vitamin supplements 

given to healthy adult participants over 4-weeks, increased task-related functional brain 

activity (Barbey, 2016). However, a similar high dose combination of vitamins B6 and 

B12 was ineffective at slowing cognitive decline in individuals with mild to moderate 

AD, suggesting that vitamin B may be more effective as a preventive measure for AD 

than as an acute intervention for AD related cognitive decline (Aisen et al., 2008). Other 

trials of folic acid supplementation in humans have shown that its long-term consumption 

is associated with decreased plasma levels of Aβ and increased grey matter volume in the 

brain (Erickson et al., 2008; Flicker et al., 2008). These studies, along with data showing 
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the neuroprotective effects of folic acid on the developing nervous system and the anti-

oxidant properties of dietary tocopherols, suggest that consuming phytovitamins may 

offer neuroprotection from oxidative stress that contributes to increased Aβ deposition 

and AD progression. 

 

Psychoactive Alkaloids 

 

Caffeine 

Although tea and coffee contain high levels of beneficial polyphenol compounds, 

the psychoactive alkaloid caffeine explains their global popularity. Caffeine functions as 

an insecticide in plants and as a psychostimulant in animals. Because its stimulant effects 

(resulting from its competitive inhibition of adenosine receptors in the brain) are not 

associated with the euphoria and addictive properties characterized by other 

psychostimulants (e.g., cocaine and amphetamines), caffeine has been used centuries 

throughout the globe as a general cognitive enhancer. Recent studies with animal models 

of AD have shown that caffeine consumption is associated with protection against 

oxidative stress, improved mitochondrial functioning and BBB permeability, increased 

expression of brain derived neurotrophic factor, and reduced Aβ deposition and 

associated cognitive deficits (C. Cao et al., 2009; Xuesong Chen et al., 2008; Dragicevic 

et al., 2012; Laurent et al., 2014; Prasanthi et al., 2010). One study compared pure 

caffeine to “crude” caffeine, which is derived from coffee during the decaffeination 

process and likely contains other compounds (e.g., phenolic acids). Both supplements had 

beneficial effects in a transgenic mouse model of AD, including neuroprotection from 
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Aβ-induced neuronal death via suppressed caspase-3 activity. However, crude caffeine 

was more effective in reducing learning and memory deficits, and only crude caffeine 

reduced hippocampal Aβ deposition, suggesting that “phyto”-caffeine may offer 

protection from AD-related processes above and beyond that produced by pure caffeine 

(Chu et al., 2012). Interestingly, “caffeinol” (a combination of caffeine and ethanol) has 

been shown to demonstrate potent synergistic neuroprotection in rodent models of stroke 

(Bednarski, Gasińska, Straszewski, Godek, & Tutka, 2015; Martin-Schild et al., 2009; X. 

Zhao et al., 2010). Caffeine’s mild stimulant effects may improve cognition, and it 

appears to offer multiple synergistic pathways of neuroprotection from AD pathology, 

including inhibition of Aβ aggregation and protection from neurologic insult. 

 

Nicotine 

Nicotine is another alkaloid that protects the tobacco plant from insect predators 

and produces psychostimulant effects in animals, primarily due to its agonist action at 

nicotinic acetylcholine receptors. Like caffeine, nicotine has a long history of human use 

at least partially due to its stimulant and cognitive enhancement properties. Although 

some previous studies have demonstrated in both humans and animals that nicotine may 

have potential neuroprotective effects on AD pathology, further research has 

demonstrated that smokers are at a significantly higher risk of developing AD via 

multiple pathways (N. T. Aggarwal et al., 2006; Durazzo, Mattsson, & Weiner, 2014; 

Huang, Dong, Zhang, Wu, & Liu, 2009). Chronic nicotine administration in transgenic 

mouse models of AD has been shown to increase levels of brain-derived neurotrophic 

factor and prevent long-term memory impairment induced by Aβ deposition (Alkadhi, 
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Alzoubi, Srivareerat, & Tran, 2011; Srivareerat, Tran, Salim, Aleisa, & Alkadhi, 2011). 

Possible mechanisms include activity at the nicotinic acetylcholine receptors, which 

results in decreased oxidative damage, Aβ deposition, and apoptosis. In addition to the 

potential cognitive enhancement, antioxidant, and anti-Aβ actions attributed to nicotine, 

its psychoactive metabolite, nornicotine, has been shown to inhibit Aβ aggregation by 

forming permanent covalent bonds with Aβ peptides (Kumar et al., 2011). These finding 

suggest that pharmaceutical treatment with nicotine may provide positive benefits in the 

treatment and/or prevention of AD.  
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CHAPTER FOUR 

SUMMARY 

 
The development of AD-related neuropathology and its associated behavioral 

deficits is related to the gradual accumulation of Aβ plaques and NFTs in the cortex over 

the lifespan. This causes increased oxidative stress and inflammation in the brain, leading 

to further Aβ deposition, neuronal degradation, and other downstream effects. A variety 

of acute or low-grade chronic neurological insults can accelerate this process, and current 

pharmacological treatment options appear to be only minimally beneficial. 

In the absence of effective pharmaceutical therapies for AD, focusing on lifestyle 

factors associated with reducing risk of developing AD appears to be the most effective 

preventive measure. The difficulty of demonstrating consistent beneficial effects of 

phytochemicals in humans is not surprising, given the similar failures of pharmacological 

interventions. Nevertheless, several lines of research demonstrate that long-term 

consumption of various phytochemicals may attenuate multiple neuropathological 

processes associated with the development of AD. The results of experimental data from 

animal studies and clinical trials, along with a growing body of epidemiological studies, 

lend credibility to the idea that bioactive phytochemicals can have beneficial effects via 

multiple mechanisms related to general brain aging, including regulation of the 

intestinal/gut microbiome and BBB permeability, modulation of neurotransmitter 

degradation and binding, anti-inflammatory and antioxidant effects, reduced 

susceptibility to excitotoxicity and apoptosis, stimulation of neurogenesis and long-term 

potentiation, and maintenance of proper mitochondrial function and other cellular 

processes related to learning and memory (Akaishi et al., 2008; Maher, 2009). 
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Additionally, bioactive phytochemicals have demonstrated beneficial effects on multiple 

AD-specific processes, including inhibition of Aβ production by modulating enzymatic 

processes and reducing Aβ deposition in the brain by decreasing aggregation and 

increasing clearance. 

Given that AD is progressive, insidious, and ultimately fatal disease effecting a 

significant portion of older individuals, delaying the onset of AD by even a slight margin 

would significantly impact its incidence. Mounting epidemiological and experimental 

evidence suggests that a lifetime of consuming an abundance of neuroprotective 

phytochemicals may provide significant protection from environmental and age-related 

insults that accelerate the progression of AD neuropathology (Bayram et al., 2012; Steele 

et al., 2007; Subash et al., 2015). Furthermore, diets containing a wide variety of 

bioactive phytochemicals from multiple plant sources may provide synergistic benefits 

over supplementing with isolated compounds (Berti et al., 2015; Uysal et al., 2013). 

Finally, chronic adherence to diets rich in diverse sources of bioactive dietary 

polyphenols may protect against neurodegenerative disorders such as AD, but may also 

confer additional health and age-related benefits.   



38 

REFERENCES 

A. Armstrong, R. (2014). A critical analysis of the ‘amyloid cascade hypothesis.’ Folia 
Neuropathologica, 3(3), 211–225. https://doi.org/10.5114/fn.2014.45562 

Abdul-Muneer, P. M., Chandra, N., & Haorah, J. (2015). Interactions of Oxidative Stress 
 and Neurovascular Inflammation in the Pathogenesis of Traumatic Brain Injury. 
 Molecular Neurobiology. https://doi.org/10.1007/s12035-014-8752-3 

Adams, L. S., Seeram, N. P., Aggarwal, B. B., Takada, Y., Sand, D., & Heber, D. (2006). 
 Pomegranate juice, total pomegranate ellagitannins, and punicalagin suppress 
 inflammatory cell signaling in colon cancer cells. Journal of Agricultural and 
 Food Chemistry, 54(3), 980–985. https://doi.org/10.1021/jf052005r 

Aggarwal, B. B., & Shishodia, S. (2004). Suppression of the nuclear factor-kappaB 
 activation pathway by spice-derived phytochemicals: Reasoning for seasoning. 
 Annals of the New York Academy of Sciences, 1030, 434–441. 
 https://doi.org/10.1196/annals.1329.054 

Aggarwal, B. B., & Shishodia, S. (2006). Molecular targets of dietary agents for 
 prevention and therapy of cancer. Biochemical Pharmacology, 71(10), 1397–
 1421. https://doi.org/10.1016/j.bcp.2006.02.009 

Aggarwal, N. T., Bienias, J. L., Bennett, D. A., Wilson, R. S., Morris, M. C., Schneider, 
 J. A., … Evans, D. A. (2006). The relation of cigarette smoking to incident 
 Alzheimer’s disease in a biracial urban community population. 
 Neuroepidemiology, 26(3), 140–146. https://doi.org/10.1159/000091654 

Ahmed, M. A. E., El Morsy, E. M., & Ahmed, A. A. E. (2014). Pomegranate extract 
 protects against cerebral ischemia/reperfusion injury and preserves brain DNA 
 integrity in rats. Life Sciences, 110(2), 61–69. 
 https://doi.org/10.1016/j.lfs.2014.06.023 

Aisen, P. S., Schneider, L. S., Sano, M., Diaz-Arrastia, R., van Dyck, C. H., Weiner, M. 
 F., … Alzheimer Disease Cooperative Study,  for the. (2008). High-Dose B 
 Vitamin Supplementation and Cognitive Decline in Alzheimer Disease: A 
 Randomized Controlled Trial. JAMA, 300(15), 1774–1783. 
 https://doi.org/10.1001/jama.300.15.1774 

Akaishi, T., Morimoto, T., Shibao, M., Watanabe, S., Sakai-Kato, K., Utsunomiya-Tate, 
 N., & Abe, K. (2008). Structural requirements for the flavonoid fisetin in 
 inhibiting fibril formation of amyloid β protein. Neuroscience Letters, 444(3), 
 280–285. https://doi.org/10.1016/j.neulet.2008.08.052 

Al-Kuraishy, H. M., & Al-Gareeb, A. I. (2016). Potential effects of pomegranate on lipid 
 peroxidation and pro-inflammatory changes in daunorubicin-induced 



39 

 cardiotoxicity in rats. International Journal of Preventive Medicine, 2016(June). 
 https://doi.org/10.4103/2008-7802.184314 

Alkadhi, K. A., Alzoubi, K. H., Srivareerat, M., & Tran, T. T. (2011). Chronic 
 psychosocial stress exacerbates impairment of synaptic plasticity in β-amyloid rat 
 model of Alzheimer’s disease: prevention by nicotine. Current Alzheimer 
 Research, 8(7), 718–731. https://doi.org/10.2174/156720511797633188 

Alonso, R., Pisa, D., Marina, A. I., Morato, E., Rábano, A., & Carrasco, L. (2014). 
 Fungal infection in patients with Alzheimer’s disease. Journal of Alzheimer’s 
 Disease, 41(1), 301–311. https://doi.org/10.3233/JAD-132681 

Alzheimer’s Association. (2014). 2014 Alzheimer’s Disease Facts and Figures. 
 Alzheimer’s & Dementia, 10(2), 1–80. https://doi.org/10.1016/j.jalz.2014.02.001 

Ambigaipalan, P., De Camargo, A. C., & Shahidi, F. (2016). Phenolic Compounds of 
 Pomegranate Byproducts (Outer Skin, Mesocarp, Divider Membrane) and Their 
 Antioxidant Activities. Journal of Agricultural and Food Chemistry, 64(34), 
 6584–6604. https://doi.org/10.1021/acs.jafc.6b02950 

Amieva, H., Meillon, C., Helmer, C., Barberger-Gateau, P., & Dartigues, J. F. (2013). 
 Ginkgo Biloba Extract and Long-Term Cognitive Decline: A 20-Year Follow-Up 
 Population-Based Study. PLoS ONE, 8(1), e52755. 
 https://doi.org/10.1371/journal.pone.0052755 

Arntzen, K. A., Schirmer, H., Wilsgaard, T., & Mathiesen, E. B. (2010). Moderate wine 
 consumption is associated with better cognitive test results: a 7-year follow up of 
 5033 subjects in the Tromsø Study. Acta Neurologica Scandinavica, 122(s190), 
 23–29. Retrieved from http://dx.doi.org/10.1111/j.1600-0404.2010.01371.x 

Asdaq, S. M. B. (2015). Antioxidant and hypolipidemic potential of aged garlic extract 
 and its constituent, s-allyl cysteine, in rats. Evidence-Based Complementary and 
 Alternative Medicine, 2015, 328545. https://doi.org/10.1155/2015/328545 

Atamna, H., Frey, W. H., & Ko, N. (2009). Human and rodent amyloid-Beta peptides 
 differentially bind heme: Relevance to the human susceptibility to Alzheimer’s 
 disease. Archives of Biochemistry and Biophysics, 487(1), 59–65. 
 https://doi.org/10.1016/j.abb.2009.05.003 

Ates, O., Cayli, S., Altinoz, E., Gurses, I., Yucel, N., Sener, M., … Yologlu, S. (2007). 
 Neuroprotection by resveratrol against traumatic brain injury in rats. Molecular 
 and Cellular Biochemistry, 294(1–2), 137–144.  

Aviram, M., Dornfeld, L., Rosenblat, M., Volkova, N., Kaplan, M., Hayek, T., … 
 Fuhrman, B. (2000). Pomegranate juice consumption reduces oxidative stress and 
 low density lipoprotein atherogenic modifications: studies in the atherosclerotic 
 apolipoprotein E deficient mice and in humans. The American Journal of Clinical 
 Nutrition, 151, 111. https://doi.org/10.1016/S0021-9150(00)80502-X 



40 

Aviram, Michael, Rosenblat, M., Gaitini, D., Nitecki, S., Hoffman, A., Dornfeld, L., … 
 Hayek, T. (2004). Pomegranate juice consumption for 3 years by patients with 
 carotid artery stenosis reduces common carotid intima-media thickness, blood 
 pressure and LDL oxidation. Clinical Nutrition, 23(3), 423–433. 
 https://doi.org/10.1016/j.clnu.2003.10.002 

Bachmeier, C., Beaulieu-Abdelahad, D., Mullan, M., & Paris, D. (2013). Role of the 
 cannabinoid system in the transit of beta-amyloid across the blood-brain barrier. 
 Molecular and Cellular Neuroscience, 56, 255–262. 
 https://doi.org/10.1016/j.mcn.2013.06.004 

Barage, S. H., & Sonawane, K. D. (2015). Amyloid cascade hypothesis: Pathogenesis and 
 therapeutic strategies in Alzheimer’s disease. Neuropeptides, 52, 1–18. 
 https://doi.org/10.1016/j.npep.2015.06.008 

Barbey, A. K. (2016). Functional Brain Activity Changes after 4 Weeks Supplementation 
 with a Multi-Vitamin / Mineral Combination : A Randomized , Double-Blind , 
 Placebo-Controlled Trial Exploring Functional Magnetic Resonance Imaging and 
 Steady-State Visual Evoked Potentials d. Frontiers in Aging Neuroscience, 
 8(December), 1–20. https://doi.org/10.3389/fnagi.2016.00288 

Barnard, N. D., Bush, A. I., Ceccarelli, A., Cooper, J., de Jager, C. A., Erickson, K. I., … 
 Squitti, R. (2014). Dietary and lifestyle guidelines for the prevention of 
 Alzheimer’s disease. Neurobiology of Aging, 35(SUPPL.2), 1–5. 
 https://doi.org/10.1016/j.neurobiolaging.2014.03.033 

Bayer, T. A., & Wirths, O. (2010). Intracellular accumulation of amyloid-Beta - a 
 predictor for synaptic dysfunction and neuron loss in Alzheimer’s disease. 
 Frontiers in Aging Neuroscience, 2(March), 8. 
 https://doi.org/10.3389/fnagi.2010.00008 

Bayram, B., Ozcelik, B., Grimm, S., Roeder, T., Schrader, C., Ernst, I. M. A., … 
 Rimbach, G. (2012). A diet rich in olive oil phenolics reduces oxidative stress in 
 the heart of SAMP8 mice by induction of Nrf2-dependent gene expression. 
 Rejuvenation Research, 15(1), 71–81. https://doi.org/10.1089/rej.2011.1245 

Bednarski, J., Gasińska, K., Straszewski, T., Godek, M., & Tutka, P. (2015). Caffeinol: a 
  neuroprotective action in ischemic brain damage. Przeglad Lekarski, 72(11), 
 677–681. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/27012130 

Beer, C., Blacker, D., Hankey, G. J., & Puddey, I. B. (2011). Association of clinical and 
 aetiologic subtype of acute ischaemic stroke with inflammation, oxidative stress 
 and vascular function: A cross-sectional observational study. Medical Science 
 Monitor : International Medical Journal of Experimental and Clinical Research, 
 17(9), CR467-R473. https://doi.org/881931 [pii] 



41 

Belviranlı, M., & Okudan, N. (2014). The effects of Ginkgo biloba extract on cognitive 
 functions in aged female rats: The role of oxidative stress and brain-derived 
 neurotrophic factor. Behavioural Brain Research, 278C, 453–461. 
 https://doi.org/10.1016/j.bbr.2014.10.032 

Benito, C., Núñez, E., Tolón, R. M., Carrier, E. J., Rábano, A., Hillard, C. J., & Romero, 
 J. (2003). Cannabinoid CB2 receptors and fatty acid amide hydrolase are 
 selectively overexpressed in neuritic plaque-associated glia in Alzheimer’s 
 disease brains. The Journal of Neuroscience, 23(35), 11136–11141. 
 https://doi.org/23/35/11136 [pii] 

BenSaad, L. A., Kim, K. H., Quah, C. C., Kim, W. R., & Shahimi, M. (2017). Anti-
 inflammatory potential of ellagic acid, gallic acid and punicalagin A&B isolated 
 from Punica granatum. BMC Complementary and Alternative Medicine, 17(1), 
 47. https://doi.org/10.1186/s12906-017-1555-0 

Bernardo, A., Harrison, F. E., McCord, M., Zhao, J., Bruchey, A., Davies, S. S., … 
 McDonald, M. P. (2009). Elimination of GD3 synthase improves memory and 
 reduces amyloid-β plaque load in transgenic mice. Neurobiology of Aging, 
 30(11), 1777–1791. https://doi.org/10.1016/j.neurobiolaging.2007.12.022 

Berti, V., Murray, J., Davies, M., Spector, N., Tsui, W. H., Li, Y., … Mosconi, L. (2015). 
 Nutrient patterns and brain biomarkers of Alzheimer’s disease in cognitively 
 normal individuals. J Nutr Health Aging, 19(4), 413–423. 
 https://doi.org/10.1007/s12603-014-0534-0 

Bilkei-Gorzo, A., Albayram, O., Draffehn, A., Michel, K., Piyanova, A., Oppenheimer, 
 H., … Zimmer, A. (2017). A chronic low dose of Δ9-tetrahydrocannabinol (THC) 
 restores cognitive function in old mice. Nature Medicine, 23(6), 782–787. 
 https://doi.org/10.1038/nm.4311 

Bird, T. D. (2008). Genetic aspects of Alzheimer disease. Genetics in Medicine, 10(4), 
 231–239. https://doi.org/10.1097/GIM.0b013e31816b64dc 

Biron, K. E., Dickstein, D. L., Gopaul, R., Jefferies, W. A., & Hendey, B. (2011). 
 Amyloid Triggers Extensive Cerebral Angiogenesis Causing Blood Brain Barrier 
 Permeability and Hypervascularity in Alzheimer’s Disease. PLoS ONE, 6(8), 
 e23789. https://doi.org/10.1371/journal.pone.0023789 

Bishayee, A., Bhatia, D., Thoppil, R. J., Darvesh, A. S., Nevo, E., & Lansky, E. P. 
 (2011). Pomegranate-mediated chemoprevention of experimental 
 hepatocarcinogenesis involves Nrf2-regulated antioxidant mechanisms. 
 Carcinogenesis, 32(6), 888–896. https://doi.org/10.1093/carcin/bgr045 

Bishayee, A., Thoppil, R. J., Darvesh, A. S., Ohanyan, V., Meszaros, J. G., & Bhatia, D. 
 (2013). Pomegranate phytoconstituents blunt the inflammatory cascade in a 
 chemically induced rodent model of hepatocellular carcinogenesis. Journal of 



42 

 Nutritional Biochemistry, 24(1), 178–187. 
 https://doi.org/10.1016/j.jnutbio.2012.04.009 

Bisogno, T., & Di Marzo, V. (2010). Cannabinoid receptors and endocannabinoids: role 
 in neuroinflammatory and neurodegenerative disorders. CNS & Neurological 
 Disorders Drug Targets, 9(5), 564–573. 

Block, M. L., & Hong, J. S. (2005). Microglia and inflammation-mediated 
 neurodegeneration: Multiple triggers with a common mechanism. Progress in 
 Neurobiology, 76(2), 77–98. https://doi.org/10.1016/j.pneurobio.2005.06.004 

Bookheimer, S. Y., Renner, B. A., Ekstrom, A., Li, Z., Henning, S. M., Brown, J. A., … 
 Small, G. W. (2013). Pomegranate juice augments memory and fMRI activity in 
 middle-aged and older adults with mild memory complaints. Evidence-Based 
 Complementary and Alternative Medicine, 2013. 
 https://doi.org/10.1155/2013/946298 

Borgesius, N. Z., de Waard, M. C., van der Pluijm, I., Omrani, A., Zondag, G. C. M., van 
 der Horst, G. T. J., … Elgersma, Y. (2011). Accelerated age-related cognitive 
 decline and neurodegeneration, caused by deficient DNA repair. The Journal of 
 Neuroscience : The Official Journal of the Society for Neuroscience, 31(35), 
 12543–12553. https://doi.org/10.1523/JNEUROSCI.1589-11.2011 

Braga, L. C., Shupp, J. W., Cummings, C., Jett, M., Takahashi, J. A., Carmo, L. S., … 
 Nascimento, A. M. A. (2005). Pomegranate extract inhibits Staphylococcus 
 aureus growth and subsequent enterotoxin production. Journal of 
 Ethnopharmacology, 96(1–2), 335–339. https://doi.org/10.1016/j.jep.2004.08.034 

Braskie, M. N., Jahanshad, N., Stein, J. L., Barysheva, M., McMahon, K. L., de 
 Zubicaray, G. I., … Thompson, P. M. (2011). Common Alzheimer’s Disease Risk 
 Variant within the CLU Gene Affects White Matter Microstructure in Young 
 Adults. Journal of Neuroscience, 31(18), 6764–6770. 
 https://doi.org/10.1523/Jneurosci.5794-10.2011 

Bredesen, D. E. (2009). Neurodegeneration in Alzheimer. Molecular Neurodegeneration, 
 10(1), 1–10. https://doi.org/10.1186/1750-1326-4-27 

Brezová, V., Šlebodová, A., & Staško, A. (2009). Coffee as a source of antioxidants: An 
 EPR study. Food Chemistry, 114(3), 859–868. 
 https://doi.org/10.1016/j.foodchem.2008.10.025 

Burckhardt, I. C., Gozal, D., Dayyat, E., Cheng, Y., Li, R. C., Goldbart, A. D., & Row, B. 
 W. (2008). Green tea catechin polyphenols attenuate behavioral and oxidative 
 responses to intermittent hypoxia. American Journal of Respiratory and Critical 
 Care Medicine, 177(10), 1135–1141. https://doi.org/10.1164/rccm.200701-110OC 

Burckhardt, M., Herke, M., Wustmann, T., Watzke, S., Langer, G., & Fink, A. (2016, 
 April 11). Omega-3 fatty acids for the treatment of dementia. (M. Burckhardt, 



43 

 Ed.), Cochrane Database of Systematic Reviews. Chichester, UK: John Wiley & 
 Sons, Ltd. https://doi.org/10.1002/14651858.CD009002.pub3 

Burkholder-Cooley, N., Rajaram, S., Haddad, E., Fraser, G. E., & Jaceldo-Siegl, K. 
 (2016). Comparison of polyphenol intakes according to distinct dietary patterns 
 and food sources in the Adventist Health Study-2 cohort. British Journal of 
 Nutrition, 1–8. https://doi.org/10.1017/S0007114516001331 

Buttini, M., Masliah, E., Barbour, R., Grajeda, H., Motter, R., Johnson-Wood, K., … 
 Games, D. (2005). β-Amyloid Immunotherapy Prevents Synaptic Degeneration in 
 a Mouse Model of Alzheimer’s Disease. The Journal of Neuroscience, 25(40), 
 9096 LP – 9101. https://doi.org/10.1523/JNEUROSCI.1697-05.2005 

Cacace, R., Sleegers, K., & Van Broeckhoven, C. (2016). Molecular genetics of early-
 onset Alzheimer disease revisited. Alzheimer’s and Dementia, 12(6), 733–748. 
 https://doi.org/10.1016/j.jalz.2016.01.012 

Calon, F., Lim, G. P., Yang, F., Morihara, T., Teter, B., Ubeda, O., … Cole, G. M. 
 (2004). Docosahexaenoic acid protects from dendritic pathology in an 
 Alzheimer’s disease mouse model. Neuron, 43(5), 633–645. 
 https://doi.org/10.1016/j.neuron.2004.08.013 

Candore, G., Bulati, M., Caruso, C., Castiglia, L., Colonna-Romano, G., Di Bona, D., … 
 Vasto, S. (2010). Inflammation, cytokines, immune response, apolipoprotein E, 
 cholesterol, and oxidative stress in Alzheimer disease: therapeutic implications. 
 Rejuvenation Res, 13(2–3), 301–313. https://doi.org/10.1089/rej.2009.0993 

Cano-Lamadrid, M., Marhuenda-Egea, F. C., Hernandez, F., Rosas-Burgos, E. C., 
 Burgos-Hernandez, A., & Carbonell-Barrachina, A. A. (2016). Biological 
 Activity of Conventional and Organic Pomegranate Juices: Antioxidant and 
 Antimutagenic Potential. Plant Foods for Human Nutrition, 71(4), 375–380. 
 https://doi.org/10.1007/s11130-016-0569-y 

Cao, C., Cirrito, J. R., Lin, X., Wang, L., Verges, D. K., Dickson, A., … Potter, H. 
 (2009). Caffeine suppresses amyloid-β levels in plasma and brain of Alzheimer’s 
 disease transgenic mice. Journal of Alzheimer’s Disease, 17(3), 681–697. 
 https://doi.org/10.3233/JAD-2009-1071 

Cao, C., Li, Y., Liu, H., Bai, G., Mayl, J., Lin, X., … Cai, J. (2014). The potential 
 therapeutic effects of THC on Alzheimer’s disease. Journal of Alzheimer’s 
 Disease : JAD, 42(3), 973–984. https://doi.org/10.3233/JAD-140093 

Cao, K., Xu, J., Pu, W., Dong, Z., Sun, L., Zang, W., … Liu, J. (2015). Punicalagin, an 
 active component in pomegranate, ameliorates cardiac mitochondrial impairment 
 in obese rats via AMPK activation. Sci Rep, 5(July), 14014. 
 https://doi.org/10.1038/srep14014 



44 

Capiralla, H., Vingtdeux, V., Zhao, H., Sankowski, R., Al-Abed, Y., Davies, P., & 
 Marambaud, P. (2012). Resveratrol mitigates lipopolysaccharide- and Aβ-
 mediated microglial inflammation by inhibiting the TLR4/NF-κB/STAT signaling 
 cascade. Journal of Neurochemistry, 120(3), 461–472. 
 https://doi.org/10.1111/j.1471-4159.2011.07594.x 

Castellano, J. M., Kim, J., Stewart, F. R., Jiang, H., DeMattos, R. B., Patterson, B. W., … 
 Holtzman, D. M. (2011). Human apoE isoforms differentially regulate brain 
 amyloid-β peptide clearance. Science Translational Medicine, 3(89), 89ra57. 
 https://doi.org/10.1126/scitranslmed.3002156 

Chamorro, Á., Dirnagl, U., Urra, X., & Planas, A. M. (2016). Neuroprotection in acute 
 stroke: Targeting excitotoxicity, oxidative and nitrosative stress, and 
 inflammation. The Lancet Neurology. 

Chauhan, N. B. (2006). Effect of aged garlic extract on APP processing and tau 
 phosphorylation in Alzheimer’s transgenic model Tg2576. Journal of 
 Ethnopharmacology, 108(3), 385–394. https://doi.org/10.1016/j.jep.2006.05.030 

Chavez-Valdez, R., Martin, L. J., & Northington, F. J. (2012). Programmed necrosis: A 
 prominent mechanism of cell death following neonatal brain injury. Neurology 
 Research International, 2012. https://doi.org/10.1155/2012/257563 

Chen, H., & Sang, S. (2014). Biotransformation of tea polyphenols by gut microbiota. 
 Journal of Functional Foods, 7(1), 26–42. 
 https://doi.org/10.1016/j.jff.2014.01.013 

Chen, L. G., Liu, Y. C., Hsieh, C. W., Liao, B. C., & Wung, B. S. (2008). Tannin 1-
 alpha-O-galloylpunicalagin induces the calcium-dependent activation of 
 endothelial nitric-oxide synthase via the phosphatidylinositol 3-kinase/Akt 
 pathway in endothelial cells. Molecular Nutrition and Food Research, 52(10), 
 1162–1171. https://doi.org/10.1002/mnfr.200700335 

Chen, R., Zhang, J., Wu, Y., Wang, D., Feng, G., Tang, Y.-P., … Chen, C. (2012). 
 Monoacylglycerol Lipase Is a Therapeutic Target for Alzheimer’s Disease. Cell 
 Reports, 2(5), 1329–1339. https://doi.org/10.1016/j.celrep.2012.09.030 

Chen, X., Zhang, J., & Chen, C. (2011). Endocannabinoid 2-arachidonoylglycerol 
 protects neurons against β-amyloid insults. Neuroscience, 178, 159–168. 
 https://doi.org/10.1016/j.neuroscience.2011.01.024 

Chen, Xuesong, Gawryluk, J. W., Wagener, J. F., Ghribi, O., Geiger, J. D., Holash, J., … 
 Stopa, E. (2008). Caffeine blocks disruption of blood brain barrier in a rabbit 
 model of Alzheimer’s disease. Journal of Neuroinflammation, 5(1), 12. 
 https://doi.org/10.1186/1742-2094-5-12 

Cheng, D., Kong, H., Pang, W., Yang, H., Lu, H., Huang, C., & Jiang, Y. (2016). B 
 vitamin supplementation improves cognitive function in the middle aged and 



45 

 elderly with hyperhomocysteinemia. Nutritional Neuroscience, 19(10), 461–466. 
 https://doi.org/10.1179/1476830514Y.0000000136 

Cherry, J. D., Olschowka, J. A., & O’Banion, M. (2014). Neuroinflammation and M2 
 microglia: the good, the bad, and the inflamed. Journal of Neuroinflammation, 
 11(1), 98. https://doi.org/10.1186/1742-2094-11-98 

Chiou, Y. S., Wu, J. C., Huang, Q., Shahidi, F., Wang, Y. J., Ho, C. T., & Pan, M. H. 
 (2014). Metabolic and colonic microbiota transformation may enhance the 
 bioactivities of dietary polyphenols. Journal of Functional Foods, 7(1), 3–25. 
 https://doi.org/10.1016/j.jff.2013.08.006 

Chu, Y.-F., Chang, W.-H., Black, R. M., Liu, J.-R., Sompol, P., Chen, Y., … Cheng, I. H. 
 (2012). Crude caffeine reduces memory impairment and amyloid β1–42 levels in 
 an Alzheimer’s mouse model. Food Chemistry, 135(3), 2095–2102. 
 https://doi.org/10.1016/j.foodchem.2012.04.148 

Cohen, R. M., Rezai-Zadeh, K., Weitz, T. M., Rentsendorj, A., Gate, D., Spivak, I., … 
 Town, T. (2013). A transgenic Alzheimer rat with plaques, tau pathology, 
 behavioral impairment, oligomeric aβ, and frank neuronal loss. The Journal of 
 Neuroscience : The Official Journal of the Society for Neuroscience, 33(15), 
 6245–6256. https://doi.org/10.1523/JNEUROSCI.3672-12.2013 

Colin-Gonzalez, A. L., Ali, S. F., Tunez, I., & Santamaria, A. (2015). On the antioxidant, 
 neuroprotective and anti-inflammatory properties of S-allyl cysteine: An update. 
 Neurochemistry International, 89, 83–91. 
 https://doi.org/10.1016/j.neuint.2015.06.011 

Conte, V., Uryu, K., Fujimoto, S., Yao, Y., Rokach, J., Longhi, L., … Praticò, D. (2004). 
 Vitamin E reduces amyloidosis and improves cognitive function in Tg2576 mice 
 following repetitive concussive brain injury. Journal of Neurochemistry, 90(3), 
 758–764. https://doi.org/10.1111/j.1471-4159.2004.02560.x 

Court, J. A., Johnson, M., Religa, D., Keverne, J., Kalaria, R., Jaros, E., … Perry, E. K. 
 (2005). Attenuation of Aβ deposition in the entorhinal cortex of normal elderly 
 individuals associated with tobacco smoking. Neuropathology and Applied 
 Neurobiology, 31(5), 522–535.  

Covas, M. I., Gambert, P., Fitó, M., & de la Torre, R. (2010). Wine and oxidative stress: 
 Up-to-date evidence of the effects of moderate wine consumption on oxidative 
 damage in humans. Atherosclerosis. 
 https://doi.org/10.1016/j.atherosclerosis.2009.06.031 

Dai, Q., Borenstein, A. R., Wu, Y., Jackson, J. C., & Larson, E. B. (2006). Fruit and 
 Vegetable Juices and Alzheimer’s Disease: The Kame Project. The American 
 Journal of Medicine, 119(9), 751–759. 
 https://doi.org/10.1016/j.amjmed.2006.03.045 



46 

de Nigris, F., Williams-Ignarro, S., Lerman, L. O., Crimi, E., Botti, C., Mansueto, G., … 
 Napoli, C. (2005). Beneficial effects of pomegranate juice on oxidation-sensitive 
 genes and endothelial nitric oxide synthase activity at sites of perturbed shear 
 stress. Proceedings of the National Academy of Sciences of the United States of 
 America, 102(13), 4896–4901. https://doi.org/10.1073/pnas.0500998102 

Demattos, R. B., Lu, J., Tang, Y., Racke, M. M., Delong, C. A., Tzaferis, J. A., … 
 Hutton, M. L. (2012). A plaque-specific antibody clears existing beta-amyloid 
 plaques in Alzheimer’s disease mice. Neuron, 76(5), 908–920. 
 https://doi.org/10.1016/j.neuron.2012.10.029 

Devi, L., & Anandatheerthavarada, H. K. (2010). Mitochondrial trafficking of APP and 
 alpha synuclein: Relevance to mitochondrial dysfunction in Alzheimer’s and 
 Parkinson’s diseases. Biochimica et Biophysica Acta (BBA) - Molecular Basis of 
 Disease, 1802(1), 11–19. https://doi.org/10.1016/j.bbadis.2009.07.007 

Dong, J., Atwood, C. S., Anderson, V. E., Siedlak, S. L., Smith, M. A., Perry, G., & 
 Carey, P. R. (2003). Metal binding and oxidation of amyloid-β within isolated 
 senile plaque cores: Raman microscopic evidence. Biochemistry, 42(10), 2768–
 2773. https://doi.org/10.1021/bi0272151 

Dragicevic, N., Delic, V., Cao, C., Copes, N., Lin, X., Mamcarz, M., … Bradshaw, P. C. 
 (2012). Caffeine increases mitochondrial function and blocks melatonin signaling 
 to mitochondria in Alzheimer’s mice and cells. Neuropharmacology, 63(8), 1368–
 1379. https://doi.org/10.1016/j.neuropharm.2012.08.018 

Dragicevic, N., Smith, A., Lin, X., Yuan, F., Copes, N., Delic, V., … Bradshaw, P. C. 
 (2011). Green tea epigallocatechin-3-gallate (EGCG) and other flavonoids reduce 
 Alzheimer’s amyloid-induced mitochondrial dysfunction. Journal of Alzheimer’s 
 Disease, 26(3), 507–521. https://doi.org/10.3233/JAD-2011-101629 

Duffy, K. B., Spangler, E. L., Devan, B. D., Guo, Z., Bowker, J. L., Janas, A. M., … 
 Ingram, D. K. (2008). A blueberry-enriched diet provides cellular protection 
 against oxidative stress and reduces a kainate-induced learning impairment in rats. 
 Neurobiology of Aging, 29(11), 1680–1689. 
 https://doi.org/10.1016/j.neurobiolaging.2007.04.002 

Dulcich, M. S., & Hartman, R. E. (2013). Pomegranate supplementation improves 
 affective and motor behavior in mice after radiation exposure. Evidence-Based 
 Complementary and Alternative Medicine, 2013. 
 https://doi.org/10.1155/2013/940830 

Durazzo, T. C., Mattsson, N., & Weiner, M. W. (2014). Smoking and increased 
 Alzheimer’s disease risk: A review of potential mechanisms. Alzheimer’s & 
 Dementia, 10(3), S122–S145. https://doi.org/10.1016/j.jalz.2014.04.009 



47 

Dysken, M. W., Sano, M., Asthana, S., Vertrees, J. E., Pallaki, M., Llorente, M., … 
 Guarino, P. D. (2014). Effect of vitamin E and memantine on functional decline 
 in Alzheimer disease: the TEAM-AD VA cooperative randomized trial. Jama, 
 311(1), 33–44. https://doi.org/10.1001/jama.2013.282834 

Eckert, A. (2012). Mitochondrial effects of Ginkgo biloba extract. International 
 Psychogeriatrics, 24(S1), S18–S20. https://doi.org/10.1017/S1041610212000531 

Elfalleh, W., Tlili, N., Nasri, N., Yahia, Y., Hannachi, H., Chaira, N., … Ferchichi, A. 
 (2011). Antioxidant Capacities of Phenolic Compounds and Tocopherols from 
 Tunisian Pomegranate (Punica granatum) Fruits. Journal of Food Science, 76(5), 
 707–713. https://doi.org/10.1111/j.1750-3841.2011.02179.x 

Erickson, K. I., Suever, B. L., Prakash, R. S., Colcombe, S. J., McAuley, E., & Kramer, 
 A. F. (2008). Greater intake of vitamins B6 and B12 spares gray matter in healthy 
 elderly: A voxel-based morphometry study. Brain Research, 1199, 20–26. 
 https://doi.org/10.1016/j.brainres.2008.01.030 

Espín, J. C., Larrosa, M., García-Conesa, M. T., & Tomás-Barberán, F. (2013). 
 Biological Significance of Urolithins, the Gut Microbial Ellagic Acid-Derived 
 Metabolites: The Evidence So Far. Evidence-Based Complementary and 
 Alternative Medicine, 2013, 270418. https://doi.org/10.1155/2013/270418 

Esquivel, P., & Jiménez, V. M. (2012). Functional properties of coffee and coffee by-
 products. Food Research International, 46(2), 488–495. 
 https://doi.org/10.1016/j.foodres.2011.05.028 

Eubanks, L. M., Rogers, C. J., Beuscher, Koob, G. F., Olson, A. J., Dickerson, T. J., & 
 Janda, K. D. (2006). A Molecular Link between the Active Component of 
 Marijuana and Alzheimer’s Disease Pathology. Molecular Pharmaceutics, 3(6), 
 773–777. https://doi.org/10.1021/mp060066m 

Farina, N., Isaac, M. G. E. K. N., Clark, A. R., Rusted, J., & Tabet, N. (2012). Vitamin E 
 for Alzheimer’s dementia and mild cognitive impairment. The Cochrane Database 
 of Systematic Reviews, 11(11), CD002854. 
 https://doi.org/10.1002/14651858.CD002854.pub3 

Farr, S. A., Niehoff, M. L., Ceddia, M. A., Herrlinger, K. A., Lewis, B. J., Feng, S., … 
 Morley, J. E. (2016). Effect of botanical extracts containing carnosic acid or 
 rosmarinic acid on learning and memory in SAMP8 mice. Physiology & 
 Behavior, 165, 328–338. https://doi.org/10.1016/j.physbeh.2016.08.013 

Fawcett, J. R., Bordayo, E. Z., Jackson, K., Liu, H., Peterson, J., Svitak, A., & Frey II, W. 
 H. (2002). Inactivation of the human brain muscarinic acetylcholine receptor by 
 oxidative damage catalyzed by a low molecular weight endogenous inhibitor from 
 Alzheimer’s brain is prevented by pyrophosphate analogs, bioflavonoids and 
 other antioxidants. Brain Research, 950(1), 10–20.  



48 

Fernández-García, J. C., Cardona, F., & Tinahones, F. J. (2013). Inflammation, oxidative 
 stress and metabolic syndrome: dietary modulation. Current Vascular 
 Pharmacology, 11(6), 906–919. https://doi.org/10.2174/15701611113116660175 

Flicker, L., Martins, R. N., Thomas, J., Acres, J., Taddei, K., Vasikaran, S. D., … 
 Almeida, O. P. (2008). B-vitamins reduce plasma levels of beta amyloid. 
 Neurobiology of Aging (Vol. 29). 
 https://doi.org/10.1016/j.neurobiolaging.2006.10.007 

Frautschy, S. A., Hu, W., Kim, P., Miller, S. A., Chu, T., Harris-White, M. E., & Cole, G. 
 M. (2001). Phenolic anti-inflammatory antioxidant reversal of Aβ-induced 
 cognitive deficits and neuropathology. Neurobiology of Aging, 22(6), 993–1005. 
 https://doi.org/10.1016/S0197-4580(01)00300-1 

Freund Levi, Y., Vedin, I., Cederholm, T., Basun, H., Faxén Irving, G., Eriksdotter, M., 
 … Palmblad, J. (2014). Transfer of omega-3 fatty acids across the blood-brain 
 barrier after dietary supplementation with a docosahexaenoic acid-rich omega-3 
 fatty acid preparation in patients with Alzheimer’s disease: The OmegAD study. 
 Journal of Internal Medicine, 275(4), 428–436. 
 https://doi.org/10.1111/joim.12166 

Fuso, A., Seminara, L., Cavallaro, R. A., D’Anselmi, F., & Scarpa, S. (2005). S-
 adenosylmethionine/homocysteine cycle alterations modify DNA methylation 
 status with consequent deregulation of PS1 and BACE and beta-amyloid 
 production. Molecular and Cellular Neuroscience, 28(1), 195–204. 
 https://doi.org/10.1016/j.mcn.2004.09.007 

Gao, X., Zheng, C. Y., Yang, L., Tang, X. C., & Zhang, H. Y. (2009). Huperzine A 
 protects isolated rat brain mitochondria against β-amyloid peptide. Free Radical 
 Biology and Medicine, 46(11), 1454–1462. 
 https://doi.org/10.1016/j.freeradbiomed.2009.02.028 

Gasperotti, M., Passamonti, S., Tramer, F., Masuero, D., Guella, G., Mattivi, F., & 
 Vrhovsek, U. (2015). Fate of Microbial Metabolites of Dietary Polyphenols in 
 Rats: Is the Brain Their Target Destination? ACS Chemical Neuroscience, 6(8), 
 1341–1352. https://doi.org/10.1021/acschemneuro.5b00051 

Ghavipour, M., Sotoudeh, G., Tavakoli, E., Mowla, K., Hasanzadeh, J., & Mazloom, Z. 
 (2016). Pomegranate extract alleviates disease activity and some blood 
 biomarkers of inflammation and oxidative stress in Rheumatoid Arthritis patients. 
 European Journal of Clinical Nutrition, (February), 1–5. 
 https://doi.org/10.1038/ejcn.2016.151 

Giacalone, M., Di Sacco, F., Traupe, I., Pagnucci, N., Forfori, F., & Giunta, F. (2015). 
 Blueberry Polyphenols and Neuroprotection. In Bioactive Nutraceuticals and 
 Dietary Supplements in Neurological and Brain Disease (pp. 17–28). Elsevier. 
 https://doi.org/10.1016/B978-0-12-411462-3.00002-3 



49 

Giannakopoulos, P., Herrmann, F. R., Bussière, T., Bouras, C., Kövari, E., Perl, D. P., … 
 Hof, P. R. (2003). Tangle and neuron numbers, but not amyloid load, predict 
 cognitive status in Alzheimer’s disease. Neurology, 60(9), 1495–1500. 
 https://doi.org/10.1212/01.WNL.0000063311.58879.01 

Gilman, S., Koller, M., Black, R. S., Jenkins, L., Griffith, S. G., Fox, N. C., … Orgogozo, 
 J.-M. (2005). Clinical effects of Aβ immunization (AN1792) in patients with AD 
 in an interrupted trial. Neurology, 64(9), 1553 LP – 1562. 
 https://doi.org/10.1212/01.WNL.0000159740.16984.3C 

Gray, S. L., Anderson, M. L., Crane, P. K., Breitner, J. C. S., McCormick, W., Bowen, J. 
 D., … Larson, E. (2008). Antioxidant vitamin supplement use and risk of 
 dementia or Alzheimer’s disease in older adults. Journal of the American 
 Geriatrics Society, 56(2), 291–295.  

Guo, D.-J., Li, F., Yu, P. H.-F., & Chan, S.-W. (2013). Neuroprotective effects of luteolin 
 against apoptosis induced by 6-hydroxydopamine on rat pheochromocytoma 
 PC12 cells. Pharmaceutical Biology, 51(2), 190–196. 
 https://doi.org/10.3109/13880209.2012.716852 

Haghani, M., Shabani, M., Javan, M., Motamedi, F., & Janahmadi, M. (2012). CB1 
 cannabinoid receptor activation rescues amyloid β-induced alterations in 
 behaviour and intrinsic electrophysiological properties of rat hippocampal CA1 
 pyramidal neurones. Cellular Physiology and Biochemistry : International Journal 
 of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 29(3–4), 
 391–406. https://doi.org/10.1159/000338494 

Hartman, R E. (2009). Actions of Bioactive Phytochemicals in Cell Function and 
 Alzheimer’s Disease Pathology. Micronutrients and Brain Health, 1–18. 

Hartman, Richard E., Lee, J. M., Zipfel, G. J., & Wozniak, D. F. (2005). Characterizing 
 learning deficits and hippocampal neuron loss following transient global cerebral 
 ischemia in rats. Brain Research, 1043(1–2), 48–56. 
 https://doi.org/10.1016/j.brainres.2005.02.030 

Hartman, Richard E, Izumi, Y., Bales, K. R., Paul, S. M., Wozniak, D. F., & Holtzman, 
 D. M. (2005). Treatment with an Amyloid-β Antibody Ameliorates Plaque Load, 
 Learning Deficits, and Hippocampal Long-Term Potentiation in a Mouse Model 
 of Alzheimer’s Disease. The Journal of Neuroscience, 25(26), 6213 LP – 6220. 
 https://doi.org/10.1523/JNEUROSCI.0664-05.2005 

Hartman, Richard E, Shah, A., Fagan, A. M., Schwetye, K. E., Parsadanian, M., 
 Schulman, R. N., … Holtzman, D. M. (2006). Pomegranate juice decreases 
 amyloid load and improves behavior in a mouse model of Alzheimer’s disease. 
 Neurobiology of Disease, 24(3), 506–515. 
 https://doi.org/10.1016/j.nbd.2006.08.006 



50 

Harvey, B. S., Ohlsson, K. S., Mååg, J. L. V., Musgrave, I. F., & Smid, S. D. (2012). 
 Contrasting protective effects of cannabinoids against oxidative stress and 
 amyloid-β evoked neurotoxicity in vitro. NeuroToxicology, 33(1), 138–146. 
 https://doi.org/10.1016/j.neuro.2011.12.015 

Hashimoto, M., Tanabe, Y., Fujii, Y., Kikuta, T., Shibata, H., & Shido, O. (2005). 
 Chronic Administration of Docosahexaenoic Acid Ameliorates the Impairment of 
 Spatial Cognition Learning Ability in Amyloid β–Infused Rats. The Journal of 
 Nutrition, 135(3), 549–555. https://doi.org/10.1093/jn/135.3.549 

Head, E., Azizeh, B. Y., Lott, I. T., Tenner,  a J., Cotman, C. W., & Cribbs, D. H. (2001). 
 Complement association with neurons and beta-amyloid deposition in the brains 
 of aged individuals with Down Syndrome. Neurobiology of Disease, 8(2), 252–
 265. https://doi.org/10.1006/nbdi.2000.0380 

Heber, D. (2011). Pomegranate Ellagitannins. Herbal Medicine: Biomolecular and 
 Clinical Aspects, 1–9. https://doi.org/doi:10.1201/b10787-11 

Hedskog, L., Pinho, C. M., Filadi, R., Rönnbäck, A., Hertwig, L., Wiehager, B., … 
 Ankarcrona, M. (2013). Modulation of the endoplasmic reticulum-mitochondria 
 interface in Alzheimer’s disease and related models. Proceedings of the National 
 Academy of Sciences of the United States of America, 110(19), 7916–7921. 
 https://doi.org/10.1073/pnas.1300677110 

Herrschaft, H., Nacu, A., Likhachev, S., Sholomov, I., Hoerr, R., & Schlaefke, S. (2012). 
 Ginkgo biloba extract EGb 761 ® in dementia with neuropsychiatric features: A 
 randomised, placebo-controlled trial to confirm the efficacy and safety of a daily 
 dose of 240 mg. Journal of Psychiatric Research, 46(6), 716–723. 
 https://doi.org/10.1016/j.jpsychires.2012.03.003 

Hjorth, E., Zhu, M., Toro, V. C., Vedin, I., Palmblad, J., Cederholm, T., … Schultzberg, 
 M. (2013). Omega-3 fatty acids enhance phagocytosis of alzheimer’s disease-
 related amyloid-β42 by human microglia and decrease inflammatory markers. 
 Journal of Alzheimer’s Disease, 35(4), 697–713.  

Hochgräfe, K., Sydow, A., & Mandelkow, E. M. (2013). Regulatable transgenic mouse 
 models of Alzheimer disease: Onset, reversibility and spreading of Tau pathology. 
 FEBS Journal. https://doi.org/10.1111/febs.12250 

Houlden, A., Goldrick, M., Brough, D., Vizi, E. S., Lenart, N., Martinecz, B., … Denes, 
 A. (2016). Brain injury induces specific changes in the caecal microbiota of mice 
 via altered autonomic activity and mucoprotein production. Brain, Behavior, and 
 Immunity, 57, 10–20. https://doi.org/10.1016/j.bbi.2016.04.003 

Howell, A. B., & Souza, D. H. D. (2013). The pomegranate: effects on bacteria and 
 viruses that influence human health effects on human bacteria bacteria that affect 



51 

 the human body. Evidence-Based Complementary and Alternative Medicine, 
 2013. 

Hu, X.-T., Ding, C., Zhou, N., & Xu, C. (2015). Quercetin protects gastric epithelial cell 
 from oxidative damage in vitro and in vivo. European Journal of Pharmacology, 
 754, 115–124. https://doi.org/10.1016/j.ejphar.2015.02.007 

Huang, C.-Q., Dong, B.-R., Zhang, Y.-L., Wu, H.-M., & Liu, Q.-X. (2009). Association 
 of Cognitive Impairment With Smoking, Alcohol Consumption, Tea 
 Consumption, and Exercise Among Chinese Nonagenarians/Centenarians. 
 Cognitive and Behavioral Neurology, 22(3), 190–196. 
 https://doi.org/10.1097/WNN.0b013e3181b2790b 

Hughes, T. F., Andel, R., Small, B. J., Borenstein, A. R., Mortimer, J. A., Wolk, A., … 
 Gatz, M. (2010). Midlife Fruit and Vegetable Consumption and Risk of Dementia 
 in Later Life in Swedish Twins. The American Journal of Geriatric Psychiatry, 
 18(5), 413–420. https://doi.org/10.1097/JGP.0b013e3181c65250 

Husari, A., Hashem, Y., Bitar, H., Dbaibo, G., Zaatari, G., & El Sabban, M. (2016). 
 Antioxidant activity of pomegranate juice reduces emphysematous changes and 
 injury secondary to cigarette smoke in an animal model and human alveolar cells. 
 International Journal of COPD, 11, 227–237. 
 https://doi.org/10.2147/COPD.S97027 

Ihl, R., Tribanek, M., & Bachinskaya, N. (2012). Efficacy and tolerability of a once daily 
 formulation of Ginkgo biloba extract EGb 761 ® in Alzheimer’s Disease and 
 vascular dementia: Results from a randomised controlled trial. 
 Pharmacopsychiatry, 45(2), 41–46. https://doi.org/10.1055/s-0031-1291217 

Imai, T., Kosuge, Y., Endo-Umeda, K., Miyagishi, H., Ishige, K., Makishima, M., & Ito, 
 Y. (2014). Protective effect of S-allyl-l-cysteine against endoplasmic reticulum 
 stress-induced neuronal death is mediated by inhibition of calpain. In Amino 
 Acids (Vol. 46, pp. 385–393). https://doi.org/10.1007/s00726-013-1628-4 

Imai, T., Kosuge, Y., Saito, H., Uchiyama, T., Wada, T., Shimba, S., … Ito, Y. (2016). 
 Neuroprotective effect of S-allyl-l-cysteine derivatives against endoplasmic 
 reticulum stress-induced cytotoxicity is independent of calpain inhibition. Journal 
 of Pharmacological Sciences, 130(3), 185–188. 
 https://doi.org/10.1016/j.jphs.2016.03.004 

Imtiaz, B., Tolppanen, A.-M., Kivipelto, M., & Soininen, H. (2014). Future directions in 
 Alzheimer’s disease from risk factors to prevention. Biochemical Pharmacology, 
 88(4), 661–670. https://doi.org/10.1016/j.bcp.2014.01.003 

Iturriaga, R., Moya, E. a, & Del Rio, R. (2015). Inflammation and oxidative stress during 
 intermittent hypoxia: the impact on chemoreception. Experimental Physiology, 
 100(2), 149–155. https://doi.org/10.1113/expphysiol.2014.079525 



52 

Javed, H., Khan, M. M., Khan, A., Vaibhav, K., Ahmad, A., Khuwaja, G., … Islam, F. 
 (2011). S-allyl cysteine attenuates oxidative stress associated cognitive 
 impairment and neurodegeneration in mouse model of streptozotocin-induced 
 experimental dementia of Alzheimer’s type. Brain Research, 1389, 133–142. 
 https://doi.org/10.1016/j.brainres.2011.02.072 

Jelic, S., & Le Jemtel, T. H. (2008). Inflammation, Oxidative Stress, and the Vascular 
 Endothelium in Obstructive Sleep Apnea. Trends in Cardiovascular Medicine. 
 https://doi.org/10.1016/j.tcm.2008.11.008 

Jiang, W., Zhang, Y., Xiao, L., Van Cleemput, J., Ji, S. P., Bai, G., & Zhang, X. (2005). 
 Cannabinoids promote embryonic and adult hippocampus neurogenesis and 
 produce anxiolytic- and antidepressant-like effects. Journal of Clinical 
 Investigation, 115(11), 3104–3116. https://doi.org/10.1172/JCI25509 

Jofre-Monseny, L., Minihane, A.-M., & Rimbach, G. (2008). Impact of apoE genotype 
 on oxidative stress, inflammation and disease risk. Molecular Nutrition & Food 
 Research, 52(1), 131–145. https://doi.org/10.1002/mnfr.200700322 

Johanningsmeier, S. D., & Harris, G. K. (2011). Pomegranate as a Functional Food and 
 Nutraceutical Source. Annual Review of Food Science and Technology, 2(1), 
 181–201. https://doi.org/10.1146/annurev-food-030810-153709 

Joseph, J., Cole, G., Head, E., & Ingram, D. (2009). Nutrition, brain aging, and 
 neurodegeneration. Journal of Neuroscience, 29(41), 12795–12801. 
 https://doi.org/10.1523/JNEUROSCI.3520-09.2009 

Kang, S. S., Jeraldo, P. R., Kurti, A., Miller, M. E., Cook, M. D., Whitlock, K., … 
 Wishart, D. (2014). Diet and exercise orthogonally alter the gut microbiome and 
 reveal independent associations with anxiety and cognition. Molecular 
 Neurodegeneration, 9(1), 36. https://doi.org/10.1186/1750-1326-9-36 

Kaplan, M., Hayek, T., Raz,  a, Coleman, R., Dornfeld, L., Vaya, J., & Aviram, M. 
 (2001). Pomegranate juice supplementation to atherosclerotic mice reduces 
 macrophage lipid peroxidation, cellular cholesterol accumulation and  
 development of atherosclerosis. The Journal of Nutrition, 131(8), 2082–2089. 
 https://doi.org/PMID: 11481398 

Karuppagounder, S. S., Pinto, J. T., Xu, H., Chen, H. L., Beal, M. F., & Gibson, G. E. 
 (2009). Dietary supplementation with resveratrol reduces plaque pathology in a 
 transgenic model of Alzheimer’s disease. Neurochemistry International, 54(2), 
 111–118. https://doi.org/10.1016/j.neuint.2008.10.008 

Kiko, T., Nakagawa, K., Satoh, A., Tsuduki, T., Furukawa, K., Arai, H., & Miyazawa, T. 
 (2012). Amyloid β Levels in Human Red Blood Cells. PLoS ONE, 7(11), 1–6. 
 https://doi.org/10.1371/journal.pone.0049620 



53 

Kimura, R., MacTavish, D., Yang, J., Westaway, D., & Jhamandas, J. H. (2012). Beta 
 amyloid-induced depression of hippocampal long-term potentiation is mediated 
 through the amylin receptor. The Journal of Neuroscience : The Official Journal 
 of the Society for Neuroscience, 32(48), 17401–17406. 
 https://doi.org/10.1523/JNEUROSCI.3028-12.2012 

Kitazawa, M., Medeiros, R., & M. LaFerla, F. (2012). Transgenic Mouse Models of 
 Alzheimer Disease: Developing a Better Model as a Tool for Therapeutic 
 Interventions. Current Pharmaceutical Design, 18(8), 1131–1147. 
 https://doi.org/10.2174/138161212799315786 

Köbe, T., Witte, A. V., Schnelle, A., Tesky, V. A., Pantel, J., Schuchardt, J.-P., … Flöel, 
 A. (2017). Impact of Resveratrol on Glucose Control, Hippocampal Structure and 
 Connectivity, and Memory Performance in Patients with Mild Cognitive 
 Impairment. Frontiers in Neuroscience, 11. 
 https://doi.org/10.3389/fnins.2017.00105 

Kotilinek, L. A., Westerman, M. A., Wang, Q., Panizzon, K., Lim, G. P., Simonyi, A., … 
 Ashe, K. H. (2008). Cyclooxygenase-2 inhibition improves amyloid-beta-
 mediated suppression of memory and synaptic plasticity. Brain : A Journal of 
 Neurology, 131(Pt 3), 651–664. https://doi.org/10.1093/brain/awn008 

Krüger, J., Moilanen, V., Majamaa, K., & Remes, A. M. (2012). Molecular Genetic 
 Analysis of the APP, PSEN1, and PSEN2 Genes in Finnish Patients With Early-
 onset Alzheimer Disease and Frontotemporal Lobar Degeneration. Alzheimer 
 Disease & Associated Disorders, 26(3), 272–276. 
 https://doi.org/10.1097/WAD.0b013e318231e6c7 

Kruman  II, Kumaravel, T. S., Lohani, A., Pedersen, W. A., Cutler, R. G., Kruman, Y., 
 … Mattson, M. P. (2002). Folic acid deficiency and homocysteine impair DNA 
 repair in hippocampal neurons and sensitize them to amyloid toxicity in 
 experimental models of Alzheimer’s disease. J Neurosci, 22(5), 1752–1762. 
 https://doi.org/22/5/1752 [pii] 

Kumar, P., Pillay, V., Choonara, Y. E., Modi, G., Naidoo, D., & Du Toit, L. C. (2011). In 
 Silico Theoretical Molecular Modeling for Alzheimer’s Disease: The Nicotine-
 Curcumin Paradigm in Neuroprotection and Neurotherapy. International Journal 
 of Molecular Sciences, 12(12), 694–724. https://doi.org/10.3390/ijms12010694 

Kumaraswamy, P., Sethuraman, S., & Krishnan, U. M. (2013). Mechanistic Insights of 
 Curcumin Interactions with the Core-Recognition Motif of β-Amyloid Peptide. 
 Journal of Agricultural and Food Chemistry, 61(13), 3278–3285. 
 https://doi.org/10.1021/jf4000709 

Kwak, H.-M., Jeon, S.-Y., Sohng, B.-H., Kim, J.-G., Lee, J.-M., Lee, K.-B., … Song, K.-
 S. (2005). β-Secretase(BACE1) inhibitors from pomegranate (Punica granatum) 



54 

 husk. Archives of Pharmacal Research, 28(12), 1328–1332. 
 https://doi.org/10.1007/BF02977896 

Laird, M. D., Sukumari-Ramesh, S., Swift, A. E. B., Meiler, S. E., Vender, J. R., & 
 Dhandapani, K. M. (2010). Curcumin attenuates cerebral edema following 
 traumatic brain injury in mice: A possible role for aquaporin-4? Journal of 
 Neurochemistry, 113(3), 637–648.  

Larrosa, M., González-Sarrías, A., Yáñez-Gascón, M. J., Selma, M. V., Azorín-Ortuño, 
 M., Toti, S., … Espín, J. C. (2010). Anti-inflammatory properties of a 
 pomegranate extract and its metabolite urolithin-A in a colitis rat model and the 
 effect of colon inflammation on phenolic metabolism. Journal of Nutritional 
 Biochemistry, 21(8), 717–725. https://doi.org/10.1016/j.jnutbio.2009.04.012 

Lau, F. C., Shukitt-Hale, B., & Joseph, J. A. (2005). The beneficial effects of fruit 
 polyphenols on brain aging. Neurobiology of Aging, 26(SUPPL.), 128–132. 
 https://doi.org/10.1016/j.neurobiolaging.2005.08.007 

Laurent, C., Eddarkaoui, S., Derisbourg, M., Leboucher, A., Demeyer, D., Carrier, S., … 
 Blum, D. (2014). Beneficial effects of caffeine in a transgenic model of 
 Alzheimer’s disease-like tau pathology. Neurobiology of Aging, 35(9), 2079–
 2090. https://doi.org/10.1016/j.neurobiolaging.2014.03.027 

Lebbadi, M., Julien, C., Phivilay, A., Tremblay, C., Emond, V., Kang, J. X., & Calon, F. 
 (2011). Endogenous conversion of omega-6 into omega-3 fatty acids improves 
 neuropathology in an animal model of Alzheimer’s disease. Journal of 
 Alzheimer’s Disease, 27(4), 853–869. https://doi.org/10.3233/JAD-2011-111010 

Lee, E. B., Leng, L. Z., Zhang, B., Kwong, L., Trojanowski, J. Q., Abel, T., & Lee, V. 
 M.-Y. (2006). Targeting amyloid-beta peptide (Abeta) oligomers by passive 
 immunization with a conformation-selective monoclonal antibody improves 
 learning and memory in Abeta precursor protein (APP) transgenic mice. The 
 Journal of Biological Chemistry, 281(7), 4292–4299. 
 https://doi.org/10.1074/jbc.M511018200 

Lee, J. H., Agacinski, G., Williams, J. H., Wilcock, G. K., Esiri, M. M., Francis, P. T., … 
 Lai, M. K. P. (2010). Intact cannabinoid CB1 receptors in the Alzheimer’s disease 
 cortex. Neurochemistry International, 57(8), 985–989. 
 https://doi.org/10.1016/j.neuint.2010.10.010 

Lefèvre-Arbogast, S., Féart, C., Dartigues, J.-F., Helmer, C., Letenneur, L., & Samieri, C. 
 (2016). Dietary B Vitamins and a 10-Year Risk of Dementia in Older Persons. 
 Nutrients, 8(12), 761. https://doi.org/10.3390/nu8120761 

Legua, P., Melgarejo, P., Abdelmajid, H., Martínez, J. J., Martínez, R., Ilham, H., … 
 Hernández, F. (2012). Total phenols and antioxidant capacity in 10 moroccan 



55 

 pomegranate varieties. Journal of Food Science, 77(1), 115–120. 
 https://doi.org/10.1111/j.1750-3841.2011.02516.x 

Lemere, C. A., Maier, M., Jiang, L., Peng, Y., & Seabrook, T. J. (2006). Amyloid-Beta 
 Immunotherapy for the Prevention and Treatment of Alzheimer Disease: Lessons 
 from Mice, Monkeys, and Humans. Rejuvenation Research, 9(1), 77–84. 
 https://doi.org/10.1089/rej.2006.9.77 

Lim, G. P., Chu, T., Yang, F., Beech, W., Frautschy, S. a, & Cole, G. M. (2001). The 
 curry spice curcumin reduces oxidative damage and amyloid pathology in an 
 Alzheimer transgenic mouse. The Journal of Neuroscience: The Official Journal 
 of the Society for Neuroscience, 21(21), 8370–8377.  

Lim, H. J., Shim, S. B., Jee, S. W., Lee, S. H., Lim, C. J., Hong, J. T., … Hwang, D. Y. 
 (2013). Green tea catechin leads to global improvement among Alzheimer’s 
 disease-related phenotypes in NSE/hAPP-C105 Tg mice. The Journal of   
 Nutritional Biochemistry, 24(7), 1302–1313. 
 https://doi.org/10.1016/j.jnutbio.2012.10.005 

Liu, R., Gao, M., Qiang, G.-F., Zhang, T.-T., Lan, X., Ying, J., & Du, G.-H. (2009). The 
 anti-amnesic effects of luteolin against amyloid β25–35 peptide-induced toxicity 
 in mice involve the protection of neurovascular unit. Neuroscience, 162(4), 1232–
 1243. https://doi.org/10.1016/j.neuroscience.2009.05.009 

Liu, X., Hao, W., Qin, Y., Decker, Y., Wang, X., Burkart, M., … Liu, Y. (2015). Long-
 term treatment with Ginkgo biloba extract EGb 761 improves symptoms and 
 pathology in a transgenic mouse model of Alzheimer’s disease. Brain, Behavior, 
 and Immunity, 46, 121–131. https://doi.org/10.1016/j.bbi.2015.01.011 

Liu, Y., Fu, X., Lan, N., Li, S., Zhang, J., Wang, S., … Zhang, L. (2014). Luteolin 
 protects against high fat diet-induced cognitive deficits in obesity mice. 
 Behavioural Brain Research, 267, 178–188. 
 https://doi.org/10.1016/j.bbr.2014.02.040 

Loren, D. J., Seeram, N. P., Schulman, R. N., & Holtzman, D. M. (2005). Maternal 
 dietary supplementation with pomegranate juice is neuroprotective in an animal 
 model of neonatal hypoxic-ischemic brain injury. Pediatric Research, 57(6), 858–
 864. https://doi.org/10.1203/01.PDR.0000157722.07810.15 

Lucarini, R., Bernardes, W. A., Ferreira, D. S., Tozatti, M. G., Furtado, R., Bastos, J. K., 
 … Cunha, W. R. (2013). In vivo analgesic and anti-inflammatory activities of 
 Rosmarinus officinalis aqueous extracts, rosmarinic acid and its acetyl ester 
 derivative. Pharmaceutical Biology, 51(9), 1087–1090. 
 https://doi.org/10.3109/13880209.2013.776613 

Ludwig, I. A., Sanchez, L., Caemmerer, B., Kroh, L. W., De Peña, M. P., & Cid, C. 
 (2012). Extraction of coffee antioxidants: Impact of brewing time and method. 



56 

 Food Research International, 48(1), 57–64. 
 https://doi.org/10.1016/j.foodres.2012.02.023 

Ma, T., Gong, K., Yan, Y., Zhang, L., Tang, P., Zhang, X., & Gong, Y. (2013). 
 Huperzine A promotes hippocampal neurogenesis in vitro and in vivo. Brain 
 Research, 1506, 35–43. https://doi.org/10.1016/j.brainres.2013.02.026 

Ma, X., & Gang, D. R. (2008). In vitro production of huperzine A, a promising drug 
 candidate for Alzheimer’s disease. Phytochemistry, 69(10), 2022–2028. 
 https://doi.org/10.1016/j.phytochem.2008.04.017 

Maher, P. (2009). Modulation of multiple pathways involved in the maintenance of 
 neuronal function during aging by fisetin. Genes & Nutrition, 4(4), 297–307. 
 https://doi.org/10.1007/s12263-009-0142-5 

Malin, D. H., Lee, D. R., Goyarzu, P., Chang, Y.-H., Ennis, L. J., Beckett, E., … Joseph, 
 J. A. (2011). Basic nutritional investigation Short-term blueberry-enriched diet 
 prevents and reverses object recognition memory loss in aging rats. Nutrition, 27, 
 338–342. https://doi.org/10.1016/j.nut.2010.05.001 

Mangialasche, F., Solomon, A., Winblad, B., Mecocci, P., & Kivipelto, M. (2010). 
 Alzheimer’s disease: clinical trials and drug development. The Lancet Neurology, 
 9(7), 702–716. https://doi.org/https://doi.org/10.1016/S1474-4422(10)70119-8 

Marchalant, Y., Brothers, H. M., Norman, G. J., Karelina, K., DeVries, A. C., & Wenk, 
 G. L. (2009). Cannabinoids attenuate the effects of aging upon neuroinflammation 
 and neurogenesis. Neurobiology of Disease, 34(2), 300–307. 
 https://doi.org/10.1016/j.nbd.2009.01.014 

Marchalant, Y., Cerbai, F., Brothers, H. M., & Wenk, G. L. (2008). Cannabinoid receptor 
stimulation is anti-inflammatory and improves memory in old rats. Neurobiology 
of Aging, 29(12), 1894–1901. 
https://doi.org/10.1016/j.neurobiolaging.2007.04.028 

Marín, L., Miguélez, E. M., Villar, C. J., & Lombó, F. (2015). Bioavailability of dietary 
 polyphenols and gut microbiota metabolism: Antimicrobial properties. BioMed 
 Research International, 2015. https://doi.org/10.1155/2015/905215 

Mark, P. (2010). The impact of dietary energy intake on cognitive aging, 2(March), 1–12. 
 https://doi.org/10.3389/neuro.24.005.2010 

Martín-Moreno, A. M., Brera, B., Spuch, C., Carro, E., García-García, L., Delgado, M., 
 … de Ceballos, M. L. (2012). Prolonged oral cannabinoid administration prevents 
 neuroinflammation, lowers β-amyloid levels and improves cognitive performance 
 in Tg APP 2576 mice. Journal of Neuroinflammation, 9(1), 511. 
 https://doi.org/10.1186/1742-2094-9-8 



57 

Martin-Moreno, A. M., Reigada, D., Ramirez, B. G., Mechoulam, R., Innamorato, N., 
 Cuadrado, A., & de Ceballos, M. L. (2011). Cannabidiol and Other Cannabinoids 
 Reduce Microglial Activation In Vitro and In Vivo: Relevance to Alzheimer’s 
 Disease. Molecular Pharmacology, 79(6), 964–973. 
 https://doi.org/10.1124/mol.111.071290 

Martin-Schild, S., Hallevi, H., Shaltoni, H., Barreto, A. D., Gonzales, N. R., Aronowski, 
 J., … Grotta, J. C. (2009). Combined Neuroprotective Modalities Coupled with 
 Thrombolysis in Acute Ischemic Stroke: A Pilot Study of Caffeinol and Mild 
 Hypothermia. Journal of Stroke and Cerebrovascular Diseases, 18(2), 86–96. 
 https://doi.org/10.1016/j.jstrokecerebrovasdis.2008.09.015 

Masci, A., Coccia, A., Lendaro, E., Mosca, L., Paolicelli, P., & Cesa, S. (2016). 
 Evaluation of different extraction methods from pomegranate whole fruit or peels 
 and the antioxidant and antiproliferative activity of the polyphenolic fraction. 
 Food Chemistry, 202, 59–69. https://doi.org/10.1016/j.foodchem.2016.01.106 

Mathiyazahan, D. B., Justin Thenmozhi, A., & Manivasagam, T. (2015). Protective effect 
 of black tea extract against aluminium chloride-induced Alzheimer’s disease in 
 rats: A behavioural, biochemical and molecular approach. Journal of Functional 
 Foods, 16, 423–435. https://doi.org/10.1016/j.jff.2015.05.001 

Matos, M., Augusto, E., Oliveira, C. R., & Agostinho, P. (2008). Amyloid-beta peptide 
 decreases glutamate uptake in cultured astrocytes: Involvement of oxidative stress 
 and mitogen-activated protein kinase cascades. Neuroscience, 156(4), 898–910. 
 https://doi.org/10.1016/j.neuroscience.2008.08.022 

Matthaiou, C. M., Goutzourelas, N., Stagos, D., Sarafoglou, E., Jamurtas, A., Koulocheri, 
 S. D., … Kouretas, D. (2014). Pomegranate juice consumption increases GSH 
 levels and reduces lipid and protein oxidation in human blood. Food and 
 Chemical Toxicology, 73(August), 1–6. https://doi.org/10.1016/j.fct.2014.07.027 

Mertens-Talcott, S. U., Jilma-Stohlawetz, P., Rios, J., Hingorani, L., & Derendorf, H. 
 (2006). Absorption, Metabolism, and Antioxidant Effects of Pomegranate (Punica 
 granatumL.) Polyphenols after Ingestion of a Standardized Extract in Healthy 
 Human Volunteers. Journal of Agricultural and Food Chemistry, 54(23), 8956–
 8961. 

Meyer-Luehmann, M., Spires-Jones, T. L., Prada, C., Garcia-Alloza, M., de Calignon, A., 
 Rozkalne, A., … Hyman, B. T. (2008). Rapid appearance and local toxicity of 
 amyloid-β plaques in a mouse model of Alzheimer’s disease. Nature, 451(7179), 
 720–724. https://doi.org/10.1038/nature06616 

Miao, Y., Zhao, S., Gao, Y., Wang, R., Wu, Q., Wu, H., & Luo, T. (2016). Curcumin 
 pretreatment attenuates inflammation and mitochondrial dysfunction in 
 experimental stroke: The possible role of Sirt1 signaling. Brain Research Bulletin, 
 121, 9–15. https://doi.org/10.1016/j.brainresbull.2015.11.019 



58 

Mohsenzadegan, M., & Mirshafiey, A. (2012). The immunopathogenic role of reactive 
 oxygen species in Alzheimer disease. Iran J Allergy Asthma Immunol, 11(3), 
 203–216. https://doi.org/011.03/ijaai.203216 

Moreira, P. I., Carvalho, C., Zhu, X., Smith, M. A., & Perry, G. (2010). Mitochondrial 
 dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochimica et 
 Biophysica Acta (BBA) - Molecular Basis of Disease, 1802(1), 2–10. 
 https://doi.org/10.1016/j.bbadis.2009.10.006 

Morrissette, D. A., Parachikova, A., Green, K. N., & LaFerla, F. M. (2009). Relevance of 
 transgenic mouse models to human Alzheimer disease. The Journal of Biological 
 Chemistry, 284(10), 6033–6037. https://doi.org/10.1074/jbc.R800030200 

Morzelle, M. C., Salgado, J. M., Telles, M., Mourelle, D., Bachiega, P., Buck, H. S., & 
 Viel, T. A. (2016). Neuroprotective effects of pomegranate peel extract after 
 chronic infusion with amyloid-?? peptide in mice. PLoS ONE, 11(11), 1–20. 
 https://doi.org/10.1371/journal.pone.0166123 

Müller, W. E., Heiser, J., & Leuner, K. (2012). Effects of the standardized Ginkgo biloba 
 extract EGb 761® on neuroplasticity. International Psychogeriatrics / IPA, 24 
 Suppl 1(1), S21-4. https://doi.org/10.1017/S1041610212000592 

Musiek, E. S., & Holtzman, D. M. (2015). Three dimensions of the amyloid hypothesis: 
 time, space and “wingmen.” Nat Neurosci, 18(6), 800–806. 
 https://doi.org/10.1038/nn.4018 

Musiek, E. S., & Holtzman, D. M. (2016). Mechanisms linking circadian clocks, sleep, 
 and neurodegeneration. Science, 354(6315), 1004–1008. 
 https://doi.org/10.1126/science.aah4968 

Nakayama, M., Aihara, M., Chen, Y.-N., Araie, M., Tomita-Yokotani, K., & Iwashina, T. 
 (2011). Neuroprotective effects of flavonoids on hypoxia-, glutamate-, and 
 oxidative stress-induced retinal ganglion cell death. Molecular Vision, 17(July), 
 1784–1793. 

Napryeyenko, O., Sonnik, G., & Tartakovsky, I. (2009). Efficacy and tolerability of 
 Ginkgo biloba extract EGb 761?? by type of dementia: Analyses of a randomised 
 controlled trial. Journal of the Neurological Sciences, 283(1–2), 224–229. 
 https://doi.org/10.1016/j.jns.2009.02.353 

Narasingapa, R. B., Jargaval, M. R., Pullabhatla, S., Htoo, H. H., Rao, J. K. S., 
 Hernandez, J. F., … Vincent, B. (2012). Activation of ??-secretase by curcumin-
 aminoacid conjugates. Biochemical and Biophysical Research Communications, 
 424(4), 691–696. https://doi.org/10.1016/j.bbrc.2012.07.010 

Netzer, W. J., Powell, C., Nong, Y., Blundell, J., Wong, L., Duff, K., … Greengard, P. 
 (2010). Lowering ??-amyloid levels rescues learning and memory in a down 



59 

 syndrome mouse model. PLoS ONE, 5(6). 
 https://doi.org/10.1371/journal.pone.0010943 

Ng, T. P., Chiam, P. C., Lee, T., Chua, H. C., Lim, L., & Kua, E. H. (2006). Curry 
 consumption and cognitive function in the elderly. American Journal of 
 Epidemiology, 164(9), 898–906. https://doi.org/10.1093/aje/kwj267 

Nica Sousa, M., Teixeira, V. H., & Soares, J. (2014). Dietary strategies to recover from 
 exercise-induced muscle damage. Int J Food Sci Nutr, 65(2), 963–7486. 
 https://doi.org/10.3109/09637486.2013.849662 

Norton, S., Matthews, F. E., Barnes, D. E., Yaffe, K., & Brayne, C. (2014). Potential for 
 primary prevention of Alzheimer’s disease: An analysis of population-based data. 
 The Lancet Neurology, 13(8), 788–794. 

Núñez, E., Benito, C., Tolón, R. M., Hillard, C. J., Griffin, W. S. T., & Romero, J. 
 (2008). Glial expression of cannabinoid CB2 receptors and fatty acid amide 
 hydrolase are beta amyloid–linked events in Down’s syndrome. Neuroscience, 
 151(1), 104–110. https://doi.org/10.1016/j.neuroscience.2007.10.029 

Ongali, B., Nicolakakis, N., Tong, X.-K., Aboulkassim, T., Papadopoulos, P., Rosa-Neto, 
 P., … Hamel, E. (2014). Angiotensin II type 1 receptor blocker losartan prevents 
 and rescues cerebrovascular, neuropathological and cognitive deficits in an 
 Alzheimer’s disease model. Neurobiology of Disease, 68, 126–136. 
 https://doi.org/10.1016/j.nbd.2014.04.018 

Ono, K., Hamaguchi, T., Naiki, H., & Yamada, M. (2006). Anti-amyloidogenic effects of 
 antioxidants: Implications for the prevention and therapeutics of Alzheimer’s 
 disease. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1762(6), 
 575–586. https://doi.org/10.1016/j.bbadis.2006.03.002 

Ono, K., Hasegawa, K., Naiki, H., & Yamada, M. (2004). Curcumin has potent anti-
 amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. J Neurosci 
 Res, 75(6), 742–750. Retrieved from http://dx.doi.org/10.1002/jnr.20025 

Orgogozo, J. M., Dartigues, J. F., Lafont, S., Letenneur, L., Commenges, D., Salamon, 
 R., … Breteler, M. B. (1997). Wine consumption and dementia in the elderly: a 
 prospective community study in the Bordeaux area. Revue Neurologique, 153(3), 
 185–192.  

Palop, J. J., & Mucke, L. (2010). Amyloid-β–induced neuronal dysfunction in 
 Alzheimer’s disease: from synapses toward neural networks. Nature 
 Neuroscience, 13(7), 812–818. https://doi.org/10.1038/nn.2583 

Papandreou, M. A., Dimakopoulou, A., Linardaki, Z. I., Cordopatis, P., Klimis-Zacas, D., 
 Margarity, M., & Lamari, F. N. (2009). Effect of a polyphenol-rich wild blueberry 
 extract on cognitive performance of mice, brain antioxidant markers and 



60 

 acetylcholinesterase activity. Behavioural Brain Research, 198(2), 352–358. 
 https://doi.org/10.1016/j.bbr.2008.11.013 

Parkar, S. G., Trower, T. M., & Stevenson, D. E. (2013). Fecal microbial metabolism of 
 polyphenols and its effects on human gut microbiota. Anaerobe, 23, 12–19. 
 https://doi.org/10.1016/j.anaerobe.2013.07.009 

Parker, J. R. S., Strahler, T. R., Bassett, C. J., Bispham, N. Z., Michel, B., & Seals, D. R. 
 (2016). Curcumin supplementation improves vascular endothelial function in 
 healthy middle ‐ aged and older adults by increasing nitric oxide bioavailability 
 and reducing oxidative stress, 9, 1–22. https://doi.org/10.18632/aging.101149 

Patten, A. R., Moller, D. J., Graham, J., Gil-Mohapel, J., & Christie, B. R. (2013). Liquid 
 diets reduce cell proliferation but not neurogenesis in the adult rat hippocampus. 
 Neuroscience, 254, 173–184. https://doi.org/10.1016/j.neuroscience.2013.09.024 

Peake, J. M., Suzuki, K., & Coombes, J. S. (2007). The influence of antioxidant 
 supplementation on markers of inflammation and the relationship to oxidative 
 stress after exercise. Journal of Nutritional Biochemistry. 
 https://doi.org/10.1016/j.jnutbio.2006.10.005 

Perim Baldo, M., Aboussaleh, Y., Hardman, R. J., Kennedy, G., Macpherson, H., 
 Scholey, A. B., & Pipingas, A. (2016). Adherence to a Mediterranean-Style Diet 
 and effects on Cognition in Adults: A Qualitative evaluation and Systematic 
 Review of Longitudinal and Prospective Trials. Frontiers in Nutrit, 3(22), 1–13. 
 https://doi.org/10.3389/fnut.2016.00022 

Petra, A. I., Panagiotidou, S., Hatziagelaki, E., Stewart, J. M., Conti, P., & Theoharides, 
 T. C. (2015). Gut-Microbiota-Brain Axis and Its Effect on Neuropsychiatric 
 Disorders With Suspected Immune Dysregulation. Clinical Therapeutics, 37(5), 
 984–995. https://doi.org/10.1016/j.clinthera.2015.04.002 

Pimplikar, S. W. (2009). Reassessing the amyloid cascade hypothesis of Alzheimer’s 
 disease. International Journal of Biochemistry and Cell Biology. 
 https://doi.org/10.1016/j.biocel.2008.12.015 

Piro, J. R., Benjamin, D. I., Duerr, J. M., Pi, Y., Gonzales, C., Wood, K. M., … Samad, 
 T. A. (2012). A Dysregulated Endocannabinoid-Eicosanoid Network Supports 
 Pathogenesis in a Mouse Model of Alzheimer’s Disease. Cell Reports (Vol. 1). 
 https://doi.org/10.1016/j.celrep.2012.05.001 

Pistell, P. J., Morrison, C. D., Gupta, S., Knight, A. G., Keller, J. N., Ingram, D. K., & 
 Bruce-Keller, A. J. (2010). Cognitive impairment following high fat diet 
 consumption is associated with brain inflammation. Journal of 
 Neuroimmunology, 219(1–2), 25–32. 
 https://doi.org/10.1016/j.jneuroim.2009.11.010 



61 

Pop, V., Head, E., Hill, M.-A., Gillen, D., Berchtold, N. C., Muggenburg, B. A., … 
 Cotman, C. W. (2010). Synergistic effects of long-term antioxidant diet and 
 behavioral enrichment on beta-amyloid load and non-amyloidogenic processing in 
 aged canines. The Journal of Neuroscience : The Official Journal of the Society 
 for Neuroscience, 30(29), 9831–9839.  

Porquet, D., Griñán-Ferré, C., Ferrer, I., Camins, A., Sanfeliu, C., Del Valle, J., & Pallàs, 
 M. (2014). Neuroprotective role of trans-resveratrol in a murine model of familial 
 Alzheimer’s disease. Journal of Alzheimer’s Disease : JAD, 42(4), 1209–1220. 
 https://doi.org/10.3233/JAD-140444 

Power, S. E., O’Connor, E. M., Ross, R. P., Stanton, C., O’Toole, P. W., Fitzgerald, G. 
 F., & Jeffery, I. B. (2015). Dietary glycaemic load associated with cognitive 
 performance in elderly subjects. European Journal of Nutrition, 54(4), 557–568. 
 https://doi.org/10.1007/s00394-014-0737-5 

Pradeep, H., Diya, J. B., Shashikumar, S., & Rajanikant, G. K. (2012). Oxidative stress - 
 Assassin behind the ischemic stroke. Folia Neuropathologica, 50(3), 219–230. 
 https://doi.org/10.5114/fn.2012.30522 

Prakash, D., Gopinath, K., & Sudhandiran, G. (2013). Fisetin enhances behavioral 
 performances and attenuates reactive gliosis and inflammation during aluminum 
 chloride-induced neurotoxicity. NeuroMolecular Medicine, 15(1), 192–208. 
 https://doi.org/10.1007/s12017-012-8210-1 

Prasanthi, J. R. P., Dasari, B., Marwarha, G., Larson, T., Chen, X., Geiger, J. D., & 
 Ghribi, O. (2010). Caffeine protects against oxidative stress and Alzheimer’s 
 disease-like pathology in rabbit hippocampus induced by cholesterol-enriched 
 diet. Free Radical Biology and Medicine, 49(7), 1212–1220. 
 https://doi.org/10.1016/j.freeradbiomed.2010.07.007 

Pratheeshkumar, P., Son, Y.-O., Divya, S. P., Roy, R. V., Hitron, J. A., Wang, L., … Shi, 
 X. (2014). Luteolin inhibits Cr(VI)-induced malignant cell transformation of 
 human lung epithelial cells by targeting ROS mediated multiple cell signaling 
 pathways. Toxicology and Applied Pharmacology, 281(2), 230–241. 
 https://doi.org/10.1016/j.taap.2014.10.008 

Qu, Z., Mossine, V. V., Cui, J., Sun, G. Y., & Gu, Z. (2016). Protective Effects of AGE 
 and Its Components on Neuroinflammation and Neurodegeneration. 
 NeuroMolecular Medicine, 18(3), 474–482.  

Rafii, M. S., Walsh, S., Little, J. T., Behan, K., Reynolds, B., Ward, C., … Alzheimer’s 
 Disease Cooperative Study, F. the A. D. C. (2011). A phase II trial of huperzine A 
 in mild to moderate Alzheimer disease. Neurology, 76(16), 1389–1394. 
 https://doi.org/10.1212/WNL.0b013e318216eb7b 



62 

Rahman, S., Ansari, R. A., Rehman, H., Parvez, S., & Raisuddin, S. (2011). 
 Nordihydroguaiaretic Acid from Creosote Bush (Larrea tridentata) Mitigates 12-
 O-Tetradecanoylphorbol-13-Acetate-Induced Inflammatory and Oxidative Stress 
 Responses of Tumor Promotion Cascade in Mouse Skin. Evidence-Based 
 Complementary and Alternative Medicine : ECAM, 2011, 734785. 
 https://doi.org/10.1093/ecam/nep076 

Rai, D., Singh, J. K., Roy, N., & Panda, D. (2008). Curcumin inhibits FtsZ assembly: an 
 attractive mechanism for its antibacterial activity. Biochemical Journal, 410(1). 
 Retrieved from http://www.biochemj.org/content/410/1/147 

Ramezani, M., Darbandi, N., Khodagholi, F., & Hashemi, A. (2016). Myricetin protects 
 hippocampal CA3 pyramidal neurons and improves learning and memory 
 impairments in rats with Alzheimer’s disease. Neural Regeneration Research, 
 11(12), 1976. https://doi.org/10.4103/1673-5374.197141 

Rangel-Ordóñez, L., Nöldner, M., Schubert-Zsilavecz, M., & Wurglics, M. (2010). 
 Plasma levels and distribution of flavonoids in rat brain after single and repeated 
 doses of standardized Ginkgo biloba extract EGb 761®. Planta Medica, 76(15), 
 1683–1690. https://doi.org/10.1055/s-0030-1249962 

Ratia, M., Giménez-Llort, L., Camps, P., Muñoz-Torrero, D., Pérez, B., Clos, M. V., & 
 Badia, A. (2013). Huprine X and huperzine a improve cognition and regulate 
 some neurochemical processes related with Alzheimer’s disease in triple 
 transgenic mice (3xTg-AD). Neurodegenerative Diseases, 11(3), 129–140. 
 https://doi.org/10.1159/000336427 

Ray, B., Chauhan, N. B., & Lahiri, D. K. (2011). Oxidative insults to neurons and 
 synapse are prevented by aged garlic extract and S-allyl-l-cysteine treatment in 
 the neuronal culture and APP-Tg mouse model. Journal of Neurochemistry, 
 117(3), 388–402. https://doi.org/10.1111/j.1471-4159.2010.07145.x 

Reifert, J., Hartung-Cranston, D., & Feinstein, S. C. (2011). Amyloid ??-mediated cell 
 death of cultured hippocampal neurons reveals extensive Tau fragmentation 
 without increased full-length Tau phosphorylation. Journal of Biological 
 Chemistry, 286(23), 20797–20811. https://doi.org/10.1074/jbc.M111.234674 

Reinke, A. A., & Gestwicki, J. E. (2007). Structure–activity Relationships of Amyloid 
 Beta-aggregation Inhibitors Based on Curcumin: Influence of Linker Length and 
 Flexibility. Chemical Biology & Drug Design, 70(3), 206–215. 
 https://doi.org/https://doi.org/10.1111/j.1747-0285.2007.00557.x 

Riaz, A., & Khan, R. A. (2016). Anticoagulant, antiplatelet and antianemic effects of 
 Punica granatum (pomegranate) juice in rabbits. Blood Coagulation & 
 Fibrinolysis, 1. https://doi.org/10.1097/MBC.0000000000000415 



63 

Ringman, J. M., Frautschy, S. A., Cole, G. M., Masterman, D. L., & Cummings, J. L. 
 (2005). A potential role of the curry spice curcumin in Alzheimer’s disease.  
 Current Alzheimer Research, 2(2), 131–136. 
 https://doi.org/10.2174/1567205053585882  

Robertson, R. C., Seira Oriach, C., Murphy, K., Moloney, G. M., Cryan, J. F., Dinan, T. 
 G., … Stanton, C. (2016). Omega-3 polyunsaturated fatty acids critically regulate 
 behaviour and gut microbiota development in adolescence and adulthood. Brain, 
 Behavior, and Immunity, 59, 21–37. https://doi.org/10.1016/j.bbi.2016.07.145 

Rodrigues, J., Assunção, M., Lukoyanov, N., Cardoso, A., Carvalho, F., & Andrade, J. P. 
 (2013). Protective effects of a catechin-rich extract on the hippocampal formation 
 and spatial memory in aging rats. Behavioural Brain Research, 246, 94–102. 
 https://doi.org/10.1016/j.bbr.2013.02.040 

Roher, A. E., Palmer, K. C., Yurewicz, E. C., Ball, M. J., & Greenberg, B. D. (1993). 
 Morphological and Biochemical Analyses of Amyloid Plaque Core Proteins 
 Purified from Alzheimer Disease Brain Tissue. Journal of Neurochemistry, 61(5), 
 1916–1926. https://doi.org/10.1111/j.1471-4159.1993.tb09834.x 

Rojanathammanee, L., Puig, K. L., & Combs, C. K. (2013). Pomegranate polyphenols 
 and extract inhibit nuclear factor of activated T-cell activity and microglial 
 activation in vitro and in a transgenic mouse model of Alzheimer disease. The 
 Journal of Nutrition, 143(5), 597–605. https://doi.org/10.3945/jn.112.169516 

Rojas, P., Serrano-García, N., Mares-Sámano, J. J., Medina-Campos, O. N., Pedraza-
 Chaverri, J., & Ögren, S. O. (2008). EGb761 protects against nigrostriatal 
 dopaminergic neurotoxicity in 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine-
 induced Parkinsonism in mice: Role of oxidative stress. European Journal of 
 Neuroscience, 28(1), 41–50. https://doi.org/10.1111/j.1460-9568.2008.06314.x 

Rom, O., Korach-Rechtman, H., Hayek, T., Danin-Poleg, Y., Bar, H., Kashi, Y., & 
 Aviram, M. (2016). Acrolein increases macrophage atherogenicity in association 
 with gut microbiota remodeling in atherosclerotic mice: protective role for the 
 polyphenol-rich pomegranate juice. Archives of Toxicology, 1–17. 
 https://doi.org/10.1007/s00204-016-1859-8 

Ropacki, S. A., Patel, S. M., & Hartman, R. E. (2013). Pomegranate Supplementation 
 Protects against Memory Dysfunction after Heart Surgery: A Pilot Study. 
 Evidence-Based Complementary and Alternative Medicine, 2013, 932401. 
 https://doi.org/10.1155/2013/932401 

Rosen, R. F., Tomidokoro, Y., Farberg, A. S., Dooyema, J., Ciliax, B., Preuss, T. M., … 
 Walker, L. C. (2016). Comparative pathobiology of β-amyloid and the unique 
 susceptibility of humans to Alzheimer’s disease. Neurobiology of Aging, 44, 
 185–196. https://doi.org/10.1016/j.neurobiolaging.2016.04.019 



64 

Rosenblat, M., Volkova, N., Coleman, R., & Aviram, M. (2006). Pomegranate byproduct 
 administration to apolipoprotein E-deficient mice attenuates atherosclerosis 
 development as a result of decreased macrophage oxidative stress and reduced 
 cellular uptake of oxidized low-density lipoprotein. Journal of Agricultural and 
 Food Chemistry, 54(5), 1928–1935. https://doi.org/10.1021/jf0528207 

Rossi, L., Mazzitelli, S., Arciello, M., Capo, C. R., & Rotilio, G. (2008). Benefits from 
 Dietary Polyphenols for Brain Aging and Alzheimer’s Disease. Neurochemical 
 Research, 33(12), 2390–2400. https://doi.org/10.1007/s11064-008-9696-7 

Rozenberg, O., Howell, A., & Aviram, M. (2006). Pomegranate juice sugar fraction 
 reduces macrophage oxidative state, whereas white grape juice sugar fraction 
 increases it. Atherosclerosis, 188(1), 68–76. 
 https://doi.org/10.1016/j.atherosclerosis.2005.10.027 

Rubio-Perez, J. M., & Morillas-Ruiz, J. M. (2012). A Review: Inflammatory Process in 
 Alzheimer’s Disease, Role of Cytokines. The Scientific World Journal, 2012, 1–
 15. https://doi.org/10.1100/2012/756357 

Salomone, S., & Caraci, F. (2012). New pharmacological strategies for treatment of 
 Alzheimer’s disease: focus on disease- modifying drugs. British Journal of 
 Clinical Pharmacology. https://doi.org/10.1111/1365-2125.2011.04134.x 

Sawmiller, D., Li, S., Shahaduzzaman, M., Smith, A., Obregon, D., Giunta, B., … Tan, J. 
 (2014). Luteolin Reduces Alzheimer’s Disease Pathologies Induced by Traumatic 
 Brain Injury. International Journal of Molecular Sciences, 15(1), 895–904. 
 https://doi.org/10.3390/ijms15010895 

Schenk, D., Hagen, M., & Seubert, P. (2004). Current progress in beta-amyloid 
 immunotherapy. Current Opinion in Immunology, 16(5), 599–606. 
 https://doi.org/https://doi.org/10.1016/j.coi.2004.07.012 

Schindowski, K., Leutner, S., Kressmann, S., Eckert, A., & Müller, W. E. (2001). Age-
 related increase of oxidative stress-induced apoptosis in mice prevention by 
 Ginkgo biloba extract (EGb761). Journal of Neural Transmission (Vienna, 
 Austria : 1996), 108(8–9), 969–978. https://doi.org/10.1007/s007020170016 

Schmitz, C., Rutten, B. P., Pielen, A., Schafer, S., Wirths, O., Tremp, G., … Bayer, T. A. 
 (2004). Hippocampal neuron loss exceeds amyloid plaque load in a transgenic 
 mouse model of Alzheimer’s disease. Am.J.Pathol., 164(0002-9440 (Print)), 
 1495–1502. https://doi.org/10.1016/S0002-9440(10)63235-X 

Schneider, L. S. (2012, October). Ginkgo and AD: Key negatives and lessons from 
 GuidAge. The Lancet Neurology.  

Schupf, N., Patel, B., Pang, D., Zigman, W. B., Silverman, W., Mehta, P. D., & Mayeux, 
 R. (2007). Elevated plasma beta-amyloid peptide Abeta(42) levels, incident 



65 

 dementia, and mortality in Down syndrome. Archives of Neurology, 64(7), 1007–
 1013. https://doi.org/10.1001/archneur.64.7.1007 

Seeram, N. P., Adams, L. S., Henning, S. M., Niu, Y., Zhang, Y., Nair, M. G., & Heber, 
 D. (2005). In vitro antiproliferative, apoptotic and antioxidant activities of 
 punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in 
 combination with other polyphenols as found in pomegranate juice. Journal of 
 Nutritional Biochemistry, 16(6), 360–367. 
 https://doi.org/10.1016/j.jnutbio.2005.01.006 

Seeram, N. P., Henning, S. M., Zhang, Y., Suchard, M., Li, Z., & Heber, D. (2006). 
 Pomegranate juice ellagitannin metabolites are present in human plasma and some 
 persist in urine for up to 48 hours. The Journal of Nutrition, 136(May), 2481–
 2485. 

Selkoe, D. J. (2002). Alzheimer’s disease is a synaptic failure. Science, 298(5594), 789–
 791. https://doi.org/10.1126/science.1074069 

Seong, K. M., Yu, M., Lee, K. S., Park, S., Jin, Y. W., & Min, K. J. (2015). Curcumin 
 mitigates accelerated aging after irradiation in drosophila by reducing oxidative 
 stress. BioMed Research International, 2015. https://doi.org/10.1155/2015/425380 

Shafik, N. M., & El Batsh, M. M. (2016). Protective Effects of Combined Selenium and 
 Punica granatum Treatment on Some Inflammatory and Oxidative Stress Markers 
 in Arsenic-Induced Hepatotoxicity in Rats. Biological Trace Element Research, 
 169(1), 121–128. https://doi.org/10.1007/s12011-015-0397-1 

Shipton, O. A., Leitz, J. R., Dworzak, J., Acton, C. E. J., Tunbridge, E. M., Denk, F., … 
 Vargas-Caballero, M. (2011). Tau Protein Is Required for Amyloid β-Induced 
 Impairment of Hippocampal Long-Term Potentiation. The Journal of 
 Neuroscience, 31(5), 1688–1692.  

Siemers, E. R., Friedrich, S., Dean, R. A., Gonzales, C. R., Farlow, M. R., Paul, S. M., & 
 DeMattos, R. B. (2010). Safety and Changes in Plasma and Cerebrospinal Fluid 
 Amyloid β After a Single Administration of an Amyloid β Monoclonal Antibody  
 in Subjects With Alzheimer Disease. Clinical Neuropharmacology, 33(2).   

Singh, M., Arseneault, M., Sanderson, T., Murthy, V., & Ramassamy, C. (2008). 
 Challenges for Research on Polyphenols from Foods in Alzheimer’s Disease: 
 Bioavailability, Metabolism, and Cellular and Molecular Mechanisms. Journal of 
 Agricultural and Food Chemistry, 56(13), 4855–4873. 
 https://doi.org/10.1021/jf0735073 

Singh, V., Roth, S., Llovera, G., Sadler, R., Garzetti, D., Stecher, B., … Liesz, A. (2016). 
 Microbiota Dysbiosis Controls the Neuroinflammatory Response after Stroke. 
 Journal of Neuroscience, 36(28).  



66 

Sjögren, P., Becker, W., Warensjö, E., Olsson, E., Byberg, L., Gustafsson, I. B., … 
 Cederholm, T. (2010). Mediterranean and carbohydrate-restricted diets and 
 mortality among elderly men: A cohort study in Sweden. American Journal of 
 Clinical Nutrition, 92(4), 967–974. https://doi.org/10.3945/ajcn.2010.29345 

Solas, M., Francis, P. T., Franco, R., & Ramirez, M. J. (2013). CB2 receptor and amyloid 
 pathology in frontal cortex of Alzheimer’s disease patients. Neurobiology of 
 Aging (Vol. 34). https://doi.org/10.1016/j.neurobiolaging.2012.06.005 

Song, C., Shieh, C. H., Wu, Y. S., Kalueff, A., Gaikwad, S., & Su, K. P. (2016, April). 
 The role of omega-3 polyunsaturated fatty acids eicosapentaenoic and 
 docosahexaenoic acids in the treatment of major depression and Alzheimer’s 
 disease: Acting separately or synergistically? Progress in Lipid Research. 
 https://doi.org/10.1016/j.plipres.2015.12.003 

Soscia, S. J., Kirby, J. E., Washicosky, K. J., Tucker, S. M., Ingelsson, M., Hyman, B., …
 Moir, R. D. (2010). The Alzheimer’s disease-associated amyloid β-protein is an 
 antimicrobial peptide. PLoS ONE, 5(3), e9505. 
 https://doi.org/10.1371/journal.pone.0009505 

Sreekumar, S., Sithul, H., Muraleedharan, P., Azeez, J. M., & Sreeharshan, S. (2014). 
 Pomegranate fruit as a rich source of biologically active compounds. BioMed 
 Research International, 2014. https://doi.org/10.1155/2014/686921 

Srivareerat, M., Tran, T. T., Salim, S., Aleisa, A. M., & Alkadhi, K. A. (2011). Chronic 
 nicotine restores normal Aβ levels and prevents short-term memory and E-LTP 
 impairment in Aβ rat model of Alzheimer’s disease. Neurobiology of Aging, 
 32(5), 834–844. https://doi.org/10.1016/j.neurobiolaging.2009.04.015 

Steele, M., Stuchbury, G., & Münch, G. (2007). The molecular basis of the prevention of 
 Alzheimer’s disease through healthy nutrition. Experimental Gerontology, 42(1–
 2), 28–36. https://doi.org/10.1016/j.exger.2006.06.002 

Stranahan, A. M., Cutler, R. G., Button, C., Telljohann, R., & Mattson, M. P. (2011). 
 Diet-induced elevations in serum cholesterol are associated with alterations in 
 hippocampal lipid metabolism and increased oxidative stress. Journal of 
 Neurochemistry, 118(4), 611–615.  

Stumm, C., Hiebel, C., Hanstein, R., Purrio, M., Nagel, H., Conrad, A., … Clement, A. 
 B. (2013). Cannabinoid receptor 1 deficiency in a mouse model of Alzheimer’s 
 disease leads to enhanced cognitive impairment despite of a reduction in amyloid 
 deposition. Neurobiology of Aging, 34(11), 2574–2584. 
 https://doi.org/10.1016/j.neurobiolaging.2013.05.027 

Subash, S., Braidy, N., Essa, M. M., Zayana, A. B., Ragini, V., Al-Adawi, S., … 
 Guillemin, G. J. (2015). Long-term (15mo) dietary supplementation with 
 pomegranates from Oman attenuates cognitive and behavioral deficits in a 



67 

 transgenic mice model of Alzheimer’s disease. Nutrition, 31(1), 223–229. 
 https://doi.org/10.1016/j.nut.2014.06.004 

Syed, D. N., Chamcheu, J.-C., Adhami, V. M., & Mukhtar, H. (2013). Pomegranate 
 extracts and cancer prevention: molecular and cellular activities. Anti-Cancer 
 Agents in Medicinal Chemistry, 13(8), 1149–1161. 
 https://doi.org/10.1016/j.biotechadv.2011.08.021.Secreted 

Takatsu, H., Owada, K., Abe, K., Nakano, M., & Urano, S. (2009). Effect of vitamin E 
 on learning and memory deficit in aged rats. Journal of Nutritional Science and 
 Vitaminology, 55(5), 389–393. https://doi.org/10.3177/jnsv.55.389 

Tavakkoli-Kakhki, M., Motavasselian, M., Mosaddegh, M., Esfahani, M. M., 
 Kamalinejad, M., Nematy, M., & Eslami, S. (2014). Omega-3 and omega-6 
 content of medicinal foods for depressed patients: implications from the Iranian 
 Traditional Medicine. Avicenna Journal of Phytomedicine, 4(4), 225–230.   

Tchantchou, F., Xu, Y., Wu, Y., Christen, Y., & Luo, Y. (2007). EGb 761 enhances adult 
 hippocampal neurogenesis and phosphorylation of CREB in transgenic mouse 
 model of Alzheimer’s disease. The FASEB Journal, 21(10), 2400–2408. 
 https://doi.org/10.1096/fj.06-7649com 

Tendi, E. A., Bosetti, F., DasGupta, S. F., Giuffrida Stella, A. M., Drieu, K., & Rapoport, 
 S. I. (2002). Ginkgo biloba Extracts EGb 761 and Bilobalide Increase NADH 
 Dehydrogenase mRNA Level and Mitochondrial Respiratory Control Ratio in 
 PC12 Cells. Neurochemical Research, 27(4), 319–323. 
 https://doi.org/10.1023/A:1014963313559 

Terwel, D., Steffensen, K. R., Verghese, P. B., Kummer, M. P., Gustafsson, J.-Å., 
 Holtzman, D. M., & Heneka, M. T. (2011). Critical role of astroglial 
 apolipoprotein E and liver X receptor-α expression for microglial Aβ 
 phagocytosis. The Journal of Neuroscience : The Official Journal of the Society 
 for Neuroscience, 31(19), 7049–7059.  

Thomas, P., Wang, Y. J., Zhong, J. H., Kosaraju, S., O’Callaghan, N. J., Zhou, X. F., & 
 Fenech, M. (2009). Grape seed polyphenols and curcumin reduce genomic 
 instability events in a transgenic mouse model for Alzheimer’s disease. Mutation 
 Research - Fundamental and Molecular Mechanisms of Mutagenesis, 661(1–2), 
 25–34. https://doi.org/10.1016/j.mrfmmm.2008.10.016 

Tolón, R. M., Núñez, E., Pazos, M. R., Benito, C., Castillo, A. I., Martínez-Orgado, J. A., 
 & Romero, J. (2009). The activation of cannabinoid CB2 receptors stimulates in 
 situ and in vitro beta-amyloid removal by human macrophages. Brain Research, 
 1283, 148–154. https://doi.org/10.1016/j.brainres.2009.05.098 



68 

Tong, X.-K., Lecrux, C., & Hamel, E. (2012). Age-Dependent Rescue by Simvastatin of 
 Alzheimer’s Disease Cerebrovascular and Memory Deficits. Journal of 
 Neuroscience, 32(14), 4705–4715.  

Tosun, D., Schuff, N., Mathis, C. A., Jagust, W., Weiner, M. W., & Alzheimer’s Disease 
 NeuroImaging Initiative. (2011). Spatial patterns of brain amyloid-beta burden 
 and atrophy rate associations in mild cognitive impairment. Brain : A Journal of 
 Neurology, 134(Pt 4), 1077–1088. https://doi.org/10.1093/brain/awr044 

Trichopoulou, A., Martínez-González, M. A., Tong, T. Y., Forouhi, N. G., Khandelwal, 
 S., Prabhakaran, D., … de Lorgeril, M. (2014). Definitions and potential health 
 benefits of the Mediterranean diet: views from experts around the world. BMC 
 Medicine, 12, 112. https://doi.org/10.1186/1741-7015-12-112 

Uysal, U., Seremet, S., Lamping, J. W., Adams, J. M., Liu, D. Y., Swerdlow, R. H., & 
 Aires, D. J. (2013). Consumption of Polyphenol Plants May Slow Aging and 
 Associated Diseases. Current Pharmaceutical Design, 19(34), 6094–6111. 
 https://doi.org/10.2174/1381612811319340004 

Valls-Pedret, C., Sala-Vila, A., Serra-Mir, M., Corella, D., de la Torre, R., Martínez-
 González, M. Á., … Ros, E. (2015). Mediterranean Diet and Age-Related 
 Cognitive Decline. JAMA Internal Medicine, 175(7), 1094. 
 https://doi.org/10.1001/jamainternmed.2015.1668 

Vellas, B., Coley, N., Ousset, P. J., Berrut, G., Dartigues, J. F., Dubois, B., … Andrieu, S. 
 (2012). Long-term use of standardised ginkgo biloba extract for the prevention of 
 Alzheimer’s disease (GuidAge): A randomised placebo-controlled trial. The 
 Lancet Neurology, 11(10), 851–859. 

Venkata, C., Prakash, S., & Prakash, I. (2011). Bioactive Chemical Constituents from 
 Pomegranate (Punica granatum) Juice, Seed and Peel-A Review. Int. J. Res. 
 Chem. Environ. International Journal of Research in Chemistry and Environment, 
 1(1), 1–181. 

Vignoli, J. A., Bassoli, D. G., & Benassi, M. T. (2011). Antioxidant activity, 
 polyphenols, caffeine and melanoidins in soluble coffee: The influence of 
 processing conditions and raw material. Food Chemistry, 124(3), 863–868. 
 https://doi.org/10.1016/j.foodchem.2010.07.008 

Villemagne, V L, Burnham, S., Bourgeat, P., Brown, B., Ellis, K. A., Salvado, O., … 
 Masters, C. L. (2013). Amyloid beta deposition, neurodegeneration, and cognitive 
 decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet 
 Neurol, 12(4), 357–367.  

Villemagne, Victor L., Pike, K. E., Chételat, G., Ellis, K. A., Mulligan, R. S., Bourgeat, 
 P., … Rowe, C. C. (2011). Longitudinal assessment of Aβ and cognition in aging 



69 

 and Alzheimer disease. Annals of Neurology, 69(1), 181–192. 
 https://doi.org/10.1002/ana.22248 

Vitolo, O., Gong, B., Cao, Z., Ishii, H., Jaracz, S., Nakanishi, K., … Shelanski, M. 
 (2009). Protection against β-amyloid induced abnormal synaptic function and cell 
 death by Ginkgolide J. Neurobiology of Aging, 30(2), 257–265. 
 https://doi.org/10.1016/j.neurobiolaging.2007.05.025 

Walsh, D. M., Klyubin, I., Fadeeva, J. V, Cullen, W. K., Anwyl, R., Wolfe, M. S., … 
 Selkoe, D. J. (2002). Naturally secreted oligomers of amyloid beta protein 
 potently inhibit hippocampal long-term potentiation in vivo. Nature, 416(6880), 
 535–539. https://doi.org/10.1038/416535a 

Wan, D., Zhou, Y., Wang, K., Hou, Y., Hou, R., & Ye, X. (2016). Resveratrol provides 
 neuroprotection by inhibiting phosphodiesterases and regulating the 
 cAMP/AMPK/SIRT1 pathway after stroke in rats. Brain Research Bulletin, 121, 
 255–262. https://doi.org/10.1016/j.brainresbull.2016.02.011 

Wang, A., Das, P., Switzer, R. C., Golde, T. E., & Jankowsky, J. L. (2011). Robust 
 amyloid clearance in a mouse model of Alzheimer’s disease provides novel 
 insights into the mechanism of amyloid-beta immunotherapy. The Journal of 
 Neuroscience, 31(11), 4124–4136.  

Wang, D., Ho, L., Faith, J., Ono, K., Janle, E. M., Lachcik, P. J., … Pasinetti, G. M. 
 (2015). Role of intestinal microbiota in the generation of polyphenol-derived 
 phenolic acid mediated attenuation of Alzheimer’s disease ??-amyloid 
 oligomerization. Molecular Nutrition and Food Research, 59(6), 1025–1040. 
 https://doi.org/10.1002/mnfr.201400544 

Wang, H., Wang, H., Cheng, H., & Che, Z. (2016). Ameliorating effect of luteolin on 
 memory impairment in an Alzheimer’s disease model. Molecular Medicine 
 Reports, 13(5), 4215–4220. https://doi.org/10.3892/mmr.2016.5052 

Wang, J., Ho, L., Qin, W., Rocher, A. B., Seror, I., Humala, N., … Pasinetti, G. M. 
 (2005). Caloric restriction attenuates beta-amyloid neuropathology in a mouse 
 model of Alzheimer’s disease. The FASEB Journal : Official Publication of the 
 Federation of American Societies for Experimental Biology, 19(6), 659–661. 
 https://doi.org/10.1096/fj.04-3182fje 

Wang, L., Li, W., Lin, M., Garcia, M., & Mulholland, D. (2013). Luteolin, Ellagic Acid 
 and Punicic Acid are Natural Products that Inhibit Prostate Cancer Metastasis, 0–
 43. 

Wang, R., Ding, Y., Liu, R., Xiang, L., & Du, L. (2010). Pomegranate : Constituents , 
 Bioactivities and Pharmacokinetics. Fruit, Vegetable and Cereal Science and 
 Biotechnology, 4(2), 77–87. 



70 

Weinmann, S., Roll, S., Schwarzbach, C., Vauth, C., & Willich, S. N. (2010). Effects of 
 Ginkgo biloba in dementia: systematic review and meta-analysis. BMC 
 Geriatrics, 10(1), 14. https://doi.org/10.1186/1471-2318-10-14 

West, T., Atzeva, M., & Holtzman, D. M. (2007). Pomegranate polyphenols and 
 resveratrol protect the neonatal brain against hypoxic-ischemic injury. 
 Developmental Neuroscience, 29(4–5), 363–372. 
 https://doi.org/10.1159/000105477 

Whyte, A. R., & Williams, C. M. (2015). Effects of a single dose of a flavonoid-rich 
 blueberry drink on memory in 8 to 10y old children. Nutrition, 31(3), 531–534. 
 https://doi.org/10.1016/j.nut.2014.09.013 

Wilcock, D. M., Rojiani, A., Rosenthal, A., Subbarao, S., Freeman, M. J., Gordon, M. N., 
 & Morgan, D. (2004). Passive immunotherapy against Aβ in aged APP-transgenic 
 mice reverses cognitive deficits and depletes parenchymal amyloid deposits in 
 spite of increased vascular amyloid and microhemorrhage. Journal of 
 Neuroinflammation, 1(1), 24. https://doi.org/10.1186/1742-2094-1-24 

Williams, C. M., El Mohsen, M. A., Vauzour, D., Rendeiro, C., Butler, L. T., Ellis, J. A., 
 … Spencer, J. P. E. (2008). Blueberry-induced changes in spatial working 
 memory correlate with changes in hippocampal CREB phosphorylation and brain-
 derived neurotrophic factor (BDNF) levels. Free Radical Biology and Medicine, 
 45(3), 295–305. https://doi.org/10.1016/j.freeradbiomed.2008.04.008 

Winblad, B., Andreasen, N., Minthon, L., Floesser, A., Imbert, G., Dumortier, T., … 
 Graf, A. (2012). Safety, tolerability, and antibody response of active Aβ 
 immunotherapy with CAD106 in patients with Alzheimer’s disease: randomised, 
 double-blind, placebo-controlled, first-in-human study. The Lancet Neurology, 
 11(7), 597–604. https://doi.org/https://doi.org/10.1016/S1474-4422(12)70140-0 

Wirths, O., Multhaup, G., & Bayer, T. A. (2004). A modified beta-amyloid hypothesis: 
 intraneuronal accumulation of the beta-amyloid peptide - the first step of a fatal 
 cascade. Journal of Neurochemistry, 91(3), 513–520. 
 https://doi.org/10.1111/j.1471-4159.2004.02737.x 

Wolf, S. A., Bick-Sander, A., Fabel, K., Leal-Galicia, P., Tauber, S., Ramirez-Rodriguez, 
 G., … Kempermann, G. (2010). Cannabinoid receptor CB1 mediates baseline and 
 activity-induced survival of new neurons in adult hippocampal neurogenesis. Cell 
 Communication and Signaling, 8(1), 12. https://doi.org/10.1186/1478-811X-8-12 

Wu, J., Bie, B., Yang, H., Xu, J. J., Brown, D. L., & Naguib, M. (2013). Activation of the 
 CB2 receptor system reverses amyloid-induced memory deficiency. Neurobiology 
 of Aging, 34(3), 791–804. https://doi.org/10.1016/j.neurobiolaging.2012.06.011 



71 

Xue, Q. S., Sparks, D. L., & Streit, W. J. (2007). Microglial activation in the 
 hippocampus of hypercholesterolemic rabbits occurs independent of increased 
 amyloid production. J Neuroinflammation, 4, 20.  

Yan, P., Bero, A. W., Cirrito, J. R., Xiao, Q., Hu, X., Wang, Y., … Lee, J.-M. J.-M. 
 (2009). Characterizing the appearance and growth of amyloid plaques in APP/PS1 
 mice. The Journal of Neuroscience : The Official Journal of the Society for 
 Neuroscience, 29(34), 10706–10714.  

Yan Xu, Zhang, J., Li Xiong, Lei Zhang, Dong Sun, & Hui Liu. (2010). Green tea 
 polyphenols inhibit cognitive impairment induced by chronic cerebral 
 hypoperfusion via modulating oxidative stress. The Journal of Nutritional 
 Biochemistry, 21(8), 741–748. https://doi.org/10.1016/j.jnutbio.2009.05.002 

Yancheva, S., Ihl, R., Nikolova, G., Panayotov, P., Schlaefke, S., & Hoerr, R. (2009). 
 Ginkgo biloba extract EGb 761(R), donepezil or both combined in the treatment 
 of Alzheimer’s disease with neuropsychiatric features: a randomised, double-
 blind, exploratory trial. Aging & Mental Health, 13(2), 183–190. 
 https://doi.org/10.1080/13607860902749057 

Yang, F., Lim, G. P., Begum, A. N., Ubeda, O. J., Simmons, M. R., Ambegaokar, S. S., 
 … Cole, G. M. (2005). Curcumin inhibits formation of amyloid β oligomers and 
 fibrils, binds plaques, and reduces amyloid in vivo. Journal of Biological 
 Chemistry, 280(7), 5892–5901. https://doi.org/10.1074/jbc.M404751200 

Yao, Y., Chinnici, C., Tang, H., Trojanowski, J. Q., Lee, V. M., & Praticò, D. (2004). 
 Brain inflammation and oxidative stress in a transgenic mouse model of 
 Alzheimer-like brain amyloidosis. Journal of Neuroinflammation, 1(1), 21. 
 https://doi.org/10.1186/1742-2094-1-21 

Yassine, H. N., Rawat, V., Mack, W. J., Quinn, J. F., Yurko-Mauro, K., Bailey-Hall, E., 
 … Schneider, L. S. (2016). The effect of APOE genotype on the delivery of DHA 
 to cerebrospinal fluid in Alzheimer’s disease. Alzheimer’s Research & Therapy, 
 8(1), 25. https://doi.org/10.1186/s13195-016-0194-x 

Yoshitake, T., Yoshitake, S., & Kehr, J. (2010). The Ginkgo biloba extract EGb 761(R) 
 and its main constituent flavonoids and ginkgolides increase extracellular 
 dopamine levels in the rat prefrontal cortex. British Journal of Pharmacology, 
 159(3), 659–668. https://doi.org/10.1111/j.1476-5381.2009.00580.x 

Yu, D., Li, M., Tian, Y., Liu, J., & Shang, J. (2015). Luteolin inhibits ROS-activated 
 MAPK pathway in myocardial ischemia/reperfusion injury. Life Sciences, 122, 
 15–25. https://doi.org/10.1016/j.lfs.2014.11.014 

Yu, T.-X., Zhang, P., Guan, Y., Wang, M., & Zhen, M.-Q. (2015). Protective effects of 
 luteolin against cognitive impairment induced by infusion of Aβ peptide in rats. 



72 

 International Journal of Clinical and Experimental Pathology, 8(6), 6740–6747. 
 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/26261557 

Yuan, L., Liu, J., Ma, W., Dong, L., Wang, W., Che, R., & Xiao, R. (2016). Dietary 
 pattern and antioxidants in plasma and erythrocyte in patients with mild cognitive 
 impairment from China. Nutrition, 32(2), 193–198. 
 https://doi.org/10.1016/j.nut.2015.08.004 

Yuan, T., Ma, H., Liu, W., Niesen, D. B., Shah, N., Crews, R., … Seeram, N. P. (2016). 
 Pomegranate’s Neuroprotective Effects against Alzheimer’s Disease Are 
 Mediated by Urolithins, Its Ellagitannin-Gut Microbial Derived Metabolites. ACS 
 Chemical Neuroscience, 7(1), 26–33. 
 https://doi.org/10.1021/acschemneuro.5b00260 

Zhang, J.-X., Xing, J.-G., Wang, L.-L., Jiang, H.-L., Guo, S.-L., & Liu, R. (2017). 
 Luteolin Inhibits Fibrillary β-Amyloid1–40-Induced Inflammation in a Human 
 Blood-Brain Barrier Model by Suppressing the p38 MAPK-Mediated NF-κB 
 Signaling Pathways. Molecules, 22(3), 334. 
 https://doi.org/10.3390/molecules22030334 

Zhang, Q.-G., Laird, M. D., Han, D., Nguyen, K., Scott, E., Dong, Y., … Brann, D. W. 
 (2012). Critical Role of NADPH Oxidase in Neuronal Oxidative Damage and 
 Microglia Activation following Traumatic Brain Injury. PLoS ONE, 7(4), e34504. 
 https://doi.org/10.1371/journal.pone.0034504 

Zhao, X., Strong, R., Piriyawat, P., Palusinski, R., Grotta, J. C., & Aronowski, J. (2010). 
 Caffeinol at the Receptor Level. Stroke, 41(2). Retrieved from 
 http://stroke.ahajournals.org/content/41/2/363.short 

Zhao, Y, Dua, P., & Lukiw, W. J. (2015). Microbial Sources of Amyloid and Relevance 
 to Amyloidogenesis and Alzheimer’s Disease (AD). Journal of Alzheimer’s 
 Disease & Parkinsonism, 5(1), 177. https://doi.org/10.4172/2161-0460.1000177 

Zhao, Yuhai, Calon, F., Julien, C., Winkler, J. W., Petasis, N. A., Lukiw, W. J., & Bazan, 
 N. G. (2011). Docosahexaenoic Acid-Derived Neuroprotectin D1 Induces 
 Neuronal Survival via Secretase-and PPARc- Mediated Mechanisms in 
 Alzheimer’s Disease Models. PLoS ONE, 6(1). 
 https://doi.org/10.1371/journal.pone.0015816 

Zhou, F., Chen, S., Xiong, J., Li, Y., & Qu, L. (2012). Luteolin reduces zinc-induced tau 
 phosphorylation at Ser262/356 in an ROS-dependent manner in SH-SY5Y cells. 
 Biological Trace Element Research, 149(2), 273–279. 
 https://doi.org/10.1007/s12011-012-9411-z 

Zimmermann, M., Colciaghi, F., Cattabeni, F., & Di Luca, M. (2002). Ginkgo biloba 
 extract: from molecular mechanisms to the treatment of Alzhelmer’s disease. 



73 

 Cellular and Molecular Biology (Noisy-Le-Grand, France), 48(6), 613–623. 
 Retrieved from http://europepmc.org/abstract/MED/12396071 

Zlokovic, B. V. (2008). The Blood-Brain Barrier in Health and Chronic 
 Neurodegenerative Disorders. Neuron, 57(2), 178–201. 
 https://doi.org/10.1016/j.neuron.2008.01.003 

 

 

 

 

 

 

 


	The Effects and Mechanisms of Phytochemicals on Alzheimer’s Disease Neuropathology
	Recommended Citation

	tmp.1631661568.pdf.VIBDY

