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ABSTRACT OF THE DISSERTATION 

 

Small Molecule Inhibitors of HPV16 E6 

 

by 

 

Chung-Hsiang Yuan 

 

Doctor of Philosophy, Graduate Program in Microbiology and Molecular Genetics 

Loma Linda University, June 2013 

Penelope Duerksen-Hughes, Chairperson 

 

High-risk human papillomaviruses (HR-HPVs) cause nearly all cases of cervical 

cancer.  HPV 16 E6, one of two viral oncogenes, protects cells from apoptosis by binding 

to and accelerating the degradation of several apoptotic proteins, including caspase 8 and 

p53. We proposed that blocking the interactions between HPV E6 and its partners using 

small molecules had the potential to re-sensitize HPV+ cells to apoptosis. To test this 

prediction, we screened libraries of small molecules for candidates that could block 

E6/caspase 8 binding, and identified several candidates from different chemical classes. 

Testing hits for dose-dependency and specificity in vitro and for toxicity in a cell-based 

assay allowed us to select the two best candidates, myricetin and 6,7-dihydro-1H-

imidazo[4,5-c] pyridine-6-carboxylic acid (DIPC), for further testing. Both compounds 

significantly and specifically inhibited the ability of E6 to bind in vitro to both caspase 8 

and to E6AP, the protein that mediates p53 degradation. In addition, both compounds 

were able to increase caspase 3/7 activity and to sensitize HPV+ SiHa cells, but not HPV- 

C33A cells, to apoptosis induced by TRAIL, a cancer-specific ligand, as well as the 

chemotherapeutic agents doxorubicin and cisplatin. New therapies based on this work 

may improve treatment for HPV+ cancer patients.  
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CHAPTER ONE 

INTRODUCTION 

 

Human Papillomavirus Infections and Cancer 

Human papillomaviruses (HPV) are small, double stranded DNA viruses that 

infect epithelial tissues, including those of the anogenital tract. Of the more than 200 

different identified types of HPV, about 40 are involved in genital tract infections. Some 

types of HPV cause warts, while others can increase the risk of malignancy and lead to 

cancer of the cervix, other anogenital regions, and the head and neck areas [1]. HPV 

types are classified as either high risk or low risk, with high-risk types being associated 

with cancer formation while low risk types are not. For example, HPV types 6 and 11 are 

classified as low risk types, and infection with these types results in the proliferation of 

epithelial cells and manifests as warts or papillomas on the skin. However, these 

infections are generally self-limiting and do not lead to malignancy. On the other hand, 

HPV types 16 and 18 are major high-risk genotypes, which together cause up to 75% of 

cervical cancer cases as well as a significant number of head and neck squamous cell 

carcinomas. The association between HPV and human cancer has been studied for more 

than three decades. HPV-induced cervical cancer is the second most common cancer and 

the fifth leading cause of cancer-related deaths among women worldwide [2, 3]. Cervical 

cancer is not the only cancer caused by high-risk types of HPV; in fact, biological and 

functional studies have demonstrated the role of HPV in the development of several 
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additional types of cancer, such as cancer of the head and neck, vaginal, vulvar, anal, and 

penile areas [4, 5].  

When high-risk HPV infects young females, most infections cause no or only 

minor symptoms, and usually disappear without any treatment within a few years. 

However, in 5% to 10% of infected women, the infection can persist for many years [6]. 

Persistent infections are at relatively high risk for causing cell abnormalities and 

developing lesions of the cervix, which can in turn lead to the development of cervical 

cancer. In 2010, 12,000 women in the United States were diagnosed with HPV-induced 

cervical cancer, of which 4000 were expected to die. Furthermore, cervical cancer is the 

second most common cancer in women worldwide. There are approximately 400,000 

new cases of this disease diagnosed each year and approximately half of these patients 

will die. The development of HPV-induced cervical cancer usually requires 15–20 years, 

providing a window of opportunity for detecting the presence of HPV and/or HPV-

induced cell abnormalities.  

Unfortunately, current approaches for the prevention and treatment of HPV-

associated malignancies are not always effective. Significant progress has been made 

with regards to prevention, in that two vaccines that target high-risk HPVs, Cervarix and 

Gardasil, have both demonstrated remarkable efficacy in preventing infection within the 

vaccinated population [7]. These vaccines have been shown to reduce the infection rate 

(by at least 90%), as well as the incidence of early neoplasia, caused by the targeted HPV 

types (HPV type 16 and 18 in the case of Cervarix; HPV types 6, 11, 16, and 18 in the 

case of Gardasil) [8-10].  However, because these vaccines are prophylactic rather than 

therapeutic, they are not effective interventions for patients already infected with HPV. 
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Surgical and ablative techniques are available for these patients, including excision, 

electro- and cryosurgery, and laser-based treatments. However, these procedures are 

invasive and cytodestructive, and lesions frequently recur following treatment. Combined 

chemoradiotherapies have also been assessed, but with mixed results. Topical treatments 

for warts are available, and include trichloroacetic acid, liquid nitrogen, imiquimod, 

interferon- injections and podophyllin resin [11]. However, repeated treatments are 

again necessary, treatment is not always effective, and imiquimod is not approved for use 

in the oral cavity. Also, while these treatments may remove warts, they do not cure the 

HPV infection itself. Viral DNA can be detected before cell abnormalities are observed, 

and the Papanicolaou test, also called a Pap smear or Pap test, is used to screen and detect 

abnormal cells, possible precursors for malignancies. However, Pap tests may not always 

detect the abnormal cells. First, the sample may not contain abnormal cells that may be 

present on the cervix. Second, the abnormal cells may exist high up in the cervix or deep 

in the glands of the cervix (adenocarcinoma), and it is difficult to obtain samples from 

these areas. Due to the limitations of current approaches, therefore, there remains an 

urgent need for the development of effective and novel therapies that are based on a solid 

understanding of the biology of the virus. 

 

HPV Virology 

HPV Genes and Proteins 

The HPV genome is divided into an early region (E), a late region (L) and a non-

coding long control region (LCR) (Figure 1A). The E region encodes seven non-

structural proteins: E1, E2, E4, E5, E6, E6* and E7, while the L region encodes two 
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structural proteins: L1 and L2, which code for the major and minor capsid proteins, 

respectively. Early genes are responsible for modulating epithelial cell function so as to 

favor virus production. For example, their gene products modulate keratinocyte 

differentiation, promote viral DNA replication and segregation, and inhibit viral 

clearance by the immune system. All early HPV proteins perform multiple functions, and 

act by interacting with a variety of cellular partners [12, 13]. These interactions in turn 

modify the flow through numerous cellular pathways, including apoptosis. The core 

proteins of the late genes, L1 and L2, together with HPV DNA, participate in the 

assembly of virus particles.  

 

HPV Life Cycle 

HPV infects cells in the basal layer, below the surface of the epithelium, and 

carries out a life cycle that is closely tied to the differentiation program of the host cell 

(Figure 1B). During the early stages of infection, the episomal viral genome is usually 

present at fewer than 100 copies per cell, and functions as a slowly replicating plasmid. 

Shortly after infection and uncoating, low-level expression of early genes (E6, E6*, E7, 

E1 and E2) as directed by the early promoter enables maintenance of the episomal state 

of the HPV genome [14-18]. 

As cells move up through the layers, they begin to proliferate. The ability of E6 

and E7 to suppress apoptosis and to alter the function of factors involved in cell-cycle 

regulation, respectively, facilitates prolongation of the proliferative stage of keratinocyte 

differentiation [19, 20]. During this proliferative stage, E1 and E2 function to regulate 

viral DNA replication and transcription such that viral DNA is replicated coordinately 
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with the host cell chromosome. E2 binds to the HPV upstream regulatory region and 

recruits the E1 DNA helicase to the viral origin of replication. In addition, E2 acts to bind 

the necessary factors onto mitotic chromatin and to tether the virus genome to host 

chromosomes during mitosis [21]. Meanwhile, E1 binds to the viral origin of replication. 

It then uses ATP to unwind double-stranded DNA, acting like a helicase.  

Amplification of viral genomes begins in the proliferative layers, and an 

increased level of expression of all the early viral gene products, including E4 and E5 

[22-24], is necessary for this process. During this stage, an increase in transcription of the 

genes coding for the E1, E2, and E1-E4 fusion proteins is observed [25, 26]. The 

sequence of E4 is located entirely within the E2 open reading frame (ORF), and the 

protein is expressed relatively late during viral infection. E2 is co-expressed with and 

binds to E1^E4 protein and this interaction results in the stabilization of both proteins 

[27]. Overexpression of the E1^E4 protein enables reorganization of keratin network 

during keratinocyte differentiation and viral genome amplification [28]. 

Both the E4 and E5 proteins participate in the late viral functions, although details 

of these mechanisms are not yet entirely defined. It has been shown that E5 plays a subtle 

role during the productive stage of the HPV16 life cycle [23, 29]. When the infected cells 

reach the point of terminal differentiation, the viral copy number is increased up to a 

thousand per cell, and the late genes L1 and L2, which encode viral capsid proteins, are 

expressed. The viral capsid proteins assemble into virus particles and are released and 

spread to other host cells. Through these mechanisms, HPV is able to enhance the 

survival of infected cells in order to facilitate its own replication cycle, and thus ensure 

the production and spread of progeny. 
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A 

 

B 

 

Figure 1 (A) Genomic map of HPV 16 (B) Viral gene expression following HPV 

infection. Taken from Doorbar et al, 2006 [30]. 

 

 

E6 

E7 
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Integration and Cancer 

During the normal viral life cycle, the HPV genome exists in host cells as an 

episome. In rare cases, however, integration of the viral genome into that of the host can 

occur. Interestingly, this integration is not required for the HPV life cycle and is, in fact, 

detrimental to the virus, as integrated viral sequences do not reproduce. However, 

integration is closely tied to the development of cancer, as most cases of HPV-induced 

cervical cancer feature an integrated form of the HPV genome. Such integration typically 

leads to an increase in the expression of HPV early proteins, including the E6 and E7 

oncoproteins, and a consequential increase in cellular transformation and the probability 

of HPV induced carcinogenesis [31]. The activities of E6 are of particular relevance to 

cancer development, because E6 functions to block both intrinsic and extrinsic apoptosis.  

 

Apoptosis 

Apoptosis, also known as programmed cell death, plays an important role in 

development, cellular homeostasis and the pathophysiology of many diseases [32]. 

Apoptosis helps to eliminate damaged cells and also contributes to the elimination of 

virus-infected cells [33]. If inappropriately up- or down-regulated, apoptosis can also 

contribute to various diseases such as autoimmunity and cancer [34]. Two major classic 

apoptotic pathways have been identified: the extrinsic pathway, triggered by the 

engagement of “death receptors”, and the intrinsic pathway, which responds to a variety 

of stress signals (for example, radiation) by triggering the release of intracellular signals 

that promote cell death [35-37].  
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Extrinsic Pathway 

Apoptosis is triggered through the extrinsic pathway when specific receptors are 

activated by their corresponding ligands. The majority of these “death” ligands belong to 

the TNF (tumor necrosis factor) family, and their corresponding cell surface “death” 

receptors to the TNF receptor family. TNF-alpha binds to TNF R1 or R2 receptors, Fas 

ligand to Fas, and TRAIL (TNF-related apoptosis-inducing ligand) binds to Death 

Receptor (DR) 1, DR2, DR3, DR4, and DR5. Other receptors within this family include 

FADD-like interleukin-1 beta-converting enzyme (FLICE) and TNF-like weak inducer of 

apoptosis (TWEAK) [38]. Adaptor molecules such as TRADD (Tumor necrosis factor 

receptor type 1-associated DEATH domain protein) and FADD (Fas-Associated protein 

with Death Domain) are engaged, and initiator caspases such as procaspase-8 are 

activated. Interactions of regions such as the death domain (DD) allow TRADD, FADD, 

and pro-caspase 8 to combine to form the death-inducing signaling complex (DISC) [39]. 

Formation of the DISC enables cleavage of caspase-8, which then cleaves and activates 

executioner caspases such as procaspase-3/7. The active caspase-3/7 can cleave many 

different target substrates, including poly(ADP-ribose) polymerase (PARP), and these 

cleavages lead to the demise of the cell. PARP is a nuclear enzyme that catalyzes the 

transfer of the ADP-ribose moiety of NAD+ to a specific subset of nuclear substrates in 

response to DNA damage. Active caspase-3 cleaves PARP into 24 kDa and 89 kDa 

segments, thereby eliminating the ability of PARP to function in DNA repair and thus 

promoting apoptosis. In the case of Fas-mediated apoptosis, two pathways have been 

shown to operate in a cell type-dependent manner (types I and II) [40]. In the type I cell 

model, a robust activation of caspase-8 can be observed following DISC formation. 
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Overexpression of anti-apoptotic proteins such as Bcl-2 or Bcl-XL cannot stop the 

cleavage of caspase-8 and caspase-3, and mitochondrial activity is not required to trigger 

apoptosis in type I cells. In contrast, DISC formation in type II cells is weak, and 

additional signaling from the mitochondria is necessary for apoptosis. Low levels of 

DISC and capsase-8 are detected in type II cells. In this context, caspase-8 cleaves Bid 

and triggers mitochondrial depolarization and the release of cytochrome c. Following its 

release, cytochrome c forms a complex with apoptosis protease activating factor 1, (Apaf-

1) and procaspase-9, called the apoptosome. The apoptosome is analogous in function to 

the DISC, and mediates the activation of caspase-9, which in turn activates caspase-3. 

The intracellular events of apoptosis then give way to the external characteristics of this 

form of cell death, which include chromatin condensation, phosphatidlyserine exposure, 

cytoplasmic shrinkage and membrane blebbing. Anti-apoptotic proteins such as Bcl-2 

and Bcl-XL can block the activation of caspase in type II cells and significantly reduce 

apoptosis [40, 41]. For ligands other than those of the TNF family, initiator caspases 

include capsase-10 and caspase-2, and the corresponding adaptor proteins are RIP, 

RAIDD/CRADD, and TRAFS. In most of these cases, activation of the executor caspases 

3/7 initiates the apoptotic cascade [42-45].  

 

Intrinsic Pathway 

The classic intrinsic apoptotic pathway, also referred to as the mitochondrial 

pathway, can respond to a variety of external stimuli such as DNA damage, radiation and 

osmotic stress [46, 47]. Activation of this pathway results in the release of cytochrome c 

from the mitochondrial intermembrane space to the cytosol. Apoptotic protease activating 
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factor-1 (Apaf-1), pro-caspase 9 and cytochrome c then form a complex called the 

apoptosome in the cytosol [48, 49]. The binding of Apaf-1 and cytochrome c to 

procaspase-9 leads to the auto-cleavage and activation of procaspase-9. The active 

caspase-9 then cleaves and activates caspase-3, which induces the cleavage of additional 

substrates, such as PARP gelsolin, and protein kinase C-delta [50-52] (see Figure 2).  
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Figure 2. Generalized overview of the extrinsic and intrinsic apoptosis pathways.  

The extrinsic pathway is initiated by the binding of a tumor necrosis factor (TNF) family 

ligand to its receptor, followed by activation of downstream signaling proteins. In the 

intrinsic pathway, cellular stress causes BH3 activation and cytochrome c release. Both 

pathways activate the effector caspase-3 and promote cell death. Proteins are identified 

within the text [53]. 
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Virus-Mediated Modulation of Apoptosis 

Following infection of host cells, a virus typically employs a number of different 

mechanisms to avoid the host immune response and to initiate and maintain efficient 

production and spread of its progeny. In most cases, a host organism will attempt to 

initiate apoptosis in order to eliminate infected cells. For this reason, many viruses, 

especially the DNA viruses, encode a variety of viral proteins that can inhibit or delay 

these protective actions, often by targeting key cellular proteins [37]. For example, 

human adenovirus employs the E3 14.7 kDa protein to reduce TNF- and Fas-induced 

apoptosis; these proteins work by inhibiting the TNFR-induced release of arachidonic 

acid [54]. Poxvirus produces two proteins, CrmB and CrmC, that change the 

conformation of TNFR in order to block the binding of TNF [55]. In addition, poxvirus 

and herpesvirus both encode proteins with homology to the DED domain, and thus block 

the binding of death receptors and the FADD adaptor protein to caspase-8 [56]. CD40 

and CD40L form a receptor/ligand pair found on antigen presenting and T cells, 

respectively, and is required for their activation. Epstein-Barr virus (EBV), a causal agent 

of epithelial and lymph tumors, can increase the expression of CD40L but down-

regulates the expression of CD40. This abnormal interaction between CD40L and CD40 

contributes to decreased apoptosis of infected cells and the development of myeloma 

cells [57]. Furthermore, the Epstein-Barr nuclear antigen 3C (EBNA3C) is known to 

possess anti-apoptotic properties and to regulate cell proliferation. For example, 

EBNA3C can bind to p53 and Gemin3 so as to inhibit the binding between p53 and 

DNA, thus blocking the p53-mediated apoptotic pathway [58]. HPV also expresses 

several proteins that affect cellular apoptotic pathways, as detailed below. 
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HPV Proteins That Modulate Apoptosis 

Apoptosis is an important mechanism through which the host can eliminate 

infected cells, and the ability to avoid apoptosis can therefore enhance virus survival. In 

addition, apoptosis plays an important role during keratinocyte differentiation [59]. For 

these reasons, it is to the virus’ advantage to intervene in apoptotic pathways, and five 

papillomavirus proteins, E2, E5, E6, E6* and E7, have been shown to do so. E5 and E6 

can protect host cells from apoptosis, while E2 and E6* appear to possess pro-apoptotic 

properties. E7 can act in either a pro-apoptotic or an anti-apoptotic manner, depending on 

the cell type and circumstances. While it is not entirely clear why pro-apoptotic 

properties of virus proteins might enhance virus survival and propagation, it is likely that 

the influence of each HPV protein on host apoptotic pathways is related to specific stages 

of the virus life cycle. Overexpression of the major oncogenes, E6 and E7, during cell 

transformation generally results in resistance of transformed cells to apoptosis; this 

ability to avoid apoptosis is one of the major hallmarks of carcinogenesis [60].  

 

HPV E6 

The essential oncoprotein HPV E6 has been widely studied over the last two to 

three decades. E6 is a small protein, consisting of 151 amino acids and presenting two 

atypical zinc fingers with motifs that contain two cysteines (Cys-X-X-Cys). The p53 

tumor suppressor is the first-described and best-known target of HPV E6 [61]. p53 acts as 

a transcriptional factor, and can trigger cell cycle arrest or apoptosis in response to 

cellular stress or DNA damage. Under normal conditions, triggers such as DNA damage 

cause increases in the level of p53, which then lead to downstream effects such as cell 
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cycle arrest and/or apoptosis, depending on the intensity or amplitude of the damage or 

stimulus. The presence of E6 from high-risk types of HPV interferes with this process, 

because E6 binds to both p53 and the E6-associated protein ligase (E6AP), causing 

ubiquitinylation and the subsequent degradation of p53. This loss then prevents p53 from 

inducing either growth arrest or apoptosis of infected cells [62]. During this process, E6 

first binds to E6AP, which functions as an E3 ubiquitin protein ligase. Then, the 

E6/E6AP complex binds to the core domain of p53. E6AP catalyzes the transfer of 

ubiquitin to p53, thereby enabling its proteasome-mediated degradation. This E6-

mediated inhibition of p53 activity can increase the survival of transformed cells [63, 64]. 

Interestingly, a recent study showed that E6 could also interact with ubiquitin ligases 

other than E6AP in order to promote p53 degradation [65].  

In addition to p53, E6 also interacts with other partner proteins that play a variety 

of roles in the cell [12, 66]. Following binding to E6, many of these proteins are lost by 

an E6AP-mediated ubiquitinylation and degradation process similar to that observed for 

p53. E6 partners include proteins involved in apoptosis such as Bak [67], c-Myc [68], 

TNF receptor 1 (TNF-R1) [69], FADD, and caspase-8 [12, 70-72]. Bak and Myc were the 

first apoptosis-related proteins, other than p53, to be identified as targets of E6. 

Following binding to E6, both Bak and Myc are degraded through the ubiquitin-

proteasome pathway [68]. This loss of Bak has biological consequences, as E6 has been 

shown to inhibit TNF-mediated apoptosis by reducing the expression of Bak in a process 

independent of the regulation of caspase-3 and caspase-8 expression [73]. Other key 

proteins involved in cellular apoptosis can also be compromised by E6. For example, E6 

can bind to the death effector domains (DEDs) of FADD and procaspase-8 and accelerate 
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their degradation [70-72, 74]. The resulting lower amounts of FADD and procaspase 8 in 

E6-expressing cells then hinders formation of the apoptotic Death Inducing Signaling 

Complex (DISC) that would normally be triggered by members of the TNF superfamily, 

thereby compromising the ability of TNF, FasL and TRAIL to initiate apoptosis [69, 70, 

72, 75]. In addition, E6 exerts effects on other apoptotic and anti-apoptotic proteins at the 

transcriptional level. For example, E6 can up-regulate the activity of the survivin 

promoter [76].  

In each of these cases, E6 functions to reduce cell death by compromising the 

integrity of cellular pathways leading to apoptosis. In the context of the virus life cycle, 

the prevention of apoptosis is critical because it protects infected cells from elimination 

by the immune system, and therefore enables them to continue serving as hosts. This 

ability may also prolong the early stages of the life cycle. During carcinogenesis, the 

expression of E6 is typically increased, resulting in cells that do not undergo apoptosis 

and that are then susceptible to E6 and E7-mediated transformation. One recent study 

found that E6-mediated cervical cancer relies on the continuous expression of E7 along 

with constitutively expressed E6, and that continuous expression of E7 is required for the 

maintenance of cervical cancer and precancerous lesions in transgenic mice [77].  

E6 has been considered a promising target molecule for therapy due to its abilities 

to block apoptosis and promote cancer development.  For this reason, inhibition of E6 is 

predicted to lead to more cell death. Some progress was reported in 2004 and 2006 

regarding the development of inhibitors of E6-E6AP interactions, a necessary step in the 

loss of p53 [78-80]. However, to the best of our knowledge, no group other than our own 
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is exploring the possibility of interfering with E6 function by blocking its ability to 

inhibit apoptotic signaling. 
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Figure 3. Interactions between E6 and apoptotic proteins. E6 binds to apoptotic proteins 

that are involved in both extrinsic and intrinsic apoptosis pathways and accelerates their 

degradation, thereby blocking apoptotic signal transduction. 
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Re-Engagement of Apoptotic Pathways as a Therapeutic 

Approach for HPV-Induced Cancers 

 

Currently, therapeutic approaches that rely on activation of either the intrinsic or 

the extrinsic apoptotic pathways are unlikely to be helpful for HPV-associated diseases 

due to the ability of high-risk E6 proteins to subvert both extrinsic and intrinsic apoptotic 

pathways by mediating the rapid degradation of signaling molecules (p53 in the case of 

the intrinsic pathway and FADD and caspase 8 in the case of the extrinsic pathway). As a 

result of these E6 activities, therefore, engagement of either the extrinsic or the intrinsic 

apoptotic pathways does not result in the transduction of the intended death signal 

because the mediator molecules are missing. Therefore, if any of these apoptosis-

inducing signaling pathways are to be used as tools for the elimination of HPV-associated 

malignancies, it will be necessary to restore the missing signaling molecules. 

An approach based on inhibiting the ability of E6 to mediate the rapid 

degradation of its cellular partners has the potential to re-sensitize HPV+ cells to inducers 

of apoptosis, and could therefore make certain existing cancer treatments available to 

those suffering from HPV-associated malignancies. 
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Figure 4. Working model and strategy. (A) TRAIL-mediated apoptotic pathway. The 

binding of either TRAIL or antibodies directed against the TRAIL R (e. g., AMG 655) to 

DR5 activates the pathway, leading to complex formation, activation of caspase 8 and 

initiation of the apoptotic cascade. (B) The HPV E6 proteins binds to p53 (not shown in 

figure), FADD and (pro)caspase 8, causing their rapid degradation and thus blocking 

apoptotic signaling. (C) Small, drug-like molecules that interfere with the ability of E6 to 

interact with caspase 8 and FADD have the potential to rescue the apoptotic pathway and 

thus re-sensitize cells to apoptosis. 
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Reactivating Intrinsic Apoptosis 

Progress has been made in the search for inhibitors of the E6/E6AP interaction; 

this approach has the potential to re-activate the intrinsic apoptotic pathway. First, the 

essential binding motif through which E6 and E6AP interact was identified and verified 

[24, 81, 82]. Structural information regarding the E6/E6AP binding motif was then 

transferred to a three-dimensional query format suitable for computational screening of 

large chemical databases. This 3D format was used to query the National Cancer Institute 

(NCI) open chemical database comprising approximately 240,000 compounds, as well as 

the Sigma-Aldrich Library of Rare Chemicals of 97,000 compounds. Selected molecules 

that were predicted to fit into the E6/E6AP binding motif were then analyzed for their 

ability to inhibit E6/E6AP interactions and thereby interfere with E6-promoted p53 

degradation. Following these in vitro and cell-based assays, several compounds with 

these characteristics were identified. Although these compounds have the potential for 

development into new therapeutic agents for treatment of HPV-associated cancers [79], 

no significant progress has been reported for the last several years. 

 

Reactivating Extrinsic Apoptosis 

It may also be possible to target the extrinsic apoptotic pathway. For example, 

activation of the TRAIL-mediated, extrinsic apoptotic pathway shows promise in the 

treatment of several types of tumors. TRAIL-based therapies have elicited significant 

interest in recent years, largely due to their apparent ability to kill tumor cells while 

sparing most normal cells. Previous studies have reported on the effectiveness of both 

TRAIL and -TRAIL R1 and R2 in combination with other sensitizing agents such as 
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doxorubicin, bortezomib, adriamcin, 5-fluorouracil, irinotecan hydrochloride, paclitaxel, 

carboplatin, gemcitabine, cisplatin and radiation in both cell and animal model systems 

[83-86]. Currently, the challenge with using these approaches to target HPV-associated 

cancers is similar to the challenge noted above; namely, that E6 targets the mediating 

molecules for rapid degradation. 

Work from our laboratory over the past decade has demonstrated that E6 can bind 

to many components involved in extrinsic apoptosis, including tumor necrosis factor 

receptor 1 (TNF R1) [75], the adaptor molecule Fas-associated death domain (FADD) 

[70], and procaspase 8 [87]. The binding sites on FADD and caspase 8 were identified 

using targeted mutagenesis, and a 23 amino acid peptide corresponding to the E6 binding 

site on FADD was designed and synthesized. We then demonstrated that this peptide 

could block the interaction between HPV E6 and FADD (and between E6 and caspase 8), 

thus re-sensitizing SiHa cells to TRAIL- and Fas-induced apoptosis [74] and providing 

proof-of-principle for our proposed approach. However, turning peptides into therapeutic 

agents is quite challenging due to well-known issues related to delivery, stability, etc. 

Small molecules represent alternative approach, as they have been used 

successfully to inhibit important signal transduction pathways involved in breast, colon, 

pancreatic and lung cancer formation [88]. Comparing to peptide inhibitors, small 

molecules are relatively stable, penetrate more easily into target cells, and are easier to 

modify for drug development. Once small molecules block the inhibitory activity of E6, 

known triggers of apoptosis, such as TRAIL, could initiate apoptosis of HPV-positive 

cells. Such findings suggest that targeting HPV E6 (and/or other HPV oncoproteins) 
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could prove an excellent therapeutic strategy to treat HPV-associated cancers, and that 

small molecules could prove an appropriate approach to reach this goal. 

 

Purpose of This Study 

As previously mentioned, expression of HPV E6 blocks apoptotic signal 

transduction by binding to and accelerating the degradation of several apoptotic proteins 

including p53, caspase 8, and FADD. This ability of HPV E6 makes cancer therapies that 

function by inducing apoptosis ineffective for the treatment of HPV-associated 

malignancies. Therefore, in order to discover and develop novel and effective therapeutic 

approaches for these malignancies, we sought to identify agents that can block E6 

function by addressing the following questions: 1) What kinds of small molecules have 

the ability to block the interactions between E6 and its apoptotic protein partners? 2) Can 

those small molecules re-sensitize E6-expressing cells to normal apoptotic stimuli?  

Results from this study will lay the groundwork for making apoptotic therapies 

that function by activating apoptotic pathways, such as TRAIL or other chemotherapy 

drugs, available to patients suffering from HPV-associated malignancies. Our 

contribution to the field will be the identification of small molecules that, by inhibiting 

the binding of E6 to its cellular partners, sensitize tumor cells to apoptosis. This 

contribution is significant because it will lay the foundation for developing a novel class 

of therapeutic agents effective in HPV-infected individuals. The proposed work will also 

lead to insights beyond the field of HPV therapeutics by enhancing our current 

understanding of protein/protein interactions and how they can be blocked, HPV virology, 

virus/host interactions, and how the cellular pathways affected by HPV normally function.  
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Abstract 

High-risk strains of human papillomaviruses (HPVs) cause nearly all cases of 

cervical cancer as well as a growing number of head and neck cancers. The oncogenicity 

of these viruses can be attributed to the activities of their two primary oncoproteins, E6 

and E7. The E6 protein has among its functions the ability to prevent apoptosis of 

infected cells through its binding to FADD and caspase 8. A small molecule library was 

screened for candidates that could inhibit E6 binding to FADD and caspase 8. Flavonols 

were found to possess this activity with the rank order of myricetin > morin > quercetin > 

kaempferol = galangin >>(apigenin, 7-hydroxyflavonol, rhamnetin, isorhamnetin, 

geraldol, datiscetin, fisetin, 6-hydroxyflavonol). Counter screening, where the ability of 

these chosen flavonols to inhibit caspase 8 binding to itself was assessed, demonstrated 

that myricetin, morin and quercetin inhibited GST-E6 and His-caspase 8 binding in a 

specific manner. The structure–activity relationships suggested by these data are unique 

and do not match prior reports on flavonols in the literature for a variety of anticancer 

assays. 
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Introduction 

Human papillomavirus (HPVs) are small DNA viruses that infect human 

epithelial tissue such as that found in the genital tract, hands, and feet. There are more 

than 200 types of HPVs, which can be classified both on the basis of sequence homology, 

leading to assignments of species, and on the basis of whether infection with a particular 

type is likely to lead to cancer (high-risk vs low-risk). Most, though not all, of the high-

risk types are located within species 9 (reviewed in Munoz et al., 2006) [90]. HPV types 

16 (species 9) and 18 (species 7) are high-risk types, and are the causative agents of 

nearly all cases of human cervical cancer, between 20% and 30% of head and neck 

cancer cases, and some cases of other cancers [91-94]. The HPV-encoded oncogenes E6 

and E7 are responsible for cellular immortalization and transformation.6–8 While E7 is 

best known for the inactivation of the retinoblastoma (Rb) protein and thus for the 

immortalization of differentiated cells, E6 induces degradation of p53, which serves as a 

critical tumor suppressor. In addition, E6 binds to and inactivates other cellular proteins 

involved in normal cellular functions [12, 13, 95, 96].  

In our previous work, we found that E6 interacts with the extrinsic apoptosis 

pathway by binding to key signaling molecules such as TNF R1, FADD and caspase 8 

and altering their functions, thus allowing HPV-infected cells to avoid clearance through 

apoptosis [70, 72, 75, 87]. Activation of the extrinsic apoptotic pathway normally begins 

with the binding of ligands such as TNF-, FasL or TRAIL to their receptors, which 

then leads to recruitment of adaptor proteins such as FADD, TRADD and TRAF. A 

Death Inducing Signaling Complex (DISC) is then formed, which includes the initiator 

caspase, procaspase-8, bound to the adapter protein FADD. Procaspase 8 cleavage 
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releases active cysteine-aspartic proteases, which then enable caspase 8 to cleave and 

activate effector caspases such as caspase 3 and 7 and to initiate apoptosis. If the HPVE6 

oncoprotein is expressed in the cell, however, this sequence cannot occur. E6 binds to 

FADD and procaspase-8 and blocks the interaction between the two cellular proteins; this 

binding also increases the degradation of FADD and procaspase-8. Both events prevent 

the successful completion of apoptosis, and cells become resistant to cell death induced 

by TNF-, Fas-, and TRAIL [70, 75, 87]. 

  Although two vaccines designed to prevent cervical cancer are now available 

[97-99], the development of effective therapeutic drugs directed against HPV infection 

and disease remains an urgent need. Because the vaccine is prophylactic rather than 

therapeutic, it will bring no benefit to women and men who are already infected. In fact, 

it will not have a significant effect on human health for decades, as most women become 

infected in their late teens/early twenties, while cancer appears in their late forties/early 

fifties. Furthermore, the vaccine targets only two of the high-risk strains (16 and 18), 

which together account for 70–75% of the cases, leaving 25–30% of the high-risk 

infections unaffected by an individual’s vaccination status. Finally, the high cost and 

multiple boosters needed (three shots total) make it unlikely that this vaccine will become 

readily available in the developing world in the near future. 

  For these reasons, the development of novel and effective therapeutic 

interventions for established cases of cervical cancer remains an urgent need. Small 

molecule approaches have been used to inhibit important signal transduction pathways 

that are involved in breast, colon, pancreatic and lung cancer formation [78, 88]. 

However, such small molecule-based therapeutic agents have not yet been fully 
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developed for HPV-mediated cancers. Our current knowledge of the molecular 

mechanisms by which HPV 16 E6 prevents apoptosis through the extrinsic pathway [12, 

70, 72, 87, 96] has now allowed us to propose a novel approach for using small 

molecules to inhibit the binding between E6 and the key players of extrinsic apoptosis, 

FADD and procaspase 8. If this binding can be prevented, cells should be resensitized to 

apoptotic mediators such as TRAIL, and TRAIL-based therapy can then be successfully 

used to initiate apoptosis of E6-expressing tumor cells. In this paper we report on our 

results from screening a small molecule library for molecules that can prevent E6/FADD 

and E6/caspase 8 binding. In this study, we used AlphaScreen™ technology (Perkin–

Elmer) to search for molecules capable of inhibiting E6/FADD and E6/caspase 8 binding. 

Secondary screening allowed us to eliminate a number of molecules from consideration, 

and suggested two classes of chemicals for further analysis. The best candidate was the 

flavonol, myricetin, which served as a potent inhibitor of E6/caspase 8 binding and 

helped to define the structure–activity relationship (SAR) of the ligands. 

 

Experimental Methods and Results 

The construction of the pGEX-E6 and pTriEx-Caspase-8 DED plasmids has been 

reported [12]. Expression and purification of GSTE6, His-FADD and His-Caspase-8 

DED were carried out as previously described [12, 74]. GST-tagged and His-tagged 

proteins were diluted in GST dilution buffer (PBS pH 8.0, 5% glycerol, 2 mM DTT) and 

His dilution buffer (20 mM Hepes pH 7.4, 150 mM NaCl, 2 mM KCl, 5% glycerol, 2 

mM DTT). Protein concentration was measured using Coomassie Plus—The Better 
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Bradford Assay Reagent (Thermo Scientific). The purity of the isolated proteins was 

estimated following separation by SDS–PAGE and Coomassie staining (Figure 1). 
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Figure 1. Purity of isolated proteins. Purified proteins (10 ug) were separated by SDS–

PAGE. The gel was then stained using the Coomassie reagent. Lane 1: GST-E6, Lane 2: 

GST-caspase 8, Lane 3: His-caspase 8. 
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We began by using AlphaScreen™ technology to screen a 949 member small-

molecule library from TimTec, LLC (Newark, DE) designed for similarity to kinase 

inhibitors. Members of the library were present at 10 μM in DMSO. Briefly, GST-E6 and 

His-FADD proteins were purified from Escherichia coli lysates after induction of protein 

expression by IPTG (Figure 1). 5 μl (1 ng) of GST-E6 and 5 μl (338 ng) of His-FADD 

were included in each reaction mixture with 5 μl blocking buffer (0.5 mg BSA, 0.5% 

Tween 20 in PBS) in the absence or presence of 10 μM of each test chemical. After a 

one-hour incubation of the mixture at room temperature, 5 μl donor beads and 5 μl 

acceptor beads (Perkin–Elmer) were added to each well according to the manufacturer’s 

protocol. The mixture was incubated in the dark at room temperature overnight, and the 

emitted signal was detected using the Envision Multilabel plate reader (Perkin–Elmer). In 

the presence of test chemicals, the binding affinity was calculated as a percentage of the 

binding in the presence of carrier only (DMSO). Of the 949 chemicals initially screened, 

108 chemicals demonstrated some ability to interfere with E6 binding (11.4% of the 

original set of chemicals). These chemicals were then re-tested in triplicate to confirm 

activity, and 61 of the 108 showed some inhibitory activity (6.4% of the initial 949 

chemicals). The compounds that demonstrated a high level of activity (inhibition of 90% 

and higher) were tested again in triplicate at 1:10 and 1:100 dilutions (1 μM and 0.1 μM). 

Finally, those compounds that appeared to show a dose–response relationship were 

retested at 1:50 and 1:500 dilutions in triplicate. 

To analyze this screening data, we began with a SD file of the structures and the 

corresponding well layout provided by TimTec, LLC and imported it into an initial 

ChemFinder 11.0 database. The database was then exported into a ChemOffice for Excel 
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spreadsheet. The structures were reviewed, and from these structures, a series of physical 

properties was calculated using the functions available in ChemOffice for Excel. These 

properties were: (1) clogP:calculated log octanol/water partition coefficient; (2) number 

of hydrogen bond donor atoms; (3) number of hydrogen bond acceptor atoms; (4) number 

of rotating bonds; (5) polar surface area; (6) molar refractivity; (7) number of heavy 

atoms. 

From these data, another column assessed these parameters and the compounds 

were judged as passing or failing the Lipinski Rule of Five [100]. The structures were 

also assessed visually for possible reactivity with thiol groups (e.g., Michael acceptors), 

as HPVE6 has 6 surface Cys thiol residues. Compounds that failed the Lipinski Rule of 

Five, were not ‘lead-like’ [101] (100 < MW< 350 & 1 < clogP < 3) or were deemed 

potentially thiol-reactive were removed from consideration. After testing and data 

analysis we were left with 19 compounds from several different structural classes out of 

the original 949 compounds in the library. 

Among the most potent of the 19 were a flavonol, kaempferol, and a flavone, 

chrysin 7-methyl ether. Notably, flavone and apigenin were in the original library and did 

not exhibit sufficient potency for selection. These data indicate that this class of 

compounds exhibits clear SAR at this binding site. Additionally, the literature contained 

several descriptions of this class of compounds having potential antitumor activity [87, 

102-105]. 

We had shown previously that the E6 binding motifs on FADD and procaspase 8 

proteins have a similar structure, and that the E6 binding to FADD and to procaspase 8 

can be blocked by the same blocking peptide in both in vivo and in vitro assays [74].  
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Consistent with these findings, we were able to verify that kaempferol could indeed 

inhibit both the His-FADD and His-caspase 8 interactions with GST-E6 in a dose-

dependent manner. Therefore, later analyzes were carried out using His-caspase 8 DED 

rather than His-FADD. Two advantages for the change were: (1) the His-caspase 8 DED 

protein proved easier to consistently purify than His-FADD as a properly folded protein, 

therefore giving us greater consistency in our assay results, and; (2) using this assay 

allowed us to perform analogous counter-screening to demonstrate specificity, by asking 

whether candidate molecules did or did not inhibit the binding between His-caspase 8 and 

GST-caspase 8. 

To follow up on the flavone/flavonol hits, 19 flavones and flavonol compounds 

representing systematic substitution of the ring system were selected and purchased, and 

then tested for inhibition of the E6/caspase 8 interaction (Table 1). We sought to 

determine the SAR for these ligands with regards to their binding to E6, and also asked 

whether the SAR corresponded to the prior literature or was unique. 
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Table 1. Structures of the flavones and 3-flavonols tested for their ability to inhibit the 

interaction between HPVE6 and caspase 8. Position numbers are given on the structure as 

the superscript. 
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AlphaScreen™ technology (Perkin–Elmer) was used to detect the interaction 

between GST-E6 and His-caspase 8 using the same methodology and incubation times 

described above. The binding reaction was performed in a 384-well plate format in a total 

volume of 25 μl per well. Each well contained 5 μl GST-E6 protein (4.37 ng), 5 μl His-

caspase 8 protein (50 ng), 5 μl blocking buffer (0.5 mg BSA, 0.5% Tween 20 in PBS), 5 

μl chemical compounds at different concentrations diluted in PBS, and 5 μl of the 

acceptor and donor beads solution. 

The structural characteristics of tested flavones are presented in Table 1. Each of 

these compounds was tested at four different concentrations, from 20 nM to 20 μM, and 

the results demonstrated that six of them, including kaempferol, inhibited the interaction 

between E6 and caspase 8. These data of relative potency gave the following ranking: 1 > 

2 > 3 > 4 = 5>>(6–19). The structure– activity relationship (SAR) that these data suggest 

are that the 3,5,7-OH groups are all important: 

3-OH 4 > 6 5-OH 5 > 7 7-OH 3 > 8 

and that in the prime ring hydroxyl groups affect potency: 

3’, 4’, 5’ (1) > 2’,4’ (2) > 3’,4’ (3) > 4’ (4) = none (5) 

3’-methoxy vs 3’-OH eliminates affinity (9 vs 3) 

Additionally, we determined the IC50 for 1–5 and 13 (Fig. 2). For kaempferol and 

quercetin the IC50 was greater than 20 μM, while for morin, 50% inhibition was achieved 

at 4 μM. The compound with the lowest IC50 concentration was myricetin with an IC50 

of approximately 850 nM. 
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Figure 2. IC50 determination of selected compounds. The binding between GST-E6 and 

His-caspase 8 DED was used to determine the IC50 of each test chemical. 4.37 ng of 

GST-E6 and 50 ng His-caspase 8 were mixed in each well and the indicated 

concentrations of the test chemicals were applied. Binding in the presence of DMSO only 

was set at 100%. The p-values were < 0.05 when morin was compared to 6-hydroxy 

flavonol, galangin, kaempferol, and quercetin at 40 μM and 13 μM, and to 6-hydroxy 

flavonol, galangin, kaempferol, quercetin, and myricetin at 4 μM and 1.3 μM. The p-

values were <0.05 when myricetin was compared to 6-hydroxy flavonol, galangin, 

kaempferol, quercetin, and morin at 40 μM, 13 μM, 4 μM and 1.3 μM. The p-values were 

obtained by multiple comparisons using the Bonferroni correction [101]. 
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The mammalian two-hybrid system has previously been used to show that 

caspase 8 binds to itself [87]. For this reason, we were able to use this system to 

determine the specificity of the inhibitors, as compounds that inhibited the caspase 

8/caspase 8 binding were likely to either interact with caspase 8 rather than E6, or to 

influence the assay itself in a non-specific manner. Therefore, to determine whether the 

observed inhibitions were indeed specific, or whether they might instead reflect some 

nonspecific mechanism related to the assay method, candidate compounds were tested for 

their ability to inhibit binding between GST-caspase 8 and His-caspase 8. As shown in 

Figure 3, we found that myricetin, morin and 6-hydroxy flavonol exhibited no inhibition 

of caspase 8/caspase binding over a range of concentrations. 

The structure–activity relationship we observe for the inhibition of HPV16 E6 

binding to caspase 8 is distinctly different from prior reports of flavones in a variety of in 

vivo and in vitro anticancer assays [103-107]. The reducing environment of the assays, 

the distinct SAR, and the specificity experiments all indicate that this is a real inhibition 

by the flavonols and not a non-specific artifact from flavonol oxidation products. 

Therefore, these results represent the first report of the potential of flavonols for the 

prevention or reversal of HPV-induced apoptotic blockade. Preliminary in vivo studies 

(data not reported here) indicate a weak ability for myricetin to suppress TRAIL induced 

tumor growth. Poor cellular penetration is likely the reason for the modest result due to 

the highly polar nature of the compound. Since the polar groups are an important feature 

of the SAR, optimization of this series of compounds would be difficult without resorting 

to a prodrug approach, further complicating the optimization process. Therefore, we are 
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also engaged in additional screening efforts with libraries containing more ‘lead-like’ 

members that will enable optimization [108].  
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Figure 3. Specificity of the inhibition of E6/caspase 8 binding. The ability of myricetin, 

morin, and 6-hydroxy flavonol to inhibit binding between His-caspase 8 and either GST-

E6 or GST-caspase 8 was assessed using the bead-based binding assay, as described in 

the legend of Figure 2. Where indicated, 13.5 ng GST-caspase 8 was added to each well. 

The p-values were <0.001 when myricetin and morin were compared to 6-hydroxy 

flavonol only in GST-E6/His-caspase 8 group. The p-values were obtained by multiple 

comparisons using the Bonferroni correction. 
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CHAPTER THREE 

FLAVONOL AND BENZIMIDAZOLE DERIVATIVES BLOCK HPV16 E6 

FUNCTIONS AND REACTIVATE APOPTOSIS PATHWAYS IN HPV+ CELLS  

 

Introduction 

High-risk types of human papillomavirus (HPV), especially types 16 (species 9) 

and 18 (species 7), are the causative agents of nearly all cases of human cervical cancer, 

between 20% and 30% of head and neck cancer cases, and some cases of other cancers 

(for example, vaginal and penile cancers) [109]. Cervical cancer is the second most 

common cancer in women worldwide. Approximately 400,000 new cases of this disease 

are diagnosed each year, and approximately half of these patients will die. HPV are small, 

double stranded DNA viruses that infect epithelial tissues, including those of the 

anogenital tract. The HPV-encoded oncogenes E6 and E7 are responsible for cellular 

immortalization and transformation, and consequently, for the development of HPV-

associated cancer. While E7 is best known for the inactivation of Rb and thus for the 

immortalization of differentiated cells, E6 induces degradation of several molecules 

involved in apoptosis.  

Recently, two HPV vaccines, Gardasil (MSD) and Cervarix (GSK), have been 

developed and approved for the prevention of infection with either two or four types of 

HPV. These vaccines are therefore predicted to reduce the incidence of cervical cancer. 

However, while these vaccines can prevent HPV infection, they offer no benefit to an 
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individual who has already been infected with HPV. Also, the vaccines will not have a 

significant effect on human health for decades, because most women are infected in their 

late teens/early twenties, while cancer appears in their late forties/early fifties. 

Furthermore, the vaccines only protect against HPV-16 and -18, leaving 25–30% of high-

risk infections unaffected by an individual’s vaccination status. An additional issue is the 

high cost of these vaccines, making it difficult to deliver them to areas and populations 

with low resources.  

Surgical treatment is often employed to cure cervical cancer in the early stages. 

However, it can be difficult to apply this approach to head and neck cancers or to 

laryngeal papillomatosis, due to the need to maintain the normal structure of the airway 

and to avoid pulmonary spread.  Furthermore, even following surgical excision, HPV-

associated cancers frequently return, especially in the immunocompromised population. 

Combined chemoradiotherapies have been assessed, with variable results [110]. Topical 

treatments, such as trichloroacetic acid, liquid nitrogen, imiquimod, interferon- 

injections and podophyllin resin, are also available [11, 111-113]. However, repeated 

treatments are necessary and are not always effective. Furthermore, imiquimod has not 

been approved for use in the oral cavity. Even when a wart or papilloma can be removed 

by such approaches, the HPV infection has not necessarily been cured and may return. In 

conclusion, there is no effective antiviral agent currently available. 

Most currently employed chemotherapies, such as cisplatin and doxorubicin, 

focus on activation of the intrinsic (p53-mediated) apoptosis pathway. Cisplatin has been 

used for cancer treatment since 1978, and is considered the most active single agent for 

the treatment of cervical cancer [114-116]. Cisplatin carries a positive charge when 
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entering cells, and binds to nucleophilic molecules such as DNA, RNA, and proteins. By 

interacting with DNA and forming adducts, cisplatin blocks DNA replication and causes 

DNA damage, p53 expression, and apoptosis.  Doxorubicin was first discovered as an 

anthracycline antibiotic, and has been used as chemotherapy drug to treat many different 

cancers [117]. The mechanism of action proposed for doxorubicin is that it can intercalate 

into the DNA molecules, thus causing the inhibition of topoisomerase-II, DNA damage, 

and p53 up-regulation during DNA replication [118].   

On the other hand, activation of the TRAIL-mediated, extrinsic apoptotic 

pathway shows promise in the treatment of several types of tumors. These therapies have 

elicited significant interest in recent years, largely due to their apparent ability to kill 

tumor cells while sparing most normal cells. TRAIL receptors 1 and 2 (TRAIL R1 and 

TRAIL R2, also known as DR4 and DR5, respectively) are highly expressed on a large 

number of solid and hematologic cancers, and many of these tumors are sensitive to the 

induction of apoptosis induced by both TRAIL itself and by antibodies to the receptor [83, 

119-123].  Previous studies have reported on the effectiveness of both TRAIL and -

TRAIL R1 and R2 in combination with other sensitizing agents such as doxorubicin, 

bortezomib, adriamcin, 5-fluorouracil, irinotecan hydrochloride, paclitaxel, carboplatin, 

gemcitabine, cisplatin and radiation in both cell and animal model systems [83-86]. Initial 

data suggests that this antibody is well tolerated, has a half-life of 13-19 days, and in 

some patients, is associated with a reduction in tumor size [124, 125].  

Unfortunately, therapies that function by activating apoptosis, including those 

based on p53 or TRAIL, are unlikely to effectively treat HPV-associated malignancies, as 

high-risk E6 proteins subvert both extrinsic and intrinsic apoptotic pathways. E6 proteins 
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from high-risk types of human papillomavirus, such as HPV 16 and HPV 18, are well 

known for their ability to mediate the rapid degradation of p53, a tumor suppressor that 

engages the intrinsic apoptotic pathway [61, 126, 127]. The p53 tumor suppressor is the 

first-described and best-known target of HPV E6 [61]. p53 acts as a transcriptional factor, 

and can trigger cell cycle arrest or apoptosis in response to cellular stress or DNA 

damage. Under normal conditions, triggers such as DNA damage cause increases in the 

level of p53, which then lead to downstream effects such as cell cycle arrest and/or 

apoptosis, depending on the intensity or amplitude of the damage or stimulus. The 

presence of E6 from high-risk types of HPV interferes with this process, because E6 

binds to both p53 and E6-associated protein ligase (E6AP), causing ubiquitinylation and 

the subsequent degradation of p53. This loss then prevents p53 from inducing either 

growth arrest or apoptosis of infected cells [62]. This E6-mediated inhibition of p53 

activity can therefore increase the survival of transformed cells [63, 64]. Interestingly, a 

recent study showed that E6 could also interact with ubiquitin ligases other than E6AP in 

order to promote p53 degradation [65]. In addition to p53, E6 also interacts with other 

partner proteins that play a variety of roles in the cell. Our laboratory has discovered that 

HPV 16 E6 also blocks engagement of the extrinsic, receptor-mediated apoptotic 

pathways by binding to and inactivating several molecules involved in these signaling 

complexes, including TNF R1 [128], FADD [129] and caspase 8 [130]. For example, our 

lab has shown that HPV 16 E6 can protect HCT116 cells from apoptosis triggered by 

TRAIL by accelerating the degradation of both FADD and caspase 8 [131]. As a result of 

these E6 activities, therefore, engagement of either the extrinsic or the intrinsic apoptotic 

pathways does not result in the transduction of the intended death signal because the 
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mediator molecules – p53 in the case of the intrinsic pathway, and FADD and caspase 8 

in the case of the extrinsic pathway – are missing. Therefore, if any of these apoptosis-

inducing signaling pathways are to be used as tools for the elimination of HPV-associated 

malignancies, it will be necessary to restore the missing signaling molecules.  

In our previous work [89], we identified myricetin as a compound that can inhibit 

the E6/caspase 8 interaction. Unfortunately, myricetin is known to also inhibit number of 

cellular proteins, including several tyrosine kinases, and its structure makes modification 

difficult. Furthermore, our laboratory found that myricetin has a much lower efficiency in 

a cell-based system than in in vitro, suggesting difficulty in entering cells.  Therefore, the 

identification of additional, more tractable inhibitors of E6 /procaspase 8 interaction is 

necessary.    

In this study, we proposed to begin overcoming this challenge by identifying one 

or more additional small molecules that can inhibit HPV E6 function and re-sensitize 

HPV+ cells to apoptosis. Screening an ActiPribe 2K library enabled us to identify 

benzimadole derivatives as a class of interest, and we further examined the ability of one 

particular derivative, 6,7-Dihydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid (DIPC), 

to inhibit specific interactions between E6 and its partner proteins. We found that DIPC 

was able to block E6 binding to both E6AP and to caspase 8 in vitro with IC50 values of 

20 μM and 17 μM, respectively. Within cells, we found that DIPC, as well as the flavonol 

myricetin, can re-sensitize HPV+ cells to apoptosis triggered by apoptotic inducers such 

as TRAIL, cisplatin, and doxorubicin. Furthermore, we found that both DIPC and 

myricetin could also increase caspase 3/7 activity and restore the level of apoptotic 

proteins in HPV+ cells. These findings identify a novel small molecule that can inhibit E6 
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functions, and may serve as the basis for further discovery and development of effective 

and novel therapeutic approaches for the treatment of cervical cancer. 

 

Materials and Methods 

Protein Purification 

The construction of the pGEX-E6, pTriEx-E6AP, and pTriEx-Caspase-8 DED 

plasmids has been reported [12]. Expression and purification of GSTE6, His-E6AP, and 

His-Caspase-8 DED were carried out as previously described [12, 74]. GST-tagged and 

His-tagged proteins were diluted into GST dilution buffer (PBS pH 8.0, 5% glycerol, 2 

mM DTT) and His dilution buffer (20 mM Hepes pH 7.4, 150 mM NaCl, 2 mMKCl, 5% 

glycerol, 2 mM DTT), respectively. Protein concentration was measured using 

Coomassie Plus—The Better Bradford Assay Reagent (Thermo Scientific). The purity of 

the isolated proteins was estimated following separation by SDS–PAGE and Coomassie 

staining. 

 

Small Molecule Library and Acquisition of Additional Compounds  

The 2,000-compound small molecule library (ActiProbe 2K) from TimTec, LLC 

(Newark, DE) was to encompass a highly diverse selection of lead-like compounds. Five 

additional benzimidazole derivatives were purchased from Sigma (Benzimidazole, 2-

(methoxymethyl)-1H-benzimidazole, and  3-(1H-Indol-1-yl)propan-1-amine 

methanesulfonate) and TimTec (1H-benzimidazole-1-methanol and 6,7-Dihydro-1H-

imidazo[4,5-c]pyridine-6-carboxylic acid) 
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Screening of Small Molecular Library 

Alpha-ScreenTM technology was used to assess the interactions between GST-E6, 

His-E6AP, and His-caspase 8. Binding assays were performed in white 384-well plates 

(Perkin-Elmer) in a total volume of 25 l as previously described [12]. Briefly, 5 l (50 

ng) of GST-E6 and 5 l (87.5 ng) of His-caspase 8 were included in each reaction 

mixture with 5 l blocking buffer (0.5 mg BSA, 0.5% Tween 20 in PBS) in the absence 

or presence of 10 M of each test chemical. Members of the library were present at 10 

M in DMSO. After a one-hour incubation of the mixture at room temperature, 5 l 

donor beads and 5 l acceptor beads (Perkin–Elmer) were added to each well according 

to the manufacturer’s protocol. The mixture was incubated in the dark at room 

temperature overnight, and the emitted signal was detected using the Envision Multilabel 

plate reader (Perkin–Elmer). In the presence of test chemicals, the binding affinity was 

calculated as a percentage of the binding in the presence of carrier only (DMSO). 

 

Cell Culture 

U2OS, SiHa and C33A cells were obtained from the America Type Culture 

Collection (Manassas, VA) and cultured in Eagle minimal essential medium (Invitrogen, 

Carlsbad, CA) supplemented as described previously [12].  

 

Cell Viability Assay 

To measure cell survival after treatment with TRAIL and chemotherapy drugs, 

SiHa (2x104/well) and C33A (1x104/well) cells were seeded into 96-well plates and 

allowed to adhere overnight. Small molecules at the desired concentration were added 
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and incubated at 37oC for 4 h. TRAIL, cisplatin or doxorubicin was then added in the 

presence of cycloheximide (5 g/ml) to inhibit de novo protein synthesis, and the cells 

were incubated for 16 h prior to measuring cell viability by the MTT assay preformed as 

described previously [70]. 

Caspase Activity Assay 

Cells were plated into 96-well plates at a density of 2×104 cells per well and 

incubated overnight. Small molecules were added and incubated at 37 oC for 4 h. TRAIL 

(100 ng/ml) was then added, along with cycloheximide (5 μg/ml) at the indicated time 

points. Caspase 3/7 activity was measured using the flourogenic substrate CellTitier-Glo 

for caspase 3/7 activity (Promega) following the manufacturer's instructions. Briefly, 

cells were lysed by the addition of 20 l of 5X passive lysis buffer (Promega). The plate 

was put on an orbital shaker and incubated for 10 min at room temperature. 20 l of cell 

lysates were transferred to white plates, and either substrate alone or substrate plus the 

caspase 3/7 inhibitor was added to the appropriate wells. After 10 min incubation, the 

released fluorophore was measured using a plate-reading fluorimeter (Flx800, Bio-Tek 

Instrument Co). The activity in wells treated with inhibitor was subtracted from the 

activity in wells lacking inhibitor. The resulting difference was expressed as a percentage 

of the caspase activity of the untreated cells. 

 

Results 

Benzimidazole Derivatives Specifically Inhibit the Interaction of HPV 

E6 with Caspase 8 

Previously, we have reported that HPV E6 binds to caspase 8 [72] and that 

myricetin can block the E6/caspase 8 interaction in vitro [89]. In this study, we screened 
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the ActiProbe 2K (2,000 compounds) library, using AlphaScreenTM technology from 

Perkin-Elmer, to look for inhibitors of the E6/caspase interaction. In our primary screen, 

118 (5.9%) compounds demonstrated an ability to inhibit the E6/caspase 8 interaction. 79 

of these 118 compounds presented IC50 values lower than 10 M, and were therefore 

chosen for further experiments. 23 out of these 79 compounds also demonstrated specific 

inhibition of the E6/caspase 8 interaction, in that they were unable to block formation of 

the caspase 8/caspase 8 homodimer (counter-screen). These 23 compounds represented 

three different chemical classes, of which the benzimidazoles showed the best inhibition 

of E6/caspase 8 binding. Analysis of the structures and physical/chemical characteristics 

of those molecules led to the selection of five additional benzimidazole derivatives which 

were then purchased from Sigma and TimTec (Benzimidazole, 2-(methoxymethyl)-1H-

benzimidazole, and 3-(1H-Indol-1-yl)propan-1-amine methanesulfonate were purchased 

from Sigma; 1H-benzimidazole-1-methanol and 6,7-Dihydro-1H-imidazo[4,5-c]pyridine-

6-carboxylic acid were purchased from TimTec) (Figure 1).  
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Figure 1. Five analyzed benzimidazole derivatives (A) Benzimidazole (B) 2-

(methoxymethyl)-1H-benzimidazole (C) 3-(1H-Indol-1-yl)propan-1-amine 

methanesulfonate (D) 1H-benzimidazole-1-methanol (E).6,7-Dihydro-1H-imidazo[4,5-

c]pyridine-6-carboxylic acid 
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To determine the dose-responsiveness of these five compounds, variable 

concentrations of those small molecules were first tested for their ability to inhibit 

E6/caspase binding. The results showed that both 3-(1H-Indol-1-yl)propan-1-amine 

methanesulfonate and 6,7-Dihydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid (DIPC) 

demonstrated dose-dependent inhibition of E6/caspase 8 binding (Figure 2A). We then 

asked whether these molecules, which had been selected for their ability to interfere with 

E6/caspase 8 binding, could also affect other interactions of E6, such as its binding to 

E6AP. Inhibition of one or more of these additional E6 interactions has the potential to 

enhance the therapeutic effectiveness of agents developed from those chemical 

compounds. The E6/E6AP interaction has been studied extensively, and is required for 

the E6-mediated acceleration of p53 degradation. We therefore tested the ability of these 

five benzimidazole derivatives to inhibit E6/E6AP binding, and found that both 3-(1H-

Indol-1-yl)propan-1-amine methanesulfonate and DIPC, the same two agents that had 

inhibited E6/caspase 8 binding, could also inhibit the E6/E6AP interaction and could do 

so nearly as well as they had inhibited the E6/caspase 8 interaction (Figure 2B). To ask 

whether this inhibition was specific, we employed a counter-screening assay in which we 

assessed the ability of candidates to inhibit the binding of GST-caspase 8 to His-caspase 

8; those that did were to be eliminated. In this counter-screening assay, the materials in 

each well were the same as in the primary screen with the exception that GST-caspase 8 

replaced GST-E6. 3-(1H-Indol-1-yl)propan-1-amine methanesulfonate was able to inhibit 

the caspase 8/caspase 8 interaction about as well as it inhibited the E6/caspase 8 

interaction, indicating that its action was non-specific. However, DIPC did not 

significantly inhibit the binding of caspase 8 to itself, providing evidence of its specificity 
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for E6 (Figure 2C). These results are summarized in Table 1, which shows that of the 

compounds tested, DIPC displayed the lowest IC50 value for the inhibition of E6/caspase 

8 and E6/E6AP interactions, but did not inhibit caspase 8/caspase 8 binding. 
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Figure 2. Benzimidazole derivatives inhibit protein-protein interactions. 
Five compounds, at the indicated concentrations (1.4 uM to 3.2 uM) were 

tested for their ability to inhibit three different protein/protein interactions: (A) 

GST-E6/His-caspase 8 (B) GST-E6/HisE6AP 
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Figure 2 continued. (C) GST-caspase 8/His-caspase 8. Binding in the presence 

of DMSO only was set at 100%. Experiments were performed in triplicate, and 

error bars indicate the standard deviation. 
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Table 1. The IC50 values of tested small molecules for the indicated protein-protein 

interactions.  
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Myricetin and DIPC Sensitize SiHa Cells to TRAIL-Induced 

Apoptosis 

Following identification of molecules that can block E6/caspase 8 binding in vitro, 

the next step was to determine which of these molecules could also act in the context of a 

cell. SiHa cells are an HPV+ cell line, derived from a cervical carcinoma, that serves as a 

commonly-used model for HPV-associated malignancies. SiHa cells are resistant to 

TRAIL-induced apoptosis as a result of their expression of HPV E6 (Figure 3). In this 

experiment, U2OS cells display the TRAIL-sensitive phenotype. We selected 1H-

benzimidazole-1-methanol, which showed no inhibition in vitro (Table 1), as our 

negative control.  

 

 

 

  



55 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. HPV+ SiHa cells are resistant to TRAIL-induced apoptosis as compared 

to the human osteosarcoma cell line U2OS. The viability of cells untreated with 

TRAIL was set at 100% for each group. Experiments were performed in triplicate, 

and error bars indicate the standard deviation. 
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We first determined the non-specific toxicity of our small molecules of interest. 

SiHa cells were treated with several concentrations of these molecules (0 M, 15.6 M, 

31 M, 62.5 M, and 125 M) for 16 hours, and cell viability was assessed using the 

MTT assay. A loss of viability of about 20%-30% following treatment with 62.5 M for 

16 h was observed with all compounds (Figure 4A). We next asked whether myricetin 

and DIPC would be able to sensitize HPV+ cells to TRAIL, an inducer of extrinsic 

apoptosis. SiHa cells (2x104 per well) in culture were seeded into a 96-well plate for 

overnight incubation. The indicated concentrations (0 M to 125 M) of myricetin, 1H-

benzimidazole-1-methanol, and DIPC were then added to the appropriate wells, and the 

cells allowed to pre-incubate for 4 hours. Next, cells were treated with cycloheximide 

Cell death was measured using the MTT assay. Both myricetin and DIPC induced 

significantly more cell death (an increase of 3.5 fold for myricetin and 8.6 fold for DIPC) 

in combination with TRAIL (Figure 4B) (Table 2). These results provide strong evidence 

that inhibiting the E6/caspase 8 interaction can restore the sensitivity of HPV-positive 

cells to apoptotic signals. 
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Figure 4. (A) Both myricetin and DIPC display low toxicity, with a viability loss 

of approximately 20% observed following treatment with 62.5 μM of either 

compound. (B) The addition of either myricetin or DIPC re-sensitizes these 

HPV+ cells to TRAIL, inducing a loss of viability of more than 40% following 

treatment with 62.5μM of either compound. Experiments were performed in 

triplicate, and error bars indicate the standard deviation. 
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Table 2. The IC50 value of the indicated compounds for cell toxicity and for TRAIL-

induced apoptosis. 
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Myricetin and DIPC Increase the Sensitivity of SiHa Cells to 

Doxorubicin and Cisplatin 

As noted earlier, both myricetin and DIPC can inhibit the binding of E6 to E6AP, 

an E3 ligase involved in the degradation of p53, in vitro, One prediction stemming from 

this observation is that these two chemicals should increase the sensitivity of SiHa cells 

to chemotherapy drugs that act through the p53 pathway. To test this prediction, we asked 

whether myricetin and/or DIPC would increase the sensitivity of SiHa cells to two such 

drugs, doxorubicin and cisplatin. SihH cells (2 x 104 per well) were seeded into a 96-well 

plate. After overnight incubation, 100 μM myricetin or 50 M DIPC were added to the 

indicated groups, and cells allowed to incubate for 4 hours. The indicated concentrations 

of doxorubicin (0-10 M) and cisplatin (0-100 M) were then added for a 16-hour 

treatment, and cell death was assessed using the MTT assay. As compared to the negative 

control, myricetin increased the sensitivity of SiHa cells to doxorubicin and cisplatin by 

approximately 20-30% (Figure 5A). DIPC displayed a similar effect, in that it increased 

the sensitivity by approximately 30-40% (Figure 5B). These results demonstrate that both 

myricetin and DIPC can inhibit the interaction between E6 and E6AP within cells, thus 

reducing the degradation of p53 and increasing the sensitivity of HPV+ cells to inducers 

of p53-mediated apoptosis.  
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Figure 5. Myricetin and DIPC increase the sensitivity of SiHa cells to 

chemotherapy drugs. Pretreatment with either myricetin or DIPC increases the 

sensitivity of SiHa cell to doxorubicin (A) and cisplatin (B) by approximately 

20% (DIPC) to 30% (myricetin). The viability of cells untreated with either 

myricetin or DIPC was set at 100%. Experiments were performed in triplicate, 

and error bars indicate the standard deviation.  
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Myricetin and DIPC Re-sensitize HPV+ Cells to TRAIL-Induced 

Apoptosis by Blocking the Binding of HPV E6 to Caspase 8 

 To determine whether myricetin and DIPC re-sensitize SiHa cells to TRAIL-

induced apoptosis by specifically blocking the binding of E6 to caspase 8 or through 

some other mechanism, we chose to employ the HPV- human cervical carcinoma cell, 

C33A, for comparison, as these cells do not express E6. Both SiHa and C33A cells were 

either left untreated or pre-treated with either myricetin (100 M) or DIPC (50 M) for 4 

hours, then treated with cycloheximide plus TRAIL (0-100 ng/ml) for 16 hours. Cell 

death was measured using the MTT assay. Although the HPV+ SiHa cells displayed 

resistance to TRAIL at concentrations up through 100 ng/ml, their sensitivity increased 

dramatically in the presence of 100 M myricetin. In contrast, the HPV- C33A cells 

remained resistant to TRAIL-mediated apoptosis even in the presence of myricetin 

(Figure 6A). Similar results were also found following pre-treatment with 50 M DIPC 

(Figure 6B). Together, these results demonstrate that myricetin and DIPC can re-sensitize 

HPV+ cells to TRAIL-mediated apoptosis by specifically blocking the binding of HPV 

E6 to apoptotic proteins such as caspase 8, but likely not through other apoptotic 

mechanisms. 

  



62 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 
Figure 6. Myricetin and DIPC can re-sensitize HPV+, but not HPV-, cells to 

treatment with TRAIL. Pre-treatment with myricetin resulted in an 80% loss of 

cell viability (A) while pre-treatment with DIPC caused a 60% loss of cell 

viability (B) in SiHa cells treated with 100 ng/ml TRAIL. No significant 

decrease in cell viability was observed in C33A cells or in the absence of 

myricetin/DIPC. The viability of cells untreated with TRAIL was set as 100% 

for each group. Experiments were performed in triplicate, and error bars 

indicate the standard deviation. 
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Myricetin and DIPC Increase Caspase 3/7 Activity 

Activation of caspase 3/7 is an essential marker for both extrinsic and intrinsic 

apoptosis, and can be used to determine whether the increase in cell death observed when 

TRAIL, cisplatin or doxorubicin combined with myricetin or DIPC indeed occurs 

through the apoptotic pathway. Our previously described data (Figure 2) demonstrates 

that both myricetin and DIPC can inhibit the E6/caspase 8 and E6/E6AP interactions in 

vitro. One prediction following from this data is that pre-treatment with either myricetin 

or DIPC should increase the level of TRAIL-, cisplatin- and doxorubicin-induced 

activation of caspase 3/7. To test this prediction, caspase 3/7 activity was measured in 

SiHa cells following TRAIL, cisplatin or doxorubicin treatment in the presence or 

absence of myricetin or DIPC. As shown in Figure 7A, we found that the caspase 3/7 

activity increased approximately 2 fold when myricetin or DIPC were combined with 

TRAIL as compared to cells not exposed to myricetin or DIPC. Similar results were 

obtained following treatment with cisplatin and doxorubicin (Figure 7B, 7C). These data 

demonstrate that the increased cell death induced by the combination of apoptotic 

inducers and myricetin/DIPC occurs through the apoptotic pathway. 
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Figure 7. Myricetin and DIPC increase caspase 3/7 activity of SiHa cells after 

TRAIL and chemotherapy drugs treatment. SiHa cells were pre-treated with 

myricetin or DIPC 4 hours prior to application of the indicated inducers of apoptosis. 

100 ng/ml TRAIL (A), 50 M cisplatin (B), or 2 M doxorubicin (C) were added 

as indicated, and caspase 3/7 activity was measured after 0, 1.5, 3, and 6 hours. 

Activity at 0 h of treatment was set at 100% for each group. Experiments were 

performed in triplicate, and error bars indicate the standard deviation. 
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Discussion 

Currently, no small molecules targeting any of the HPV proteins are available for 

clinical use. However, a number of groups are currently examining the possibility of 

developing these sorts of small, inhibitory molecules in order to expand and enhance the 

limited therapeutic options currently available for HPV-associated malignancies [78, 132]. 

HPV E1 and E2 are enzymes involved in replication and gene expression, and thus were 

some of the initial targets for the development of small, inhibitory molecules. As one 

example, biphenylsulfonacetic acid has been shown to inhibit E1 ATPase activity, and 

the optimized compound has an IC50 value of 4.0 nM [133]. However, E1 and E2 are 

often lost during the development of cancer, making them less-than-optimal targets for 

cancer treatment. In contrast, E6 and E7 oncogenes are expressed at relatively high levels 

during cancer development and therefore have the potential to serve as useful targets for 

small molecule inhibitors. For example, inhibition of E6 is predicted to lead to more cell 

death, as E6 normally functions to block both intrinsic and extrinsic apoptotic pathways. 

The prevention of E6-mediated p53 degradation, perhaps by inhibiting formation of the 

E6/E6AP complex, represents one promising approach for the development of small 

molecule inhibitors of HPV-associated cancer [134]. Previous studies have identified 

several compounds that could inhibit the interaction between E6 and E6AP, thus reducing 

the degradation of p53 [78, 79]. However, these findings have not yet led to clinically 

useful interventions.  

Therapies based on TRAIL-mediated apoptosis are attractive possibilities for the 

treatment of many different types of cancer., For example, previous studies have 

demonstrated the effectiveness of both TRAIL and -TRAIL R1 and R2 in combination 
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with other sensitizing agents such as doxorubicin, bortezomib, adriamcin, 5-fluorouracil, 

irinotecan hydrochloride, paclitaxel, carboplatin, gemcitabine, cisplatin and radiation in 

both cell and animal model systems to treat a variety of cancers [83-86]. However, these 

treatments are unlikely to be helpful in the context of HPV on their own, due to the 

ability of E6 to compromise apoptotic pathways. The studies described here, focused on 

the identification of E6-inhibitory molecules, have the potential to make this type of 

therapy available to patients suffering from HPV-associated malignancies. It is the first 

reported that our study demonstrated the combination of TRAIL with small molecules 

could re-sensitize E6-expressing cells to TRAIL-induced apoptosis.  

 Our laboratory previously reported that the flavonol myricetin can inhibit 

interactions between E6 and caspase 8 in vitro. We confirmed this binding, and 

demonstrated a direct interaction between E6 and myricetin by isothermal titration 

calorimetry (ITC), an approach that can detect and characterize protein-protein and 

protein-molecular interactions. Preliminary results (data not shown) indicate that 

myricetin binds to E6 at a ratio of 1:1 (one molecule of myricetin to one molecule of E6). 

Unfortunately, myricetin is known to inhibit a number of cellular proteins (including 

several kinases), and in addition, the high IC50 value observed in the context of a cell-

based model system (Table 2) suggested that its ability to negatively affect tumors may 

be limited. Because the compound is highly polar, difficulty in entering cells may be the 

explanation for these modest results. Since polar groups are an important feature in 

assessing structure-activity relationships (SAR), optimization of this series of compounds 

would be difficult without resorting to a pro-drug approach, further complicating the 

optimization process. Therefore, we engaged in additional screening efforts with libraries 
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containing more ‘lead-like’ members that are expected to provide better platforms for 

optimization. This effort identified the benzimidazole family as a chemical group of 

interest for drug development. Benzimidazoles are a large chemical family, and several of 

these compounds have already been employed for medicinal chemistry due to their 

various bioactivities. The core structure of benzimidazole is a heterocyclic ring (Figure 1), 

and these compounds display a broad range of pharmacological effects, bioactivities, and 

functions that are dependent on the functional groups that surround this core structure. 

Previously, benzimadoles have been identified as useful for their antifungal, antioxidant 

[135], antiallergic [136], and antimicrobial [137-139] properties. In recent years, they 

were also found to display antitumor [140] and antiviral activities against HCV (Hepatitis 

C Virus) [141] and HIV (Human Immunodeficiency Virus) [142].   

 Of the five tested benzimidazole derivatives, 6,7-Dihydro-1H-imidazo[4,5-

c]pyridine-6- carboxylic acid (DIPC) was best able to specifically inhibit the interactions 

of E6 with both caspase 8 and E6AP (Figure 2), demonstrating the lowest IC50 values for 

both E6/Caspase 8 and E6/E6AP binding. However, it did not inhibit Caspase 8/Caspase 

8 binding, thus demonstrating the desired specificity (Table 1). To characterize the ability 

of DIPC, as well as myricetin, to function within cells, the ability of the two chemicals to 

cause cell toxicity and to enhance TRAIL-induced apoptosis were tested in the HPV+ 

SiHa cell line. The IC50 values of 154.8 μM for myricetin and 31.2 μM for DIPC, 

respectively, demonstrate that myricetin in combination with TRAIL is approximately 3.5 

fold as toxic as myricetin alone, while DIPC in combination with TRAIL is 

approximately 8.6 fold as toxic as DIPC alone (Table 2). These results indicate that, as 
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compared to myricetin, DIPC may be better able to penetrate into cells and thus re-

sensitize cells more efficiently to TRAIL-induced apoptosis. 

 As mentioned previously, the interaction between E6 and E6AP accelerates 

degradation of p53, a mediator of intrinsic apoptosis. Our in vitro results demonstrated 

that DIPC could inhibit the interaction between E6 and E6AP, and thus has the potential 

to increase the sensitivity of HPV+ cells to intrinsic apoptosis triggered by chemotherapy 

drugs such as doxorubicin and cisplatin. This may be clinically relevant, because cervical 

cancer tends to be relatively resistant to chemotherapeutic treatments such as cisplatin. 

When we combined myricetin or DIPC with those chemotherapy drugs, we observed a 

loss of cell viability of more than 30% as compared to that seen in the absence of these 

sensitizing agents, indicating that indeed, myricetin and DIPC can both increase the 

sensitivity of HPV+ cells to chemotherapy drugs that work through the p53 pathway. 

Interestingly, DIPC appeared to be somewhat more effective than myricetin when 

combined with TRAIL, while myricetin appeared more effective than DIPC when 

combined with either cisplatin or doxorubicin. However, we note that myricetin required 

the presence of a higher concentration (100 M) than did DIPC (50 M) to cause 

inhibition of binding. Thus, we suggest that DIPC may actually demonstrate a higher 

efficiency in sensitizing HPV+ cells to both TRAIL- and p53-mediated apoptosis.   

Although we began by searching for inhibitors of extrinsic apoptosis, we found 

that DIPC was able to block the binding of E6 to both caspase 8 and to E6AP, and thus 

sensitize HPV+ cells to both extrinsic and intrinsic apoptosis. This may suggest a mode of 

action in which the small molecule interacts directly with E6, either destabilizing the 

virus protein and changing its conformation, or blocking the interactions by direct 
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interference. If the latter, one possibility is that DIPC binds to a region on E6 required by 

both E6AP and caspase 8.  

  In order to determine whether myricetin and DIPC re-sensitize cells to TRAIL-

induced apoptosis by specifically blocking the binding of HPV E6 to caspase 8, C33A, a 

HPV- cell line that does not express E6, was compared to SiHa. Each cell line was 

untreated or pre-treated with myricetin or DIPC, then different concentrations of TRAIL 

were added and cell viability was measured after overnight incubation. Figure 6 

demonstrates that SiHa cells pretreated with either myricetin or DIPC showed a greater 

loss of cell viability than did the other groups. These results indicate that TRAIL-induced 

apoptosis in SiHa was restored due to the ability of myricetin and DIPC to inhibit the 

E6/caspase 8 interaction.  

Finally, caspase 3/7 activity was assessed to determine whether the loss of cell 

viability occurred through activation of the apoptotic pathway.  Caspase 3/7 can be 

activated through both the extrinsic and intrinsic apoptosis pathways, as induced by 

TRAIL or chemotherapy drugs, respectively. We found that both TRAIL and 

chemotherapy drug treatment, in combination with myricetin or DIPC, led to a significant 

and enhanced time-dependent activation of caspase 3/7 activity in SiHa cells (Figure 7).  

Taken together, these data indicate that myricetin and DIPC can block the binding of E6 

to multiple apoptotic proteins, including caspase 8 and E6AP/p53, thereby reactivating 

the E6-compromised apoptotic pathways and rendering HPV+ cells sensitive to both 

intrinsic and extrinsic inducers of apoptosis. These activities suggest that myricetin and 

DIPC may be able to inhibit multiple functions of E6, and therefore provide the basis for 

developing an effective therapeutic strategy to treat HPV-mediated cancers. 
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  Overall, this study identified a new candidate, the benzimidazole derivative 

DIPC, which effectively blocks the interactions of E6 with apoptotic proteins such as 

caspase 8 and E6AP. Furthermore, both DIPC and myricetin were able to re-sensitize the 

HPV+ cell line SiHa, but not the HPV- cell line C33A, to TRAIL-induced apoptosis, 

indicating that they most likely work by blocking the binding between E6 and its 

apoptotic protein partners. In addition to re-sensitizing HPV+ cells to TRAIL-induced 

apoptosis, DIPC and myricetin could also increase the sensitivity of SiHa cells to two 

chemotherapy drugs, doxorubicin and cisplatin, by blocking the E6/E6AP interaction and 

restoring the level of p53. The observed increase in caspase 3/7 activity also provides 

evidence that sensitization of SiHa cells by DIPC occurred through activation of 

apoptosis.  

Previous work from our laboratory had identified peptide inhibitors that can 

specifically inhibit the interactions between E6 and caspase 8 and FADD, but not the 

interaction between E6 and E6AP [12]. In contrast, both myricetin and DIPC inhibit the 

interactions of E6 with both the caspase 8 and E6AP protein partners. As compared to 

peptide inhibitors, small molecules such as DIPC have numerous advantages because 

they are more stable, penetrate target cells more easily, and can be modified and 

optimized by organic chemists during drug development. Because DIPC has the potential 

to restore both the intrinsic and extrinsic apoptotic pathways, it may prove to be an ideal 

candidate for making apoptosis-inducing therapies available to patients suffering from 

HPV-associated malignancies. 
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CHAPTER FOUR 

DISSCUSION 

 

Summary of Findings 

High-risk strains of human papillomavirus (HPV), especially types 16 and 18, are 

the causative agents of nearly all cases of human cervical cancer (approximately 400,000 

new cases each year, with a 50% mortality rate), between 20% and 30% of head and neck 

cancer cases, and some cases of other cancers (for example, vaginal and penile cancers) 

[109]. Current treatment options are frequently inadequate, providing a sense of urgency 

to the development of better, more effective clinical interventions.  

  The experiments described in chapter 2 demonstrate that myricetin, a flavonol, 

can block HPV E6 interactions in vitro. To ask whether this inhibition was specific, we 

developed a counter-screening assay in which we assessed the ability of candidates to 

inhibit the binding of GST-caspase 8 to His-caspase 8; those that did were to be 

eliminated. In this counter-screen, myricetin showed no inhibition to the binding of 

caspase 8 to itself, providing evidence of its specificity for E6. These promising results 

demonstrated that, indeed, small molecules capable of blocking E6/caspase 8 binding in a 

specific manner existed, and that our bead-based assay could find them.  

  The results of experiments from chapter 3 identified a new class of chemicals, 

benzimidazoles, which also showed the potential to block the binding of E6 to both 

caspase 8 and E6AP. Since myricetin is not a suitable candidate for drug development 

due to its inhibition of a number of cellular proteins as well as inherent difficulties in 
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optimizing its structure, the identification of other inhibitors of E6/caspase 8 was deemed 

to be necessary. Following the testing of five benzimidazole derivatives for dose-

dependency and specificity, we found that 6,7-Dihydro-1H-imidazo[4,5-c]pyridine-6-

carboxylic acid (DIPC) showed the greatest ability to inhibit both E6/caspase 8 and 

E6/E6AP interactions while not blocking the binding of caspase 8 to itself, thereby 

demonstrating both specificity for E6 and the ability to inhibit multiple E6 interactions.  

Next, we performed a cell-based analysis designed to determine which of our 

small molecules of interest could function well within cells. SiHa cells are a cervical 

cancer cell line that maintains the entire genome of HPV and expresses E6, and therefore 

functions well as a model system. We found that, as expected, SiHa cells are resistant to 

TRAIL at concentrations up to 100 ng/ml. We also found that neither myricetin nor DIPC 

were significantly toxic to SiHa cells. However, when TRAIL was combined with either 

myricetin or DIPC, we observed a significant loss of cell viability (up to 50%), indicating 

that both myricetin and DIPC are able to re-sensitize HPV+ cells to TRAIL-induced 

apoptosis, DIPC more efficiently than myricetin. A comparison between SiHa and C33A 

cells demonstrated that re-sensitization to TRAIL-induced apoptosis was due to specific 

blocking of the binding of E6 to caspase 8, as no sensitization of C33A cells was 

observed. In addition to its inhibition of E6/caspase 8 binding, DIPC was also able to 

inhibit E6/E6AP binding, an interaction involved in p53 degradation. Myricetin and 

DIPC increased the sensitivity of SiHa to the chemotherapy drugs doxorubicin and 

cisplatin, agents that can induce p53-mediated apoptosis, consistent with the prediction 

from our in vitro data. Finally, the increase of caspase 3/7 activity in both TRAIL- and 
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chemotherapy drug-induced experiments shows that the loss of cell viability was due to 

apoptosis rather than to other mechanisms of cell death.  

 

Conclusion 

  Cancer therapies that function by triggering apoptosis have been used widely in 

the treatment of different types of cancers for decades. Unfortunately, many types of 

cancer cells are resistant to those treatments due to mutations or loss of apoptotic proteins. 

For example, mutant p53 has been found in more than 50% of cancers [143]. Many 

researches have shown that restoration of p53 has the potential to reduce certain types of 

cancer without damaging normal cells [144]. Activation of TRAIL-induced apoptosis 

pathway has also shown promise in the treatment of several types of cancers, as described 

previously. In particular, several agonistic monoclonal antibodies directed against DR4 

and DR5 are currently in Phase I and II clinical trials designed to evaluate their safety, 

pharmacokinetics and therapeutic efficacy. For example, GS-ETR1 DR4 and HGS-ETR2 

DR5 (Human Genome Sciences) are in Phase I/II trials, and HGS-TR2J DR5 (also from 

Human Genome Sciences) is in Phase I. Also, as of 2008, CS-1008 (TRA-8) DR5 

(Daiichi Sankyo) is in Phase I and showed no dose-limiting toxicity at doses up to 8 

mg/kg [145], AMG 655 DR5 (Amgen) is in Phase I/II [146], Apomab DR5 (Genentech) 

is in Phase I/II [147], and LBY 135 DR5 (Novartis) is in Phase I/II in patients with 

advanced solid tumors [148]. Unfortunately, in the case of HPV-mediated cancers, E6 

can bind to and accelerate the degradation of apoptotic proteins, such as FADD, caspase 

8, and p53, rendering treatments that work through these pathways ineffective. By 
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eliminating those apoptotic proteins and blocking apoptotic signal transduction, HPV 

ensures its persistence and propagation. 

  Because E6 plays a key role in preventing apoptosis and promoting cancer 

development, blocking its interactions with partner proteins carries with it the promise of 

developing effective and novel treatments for HPV-mediated cervical cancer. Two 

questions were posed at the beginning of these studies. 1) What kinds of small molecules 

have ability to block interactions between E6 and apoptotic proteins? This question was 

answered in Chapters 2 and 3. 2) Can those small molecules re-sensitize E6-expressing 

cells to normal apoptotic stimuli? This question was also answered in Chapter 3. Results 

from the experiments described in this dissertation demonstrate that the binding between 

E6 and its partner proteins, caspase 8 and E6AP, can be blocked by at least two different 

classes of small molecule inhibitors. Second, the blocking of E6 interactions with caspase 

8 and E6AP can indeed restore the functionality of apoptosis pathways in an HPV+ cell 

line. Therefore, the overall findings of this study demonstrate that small molecules 

targeting E6 may indeed prove to be a potential approach to the treatment of cervical 

cancer as well as other HPV-associated cancers. 

 

Future Directions 

 

Because DIPC can block multiple functions of HPV E6, the development of one 

or more clinically-useful drugs based on this compound has great potential. As mentioned 

previously, the benzimidazole family includes a number of derivatives with diverse 

bioactivities, which provides a precedent for optimizing DIPC to obtain one or more 

chemical compounds that can specifically block E6 functions. The next step in this 
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process will be to test DIPC for function in vivo. A xenograft mouse has already been 

developed in our laboratory in order to test the ability of small molecules to reduce the 

development of cervical cancer. This model can be used to test DIPC as well as 

additional candidates, once identified. To obtain additional and potentially more 

promising candidates, we will continue searching for additional classes of small molecule 

inhibitors. We have already developed collaborations with Kansas University and with 

the National Center for Advancing Translational Science (NCATS) to adapt our bead-

based assay to a high throughput screening (HTS) format, and look forward to obtaining 

data from a screening of libraries totaling approximately 1.4 million compounds. Those 

hits from HTS will be re-tested for dose-dependency in the E6/caspase 8 binding assay, 

subjected to the caspase 8/caspase 8 counter-screening assay, and examined in our cell 

model as described previously. Following these steps, we hope to further characterize and 

optimize the best candidates, perform the appropriate in vivo studies, and move toward 

clinical trials. 
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