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ABSTRACT

ABILITY OP CYLINDRICAL

ROOT FORM IMPLANTS TO WITHSTAND

CONTROLLED LATERAL FORCES

Silvio Emanuelli

The ability of root form implants to withstand lateral

forces has been investigated in animal model. Two new

techniques for quantification of forces generated by a

loading device have been developed and tested. The strain

gages bonded to the loading device were calibrated either

intraorally by a micro load cell, or in laboratory by

Instrom Machine.

Preliminary results indicate that laterally applied

continuous forces up to 6,000 grams do not elicit failure of

root form implants.
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INTRODUCTION

Research is needed for advancement in the understanding

of implant failure and the possible clinical application of

implants as orthodontic anchorage.

The literature suggests that overloading plays an

important role in implant failure. Skalak (1) stated that

"any force applied to the implant is transmitted to the bone

without changes of magnitude or duration. Consequently the

bone may be overstressed or fractured if sudden large impact

forces are applied to the fixtures". He also stated that

"although extensive data are not available on the failure

loads of osseointegrated implants, the clinical experience

indicates that the failure loads are well above the usual

bite forces".

Lindquist (2), analyzing his results in a population of

46 patients treated with fixed tissue integrated prosthesis

during an observation period of 3 to 6 years, concluded that

"oral hygiene was found to be the most important factor

associated with marginal bone loss. According to the

analysis functional and loading factors were also of

importance. Parafunctional activity, such as bruxism, both

reported as tooth clenching and recording of occlusal wear

on the prosthesis, led to increased bone loss.



The correlation between the length of the cantilever

extensions and bite force on one side, and some bone loss

values on the other side also indicated possible influences

of overloading".

Hoshaw (3) conducted test to determine the effect of

loading on root form implants placed in one cortex of whole

fresh frozen dog tibiae. Branemark implants 7 mm long were

axially and cyclically loaded at the rate of 50 N/sec.

Failure was not observed for a 200 N load up to 3000 cycles.

At 400, 600, 650, 700, and 800 N the cycles to elicit

failure were 6356, 564, 7, 4, and 1 respectively. Brunsky

(4) reported on interfacial shear strength, failure load of

different implant material and configuration by push out

single cycle overloading.

Macrointerlock implant samples macroporous coated, or

with large threads or grooves cut into the surface, without

"bioactive" coatings yielded a shear strength range from

about 5 to 30 MPa that corresponds to failure forces of

about 622 to 1532 N (5, 6, 7, 8, 9, 10). For macrointerlock

systems with "bioactive" calcium phosphate coatings, data

from the transcortical dog femur model show 32 week

strengths of from 10.53 +/- 3.29 MPa to 12.12 +/- 2.43 MPa

for uncoated versus HA-coated titanium implants. These

values correspond to forces of 595-685 N (11)



For a microinterlock system without "bioactive" coatings the

range of interfacial shear strength is about 1-4 MPa,

corresponding to forces of from 68 to 230 N (12). HA coated

microinterlock systems yield values of 6.07 +/- 1.29 MPa for

shear strength versus values of 1.21 +/- 0.77 MPa for

uncoated specimens. These stresses correspond to failure

forces of about 68 N for titanium uncoated implants versus

343 N for HA-coated Ti-6A1-4V. The site of failure for HA

coated samples was at the interface of the HA to the

substrate metal (13).

Limitations of these experiments are due to the animal

experimental models in which implants were tested in purely

cortical bone, and the application of the forces by single

cycle overload in a push out mode. These studies could

actually overestimate the failure forces for implants in

human bone of a mixed cortico-cancellous nature (4). The

determination of the ability of root form implants to

withstand lateral forces is important because there has been

a considerable increase in demand for orthodontic correction

of malocclusion in adults.

Orthodontists are being called upon to align teeth

prior to prosthetic restoration in mutilated dentitions

where lack of anchorage is a limiting factor.



Anchorage control is a major concern in the design of the

orthodontic appliance. Extraoral anchorage, although

stable, depends on patient cooperation. Intraorally derived

anchorage does not require extensive cooperation and is

generally more acceptable to the adult patient. In recent

years there has been a notable interest in the use of

implants as anchorage for both prosthetic and orthodontic

appliances.

In 1945 Gainsforth and Higley (14) made a futal attempt

to gain orthopedic anchorage by placing metallic screws and

Vires in the mandibles of dogs. Linkow (15, 16, 17), in

1970, published several reports of clinical studies

utilizing implants as anchorage to move teeth. In the first

use of endosseous implants for anchorage, they were subject

to failure when placed under heavy laterally directed forces

(18, 19, 20, 21). However, another study conducted by Gray

and Steen (22) tested Bioglass-coated and uncoated Vitallium

implants under lateral loads of 60-180 grams for a period of

28 days without failure.

An osseointegrated implant has been regarded as being

similar to an ankylosed tooth, which is thought to function

indefinitely without loss of its attachment to bone (23, 24,

25). Ankylosed teeth are not moved by heavy orthodontic

loads (orthopedic force) and have been used as stable

abutments for palatal expansion in monkeys (26).



This implies that "osseointegrated" implants should provide

the same anchorage as an ankylosed tooth.

Roberts (27) placed pairs of multipart titanium

implant systems, under 100 grams of lateral force, in long

bones of rabbits for a period of 4-8 weeks. Only one of

the 20 implants failed to remain rigid. Smalley (28) tested

extraoral titanium implants as anchorage for orthopedic

protraction of the maxillofacial complex in monkeys. He

loaded the implants with lateral forces of 600 grams for a

period of 8-12 weeks without any failures.

Few attempts have been made to study the effect of

orthopedic lateral forces on "osseointegrated" titanium

implants placed intraorally (29, 30, 31). Also, no attempt

has been made to determine the amount of orthodontic force

that can be placed on the implant without causing failure of

the bone implant interface. To test the ability of implants

to withstand forces Roberts (27) used springs placed between

implants in long bones. Springs allow you to determine the

exerted force level. Weaknessess of this loading device are

the decay of force levels and the inability to monitor the

level of force overtime. Servohydraulic test systems, used

by Hoshaw, cannot be used readily intraorally,



The ability of the dental implant and its supporting

tissues to withstand force depends on the nature of the

applied force, the biomechanical characteristic of the

implant, the bone response to mechanical stimulation, and

the nature of the bone implant interface (32).

Force

The human natural dentition is capable of exerting a

great deal of force. Their axial components are in the

range of 200 to 2440 N and the lateral components are about

30 N (32) . For dentures that are supported by dental

implants vertical closure forces of from 42 to 412 N have

been measured (33) . Orthodontic and orthopedic forces are

in the range of from 25 to 500 gr (34).

Imolant's mechanical characteristics

The mechanical characteristics of an implant are

dependent on the composition of the implant itself as well

as the design. Intrinsic properties which include the

elastic moduli, yield point, ultimate tensile strength,

compressive strength, fatigue strength and hardness pertain

to the material. Structural mechanical properties depend on



the intrinsic material properties and on the geometrical

shape of the device. Dental implants are usually metallic

devices made of titanium, titanium alloy, or cobalt crome

alloys and may be treated on the surface with coating or

other treatment. The design features of dental implants

varies greatly (32).

Bone response to mechanical stimulation

The mechanical properties of bone have been extensively

investigated. Bone is a complex anisotropic nonhomogeneous

material with time-dependent viscoelastic properties (35,

36). Bone macromodeling controls the architecture of

growing bone and is controlled itself in part by dynamic

strains caused by the mechanical loads applied to bone (37,

38, 39). Wolff proposed in the 1890s that mechanical usage

could evoke changes in the internal architecture of the

bones (38) . Two generally accepted and abundantly supported

(39) assumptions about the mechanical determinants of bone

architecture are: Under some circumstances the mechanical

load on a bone can cause it to modify its architecture (40).

The architectural change induced by a loading alteration

usually improves the ability of the bone to carry the new

loads (41, 42)



In 1963 and 1964, Epker and Frost (39, 41, 42) proposed

general principles or laws to predict specific structural

changes caused by specific changes in usage (43, 44, 45).

They postulated that, for the bone modeling system, dynamic

strains and/or strain rates egual to or greater than some

minimum effective strain will initiate adaptive bone

macromodeling, while lesser strain does not. The minimum

effective strain for bone modeling represents a range of

strain and/or strain rates below which strains do not

appear to produce any modeling, above which they often do,

and between which they do so with increasing regularity.

In vivo strain studies (46, 47, 48) suggest the range

of the lower magnitude limit may be approximately 1000

microstrain (0.001 units) of tension or compression strain,

and its upper limit 2000-2500 microstrain.

Studies which have included the femur and the tibia

have been conducted in an effort to determine ultimate

ability of both bovine and human bone tissue to withstand

stress and strain (49). The values for the ultimate stress

of human bone are: 133 MPa in tension, 193 MPa in

compression, 51 MPa in tension applied in a plane

perpendicular to the long axis, 133 MPa in compression

applied in a plane perpendicular to the long axis, and 68

MPa in shear. The maximum stress that a bone can resist is

strain-rate dependent (35).



Nature of the implant bone interface

The Branemark group in earlier studies (23, 24, 25, 50)

claimed that, under carefully controlled conditions, a rigid

union of vital bone to the titanium implant can be

maintained indefinitely. In the absence of any pathology,

continuous remodelling of the bone supporting the implant

apparently maintains the rigid bone/implant interface in the

presence of functional loading forces associated with

mastication (22) . Albrektsson (50) studied the attachment

of bone to titanium specimens with TEM and SEM analyse. He

stated that in an osseointegrated fixture "bone was not

separated from the titanium surface by any fibrous tissue

membrane. Collagen bundles were seen at the distance of 1

to 3 microns from the interface. Collagen filaments were

observed closer to the interface, but always separated from

the titanium surface by a proteoglycan layer of a minimal

thickness of 200 A. This proteoglycan layer was partly

calcified, and calcified tissue was observed in direct

continuity with the implant surface at the resolution level

of the equipment used, i.e., 30 to 50 A. Bone cells, and

processes from them, were likewise separated from the

titanium surface by a proteoglycan layer of a few hundred

angstroms in thickness."



In a study by Sennerby (51), a method involving

electrochemical dissolution of the bulk metal was used in

order to study the intact interface zone between calcified

bone and titanium implants with transmission electron

microscopy (TEM). In this study of "in ground sections

(about 10 microns thick) implant threads in the cortical

bone were filled with mineralized bone after 12 months. In

these sections the bone appeared to be in direct contact

with the implant surface without any intervening connected

tissue and

were thus, according to conventional criteria,

^osseointegrated'. However, when the same sections and the

surface of the tissue implant bloc, were examined through a

scanning electron microscope with a back scattered electron

detector (BS-SEM), a narrow zone 2-10 microns wide, always

separated the implant from mineralized tissue. The absence

of this zone in the relatively thick ground sections is an

artefact caused by overprojection of the dense metal and

bone. Observation with TEM confirmed the presence of an

interface zone which did not contain hydroxyapatite. The

arrangement of the collagen and the absence of fibroblasts

Shows that this tissue is not connective tissue but rather

decalcified bone tissue." A report by the same author in

the same year concluded that the interface zone previously



In 1992, while reporting on the removal torque for

screw-shaped pure titanium implants inserted in rabbit tibia

and the femoral part of the knee joint, Sennerby found that

the rupture occurred between the implant surface and the

calcified bone (53).

Chemical bonding has been demonstrated at the

ultrastructural electron microscopic level between the dense

hydroxylapatite and bone (54,55). Long term maintenance of

the rigid osseous fixation involves continuous remodeling of

the interface and supporting bone (56).

The purpose of this study is to explore the efficacy of

implants as orthodontic anchorage and to determine the

critical lateral force overload (physiologic limit) for the

monkey animal model. A loading device with the following

characteristics was designed, fabricated, and tested: 1)

capable of exerting lateral forces between coupled root form

implants; 2) retrievable from the implants, yet providing

solid connection with the implant body; 3) capable of

exerting a given yet verifiable force overtime; 4) tolerable

for the animals; 5) and incapable of deteriorating in an

oral environment.

By conducting a pilot study the range of the amount of

applied lateral forces required for implant failure was

determined. This study attempts to answer these questions:



1. Is there a predictable periimplant clinical

behavior for different forces applied, and how much force

can be placed on an implant without causing failure?

2. Is the stability of an implant dependent upon

specific intraoral location?

This study reports on preliminary observations of the

animals and covers the design, construction, and application

of the loading device.



MATERIALS AMD METHODS

In this animal study paired root form implants were

placed in edentulous sites created in the oral cavity of

macaca rhesus. After the bone healed the implants were

connected to a loading device capable of applying a given

amount of force. The change in implant mobility and

deflection measured between two fixed reference points was

evaluated overtime. Pilot studies were performed in order

to develop and test the loading device and to gather

preliminary data on two of the animals.

Animals

The chosen animal model consisted of eight macaca

rhesus monkeys. They were between 2 and 3 years old and

weighted approximately 10-15 kg. The animals were housed in

individual cages. Ventilation, temperature and humidity

were controlled to provide an optimal environmental

condition for the monkeys (60).

Diet

Water was always available, and sufficient food was

provided to meet their nutritional requirements.



General surgical management

Before the surgical procedures each animal was

anesthetized by an intramuscular injection of Ketamine

(5 mg/Kg body weight). The technique for implantation

followed the protocol recommended by the manufacturer and a

modified draping was used for sterile purposes. After the

face and the mouth were appropriately scrubbed with Betadine

two sterile operating room towels (approximately 30 inches

in length, with two sterile small caliber towel clips) were

used for draping the head and neck (61).

The surgical protocol for the placement of the implants

involved:

-  Local anesthesia (lidocaine 2%, epinephrine 1:100,000)
Incision (Bard-Parker #15)

-  Elevation of the full thickness flap
Preparation of the osseotomies as prescribed by the
manufacturer (62)
Placement of the implants
Repositioning of the flaps and suturing

Each pair of implants was uncovered by following this

surgical protocol:

Local anesthesia

Incision (Bard-Parker #15)
Elevation of the full thickness flap
Location of the implants
Placement of screwable abutment posts
Repositioning of the flaps and suturing



Implants

The implants used were Bio Vent, 3.5 mm D HA coated and

plasma sprayed, purchased from the Core-Vent Corporation

(57, 58, 59, 62). Implant lengths of 8, 10.5, and 13 mm

were used to form couples with one long and one short

implant.

Loading device

The loading device had an expansion screw that exerted

force on a wire to produce force between the implants. Fig.l

The wire and the expansion screw are able to exert force on

the implants through the posts that are secured to the

implants with fixation screws. This device consists of two

parts called male and female. Each part connects with the

implant via an interlocking hex mechanism and a fixation

screw. The housing of the expansion screw is soldered to

the male part and the wire that transfers the load from the

expansion screw is soldered to the female part. A strain

gage (63) is glued to the wire and two wires extend from it.

Both parts are custom waxed on a cast duplicating the

intraoral location of the implants to insure optimum

interimplant distance. Accurate quantification of the force

applied was accomplished with the use of strain gauges glued



Figure 1. Construction of loading device. The male part (A)
is constructed so that the housing will accept the expansion
screw. A strain gage is bonded to a 0.018" X 0.025"
stainless steel wire soldered to the female part (B). The
ring is shown vertically for clarity but is actually
horizontal.



directly to the metallic wire onto which the expansion screw

is acting. Fig.2 These strain gages were connected to a

digital output device so that the amount of strain applied

could be recorded. Strain gages by Entran (EBS-020-120) are

1 mm long by 0.15 mm wide and were epoxied (Micro

Measurements M-Bond 610) to a flattened area of the wire.

An Entran MM45 series-low cost 4 1/2 digit transducer

meter/power supply was used to quantify the output of the

strain gage.

In the first monkey (pilot study) four different

methods of strain measurement were employed. Fig.3 It was

necessary to use alternate methods in response to specific

problems which occured when measuring. When the strain gage

was mounted directly on the expansion screw we found that

the screw was so rigid, and the range of strain output was

so small, that it was difficult to distinguish load levels

adequately.

When the strain gage was mounted on the bend of a

0.028" round stainless steel U-shaped loop, the range of

strain output increased, but the rotation of the U-shaped

loop was off center and produced oscillations in the load

versus strain curves. In addition, it was impossible to

rotate the strain gage past the gingiva because the gage was

located too far from the center of rotation for the

expansion screw; and gingival clearance was minimal even

when the gage was bonded to the expansion screw directly.



Strain gage application, M-Bond 610

M-Bond 610 covers the strain gage

Copper and gold leads twisted
together and soldered

Wires twisted around the epoxy

coatings

Devcon Super Epoxy stabilization

Devcon White Silicone Rubber sealant

Figure 2. Schematic diagrams of the strain gage bonding
sequence.



Strain gage mounted directly on the
expansion screw

Strain gage mounted on the bend of a
U-shaped wire which was in turn soldered to the
expansion screw

Strain gage mounted to a fixed cut circle of
rectangular stainless steel wire

Strain gage mounted to a fixed circle of
rectangular stainless steel wire

10

load cell

expansion screw
strain gage

Figure 3. Four different loading devices used in the pilot
animals.



Next a 0.016" by 0.016" stainless steel cut circle was

soldered to the non-movable abutment, and the strain gage

bonded to this cut circle. This eliminated the problem of

gingival clearance, but the wire was not rigid enough to

resist lateral deflection during force application. The cut

circle was, in fact, bending and moving laterally causing

the load cell to be loaded with an off centered load or to

slip out of the assembly completely. A complete circle of

0.016" by 0.016" stainless steel wire soldered to the non-

movable abutment solved the above problems. This provided an

adequate range of strain output, equalized lateral

deformation, and gave good gingival clearance.

Calibration of the strain gages was determined

intraorally by load cells used in conjuction with the force

applied (Entran ELO-200 Series low profile load cell, 5mm

wide by 2mm thick), or extraorally by bench calibration with

an Instron mechanical testing machine. Fig.4 Intraoral

calibration was adequate to measure more than 2.7 Kg of

force. Since this was the measuring limit of the load cell,

each strain gage assembly was calibrated extraorally when

higher force levels were employed. Extraoral calibration

requires a carefully controlled environment in the

laboratory setting. The objective of the extraoral

calibration was to mimic as accurately as possible the

experimental conditions and to create reproducible data

helpful in the experimental procedures. Fig.5



Instron 1011

0.000 kg

INSTRON

II

m

II!

Figure 4.Instron 1011 machine and associated apparatus for
extraoral calibration of the strain gages used with the
second animal.



Figure 5. Load versus strain curves obtained from in vitro
testing of the strain gage assemblies used in the second
monkey. The same assembly consistently reproduces its
characteristic curve.



since strain gage output varies with changes in

temperature and with the position and direction of the

application of force, the experiment included a temperature

control device in the form of a water bath. Force on the

wire, in the same direction and position as the expansion

screw, was applied with the use of a metal plunger. In

order to calibrate the loading device a bench calibration

protocol was established. An Instron machine (Instron

Universal Testing Instrument- Model 1011) was used for the

application of the loads. A low capacity load cell (50 Kg.)

was mounted on the Instron machine. The inferior jig, which

consisted of a cast obtained from the transfer impression of

the position of the implants, made it possible to stabilize

the female part of the loading device. The cast was then

placed in a stone base that was held by the inferior part of

a survejor. The inferior base of the surveyor had an

universal ball attachment that allowed for fine adjustments

of its position, and could be glued to the metal plate fixed

to the Instron machine with acrylic resin. The metal

mounting plate was fixed to the Instron machine with two

screws and held the water basin in place. This plate and

the basin were treated with silicone in order to stop any

water leakage. A circulating system driven by an electric

pump, an accurately positioned tubing system, and a

thermometer helped to maintain a constant water temperature



in the basin. The male part of the loading device was

supported by a metal plunger the same diameter as that of

the expansion screw head. It was then screwed directly to

the load cell on the mobile part of the Instron machine.

The superior jig, screwed into the receptor of the Instron

machine, ended with a small point and was positioned so that

the force was directed on the flat part of the wire on the

female post of the loading device. Fig.4 An example of the

data showing the relationship between the applied load and

the recorded strain of the metallic wire is shown in Fig.5

Measuring device

The measurements of the given forces were obtained from

an amplifier that indicated the strain (63) in millivolts

and the force measured by the load cell in grams. Details

can be found in the description of the loading device.

For the assessment of the mobility of the implant a

Periotest device was used (64, 65, 66). Periotest was

developed by Siemens after 10 years of research and measures

the support provided by the periodontal ligaments for the

teeth or by the bone for implants. Since it was impossibe

to measure tooth deflection by means of a fast method

suitable for routine dental use, and it was absolutely

necessary to have a fixed reference system, a system was

developed by which the actual measurement is the amount of



time that a percussive rod is in contact with the tooth or

implant. Changes in the periodontal structure affect the

periodontal damping characteristics as well as the mobility.

The Periotest device consists of a handpiece and

processing unit. The handpiece contains a percussive rod

tip which flies freely out of the head of the handpiece.

When the rod tip makes contact with the implant, the rod

decelerates rapidly. Upon reaching zero velocity, an

electromagnet immediately causes the rod to recoil from the

implant and re-enter the handpiece. The rod taps on the

abutment/tooth 16 times in 4 seconds. The sensor measures

the amount of time the rod is in actual contact with the

surface. The 16 measurements are registered in

milliseconds. The microprocessor converts these millisecond

measurements into Periotest values (PTV's) which range from

-08 to +50. Currently Periotest seems to be the most

reliable and objective means of assessing implant stability

For the measurements of deflection, a micrometer was

used to measure the distance between two fixed reference

marks on the abutments. The mean of four measurements was

used in our measuring procedures both for PTV's and

movement.



Experimental procedures

The pilot monkey (#8685) underwent full mouth

extractions, except for the canines and the first premolars,

on September 25, 1990. Two months later, on November 27,

1990, five pairs of hydroxyapatite coated plasma sprayed

Bio-vent implants were inserted.

Three different lengths of implants were placed in the

pilot animal. Table 1 shows the location, position, and

length of each implant. Five pairs of implants were placed,

four pair were unequal in length and the fifth pair

(mandibular anterior) was equal in length.

Table 1. Implant locations, positions, and length for monkey
#8685.

Location Position Length

Mandibular Right Posterior 10.5 mm

Mandibular Right Anterior 13 mm

Mandibular Anterior Right 10.5 mm

Mandibular Anterior Left 10.5 mm

Mandibular Left Anterior 10.5 mm

Mandibular Left Posterior 13 mm

Maxillary Right Anterior 13 mm

Maxillary Right Posterior 8 mm (perforation)

Maxillary Left Anterior 13 mm

Maxillary Left Posterior 8 mm



Initial experiments involved the design of abutments that

could be used to hold an expansion screw strain gage

assembly in place so that the implants could be loaded with

lateral forces. Early registration of the implants

positions was done by endowel impression techniques. A

plastic post was inserted into the implants and a

polysulfide impression was taken of the endowels and seating

surface of the implants. In the lab, a cast post type of

abutment was constructed to which female threads of an

expansion screw were soldered. After constructing five of

these abutments it was determined that not all of them could

be properly cemented in the correct orientation in the

monkey's mouth. Some were cemented in the correct

orientation in the monkey's mouth and some were cemented in

incorrect orientations. The expansion screw was used to

apply force to the second abutment of the pair. However,

the cemented post always broke loose, just to the short

length of the cast post, due to off-center loading.

Attempts were made to solder the expansion screws to

the stock titanium abutments supplied by Core-Vent, but we

were unable to do so. Core-Vent recommended casting gold,

which has a low melting point, directly to the titanium

abutments; however this also proved to be too difficult to

accomplish.



To solve these problems, the internal hex feature of

the implants was used. Custom abutments were waxed with a

male hex feature which would slide directly into the female

hex feature of the implant. This arrangement did not allow

for rotation and did not require cementing; however, it did

require an accurate registration technique.

The first of many experiments in the pilot animal began

on August 11, 1991, nine and one half months after placement

of the implants. The experimental apparatus is shown in the

first diagram in Fig. 3 in which the strain gage was bonded

directly to the side of the expansion screw. When a 400

gram load (calibrated in the mouth using a micro load cell)

was applied to the maxillary right pair of implants, it was

found that the mobility of the implants as tested by the

Periotest apparatus did not change over a period of 12 days

(Table 3 and Fig. 6). When the posterior abutment

experienced a sharp increase in PTVs on the fifth day after

loading, it was found that the screw holding the abutment in

place was loose. After the screw was tightened on the

seventh day after loading, the PTVs returned to their

initial values. The experiment was terminated because the

appliance was damaged during testing. We found that the

epoxy resin had softened and could be easily removed from

the expansion screw. We decided that the resin needed

waterproof protection.



Another experiment with the same apparatus (first

diagram Fig. 3) was started on August 15, 1991 at a load of

750 grams which lasted eight days (Table 4 and Fig. 7), at

which time the posterior abutment was unintentionally

rotated. During this period of time the implants were

checked daily for mobility. There was no clinically

significant change in implant mobility. This 750 gram load

was applied to the maxillary left pair of implants.

These experiments taught us that a more sensitive

measuring apparatus was necessary. In setting the above

loads a change of 1 mv output from the strain gage resulted

in a difference of approximately 500 grams. A series of

bench tests were performed to evaluate the sensitivity of

different types of apparatus. From the results of these

tests, we decided to try a fixed cut circle apparatus as

pictured in the third diagram in Fig. 3.

A load of 1,100 grams was placed on the maxillary right

pair of implants on October 16, 1991. During the 26 days of

the experiment the fixed cut circle was used with no

increase in implant mobility (Table 5 and Fig. 8). Further

attempts to use this fixed cut circle apparatus failed at

higher load levels. An attempt to place this apparatus in

the mandibular right quadrant of the pilot animal was made

on November 12, 1991. When the load reached 1,500 grams the

solder joint broke and the experiment was terminated.



On the same day, a similar cut circle apparatus was placed

in the maxillary right quadrant. During this test, the ring

always slipped, and off-center flexure occurred at loads

above 1,500 grams. This experiment was terminated because

of the off-center loading at higher load levels. To avoid

off-center loading it was necessary to abandon the cut

circle apparatus and adopt the fixed full circle design

shown in the fourth diagram of Fig. 3. On November 21,

1991, an elliptical 16.2" stainless steel fixed quadrant was

put into place. This test was aborted due to damage to the

strain gage during the calibration process.

Successful use of the elliptical full circle appliance

was first achieved on November 26, 1991 when a load of 2700

grams was applied to the upper right quadrant. An increase

in PVT's occurred but returned to normal within a 48 day

time period.

On December 20, 1991, a force of 2,850 gr. was applied

to the mandibular right pair of implants in the pilot

monkey. Twenty five days later on January 14, 1992, there

was no change in implant mobility. This time the elliptical

full circle rectangular wire was used.

The second monkey (#9091) received full mouth

extractions exept for canines and third molars on September

28, 1990. Two months later, on September 30, six pairs of

implants were placed as described in Table 2.



The loading device was calibrated and tested to exert

6,000 grains and was placed on the right mandibular implants

on April 5 1992. The initial, postload, and subsequent

strain values were recorded. Failure of the strain

recording apparatus occourred during the second day post

load. The PTV's and displacement measurements were recorded

daily.

Table 2. Implant locations and length for monkey #9091

Location Position Length

Mandibular

Mandibular

Mandibular

Mandibular

Mandibular

Mandibular

Right
Right
Anterior

Anterior

Left

Left

Posterior

Anterior

Right
Left

Anterior

Posterior

13 mm

10 mm

10 mm

10 mm

13 mm

10 mm

Maxillary Right
Maxillary Right
Maxillary Anterior
Maxillary Anterior
Maxillary Left
Maxillary Left

Posterior

Anterior

Right
Left

Anterior

Posterior

8 mm

10 mm

10 mm

10 mm

10 mm

8 mm



RESULTS

The PTV's of the implants tested in the first monkey

#8685 are shown for the initial load of 400 gr. in Table 3

and Fig. 6; for the initial load of 750 gr. in Table 4 and

Fig. 7; for the initial load of 1,100 gr. in Table 5 and

Fig. 8; for the initial load of 2,685 gr. in Table 6 and

Fig. 9; for the initial load of 2,850 gr. in Table 7 and

Fig. 10.

The PTV's and displacement values of the device tested

in the second monkey at force values of 6,000 gr. are shown

in Fig. 11.

Table 3. Periotest values obtained over 12 days. Initial
load of 400 grams on the maxillary right implant pair in
monkey # 8685. Top row numbers indicate days since load.
Note that the posterior implant was always more mobile than
the anterior. The PTV peak on days 6-7 can be explained by
the posterior fixation screw becoming loose.

2  3UR Pre Post

Ant. ■0.8

Post. s 5

5 6 a 8 9 10 11 12

OJ B OJ B OS DBB
15 16 16 5 4S 3S 5



Table 4. Periotest values obtained over 8 days. Initial
load of 750 grams on the maxillary left implant pair in
monkey # 8685. Top row numbers indicate days since load.

UL Pre Post 2 3 EBl 5 6
8

Ant. OJ 1.0 US 1.75 2.75 ' 22) •4.35 2.75 2.75 )

Post 7 3.75 3J EH 2.25 2.5 S2S SJS 4U5 <.25

Table 5. Periotest values obtained over 26 days. Initial
load of 1,100 grams on the maxillary right implant pair in
monkey # 8685. Top row numbers indicate days since load.

UR Preload Postload

Ant. 3 -OJ

Post. 6.25 2.75

u itfl

i i



Table 6. Periotest values obtained over 48 days. Initial
load of 2,685 grams on the maxillary right implant pair in
monkey # 8685. Top row numbers indicate days since load.
The peak of PVT on day 10 is unexplained, however, after 49
days the PVT had returned to normal values.

UR Preload Postload 7 10 49

Anterior +3.00 +1.00 +0.50 +4.75 +0.25

Posterior +2.50 +6.25 +7.25 +11.75 +5.5

1

n ■HI

Table 7. Periotest values obtained over 25 days. Initial
load of 2,850 grams on the mandibular right implant pair in
monkey # 8685. Top row numbers indicate days since load.

LR Preload Postload 25

Anterior +2.00 0.00 -0.25

Posterior +3.25 +1.75 +2.00

I1/ II
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DISCUSSION

In this pilot study strain gage technology has been

applied to the measurement of orthodontic and orthopedic

loads placed on implants. Methods for force applications

and measurements were developed and preliminary observations

on load levels that would cause implant failures were

reported. Preliminary data suggests that implants can

withstand lateral forces several times greater than

previously demonstrated.

The general standard for implant failure in other

studies has been clinical mobility. In our study implant

stability was judged by PTV's which are closely correlated

with clinical mobility (64). Our data rarely exceeded +10

PTV's (+1 clinical mobility), and when it did, there was

either a mechanical problem with the apparatus, or the PTV's

in time returned to a more solid reading.

In our test at 400 grams on the upper right quadrant of

monkey #8685, on the fifth day the PTV's of the posterior

implant sharply rose to levels which might have been

interpreted as implant failure (+16 PTV). It was found on

further examination, that the screw which held the abutment

to the implant had loosened, and when the screw was



retightened, the PTV's returned to the exact levels (+5

PTV's) that had been experienced in the first phase of the

experiment. This indicates that no change in mobility

occurred due to force application.

The second instance of PTV's exceeding +10 occurred in

the test at 2,685 grams on the upper right quadrant in

monkey #8685. In this experiment, the posterior implant

experienced a +11.75 PTV on day 10, however, after 49 days

the PTV's returned to normal values. The significance of

this mobility remains questionable.

Although this pilot study has shown that osseointegrated

implants can withstand lateral forces far in excess of loads

previously reported by other authors, there were some

differences between our force delivery system (expansion

screw) and the force delivery system used by most other

studies. These differences may confound comparison

attempts.

All previous studies used a spring or elastic chain to

apply the force between implants or between an implant and a

natural tooth. These force delivery mechanisms produce

continuous orthodontic force over time. This force is not

dramatically reduced by minor movement of the tooth or

implant. In our study we wanted to apply forces greater

than those that could be produced by a spring or elastic

chain, so an expansion screw was used to apply the force.

Since implants behave as ankylosed teeth without a



periodontal membrane, we assumed that the implants would not

move through the bone, therefore, once a load was applied it

would remain constant.

Such an assumption may or may not be valid. It is more

than likely true that implants do not move through the bone

under load, but it is also probably true that bone under

strain may bend or remodel in the area of or away from the

implant interface. If bone bends progressively over time

under load, expansion screw force could be dissipated

relatively quickly. This would make it difficult to compare

our data with that obtained by authors who used springs or

elastic chain.

In analysis of these test results, it is important to

distinguish between monotonic failure and "fatigue" failure

caused by repetitive loading of the implants. It has been

shown (35, 36, 37, 45) that multiple loading, cyclic

loading, or progressive loading causes adaptive remodeling

of the skeletal tissues. It may not be as clear that

monotonic loading can also ameliorate remodeling of bone

tissue. Our studies involve strong monotonic loading only.

It will be interesting to observe the effect of monotonic

loading on the adaptive remodeling capabilities of the bone

tissues (if any). If a 6 kg load does not cause implant

mobility, the role of overloading as a causal agent for

implant failure could be diminished.



Technical problems in the design, construction, and

application of the loading device made it impossible to

follow the original plan for which the healing time (for

implant placement and loading) would have been 6 months.

This could have influenced the characteristics of the

implant bone interface, thereby effecting our findings.

However, Gottlander's (67) report on HA-coated implants

inserted in rabbit tibiae showed that with histomorphometric

analysis there was a direct bone to implant contact

percentage of 65.1% +/- 11.6% after six weeks. This

percentage did not vary in the specimens examined that

yielded 59.5% +/- 12.2% up to one year after they healed.

This could indicate that the delay in loading did not effect

our results.



CONCLUSION

Two new techniques have been developed to measure force

levels applied to implants. We found that even a 6 kg

lateral force did not cause failure of the implants. This

suggests that overload may play a more limited role in

implant failure than was believed before; and that

orthodontists do not need to limit their force range when

using implants for anchorage. Further investigations are

needed, and are currently being performed, to determinate

the critical force value able to elicit failure of root form

implants.
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