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ABSTRACT OF THE DISSERTATION

Hypoxia and Fetal Programming of Cardiovascular Dysfunction

by

Qin Xue

Doctor of Philosophy, Graduate Program in Pharmacology
Loma Linda University, June 2010

Dr. Zhang, Chairperson

Human epidemiological studies have shown a clear association of adverse

intrauterine environment and an increased risk of ischemic heart disease in later adult life.

Of all the stresses to which the fetus is subjected, perhaps the most important and

clinically relevant is that of hypoxia. The goal of this project is to test the hypothesis that

chronic hypoxia during gestation adversely affects fetal cardiovascular development and

impairs cardiac function in offspring. In the first part of project, we tested the hypothesis

that chronic hypoxia adversely regulates contractility of fetal pulmonary arteries and

veins in sheep residing at high altitude (3,801 m) for 110 days. Our studies demonstrate

the heterogeneity of fetal pulmonary arteries and veins in response to long-term high-

altitude hypoxia and suggest a likely common mechanism downstream of nitric oxide in

fetal pulmonary vascular response to chronic hypoxia in utero, which may be associated

with an increased risk of pulmonary hypertension observed in newboms caused by fetal

hypoxia. The second part of project focused on the effect of fetal hypoxia on heart

development. This was accomplished by using a rat model. Time-dated pregnant rats

were divided between normoxic and hypoxia (10.5% 02 on days 15-21 of gestation). We

demonstrated that prenatal hypoxia caused an increase in heart susceptibility to ischemia

and reperfusion injury in male offspring in a sex-dependent manner. This was caused by
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enhanced type 2 angiotensin II receptors (ATiR) and reduced PKCe expression in the

heart. Further studies revealed an important role of glucoCOrticoid in programming of

angiotensin II receptors, resulting in increased ischemic vulnerability in the heart of

offspring. Multiple glucocorticoid response elements (GREs) were identified at the AT2R

promoter, deletion of which increased the promoter activity. Consistently, we

demonstrated that dexamethasone decreased AT2R expression in the fetal heart, which

was blocked by RU 486. Prenatal hypoxia decreased glucocorticoid receptor (OR)

expression in adult hearts, resulting in decreased GR binding to the GREs at the AT2R

promoter. These findings provide a mechanistic understanding worth of investigation in

humans in fetal origins of cardiovascular disease caused by intrauterine adverse

environment.
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^  CHAPTER ONE

INTRODUCTION

Cardiovascular disease (CVD) is the leading cause of death in the world. The

World Health Report indieates that CVD was responsible for 16.7 million deaths globally

in 2003 and predicts that by 2010, CVD will he the leading eause of death in the

developing eountries. Many risk factors have been established for CVD, including

smoking, diabetes, dyslipidemia, and hypertension.

The 'developmental origins of adult disease' hypothesis, first put forward by

David Barker, states that adverse intrauterine influences early in development would

cause permanent ehanges in physiology and metabolism, resulting in increased disease

risk in adulthood. The both animal and human studies support this conclusion; however,

the molecular mechanisms underlying the assoeiation between low birth weight and later

adult disease are not fully understood. Some studies have focused on the "Catch-up

growth," which plays an important role in amplifying the incidence of CVD (Eriksson et

al. 1999). Catch up growth is rapid growth in infants or young children who were bom

small for their gestational age has an increased growth rate that eatch up to normal size.

Low birth weight and postnatal catch-up growth are intimately linked and independent

risk factors for adult disease. Recent studies form rats and mouse show that accelerated

postnatal growth is a trigger for the development of CVD and adverse outeomes in adult



life (Osmond and Barker, 2000). Recent observations have shown that impaired growth

in infancy and accelerated postnatal weight gain exacerbate the effects of impaired

prenatal growth. The exact reason why catch-up growth is harmful is not fully

understood, hut there are two possibilities. Catch-up growth reflects persisting changes in

hormonal secretions. In response to fetal undemutrition, growth restriction in utero

results in a decrease in the number of cells, these limited cells become overgrown as a

result of catch-up growth (Barker, 1999).

Besides fetal undemutrition, a number of additional stimuli and stress or insults,

namely, fetal exposure to cocaine, smoking, corticorsteriod exposure and hypoxia have

been studied as being capable of inducing fetal programming in both human and animal

models (Godfrey and Barker 2000; Seckl 2004; Slotkin 1998; Wu et al. 2004; Zhang

2005 ).

Mateimal Undernutrition and Cardiovascular Programming

Maternal nutrition during all the stages of gestation plays an important role in the

development of the fetus. It has been known that the fetus receives the nutrients and

oxygen from its mother's dietary intake. Insufficient matemal nutrition reduces the rate

of cell division, impairing fetal growth (Barker, 2000). During periods of matemal

undemutrition, the delivery of nutrients to the fetus becomes compromised and alters

fetal development. The undemourished fetus makes adaptations including epigenetic

modification, which causes the changes in organ structure and gene expesssion, resulting

in chronic diseases in the later life (McMillen and Robinson 2005. Gilbert et al., 2006;

Tappia and Gabriel 2006; Barker 2007; Poston 2007; Rinaudo and Lamb 2008; Yajnik

and Deshmukh 2008). A number of conditions can cause intrauterine growth restriction



(lUGR), including nutritional inadequacies, CVD in mother, preeclampsia, hypoxia, drug

abuse, high blood pressure and smoking (Harding, 2001). iUGR is usually classified as

symmetric and asymmetric. Symmetric growth restriction implies a fetus whose entire

body is proportionally small. A fetus with asymmetric IUGR has a normal head

dimension but a small abdominal circumference (due to decreased liver size), scrawny

limbs (because of decreased muscle mass) and thinned skin (because of decreased fat).

Asymmetric growth restriction implies a fetus who is undemourished and keeps most of

its energy maintaining growth of important organs, such as the brain and heart. If the

insult causing asymmetric growth restriction is long or severe enough, the fetus may not

compensate and becomes symmetrically growth-restricted. In addition. Asymmetric

IUGR fetuses are more susceptible to developing the risk factors for CVD including

hypertension (Barker, 1997a and 1997b).

Vascular endothelial dysfunction in children is associated with low body weight

(Leeson et al, 1997). Abnormalities in nitric oxide-cGMP pathway in male offspring has

been found in fetal protein restriction study, which may explain the lack of endothelium-

dependent and -independent relaxation and the occurrence of vascular dysfunction and

hypertension in the male offspring (Brawley et al., 2003 and 2004).

A variety of under nutrition models exist, including total calorie restriction,

sodium restriction, and reduced protein intake. Both global maternal undemutrition and

specific protein restriction result in reduced birth weight, increased blood pressure and

impaired glucose tolerance in the offspring (Langley-Evans et al., 1995; Woodall et al.,

1996). It has been found that matemal body compostition and diet during early or mid-

pregnancy has effect on cardiovascular function and nephron number in sheep



(Gopalakrishnan et al., 2005). In a rat model, restricting maternal protein reduces the

cardiomyocyte numbers, which may be due to increased apoptosis or reduced cellular

proliferation (Corstius et al., 2005). In addition, maternal nutrient restriction results in the

hypertrophy of the left ventricle, which is considered an important component in the

development of later heart failure and heart disease (Dhalla et al., 2006,2007).

Furthermore, there is an increase in the amount of interstitial fibrosis in the left ventricle

in the adult offspring when the mother has a low protein diet during gestation, which

might contribute to reduce cardiac contractility and heart disease in adult offspring (Lim

et al., 2006). Maternal undemutrition leads to pathologic cardiac remodeling, diastolic

dysftmction, and increased sensitivity to ischemic injury during adult life (Xu et al.,

2006)

It has been shown that a maternal low protein diet can induce changes in the gene

and protein levels of myocardial Ca^^-cycling proteins, which might contribute to the

depressed contractile function of the neonatal heart (Tappia et al., 2009). It is well known

that growth hormones and insulin like growth factors (IGFs) are involved in the

development and physiology of the cardiovascular system. Maternal undemutrition

decreases the expression of IGFs, which impairs cardiac growth and systolic function,

resulting in the development of CVD later in life (Dong et al., 2005). In addition,

Kawamura et al. (2007) also reported that fetal undemutrition activated the local rennin-

angiogenesis system (RAS), partly contributing to the occurrence of cardiac remodeling

in later life. Matemal nutrient restriction upregulated a number of genes related to

hypertrophy in the fetal heart (Han et al., 2004). Another important aspect of matemal

undemutrition is the reduction of the density of pi-adrenergic receptors (Femadez-Twinn



et al. 2006). It has been found that the pups have higher levels of circulating epinephrine

(Petry et al. 2000). Excessive activation of the p-adrenergic system is harmful to the

heart and plays an important role in the development of heart failure (Port and Bristow

2001). It is likely that the long term increased adrenergic stimulation will result in

compromised cardiac function and possibly heart failure.

Maternal protein restriction also alters the compostion of the plasma membrane

and the fatty acid content of the cardiomyocytes of the offspring (Tappia et al., 2005). It

has been observed that there are the increased levels of sphingomyelin and

lysophosphatidylcholine, which could induce increased myocardial apoptosis in response

to maternal protein restriction. Additionally, levels of peroxisome proliferator-activated

receptor (PPAR-a), an important transcription factor involved in regulation of genes

encoding multiple enzymes for fatty acid oxidation and, was increased in response to

reduced maternal protein intake (Tappia et al., 2005).

Maternal Corticosteroid Excess and Cardiovascular

Programming

Secretion of glucocorticoids from the adrenal cortex is controlled by

hypothalamic-pituitary-adrenal (HPA) axis through a negative-feedback loop.

Glucocorticoids exert their effects by binding intracellular glucocorticoid receptors

(GRs), members of the nuclear hormone superfamily of ligand-activated transcription

factors. In addition, in some tissues, glucocorticoids bind to mineralocorticoid receptors

(MRs). GRs and MRs are activated by ligand binding, then the receptor-ligand complex

translocates to the nucleus, binding to glucocorticoid-response elements (GREs) in the

promoter of target genes to influence gene transcription (Yamamoto, 1985).



Glucocorticoids regulate important cardiovascular, metabolic, immunological and other

homoeostatic functions. Steroid hormones are increased in stress and involved in organ

development, maturation. Given that glucocorticoids play an important role in lung

development, glucocorticoids are given antepartum to women at increased risk for

delivering prematurely in order to accelerate lung development and reduce the likelihood

of the infant suffering respiratory distress syndrome (RX)S) or bronchopulmonary

dysplasia (BPD) (Ballard, 1987).

Although glucocorticoids are highly lipophilic molecules and can be cross

biological barriers, such as the placenta, fetal glucocorticoids are generally lower than the

maternal levels (Klemcke, 1995). This is due to higher level of 1 Ip-Hydroxysteroid

dehydrogenase type 2 (11P-HSD2), which converts steroid hormones into an inactive

form (Lopez-Bemal and Craft 1981; Lopez-Bemal et al., 1980). This allows only a low

level of maternal steroids to pass through the placenta. However, 11P-HSD2 does not

deactivate all steroids. Administration of a steroid that 11P-HSD2 does not have a high

affinity for, will lead to high fetal glucocorticoids. Additionally, a defect or inhibition of

11P-HSD2 or high levels of maternal steroids can overwhelm the protection of 11P-

HSD2 and enhance levels of steroids in fetus. Given that fetal exposure to excessive

amounts of glucocorticoids results in intrauterine growth restriction, it has been

hypothesized that this placental 1 ip-HSD barrier plays a key role to protect the fetus

fi-om adverse effects of maternal glucocorticoids. Many studies have shown that 11P-

HSD2 activity is influenced by matemal environmental factors such as maternal

undemutrition, and lUGR (Shams et al., 1998). It has been demonstrated that

corticosterone are associated with programming of hypertension in the absence of



changes in birth weight, which suggested that levels of glucocortieoids associated with

physiological stress may overcome the placental 11|3-HSD2 barrier, leading to influenee

the developing fetus.

The HPA axis is an important target in programming, and studies in various

animal models have shown that prenatal glucocorticoid excess affects activity of this axis

at several levels. For example, exposure to glucocortieoids in utero during the last third

of pregnancy reduces MR and GR levels in the hippocampus. It is thought that the

decrease in hippocampal GR expression reduces the sensitivity of feedback and, thus,

permanently alters the 'set point' of the HPA axis (Plotsky and Meaney, 1993).

Glucocorticoid treatment during pregnancy reduces birth weight in both animals

and humans (Nyirenda et al., 1998; Ikegami et al., 1997; Newnham et al., 1999; French et

al., 1999; Bloom et al., 2001). Fetal excessive exposure to glucocortieoid is linked with a

variety of pathologies such as hypertension and insulin resistance (Nyirenda et al., 1998).

Fetal glucocorticoid overexposure is associated with an irreversible decrease in nephron

number in rodents (Ortiz et al., 2001 and 2003) and sheep (Wintour et al., 2003).

Glucoeorticoids exposure prenatally altered activity of the renin-angiotensin-aldosterone

system (RAAS) and vascular function in a region-specific manner (O'Regan et al., 2004

and Hodoke et al., 2006) and have increased expression of the AT i and ATi (Wintour et

al., 2003). Excessive glucocorticoid exposure in utero can influence the heart both

directly and indirectly. There were alterations of cardiac noradrenergic innervation and

sympathetic activity of baroreceptor response in the offspring exposed to glucocortieoid

prenatally (Wintour et al., 2003). It has been reported the changes in expression of

several genes in the heart including cardiac glucose transporter 1 (GLUTl), Akt/PKB,



specific uncoupling proteins, peroxisome-proliferator-activated receptor y (PPAR- y) and

calreticulin (Langdown et al., 2001 and 2003). The entry of glucose into the cardiac

myocytes, the rate limiting step of glycolysis in these cells, is controlled by GLUT.

Compared to the rats not exposed to dexamethasone in utero, the levels of the GLUTl are

higher in the adult organism exposed to dexamethasone prenatally (Langdown et al.,

2001). However, this difference is not observed when the pups are less than 2 weeks old,

suggesting that this alteration may be secondary to other changes that trigger this

alteration. An increase in the Akt/PKB pathway was also observed, which may be

responsible for the observed change in GLUTl expression. However, this correlation has

not been shown to be causative. Additionally, cardiac expression of protein kinase C

(PKC) isoforms was increased in the pups of the mothers given dexamethasone. Both

pro (Pi, P2, and 5) and anti (a and e) apoptotic isoforms were upregulated (Langdown et

al., 2001). The effect of these changes on cardiac function and susceptibility to disease

has not been fully understood but clearly significant long term changes take place in

response to the glucocorticoids overexposure during development.

Maternal Drug Use and Cardiac Programming

Cigarette smoking is the leading cause of disease and death in the United States. It

is estimated that approximately 25% of pregnant women smoke in the United States.

Maternal smoking during pregnancy is associated with several adverse developmental

outcomes in the offspring, including preterm delivery, spontaneous abortion, growth

restriction, increased risk of sudden infant death syndrome (SIDS), elevated blood

pressure, cardiovascular disease as well as long-term behavioral and psychiatric

disorders. However, the underlying physiological mechanisms for these effects are not

8



fully understood. Nicotine is one of the major components in cigarette smoking, which is

likely to contribute to the occurrence of cardiovascular disorders. Because nicotine is an

agonist of nicotinic acetylcholine receptors, exposure to nicotine early in life may cause

permanent changes in nicotinic receptors and consequent cell function (Slotkin, 1998).

Nicotine decreases birth weight by increasing rate of early delivery and slowing fetal

growth so even full term infants exposed to nicotine are small for gestational age

(Lambers and Clark, 1996). It has been shown that maternal cigarette smoking acutely

increases fetal heart rate, probably due to an increase in sympathetic activity. Fetal

nicotine exposure does not change the heart function in rat pups, but produces intolerance

to neonatal hypoxia, resulting in a sharp decrease in heart rate (Slotkin et al., 1997). It is

currently being investigated that this effect may play a important role in sudden infant

death sjmdrome, and it could also have effects in later life if the change is persistent. It

has been demonstrated that fetal and neonatal nicotine exposure alters vascular function

in adult offspring in a gender-dependent manner, possibly resutling in an increased risk of

cardiovascular dysfunction in adult life (Xiao et al., 2007). In addition, fetal nicotine

exposure increased heart susceptibility to ischemia-reperfusion injury and decreased

expression of myocardial PKCs expression in the adult both male and female offspring

(Lawrence et al. 2008). It has been shown that materal nicotine exposure can induce

increased risk for behavioral and psychiatric disorders in later life (Wakschlag et al.

2002).

In the United States, more than 100,000 infants are exposed to cocaine in utero

each year. Cocaine can cross the placenta and accumulate in the fetus (Schenker et al.

1993). Cocaine can cause irreversible structural damage to the heart, greatly accelerate



cardiovascular disease, and initiate sudden cardiac death. There is an established

connection between cocaine use and myocardial infarction, arrhythmia, heart failure, and

sudden cardiac death (Mone et al., 2004). Numerous mechanisms have been postulated to

explain how cocaine contributes to these conditions. It has been shown that cocaine

blocks channels, increases L-type Ca^"^ chaimel current, and inhibit Na"^ influx during

depolarization, possibling causing for arrhythmia. Fetal cocaine exposure has a clear

effect on p-adrenergic signaling in animal models. Fetal cocaine exposure decreased

induced norepinephrine release and increased in ionomyocin induced norepinephrine

release in the cardiac adrenergic nerve temimals (Snyder et al., 1995). Cocaine is directly

toxic to fetal myocardiocytes inducing apoptosis, which is clearly deleterious to the heart

(Bae and Zhang 2005b). Fetal cocaine exposure also increases the sensitivity to

ischemia/reperfusion injury in the adult offspring in a sex-specific manner. It has been

found that prenatal cocaine treatment decreased levels of PKCs in adult offspring (Zhang

et al. 2007). PKCs has been demonstrated to be cardioprotective (Chen et al. 2001) so

the downregulation of PKCs may explain the increased cardiac susceptibility to ischemic

injury in the offspring. It has been demonstrated that a direct effect of cocaine in

epigenetic modification of DNA methylation and programming of cardiac PKCs gene

repression linking cocaine exposure in utero and pathophysiological consequences in the

heart of adult offspring (Meyer et al., 2009).

Fetal Hypoxia and Cardiac Programming

Ischemic heart disease is a major cause of death among people in the western

world. In addition to other risk factors, recent epidemiological studies have shown a

clear association of adverse intrauterine environment and an increased risk of ischemic

10



heart disease in adult offspring (Barker et al., 1989,1993). Of all the stresses to which the

fetus is suhjected, perhaps hypoxia is one of the most important and clinically relevant

stresses that can adversely affect fetal development. The fetus may experience prolonged
-  L

hypoxic stress under many different conditions, including pregnancy at high altitude;

pregnancy with anemia; cigarette smoking and cocaine ahuse during pregnancy;

preeclampsia; and heart, lung and kidney disease. About 140 million people living in

over 2,500 m above the sea level are exposed to chronic hypoxic conditions (Moore et al.,

2004). Epidemiological studies have indicated that high altitude pregnancies increase the

risk of lUGR and low birth weight (Jensen, 1997; Moore et al., 2001; Moore, 2003).

Those factors are known to cause premature birth, infant mortality; and, an increased risk

of developing cardiovascular diseases.

Human studies at altitude suggest that hypoxia per se, independent of maternal

nutrition, causes fetal growth restriction, resulting in low birth weight and altered body

shape at birth (Giussani et al., 2001; Moore, 2003). Fetal undergrowth appears to prompt

programming, the process whereby a stimulus or insult acting at a critical period of

development in early life alters gene expression pattern for life (Sayer et al., 1997).

Additionally, chronic hypoxia suppresses fetal cardiac function, alters cardiac gene

expression pattern, and increases heart to body weight ratio (Kamitomo et al., 1992; Xiao

et al., 2000; Rouwet et al., 2002; Zhang, 2005). Studies in a pregnant rat model also

demonstrated that fetal hypoxia caused a premature exit from the cell cycle of

cardiomyoc5des and myocyte hypertrophy (Bae et al., 2003). It is likely that the increase

in size of cardiomyocjdes is compensatory for reduced myocjde number. The reduction in

cardiomyocyte number is likely influenced by either increased program cell death or
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reduced cellular proliferation. Fetal hypoxia induced apoptosis via increased caspase 3

activity and Fas, and depressed Bcl-2 and heat shock protein 70 (Hsp 70) expression in

fetal hearts (Bae et al., 2003). Hsp 70 plays an important role to protect from ischemia.

Our lab has demonstrated that fetal hypoxia decreased endothelial nitric oxide (NO)

synthase in the heart (Li, et al., 2003). Although whether NO protects the heart remains

controversial, a number of studies show exogenous and endogenous NO to be

cardioprotective in ischemia/reperfusion (I/R) injury (Bolli, 2001). In addition, studies in

sheep show that long-term high altitude hypoxia decreases fetal cardiac output, and

causes a redistribution of blood flow in favor of the heart and brain (Kamitomo et al.,

1992). In a rat study, maternal hypoxia increases in hypoxia-inducible factor la (HIFa)

expression (Bae et al., 2003). HIF is a heterodimeric transcription factor that plays a

pivotal role in cellular sensing and response to low oxygen tension. After birth,

cardiomyoc)4;es are highly differentiated and rarely replicate, an inappropriate prenatal

loss of cardiomyocytes through apoptosis is likely to result in a permanent reduction of

the number of ftmction units in myocardium and result in cardiac dysfunctions in infants

and adults. During the early developmental period, either excessive and/or persistent

cardiomyocyte loss through apoptosis has been suggested to lead to various cardiac

diseases (James et al., 1998).

The rat model of fetal hypoxia shows catch-up growth postnatally, and no

difference is found in body weight between control and hypoxic offspring, which is

consistent with human epidemiologic findings that coronary heart disease reflects fetal

undemutrition and consequent small body size at birth combined with improved postnatal

nutrition and "catch up" growth in childhood. High altitude sheep study showed the
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altered cardiac function in response to fetal hypoxia as demonstrated by decreased

cardiac output and lower contractility (Kamitomo et al., 2002; Gilbert, 1998; Browne et

al., 1997). In rat model, it has been demonstrated that fetal hypoxia results in significantly

increases the susceptibility of the adult heart to I/R injury by decreasing postischemic

recovery of left ventricular function and increasing myocardial infarct size (Xiao et al.,

2000; Bae et al., 2003; Li et al., 2003,2004; Xu et al., 2006). In addition, prenatal

hypoxia abolishes the protective affects afforded by heat stress against I/R injury and

decreases HSP70 and PKCe in the left ventricles of adult offpring (Li et al., 2003).

Furthermore, fetal hypoxia increases oxidative stress and downregulates a list of genes

involved in cell signaling, commimication, defense, proliferation, and survival in fetal

heart. It is not clear how many of those genes have lasting and effect on heart in the later

adult life. Oxidative stress is as an underlying factor for the adverse uterine environment

and the programming of the increased risk for developing chronic disease in adult life

(Franco Mdo et al., 2002; Luo et al., 2006). Oxidative stress also has been reported to

reduce lifespan by promoting apoptosis and organ damage in male offspring exposed to

protein-restricted diet before birth (Langley-Evans and Sculley, 2005). Thus, it is

reasonable to speculate that reduction of oxidative stress during pregnancy might prevent

CVD and other chronic diseases in later life. In addition to fetal hypoxia, fetal exposure

to glucocorticoids, nicotine (Lawrence et al., 2008) or cocaine (Bae et al., 2005; Bae and

Zhang, 2005a) caused an epigenetic programming in the heart and resulted in increased

heart susceptibility to I/R injury in adult offspring.
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Hypoxia and Pulmonary Vessels and Nitric Oxide (NO)

Pulmonary vasoconstriction and high pulmonary vascular resistance are hallmarks

of the fetal cireulation. Following birth, pulmonary vascular resistance falls and

pulmonary blood flow increases immediately as the lung expands with air and functions

in oxygen exehange. Oxygen plays an important role in the transition of high pulmonary

resistanee in the newborn (Cornfield et al., 1992,1996; North et al., 1996; Black et al.,

1997). Fetal hypoxia is one of the major factors associated with persistent pulmonary

hypertension in the newbom (Abman et al., 1990). It has been shown that newboms at

high altitude have increased pulmonary vascular resistance (Niermeyer 2007; Herrera et

al., 2007). Abnormal vasoconstriction and changes in vessel morphology are two

prominent pathologieal features in lungs subjected to ehronic hypoxia (Jeffery and

Wanstall 2001; Runo and Loyd 2003). Vaseular remodeling occurs not only in

pulmonary arteries (PA) but also in pulmonary veins (PV) in a number of species

including rat (Takahashi et al., 2001), sheep (Johnson et al., 1997), and human (Chazova

etal., 1995).

Endothelium-derived nitric oxide or nitric oxide-like substanee modulates the

response of pulmonary vasculature. NO plays an important role in the regulation of the

pulmonary circulation in the fetus. Although there are many studies of NO and

pulmonary vascular reactivity in the newbom and adult, to our knowledge, studies of the

effect of chronic hypoxia in utero on contractility and endothelium-dependent relaxation

of fetal pulmonary vessels are limited. In the well-defined animal model of pregnant

sheep maintained at high altitude of 3,801 m for 110 days during gestation (matemal

PaOi: 60 mmHg and fetal PaOi: 19 mmHg), a reeent study demonstrated that chronie

hj^oxia in utero attenuated PKG-mediated relaxation in PA in near-term fetal lambs,
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which was due in part to inhibited cGMP-dependent protein kinase activity and enhanced

Rho kinase activity (Gao et al., 2007). Nonetheless, it is unknown to what extent chronic

hypoxia affects the up-stream mechanisms at eNOS levels and endothelium-dependent

relaxation in pulmonary vessels in the fetus.

Protein Kinase C (PKC)

PKC comprises a multigene family of related serine/threonine kinases that sit at

the crossroads of many signal transductioh pathways and are implicated in G protein-

coupled receptor and other growth factor-dependent cellular responses. PKC are highly

homologous kinases and several different isoforms can be present in a cell. They are

further classified into three subfamilies: the classical isozymes (a, pi, pil, y), the novel

isoforms (5, s, ri, 0), and the atypical isoforms (^, A.). The classical isoforms are

responsive to diacylglycerol (DAG) and Ca^"*". Novel isoforms are responsive only to
2_|_

DAG. Atypical isoforms activation is independent of both DAG and Ca .

PKCs belongs to novel isoforms that are involved in wide cellular function.

While the mechanisms whereby prenatal hypoxia cauSes an increase in vulnerability of

ischemic injury in the heart of adult offspring has not been fully elucidated, the down

regulation of PKCs gene expression in the heart appears to have an important role. PKC

plays a pivotal role in cardioprotection from cardiac I/R injury (Gray et al. 1997; Murriel

and Mochly-Rosen, 2003). Studies in a PKCs knock-out mouse model have demonstrated

that PKCs expression is not required for cardiac function under normal physiological

conditions, but PKCs activation is necessary and sufficient for acute cardioprotection

during cardiac I/R (Gray et al., 2004). Expression of a PKCs-activating peptide or

15



cardiac-specific overexpression of PKCs confers cardioprotection against I/R-mediated

eardiae damage (Dom et al., 1999; Ping et al., 2002; Inagaki K, et al., 2003). The

aetivation of PKC isozymes is initiated by their translocation to the unique subcellular

sites and binding to isozyme-speeific anchoring proteins, reeeptors for aetivated C-kinase

(RACKs, Figure 1). PKC isozyme-selective inhibitory peptides, containing isozyme-

specific RACK-binding sites, have been demonstrated to inhibit translocation and

phosphorylation of the corresponding PKC isozymes and eonsequently inhibit their

isozyme-imique funetion (Dom and Moehly-Rosen, 2002). PKCe-TIP selectively blocks

binding of PKCs to its RACK at the intracellular coneentration of 3 to 10 nM and has

been widely used to study the role of PKCs in cardiac function (Zhou et al., 2002; Murriel

and Mochly-Rosen, 2003; Przyklenk et al., 2003).

PKCs is highly expressed in heart tissue and plays an important role in ischemic

preconditioning (IPC) (Gray et al., 1997).). IPC is the observation that many tissues,

including the heart, suffer less damage from an ischemic insult if the tissue has been

preconditioned by a prior short ischemic period (Eisen et al. 2004). IPC protects the heart

from isehemia and reperfusion-induced damage by inducing myocardial adaptation to the

ensuing prolonged ischemic event. IPC appears to be indueed triggered by many factors

including adenosine, opioid receptors, bradykinin, nitric oxide, free radicals, and cedcium

(Eisen et al. 2004). Despite a number of activators myocardial IPC appears to be induced

via two possible pathways. One pathway is activation of K-ATP channels (Grover et al.,

1992) and the other is aetivation of PKCe which has been shown is necessary for IPC

cardioproteetion (Hassouna et al., 2004; Kawamura et al. 1998; Korge et al., 2002; Ping

et al. 1997). IPC and other activators of PKCs result in PKCs being translocated from the
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cytosolic fraction to the particulate fraction. IPC is not only an important protective

mechanism in the presence of PKCs but also a physiologic activator of PKCs that can

modulate the aetivity of PKCs if it is still intact in a system.

Unlike PKCs, the role of PKC5 in I/R injury is less clear and somewhat

controversial. Selective activation of PKCS caused increased damage from ischemic

insults in neonatal cardiae myocytes, in adult isolated rat cardiac myocytes and in isolated

hearts infused with aetivator prior to isehemia (Chen et al., 2001). Furthermore, inhibition

of PKCS during reperfusion has been shown to decrease reperfusion-induced injury

(Murriel and Mochly-Rosen, 2003). Using an ex vivo model of eardiac ischemia, it has

been found that the administration of the PKCS inhibitor only at reperfusion resulted in

cardiae protection that was additive to that obtained by applying the PKCs activator

before isehemia (Inagaki et al., 2003). There is also evidence to suggest that reactive

oxygen species (ROS) formation during I/R mediated injury of the myocardium

(Semenza, 2000). Free radicals during I/R may induce a proapoptotic signal that induces

further damage to the muscle. ROS are induced early after reperfusion of the heart

following ischemia, which may also be responsible for reperfusion injury (Bolli et al.,

1989; Flaherty et al., 1994; Jordan et al., 1999). This may activate a variety of signaling

pathways, including activation of PKC (Konishi et al., 1997). Several studies showed that

H2O2 and ROS generate oxidative stress, which also results in activation and

translocation of PKCS (Majumder et al., 2001). Since reperfusion has also been shown to

generate free radieals eontributing to myoeardial injury, it is possible that reperfusion

activates PKCS activation and translocation. A study in knockout mice lacking PKCS

demonstrates a loss of ROS formation by the endothelium when subjected to cell stress
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agents such as UV and tumor necrosis factor a (TNF-a) (Lcitgcs ct al., 2001). Therefore,

it is also possible that PKC6 is upstream of free radical formation and causes

mitochondrial damage. However, other studies demonstrated the cardioprotective effects

of PKC5 (Kawamura et al., 1998; Zhao et al., 1998; Bouwman et al., 2006). It has been

demonstrated that estrogen deficiency decreases ischemic tolerance in the aged rat heart

through decreases in both PKC8 and PKCe levels (Hunter et al., 2007). Previous studies

demonstrated that prenatal nicotine exposure caused a significant decrease in PKC6

protein levels in the heart of female but not male offspring, which was associated with the

increased heart vulnerability to ischemic injury in the females as compare with the males

(Lawrence et al., 2008).

Angiotensin II (Ang II) Receptors

Many studies have demonstrated that Ang II plays important role in the

cardiovascular system under different physiological or pathological conditions, such as

hypertension, cardiac hypertrophy, heart failure and ischemic heart disease (Daemen et

al., 1991; Baker et al., 1993; Ruiz-Ortega et al., 2007; Billet et al., 2008; Rush and

Aultman, 2008). Ang II plays a fimdamental role in the regulation of cardiovascular

homeostasis, and has been implicated in programming of cardiovascular disease induced

by adverse in utero environment during the fetal development (Daemen et al., 1991;

Chung et al., 1998; Diep et al., 1999; Chassagne et al., 2000). The renin-angiotensin

system (RAS) is hyperactivated during myoeardial ischemia, infarction and I/R induced

injury (Dudley et al., 1990; Horiuchi et al., 1999). Ang II has two main specific G-

protein-coupled receptor subtypes: ATiR and AT2R. There are two different types of
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ATiR in rat and mouse. ATiaR predominate in the cardiovascular system, lungs, ovaries

and hypothalamus. However, the ATibR subtype prevails in the anterior pituitary, several

periventricular brain areas, adrenal cortex and uterus. The subtypes are equally

distributed in the spleen, liver and kidneys. In the rat, the ATja gene has been mapped to

chromosome 17, and the ATib gene to chromosome 2 (Inagami et al., 1995). In humans,

only one type of ATi has been described and mapped to chromosome 3. The AT2R is

widely distributed in fetal tissues, however its expression sharply declines in most organs

and practically vanishes from many tissues during ontogeny. Some studies have shown

that the function and signaling mechanisms of ATjR and AT2R are different, and both

receptors seem to exert opposite effects in terms of cardiovascular hemodynamics and

cell growth and differentiation (Chung et al., 1998; Stoll and Unger, 2001). Recent

studies have demonstrated a link between fetal insults to differential epigenetic

modifications of in utero ATiR and AT2R genes expression in the adrenal, kidney and the

resultant alteration of their expression pattern in adult life of offspring. This may lead to

the development of hypertension (McMullen and Langley-Evans, 2005; Bogdarina, et al.,

2007; Singh et al., 2007). The mechanism of fetal hypoxia induced ontogeny of ATiR

and AT2R in the offspring heart has not been explored yet. Both ATiR and AT2R exist in

cardiac myocytes and play significant pathophysiological roles in heart diseases (Sechi et

al., 1992; Matsubara, 1998; Horiuchi et al., 1999; Schneider and Lorell, 2001).

Previous studies have shown that the AT receptor genes are developmentally

regulated in a tissue-specific manner (Tufro-McReddie et al., 1993; Butkus et al., 1997;

Wintour et al., 1999; Cox et al., 2005). These findings suggest that the diverse actions of

Ang II during development may be mediated by tissue-specific temporal pattems of ATi
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and ATimRNA expression. The ontogeny of cardiac ATi and AT2 gene expression has

been studied in the last third trimester of gestation in fetal sheep and newborn lambs,

which demonstrated a rapid decrease in AT2, but not ATi, mRNA after birth (Samyn et

al., 1998). Previous study also determined that ATi and AT2 receptors gene expression is

higher in fetal and newbom hearts than adults (Everett et al., 1996).

Additionally, evidence showed that chronic hypoxia increases the plasma levels

of renin (Gould and Goodman, 1970) and Ang II (Zakheim et al., 1976), which has

stimulated interest in the contribution of renin angiotensin system to hypoxia.

Experimental evidence suggests an iriiportant role of the Ang II and its receptors in

hypoxic/ischemic brain injury (Li et al., 2008). It has been found that ATiR and AT2R

expression was upregulated in PA in hypoxic rats (Chassagne et al., 2000), suggesting a

participation of these receptors in the remodeling process. However, whether exposure to

chronic hypoxia induces cardiac changes in ATiR and AT2R expression is not clear.

The tissue specific and ontogeny-dependent expression of the AT2R gene suggest

possible developmental, neurological and reproductive of roles of Ang II via the AT2R

and that the biological roles of this receptor is closely related to its unique expression

pattem. Previous study showed that in maternal low protein diet rat models, expression of

the ATibR gene in the adrenal gland is upregulated, which is due to significantly

undermethylated of promoter of ATibR gene (Bogdarina et al., 2007). A DNA segment

between -44bp and +58bp in promoter region of the rat AT2 gene is important for the

basal promoter activity of the AT2R gene. In this DNA segment, there is a TATA box

consensus sequence, which contains CpG dinucleotides. It is possible prenatal hypoxia

can regulate the methylation of the TATA box. Whether and to what extent fetal hypoxia
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would induce a differential and sex-dependent pattern of DNA methylation in the AT2

promoter remains an intriguing area for the future investigation. In addition, the

expression of ATiR and AT2R are regulated by glucocorticoids (Matsubara, 1998). It has

been suggested in rats that glucocorticoids play an important role in fetal programming of

ATiR and AT2R expression pattern in offspring (McCullen and Langley-Evans, 2005a,

2005b). GREs in rat ATiaR and ATibR gene promoters have been identified previously

(Guo et al., 1995; Bogdarina et al., 2009). ATiaR promoter harbors positive GREs and

ATibR contains negative GREs.

Sex Dichotomy

A number of studies have reported sex differences in the incidence and

progression of cardiovascular diseases such as coronary artery disease, heart failure,

cardiac hypertrophy, and sudden cardiac death (Gilbert et al., 2006; Grigore et al., 2008;

Ojeda et al., 2008). Many recent studies have provided evidence that indicates a sex

dichotomy also exists in the physiological responses to developmental challenges relating

to the programming of subsequent cardiorenal function. Sex differences can be quite

early in embryonic development and are independent of sex hormones. Additionally, sex

steroids have a profound effect on the development and progression of programmed

disease states.

It has been reported that men often have higher risk for cardiovascular disease

than premenopausal women of similar age (Reckelhoff, 2001; Wiinberg et al., 1995),

which may partly be associated to intrinsic sex differences in cardiovascular and renal

function (Miller et al., 1999; Schwertz et al., 1999). For example, sex chromosomes
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facilitate the development of sexual dimorphism and X-linked genes have a key role in

coding for sexually dimorphic traits. Compared to male embryos, several genes located

on the X chromosome are more expressed in bovine and human female (Gutierrez-Adan

et al., 2000, Peippo et al., 2002). It has been demonstrated that a number of genes

expressed in placenta are significantly related with the sex of the fetus, which is that

genes are expressed at higher levels in female placentas, including those with roles in

immune regulation like JAKl, IL2RB, Clusterin, LTBP, CXCLl, and ILIRLI (Sood et al.,

2006).

In most cases, the male offspring exhibits a more severely impacted phenotype

while the female offspring are either less affected or completely spared. Sex steroids also

play an important role in the difference. Androgens have been linked with the progression

of renal injury (Reckelhoff et al., 1998; Sandherg and Ji, 2003), while estrogens seem to

be protective in renal function (Sakemi et al., 1995; Sandherg and Ji, 2003). Additionally,

it seems that sex may exert different effects during fetal and adult life. In animal models

of intrauterine malnutrition, the sex dimorphism in manifestation of the severity of

cardiovascular dysfunction in adult offspring has been observed although the results were

conflicting (do Carmo Pinho Franco et al., 2003; McMillen and Robinson, 2005).

Differential sex effects on cardiac programming were also demonstrated in rats. Prenatal

cocaine treatment increased heart vulnerability to I/R injury only in male adult offspring

(Bae et al., 2005). In contrast, fetal nicotine exposure resulted in increased heart

susceptibility to ischemia injury in both male and female offspring (Lawrence et al.,

2008). These findings suggest a stimuli-specificity of fetal programming of sex-

dependent cardiac dysfunction in adult offspring.
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Epigenetic Mechanisms in Fetal Programming

Epigenetic mechanisms are essential for development and differentiation and

allow an organism to respond to the environment through changes in gene expression

(Reik et al., 2001,2003; Jaenischand Bird, 2003; Drake and Walker, 2004). Epigenetic

changes are defined as reversible changes that occur as a result of heritable modifications

without involving the alteration of primary DNA sequence (Ho and Tang 2007). DNA

methylation is a chief mechanism in epigenetic modification of gene expression pattern

and occurs at cjhosines of the dinucleotide sequence of CpG. CpG dinucleotides are

primarily clustered together in regions referred to as CG islands while being relatively

uncommon in other parts of the genome. CG islands are most commonly found in the

promoter region of genes and the methylation status of these islands plays an important

role to regulate the transcription of the associated gene. Indeed, in many animal models,

it has been known that environmental manipulations alter methylation at specific genes.

Changes in the methylation status of gene promoter region resulting in inappropriate

activation or suppression of gene expression have been linked to disease states. Notably,

a number of cancers are linked with global hypomethylation with discrete regions of

hypermethylation in the promoter of tumor suppressor genes (Jones and Baylin 2002;
\

Jones and Laird 1999). It has been demonstrated that altered maternal diet during

pregnancy can increase methylation of the agouti gene and the mouse AxinFu gene,

which alters the phenotype of offspring (Waterland et al., 2006). Fetal undemutrition can

cause changes in DNA methylation, which affects gene transcription, notably the

expression of GRs in the liver (Maclennan et al., 2004 and Lillycrop et al., 2005). The

GR itself may play a direct role to mediate epigenetic changes, possibly underlying
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glucocorticoid programming. Thus, glucocorticoid treatment induces differential

demethylation of target gene promoters, and this demethylation persists after steroid

withdrawal in cultured fetal hepatocytes (Thomassin et al., 2001).

The recent study also demonstrated an epigenetic mechanism of DNA methylation

in programming of cardiac PKCs gene repression, linking fetal cocaine exposure and

pathophysiological consequences in the heart of adult male offspring in a gender-

dependent manner (Zhang et al., 2009). PKCs promoter was cloned and sequenced in our

lab. The promoter was found to be rich in CpG sites and contained 8 putative promoter

binding sites (Stral3 at 1723, PPARG at -1688, E2F at -1621, Egr-1 at -1008, MTFl at -

603, SPl at -346, SPl at -268, and MTFl at -168) that contain at least one potential

methylation site (CpG). It has been demonstrated that prenatal cocaine exposure causes a

significant increase in methylation status of CpG dinucleotides at the SPl bindings sties

which resulted in decreased SPl binding in the promoter (Zhang, et al., 2009). The

importance of SPl in PKCs expression was confirmed using a luciferase reporter assay

(Zhang et al.., 2009). Fetal environment impacting methylation status of specific genes

has been also reported in other models. In a rat matemal protein deprivation model, there

was an increase in DNA methylation at specific sites of the PPARa promoter in the adult

offspring (Lillycrop et al. 2008).

Central Hypothesis

The central hypothesis of my project is that fetal hypoxia cause dysfunction of

pulmonary vascular contractility and fetal programming of PKCs, ATiR and AT2R genes
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in the heart, resulting in an increase in heart susceptibility to ischemia and reperflision

injury in offspring in a sex-dependent manner.

Signiflcance

Epidemiologic evidence has indicated a correlation between adverse intrauterine

environment and increased risk of hypertension and ischemic heart disease in the adult.

Animal studies suggest that fetal exposure to chronic hypoxia can cause in utero

programming leading to an increased risk of adult disease. It has been known that gender

differences exist in susceptibility to and mortality from various cardiovascular diseases.

However, it is unknown whether and to what extent the sex dichotomy exists in

manifestation of the severity of heart ischemic vulnerability in adult offspring resulting

from prenatal hypoxic exposure. Additionally, the mechanisms whereby fetal hypoxia

causes an increase in the vulnerability of ischemic injury in the heart of adult offspring

are not clear. Our purposed studies will give insight into how chronic hypoxic exposure

during pregnancy on programming of some specific genes, such as PKCe, AT receptor,

and GR. We also can gain a better imderstanding of the correlation of PKCs, AT

receptor, and GR. The possibility that fetal hypoxia may result in programming of some

specific genes in the offspring with a consequence of increased cardiac vulnerability

provides a mechanistic understanding worthy of investigation in human, given that

h5q)oxia is one of the most important and clinically relevant stresses to the fetus^ Our

studies will delineate how prenatal hypoxia can adversely impact development of the

fetus and induce disease phenotype in the adult offspring.
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CHAPTER TWO

EFFECT OF LONG-TERM HIGH-ALTITUDE HYPOXIA ON FETAL PULMONARY

VASCULAR CONTRACTILITY

By
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This paper has been published by J AppI Physiol 104:1786-1792,2008.
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Abstract

Hypoxia in the fetus and/or newborn is associated with an increased risk of

pulmonary hypertension. The present study tested the hypothesis that long-term high-

altitude hypoxemia differentially regulates contractility of fetal pulmonary arteries (PA)

and veins (PV) mediated by differences in endothelial NO sjmthase (eNOS). PA and PV

were isolated from near-term fetuses of pregnant ewes maintained at sea level (300 m) or

high altitude of 3,801 m for 110 days (arterial Po(2) of 60 Torr). Hypoxia had no effect

on the medial wall thickness of pulmonary vessels and did not alter KCl-induced

contractions. In PA, hypoxia si^ificantly increased norepinephrine (NE)-induced

contractions, which were not affected by eNOS inhibitor N(G)-nitro-l-arginine (1-NNA).

In PV, hypoxia had no effect on NE-induced contractions in the absence of 1-NNA. 1-

NNA significantly increased NE-induced contractions in both control and hypoxic PV. In

the presence of I-NNA, NE-induced contractions of PV were significantly decreased in

hypoxic lambs compared with normoxic animals. Acetylcholine caused relaxations of PV

but not PA, and hypoxia significantly decreased both pD(2) and the maximal response of

acetylcholine-induced relaxation in PV. Additionally, hypoxia significantly decreased the

maximal response of sodium nitroprusside-induced relaxations of both PA and PV. eNOS

was detected in the endothelium of both PA and PV, and eNOS protein levels were

significantly higher in PV than in PA in normoxic lambs. Hypoxia had no significant

effect on eNOS levels in either PA or PV. The results demonstrate heterogeneity of fetal

pulmonary arteries and veins in response to long-term high-altitude hypoxia and suggest

a likely common mechanism downstream of NO in fetal pulmonary vessel response to

chronic hypoxia in utero.
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Introduction

Of all the stresses to which the fetus is subjected, perhaps the most important and

clinically relevant is that of hypoxia. The fetus may experience prolonged hypoxic stress

under many different conditions, including pregnancy at high altitude. Nearly 140 million

people residing at over 2,500 m above the sea level are permanently exposed to chronic

hypoxic conditions (Moore et al., 2004). Pulmonary vasoconstriction and high pulmonary

vascular resistance are hallmarks of the fetal circulation. Following birth, pulmonary

vascular resistance falls and pulmonary blood flow increases immediately as the lung

expands with air and functions in oxygen exchange. Oxygen plays a vital role in the

transition of high pulmonary resistance in the fetus to low pulmonary resistance in the

newborn (Black et al., 1997; Cornfield et al., 1992,1996; Fineman et al., 1995; North et

al., 1996). Chronic hypoxia in utero is one of the major factors associated with persistent

pulmonary hypertension in the newborn (Abman, 1999; Niermeyer, 2007). It has been

shown that newboms at high altitude have elevated pulmonary vascular resistance

(Herrera et al., 2007; Niermeyer 2003, 2007).

Among other mechanisms, oxygen-induced changes in endothelial NO production

play a key role and contribute significantly to pulmonary vasodilation after birth (Black et

al., 1997; Cornfield et al., 1992, Fineman et al., 1995; Shaul et al., 1993). Although there

are many studies of NO and pulmonary vascular reactivity in the newborn and adult, to

our knowledge, studies of the effect of chronic hypoxia in utero on contractility and

endothelium-dependent relaxation of fetal pulmonary vessels are limited. This deficit is

partly due to a limit of animal models of chronic in utero hypoxia, in which small fetal

pulmonary vessels can be isolated and studied in an organ bath. In the well-defined
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animal model of pregnant sheep maintained at a high altitude of 3,801 m for 110 days

during gestation [maternal arterial PO2 (Paoi) of 60 Torr and fetal Pao2 of 19 Torr], a

recent study demonstrated that chronic hypoxia in utero attenuated PKG-mediated

relaxation in pulmonary arteries in near-term fetal lambs, which was due in part to

inhibited cGMP-dependent protein kinase activity and enhanced Rho kinase activity (Gao

et al., 2007). Nonetheless, it is unknown to what extent chronic hypoxia affects the

upstream mechanisms at endothelial NO synthase (cNGS) levels and endothelium-

dependent relaxation in pulmonary vessels in the fetus.

The present study was designed to test the hypothesis that chronic hypoxia during

gestation differentially regulates pulmonary vascular contractility and relaxation in near-

term fetal lambs. We determined the effect of chronic h>^oxia on KCl- and

norepinephrine-induced contractions, endothelium-dependent and -independent

relaxations, and eNOS protein levels in pulmonary vessels of fetal lambs. Because both

pulmonary arteries and veins contribute significantly to pulmonary vascular resistance in

the fetus and newbom (Gao and Raj, 2005), we studied the effect of hypoxia on both

pulmonary arteries and veins in fetal lambs.

Materials and Methods

Experimental Animals

Pregnant sheep of the same age and breed were obtained from the Nebeker Ranch

in Lancaster, CA. Normoxic controls were maintained at the Nebeker Ranch (altitude:

~300 m; Pao2: 102 ± 2 Torr). For hypoxic exposure, pregnant sheep were transported to

the Barcroft Laboratory, White Mountain Research Station, Bishop, CA (3,801-m
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altitude; Paoi: 60 ± 2 Torr) at 30 days of gestation and maintained at high altitude for

~110 days, as previously described (Xiao et al., 2001,2004). Near-term pregnant sheep

(~140 days of gestation; term being 147 days) were transported to the Animal Care

Facility at Loma Linda University. Ewes were anesthetized with thiamylal (10 mg/kg)

administered via an external jugular vein, and anesthesia was maintained on 1.5-2.0%

halothane in oxygen throughout surgery. Pulmonary arteries and veins were obtained

from near-term fetuses of both normoxic control and chronically hypoxic pregnant sheep.

All procedures and protocols used in the present study were approved by the Institutional

Animal Care and Use Committee of Loma Linda University and followed the guidelines

by the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Tissue Preparation and Contraction Studies

Preparation of pulmonary vessels was conducted in ice-cold Krebs solution (pH

7.4) of the following composition (in mM): 115.21 NaCl, 4.7 KCl, 1.80 CaCl2, 1.16

MgS04, LIB KH2PO4, 22.14 NaHCOs, 0.03 EDTA, and7.88 dextrose. The Krebs

solution was oxygenated with a mixture of 95% O2 and 5% CO2. Fourth-generation

pulmonary arteries and veins were dissected and cut into rings of 4 mm in length

(diameter of 1.5-2.0 mm for artery and 0.8-1.3 mm for vein). Isometric tensions of vessel

rings were measured in Krebs solution in tissue baths at 37°C, as described previously

(Xiao et al., 2001, 2004). After 60 min of equilibration in the tissue bath, each ring was

stretched to the optimal resting tension, as determined by the tension developed in

response to 120 mMKCl added at each stretch level. Norepinephrine-induced

concentration-dependent contraction curves were determined by cumulative addition of

the agonist in approximate one-half log increments in the absence or presence of eNOS
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inhibitor iV®-nitro-L-arginine (L-NNA; 100 [xM, pretreatment for 20 min). For relaxation

studies, tissues were precontracted with submaximal concentration (3 pM) of

norepinephrine, followed by acetylcholine and sodium nitroprusside added in a

cumulative manner, respectively. The relaxation responses to acetylcholine and sodium

nitroprusside were expressed as the percentage of norepinephrine preeontractions.

Immunoblotting

Protein levels of cNOS were determined by Western blot analysis, as described

previously (Xiao et al., 2001). Briefly, pooled segments of fourth-generation pulmonary

arteries and veins, respectively, were homogenized in a lysis buffer containing 20 mM

HEPES, 10 mM KCl, 1.5 mMMgCb, 1 mM EDTA, 1 mM EGTA, 1 mM dithiothreitol, 1

mM phenylmethylsulfonyl fluoride, 2 pg/ml aprotinin, pH 7.4. Homogenates were then

eentriftiged at 4°C for 10 min at 12,000 g, and the supematants were collected. Protein

was quantified in the supernatant using a protein assay kit from Bio-Rad. Samples with

equal protein were loaded on 7.5% polyacrylamide gel with 0.1% sodium dodecyl sulfate

and separated by electrophoresis at 100 V for 90 min. Proteins then were transferred onto

nitrocellulose membranes. Nonspecific binding sites on the membranes were blocked in a

Tris-buffered saline solution containing 5% dry milk for 1 h at room temperature. The

membranes were incubated with mouse cNOS monoclonal antibody (1:500) overnight at

4°C. The membranes then were incubated with secondary horseradish peroxidase (HRP)-

conjugated goat anti-mouse antibody (1:2,000). Proteins were visualized with enhanced

chemiluminescence reagents, and the blots were exposed to Hyperfilm. For comparison

of cNOS between arteries and veins, the bands were measured as absolute density values.
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For comparison of eNOS between normoxia and hypoxia for a given vessel type, eNOS

bands were normalized to those of actin used as a loading control. Resdlts were quantified

by the Kodak electrophoresis documentation and analysis system and Kodak ID image

analysis software.

Histological Analysis and Inununohistochemistry

Pulmonary vessel rings were fixed in 10% neutral buffered formalin and

embedded in paraffin. Immunohistochemical detection of eNOS and Von Willebrand

Factor (vWF) was performed using Pharmingen Anti-Ig HRP Detection Kit, as described

previously (Xiao et al., 2007). Briefly, tissue slices (4 pm thick) of vessel rings were

incubated with primary antibodies against eNOS (1:100) or vWF (1:200) for 60 min at

room temperature. After rinsing the slices three times in phosphate-buffered saline for 15

min, the slices were incubated with biotinylated goat anti-mouse IgG or anti-rabbit Igs

(1:50) for 60 min at room temperature. The samples were then exposed to streptravidin-

HRP and reacted with diaminobenzidine substrate solution according to the manufacture's

recommendations and counterstained with hematoxylin. The negative control of eNOS

staining was performed in the absence of eNOS antibody. For histological analysis of

medial wall thickness, tissue slides were stained with hematoxylin and eosin. The slices

were viewed with an Olympus BH-2 microscope, and images were captured with an

attached SPOT digital camera imaging system.
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Materials

Norepinephrine, L-NNA, vWF antibody, and sodium nitroprusside were obtained

From Sigma (St. Louis, MO). Mouse anti-eNOS monoclonal antibody was from

Transduction Laboratory (Lexington, KY). Anti-IgHRP Detection Kits were from BD

Biosciences (San Diego, CA). Electrophoresis and Westem blotting reagents were from

Bio-Rad (Hercules, CA).

Data Analysis

Concentration-response curves were analyzed by computer-assisted nonlinear

regression to fit the data using GraphPad Prism (GraphPad Software, San Diego, CA) to

obtain the values of pDi (-logECso) and the maximum response. Results were expressed

as means ± SE, and the differences were evaluated for statistical significance {P < 0.05)

by Student's Mest or two-way ANOVA followed by Bonferroni posttests.

Results

Effect of Chronic Hypoxia on Medial Wall Thickness of

Pulmonary Vessels

Fig. 1 shows the effect of hypoxia on medial wall thickness of 4*^ generation

pulmonary arteries and veins in near-term fetal lambs. The medial wall was significantly

thicker in pulmonary arteries than that in pulmonary veins. Chronic hypoxia showed no

significant effect on medial wall thickness in either pulmonary arteries or veins in fetal

lambs (Fig. 1).
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Figure 1. Effect of chronie hypoxia on medial wall thickness of fetal pulmonary arteries
and veins. Bar graphs show medial wall thickness of pulmonary arteries and veins
obtained from near-term fetal lamhs of normoxic control and hypoxic ewes. Data were
analyzed by two-way ANOVA with vessel type as one factor and hypoxia as the other.
The asterisk (*) indicates a significant difference (P < 0.05) from artery (n = 4).

Effect of Chronic Hypoxia on KCl- and Norepinephrine-

Induced Contractions

The effect of hypoxia on KCl-induced contractions is illustrated in Fig. 2. In both

normoxic and hypoxic lambs, KCl-induced contractions were significantly greater in

pulmonary veins than arteries. Chronic hypoxia had no significant effect on KCl-induced

contractions in either pulmonary arteries or veins (Fig. 2).
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Figure 2. Effect of chronic hypoxia on KCl-induced contractions of fetal pulmonary
arteries and veins. Bar graphs show KCl-induced contractions of pulmonary arteries and
veins obtained from near-term fetal lambs of normoxic control and hypoxic ewes. Data
were analyzed by two-way ANOVA with vessel type as one factor and hypoxia as the
other. The asterisk (*) indicates a significant difference (P < 0.05) from vein (n = 5).

Fig. 3 shows the effect of hypoxia on norepinephrine-induced concentration-

dependent contractions of fetal pulmonary vessels in the absence or presence of the

eNOS inhibitor L-NNA. In pulmonary arteries, L-NNA had no significant effect on

norepinephrine-induced contractions in either control or hypoxic vessels (Fig. 3, top).

Chronic hypoxia significantly increased the maximal response of norepinephrine-induced

contractions in pulmonary arteries regardless of L-NNA treatment (Fig. 3, bottom and

Table 1). In contrast to arteries, L-NNA significantly increased norepinephrine-induced

maximal contractions of pulmonary veins from both control and hypoxic fetal lambs, but

the effect of L-NNA was significantly reduced in hypoxic fetal lambs (Fig. 3, bottom and

Table 1).
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Figure 3. Effect of ehronic hypoxia on norepinephrine-induced contractions of fetal
pulmonary arteries (upper panel) and veins (lower panel). Norepinephrine (NE)-indueed
contractions were determined in the absence or presence of L-NNA (100 pM, 20 min) in
pulmonary arteries and veins obtained obtained from near-temi fetal lambs of normoxic
control and bypoxic ewes. Data are expressed as percent of KCl (120 mM)-induced
contractions and are means ± SEM of tissues from 5 to 6 animals. The pD2 values and the
maximal responses are presented in Table 1.
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Table 1. Effect of chronic hypoxia on norepinephrine-induced contractions of pulmonary
arteries and veins from fetal lambs in the absence or presence of L-NNA.

Normoxia Hypoxia
pDi Emax vDz Emax

Artery
-L-NNA 6.41 ± 0.07 104.612.6 6.3410.08 136.414.0'

+L-NNA 6.45 ±0.17 95.315.7 6.2310.14 138.917.7'

Vein

-L-NNA 6.4310.09 106.613.6 6.53 10.09 106.013.5

+L-NNA 6.2510.12 217.1110.1 6.3510.19 149.7110.1''^

pDa: -log EG50, -E'max: maximum response. ® P < 0.05, normoxia vs. hypoxia; P < 0.05,
+L-NNA vs. -L-NNA. N = 5 to 6 in each group.

Effect of Chronic Hypoxia on Endothelium-Dependent and

Independent Relaxations

The endothelium-dependent relaxations induced by acetylcholine were

determined in pulmonary vessels pre-contracted with 3 pM norepinephrine.

Acetylcholine had no effect in pulmonary arteries, but produced concentration-dependent

relaxations of pulmonary veins in both control and hypoxic fetal lambs (Fig. 4). Hypoxia

significantly decreased pDi (6.10 ± 0.08 vs. 6.43 ± 0.10, P < 0.05) and the maximal

relaxation (41.6 ± 2.1% V5. 49.7 + 2.4%, iP < 0.05) induced by acetylcholine in pulmonary

veins (Fig. 4). Unlike acetylcholine, sodium nitroprusside produced concentration-

dependent relaxations in both pulmonary arteries and veins. Hypoxia significantly

decreased sodium nitroprusside-induced relaxations in both pulmonary arteries and veins

(Fig. 5 and Table 2).
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Figure 4. Effect of chronic hypoxia on acetylcholine-induced relaxations in fetal
pulmonary arteries (upper panel) and veins (lower panel). Acetylcholine (Ach)-induced
relaxations were determined in pulmonary arteries and veins (pre-contracted with 3 pM
norepinephrine) obtained from near-term fetal lambs of normoxic control and hj^oxic
ewes. Data are means + SEM of tissues from 5 to 6 animals. The pD2 value and the
maximal response are presented in the text.
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Figure 5. Effect of chronic hypoxia on sodium nitroprussidc-induccd relaxations in fetal
pulmonary arteries (upper panel) and veins (lower panel). Sodium nitroprusside (SNP)-
indueed relaxations were determined in pulmonary arteries and veins (pre-contracted with
3 pM norepinephrine) obtained from near-term fetal lambs of normoxic control and
hypoxic ewes. Data are means ± SEM of tissues from 5 to 6 animals. The pDi value and
the maximal response are presented in Table 2.
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Table 2. Effect of chronic hypoxia on sodium nitroprussidc-induccd relaxations in
pulmonary arteries and veins from fetal lambs.

Normoxia Hypoxia

P^2 ^max P^2 Emax.
Artery 7.5 ±0.1 92.9 ± 2.5 7.3 ±0.1 74.5 ± 2.4®

Vein 8.0 ±0.1 95.1 ±2.1 7.9 ±0.1 74.3 ±2.1®

^Di. -logECso, E'max: maximum response. ® P < 0.05, normoxia V5. hypoxia. N = 5 to 6 in
each group.

Effect of Chronic Hypoxia on cNOS Expression

cNOS protein levels and distribution in fetal pulmonary vessels were determined

with immunohistoehemistry and immvmoblotting. As shown in Fig. 6, cNOS

immunoreactivity was primarily detected in the endothelium of the pulmonary arteries

and veins. Additionally, the endothelium was labeled with vWF (Fig. 6). Both

immunoblotting and immunohistoehemistry analyses showed significantly higher levels

of cNOS expression in pulmonary veins than that in arteries (Fig. 6). In either pulmonary

arteries or veins, cNOS protein levels were not significantly different between the control

and hypoxie fetal lambs (Fig. 7).
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Figure 6. Localization and density of eNOS in fetal pulmonary arteries and veins. eNOS
localization and density were determined in fetal pulmonary arteries and veins by
immunohistochemical staining (upper panel) and immunoblotting (lower panel),
respectively. eNOS expression was detected in the endothelium of fetal pulmonary
arteries and veins. Additionally, the endothelium was labeled with vWF. Western blot
illustrates eNOS bands detected by the monoclonal antibody at the expected size of ~140
kDa. Data are means ± SEM of tissues from 4 animals in each group. The asterisk (*)
indicates a significant difference (P < 0.05) from artery.
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Figure 7. Effect of chronic hypoxia on eNOS protein levels in fetal pulmonary arteries
and veins. eNOS protein levels were determined by Western blot in pulmonary arteries
and veins obtained from near-term fetal lambs of normoxic control and hypoxic ewes.

Data are means ± SEM of tissues from 4 animals in each group.
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Discussion

The major findings of the present study are that chronic hypoxia in utero

differentially regulates contractions and relaxations of small pulmonary arteries and veins

in near-term fetal lambs by 1) increasing norepinephrine-induced contractions of

pulmonary arteries; 2) decreasing norepinephrine-induced contractions of pulmonary

veins in a NO-dependent manner; 5) reducing endothelium-dependent relaxations

selectively in pulmonary veins; 4) decreasing endothelium-independent relaxations of

both pulmonary arteries and veins; and 5) having no significant effect on eNOS protein

levels in either pulmonary arteries or veins. Additionally, chronic hypoxia has no

significant effect on KCl-induced contractions and medial wall thickness in either

pulmonary arteries or veins in fetal lambs.

In the present study, we found no significant difference in medial wall thickness

of small pulmonary vessels between normoxic and hypoxic fetal lambs. Although it is

unlikely that samples of hypoxic and normoxic vessels shrink differently during tissue

fixation and thus prevent the observation of treatment differences in medial wall

thickness, this possibility cannot be excluded. Nonetheless, the present finding is

consistent with previous studies in rats and guinea pigs, in which chronic in utero

hypoxemiadid not change pulmonary arterial structure (Geggel et al., 1986; Murphy et

al., 1986). Additionally, hypoxia did not cause hyperplasia or hypertrophy of the media of

pulmonary arteries in near-term bovine fetuses (Bentitz et al., 1986). This is further

supported with the finding that KCl-induced contractions were not significantly different

in pulmonary vessels obtained from control and hypoxic fetal lambs, suggesting the same

vascular smooth muscle mass in control and hypoxic pulmonary vessels. Additionally, the
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finding suggests that hypoxia had no significant effect on voltage-gated calcium channel

density in fetal pulmonary vessels. A recent study showed increased KCl-induced

contractions of fourth-generation pulmonary arteries froin highland (3,600 m above sea

level) newborn (average 10 days of age) lambs compared with lowland (580 m above sea

level) newborn lambs (Herrera et al., 2007). Although medial wall thickness was not

measured, the authors suggested a greater vascular smooth muscle mass in highland

newborn lambs. Taken together, these studies suggest that pulmonary vascular

remodeling in hypoxic infants may not occur during fetal life but rather in the transition

firom prenatal to postnatal life and during the early neonatal period, when changes in

pulmonary stmcture and function are particularly sensitive to hypoxia (Niermeyer, 2003,

2007). Whether hypoxic fetuses are more vulnerable to pulmonary vascular remodeling

during the early neonatal period is not clear and remains an intriguing area for future

investigation.

Despite the thinner media, fetal pulmonary veins showed greater contractions to

KCl compared with arteries. This is consistent with previous findings in the pulmonary

circulation that, during the perinatal period, veins exhibit greater contractions than arteries

in response to a variety of stimuli (Arrigoni et al., 1999; Gao and Raj, 2005). The present

study has demonstrated a complex relationship between the effects of chronic hypoxia on

fetal pulmonary arteries vs. veins and the role of NO in utero vs. in vitro. In the absence

of L-NNA, hypoxia significantly increased the maximal response of norepinephrine-

induced contractions in pulmonary arteries, but not veins, in fetal lambs. This suggests

that in utero, when NO is present, the site of resistance under conditions of hypoxia in the

intact pulmonary circulation is greater in pulmonary arteries than in veins. It has been
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demonstrated that chronie hypoxia produces an increase in ai-adrenoreceptor gene

expression and increases pulmonary vascular smooth muscle contractile sensitivity,

which is thought to play an important role in the development of pulmonary hypertension

(Lai et al., 1999; Salvi 1999). Fetal pulmonary vascular beds are under al-adrenergic

control, and fetal pulmonary arteries contract to norepinephrine (Nuwayhid et al., 1975;

Thompson and Weiner, 1993; Irish et al., 1998). The finding that norepinephrine-induced

contractions in the presence of L-NNA were significantly decreased in pulmonary veins

of hypoxie fetal lambs is intriguing and suggests a compensatory adaptation mechanism

in vascular contractility of pulmonary veins to chronic in utero hypoxia. Given that both

arteries and veins contribute almost equally to pulmonary vascular resistance during

perinatal development (Gao and Raj, 2005), the opposite changes in vascular contractility

of pulmonary arteries and veins, demonstrated in the present study, may result in minimal

changes in pulmonary vascular resistance in near-term fetal lambs in response to chronic

in utero hypoxia.

The finding that L-NNA had no effect on norepinephrine-mediated contractions of

fetal pulmonary arteries suggests a lack of basal inhibitory effect of cNGS in the

regulation of pulmonary arterial contractility in near-term fetal lambs. This is supported

by the findings of the minimal cNOS levels and the lack of acetylcholine-induced

relaxations in pulmonary arteries. This is consistent with the previous study in fetal lambs

showing a lack of acetylcholine-induced relaxations in pulmonary arteries ((Steinhom et

al., 1993; Gao et al., 1995). Additionally, it was demonstrated that calcium ionophore

A23187 failed to relax pulmonary arteries in fetal lambs (Irish et al., 199). Taken

together, these studies have demonstrated that the endothelium is not functional in NO-
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mediated relaxation in pulmonary arteries in near-term fetal lambs resulting from minimal

eNOS protein levels. Nevertheless, sodium nitroprusside produced concentration-

dependent relaxations in pulmonary arteries. Because sodium nitroprusside is an NO

donor and relaxes vascular smooth muscle via activation of guanylate cyclase and

increasing cGMP, the finding suggests that the downstream pathway of cGMP-dependent

protein kinase is fully functional in fetal pulmonary arteries, as demonstrated in the

present as well as in previous studies (Irish et al., 1998; Gao et al., 200^, 2007; Steinhom

et al., 1993). The present study demonstrated that chronic hypoxia had no effect on eNOS

protein levels and endothelium-dependent relaxation in fetal pulmonary arteries, albeit it

decreased the downstream pathway of cGMP-dependent relaxations. The similar finding

of decreased cGMP-dependent relaxations in fetal pulmonary arteries was obtained in a

recent study (Gao et al., 2007). Because of the lack of NO-dependent relaxation and the

lack of effect of chronic hypoxia on eNOS, the decreased downstream cGMP-dependent

relaxations may minimally affect pulmonary arterial tone in the fetus but may be

detrimental in the transition of pulmonary arterial contractility and structure from prenatal

to postnatal life, in which eNOS/NO becomes a key mechanism in the regulation of

pulmonary arterial reactivity.

In contrast to pulmonary arteries, pulmonary veins in near-term fetal lambs have

much higher levels of eNOS in the endothelium and relax significantly to acetylcholine.

Additionally, inhibition of eNOS by L-NNA significantly increased norepinephrine-

induced contractions, suggesting a significant component of basal eNOS activity in the

inhibition of pulmonary vein contractility. This is consistent with previous studies (Gao et

al., 1995; Steinhom et al., 1993; Tzao et al., 2001). It has been demonstrated in intact
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fetal sheep that acetylcholine produces a decrease in pulmonary vascular resistance and

an increase in pulmonary blood flow, which are blocked by eNOS inhibitors L-NNA and

L-NMMA (Abmari et al., 1990; Tiktinsky et al., 1992). Given the lack of eNOS-mediated

relaxation in pulmonary arteries, eNOS/NO-mediated regulation of fetal pulmonary

vascular resistance and pulmonary blood flow resides primarily in pulmonary veins. In

the present study, we have shown that chronic in utero hypoxia results in a significant

decrease in NO-mediated relaxations in fetal pulmonary veins. This is supported by the

finding that acetylcholine-induced relaxation of pulmonary vein was significantly

decreased inhypoxic fetal lambs. Additionally, the effect of eNOS inhibitor L-NNA in

increasing norepinephrine-induced contractions was significantly decreased in pulmonary

vein of hypoxic compared with normoxic fetal lambs. The findings that hypoxia had no

significant effect on eNOS protein levels in pulmonary veins suggests that the inhibition

may occur at downstream pathways. Consistent with this notion, the present study

demonstrated that sodium nitroprusside-induced relaxations were significantly decreased

by chronic hypoxia in both pulmonary veins and arteries. In the same animal model, a

recent study demonstrated that 8-Br-cGMP (stimulator of PKG) caused a similar

relaxation of pulmonary veins obtained from control and hypoxic fetal lambs (Longo LD,

personaf communication). Taken together, these findings suggest a likely mechanism of

decreased soluble guanylate cyclase (sGC) and reduced cGMP production in fetal

pulmonary vessels in response to in utero chronic hypoxia. Indeed, long-term high-

altitude hypoxemia significantly decreased sGC abundance and catalytic activity in

carotid arteries of fetal lambs (Williams et al., 2006). Additionally, chronic hypoxia
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decreased expression of sGC in rat pulmonary artery smooth muscle cells (Hassoun et al.,

2004).

In conclusion, we have demonstrated heterogeneity in responses of pulmonary

arteries and veins in near-term fetal lambs to long-term high-altitude hypoxemia.

Although chronic hypoxiain utero has no significant effect on the medial wall thickness

of pulmonary vessels in fetal lambs, it significantly increases vasoeonstrietion of

pulmonary arteries and decreases vasorelaxation of pulmonary veins. Furthermore, our

studies demonstrate that chronic hypoxia has no significant effect on cNOS protein levels

in either pulmonary arteries or veins in near-term fetal lambs and point to a likely

common mechanism of decreased sGC in fetal pulmonary arteries and veins in response

to chronic hypoxiain utero. This is consistent with the growing literature demonstrating

the importance of sGC in addition to cNGS in the regulation of perinatal as well as adult

pulmonary circulation (Tzao et al., 2001, Dumitraseu et al., 2006; Vermeersch et al.,

2007). Future studies are needed to determine the effect of chronic hypoxia on sGC

protein levels and catalytic activity in fetal pulmonary vessels.
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Abstract

The present study tested the hypothesis that PKCe plays a key role in the sex

dichotomy of heart susceptibility to ischemia and reperfusion injury in adult offspring

resulted from prenatal hypoxic exposure. Time-dated pregnant rats were divided between

normoxic and hypoxic (10.5% O2 from day 15 to 21 of gestation) groups. Hearts of 3-

month-old progeny were subjected to ischemia and reperfusion (I/R) injury in a

Langendorff preparation. Pre-ischemic values of left ventricle (LV) function were the

same between control and hypoxic animals. Prenatal hypoxia significantly decreased

post-ischemic recovery of LV function and increased cardiac enzyme release and infarct

size in adult male, but not female, rats. This was associated with significant decreases in

PKCe and phospho-PKCe levels in the LV of the male, but not female, rats. The PKCe

translocation inhibitor peptide (PKCe-TIP) significantly decreased phospho-PKCe in

control male rats to the levels found in the hypoxic animals and abolished the difference

in I/R injury observed between the control and hypoxic rats. In females, PKCe-TEP

inhibited PKCe phosphorylation and decreased post-ischemic recovery of LV function

equally well in both control and hypoxic animals. PKCe-TIP had no effect on PKC5

activation in either male or female hearts. The results demonstrated that prenatal hypoxia

caused an increase in heart susceptibility to ischemia and reperfusion injury in offspring

in a sex-dependent manner, which was due to fetal programming of PKCs gene

repression resulting in a down-regulation of PKCs function in the heart of adult male

offspring.
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Introduction

Human epidemiological studies have shown a clear association of adverse

intrauterine environment and an increased risk of ischemic heart disease in later adult life

(Barker et al., 1989,1993). Of all the stresses to which the fetus is subjected, perhaps the

most important and clinically relevant is that of hypoxia. The fetus may experience

prolonged hypoxic stress under many different conditions, including pregnancy at high

altitude, pregnancy with anemia, placental insufficiency, cord compression,

preeclampsia, heart, lung and kidney disease, or with hemoglobinopathy. There is clear

evidence of a link between hypoxia and fetal intrauterine growth restriction (Unger et al.,

1988; Moore, 2003). Human studies at altitude suggest that hypoxia per se, independent

of maternal nutrition, causes fetal growth restriction, resulting in low birth weight and

altered body shape at birth (Giussani et al., 2001; Moore, 2003). Additionally, chronic

hypoxia suppresses fetal cardiac fimction, alters cardiac gene expression pattern, and

increases heart to body weight ratio (Kamitomo et al., 1992; Murotsuki et al., 1997;

Martin et al., 1998; Xiao et al., 2000; Rouwet et al., 2002; Zhang, 2005).

Animal studies have suggested a possible link between prenatal hypoxia and

increased risk of cardiovascular disease in offspring (Heydeck et al., 1994; Roigas et al.,

1996; Butler et al., 2002; Peyronnet et al., 2002; Davis et al., 2003; Li et al., 2003; Jones

et al., 2004; Mone et al., 2004; Zhang, 2005). Studies in a pregnant rat model

demonstrated that maternal hypoxia caused an increase in HIF-la expression and

apoptosis in the fetal heart and resulted in a premature exit fi-om the cell cycle of

cardiomyocytes and myocyte hypertrophy (Bae et al., 2003). Additionally, prenatal

hypoxia resulted in an increase in heart susceptibility to ischemia and reperfusion injury
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in adult male offspring (Li at al., 2003). In animal models of intrauterine malnutrition, the

sex dimorphism in manifestation of the severity of cardiovascular dysfunction in adult

offspring has been observed although the results were conflicting (do Carmo Pinho

Franco et al., 2003; McMillan and Robinson, 2005). Differential sex effects on cardiac

programming were also demonstrated in rats. Prenatal cocaine treatment increased heart

vulnerability to ischemia and reperfusion injury only in male adult offspring (Bae et al.,

2005). In contrast, fetal nicotine exposure resulted in increased heart susceptibility to

ischemia injury in both male and female offspring (Lawrence et al., 2008). These findings

suggest a stimuli-specificity of fetal programming of sex-dependent cardiac dysfunction

in adult offspring. It is unknown whether and to what extent the sex dichotomy exists in

manifestation of the severity of heart ischemic vulnerability in adult offspring resulting

from prenatal hypoxic exposure.

Additionally, the mechanisms whereby fetal hypoxia causes an increase in the

vulnerability of ischemic injury in the heart of adult offspring are not clear. Among other

mechanisms, protein kinase Cs (PKCs) plays a pivotal role of cardioprotection during

cardiac ischemia and reperfusion injury (Chen et al., 2001; Ping et al., 2001; Murriel and

Mochly, 2003). Studies in a PKCs knock-out mouse model have demonstrated that PKCs

expression is not required for cardiac function under normal physiological conditions, but

PKCs activation is necessary and sufficient for acute cardioprotection during cardiac

ischemia and reperfusion (Gray et al., 2004). Herein, we present evidence that prenatal

hypoxia exposure causes an increase in heart susceptibility to ischemia and reperfusion

injury in a sex-dependent manner, which is due to fetal programming of PKCs gene
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repression resulting in a down-regulation of PKCs function in the heart of adult male

offspring.

Materials and Methods

Experimental Animals and Hypoxic Exposxjre

Time-dated pregnant Sprague-Dawley rats were purchased from Charles River

Laboratories (Portage, MI) and were randomly divided into the normoxic control group

and continuous hypoxic exposure group (10.5% oxygen) from day 15 to day 21 of

gestation. Hypoxia was induced by a mixture of nitrogen gas and air as described

previously (Li et al., 2003). Previous studies showed that an ambient oxygen level of

10.5% lowered maternal arterial oxygen tension to ~50 mmHg (Rhee et al., 1997). The

normoxic control group was housed identically with room air flowing through chambers.

Water and food were provided as desired. All procedures and protocols used in the

present study were approved by the Institutional Animal Care and Use committee of

Loma Linda University and followed the guidelines in the National Institutes of Health

Guide for the Care and Use of Laboratory Animals.

Hearts Subjected to Ischemia and Reperfusion

At 3 months of age, the male and female progeny, raised in normoxic conditions

after birth, were anesthetized by intramuscular injection of ketamine (75 mg/kg) and

xylazine (5 mg/kg). Hearts were excised rapidly and retrogradely perfused via the aorta in

a modified Langendorff apparatus under constant pressure (70 mmHg) with gassed (95%

©2-5% CO2) Krebs-Heinseleit buffer at 37°C, as described previously (Li et al., 2003;
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Bae and Zhang, 2005). A pressure transducer connected to a saline-filled balloon inserted

into the left ventricle (LV) was used to assess ventricular function by measuring the

ventricular pressure (mmHg) and its first derivative (dP/dt). LV end diastolic pressure

(LYEDP) was set at about 5 mmHg. Control hearts were perfused continuously,

subjected to 20 min of global ischemia by stopping the perfiision, and then followed by

SOmin reperfusion. Some hearts were perfused with 5 pM PKCs translocation inhibitor

peptide (EAVSLKPT; PKCs-TIP; Calbiochem) or 5 pM scrambled PKCs translocation

inhibitor peptide (LSETKPAV; Scrambled PKCs-TlP; Calbiochem) for 20 min prior

ischemia and reperfusion with no wash-out period respectively. Both in vivo study

(Przyklenk et al., 2003) and isolated buffer-perfused rat heart study (Bae and Zhang,

2005; Pierre et al., 2007) confirmed that PKCs-TIP, an octapeptide confirmed to

selectively inhibit translocation of the PKCs. LV functional parameters, LV developed

pressure (LVDP), heart rate (HR), dP/dtmax, dP/dtmin. and LVEDP were continuously

recorded with an on-line computer. Pulmonary artery effluent was collected as an index

of coronary flow.

Myocardial Infarct Size

Myocardial infarct size was measured as previously described (Bae and Zhang,

2005). Briefly, at the end of reperfusion, left ventricles were collected, cut into four

slices, incubated with 1% triphenyltetrazolium chloride (TTC) solution for 15 min at

37°C, and immersed in formalin for 30 min. Each slice was then photographed (Kodak

digital camera) separately, and the areas of myocardial infarction (MI) in each slice were
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analyzed by computerized planimetry (Image-Pro Plus), corrected for the tissue weight,

summed for each heart, and expressed as a percentage of the total left ventricle weight.

Lactate Dehydrogenase (LDH) Activity Measurement

LDH activity was measured as previously described (Pierre et al., 2007). Briefly,

coronary effluent was collected for 30 s just before the onset of ischemia, and at 0,1,2,

3, 4, 5, 10,15, 20, and 30 min of reperfusion. LDH activity was measured using a

standard assay (TOX 7 kit, Sigma, Saint Louis, MO), following the manufacture's

directions.

Western Blot Analysis

At the end of reperfusion, left ventricles were isolated, and protein levels of

PKCs, phospho-PKCs, PKC5, and phospho-PKC5 were determined by Western blot

analysis. In brief, tissues were homogenized in a lysis buffer containing 150 mM NaCl,

50 mM Tris HCl, 10 mM EDTA, 0.1% Tween-20, 0.1% P-mercaptoethanol, 0.1 mM

phenylmethylsulfonyl fluoride, 5 pg/ml leupeptin, and 5)a,g/ml aprotinin, pH 7.4.

Homogenates were then centrifuged at 4°C for 10 min at 10,000g, and supematants were

collected. Proteins were measured using a protein assay kit from Bio-Rad (Hercules,

CA). Samples with equal proteins were loaded on to 7.5% polyacrylamide gel with 0.1%

sodium dodecyl sulfate and were separated by electrophoresis at 100 V for 2 h. Proteins

were then transferred to nitrocellulose membrane and incubated with primary antibodies

for PKCe, PKCS (Santa Cruz Biotechnology, Santa Cruz, CA), phospho-PKCs, and

phospho-PKCS (Upstate Biotechnolgy; Lake Placid, NY), respectively. After washing.
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membranes were incubated with horseradish peroxidase-conjugated secondary antibodies

(Amersham, Arlington Heights, IL). Proteins were visualized with enhanced

chemiluminescence reagents, and blots were exposed to Hyperfilm. Results were

quantified with the Kodak electrophoresis documentation and analysis system and Kodak

ID image analysis software. To minimize any confounding influence of variability among

gels, internal control were loaded in each gel and band intensities were normalized to

actin and internal control.

Statistical Analysis

Data were expressed as means ± SEM. Experimental number (n) represents

offspring from different dams. Statistical significance (P < 0.05) was determined by two-

way ANOVA followed by Neuman-Keuls post hoc testing.

Results

Body Weight and Baseline Cardiac Function

As shown in table 1, neither male nor female 3-month-old offspring showed

significant difference in body mass and heart weight between control and prenatally

hypoxic groups. LVDP, HR, dP/dtmax, dP/dtmin, and coronary flow rate at baseline were

not significantly different among all groups in either male or female offspring (Table 1).
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Table 3. Pre-ischemic left ventricle functional parameters

BW HW HR LVEDP LVDP dP/dtmax dP/dt^in CF
g  bpm mmHg mmHg/s ml/min

Male

C  492±11 1.3±0.1 253±6.9 5.2±0.2 100.5±2.8 3789±126 2158±78 12.3±0.4

C+S-TIP 495±13 1.3±0.1 265±8.2 5.1±0.2 103.6±2.4 3850±58 2143±41 12.6±0.2

C+TIP 507±141.3±0.1 259±5.4 5.5±0.3 95.8±1.6 3766±98 2078±57 12.8±0.7

H  515±9 1.3±0.0 249±5.2 5.3±0.4 104.1±4.7 3768±142 2058±21 12.4±0.2

H+TIP 518±6 1.3±0.0 260±5.6 5.7±0.2 99.6±2.5 3617±155 1967±66 13.2±0.4

Female

C  297±8 0.9±0.0 250±6.2 5.5±0.3 97.6±4.4 2867±71 1776±71 8.9±0.5

C+TIP 298±7 0.8±0.0 247+2.4 5.4+0.2 90.8+2.7 2846+156 1624+68 8.8+0.3

H  305+2 0.9+0.0 259+10.4 5.6+0.4 93.5+3.0 2945+139 1775+109 9.3+0.9

H+TIP 296+3 0.8+0.0 249+4.2 5.5+0.2 97.2+5.9 3081+92 1863+135 8.9+0.3

BW, body weight; C, control; H, hypoxia; S-TIP, scrambled PKC-TIP; TIP, PKC-TIP;
HW, heart weight; CF, coronary flow, n = 5-11

Post-Isehemic Recovery of LV Function in Male Hearts

Global ischemia for 20 min caused a persistent impairment in LV function in all

five groups. As shown in Fig. 8, compared with the control group, there were significant

decreases in post-ischemic recovery of LVDP, dP/dtmax and dP/dtmin in the hypoxie

group. Recovery of HR and coronary flow was not significantly different between the

control and hypoxie groups (data not shown). Recovery of LV function was not

significantly different between the control and Scrambled PKCs-TIP group (Fig. 8).

Inhibition of PKCe with PICCs-TIP, but not Scrambled PKCs-TIP, resulted in significant

decreases in postischemic recovery of LVDP, dP/dtmax and dP/dtmin in the heart of control

animals (Fig. 8). In contrast, it had no effect on post-ischemic recovery of LV function in

the heart of hypoxie animals (Fig. 8). In the presence of PKCs-TIP, there was no
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difference in post-ischemic recovery of LV function between the control and hypoxic

animals, which was the same as that in the heart of hypoxic animals in the absence of

PKCs-TIP (Fig. 8). Post-ischemic recovery of LV function in fanale hearts. In contrast to

the finding in the male offspring, prenatal hypoxia showed no effect on post-ischemic

recovery of LVDP, dP/dtmax and dP/dtmin in the female offspring (Fig. 9). PKCs-TIP

significantly decreased post-ischemic recovery of LV function in the hearts of both

control and hypoxic groups (Fig. 9). There was no difference in post-ischemic recovery

of LV function between the control and hypoxic animals either in the absence or presence

of PKCs-TIP.
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Figure 8. Effect of prenatal hypoxia on post-ischemia recovery of left ventricle function
in male offspring. Hearts were isolated from 3-month-old male offspring that exposed to
normoxia (control) or hypoxia before birth, and were pretreated in the absence or
presence of 5 pM PKCe-TIP for 20 min before subjecting to 20 min of ischemia and 30
min of reperfusion in a Langendorff preparation. Post-ischemic recovery of left ventricle
function during reperfusion was measured relative to the pre-ischemic values. LVDP, left
ventricular developed pressure; dP/dtmax, maximal rate of contraction; dP/dtmin. maximal
rate of relaxation. Data are means ± SEM. * P < 0.05, vs. control, n = 5-11
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Figure 9. Effect of prenatal hypoxia on post-ischemia recovery of left ventricle function
in female offspring. Hearts were isolated fi-om 3-month-old female offspring that exposed
to normoxia (control) or hypoxia before birth, and were pretreated in the absence or
presence of 5 pM PKCs-TIP for 20 min before subjecting to 20 min of ischemia and 30
min of reperfusion in a Langendorff preparation. Post-ischemic recovery of left ventricle
function during reperfusion was measured relative to the pre-ischemic values. LVDP, left
ventricular developed pressure; dP/dtmax, maximal rate of contraction; dP/dtmin, maximal
rate of relaxation. Data are means ± SEM. * P < 0.05, -i-PKCe-TIP vs. -PKCe-TlP, n = 5-6

60



Myocardial Infarction and Lactate Dehydrogenase (LDH) Release

In male animals, ischemia and reperfusion-induced increase in LVEDP was

significantly higher in the hearts of hypoxic group as compared with that in the control

group (Fig. lOA). This was consistent with the significant increases in myocardial infarct

size and LDH release in the hearts of hypoxic animals (Fig. lOB and IOC). There were no

differences in LVEDP, myocardial infarct size, and LDH release between control and

Scrambled PKCe-TlP groups (Fig. 10). PKCs-TlP, but not Scrambled PKCs-TlP,

significantly increased LVEDP (Fig. lOA), myocardial infarct size (Fig. lOB), and LDH

release (Fig. IOC) in the control group. In contrast, it had no effects on LVEDP,

myocardial infarct size, and LDH release in the hypoxic group (Fig. 10). In the presence

of PKCe-TIP, there were no differences in LVEDP, myocardial infarct size, and LDH

release between the control and hypoxic groups, which were the same as those found in

the heart of hypoxic group in the absence of PKCs-TIP (Fig. 10). In contrast, in females

there were no significant differences in ischemia and reperfusion-induced increase in

LVEDP, myocardial infarct size, and LDH release between the control and hypoxic

groups (Fig. 11). PKCs-TlP increased LVEDP (Fig. 11 A), myocardial infarct size (Fig.

1 IB), and LDH release (Fig. IIC) to the same extent in both the control and hypoxic

groups.
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Figure 10. Effect of prenatal hypoxia on ischemia and reperfusion injury of left ventricle
in male offspring. Hearts were isolated from 3-month-old male offspring that exposed to
normoxia (control) or hypoxia before birth, and were pretreated in the absence or
presence of 5 pM PKCe-TIP for 20 min before subjecting to 20 min of ischemia and 30
min of reperfusion in a Langendorff preparation. A: Left ventricle end diastolic pressure
(LVEDP) was measured during reperfusion. B: Infarct size of the left ventricle was
measured at the end of reperfusion. C: Lactate dehydrogenase (LDH) release over 30 min
of reperfusion was measured. Data are means ± SEM. P < 0.05, vs. control, n = 5-11
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Figure 11. Effect of prenatal hypoxia on ischemia and reperfusion injury of left ventricle
in female offspring. Hearts were isolated from 3-month-old female offspring that exposed
to normoxia (control) or hypoxia before birth, and were pretreated in the absence or
presence of 5 pM PKCs-TIP for 20 min before subjecting to 20 min of ischemia and 30
min of reperfusion in a L^gendorff preparation. A: Left ventricle end diastolic pressure
(LVEDP) was measured during reperfhsion. B: Infaret size of the left ventricle was
measured at the end of reperfusion. C: Lactate dehydrogenase (LDH) release over 30 min
of reperfusion was measured. Dafa are means ± SEM. * P < 0.05, -i-PKCe-TIP vs. -PKCs-
TIP, n - 5
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Western Blot

In male animals, there was a significant decrease in PKCs protein levels in the

LV of hypoxic group as compared with that in the control group (Fig. 12A). This was

accompanied by a significant decrease in phospho-PKCs in the hypoxic group (Fig. 12B).

PKCs-TIP had no effect on PKCs levels in the LV in either control or hypoxic groups

(Fig. 12A). It significantly decreased phospho-PKCs in the LV in the control group (Fig.

12B). In contrast, it had no further effect on decreased phospho-PKCs in the hypoxic

group (Fig. 12B). In the presence of PKCs-TIP, there was no significant difference in

phospho-PKCs levels between the control and hypoxic groups, which were the same as

that found in the hypoxic group in the absence of PKCs-TIP (Fig. 12B). Similar to PKCs,

prenatal hypoxia also decreased PKCS protein levels in the LV of hypoxic group as

compared with that in the control group (Fig. 12C). However, phospho-PKC5 was not

significantly different between the control and hypoxic groups (Fig. 12D). Unlike its

inhibitory effect on phospho-PKCs in the control hearts, PKCs-TIP did not affect

phospho-PKC5 levels in either control or hypoxic groups (Fig. 12D). In females, there

were no significant differences in PKCs, phospho-PKCs, PKCS, and phospho-PKCS

levels in the LV between the control and hypoxic groups (Fig. 13). PKCs-TIP decreased

phospho-PKCs in the LV to the same extent in both the control and hypoxic groups (Fig.

13B).
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Figure 12. Effect of prenatal hypoxia on PKCs and PKC6 expression in left ventricle of
male offspring. Hearts were isolated fi-om 3-month-old male offspring that exposed to
normoxia (control) or hypoxia before hirth, and were pretreated in the absence or
presence of 5 pM PKCs-TIP (TIP) for 20 min before subjecting to 20 min of ischemia
and 30 min of reperfiision in a Langendorff preparation. PKCs, phospho-PKCs (p-
PKCs), PKC6 and phospho-PKC5 (p-PKC5) protein abundance in left ventricle were
determined with Western blot analyses and normalized to actin and internal control (IC).
Data are mean ± SEM. ® P < 0.05, hypoxia V5. control, P < 0.05, +TIP vs. -TIP, n = 5

65



Control Hypoxia

-TIP +TIP TIP +TIP

PKCs

Act in

- PKCs-TIP

-I-PKCs-TIP

1.0-

ID.8-

0.6

0.4

0.2

0.0

Control Hypoxia

Control Hypoxia

-TIP +TIP -TIP -hTIP IC

PKCS

Act in

PKCs-TIP

PKCs-TIP

1.8

1.5-

° 1.2

0.9-^ S3
CL -e

^ 0.6-

0.3-

0.0

Control Hypoxia

-TIP -t-TIP -TIP +J\P IC

p-PKCe

Act in

1- PKCs-TIP

I-H PKCs-TIP

o
E

n  CD *  *

a__t
D

P-PKC6

Act in

Control

Control Hypoxia

Hypoxia

-TIP -hTIP -tip -f-TIP IC

PKCs-TIP

h PKCs-TIP

Control Hypoxia

r i ^

,  Control Hypoxia

Figure 13. Effect of prenatal hypoxia on PKCs and PKC5 expression in left ventricle of
female offspring. Hearts were isolated fi-om 3-month-old female offspring that exposed to
normoxia (control) or hypoxia before birth, and were pretreated in the absence or
presence of 5 pM PKCs-TIP (TIP) for 20 min before subjecting to 20 min of ischemia
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Discussion

The present study clearly demonstrated sex dichotomy in manifestation of

increased cardiac vulnerability to ischemia and reperfusion injury in adult offspring

resulting from fetal hypoxia. The lack of effect of prenatal hypoxia on the baseline left

ventricular function in adult offspring is in agreement with the previous results obtained

in other models (Bae et al., 2005; Lawrence et al., 2008), supporting the notion that it is

possible and perhaps common for an organ to be programmed and then vulnerable for life

without evidence until a late-life stressor challenges its adaptive capabilities. Contrast

with the finding in the male offspring that showed a significant increase in ischemia and

reperfusion injury in the left ventricle, hearts from female animals showed a resistance to

hypoxic-mediated programming of heart vulnerability to ischemic injury. This is

consistent with the previous finding that maternal cocaine administration during

pregnancy increased heart susceptibility to ischemic injury only in male offspring (Bae et

al., 2005). In contrast, prenatal nicotine exposure resulted in a significant decrease in

postischemic recovery of left ventricular function in both male and female hearts with the

detrimental effects in female hearts being more pronounced (Lawrence et al., 2008).

These findings suggest differential sex mechanisms of in utero cardiac programming

caused by adverse intrauterine environments. Additionally, unlike its effect on the heart,

fetal nicotine exposure significantly increased the vascular contractility in male but not

female adult offspring (Xiao et al., 2007), suggesting further an organ and/or tissue

specificity of sex-dependent programming induced by intrauterine insults. The sex

dichotomy in fetal programming of adult disease has been well demonstrated in several

animal models. Although the results are conflicting, it has been shown that female
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offspring are generally less sensitive in manifestation of cardiovascular disease caused by

adverse prenatal stimuli (do Carmo Pinho Franco et al., 2003). It has been shown in

animal models that female hearts have greater resistance to ischemia and reperfusion-

mediated injury in the Langendorff preparation, with reduced myocardial infarct size

(Bae and Zhang, 2005; Wang et ah, 2005). In addition, cardiomyocytes from female

hearts have been shown to be more resistant to ischemia and reperflision injury,

compared with male cardiomyocytes (Ranki et al., 2001). Studies of ovariectomized rats

and estrogen replacement have suggested that estrogen plays an important role in the

cardioprotection of global ischemia and reperflision injury in female hearts (Zhai et al.,

2000). Additionally, accumulating evidence suggests that, in addition to sex-defining

steroids, differences exist between genetically male (XY) and female (XX) cells in

determining an "ischemia-sensitive" phenotype (Hum et al., 2005), which could be

differentially programmed.

The finding that fetal hj'poxia had no significant effect on coronary flow rate

either at the baseline or during postischemic recovery in both male and female offspring

suggests that the target mechanisms of sex-dependent cardiac programming reside in

cardiomyocytes rather than coronary vasculature. The present study demonstrated that

fetal hypoxia caused a sex-dependent PKCe gene repression in the heart of male

offspring. The hypoxic-mediated decrease in PKCs and phospho-PKCs in the male heart

was associated with an increase in heart vulnerability to ischemic injury. In contrast, the

female heart showed a lack of change in PKCs and heart susceptibility to ischemia.

Similar findings were obtained in a rat model of prenatal cocaine treatment (Bae et al.,

2005). Unlike fetal hypoxia and cocaine treatments, maternal nicotine administration
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during pregnancy resulted in decreased PKCs protein expression in the heart of both male

and female adult offspring, which corresponded to the decreased post-ischemic recovery

of left ventricular function in both male and female hearts (Lawrence et al., 2008). These

findings demonstrate a stimuli-specificity of sex-dependent programming of PKCe gene

expression pattern in the heart and suggest a common mechanism of PKCs in cardiac

programming in response to intrauterine adverse stimuli.

The role of PKCs in sex-dependent programming of heart vulnerability to

ischemia and reperfusion injury in adult offspring was further demonstrated by selective

inhibition of PKCs with a PKCs translocation inhibitory peptide (PKCs-TIP) in the

present study. The activation of PKC isozymes is initiated by their translocation to the

unique sub-cellular sites and binding to isozyme-specific anchoring proteins, receptors

for activated C-kinase (RACKs), a family of membrane-associated PKC anchoring

proteins that act as molecular scaffolds to localize individual PKCs to distinct membrane

microdomains. PKC isozyme-selective inhibitory peptides, containing isozjnne-specific

RACK-binding sites, have been demonstrated to inhibit translocation and

phosphorylation of the corresponding PKC isozymes and consequently inhibit their

isozyme-unique function (Dom and Mochly-Rosen, 2002). PKCs-TIP selectively blocks

binding of PKCs to its RACK at the intracellular concentration of 3-10 nM, and has been

widely used to study the role of PKCs in cardiac function (Zhou et al., 2002; Murriel and

Mochly-Rosen, 2003; Przyklenk et al., 2003). A previous study has shown that 5 pM of

PKCs-TIP inhibits PKCs translocation in the heart of adult rat in the Langendorff

preparation (Pierre et al., 2007). Consistent with the previous studies (Przyklenk et al.,

2003; Bae and Zhang, 2005; Pierre et al., 2007), the present study showed that PKCs-TIP
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had no significant effects on left ventricular function at the baseline levels. This is in

agreement with the findings obtained in a PKCs knock-out mouse model, which

demonstrated that PKCs expression was not required for normal cardiac function under

physiological conditions, but PKCs activation was necessary and sufficient for acute

cardioprotection during cardiac ischemia and reperfusion (Gray et al., 2004). In the

present study, we found that PKCs-TIP significantly increased ischemic injury and

decreased postischemic recovery of left ventricular function in control males, and in the

presence of PKCs-TIP there was no difference in heart susceptibility to ischemic and

reperfusion injury between the control and hypoxic males. The selectivity of PKCs-TEP

was demonstrated by its inhibition of phospho-PKCs but not phospho-PKC5 in the

control heart. The lack of effect of PKCs-TIP on ischemic injury of the heart in hypoxic

males is consistent with its lack of effect on phospho-PKCs that has already been

inhibited in the heart of hypoxic group. In contrast to the males, PKCs-TIP inhibited

phospho-PKCs and decreased postischemic recovery of left ventricular function to the

same extent in both control and hypoxic groups in females, consisting with the no

difference in ischemic vulnerability of the heart in females between control and hypoxic

groups. These findings provide the cause-and-effect evidence of the functional

importance of PKCs in the gender dichotomy of increased heart susceptibility to ischemic

and reperfusion injury in offspring resulting from fetal hypoxia. This is in agreement with

previous studies showing a key role of PKCs in cardioprotection against ischemia and

reperfusion injury (Gray et al., 1997; Dom et al., 1999; Liu et al., 1999; Chen et al.,

2001; Cross et al., 2002; Pierre et al., 2007).
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The finding that prenatal hj^oxia resulted in a decrease in PKCs protein levels in

the heart of male adult offspring suggests in utero epigenetic programming of PKCs gene

repression in the heart. The ratio of phospho-PKCs/PKCs was not significantly different

between the control and hypoxic groups, suggesting that fetal hypoxia repressed PKCs

gene expression resulting in decreased phospho-PKCs, rather than inhibited its activities

per se. Epigenetic mechanisms are essential for development and differentiation, and

allow an organism to respond to the environment through changes in gene expression

(Reik et al., 2001,2003; Jaenisch and Bird, 2003). DNA methylation is a chief

mechanism in epigenetic modification of gene expression pattem. Our recent study

demonstrated an epigenetic mechanism of DNA methylation in programming of cardiac

PKCs gene repression, linking fetal cocaine exposure and pathophysiological

consequences in the heart of adult male offspring in a gender-dependent manner (Zhang et

al., 2008). In this study, eight transcription factor binding sites, Stral3 at -1723, PPARG at

-1688, E2F at -1621, Egr-1 at -1008, MTFl at -603, SPl at -346, SPl at -268, and

MTFl at -168, which contain CpG dinucleotides in their core binding sites, were

identified at the promoter of PKCs gene in the rat. Prenatal cocaine treatment caused an

increase in CpG methylation at both SPl binding sites of -346 and -268 resulting in the

decreased SPl binding to the PKCs promoter and PKCs gene repression in the heart of

male offspring. In contrast in females, increased methylation was observed only at SPl

binding site of -268, which did not change PKCs gene expression in the heart. Whether

and to what extent fetal hypoxia induces differential and sex-dependent pattem of DNA

methylation in the PKCs promoter remains an intriguing area for the future investigation.
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Unlike PKCs, the role of PKC5 in ischemia and reperfusion injury is less clear

and is somewhat controversial. Inhibition of PKC5 during reperfusion has been shown to

decrease reperfusion-induced injury (Murriel and Mochly-Rosen, 2003). Other studies

demonstrated the cardioprotective effects of PKC5 (Kawamura et al., 1998; Zhao et al.,

1998; Bouwman et al., 2006). It has been demonstrated that estrogen deficiency

decreases ischemic tolerance in the aged rat heart through decreases in both PKC5 and

PKCs levels (Hrmter et al., 2007). The present finding that PKC6 was significantly

decreased in the heart of male but not female offspring that exposed to hypoxia before

birth suggests a possible mechanism of PKC5 in the sex dichotomy of increased heart

susceptibility to ischemia and reperfusion injury in males. In agreement, previous studies

demonstrated that prenatal nicotine exposure caused a significant decrease in PKC5

protein levels in the heart of female but not male offspring, which was associated with the

increased heart vulnerability to ischemic injury in the females as compare with the males

(Lawrence et al., 2008).

Our investigation has demonstrated in a rat model that fetal hypoxia results in the

increased heart susceptibility to ischemia and reperfusion injury in male offspring in a

sex-dependent manner, which is caused by fetal programming of PKCe gene repression

resulting in a down-regulation of PKCs expression in adult male hearts. Although a role

of PKC5 is also suggested, its causal effect in sex-dependent programming of heart

vulnerability to ischemic injury in offspring remains to be determined. Whereas it may be

difficult to translate the present findings directly into the humans due to the paucity of

epidemiological evidence in humans to link prenatal hypoxia per se and cardiovascular

disease in later adult life, the possibility that fetal hypoxia may result in programming of
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a specific gene in the offspring with a consequence of increased cardiac vulnerability

provides a mechanistic understanding worthy of investigation in human, given that

hypoxia is one of the most important and clinically relevant stresses to the fetus and large

epidemiological studies have indicated a link between in utero adverse stimuli during

pregnancy and an increased risk of ischemic heart disease in the adulthood.
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CHAPTER FOUR

FETAL HYPOXIA CAUSES PROGRAMMING OF AT2R EXPRESSION AND

CARDIAC VULNERABILITY TO ISCHEMIC INJURY IN RAT OFFSPRING

by

Qin Xue, Chiranjib Dasgupta, Man Chen and Lubo Zhang

This paper has been submitted to Circulation Research.
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Abstract

Angiotensin II plays an important role in cardiafc function and has been implicated

in programming of cardiovascular disease caused by adverse in utero environment during

fetal development. The present study tested the hypothesis that fetal hypoxia alters

angiotensin 11 receptor gene expression pattem and increases heart ischemic susceptibility

in offspring. Cardiac ATi (ATiR) and AT2 (AT2R) receptors decreased from the fetus to

adult. Hypoxia downregulated ATiRin the fetal heart, which was recovered in adult

offspring. In contrast, AT2R was significantly increased in both male and female

offspring. Multiple glucocorticoid response elements (GREs) were identified at the AT2R

promoter, deletion of which increased the promoter activity. Consistently, dexamethasone

decreased AT2R expression in the heart, which was blocked by RU 486. Prenatal hypoxia

decreased glucocorticoid receptor (GR) in adult hearts, resulting in decreased GR binding

to the GREs at the AT2R promoter. The inhibition of AT2R improved postischemic

recovery of left ventricular function and rescued the hypoxia-induced cardiac ischemic

vulnerability in male offspring. In contrast, the inhibition of AT iR decreased the

postischemic recovery. The results demonstrate that fetal hypoxia causes programming of

increased cardiac AT2R gene expression by downregulating GR, which contributes to

increased ischemic vulnerability of the heart in offspring.

Introduction

Epidemiological and animal studies have shown a clear association of adverse

intrauterine environment with an increased risk of hypertension and ischemic heart

disease in adulthood (Barker et al., 1986; Bateson et al., 2004; Gluckman et al., 2008;
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McMillen and Robinson 2005). Hypoxia is one of the most important and clinically

relevant stresses that can adversely affect fetal development. There is evidence of a link

between hj^oxia and fetal intrauteiine growth restriction and an increased risk of

cardiovascular disease in offspring (Heydeck et al., 1994; Roigas et al., 1996; Butler et al.,

2002; Peyronnet et al., 2002; Davis et al., 2003; Li et al., 2003; Jones et al., 2004; Mone et

al., 2004; Zhang 2005). Animal studies have demonstrated that fetal hypoxia causes a

premature exit from the cell cycle of cardiomyocytes and myocyte hypertrophy (Bae et

al., 2003), and results in an increased heart susceptibility to acute ischemia and

reperfusion injury in adult male offspring in a sex-dependent manner (Li et al., 2003,

2004; Xu et al., 2006, Xue and Zhang, 2009).

Angiontensin II (Ang II) plays a fundamental role in the regulation of

cardiovascular homeostasis, and has been implicated in programming of cardiovascular

disease induced by adverse in utero environment during the fetal development

(Bogdarina et al., 2007; Hadoke et al., 2006; Langley-Evans et al., 1999; Langley-Evans

and Jackson, 1995; Sherman RC, Langley-Evans, 1998). Recent studies have

demonstrated a link between fetal insults to differential epigenetic modifications of type 1

(ATiR) and type 2 (AT2R) Ang II receptor genes in the adrenal and kidney and the

resultant alteration of their expression pattern in adult life, which may lead ultimately to

the development of hypertension (Bogdarina et al., 2007; McMullen and Langley-Evans,

2005; Singh et al., 2007). Nevertheless, the effect of fetal hypoxia on the ontogeny of

Ang II receptors in the heart has not been determined. Both ATiR and AT2R are

expressed in cardiac myocytes and have significant pathophysiological roles in heart

diseases (Matsubara, 1998; Sechi et al., 1992; Horiuchi et al., 1999; Schneider and Lorell,
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2001, Xu et al., 2009). Yet the role of ATiR and ATiR in ischemia and reperfusion injury

of the heart remains controversial, depending on systemic vs. local blockade as well as

chronic vs. acute blockade of ATiR and AT2R. Although long-term systemic

administration of ATiR antagonists reduced isehemie injury, studies of the acute effects

of ATiR or AT2R antagonists on the recovery of left ventricular function during

reperfusion of the isehemie left atrium-perfused isolated working rat heart demonstrated

the cardioprotection of AT2R blockade, but not ATiR blockade (Ford et al., 1996,1998).

Herein, we present evidence that fetal hypoxia causes programming of increased AT2R

gene expression in the heart of offspring by the down-regulation of glueocorticoid

receptors (GRs), which contributes to the increased isehemie vulnerability of the heart in

offspring resulted from fetal hypoxia.

Material and Methods

Experimental Animals

Time-dated pregnant Sprague-Dawley rats were purchased from Charles River

Laboratories (Portage, MI), and were randomly divided into two groups: 1) normoxie

control; and 2) hypoxic treatment of 10.5% O2 from day 15 to 21 of gestation, as

described previously (Xue and Zhang, 2009). Hearts were isolated from near-term (21 d)

fetuses, 3 weeks and 3 months old offspring. To isolated hearts, rats were anesthetized

with 75 mg/kg ketamine and 5-mg/kg xylazine injected intramuscularly. For ex vivo

studies, hearts were isolated from day 17 fetal rats and cultured in Ml99 media (Hyclone,

Logan, LfT) supplemented with 10% FBS and 1% penieillin/streptomyein at 37 °C in

95% air/5% CO2, as reported previously (Meyer et al., 2009). Hearts were given 24 h of
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recovery time before being treated with dexamethasone and RU 486 for 48 h. All

procedures and protocols were approved by the Institutional Animal Care and Use

Committee guidelines.

Westem Blot Analysis

Protein was isolated from hearts of fetuses and offspring. Protein abundance of

ATiR, AT2R, GRs were measured with Westem blot analysis. In brief, hearts were

homogenized in a lysis buffer. Homogenates were then centrifliged at 4°C for 10 minutes

at 10,000 g, and supematants collected. Nuclear extracts were prepared from hearts using

NXTRACT CelLytic Nuclear Extraction Kit (Sigma). Protein concentrations were

measured using a protein assay kit (Bio-Rad, Hercules, CA). Samples with equal

amounts of protein were loaded onto 7.5% polyacrylamide gel with 0.1% SDS and

separated by electrophoresis at 100 V for 90 minutes. Proteins were then transferred onto

nitrocellulose membranes. Nonspecific binding sites was blocked for 1 hour at room

temperature in a Tris-buffered saline solution containing 5% dry-milk. The membranes

were then probed with primary antibodies against ATiR, AT2R, and GR (Santa Cmze

Biotechnology; Santa Cruz, CA). After washing, membranes were incubated with

secondary horseradish peroxidase-conjugated antibodies. Proteins were visualized with

enhanced chemiluminescence reagents, and blots were exposed to Hyperfilm. The results

were analyzed with the Kodak ID image analysis software.

78



Real-TimeRT-PCR

RNA was extracted from hearts of fetuses and offspring. RNA was extracted from

hearts using TRIzol protocol (Invitrogen, Carlsbad, USA). ATiaR, ATibR and AT2R

mRNA abundance was determined by real-time RT-PCR using Icycler Thermal cycler

(Bio-Rad, Hercules, CA), as described previously (Meyer et al., 2009). The primers used

were: ATiaR, 5'-GGAGAGGATTCGTGGCTTGAG-3' (forward) and 5'-

CTTTCTGGGAGGGTTGTGTGAT-3' (reverse); ATibR 5'-

ATGTCTCCAGTCCCCTCTCA-3' (forward) and 5'-TGACCTCCCATCTCCTTTTG-3'

(reverse); and AT2R, 5'-CAATCTGGCTGTGGCTGACTT-3' (forward) and 5'-

TGCACATCACAGGTCCAAAGA-3' (reverse). Real-time RT-PCR was performed in a

final volume of 25 pi. We used the following RT-PCR protocol: 50°C for 10 min, 95°C

for 5 min, followed by 40 cycles of 95°C for 10 s, 56°C for 30 s, 72°C for 10s. GAPDH

was used as an internal reference and serial dilutions of the positive control was
/

performed on each plate to create a standard curve. PCR was performed in triplicate, and

threshold cycle numbers were averaged.

Site-Directed Mutagenesis and Reporter Gene Assay

Rat AT2R promoter sequence was obtained from rat genome data base

(http://www.ncbi.nlm.nih.gov/mapview). Primers flanking a fragment of 2220 base pairs

(bp) AT2R promoter region were designed and synthesized by IDT (Coralville, lA).

Genomic DNA isolated from rat hearts was used as PCR template for DNA

amplification. After second round of nested PCR, a 2130 bp amplified fragment spanning

-2080 bp to +49 bp relative to the transcriptional start site was cloned into pCR4-T0P0
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vector (Invitrogen) and sequenced. The KpnI/XhoI fragment flanking the AT2R promoter

region was then inserted into the luciferase reporter gene plasmid, pGL3 (Promega) to

yield the full-length promoter-reporter plasmidi Promoter analyses identified the presence

of multiple GREs. Site-specific deletions of GREs were constructed, respectively. All

promoter constructs sequences were confirmed with DNA sequencing analyses. Reporter

gene assay was performed using a rat embryonic heart-derived myogenic cell line H9c2,

as described previously (Meyer et al., 2009). H9c2 cells were obtained from American

Type Culture Collection (Rockville, MD) and maintained in Dulbecco's modified Eagle's

medium supplemented with 10% fetal bovine serum. H9c2 cells were seeded in six-well

plates (2 X 10^ cells/plate) and transiently co-transfected with 1 pg of promoter/reporter

vector along with 0.05 pg of internal control pRL-SV40 vector using Tfx-20 transfection

reagents for eukaryotic cells (Promega) following manufacturer's instructions. After 48

hours, firefly and Renilla reniformis luciferase activities in cell extracts were measured in

a luminometer using a dual-luciferase reporter assay system (Promega). The truncated

promoter activities were then calculated by normalizing the firefly luciferase activities to

R. reniformis luciferase activity.

Electrophoretic Mobility Shift Assay (EMSA)

Nuclear extracts were collected from hearts using NXTRACT CelLytic Nuclear

Extraction Kit (Sigma). The oligonucleotide probes of GREs at rat AT2R promoter region

were labeled and subjected to gel shift assays using the Biotin 3' end labeling kit and

LightShift Chemiluminescent EMSA Kit (Pierce Biotechnology, Rockford, IL), as

previously described (Meyer et al., 2009). Briefly, single stranded oligos were incubated
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with Terminal Deoxynucleotidyl Transferase (TdT) and Biotin-11 -dUTP in binding

mixture for 30 minutes at 37 °C. The TdT adds a biotin labeled dUTP to the 3'-end of the
\

oligonueleotides. The oligos were extraeted using chloroform and isoamyl alcohol to

remove the enzjmie and unincorporated biotin-11-dUTP. Dot blots were performed to

ensure the oligos were labeled equally. Combining sense and antisense oligos and

exposing to 95 "C for 5 minutes was done to anneal complementary oligos. The labeled

oligonueleotides were then incubated with or without nuclear extracts in the binding

buffer (from LightShift kit). Binding reactions were performed in 20 pi containing

50 frnol oligonueleotieds probes, 1 x binding buffer, 1 pg of poly(dl-dC), and 5 pg of

nuclear extracts. For competitions studies, increasing concentrations of non-labeled

homologous and heterologous oligonueleotides were added to binding reactions. For

super-shift assays, 2 pg of GR antibody (Santa Cruz Biotechnology) were added and

further incubated for 1 hour at 4 °C. The samples were then run on a native 5%

polyacrylamide gel. The contents of the gel were then transferred to a nylon membrane

/  2

(Pierce) and crosslinked to the membrane using a UV crosslinker (125 mJoules/cm ).

Membranes were blocked and then visualized using the reagents provided in the

LightShift kit.

)

Hearts Subjected to Ischemia and Reperfusion

Hearts of 3 months old offspring were isolated and retrogradely perfused via the

aorta in a modified Langendorff apparatus, as previously described (Xue and Zhang,

2009). After the baseline recording, hearts were subjected to 20 minutes of global

ischemia, followed by 30 minutes of reperfusion in the absence or presence of losartan (1
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|iM), or PD 123,319 (0.3 irM), or losartan plus PD 123,319 for 5 minutes before ischemia

and throughout the period of ischemia and reperfusion. Left ventricular developed

pressure (LVDP), heart rate (HR), dP/dtniax> dP/dtmm. and LV end diastolic pressure

(LVEDP) were continuously recorded. Myocardial infarct size was measured at the end

of reperfusion with 1% triphenyltetrazolium chloride, and was expressed as a percentage

of the total left ventricular weight. LDH activity was measured in coronary effluent

collected at 30 second before the onset of ischemia, and at 0,1, 2, 3,4, 5,10,15,20, and

30 minutes of reperfusion. LDH activity was measured using a standard assay (TOX 7

kit, Sigma, Saint Louis, MO), following the manufacture's directions, and expressed as

area under curve (AUC).

Statistical Analysis

Data are expressed as mean ± SEM. Statistical significance {P < 0.05) was

determined by analysis of variance (ANOVA) followed by Neuman-Keuls post hoc

testing or Student's t test, where appropriate.

Results

Effect of Fetal Hypoxia on ATiR and AT2R Protein and

mRNA in the Heart

Protein and mRNA abundance of both ATiR and AT2R showed a development-

dependent reduction in the heart, and no sex difference was observed (Figure 14). AT2R

mRNA decreased to less abundance that that of ATiaR and ATibR, resulting in a

significant decrease in the AT2R/ATia,bR receptor ratio in the adult heart. Hypoxia caused

82



a significant decrease in protein abundance of AT iR but not ATiR, resulting in an

increased AT2/AT1 ratio in the fetal heart (Figure 15A). This was associated with a

decrease in ATibR mRNA (Figure 15B). The same expression pattern persisted in the

heart of 3 weeks old male offspring, whereas no significant differences in AT iR and

AT2R were observed in females. In 3 months old offspring, prenatal hypoxia increased

protein (Figure 15A) and mRNA (Figure 15B) abundance of AT2R, but not ATiR, in the

male heart. In females, both ATiR and AT2R were increased and the AT2R/AT iR ratio

was not significantly changed (Figure 15A). Consistently, ATibR and AT2R mRNA was

significantly increased in the female heart (Figure 15B).
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Figure 14. Effect of development on ATiR and AT2R protein and mRNA abundance.
ATiR and AT2R protein and mRNA abundance was determined in hearts isolated from
fetus, 3 weeks and 3 months old male (M) and female (F) rats. Data are mean ± SEM. *
P < 0.05, fetus, n = 5.
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Figure 15. Effect of fetal hypoxia on ATiR and AT2R protein and mRNA abundance.
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female (F) offspring in control (C) and hypoxic (H) groups. A) Protein. B) mRNA. Data
are means ± SEM. * P < 0.05, hypoxia v,s. control, n = 5.
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Inhibitory Effect of GREs on the AT2R Promoter Activity

Rat AT2R promoter has a TATAA element at -28 from the transcription start site

(Figure 16). Deletion of the TATAA element significantly decreased the promoter

activity (Figure 17). Multiple GREs were identified at rat AT2R promoter. These include

GREl (-1853), GRE2 (-1674), GRES (-1526), GRE4 (-1159); GRE5 (-945), GRE6 (-

676), GRE7 (-107), GRE8 (+13) (Figure 3). Site-specific deletion of each GREs

independently caused a significant up-regulation of the promoter activity (Figure 17).

While the GRE4 deletion stimulated the luciferse activity by 2.43-fold, deletion of other

GREs increased the promoter activity by 1.5- to 1.9-fold.

GREl

GRE2

GRE3

GRE4

GRES

GRES

GRE7

GRES

at 11 gaaa t gaaggc agaaac c agg^c 11 aaac aaagac t gaaac t c at tctcttttc aaa
tctcctgccgataaacatatgtgcccagtcttttgtttcccagacatcaggtttccatta

111 aaac agagc 11 c t ac; c t ggat c t gt c aagagc at gaggc agac at at 11 aaga 1111

t ac aaac c ggt gt at gagt t aggt gagt 111 gc aaat g11 c aaat t c at 11 aat c aaaag

aagc gc t ac aat ggtgtc ctt aat c c 1111 at gat t ac t gc aat 111 c agac aat at gaa
caacacttattgcttctatatgctcttgtcttgtagcatttactttaatatcagtggaca

gacagatatcactagtcatctgctgtttcttgagacatttgtaattttgtactctggtac

ac ttctctctcc ttgttctac t gaac c c c at ac 11 ac c t ac gaaaat ac t aagaac aaac
atatgtattcctctgcttgcagcttgggaggcattatttattcaaatgacccaaagcttt

t aaag t c aat c 11 c aagt t aaaaat aaaaaaaaat ggt ac t ac c aatgta ccac gc c c t g
cttccttgaagaataggattcaggggaatcattgtaattgcacatctctttgttgtgttgt

ggg11 gc 11 ggt t at c age ac t aac t gc agaaaat 11 c ac gat t c t at at ttctcttccc

tgctttctgttttgctaatacattaaaaaaagaacacttttgcttgcatagcaaactttc

ttcttctttgactcttttgcaatagcttgttaactgtccataacgaagactgtctgtaaa

t gc t gt at gt at c c t c 111 gc t gaac aaaaggt gaaac aaaaggat c age aagc agggt a

gagat t aaaac at at gagt c c t ggc aagagt 11 ac 1111 gt^ gaaa11 c ac atgtc etc a
taacagetatgggccccttgggaatttatttaaaatctgtcaccctgtgtttcctgaatc
gtagattggcaataatattaatactttttagggcatgcgctgtgtgttaggcatcatttt

cagtactctaaatataataattcatttgcttttagtaacttcatgatatgagtaactaat

at c c c c at 11 c t c agat gagaaagc ag a g a ca agaagaaggc aagt c at gt gac t c c at t

c at agaac t gagat gt ggc 11 gt gaagc c aagt gt 11 ggc c 11 c agaggc c at t gc 11 ac

cacttgctatggtgctctctgttgatetactgageacacagtacttagtacaccattagg

c ac ggagc ac c t gc t gt c age t ggt ac t gt c c agt ac c at c ac etc gt at ggac t c at c

catttttattttattttattttattttttttgctgctgctggctggtatgaaggggattgt

tctt c c ac agaaaaggaaaaac agt c at aac aat age age at aat c at c c 111 ac ctt gt

c t ggt gt at at 11 gage t ac agt t gt gac agt c ac at gaaaaagggc ac t ac at ggaac t

ttatttttgtcgtgacaaaattttatccttcttatcctcaaccttctagcagcagggcaa

c t gac c aaaat ggt t c aaagt aaggt aaaaac 11 aaaagt c ac agac gt c aagt agaat t

gc t ac c at t c 111 aat aaac aat gt t aaaaaat 11 aaaat gt ac t gaaagc t gt aaaaga

tgcttgtgaaccaactttgtactctttctagtccttaactgattttagaaagccaggatc

agaaaaat agaaaaaaat t c t gc t aaaaat t at at tcttctctt aaagaaagc c ac ggag

111 aaaac t c t c t aac ac at 11 g t ggaaac 111 at ttttttttt gt 11 gagat 11 at 11 g

aat gage t gt t at gat t ggagac at gagaat 11 c agat t aat gt 111 gc age c agaaaaa

aaagc c c t c t ggaaagc t ggc aagtgttcai t aagt c age t c c agaat t at g t aggt t gaa
Ggc t c c c c agt ggac agagc gaat atata a gaaggaaac c agaggt c t ggt gc agt t ac a

Tcccagagtct ggggatggagcgagcaca gaat t

-1-1

Figure 16. Rat AT2R gene promoter sequence.
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Figure 17. Effect of GREs on the AT2R promoter activity. AT2R promoter reporter gene
constructs of wild tj^e (WTAT2R) and site-specific deletion of GREs and TATA were
transiently co-transfected with pRL-SV40 driven R. reniformis luciferase in a rat
embryonic heart-derived myogenic cell line H9c2. After 48 h, firefly and R. reniformis
luciferase activities in cell extracts were measured using a dual-luciferase reporter assay
system. The promoter activities were then calculated by normalizing the firefly luciferase
activities to R. reniformis luciferase activity. Data are mean ± SEM. * P < 0.05, vs. wild
type, n = 6.
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Binding of GRs to the GREs at the AT2R Promoter

Binding of nuclear proteins to the putative (jREs (Figure 18) at the AT2R

promoter was evaluated by electrophoretic mobility shift assay (EMSA). Immunoblot

analysis confirmed the presence of GRs in the nuclear extracts used in EMSA (Figure

19). We first defined our criteria by analyzing GRE6, as it was originally suggested at the

AT2R promoter (Ichiki et al). GRE4 was included along with GRE6 in our initial

analysis. As shown in figure 19 (top panels), incubation of nuclear extracts from rat

hearts with double-stranded oligonucleotide probes of GRE4 and GRE6 resulted in a

DNA-protein complex of similar electrophoretic mobility in EMSA, which was blocked

by cold homologous, heterologous, a consensus GRE, or ATiaR-GRE oligos. Identity of

GRs in the nuclear extracts was confirmed by super-shift data shown in figure 19, in

which the electrophoretic mobility of the gel-retarded complex formed between GRE6

and nuclear extracts was further retarded with an anti-GR antibody. We extended EMSA

and competition experiments for GREs 1,2, 3, 5, 7, and 8, and showed that each of the

biotinylated EMSA oligos encompassing these sites reacted with nuclear extracts to form

a gel-retarded band that has identical electrophoretic mobility as with that of GRE6

(Figure 19, lower panels).
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GKE oligos used in EMSA

GRE1 (-1853) 5'- CTACAATGCTCTCCTTAATCCTTITA
GRE2 (-1674) S'-TCTCTCTCCTTGTTCTACTGAACCCC
GRE 3 (-1526) S'-GTACTACCAATGTACCACGCCCTGCT
GRE 4 (-II59) S'-GAAATTCACATGTCCTCATAACAGCT
GRE 5 (-947) 5'-TGAGAAAGCAGAGACAAGAAGAAGGC
GRE 6 (-676) 5'-ATGAAGGGGATTGTTCTTCCACAGAA
GRE 7 (-107) 5'-AGCTGGCAAGTGTrCATAAGTCAGCT
GRE 8 (+13) S'-GGATGGAGCGAGCACAGAATTGAAAG

Consensus GEE oligos used for heterolo^ous competition in EMSA

CGRE-S 5'-TATGGTTACAAACTGTrCTAAAAC

CGRE-AS 5'-GTnTAGAACAGnTGTAACCATA

ATU-GRE-S 5'-AAGCTrGTACACTATrGTCTGAGTT

Atla-GRE-AS 5'-AACTCAGACAATAGTGTACAAGCTr

Figure 18. Sequences of GRE oligos used in EMSA.
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Figure 19. Characterization of GREs in the AT2R promoter. EMSA was performed with
nuclear extracts (NE) and biotin labeled ds-oligo probes containing GREs (1 through 8),
and consensus GRE (CGRE), ATlaR-GRE (AGRE) (oligo sequences are in on-line data
supplement). GR, glucocorticoid receptor; r-hOR, human recombinant GR; C-3, C-4, C-
6, C-CGRE, C-AGRE etc are cold ds-oligos used for competition experiments. Each
EMSA generated band of same electrophoretic mobility as those of authentic GREs
CGRE and AGRE, and competed out by homologous, heterlogous, and consensus oligos.
The GRE6 probe forms a complex that was supershifted by glucocorticoid receptor
antibody (anti-GR Ab).
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Dexamethasone Inhibits AT2R Expression in the Heart

Dexamethasone treatment for 48 hours produced a dose-dependent decrease in

mRNA and protein abundance of AT2R in the intact fetal rat hearts (Figure 20). RU 486

had no effect on AT2R mRNA but blocked dexamethasone-induced reduction of AT2R

mRNA abundance (Figure 20).
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Figure 20. Effect of dexamethasone on AT2R protein and mRNA abundance. Intact fetal
hearts were treated with dexamethasone (Dex) for 48 hours in the absence or presence of
RU 486. Data are mean + SEM. * P < 0.05, vs. control, n = 6.
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Prenatal Hypoxia Decreases GR Binding to GREs at the

AT2R Promoter in Offspring Hearts

Figure 21 shows the effect of prenatal hypoxia on GR expression in the hearts of

adult offspring. In both male and female offspring, fetal hypoxia caused about 50%

decreases in total cellular as well as nuclear GR protein abundance in the hearts. In

accordance, there were similar extent decreases in GR bindings to GREs 4, 6, 7, 8 at the

AT2R promoter in offspring hearts (Figure 22A). The binding affinity of GR to GREs

was determined in competition studies performed in pooled nuclear extracts from the

hearts of adult offspring with the increasing ratio of unlabeled/labeled oligonucleotides

encompassing the GRE4 at -1159 in the AT2R promoter. Fetal hypoxia had no significant

effect on the binding affinity of nuclear extracts to the GRE in the hearts of both male

and female offspring (Figure 22B).
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Figure 21. Effect of fetal hypoxia on glucocorticoid receptor protein abundance. Hearts
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(H) groups. Total cellular and nuclear glucocorticoid receptor (GR) abundance was
determined. Data are mean ± SEM. * P < 0.05, hj'poxia vs. control, n = 5.
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Functional Role of AT2R in Acute Ischemia and

Reperfusion Injury

The functional significance of AT2R in modulating the post-isehemie recovery of

left ventricle (LV) function after aeute ischemia was determined in a Langendorff

preparation using a selective AT2R inhibitor, PD 123,319. As shown in Table 4, there

were no significant differences in LV developed pressure (LYDF), heart rate (HR),

dP/dtmax, dP/dtmin and eoronary flow rate at the baseline among all groups. PD 123,319

significantly improved the post-ischemic recovery of LYDP (Figure 23), as well as

dP/dtmax and dP/dtmin (Figure 24) in both male and female hearts. Consistently, PD

123,319 decreased LY end diastolie pressure (LYEDP) (Figure 24), myocardial infaret

size and LDH release (Figure 23) after myocardial ischemia in both male and female

animals. In contrast, an ATiR selective inhibitor losartan impaired the post-ischemic

recovery of LYDP (Figure 23) and dP/dtmax and dP/dtmin (Figure 24), and significantly

increased LYEDP (Figure 24), myocardial infaret size and LDH release (Figure 23). In

the presenee of both PD 123,319 and losartan, there were no significant differences in the

post-isehemie recovery of LY function and myocardial infarction (Figure 23 and Figure

24). The recovery of HR and coronary flow rate was not significantly different among all

groups (data not shown). Further studies demonstrated that blockade of AT2R with PD

123,319 reseued the myocardial phenotype of increased susceptibility to acute ischemia

and reperfusion injury in male offspring that exposed to hypoxia before birth (Figure 25

and Figure 26).
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Table 4. Pre-ischemic left ventricle functional parameters

HR

(bpm)

LVEDP

(irnnHg)

LVD?

(mmHg)

dP/dtmax

(mmHg/s)
dP/dtmin CF
(mmHg/s) (ml/min)

Male

Control

PD

Losartan

PD+Losartan

261±5.8

258±2.2

254±6.6

252±6.0

5.3±0.2

5.4±0.3

5.0±0.1

4.9±0.1

106.1±3.7

102.2±1.6

113.1±2.1

108.6±3.3

3464±64.5

3310±80.7

3280±107.5

3358±59.2

2235±93.7

2209±79.0

2248±94.5

2251±64.1

11.7±0.6

11.8±0.4

11.0±0.6

12.4±0.3

Female

Control

PD

Losartan

PD+Losartan

258±7.0

261+7.1

253+2.0

258+4.1

5.3+0.1

5.1+0.1

5.4+0.1

5.0+0.1

98.0+3.3

96.0+2.5

97.6+2.3

102.4+3.0

3303+69.6

3191+136.0

3424+173.6

3262+131.3

1915+36.5

1947+53.3

1992+52.8

2078+42.2

10.8+0.4

10.8+0.3

10.6+0.4

10.8+0.4

HR, heart rate; LVDP, left ventricular developed pressure; LVEDP, left ventricular end
diastolic pressure; dP/dtmax, maximal rate of contraction; dP/dtmm, maximal rate of
relaxation; CF, coronary flow; PD, PD123319. n = 5.
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Figure 23. Effect of ATiR and AT2R inhibitors on cardiac ischemia and reperfusion
injury. Hearts were isolated from 3 months old male and female rats and were pretreated
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97



Male Female

1JI

OJI
m

&
S Oft

XI «
■D OJZ

OUD

-COBffeDl

-PD

c -B-PD+Losarite

E
0 ^

f
a

25

1JI

cut

1 oua
0L4

0L2-

OJI

"E

f

PD

PD+Lo

20 25

RepeiOjsDn (iraf

« 75
E
E
ir »
o
ui

5 2SH

Gnini

PD

IS

u

OJI
«•

3
S ols
X

J "
iL
-D 02

OLO

-Cm

-PD

-■-LosartM

-a— PD+LosailiB

a
n
fli

E
•i

0

20 25 30

IJO

out

I
c»

J "
£
■n 02

-C

-PD

c

E

-s-PD+LoailiB

0
z

E
j=

—

1  1 1 1 1

20

RepeifLBDn

® w-

2S-

O'

PD

FDH-osalai

25
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injury. Hearts were isolated from 3 months old male and female rats and were pretreated,
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Figure 25. Rescue effect of PD123,319 on hj^oxia-mediated ischemic vulnerability.
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Discussion

The present study demonstrates a development-dependent down-regulation of

both ATiR and AT2R in the heart from the fetus to adult. Previous studies have shown

that the Ang II receptor genes are developmentally regulated ima tissue-specific manner,

suggesting that the diverse actions of Ang II during development may be mediated by

tissue-specific temporal patterns of ATiR and ATiR expression (Butkus et al., 1997;
1

Tufro-McReddie et al., 1993; Wintour et al., 1999; Robillard et al., 1995; Shanmugam et

al., 1996; Cox et al., 2005). The ontogeny of cardiac ATjR and AT2R gene expression

has been studied in the third trimester of gestation in fetal sheep and newborn lambs,

which demonstrated a rapid decrease in AT2R, but not ATiR, mRNA after birth (Samyn

et al., 1998). Additionally, it has been shown that the expression of ATiR and AT2R is_

higher in fetal and newborn hearts than that in adults (Everett et al., 1997). The present

study demonstrated ftxrther that the development-dependent reduction of ATiR and AT2R

in the heart was the same in both males and females.

Fetal hypoxia down-regulated ATibR mRNA and ATiR protein expression, but

had no effect on AT2R expression in the fetal heart, which was sustained in 3 weeks old

male offspring. This is consistent with previous findings showing a remarkable decrease

in ATiR mRNA and protein in neonatal rat brain and murine BV-2 cells exposed to

hypoxia (Li et al., 2008). Studies in ovine also reported that maternal nutrient restriction

decreased ATiR, but had no effect on AT2R in the fetus (Gilbert et al., 2007).

Furthermore, fetal corticosterone exposure reduced mRNA expression of ATibR, but not

ATiaR and AT2R, in the kidney of near-term fetal rats (Singh et al., 2007). Nevertheless,

the finding that fetal hypoxia resulted in increased AT2R expression in the heart of adult
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offspring is intriguing and suggests epigenetic reprogramming of up-regulating a fetal

gene of pathophysiologic significance in the heart in a developmental-dependent manner

(Papait & Condorelli, 2010; Swynghedauw et al., 2010; Matsubara, 1998). Although
(

AT2R usually are expressed at low levels in adult life, they are up-regulated in adult

hearts under pathological conditions (Matsubara, 1998; levy, 2005). Consistent with the

present finding, previous studies demonstrated that prenatal low-protein and/or

corticosterone exposure caused an up-regulation of AT2R in the kidney of offspring

(McMullen and Langley-Evans, 2005; Singh et al., 2007).

The expression of ATiR and AT2R are regulated by glucocorticoids (Matsubara,

1998). It has been suggested in rats that glucocorticoids play an important role in fetal

programming of ATiR and AT2R expression pattem in offspring (McCullen S and

Langley-Evans, 2005a, 2005b). GREs in both ATiaR and ATibR gene promoters in

rodents have been identified previously (Quo et al., 1995, Bogdarina et al., 2009). ATiaR

promoter harbors positive GREs and ATibR contains negative GREs. Although it has

been suggested that glucocorticoids inhibit AT2R gene expression, GREs at AT2R gene

promoter have not been fully studied. The sequence of the rat AT2R promoter region that

we cloned is in agreement with Ichiki et al (1996). Similar sequences were also reported

earlier by Koike et al (1995) and Mukoyama et al (1993). Each sequence indicated the

presence of a putative TATAA box. The finding that deletion of the TATAA box region

reduced the promoter activity nearly by 79% in the present study indicates an important

role of the TATAA element in the transcription of AT2R gene. However, there is an

apparent disagreement in the transcription initiation site of the AT2R gene between

reports of Ichki et al (1996) and Koike et al (1995). We adopted the initiation start site as
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indicated by Mukoyama et al (1993), because their data were based on direct cloning and

expression of the isolated ATiR mRNA, whereas results of Koike and Ichiki were

derived from primer extension analysis (Koike and Ichiki). We have identified and

characterized eight GREs at rat AT2R gene promoter. These ORE sequences are

imperfect representation (half sites) of the positive regulatory consensus ORE sequence,

5'GGTACAnimTGTTCT-3' (Beato M, Cell, 1989), and their site-specific deletions

increased the AT2R promoter activity, indicating an inhibitory role of these GREs. GREs

1,2, 3,4, 6 and 7 satisfy 6 out of 8 probable criteria of the negatively regulated GRE that

were defined earlier (Beato M, Cell, 1989, J Steroid Biochem, v 32, 737-748). GREs 5

and 8 meet lesser number of criteria.

Consistent to the presence of negatively regulated GREs at the AT2R promoter,

the dexamethasone treatment of isolated El 7 fetal rat hearts caused a dose-dependent

down-regulation of AT2R protein and mRNA expression. This effect was reversed by

RU486, indicating a GR-mediated response. Similar findings of glucocorticoid-mediated

inhibition of AT2R expression were obtained previously in PC12 cells (Kijima et al.,

1995). The finding of multiple negatively regulated GREs at the AT2R promoter suggests

an important physiological function of glucocorticoids in the down-regulation of AT2R

gene expression in the postnatal development. Furthermore, the finding that fetal hypoxia

caused significant decreases in both total cellular and nuclear GR protein abimdance in

the heart of adult offspring provides a mechanism that may contribute to the reverse of

glucocorticoid-dependent developmental down-regulation of AT2R in the heart. Indeed,

fetal hypoxia caused about 50% decreases in GR bindings to the GREs at the AT2R

promoter in offspring hearts, which were similar to the extent of decrease in nuclear GR
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protein abundance. The finding that the binding affinity of nuclear extracts to the GREs

in the hearts was not significantly different between control and fetal hypoxic offspring

suggests that the decreased OR binding to the GREs at rat AT2R promoter is mainly

mediated by the reduced GR density. To a less extent, ATibR gene is also negatively

regulated by glucocorticoids (Bogdarina et al., 2009). In the present study, the increased

ATiR protein abundance in the heart of female adult offspring by fetal hypoxia is mainly

mediated by an up-regulation of ATibR gene expression. Although the cause of the

gender difference in programming of ATiR and AT2R expression pattern in the heart

remains unclear, it has been shown in rats that fetal corticosterone exposure results in

increased AT2R in the kidney of both male and female offspring, but increased ATiR

only in females (Singh et al., 2007).

The functional significance of ATiR and AT2R in acute ischemia and reperfusion

injury was investigated in isolated rat hearts in a Langendorff preparation. It has been

well accepted that long-term, systemic administration of ATiR hlockers prevents the

deleterious consequences of ischemia and reperfusion injury and reduces cardiac

remodeling. The function that AT2R plays in normal or diseased hearts is much less clear

and appears controversial (Akishita et al., 2000; Brede et al., 2003; Senhonmastsu et al.,

2000). The effects of long-term and systemic blockade of ATiR or AT2R (as well as

receptor knockout studies) on the heart involve multiple mechanisms, whereas the acute

and direct effects of ATIR and AT2R on modulating ischemia and reperfusion injury

may be quite different as those seen in the long-term and systemic effects. Indeed, in an

isolated working heart preparation, it has heen demonstrated that ATiR antagonist

losartan decreased, whereas AT2R antagonist PD 123,319 enhanced, the post-ischemic
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recovery of left ventricle function after acute ischemia in rats (Ford et al., 1996,1998).

The present study confirmed this finding and demonstrated fijrther that acute blockade of

AT2R improved myoeardial infarction and inhibition of ATiR exacerbated the

myocardial injury. Additionally, the acute effects of ATiR and AT2R on ischemia and

reperfusion injury in the heart were similar in both male and females animals. This

finding suggests a gender-independent, direct cardioprotective effect of ATiR and the

opposite effect of AT2R in acute ischemia reperfusion injury. Furthermore, the present

finding of the lack of the effect with the combination of both ATiR and the AT2R

blockade indicates an interaction between ATiR and AT2R in the heart, and suggests that

the ratio of AT2R to ATiR is an especially important consideration in the cardiac

susceptibility to acute ischemia and reperfusion injury. It has been proposed that the

pathophysiological function of AT2R is context-specific, i.e. the ratio of AT2R to ATiR

(Booz, 2004).

The present finding of the increased ratio of AT2R to ATiR in the heart of male

offspring exposed to hypoxia before birth suggests enhaneed heart susceptibility to

ischemia and reperfusion injury. Indeed, our previous studies in the same animal model

demonstrated that fetal hypoxia caused an increase in heart susceptibility to ischemia and

reperfusion injury in male offspring in a sex-dependent manner (Xue and Zhang, 2009).

In the present study, the finding that the blockade of AT2R with PD 123,319 rescued the

myocardial phenotype of the increased ischemic susceptibility in male offspring of

prenatal hypoxia provides the course-and-effect evidence for the role of increased AT2R

in fetal programming of enhanced cardiac vulnerability of acute ischemic injury. Whereas

the meehanisms underlying the different effects of ATiR and AT2R in acute cardiac
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ischemic injury remain unclear, it has been know that ATiR promotes cell growth and

proliferation, yet AT2R mediates antigrowth and apoptosis (Yamada et al., 1996;

Matsubara, 1998). These apparent opposite effects provide a congruent functional basis

for understanding of the different effects of ATiR and AT2R in modulating acute cardiac

ischemic injury vs. long-term cardiac remodeling. Our previous study suggested that the

down-regulation of PKCs in the heart played a role in the increased ischemic

susceptibility in adult male offspring of prenatal hypoxia (Xue and Zhang, 2009). Given

that ATiR stimulation and AT2R blockade activate PKCs and mimic ischemic

preconditioning by reducing infarct size (Diaz and Wilson, 1997; Liu et al., 1995; Xu et

al., 2000), it is possible that fetal hypoxia-induced programming of the increased

AT2R/AT1R ratio in the heart of adult males suppresses the PKCs activity leading to the

enhanced susceptibility to ischemic injury.

The present investigation provides evidence of fetal programming of up-

regulation of the AT2R/AT1R ratio in the heart of adult males, linking fetal hypoxia and

the increased susceptibility to ischemia and reperfusion injury in the heart of adult male

offspring in a sex-dependent manner. Given that hypoxia is one of the most important and

clinically relevant stresses to the fetus, and that large epidemiological studies indicate a

link between in utero adverse stimuli during gestation and an increased risk of ischemic

heart disease in the adulthood, the present study provides a mechanistic imderstanding

worthy of investigation in humans.
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CHAPTER FIVE

GENERAL DISCUSSION

Hypoxia is one of the most important and clinically stresses which can adversely

affect fetal development. Although there is evidence of a link between hypoxia, and fetal

intrauterine growth restriction and increased risk of cardiovascular disease in offspring,

the mechanism underlying the effect of fetal hypoxia on pulmonary vessels and heart

remains unclear. Long-term high-altitude hypoxemia differentially regulates contractility

of fetal pulmonary arteries and veins, suggesting a likely common mechanism

downstream of NO in fetal pulmonary vessel response to fetal hypoxia. Animal studies

have demonstrated that prenatal chronic hypoxia can cause myocardiocyte apoptosis and

cardiac hypertrophy in the fetus and adult offspring (Li et al., 2003). Male adult offspring

exposed to chronic hypoxia before birth have increased heart susceptibility to 1/R injury,

which indicates that maternal hypoxia has long term consequences (Li et al., 2003). This

increased susceptibility to ischemia injury was correlated with a decrease expression of

the cardioprotective gene PKCs and a decrease in HSP70 in the left ventricle of the male

rats exposed to chronic hypoxia in utero (Li et al., 2003). My research project provided

the evidence that (a) fetal hypoxia impaires pulmonary vascular function, (b) resulted in

increased heart susceptibility to ischemic injury in male offspring in a sex-dependent

manner, and (c) increased heart susceptibility of male offspring is caused by enhanced
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ATi receptor and reduced PKCs expression in the heart. Additionally, this project also

revealed an important role of glucocorticoid in programming of angiotensin II receptor

and increased ischemie vulnerability in the heart.

Fetal Hypoixa's Effect on Pulmonary Vessels

Hypoxia in the fetus and newborn is associated with an increased risk of

pulmonary hypertension. In the younger animal, vascular resistance seems to reside

mainly in both arteries and veins of the lung (Raj and Chen, 1987). When subjected to a

variety of stimuli, pulmonary veins exhibit substantial vasoconstriction and eontribute a

significant portion to total pulmonary vascular resistance (Raj and Anderson, 1990; Zhao

et al., 1993). In various species, including human, pulmonary veins show a greater

sensitivity than arteries to a number of vasoconstrictor stimuli including hypoxia (Hillier

et al., 1997; Sheehan et al., 1992). We have demonstrated that long-term high-altitude

hypoxemia differentially regulates contractility and relaxation of both fetal pulmonary

arteries and veins. This project has demonstrated a eomplex relationship between the

effects of fetal hypoxia on fetal PA vs. PV and the role of NO. We found that fetal

hypoxia significantly increased norepinephrine-induced contractions in PA, but not PV in

fetal lambs, suggesting that the site of resistance under conditions of hypoxia in the intact

pulmonary circulation is greater in pulmonary arteries than in veins when NO is present.

It has been demonstrated that chronic hypoxia produces an increase in al-adrenoreceptor

gene expression and increases pulmonary vaseular smooth musele contractile sensitivity

(Lai et al., 1999; Salvi, 1999). In addition, fetal hypoxia decreased norepinephrine-

induced contractions in the presence of eNOS inhibitor in PV, indicating that a
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compensatory adaptation mechanism in vascular contractility of pulmonary veins to

chronic in utero hypoxia.

We also demonstrated that a lack of basal inhibitory effect of eNOS in the

regulation of pulmonary arterial contractility in fetal lambs, which is supported by the

findings of the minimal eNOS levels and the lack of acetylcholine-induced relaxations in

pulmonary arteries. Previous study has shown that calciiun ionophore A23187 failed to

relax pulmonary arteries in fetal lambs (Irish et al., 1998). Taken together, these studies

have demonstrated that the endothelium is not functional in NO- mediated relaxation in

pulmonary arteries in near-term fetal lambs. Furthermore, it has been demonstrated that

downstream pathway of cGMP-dependent protein kinase is fully functional in fetal

pulmonary arteries, supported by the finding that sodium nitroprusside produced

concentration-dependent relaxations in pulmonary arteries.

In contrast to pulmonary arteries, pulmonary veins have much higher levels of

eNOS in the endothelium and relax to acetylcholine. Additionally, inhibition of eNOS

increased norepinephrine-induced contractions, suggesting a significant component of

basal eNOS activity in the inhibition of pulmonary vein contractility. We demonstrated

that chronic hypoxia decreased both endothelium-dependent and independent relaxation,

suggesting a likely mechanism of decreased soluble guanylate cyclase and cGMP in fetal

pulmonary vessels in response to fetal hypoxia.

Fetal Hypoxia's Effect on Isolated Working Heart

In chapter 3, we have demonstrated that maternal hypoxia results in the increased

sensitivity to I/R injury in male but not female offspring. Previous studies in our lab had
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shown a decrease in cardiac PKCs following fetal hypoxia treatment, but the cause and

effect relationship of the functional importance of PKCs in the gender dichotomy of

increased heart susceptibility to I/R injury in offspring resulting from the fetal hypoxia

was not determined. PKCs activation was necessary and sufficient for acute

cardioprotection during cardiac I/R injury (Gray et al., 2004). Previous studies have

shown a key role of PKCs in cardioprotection against ischemia and reperfusion injury

(Dom et al., 1999; Cross et al., 2002; Gray et al., 2004; Pierre et al., 2007). PKCs

activates mitochondrial ATP sensitive K^ channels which protect eardiomyoeytes from

apoptosis (Jaburek et al., 2006). Inhibiting PKCs significantly increased ischemic injury
V

and decreased postisehemie recovery of left ventricular function in control males, and in

the presence of PKCs inhibitor there was no difference in heart susceptibility to 1/R

injury between the control and hypoxic males. The lack of effect of PKCs inhibitor on

ischemic injury of the heart in hypoxic males is consistent with its lack of effect on

phospho-PKCs that has aheady been inhibited in the heart of hypoxic group. In contrast

to the males, inhibition of PKCs decreased phospho-PKCs and decreased postisehemie

recovery of left ventricular function to the same extent in both control and hypoxic

groups in females, with no difference in ischemic vulnerability of the heart in females

between control and hj'poxie groups. These findings clearly demonstrate a causal effect

of PKCs downregulation and increased susceptibility to I/R injury in male offspring

resulting from fetal hypoxia.

In chapter 4, we have demonstrated that the acute and direct effects of AT iR and

AT2R on modulating I/R injury. It has been found that ATiR antagonist losartan

increased, whereas AT2R antagonist PD 123,319 decreased, the susceptibility to I/R
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injury in rats in gender-independent manner. In addition, we also demonstrated that the

combination of both ATiR and the ATiR blockade indicates an interaction between ATiR

and AT2R in the heart, suggesting that the ratio of AT2R to ATiR is an especially

important consideration in the cardiac susceptibility to acute ischemia and reperfusion

injury. This is consistent with report that the AT2R binds directly to the ATiR and

thereby antagonizing its function (AbdAlla et al., 2001). Furthermore, the inhibition of

AT2R rescued the phenotype of increased cardiac ischemic injury observed in adult male

offspring exposed to hypoxia before birth, suggesting the cause and effect of increased

AT2R in fetal programming of increased cardiac vulnerability of acute ischemic injury. It

has been known that ATI receptor promotes cell growth and proliferation, however,

AT2R mediates antigrowth and apoptosis (Yamada et al., 1996; Matsubara, 1998), which

may explain the different effects of ATiR and AT2R on ischemic injury. Previous studies

have showed that ATiR stimulation and AT2R blockade activate PKCs and mimic

ischemic preconditioning by reducing infarct size (Diaz and Wilson, 1997; Liu et al.,

1995; Xu et al., 2000), it is possible that fetal hypoxia-induced programming of the

increased AT2R/AT1R ratio in the heart of adult males suppresses the PKCe activity

leading to the enhanced susceptibility to ischemic injury.

Fetal Hypoixa's Effect on AT Receptor

This project focused on AT receptor based on the previous studies implicating a

link between fetal insults to differential epigenetic modifications of ATiR and AT2R

genes in the adrenal and kidney and the resultant alteration of their expression pattem in

adult life (Bogdarina et al., 2007; McMullen and Langley-Evans, 2005; Singh et al..
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2007). In chapter 4, we have demonstrated that fetal hypoxia down-regulated ATibR

mRNA and ATiR protein expression, but had no effect on ATiR expression in the fetal

heart, which was sustained in 3 weeks old male offspring. This is consistent with

previous findings showing a remarkable decrease in AT iR mRNA and protein in neonatal

rat brain and murine BV-2 cells exposed to hypoxia (Li et al., 2008). Studies in ovine

also reported that maternal nutrient restriction decreased ATiR, but had no effect on

AT2R in the fetus (Gilbert et al„ 2007). Furthermore, fetal corticosterone exposure

reduced mRNA expression of ATibR, but not ATiaR and AT2R, in the kidney of near-

term fetal rats (Singh et al., 2007).

Nevertheless, the finding that fetal hypoxia resulted in increased AT2R expression

in the heart of adult offspring is intriguing and suggests epigenetic reprogramming of up-

regulating a fetal gene of pathophysiologic significance in the heart in a developmental-

dependent manner (Papait & Condorelli, 2010; Swynghedauw et al., 2010; Matsubara,

1998). We also demonstrated that fetal hypoxia increased the ratio of AT2R to ATiR in

male but not female offspring. ATjR and AT2R exert antagonistic action on myocardial

biology, especially growth, then the relative expression of these receptors and their ratios

under different cardiac pathological conditions may be important in determining

myocardial function and structure. Cardiac expression of ATiR and AT2R is species

dependent, and changes in their relative proportion may influence myocardial

hypertrophy and fibrosis. Although AT2R usually are expressed at low levels in adult life,

they are up-regulated in adult hearts under pathological conditions (Matsubara, 1998;

levy, 2005). The expression of the myocardial AT2R was increased in experimental

myocardial infarction 1 day after infarction (Nio et al., 1995). Consistent with the present
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finding in the project, previous studies demonstrated that prenatal low-protein and/or

corticosterone exposure caused an up-regulation of AT2R in the kidney of offspring

(McMullen and Langley-Evans, 2005; Singh et al., 2007). Furthermore, there was a

higher expression of AT2R in endocardial, interstitial, periyascular and infarcted regions

of the ventricles of patients with end-stage ischemic heart disease or dilated

cardiomyopathy, which were related to fibroblast proliferation and collagen deposition

(Wharton et al., 1998). Taken together, these findings suggest that the AT2R plays some

role in cardiovascular remodeling in both animals and humans.

Regulation of PKCs and AT Receptor

We have demonstrated that prenatal hypoxia resulted in a decrease in PKCe

protein levels in the heart of male adult offspring suggests in utero epigenetic

programming of PKCs gene re- pression in the heart. PKCe has previously been

demonstrated to be cardioprotective and the role of PKCe in regulating many pathways

has been demonstrated (Chen et al. 2001; Murriel and Mochly-Rosen 2003; Ping et al.

2001). Epigenetic mechanisms are essential for development and differentiation and

allow an organism to respond to the environment through changes in gene expression

(Reik et al., 2001, 2003; Jaenisch and Bird, 2003). DNA methylation is a physiologic

mechanism of gene regulation and an important component of development and tissue

differentiation. Alterations in the DNA methylation status of genes either to increase the

expression of growth promoters or inhibit expression of tumor suppressors can result in

uncontrolled cell growth and be linked to the pathogenesis of many types f cancer (Baylin

et al., 2001). Recent study in our lab demonstrated an epigenetic mechanism of DNA
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methylation in programming of cardiac PKCs gene repression, linking fetal cocaine

exposure and pathophysiological consequences in the heart of adult male offspring

(Zhang et al., 2009). In this study, eight transcription factor binding sites, which contain

CpG dinucleotides in their core binding sites, were identified at the promoter of PKCs

gene in the rat. Prenatal cocaine treatment caused an increase in CpG methylation at both

SPl binding sites of -346 and -268 resulting in the decreased SPl binding to the PKCs

promoter and PKCs gene repression in the heart of male offspring. However, increased

methylation was observed only at SPl binding site of -268 in female, which did not

change PKCs gene expression in the heart. Recent study in our lab demonstrated that in

hearts of both fetuses and adult offspring, hypoxia-increased methylation of SPl sites

was significantly greater in males than in females, and decreased PKCs mRNA was seen

only in males.

The expression of ATiR and AT2R are regulated by glucocorticoids (Matsubara,

1998). It has been suggested in rats that glucocorticoids play an important role in fetal

programming of ATiR and AT2R expression pattern in offspring (McCullen S and

Langley-Evans, 2005a, 2005b). It has been known that there are GREs in both ATlaR and

ATibR gene promoters in rodents previously (Guo et al., 1995, Bogdarina et al., 2009).

ATiaR promoter harbors positive GREs and ATibR contains negative GREs. Although it

has been suggested that glucocorticoids inhibit AT2R gene expression, GREs at AT2R

gene promoter have not been fully studied. We cloned the sequence of the rat AT2R

promoter region. Each sequence indicated the presence of a putative TATAA box. We

demonstrated that deletion of the TATAA box region reduced the promoter activity

suggesting an important role of the TATAA element in the transcription of AT2R gene.
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We also have identified and characterized eight GREs at rat AT2R gene promoter. Tl^ese

include GREl (-1853), GRE2 (-1674), GRE3 (-1526), GRE4 (-1159), GRE5 (-945),

GRE6 (-676), GRE7 (-107), GRES (+13). The site-specific deletions increased the ATiR

promoter activity independently, indicating an inhibitory role of these GREs. Using

electrophoretic mobility shift assay (EMSA), we have demonstrated GR nuclear proteins

bind to the putative GREs of AT2R promoter. Immunoblot analysis confirmed the

presence of GRs in the nuclear extracts used in EMS A.

The intact fetal heart model provided further evidence of negatively regulated

GREs at the AT2R promoter. The dexamethasone treatment of isolated El 7 fetal rat

hearts caused a dose-dependent down-regulation of AT2R protein and mRNA expression.

Treating the hearts with GR blocker RU486 during dexamethasone exposure block

dexamethasone induced downregulation of AT2R, indicating a GR-mediated response.

Similar findings of glucocorticoid-mediated inhibition of AT2R expression were obtained

previously in PC12 cells (Kijima et al., 1995). The finding of multiple negatively

regulated GREs at the AT2R promoter suggests an important physiological function of

glucocorticoids in the down-regulation of AT2R gene expression in the postnatal

development. It has been known that glucocorticoid increases after birth. Furthermore, we

demonstrated that fetal hypoxia caused significant decreases in both total cellular and

nuclear GR protein abundance in the heart of adult offspring, providing a mechanism that

may contribute to the reverse of glucocorticoid-dependent developmental down-regulation

of AT2R in the heart. Indeed, fetal hypoxia caused about 50% decreases in GR bindings

to the GREs at the AT2R promoter in offspring hearts, which were similar to the extent of

decrease in nuclear GR protein abundance. The finding that the binding affinity of
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nuclear extracts to the GREs in the hearts was not significantly different between control

and fetal hypoxic offspring suggests that the decreased OR binding to the GREs at rat

AT2R promoter is mainly mediated by the reduced GR density.

In chapter 4, we also have demonstrated that fetal hypoxia increased AT iR

protein abundance in the heart of female adult offspring, which is mainly mediated by an

up-regulation of ATibR gene expression. Maternal protein restriction increased the

expression of AT lb in the adrenal, which may due to the promoter of the ATibR gene

was significantly undermethylated, suggesting a link between fetal insults to epigenetic

modification of genes and the resultant alteration of gene expression in adult life leading

to the development of h)T)ertension (Bogdarina et al., 2007). To a less extent, ATibR gene

is also negatively regulated by glucocorticoids (Bogdarina I et al., 2009). Although the

cause of the gender difference in programming of ATiR and AT2R expression pattern in

the heart remains unclear, it has been shown in rats that fetal corticosterone exposure

results in increased AT2R in the kidney of both male and female offspring, but increased

ATiR only in females (Singh et al., 2007).

Sex Dichotomy

This project has clearly demonstrated a sex dichotomy in manifestation of

increased cardiac vulnerability to ischemia and reperfusion injury in adult offspring

resulting from fetal hypoxia, which is consistent with the previous study that

demonstrated matemal cocaine administration during pregnancy increased heart

susceptibility to ischemic injury only in male offspring (Bae et al., 2005). In contrast,

prenatal nicotine exposure resulted in a significant decrease in postischemic recovery of
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left ventricular function in both male and female hearts, with the detrimental effects in

female hearts being more pronounced (Lawrence et ah, 2008). All these findings suggest

organ specificity, tissue specificity, or both of sex-dependent programming induced by

intrauterine insults.

In chapter 3 and 4, we have demonstrated that fetal hypoxia alters the expression

of PKCe and AT receptor in a sex dependent manner. In the ovine fetus, it has been

shown that there is a sex difference in the ontogeny of gene expression in the RAS

(Gilbert et al., 2007). ATiR protein was increased from middle gestation to late gestation

in male but not female fetuses. However, AT2R protein decreased in the female but not

male fetuses from middle to late gestation. Although the origin and the mechanism of

these sex differences in fetal protein expression remain unclear, it should be considered

that these observations simply reflect different trajectories of fetal development between

the sexes. Additionally, sex differences are observed in the response to matemal nutrient

restriction (MNR) between male and female fetuses near term (Cox et al., 2008).

Compared with females, that gene expression of key components of the RAS is down-

regulated in MNR males. Study has shown that matemal global calorie restriction impairs

nephrogenesis and alters ATi, AT2, and renin expression in gender-specific mmaner

(Gilbert et al., 2007)). It has also been found that only male offspring of these MNR ewes

are hypertensive (Gilbert et al., 2005). The mechanisms by which MNR alters gene

expression are not fully understood, which (Lillycrop et al. 2005,2007,2008) may be due

to the alteration of gene methylation pattems. Furthermore, recent clinical studies show

that females are more responsive to the effects of ACE inhibition than men in an

estrogen-independent manner (Pretorius et al., 2005). It seems plausible that there are
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many potential avenues, from embryonic life to adulthood, through which sex differences

may interact with developmental programming stimuli or programmed adaptations to

result in sex-specific cardiorenal disease susceptibility.

Future Studies

This research has jdelded several interesting findings which are warrant further

investigation. The gender dichotomy in the effect of fetal hypoxia to heart is an intriguing

finding that has been seen in other models (Bae et al., 2005). It is not clear at present

whether the gender-specific effect of prenatal hypoxia on the heart of offspring are

primarily mediated by the differences in sex steroid hormones developed postnatally or

by the differences exist between genetically male (XY) and female (XX) cells in

determining an "programming-sensitive" phenotype. The mechanisms for the sexual

dimorphism in cardiac programming in vulnerability to I/R injury remains unclear. Major

differences in plasma levels of sex steroids between males and females are not seen until

after puberty. However, the effect of estrogen may be gender dependent due to the

possible difference in estrogen receptor expression. The sex dichotomy independent of

sex hormones may be due to dysfunction of the X chromosome gene in male, which

results in the more sensitive to fetal hypoxia, or the effect of Y chromosome gene

expression. However, studies of ovariectomized rats and estrogen replacement have

suggested that estrogen plays an important role in the cardioprotection of global I/R

injury in female hearts (Zhai et al., 2000). Future study can test whether fetal hypoxia can

increase the susceptibility to I/R injury in ovariectomized rats and whether estrogen
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replacement can abolish the difference in I/R injury in ovariectomized rats. In brief,

Time-dated pregnant rats will be raised and divided between normoxic and hypoxic

(10.5% 02 on days 15-21 of gestation). After birth, the pups will be raised imder the

normoxic condition. Some of 2-month-old female rats will be ovariectomized with or

without estrogen replacement treatment. Hearts from control, ovariectomized rats, and

rats treated with estrogen replacement will be isolated and subjected to I/R injury in a

langendorff preparation.

We has demonstrated that the dexamethasone treatment in isolated El7 fetal rat

hearts caused a dose-dependent down-regulation of AT2R expression and up-regulation

of ATiR expression, which can be reversed by RU486. Glucocorticoids play an important

role in the response to stress, influencing the regulation of blood pressure, inflammation,

immune function and cellular energy metabolism (Sapolsky et al., 2000). The

cardioprotective effects of glucocorticoids in acute I/R injury have been demonstrated in

animals (Valen et al., 2000; Varga et al., 2004; Skyschally et al., 2004) and human

(Giugliano et al., 2003). Glucocorticoids have the ability to limit the acute inflammatory

response associated with acute myocardial infarction. However, the mechanism

underlying the dexamethasone induced cardiac protection from I/R injury remains

unclear. The GR positively and negatively regulate gene expression by distinct

mechanisms (Pascual and Glass, 2006). Our preliminary data showed that dexamethasone

(Img/kg for 5 days, intraperitoneal injection) increased ATiR protein expression,

decreased ATiR protein expression and decreased GR expression in adult male rats (data

not shown). We have demonstrated the presence of negatively regulated GREs at the

AT2R promoter. In addition, previous studies have demonstrated that ATiaR promoter
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harbors positive GREs and ATibR contains negative GREs. Furthermore, we have

demonstrated that ATiR antagonist decreased, whereas AT2R antagonist enhanced, the

post-isehemic recovery of left ventricle fimetion in rats. All these findings suggest that it

is possible that the glucoeorticoid protect hearts from I/R injury due to the alteration of

ATR. To test the hypothesis, hearts will be isolated from both control and dexamethasone

treatment rats, and be subjected to I/R injury in a langendorff preparation with and

without combination of both ATiR and AT2R blockers. We will confirm the binding of

GR to GRE at the promoter of ATiR and AT2R gene by EMSA and Chromatin

Immunoprecipitation (ChIP).

Conclusions

This project has demonstrated heterogeneity of fetal pulmonary arteries and veins

in response to long-term high-altitude hypoxia and suggested a likely common

mechanism downstream of NO in fetal pulmonary vessel response to chronic hypoxia in

utero. In addition, our finding also suggest that prenatal hypoxia Causes an increase in

heart susceptibility to ischemia and reperfusion injury in offspring in a sex-dependent

manner, which is due to enhanced AT2R and reduced PKCs expression in the heart.

Furthermore, in adult hearts, there is a significant decrease in the abundance of total

cellular and nuclear GR in the offspring with prenatal hypoxia. Our studies have revealed

an important role of glucoeorticoid in programming of angiotensin II receptor and PKCs

expression pattern and increased ischemie vulnerability in the heart. These findings

provide a mechanistic understanding worth of investigation in human in fetal origins of

cardiovascular disease.
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