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ABSTRACT OF THE DISSERTATION
High-Intensity Interval Training and Biological Age
By
Trevor Lohman
Doctor of Philosophy, Graduate Program in Physical Therapy
Loma Linda University, December 2022
Dr. Gurinder Bains, Chairperson

The emergence of valid predictors of biological age has enabled researchers to test the
effects of various interventions on biological aging processes. The established virtues of
exercise and its effects on health and longevity make it a suitable candidate for investigation.

This dissertation reviews the current state of biological age prediction models and
presents a trial in which a specific exercise protocol’s ability to modulate biological age is
tested. The specific protocol used is a 10X1 high-intensity interval training (HIIT) protocol, 10X1
referring to the quantity and duration of high intensity exercise intervals in each exercise
session. The specific biological age prediction model chosen as the trial’s primary outcome
measure relies on transcriptomic inputs to make biological age predictions.

A significant difference in biological age was observed between groups. Reduction in
biological age was observed in the exercise group, while increased biological age was observed
in the control group. Exploratory, hypothesis generation analyses of gene expression revealed
potential modification of autophagy, neurotrophin, and cancer biological pathways.

This dissertation concludes that HIIT induces transcriptional changes which may in part

account for the established beneficial effects of exercise on health and longevity.

Xi



CHAPTER ONE

INTRODUCTION

Age-related diseases are a persistent and increasingly prevalent burden on healthcare
systems around the world. An analysis of the 2017 Global Burden of Disease identified 92
diseases that increase quadratically with age including: cardiovascular diseases, cancers,
chronic respiratory diseases, digestive diseases, diabetes, kidney diseases, and others (Chang,
Skirbekk, Tyrovolas, Kassebaum, & Dieleman, 2019). These age-related diseases were found to
account for 51.3% of total global health burden, defined as the sum of disability-associated life-
years (Chang et al., 2019). In addition to age-related disease prevalence, the cost is staggering
as well. Heart disease and stroke alone accounted for 352 billion dollars per year in healthcare
costs and lost productivity in 2018 (Benjamin et al., 2018). Another age-related disease, Cancer,
is expected to account for 174 billion dollars in cost by 2020 (Mariotto, Yabroff, Shao, Feuer, &
Brown, 2011), with an average of 1.7 million Americans being diagnosed each year. As of 2013,
the cost attributable to Arthritis was 305 billion dollars (Murphy, Cisternas, Pasta, Helmick, &
Yelin, 2018). Alzheimer’s accounts for an additional 215 billion dollars in healthcare costs as of
2010 (Hurd, Martorell, Delavande, Mullen, & Langa, 2013). Unfortunately, these costs are
predicted to continue to rise (Atella et al., 2019), and any affordable and accessible protocol
capable of ameliorating these trends would be of significant value.

While experimental aging research has progressed a great deal in the past decades, an
inherent challenge to progress is the inability to measure an intervention’s effects on lifespan

without a costly multi-decade longitudinal study. Recently, a new class of biomarkers has



emerged that could potentially address this challenge called biological age predictors. The term
biological age has become more prevalent in aging research as a reference to the apparent fact
that humans do not seem to age at a homogenous rate. This is intuitive, as anyone would
suspect a group of people with the same chronological age to be in varying states of health and
mortality risk. Until relatively recently however, there had not been validated markers designed
to measure mortality-risk, time-to-death, time-to-cancer, biological age, or other markers of
lifespan and healthspan from peripheral blood samples.

The term “predictors of biological age” widely encompasses many different tools
designed to predict mortality risk and remaining lifespan. One category of biomarkers within
this larger group that has received significant attention is called epigenetic “clocks”. The term
epigenetic clock refers to tools that analyze DNA methylation levels within a set of Cytosine-
Phosphate-Guanine (CpG) sites and are generally acknowledged as accurate measures of
biological age (Bell et al., 2019; Jylhdva, Pedersen, & Hagg, 2017; Lohman, Bains, Berk, &
Lohman, 2021; Lu et al., 2019). Like the broader category, epigenetic clocks are a group of tools
rather than specific biomarkers, and therefore the nature and capability of each tool varies.
One metric known as GrimAge for example, can significantly predict time-to-death, time-to-
coronary artery disease, and time-to cancer (Lu et al., 2019). These capabilities provide a useful
“proxy biomarker” mechanism to assess the effectiveness of interventions designed to increase
lifespan.

While GrimAge is one of the most highly validated measures of mortality risk, it does not
provide any information regarding the underlying changes to genetic expression associated

with methylation (Li et al., 2020; Lu et al., 2019). Chapter 2 of this dissertation presents a



review of biological age prediction models that was published in the journal of Gerontology and
Geriatric Medicine. Among the categories of models reviewed in the paper is transcriptomic age
prediction. An example of such a model was published in a paper titled “The Transcriptional
Landscape of Age in Human Peripheral Blood” written by Peters et al and it identified 1,497
genes that are differentially expressed with age (Peters et al., 2015). The data required for the
model’s input is derived from peripheral whole blood samples and subsequent mRNA
extraction (Peters et al., 2015). Using a statistical formula called the Transcriptomic Age
Prediction Tool (TRAP), this genetic expression data can be used to estimate biological age
(Peters et al., 2015). Gene expression data from Affymetrix Human Exon (1.0 ST) Arrays can be
uploaded to a freely available online platform. The TRAP tool then provides an estimate of
biological age measured in years for each sample. In doing so, this tool provides a means to
analyze the effects of an intervention on biological age from a gene expression profile. We will
utilize this tool in chapter 3 to quantify the effects of high-intensity interval training on
biological age.

The availability and validity of these tools has provided a new mechanism to measure
the effectiveness of biological age reversal interventions in clinical trials. Studies have now
successfully used these metrics to demonstrate that epigenetic aging (biological age as
measured by a DNA methylation “clock”) can be reversed in humans (Fahy et al., 2019;
Fitzgerald et al., 2020). The study performed by Fahy et al in 2019 utilized a metformin and 1 yr.
exogenous human growth hormone protocol, that demonstrated a 2.5 year mean reversal of
epigenetic aging as well as a significant increase in thymic fat free fraction (Fahy et al., 2019).

This was the first study to date to demonstrate a reduction of epigenetic aging and thymic



involution in humans. While these are very exciting results, exogenous human growth hormone
administration is not risk free and it is also not accessible to the general population. This has led
us to ask the question, “Can biological age be reversed through a safer, more affordable
method such as lifestyle modification?”

Intuitively, the answer should be yes, however no controlled trial to date has quantified
the effects of a lifestyle intervention on biological age using a transcriptomic age prediction
model. Although there are many potential interventions like diet, sleep quality, and stress
reduction strategies that could potentially reduce biological ge, we have chosen to examine the
effects of exercise on biological age due to its relevance to the field of physical therapy, known
health benefits, general safety, and accessibility.

Given the volume of research regarding the benefits of exercise, it seems a likely
candidate intervention to promote longevity. For example, an analysis of 16 recent systematic
reviews found a dose-dependent relationship between exercise and improved health outcomes
related to cardiovascular disease, all-cause mortality, all-cancer mortality, type 2 diabetes,
hypertension, breast cancer, colon cancer, gestational diabetes, gallstone disease, ischemic
heart disease, and ischemic stroke (Warburton & Bredin, 2017). There is also epidemiological
data that supports exercise being associated with decreased biological age, as well as increased
lifespan and healthspan (Gremeaux et al., 2012; Quach et al., 2017; Zhao et al., 2019).

Like the term biological age, exercise is a broad category rather than a specific
intervention. Exercise protocols are highly variable and can fall into many different categories
with many different physiological effects. There is also no consensus on which type of exercise

best promotes longevity. In recent decades, high intensity exercise (HIE) has become an



increasingly popular subject of research interest. HIE can be defined in various ways, most often
described as exercise above a certain heart rate percentage. When HIE is punctuated by rest
breaks it is referred to as high-intensity interval training (HIIT), which can be further categorized
as aerobic HIIT, or anaerobic HIIT (sprint interval training (SIT) (Ito, 2019). This type of exercise
is further described in terms of activity and active rest period durations that occur at certain
heart rate percentages, most often 85-95% of peak heart rate (Gibala, Little, Macdonald, &
Hawley, 2012; Ito, 2019; Levinger et al., 2015). The most commonly researched SIT protocol
being the Wingate test (Burgomaster, Hughes, Heigenhauser, Bradwell, & Gibala, 2005), and
the most commonly researched HIIT exercise protocols being the 4X4 and 10X1 protocols (Ito,
2019). A 4X4 protocol consists of 4, 4-minute HIE sessions, while a 10X1 consists of 10, 1-minute
HIE sessions. Rest break durations vary, with research studies supporting various ratios of work
to rest.

The selection of our specific protocol was based in part on a meta-analysis performed by
O’Donoghue et al. comparing six different exercise regimes’ (vigorous-intensity aerobic,
moderate-intensity aerobic, high-load resistance, moderate-load resistance, combined vigorous
intensity, and combined moderate intensity) effects on cardiorespiratory fitness and
anthropometry in obese individuals. The authors concluded that combined aerobic and
resistance training at moderate or high intensity, and moderate aerobic intensity exercise had
the most significant effects on body composition and physical fitness (O'Donoghue, Blake,
Cunningham, Lennon, & Perrotta, 2021). Moderate aerobic exercise was defined according to
the American College of Sports Medicine definition: 65%-75% of HR max 3-5 times per week for

30-60 minutes (O'Donoghue et al., 2021). Another study performed by Nayor et al. which was



relevant to the selection of our protocol examined the metabolic effects of six minutes of no-
resistance cycle ergometry and 6 minutes of a ramped resistance high intensity cycle ergometry
session (Nayor et al., 2020). Following this single, short bout of exercise the authors found
statistically significant changes in over 500 circulating metabolites (Nayor et al., 2020). This
study supports the notion that significant physiological changes can occur with even short
duration acute exercise bouts. Possible mechanisms for exercise’s role in increased longevity
are the cardioprotective effects associated with exercise. These could include effects on
endothelial function, autonomic tone, and inflammation among other potential
cardioprotective mechanisms. A 2020 randomized controlled clinical trial by Stensvold et al.
investigated the effects on mortality between three different exercise protocols in older
women: high intensity interval training (HIIT) versus moderate intensity continuous training,
versus standard exercise guidelines (Stensvold et al., 2020). Mortality in the HIIT group was 37%
lower than in the control group, and 49% lower than in the moderate intensity continuous
exercise group (Stensvold et al., 2020), although these differences did not reach statistical
significance due to the overall low mortality rate, and involved wide confidence intervals.
Despite the significant volume of exercise research, including the effects of exercise on aging
processes and longevity, no studies to date have examined the specific effects of exercise on
biological age and the underlying genes that are differentially expressed as we age. Until
recently in fact, there had not been a single study investigating any non-pharmaceutical
intervention’s effect on biological age. That changed in July 2020 however, when a pilot study
was published showing a greater than 3-year epigenetic age (using the Horvath DNAmAge

clock) reversal through lifestyle modification, including exercise (Fitzgerald et al., 2020).



Unfortunately, multiple interventions were included in this study making it impossible

to determine what portion of epigenetic age reversal is attributable to exercise. However, this
study serves to validate the general hypothesis that lifestyle modification can reverse biological
aging, but there is still a gap in the literature regarding the specific effects of exercise on
biological aging and the mechanistic pathways underlying those effects.

The purpose of this graduate student research study is to determine the effect of a 4-
week duration, 3-times per week, high-intensity interval exercise protocol on biological age as
measured by blood cell RNA profiles (i.e., transcriptomic age). Although not directly studied,
our overarching hope is that such effects might forecast longer-term benefits for healthspan
and lifespan. Furthermore, we suggest specific transcriptomic mechanisms behind this exercise-
induced reversal of biological age by examining the underlying genetic expression profiles of

our participants at baseline and at the conclusion of our trial.
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CHAPTER TWO

Predictors of Biological Age: The Implications for Wellness and Aging Research

Abstract

As healthspan and lifespan research breakthroughs have become more commonplace, the need
for valid, practical markers of biological age is becoming increasingly paramount. The
accessibility and affordability of biological age predictors that can reveal information about
mortality and morbidity risk, as well as remaining years of life, has profound clinical and
research implications. In this review, we examine 5 groups of aging biomarkers capable of
providing accurate biological age estimations. The unique capabilities of these biomarkers have
far-reaching implications for the testing of both pharmaceutical and non-pharmaceutical
interventions designed to slow or reverse biological aging. Additionally, the enhanced validity
and availability of these tools may have increasingly relevant clinical value. The authors of this
review explore those implications, with an emphasis on lifestyle modification research, and
provide an overview of the current evidence regarding 5 biological age predictor categories:
Telomere length, composite biomarkers, DNA methylation "epigenetic clocks," transcriptional

predictors of biological age, and functional age predictors.
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Introduction

Age-related disease is a persistent and increasingly prevalent burden on healthcare
systems around the world.(Atella et al., 2019; Benjamin et al., 2018; Chang et al., 2019; Hurd et
al., 2013; Mariotto et al., 2011) Any affordable and accessible intervention capable of
ameliorating this trend would therefore be of significant value. One class of interventions that
seems well suited for this challenge is lifestyle modification. (Ruiz-Estigarribia et al., 2020; Wu
et al., 2020; Y. B. Zhang et al., 2021) Although lifestyle-based interventions such as diet and
exercise are generally known to increase lifespan, (Chudasama et al., 2020) experimental
evidence is not as abundant as one might expect. Large volumes of research show positive
effects from exercise on specific disease processes,(Campbell & Turner, 2018; Edwards et al.,
2007; Larson & Bruce, 1987; Warburton & Bredin, 2017) and other studies have found
association between lifestyle factors and longevity.(Quach et al., 2017; Sae-Lee et al., 2018;
Zhao et al., 2019) However, fewer studies experimentally validate or quantify the causal effects
of non-pharmaceutical lifestyle modification interventions on lifespan. This is likely due in part
to the inherent time scale challenge that longevity research entails. Any future studies that
examine lifestyle modification interventions would benefit from a practical tool that is capable
of measuring change in expected lifespan.

One persistent challenge when studying the efficacy of interventions intended to
increase lifespan is identifying an outcome measure that is both valid and feasible to use
experimentally. From a validity perspective, change in total years of lifespan between
experimental and control groups would be ideal, except for the fact that it would necessitate
multi-decade longitudinal studies. Not only does this add significant cost and effort, but it also
makes controlling for confounding variables exceedingly difficult. The apparent alternative to
measuring actual lifespan would be to identify a biomarker or group of biomarkers capable of

estimating remaining years of life. This would grant researchers the ability to test the efficacy of
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interventions designed to increase lifespan without necessitating the use of long-term
longitudinal studies.

Generally, metrics designed to predict remaining lifespan, mortality risk, and age-related
morbidity risk have come to be known as predictors of biological age or biomarkers of aging.
Consensus around these terms’ definitions is lacking, as is the definition of aging more
generally.(Butler et al., 2004) In his review of recent papers attempting to identify biomarkers
of aging, Thomas Johnson cites one of the original clarifying statements by Baker and Sprott
(Johnson, 2006):

“A Biomarker of Aging is a biological parameter of an organism that either alone or in some
multivariate composite will, in the absence of disease, better predict functional capability at
some late age, than will chronological age.”(Baker & Sprott, 1988)

Even though it was written in 1988, this statement went a long way towards establishing
the current criteria for biomarkers of aging. A potential concern with this definition for a
researcher interested in examining interventions capable of biological age reversal is that there
is no mention of lifespan. This definition discusses functional capability only. Another potential
point of disagreement among researchers may be the “in the absence of disease” criterion. It
seems that a useful metric for aging research would include the effects of age-related disease
on lifespan.

In the time since this statement was published there has been much development and
discussion regarding the exact meaning of the term, “biomarker of aging”. An interdisciplinary
workshop cosponsored by the International Longevity Center-USA, The Ellison Medical
Foundation, Kronos Longevity Research Institute, the Institute for the Study of Aging, and

Canyon Ranch Health Resort proposed the following three parameters for biomarkers of aging:

1. The biomarker should predict the outcome of a wide range of age-sensitive tests in
multiple physiological and behavioral domains, in an age-coherent way, and do so

better than chronological age.
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2. It should predict remaining longevity at an age at which 90% of the population is still
alive and do so for most of the specific illnesses that afflict the species under study.
3. Its measurement should not alter life expectancy or the outcome of subsequent tests

of other age-sensitive tests.

The American Federation for Aging Research (AFAR) formulated the criteria for aging
biomarkers as follows(Butler et al., 2004; Johnson, 2006; Jylhadva et al., 2017)

1. It must predict the rate of aging. In other words, it would tell exactly where a person
is in their total life span. It must be a better predictor of life span than chronological
age.

2. It must monitor a basic process that underlies the aging process, not the effects of
disease.

3. It must be able to be tested repeatedly without harming the person. For example, a
blood test or an imaging technique.

4. It must be something that works in humans and in laboratory animals, such as mice.
This is so it can be tested in lab animals before being validated in humans.

Although both clear and thorough lists, the existence of a biomarker that meets all of
the criteria above may be unlikely.(Johnson, 2006) Perhaps the most challenging criterion for
researchers intending to measure the effects of interventions on lifespan and healthspan is the
American Federation for Aging Research criterion 2 listed above. This statement outlines the
need for an aging biomarker to separate the aging process from disease processes. This may
not always be possible, and it is hard to differentiate the effects of the aging process from the
effects of age-related disease. That said, this criterion does illustrate the need to create
markers that are not influenced by acute illnesses or diseases that have no effect on lifespan.
As mentioned earlier there is not consensus on what the definition of aging is within the aging
research community, let alone agreement that there is a specific aging process or aging rate
that is separate from disease processes.(Butler et al., 2004; Johnson, 2006) What is clear, even
to a lay observer, is that if we examine a large group of 70-year-old people, we would find a
phenotypically diverse sample, despite all members being the same chronological age. This is

described clearly and concisely by Lowsky et al. in their paper’s introductory sentence: “For a
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surprisingly large segment of the older population, chronological age is not a relevant marker
for understanding, measuring, or experiencing healthy aging.”(Lowsky, Olshansky,
Bhattacharya, & Goldman, 2014) This may be the most concise way to illustrate the need for a
valid and easy to obtain measure of biological age.

For the purposes of this scoping review, we will be focusing on biomarkers of aging that
satisfy at least some of the American Federation of Aging Research biomarkers of aging criteria.
Given the lack of consensus around terminology and definition, we will seek to view biomarkers
in the context of their ability to predict two aspects of biological age: healthspan and lifespan.
These criteria best facilitate the selection of a marker that measures the effectiveness of
interventions on biological age reversal. Until recently, the possibility of biological age reversal
was uncertain, but thanks to recent experimental trials utilizing biological age predictors we
now know that biological age as measured by biomarkers of aging can be slowed or even
reversed. (Fahy et al., 2019; Fitzgerald et al., 2020; Hachmo et al., 2020) With that in mind, our
specific aim is to compile the available evidence related to various readily accessible biological
age predictors. In doing so we hope to provide a basis for selection in future experimental
studies that utilizes wellness and lifestyle interventions to slow or reverse biological aging. For
example, investigators could choose to examine diet modification, sleep quality, exercise type
or quantity, supplementation, implementation of a stress management program, or any
number of other wellness interventions’ effects on biological age. This has far reaching
implications for the wellness and successful aging research communities, as it provides a means
to assess the effectiveness of an intervention on biological age in a comparatively short time
frame.

This paper investigates and summarizes the following predictors of biological age:
Telomere length, allostatic load index, DNA methylation clocks, functional age, and
transcriptional predictors of biological age. The ability of these tools to estimate mortality risk
and biological age, operationally defined as an estimate of remaining healthspan/lifespan, will

be highlighted. Various capabilities and weaknesses of each will be examined as well, including
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criteria such as: ease of use, accessibility, ability to glean underlying mechanisms influencing

lifespan/healthspan, and other relevant features.

Search Strategy and Selection Criteria

Using the PubMed database, Medical Subject Headings (MeSH) terms “Aging” and
“Humans” and the specific terms for each of the biomarkers of aging categories: 1) Telomere
Length, 2.) Frailty Index or Deficit Accumulation or Functional age, 3.) Epigenetic clock, 4.)
Transcriptomic age or Transcriptional age, 5) Composite biomarker or Allostatic load index,
were combined. Cited papers in the selected publications and papers that referenced the
selected publications were also considered. The searches were performed between December

2020 and May 2021.

Telomere Length

Telomeres are repeating sequences of nucleoprotein caps located at the ends of
chromosomes.(Sanders & Newman, 2013) Each time a cell undergoes mitosis, a section of these
nucleotides is cleaved, and the telomere shortens incrementally. This is an overly simplistic
description given that oxidative stress is also associated with telomere shortening and multiple
mechanisms exist for telomere lengthening as well.(Sanders & Newman, 2013) Even with this
simple definition however, an inference can be drawn that telomere length serves in part as a
cumulative measure of cellular division and by extension, age. This would be a well-founded
inference and one that has received significant attention from the aging research community.
As of March 13, 2021, the search phrase “Telomere Length” on the PubMed database yielded
10,245 results, making it the most investigated biomarker of aging discussed in this article.
Multiple meta-analyses exist examining the relationship between telomere length and

age.(Gardner et al., 2014; Lapham et al., 2015) Additionally, many studies have shown
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relationships between telomere length and specific disease processes associated with increased
chronological age. A 2014 meta-analysis (43,725 individuals) showed an inverse relationship
between telomere length and coronary heart disease independent of traditional vascular risk
factors.(Haycock et al., 2014) Similar results have been obtained when investigating Alzheimer’s
disease and telomere length. Both observational and mendelian randomization studies (a
method of analyzing single nucleotide polymorphisms to determine causation) have shown that
patients diagnosed with Alzheimer’s disease have shorter telomere lengths.(Forero et al., 2016;
Zhan & Hagg, 2018) Despite this prevalence of age-related telomere research, data pertaining
to telomere length and mortality risk specifically has been less consistent. Perhaps the most
compelling investigation is a meta-analysis performed by Wang et al. in 2018 that examined the
relationship between telomere length and all-cause mortality. Twenty-five studies were
determined to meet eligibility for inclusion (121,749 combined individuals), including 4 Swedish
Twin Registry (STR) cohorts (12,083 individuals). Results from the Swedish twin registry studies
showed one standard deviation reduction of leukocytic telomere length corresponded to 13%
increased all-cause mortality risk (95% confidence interval 7%-19%).(Wang, Zhan, Pedersen,
Fang, & Hagg, 2018) However, a study by Li et al that examined 9 different biomarkers of aging
over a 20 year timeframe found that the only marker not associated with mortality risk was in
fact, telomere length.(Li et al., 2020) Another Swedish study performed by Svensson et al.
examined the relationship between telomere length and mortality in 2744 elderly men and also
found no association.(Svensson et al., 2014) The evidence presented here indicates that
telomere length is associated with various disease processes, but that the research pertaining

to its use as a predictor of biological age may be contradictory.

Table 1:
Telomere Length
Study Title BA Predictor Cohort name (if n Results
Used applicable)
Telomere Length Telomere Multiple cohorts 121,749 | one standard deviation
and All-Cause Length reduction of leukocytic
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Mortality: A Meta-
analysis

telomere length
corresponded to 13%
increased all-cause
mortality risk (95%
confidence interval 7%-
19%)(Wang et al., 2018)

not associated with
mortality in older
men

MrOS-Sweden study

Longitudinal Telomere Swedish Population | 636 No evidence that telomere
trajectories, Length, DNAmM Based Cohort length associated with
correlations, and Age (4 types), mortality risk.(Li et al.,
mortality Physiological 2020)
associations of nine | Age, Cognitive
biological ages Function,
across 20-years Functional
follow-up Aging Index,

and Frailty

Index
Leukocyte Telomere Prospective 2744 Using Cox proportional
telomere length is Length population-based hazards regression, tertile

of LTL did not associate
with all-cause mortality
[tertile 1 (shortest) or 2
(middle) vs. tertile 3
(longest); hazard ratio
(HR)=1.05, 95% confidence
interval (Cl) 0.85-1.28 and
HR=0.97, 95% Cl 0.79-1.19,
respectively].(Svensson et
al., 2014)

Composite Biomarkers/Allostatic Load Indices

In 1998 Bruce McEwen described allostasis as “adaptation in the face of potentially stressful

challenges [that] involves activation of neural, neuroendocrine, and neuroendocrine-immune

mechanisms.”(McEwen, 1998) The phrase “constancy through change” is often used as

shorthand to describe allostasis, as it so concisely describes the constant changing physiological

processes that maintain homeostasis. Fava et al. describes allostatic load as reflecting the

cumulative effects of stressful experiences in daily life that may lead to disease over time(Fava
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et al., 2019). Like telomere length, allostasis and allostatic load have been extensively
researched. Most commonly, this research focuses on the relationship between allostatic load
and various health outcomes such as cognition,(Juster, McEwen, & Lupien, 2010) chronic
stress,(Juster et al., 2010) sleep quality,(McEwen & Karatsoreos, 2015) age-related
disease,(Danese & McEwen, 2012) cardiovascular disease,(Logan & Barksdale, 2008) and
addiction(Koob & Schulkin, 2019) among others. A smaller portion of allostasis research is
dedicated to evaluating the performance of allostatic load as a predictor of biological age. The
study that has perhaps best demonstrated the capability of an allostatic predictor of biological
age is part of the MacArthur studies of successful aging series in 2005 that utilized 10
physiological parameters to generate allostatic load scores in 171 70-79-year-old
adults.(Karlamangla, Singer, & Seeman, 2006) An Allostatic load score or index falls under a
broader category of biological age predictors called composite biomarkers of aging. This is due
to the combination of multiple blood biomarkers and clinical measures used to make an
estimation regarding mortality risk. Other predictors within this category include phenotypic
age(Levine et al., 2018) and physiological age.(Li et al., 2020)

In the previously mentioned study published by Karlamangla in 2005,(Karlamangla et al.,
2006) allostatic load scores were generated first in 1988 and again in 1991. The mortality status
of these individuals was determined 4.5 years later in 1995. This study found that individuals
with increased allostatic load in 1991 compared to 1988 had increased risk of all-cause
mortality (15% versus 5% respectively p =.47). Further analysis revealed that each incremental
increase in allostatic load score was associated with a mortality odds ratio of 3.3 (95%
confidence interval 1.1-9.8).(Karlamangla et al., 2006)

A study by Castagne et al (2018), took another significant step towards establishing
allostatic load as a predictor of biological age. This study examined the relationship between 14
biomarkers across 4 physiological systems and their relationship to mortality in a UK birth
cohort study of 8,113 adults.(Castagné et al., 2018) The hazard ratio for participants with a high

allostatic load score was found to be 3.56 (2.2 to 5.3) and was significantly higher than in
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participants with a low allostatic load score.(Castagné et al., 2018) Their data suggests that
those with a high allostatic load score at age 44 are approximately 3 times more likely to die by
age 55.(Castagné et al., 2018) The authors also analyzed the relative contribution of each of the
14 biomarkers that comprised the allostatic load score. Interestingly, after adjusting for various
risk factors and adverse childhood experiences, 5 of the 14 biomarkers stood out as being
significantly related to mortality (C-Reactive Protein, fibrinogen, glycated hemoglobin, heart
rate, and peak expiratory flow).(Castagné et al., 2018) This highlights one potential challenge
and opportunity for the future use of allostatic load indices as BA prediction tools. The
challenge is the general lack of consensus regarding the relative contribution of each marker or
combination of markers, and the opportunity is the potential to develop even simpler yet more
accurate composite age biomarkers. Future validation studies examining a variety of different
indices will be helpful in making these determinations. As it stands, allostatic load appears to be
significantly correlated with mortality-risk, and allostatic indices will serve as valuable tools for

aging research.

Table 2:
Allostatic Load/Composite Biomarkers
Study Title BA Predictor Cohort name (if n Results
Used applicable)
Reduction in Allostatic Load 171 Adjusted for age and
allostatic load in Index baseline allostatic load,
older adults is each unit increment in the
associated with allostatic load change score
lower all-cause was associated with
mortality risk: mortality odds ratio of 3.3
MacArthur studies (95% confidence interval,
of successful aging. 1.1-9.8).(Karlamangla et al.,
2006)
Allostatic load Allostatic Load 1958 British birth 8113 Hazard ratios for
and subsequent Index cohort participants with a mid
all-cause (3 <AL<5) and high AL
mortality: which (>5) were 1.98 (1.25 to
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biological
markers drive the
relationship?
Findings from a
UK birth cohort

3.13) and 3.56 (2.2 to
5.53), respectively and
were found to be
significantly greater than in
participants with a low AL
(< 3)(Castagné et al., 2018)

An epigenetic
biomarker of aging
for lifespan and
healthspan

Phenotypic Age
Estimator

Third and Fourth
National Health and
Nutrition
Examination Survey

9926,
6209

a one-year increase in
phenotypic age is
associated with a 9%
increase in the risk of all-
cause mortality (HR=1.09,
p=3.8E-49), a 9% increase
in the risk of mortality from
aging-related diseases
(HR=1.09, p=4.5E-34), a
10% increase in the risk of
CVD mortality (HR=1.10,
p=5.1E-17), a 7% increase
in the risk of cancer
mortality (HR=1.07,
p=7.9E-10), a 20% increase
in the risk of diabetes
mortality (HR=1.20,
p=1.9E-11), and a 9%
increase in the risk of
chronic lower respiratory
disease mortality (HR=1.09,
p=6.3E-4)(Levine et al.,
2018)

DNA Methylation “Epigenetic Clocks”

The term epigenetic “clock” refers to tools that analyze DNA methylation levels within a

set of Cytosine-Phosphate-Guanine (CpG) sites and are generally acknowledged as accurate

measures of biological age.(Bell et al., 2019; Fransquet, Wrigglesworth, Woods, Ernst, & Ryan,

2019; Jylhava et al., 2017; Lu et al., 2019; Perna et al., 2016) In fact, one study we examined

made the claim that DNA methylation clocks are the current best predictors of
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mortality.(Unnikrishnan et al., 2019) While this may be true, it is important to realize that the
term DNA methylation age or epigenetic clock can refer to many different tools. While all of
these “clocks” analyze methylation in specific CpG sites, they all do so in different ways. For
example, two clocks that were among the first to generate widespread interest are the Horvath
clock(Horvath, 2013) and Hannum clock.(Hannum et al., 2013) The Horvath clock is based on
methylation levels of 353 CpG sites using the lllumina 27k or 450k array,(Horvath, 2013) while
the Hannum clock uses 71 CpG sites, and utilizes data from the lllumina 450k array.(Hannum et
al., 2013) Epigenetic clocks’ ability to predict biological and chronological age can also be tissue
dependent. For example, the Horvath clock performs similarly among various tissue
types(Horvath, 2013) (“whole blood, peripheral blood mononuclear cells, cerebellar samples,
occipital cortex, buccal epithelium, colon, adipose, liver, lung, saliva, uterine cervix as well as in
individual cell types such as CD4 T cells and CD14 monocytes, and immortalized B cells”), while
the Hannum clock performs best using peripheral whole blood samples(Hannum et al., 2013;
Jylhava et al., 2017). These clocks also vary in terms of their ability to predict biological and
chronological age (chronological age r? values = 0.96 for Horvath and 0.91 for Hannum).(Jylhava
et al., 2017) Accessibility is also highly variable; as property of the specific inventor or
institution that created the algorithm capable of converting array-based methylation data into
other useful data (such as biological age estimation in years or mortality risk among others),
some of these tools may be commercial. While other clocks, such as the Horvath clock or
GrimAge marker created by Steve Horvath and Ake Lu are freely available online.

The clocks mentioned so far are just a few examples of DNA methylation biomarkers of aging.
This is to illustrate that the term “epigenetic clock” is broad and not a specific marker. With this
in mind, we can say generally that one of the most interesting and unique features of
epigenetic clocks is their ability to predict mortality risk, also referenced as time-to-death. A
2016 meta-analysis of 13 cohorts representing a combined sample size of 13,089 showed that
epigenetic age acceleration (a measure of the difference between chronological age and

epigenetic age) was predictive of mortality independent of chronological age (p <to 8.2 x 10°
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9).(Chen et al., 2016) This was still found to be true after adjusting for additional risk factors, but
at a significance of p<5.4 x 104.(Chen et al., 2016) When epigenetic age estimates incorporated
additional information pertaining to blood cell composition, the resulting time-to-death
predictions were highly significant (p=7.5x10"*3).(Chen et al., 2016)

In the time since this 2016 meta-analysis, new DNA methylation clocks have emerged
that are even more capable in terms of their ability to estimate mortality risk. For example, a
2017 study by Zhang et al. proposes a mortality risk score based on 10 CpG sites that is strongly
associated with all-cause mortality.(Y. Zhang et al., 2017) Participants with scores of 1 display a
hazard ratio (95% confidence intervals) of 2.16 (1.1-4.24), compared to those with scores of 2-5
showing a hazard ratio of 3.42 (1.81-6.46) compared to those with 5+ scores showing a hazard
ratio of 7.36 (3.69-14.68).(Y. Zhang et al., 2017) Another marker called DNAm PhenoAge was
calculated in a meta-analysis of five large samples (n=2,016, n=2,191, n=2,553, and n=657). It
was found that a 1-year increase in DNAm PhenoAge is associated with a highly significant 4.5%
increase in all-cause mortality risk (meta p-value= 7.9 x 10#’).(Levine et al., 2018)

In addition to measuring mortality risk, some markers have the added capability of
predicting the risk of developing specific disease processes. For example, a metric known as
GrimAge can strongly predict time-to-death (Cox regression P=2.0 x107°), time-to-coronary
heart disease (Cox regression P=6.2 x102%), and time-to-cancer (P= 1.3 x10?).(Lu et al., 2019)
The study authors used large scale validation data from the Framingham heart study to
complete this analysis. By adding a calculation that quantifies the difference between GrimAge
and chronological age (AgeAccelGrim) other relevant age-related associations are found to be
present. For example, AgeAccelGrim is associated with comorbidity count (p=3.45x10"), time
to congestive heart failure (p=4.9x1019), time-to-incident coronary heart disease (p=6.2x1024),
hypertension (p=5.1x10"13), and type 2 diabetes (p=0.01).(Lu et al., 2019) All associations were
in the expected direction (increased AgeAccelGrim=increased likelihood of poor outcome) with

varying odds ratios.(Lu et al., 2019)
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Table 3:

DNA Methylation “Clocks”

Study Title BA Predictor Cohort name (if n Results
Used applicable)
DNA methylation GrimAge Framingham Heart 2356 predictive ability for time-
GrimAge strongly Study Offspring to-death (Cox regression
predicts lifespan Cohort P=2.0E-75), time-to-
and healthspan coronary heart disease
(Cox P=6.2E-24), time-to-
cancer (P=1.3E-12)(Lu et
al., 2019)
DNA methylation DNAm Age 82 publicly available | 7844 The multi-tissue age
age of human "Horvath Clock" | datasets predictor performs
tissues and cell remarkably well in most
types tissues and cell types. (Age
correlation 0.97, error = 2.9
years)(Horvath, 2013)
Genome-wide "Hannum 656 Correlation between age
Methylation Clock" and predicted age of 96%
Profiles Reveal and an error of 3.9
Quantitative Views years(Hannum et al., 2013)
of Human Aging
Rates
An epigenetic PhenoAge Women’s Health 2016, A one-year increase in
biomarker of aging Initiative (WHI), the | 2191, DNAm PhenoAge is
for lifespan and Framingham Heart 2553, associated with a 4.5%
healthspan Study (FHS), the 657, increase in the risk of all-
Normative Aging 1747 cause mortality
Study (NAS), the (Meta(FE)=1.045, Meta
Jackson Heart Study p=7.9E-47(Levine et al.,
(JHS) 2018)
Longitudinal Telomere Swedish Population | 845 Individually, all BAs except

trajectories,
correlations and
mortality
associations of nine
biological ages
across 20-years
follow-up

Length, DNAmM
Age (4 types),
Physiological
Age, Cognitive
Function,
Functional
Aging Index,

Based Cohort

for telomere length were
associated with mortality
risk independently of CA.
The largest effects were
seen for methylation age
estimators (GrimAge) and
the frailty index (F1). (Li et
al., 2020)
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and Frailty
Index

DNA methylation- Horvath and 13 cohorts 13,089 | All considered measures of
based measures of | Hannum epigenetic age acceleration
biological age: were predictive of
meta-analysis mortality (p<8.2x107%)(Chen
predicting time to et al., 2016)

death

DNA methylation Zhang 10 CpG 1900 demonstrated that a risk

signatures in
peripheral blood
strongly predict all-
cause mortality

clock

score based on DNAm of
ten identified CpGs was a
very strong predictor for
all-cause, CVD and cancer

mortality(Y. Zhang et al.,
2017)

Transcriptional Predictors of Biological Age

A transcriptional predictor of biological age analyzes genetic expression in genes
associated with aging to make some prediction regarding the biological aging process. One
example of this tool is the Transcriptomic Age Prediction Tool (TRAP) which is described in the
paper titled “The transcriptional landscape of age in human peripheral blood” written by Peters
et al. in 2015. This study performed a whole-blood gene expression meta-analysis in 14,983
individuals and identified 1,497 genes that are differentially expressed with chronological age.
This provided the basis for calculating a “transcriptomic age” and associating it with various
age-related phenotypes including: blood pressure, fasting glucose, and BMI.(Peters et al., 2015)
This was the first large scale meta-analysis to examine age-related gene expression profiles and
build a predictor of biological age from this data. The correlation between the transcriptomic
age predictor and chronological age was significant (p<2x10%°),(Peters et al., 2015) and
observed differences between the transcriptomic age predictor (TRAP) and chronological age

are thought to reflect altered biological age. This is supported by consistent associations

24



between increased delta age (increased TRAP compared to chronological age) and higher blood
pressure, total cholesterol, fasting glucose levels, and BMI(Peters et al., 2015). Peters et al.
identified a subset of 1,396 individuals from two studies within their meta-analysis
(KORA(Holle, Happich, Lowel, & Wichmann, 2005) and Rotterdam studies(Hofman et al., 2007))
that had both methylation and gene expression data available. The presence of these two
datasets allowed the investigators to generate a transcriptomic predictor of biological age, in
addition to Horvath(Horvath, 2013) and Hannum(Hannum et al., 2013) clock values. This gave
investigators the opportunity to examine correlation between three different biomarkers of
aging: TRAP, Horvath Clock, Hannum Clock. They found TRAP to correlate positively, albeit
weakly, with both clocks (r?=.1 for Hannum and .33 for Horvath).

Other transcriptional predictors of biological age exist, such as the healthy ageing gene
score, (Sood et al., 2015) and RNAageCalc. (Ren & Kuan, 2020) Like the previously discussed
epigenetic clocks, these measures’ ability to predict disease process, mortality, and association
with age-related phenotypes varies. At the time of this writing the literature seems to indicate
that the transcriptome is an age-associated variable indicating its utility in creating biological
age predictors, but existing transcriptomic clocks are pending broader validation.(Harries et al.,

2011; Holly et al., 2013; Jylhdva et al., 2017)

Table 4:
Transcriptomics
Study Title BA Predictor Cohort name (if n Results
Used applicable)

The Transcriptional | Transcriptomic | The Rotterdam 14926 The correlation between
Landscape of Age Age Prediction Study chronological age and

in Human Tool transcriptomic age was
Peripheral Blood significant in all cohorts

(P<2E-29)

A positive delta age,
interpreted as reflecting
more rapid biological
ageing, was consistently
associated with higher
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systolic and diastolic blood
pressure, total cholesterol,
HDL cholesterol, fasting
glucose levels and body
mass index (BMI)
Transcriptomic age and
epigenetic age (both
Hannum and Horvath)
were positively correlated,
with r? values varying
between 0.10 and
0.33(Peters et al., 2015)

Functional Age Estimators

Although not blood biomarkers, functional age estimators are included here due to their
ease of use and relevance to aging research. The term functional age is now commonly found in
literature, but these tools were initially intended to be a method for estimating frailty and the
likelihood of care entry, not biological age. More recently, some functional age estimators have
been shown to estimate mortality-risk(Burn et al., 2018; Church, Rogers, Rockwood, & Theou,
2020; Finkel, Sternang, Jylhava, Bai, & Pedersen, 2019; Kojima, lliffe, & Walters, 2018; Li et al.,
2020) and therefore present as highly practical measures for lifestyle modification research.
The large volume of functional age estimators merits a standalone review, but some notable
examples will be discussed here. Two of these are the frailty index (Fl) and frailty phenotype
(FP). Although they are sometimes discussed as being interchangeable, they are two different
tools for different purposes. The term frailty index refers to a method of quantifying frailty in
older individuals, with the underlying mechanism being a measurement of deficit accumulation
(deficits identified/deficits measured). Rather than a specific tool or metric, it is a method in
which various measures of frailty and functional capability can be assessed and from which a
scoring system can be derived. Frailty Phenotype on the other hand is based on the presence or
absence of 5 signs or symptoms (>10lbs unintentional weight loss in the past 12 mo., self-

reported exhaustion, weak grip strength, slow walking speed, and low physical activity).(Cesari,
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Gambassi, Abellan van Kan, & Vellas, 2014; Fried et al., 2001) Although both FP and Fl are
associated with mortality-risk,(Shi et al., 2019) we will focus our discussion on Frailty index. This
is not necessarily a comment on either’s ability to predict biological age, but rather how
responsive each may be to lifestyle interventions. Given the relatively broad scope and ordinal
nature of the 5-item Frailty phenotype, it may be less responsive to intervention and less suited
as a research variable compared to the Frailty Index.(Cesari et al., 2014; Clegg, Young, lliffe,
Rikkert, & Rockwood, 2013) The Frailty Phenotype may be better implemented as a screening
tool, inclusion/exclusion criterion, or stratification mechanism given that it does not require a
full geriatric comprehensive assessment like the Fl.(Clegg et al., 2013)

One of the originally described functional indices, called the Canadian Study of Healthy
Aging (CSHA) Frailty Index is validated by the Canadian Study of Healthy Aging and examines
the presence or absence of 70 clinical deficits in order to quantify fitness and frailty in the
elderly.(Kenneth Rockwood et al., 2005) This list of deficits was not meant to be a fixed index
however, in fact it has been reported that indices with as few as 50 clinical deficits can be highly
useful, and some indices with as few as 20 items have been explored.(K. Rockwood & Mitnitski,
2012) Other tools related to the frailty index have been developed such as the Edmonton Frailty
scale(Clegg et al., 2013; Rolfson, Majumdar, Tsuyuki, Tahir, & Rockwood, 2006) and Clinical
Frailty Scale.(Kenneth Rockwood et al., 2005) The Clinical Frailty Scale is a 7-point scale that is
highly correlated to the original 70-point index (r2=.90).(Kenneth Rockwood et al., 2005) More
importantly given an aging research context, each 1 point increase in the scale was found to
correspond with a 21.2% increased risk of death in the next 70 months.(Kenneth Rockwood et
al., 2005) In a study of 1788 community-dwelling elders frailty as defined by the Fl was
associated with a 2.31 fold increased risk of all-cause death compared to those who scored
robust on the index.(Shi et al., 2019) Another study of 5536 community-dwelling elderly found
the relationship between Fl and mortality to be significant (P <.0001). Interestingly, a meta-
analysis examining frailty index scores between men and women found what the authors

described as a “male-female health-survival paradox”.(Gordon et al., 2017) The paradox was
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that at all ages females displayed higher Fl scores, despite males having higher mortality rates

at each level of the frailty index.(Gordon et al., 2017) Frailty sex differences extended to diet as

well. A study examining older adults found that low meat consumption (less than 2x/wk.) was

associated with increased frailty in men only. Increased frailty in women was associated with

decreased fish, meat, vegetables, and potatoes.(Shibasaki, Kin, Yamada, Akishita, & Ogawa,

2019) Perhaps most relevant to the aim of this paper, one study comparing nine different

biological age predictors, found Frailty Index (42-item Rockwood(Jiang et al., 2017)) to have one

of the strongest associations with mortality risk among the nine markers examined, being

exceeded only by GrimAge.(Li et al., 2020) Given these results, some frailty indices may serve

lifestyle intervention research well alongside other biomarkers, or perhaps even as stand-alone

outcome variables.

Table 5:
Functional Age Estimators

Study Title BA Predictor Cohort name (if n Results

Used applicable)

42-item Swedish 1477 The categorized Fl levels
Frailty indexasa | Rockwood Adoption/Twin demonstrated a dose-
predictor of all- Study of Aging response increase in
cause and cause- mortality risk with
specific mortality increased frailty in both
in a Swedish men and women.(Jiang et
population-based al.,, 2017)
cohort

Frailty Index Ageing arm of 1788 Frailty defined by the

Frailty
phenotype, frailty
index and risk of
mortality in
Chinese elderly
population-
Rugao longevity
and ageing study

Rugao Longevity
and Ageing Study

frailty index was associated
with a 2.31 fold (95% ClI
1.16-4.6) risk of all-cause
death compared with
robust elderly.(Shi et al.,
2019)
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Frailty index as a | Frailty Index 18 cohorts All meta-analyses
predictor of suggested that higher Fl
mortality: a was significantly
systematic review associated with higher
and meta-analysis mortality risk.(Kojima et
al,, 2018)
Discussion

No statement in this paper is intended to make a recommendation regarding the use of
a specific biological age predictor; neither is this review an exhaustive list. In addition to less
investigated biological age predictors like proteomics, and metabolomics, there are multitudes
of individual markers associated with accelerated biological aging such as glycated hemoglobin,
triglycerides, blood pressure, resting heart rate, waist-to-hip ratio, fibrinogen, albumin, crp,
interleukin-6, and many others. (Jylhdva et al., 2017; Kane & Sinclair, 2019) Our aim is to
compile relevant information pertaining to various promising predictors of biological age
validated in large cohorts to assist future researchers interested in using them as outcome
measures. There is also no implication that all biomarkers of aging are equally valid. A
compelling comparison of nine biological age estimators that examined longitudinal
trajectories, correlations, and mortality associations across 20 years was performed by Li et al.
2020.(Li et al., 2020) Their study examined data from a Swedish based cohort of 845 men and
women aged 63.6 (8.6) at baseline and compared the validity of four different DNA methylation
age estimators Horvath,(Horvath, 2013) Hannum,(Hannum et al., 2013) PhenoAge,(Levine et al.,
2018) and GrimAge(Lu et al., 2019)), three different functional age estimators (functional aging
index,(Finkel et al., 2019) frailty index,(Jiang et al., 2017) cognitive function(Reynolds et al.,
2005)), telomere length,(Berglund et al., 2016) and a composite biomarker called physiological
age that included various biomarkers and measures of body composition. All four DNA

methylation age estimators, physiological age, and all three functional age estimators were
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associated with mortality risk independent of chronological age, while telomere length was not.
Of the nine biomarkers of aging examined, GrimAge and the Frailty index stood out as being
most associated with mortality risk.

The information presented here sheds light on the large variety of biomarkers of aging
available, each with its own specific capabilities. Even still, the markers discussed are just a
small portion of the available biomarkers of aging in existence. Like any other biomarker, the
predictor used in future experimental studies should be based on the specific aims and needs of
those studies. A study that aims to assess the effects of a vegan diet on coronary heart disease
risk may benefit from utilizing the GrimAge marker since it has been shown to predict time-to-
coronary heart disease.(Lu et al., 2019) Investigators could obtain a baseline GrimAge value,
implement an intervention protocol, and obtain a GrimAge value at the conclusion of the trial.
When compared to a control group, the difference in GrimAge values could be analyzed to
determine if biological age was slowed or reversed. An example of this methodology was
implemented in the 2019 Fahy et al study, Reversal of Epigenetic Aging and Immunosenescent
Trends in Humans, in which investigators reported a 2.5 year reversal in mean epigenetic age
following a 1 yr. human growth hormone and metformin treatment protocol.(Fahy et al., 2019)
A study that aims to determine the transcriptional basis for any observed changes in biological
age resulting from lifestyle modification may find a transcriptomic predictor most appropriate
due to the ability to obtain a biological age estimation and gene expression profile from a single
blood sample. If an investigator is limited in terms of their capability to analyze gene expression
profiles, DNA methylation of CpG sites, or blood biomarkers, perhaps a functional age estimator
such as a frailty index could provide relevant data on biological aging changes in an intervention
group. If feasibility allows it, the combination of various predictors of biological age could yield
even more robust results. Various factors will dictate the most appropriate selection for future
lifestyle modification research, not the least of which being accessibility, cost, applicability to
multiple tissue types, and conversely, specificity to a study’s specific tissue of interest. A
possible limitation to this review may be that only papers written in English were included.
Additionally, this is an emerging field with many potential biological age predictors to consider.

We selected five of the most investigated biological age predictors with large-scale cohort
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validation and therefore there may be promising new predictors that were not included in this

review.

Conclusion:

This paper highlights an inherent challenge in searching for the “best” biomarker(s) of
aging. Any researcher seeking to utilize one of these biomarkers must first clearly define their
aims. They must also seek to understand and explain how they are using the term biological age
or biomarker(s) of aging. It may be preferable to instead use more descriptive terminology such
as DNA methylation age/Epigenetic age (BA as measured by an epigenetic clock), transcriptomic
age (BA as measured by a transcriptomic age predictor), or functional age (BA as measured by a
deficit accumulation index such as a frailty index). These terms go further to explain the nature
of the data, how it is obtained, and how it may be best interpreted. They also help to add some
clarity given the array of emergent terminology used in biological age prediction research.

Our aim at the outset of this paper was to view these markers in the context of their ability to
predict healthspan and lifespan. Telomere length is certainly the most extensively studied
biomarker of age-related disease. Consequentially, many conclusions have been made
regarding the association between telomere length, age, disease, stress, and multiple other
health outcomes. While no study that we know of has sought to produce an easy-to-use
telomere length biological age prediction tool, TL has been used to predict mortality risk, albeit
with mixed results. Epigenetic clocks appear to have the upper hand in terms of accessibility
(many are freely accessed online), and they also appear to best predict time-to-death, time-to-
cancer, and other age-related processes.(Li et al., 2020; Lu et al., 2019; McCrory et al., 2020) It
also seems that they may have the greatest degree of large-scale cohort validation. Perhaps the
only area where epigenetic clocks are not the apparent “leader” of the biological age prediction
discussion is in their ability to identify the mechanism behind differences in chronological and
biological aging, although discovery is taking place rapidly.(W. Zhang, Qu, Liu, & Belmonte,

2020) It is in this domain that transcriptional predictors of biological aging may add value as
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they rely on gene expression data to estimate biological age. A researcher could potentially
examine changes in both biological age and genetic expression to make an inference regarding
the mechanism behind the observed biological age acceleration/deceleration from a single
blood sample. A “best of both worlds” scenario may involve the inclusion of a more validated
DNA methylation marker like GrimAge, alongside a genetic expression profile of relevant
genetic pathways. This would allow an investigator to report an intervention’s effect on
biological age, as well as an analysis of the specific changes in gene expression that may have
contributed to that change.

Each of these tools has unique capabilities and limitations. For this reason, the most
robust option for a future researcher is likely the inclusion of multiple biomarkers of aging
based on those unique features.

A central goal of lifestyle modification is to reduce disease risk and promote healthy,
successful aging. The ability of biological age predictors to assess an intervention’s contribution
to mortality/morbidity risk makes them highly relevant measures for studies examining the
effects of lifestyle modification on age-related disease. Future studies examining the effects of
diet, supplementation, exercise, stress-reduction techniques, sleep quality/quantity, or any
number of other lifestyle modification interventions could benefit greatly from the inclusion of

a biological age predictor.
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CHAPTER 3
High-Intensity Interval Training Reduces Transcriptomic Age: A Randomized Controlled Trial
Abstract

Background: While the relationship between exercise and lifespan is well documented,
little is known about the effects of specific exercise protocols on modern measures of biological
age. Transcriptomic age predictors provide an opportunity to test the effects of high intensity
interval training (HIIT) on biological age utilizing whole-genome expression data.

Methods: A single-site, single-blinded, randomized controlled clinical trial design was
utilized. Thirty sedentary participants (aged 40 to 65) were assigned to either a HIIT group or a
no-exercise control group. After collecting baseline measures, HIIT participants performed
three 10X1 HIIT sessions per week for 4 weeks. Each session lasted 23 minutes, and total
exercise duration was 276 minutes over the course of the 1-month exercise protocol.
Transcriptomic age, PSS-10 score, PSQI score, PHQ-9 score, and various measures of body
composition were all measured at baseline and again following the conclusion of
exercise/control protocols.

Results: Transcriptomic age reduction of 3.59 years was observed in the exercise group
while a 3.28-year increase was observed in the control group. PHQ-9, PSQl, BMI, body fat mass,
and visceral fat measures were all improved in the exercise group. A hypothesis-generation
gene expression analysis suggested exercise may modify autophagy, mTOR, AMPK, IP3K,
neurotrophin signaling, insulin signaling, and other age-related pathways.

Conclusion: A low dose of HIIT can reduce an RNA-based measure of biological age in

sedentary males and females between the ages of 40 and 65. Other changes to gene expression
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were relatively modest, which may indicate a focal effect of exercise on age-related biological
processes.
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Introduction

The beneficial effects of exercise on healthspan and lifespan are among the most well
documented scientific findings in health science research (Aune et al., 2021; Han et al., 2022;
Myers et al., 2002; Northey, Cherbuin, Pumpa, Smee, & Rattray, 2018). Despite this, there are
relatively few trials investigating the effects of exercise on gene regulatory mechanisms of
healthspan and lifespan. Of those that have been performed, most examine the effects of a

single bout of exercise on gene expression, rather than repeated bouts (Amar et al., 2021).

Given that many beneficial effects of exercise require repeated bouts over time to
manifest, this represents an opportunity for discovery. Consider for example the inappropriate
conclusions that could be drawn when studying the effects of a single bout of exercise on
muscle hypertrophy, strength, or inflammation. The beneficial effects of exercise on biological

aging is likely most apparent when studied over time.

The central theme of molecular biology holds that a cell’s function and status are
dictated by the specific sets of genes undergoing transcription at any given time, and to what
degree these processes are occurring (O'Brien, Costin, & Miles, 2012). Genome-wide expression
analyses allow us to take a snapshot of those processes, capturing a gene expression profile at
the time of blood draw. A comparison of gene expression profiles before and after an

intervention provides the means to identify patterns of differentially expressed genes.

As high throughput RNA sequencing becomes more commonplace, gene expression-

based predictive models have emerged. Some of these models are designed to predict
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biological age (Meyer & Schumacher, 2021; Peters et al., 2015; Ren & Kuan, 2020), or more
specifically, transcriptomic age (TA). These models are easily accessible and comprehensive
molecular surveys of biological processes that collectively contribute to healthspan and
lifespan. It is this type of biological age predictor, a “transcriptomic clock” that is used in the

trial described here.

The biological age prediction field is diverse and rapidly evolving, with models composed
of various inputs (Cesari et al., 2014; Jylhava et al., 2017; Levine et al., 2018; Lohman et al.,
2021; Lu et al., 2019) and predictive capabilities (Li et al., 2020; McCrory et al., 2020). The
discrepancy between a participant’s actual age and their predicted age is often of particular
interest (Fahy et al., 2019; Fiorito et al., 2021). This measure, called age acceleration (biological
age minus chronological age), can take a positive or negative value. Positive values are
considered hazardous and indicative of an increased aging rate, while negative values are
considered beneficial and evidence of a slowed aging rate. Any intervention that reverses age

acceleration could therefore be considered beneficial and potentially health protective.

The effect of exercise on various biological age predictors is inconsistent. Most
experimental studies that examine the relationship between exercise and biological age use
telomere length as their primary biomarker of aging. These results are mixed, with positive
relationships, U-shaped relationships, and no relationship all being reported (Sellami, Bragazzi,
Prince, Denham, & Elrayess, 2021). This could be due to any number of factors, from

differences in sample characteristics to the open question of whether telomere length even has
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utility as a measure of biological age (Glei et al., 2016; Li et al., 2020; Svensson et al., 2014;
Vaiserman & Krasnienkov, 2020; Wang et al., 2018).

Fewer studies have been performed using epigenetic alteration, such as DNA
methylation or histone methylation/acetylation as an outcome measure. Of those that have
been performed, various types of exercise have been shown to induce widespread changes to
the methylome and associated gene expression (Barrés et al., 2012; Denham, O'Brien, Marques,
& Charchar, 2015; Nakajima et al., 2010), but the number of studies performed is few.

To the authors’ knowledge only two lifestyle modification trials have utilized a next
generation predictor of biological age in humans, such as an epigenetic clock (Fiorito et al.,
2021; Fitzgerald et al., 2020), and no prior study has used a transcriptomic predictor of

biological age.

The trial described here aims to address this by utilizing high throughput RNA
sequencing to explore the effects of twelve high intensity interval training (HIIT) sessions on

biological age as measured by a blood mRNA-based “transcriptomic clock” (Peters et al., 2015).

To confirm previously observed effects of HIIT on various physiological parameters (Gu,
Hao, Chen, & Wu, 2022; Min, Wang, You, Fu, & Ma, 2021; Ouerghi et al., 2017; Su et al., 2019;
M. Wewege, van den Berg, Ward, & Keech, 2017) we also measured changes to body mass
index (BMI), body fat mass (BFM) and visceral fat area, as well as measures of psychological

stress, depression, and sleep quality.
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Methods

A randomized controlled trial design was used to investigate the effects of HIIT on the
following dependent variables: 10-item Perceived Stress Scale (PSS-10) (Lee, 2012), Pittsburgh
Sleep Quality Index (PSQI) (C. Zhang et al., 2020), Patient Health Questionnaire 9-item
depression module (PHQ-9) (Kroenke, Spitzer, & Williams, 2001; Levis et al., 2020), body mass
index (BMI), body fat mass, visceral fat area, skeletal muscle mass, waist-to-hip ratio, blood
pressure, resting heart rate, and whole-genome RNA expression. The transcriptomic age
prediction (TRAP) tool (Peters et al., 2015) was used to assess transcriptomic age and
transcriptomic age acceleration (TAaccel = TA — chronological age) using the RNA AGE Calc
Shiny App (Ren & Kuan, 2020). The TRAP biological age prediction model was trained to predict
chronological age in a meta-analysis of 14,983 individuals and is based on 11,908 input gene

expression levels (Peters et al., 2015).

Trial participants were recruited from local communities surrounding the Loma Linda
University campus via flyers, approved social media, and word of mouth. The Loma Linda
University Institutional Review Board approved the study on 11/18/2021 (IRB# 5210437,
clinicaltrials.gov trial registration ID: NCT05156918). Males and females between the ages of 40
and 65 who self-identified as non-exercisers, were categorized as low activity using the
International Physical Activity Questionnaire (IPAQ) (Hagstromer, Oja, & Sjostrom, 2006), had
no significant change to activity levels within the past 30 days, were not pregnant, had no prior

or current history of any condition that would make exercise unsafe, and were not currently
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taking antibiotics, glucocorticoids, anticoagulants, narcotics, antiepileptics, antipsychotics, or

hypoglycemic agents were eligible for participation.

Study participants were instructed to avoid modifying their usual physical activity level
or diet for the duration of the four-week study protocols, except for the additional HIIT
assigned to exercise group. All participants maintained a compliance log, comprised of two
guestions weekly. For the control group: Have you performed more than your usual amount of
physical activity this week? Secondly, have you made any significant changes to your diet this
week? For the exercise group: Excluding the exercise assigned to you in this study, have you
performed more than your usual amount of physical activity this week? Secondly, have you

made any significant changes to your diet this week?

All participants arrived at the laboratory between the hours of 8am and 11am, and
baseline measures were obtained. Body composition measurements were obtained using the
InBody 770 body composition and body water analyzer (InBody USA, USA), surveys were
completed in a private room, and a single vial of blood was collected by a certified
phlebotomist from the antecubital vein into a PAXgene® Blood RNA Tube, PLH 16X100 2.5
PLBLCE CLR (Becton Dickinson, USA)

Following the completion of Day-1 data collection, exercise group participants returned
the following day to begin the HIIT protocol which took place at the Loma Linda University
Physical Fitness Laboratory. The authors chose a routinely studied 10X1 HIIT protocol that has
been determined as safe and effective in various groups, including sedentary individuals (Ito,

2019; Little, Safdar, Wilkin, Tarnopolsky, & Gibala, 2010; Rozenek, Salassi, Pinto, & Fleming,
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2016; M. A. Wewege, Ahn, Yu, Liou, & Keech, 2018). The protocol consists of a 2-minute warm
up and cool down, with 10, 1-minute high intensity exercise intervals at 77-93% of the
participants predicted maximum heart rate (Committee; Riebe, Ehrman, Liguori, & Magal)
determined using Karvonen’s formula (Camarda et al., 2008), followed by 1-minute self-
selected intensity rest periods. The total exercise session lasted 23 minutes, of which 10
minutes was high intensity exercise and 13 minutes was warm-up/rest/cool down periods.

Participants rotated between three exercise machines (randomly assigned rotation
order at outset): A Concept2 rowing ergometer, Concept2 bicycle ergometer, and a Noraxon
PhysTread Pressure treadmill. Participants used a different machine each day so that they used
each of the three exercise machines once per week.

Following the conclusion of the 4-week control and exercise protocols, all participants
returned for results collection. Exercise group data was collected approximately 48 hours after
their last HIIT session. Blood samples were stored at -79 degrees Celsius until RNA extraction
(Qiagen RNeasy), quality assurance assays, mRNA sequencing, and related statistical analyses of
differential gene expression and interpretive bioinformatics were performed by the UCLA Social
Genomics Core Laboratory. Transcriptional profiling utilized a high-efficiency mRNA targeted
reverse transcription and cDNA library synthesis system (QuantSeq 3’ FWD; Lexogen Inc.) with
cDNA libraries sequenced on in Illumina NovaSeq system by Lexogen Services GmbH. Assays
targeted 5 million sequencing reads per sample (achieved median = 7.1 million), each of which
was mapped to the GRCh38 reference human transcriptome using the STAR aligner (median
99.7% mapping rate) and quantified as gene transcripts per million total mapped reads, with

values floored at 1 transcript per million to suppress spurious low-range variability, and log2-
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transformed to stabilize variance. One follow-up sample yielded insufficient sequencing reads
for valid analysis (< 1 million reads), and that sample and its paired pre-intervention baseline
sample were excluded from all subsequent analyses. These data served as input into the RNA
AGE Calc Shiny App for computation of the TRAP RNA age score. RNA AGE Calc Shiny App inputs
were as follows: Tissue type: Blood, type of gene expression data: Count, samples used when
building the calculator: All samples, gene ID type: Ensembl ID, signature: Peters.

A secondary analysis of differentially expressed genes (DEGs) was performed using two
sets of cut off criteria. First, genes which displayed a group x time interaction expression fold
change greater than 1.5 or less than .5 were selected for analysis. Also, an
exploratory/hypothesis-generation analysis was performed using more liberal fold change
values, greater than 1.2 or less than .8. Functional enrichment and pathway analyses were

performed using Advaita Bio’s iPathway Guide (Supplementary File 2).

Data Analysis

Mean + SD was computed for quantitative variables and frequency (percentage) for
categorical variables. Normality of quantitative variables was assessed using Shapiro-Wilk test
and box plots. Independent t-test was used for all continuous and independent variables in
both groups at baseline. The Mann-Whitney U test was used to compare the same variables
due to small sample and lack of normality on some variables. The dependent paired t test was
used to compare pre- and post-variables in both groups. Also, Wilcoxon Signed Rank test was
used to compare the pre- and post-variables due to small sample and lack of normality on some

variables.
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Data were analyzed using SPSS Statistics Software version 28.0 (SPSS Inc, Chicago, IL,

USA). All analyses were performed at an alpha level of .05.

Results
Of the 35 participants screened, 30 subjects satisfied the eligibility criteria, agreed to
participate, were randomly assigned to the experimental group (n=15) and the control group

(n=15) using computer-generated block randomization, and completed all subsequent analyses
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(Figure 1).
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Figure 1: CONSORT chart diagram. 35 participants recruited, 2 excluded due to high activity
level, 1 excluded due to an inability to draw blood sample. 1 control participant lost to follow
up, 1 exercise participant excluded from analysis due to low blood volume in post exercise
blood sample detected during RNA quality control tests. In total, 15 control participants and 15
experimental participants completed all aspects of the trial and subsequent analysis.
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Baseline characteristics of participants are shown in Table 1. None of the demographic

variables were significant for randomized design.

Table 1. Selected Characteristics of Participants at Baseline.

Variables Experimental Control
Frequency (%) Frequency (%)
(n=15) (n=15)
Age (years) 51.00+7.9° 47.93+7.6°
BMI (kg/m?) 31.08+4.9° 29.59+5.49
Race/Ethnicity
White 7 (46.7) 5(33.3)
Black 2 (13.3) 1(6.7)
Hispanic 4(26.7) 4(26.7)
Asian 1(6.7) 5(33.3)
Other 1(6.7) 0(0)
Sex
Female 10 (66.7) 10 (66.7)
Male 5(33.3) 5(33.3)
Diabetic
No 13 (86.7) 14 (93.3)
Yes 0(0) 0(0)
Pre-Diabetic 2 (13.3) 1(6.7)

8 Values are presented as mean + SD

Intervention Validation
There was a significant decrease in body fat mass, BMI, and visceral fat area (p=.031,
.048, and .015 respectively) (Table 2), over time for the experimental group, a non-significant
increase in BFM in the control group (p=.244), and a non-significant decrease in BMI and
Visceral Fat Area in the control group (p=.598 and p=.062 respectively) (Table 2). No changes in

body composition displayed group x time statistical significance.

Primary Analysis: Transcriptomic Age
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A significant group x time difference in TA (p=.026) was observed. A significant decrease
in TA was observed in the experimental group (p=.043) and a significant increase in TA was
observed in the control group (p=.018) (Table 2). Changes to TAaccel were also significant
between groups (p=.025), with similar magnitude and direction of change as TA (Table 2).

Table 2. Effects of High Intensity Interval Training on Transcriptomic Age, PHQ-9, PSS-10,

PSQl, Skeletal Muscle Mass, Body Fat Mass, and Visceral Fat Area. Between and Within Group

Effects
Variables Experimental (n=15) Control (n=15)
Mean Mean P
difference difference
Pre Post (P%) pre post (P
TA -3.594+7.72 3.2848.26 | .026
(years) 73.448.2 69.8+7.7 (.043) 67.819.3 71.149.2 (.018)
TAaccel -3.84+7.98 3.2148.26 | .025
(years) 21.817.6 17.949.2 (.078) 19.247.9 22.446.8 (.156)
-3.07+£3.10 .07+6.15 | .063°
PHQ-9 5.3£3.9 2.3+£1.9 (.002°) 6.916.9 7.0£5.9 (.964°)
-.3345.89 1.47+4.09 | .739°
PSS-10 20.145.3 19.8+4.0 (.53%) 21.243.4 19.7+45.2 (.054°)
-1.53+2.42 .07+2.55 | .158*
PSQl 7.0£3.9 5.5%3.5 (.042°) 7.614.7 7.7+4.4 (.670P)
SMM .15+ 1.39 .39+1.99 | .705
(Ibs) 69.5+11.7 69.6+11.5 (.676) 63.1+14.0 63.5+14.0 (.456)
-1.47+2.29 17+45 | .263°
BFM (lbs) | 74.6+22.1 73.1422.2 (.031°) 66.9422.1 67.0+22.7 (.244°)
BMI -.23+.40 -0.08+.57 | .513
(kg/m?) 31.1+4.9 30.945.0 (.048) 29.615.4 29.545.1 (.598)
Visceral -2.66+ 426
Fat Area -4.25+ 5.95 5.08
cm? 162.3+46.2 | 158.1+46.1 (.015) 157.0+£58.3 | 154.3+58.3 (.062)

Values are presented as mean + SD

" p- values for the null hypothesis that there is no difference between pre and post.

** p- values for the null hypothesis that there is no difference between groups.

a: Mann-Whitney U test

b: Wilcoxon Signed Rank test
Abbreviations. TA: transcriptomic age, TAaccel: Transcriptomic Age Acceleration (transcriptomic age minus chronological age), PHQ-9: Patient
Health Questionnaire 9 item depression module, PSS-10: 10 item Perceived Stress Scale, PSQI: Pittsburgh Sleep Quality Index, SMM: Skeletal
Muscle Mass (Ibs.), BFM: Body Fat mass (lbs.), BMI: Body Mass Index.
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Secondary Analyses: Gene Expression Analyses, Depression, Sleep, and Stress Ratings
There was a significant decrease in mean PHQ-9 (depression) and PSQl (sleep) (p=.002 and
p=.042), over time for the experimental group but no significant change for control group
(p=.063 and p=.158 respectively) (Table2). Lastly, there was no significant change in mean PSS-
10 and SMM (p=.53 and p=.676 respectively) for the experimental group and similarly for the
control group (p=.054 and p=.456). However, no changes in stress, sleep, or depression ratings
displayed group x time statistical significance.

The group x time interaction gene expression analysis identified 98 genes that were
differentially expressed using routinely accepted fold change cutoff values (86 up-regulated
genes >1.5-fold change, and 12 down regulated genes <.5-fold change in the exercise group
compared to control group). This number is insufficient for secondary enrichment analyses.
Using more liberal fold change values of >1.2 and < .8 for this exploratory analysis, 2,653 DEGs
were identified (1075 up-regulated genes >1.2-fold change, and 1778 down-regulated genes
<.8-fold change) (Supplementary File 1). In addition, 1,365 Gene Ontology (GO) terms, 477 gene
upstream regulators, 231 chemical upstream regulators and 259 diseases were found to be
significantly enriched before correction for multiple comparisons (Supplementary File 2).

Pathway analysis was performed using Advaita Bio’s iPathwayGuide, which scores
pathways using the Impact Analysis method (Draghici et al., 2007; Tarca et al., 2009). Impact
analysis uses two types of evidence: i) the over-representation of differentially expressed (DE)
genes in a pathway and ii) the perturbation of that pathway computed by propagating the
measured expression changes across the pathway topology. The top five pathways identified by

this analysis and their associated p-values are as follows: Human T-cell leukemia virus 1
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infection (p-value= 2.033e-7, p-value (FDR)= 3.888e-5, p-value (Bonferroni)= 6.851e-5),
pathways in cancer (p-value= 2.308e-7, p-value (FDR)= 3.888e-5, p-value (Bonferroni)= 7.776e-
5), neurotrophin signaling pathway (p-value= 4.670e-7, p-value (FDR)= 5.246e-5, p-value
(Bonferroni)= 1.574e-4), RNA degradation (p-value= 1.140e-6, p-value (FDR)= 5.939e-5, p-value
(Bonferroni)= 3.842e-4), and autophagy (p-value= 1.190e-6, p-value (FDR)= 5.939e-5, p-value
(Bonferroni)= 4.009e-4). A detailed description of these results, including pathway diagrams, is

shown in Supplementary File 2.

Discussion
In this randomized controlled trial examining the effects of HIIT on an RNA-based
measure of biological age, participants in the HIIT group showed greater reductions in TA and
TAaccel than did those in the no-exercise control group. This improvement in biological age
coincided with improvements in body composition, ratings of sleep quality, and ratings of
depression within the exercise group. These results suggest that exercise exerts a causal effect
on age-related patterns of gene expression, and that such effects could potentially contribute

to the positive health and longevity effects associated with exercise.

Transcriptomic Age and Transcriptomic Age Acceleration
Both groups began the trial with positive transcriptomic age acceleration. In other
words, mean transcriptomic age (as computed by the TRAP algorithm) was significantly higher
than mean chronological age in both groups. This baseline age bias most likely stems from

methodological issues discussed below, and affected both groups similarly (i.e., exercise and
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control groups did not differ in their baseline biological age measures). In the exercise group,
TA and TAaccel decreased following the HIIT protocol, while both measures increased in the
control group over the same timeframe. A 3.59-year reduction in TA was observed in the
exercise group, which can be interpreted as the average gene expression pattern among
exercise participants changing to reflect that of a person 3.59 years younger than their mean
baseline TA. The 6.87-year difference in TA change, and 7.04-year difference in TAaccel change
between exercise and control groups was statistically significant.

The only significant change observed in the control group was increased TA, and the
authors propose two potential mechanisms for this. Control participants were asked to avoid
altering their typical physical activity levels during the duration of the four-week control
protocol. It is possible that once under observation, participants inadvertently lowered their
activity levels. In essence, a Hawthorne effect (Merrett, 2006). Secondly, it is important to note
the impact that loneliness, social exclusion, and isolation can have on gene expression (Steve
W. Cole, 2009; S. W. Cole et al., 2015). Many control participants expressed disappointment at
not being included in the exercise group. It is at least conceivable that this adversely affected
their transcriptomic age.

Of note was that the TRAP model consistently overestimated participant age in all blood
samples. The authors believe this is due to differences in data type between the TRAP training
dataset and our sample. The TRAP model was developed and trained using microarray data
(Peters et al., 2015), while our transcript counts were derived from RNAseq data. However,

since this discrepancy applies equally to all blood samples regardless of group assignment or
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time of collection, there is no reason to believe that this introduced any bias into the observed

magnitude and direction of TA change.

Gene Expression

The use of a gene expression-based measure of biological age has the added advantage
of facilitating additional transcriptomic analyses which could shed light on the mechanisms
underlying exercise’s effect on aging processes. However, in an untargeted genome-wide
expression analysis, 12 HIIT sessions had only modest effects on gene expression.

Although there were transcriptomic effects associated with HIIT, less than 100 genes displayed
a fold change greater than 1.5 or less than .5, the values typically used to identify DEGs. This
DEG count is less than the amount required for subsequent higher order bioinformatic analyses
such as a functional enrichment analysis.

While these modest findings may seem surprising given the systemic physiological
changes induced by exercise, it is important to remember that this trial examined the effects of
a 1-month HIIT protocol on steady state (baseline) gene expression levels. The follow-up blood
draw occurred approximately 48 hours after the final exercise session, meaning that whole
genome expression was assessed while the participants were not experiencing the acute
physiological aftereffects of exercise. Given the small dose and duration of our exercise
protocol and the small sample size, this modest between group effect may not be surprising

An exploratory genome-wide discovery analysis using more liberal fold change cutoff
values (greater than 1.2 or less than .8) revealed 1075 upregulated transcripts and 1778

downregulated transcripts potentially associated with HIIT (Supplementary File 1). The
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subsequent bioinformatic analyses associated with these DEGs were performed using Advaita
Bio’s iPathwayGuide. This analysis suggests that autophagy processes, cancer pathways,
neurotrophin signaling pathways, mRNA degradation processes, and other pathways were
modified by HIIT (Supplementary File 2). These modifications are particularly interesting in the
context of aging, especially autophagy. Various age-related signaling pathways were modified
including mTOR signaling, AMPK signaling, PI3K signaling, and insulin signaling pathways.
Inhibition of 3 out of 5 MTORC1 complex component genes (Raptor, Deptor, and mTOR) was
noteworthy, since mTORC1 inhibition is associated with increased lifespan in every species
studied so far, including humans (Papadopoli et al., 2019; Weichhart, 2018). Given the
exploratory nature of these enrichment analyses, and the relatively liberal threshold for DEG
detection however, these results should be treated as descriptive hypotheses to be tested in
future research using more rigorous methods.

Body Composition and Self-Reported Measures of Sleep Quality and Depression
Previous work suggests that the effects of exercise on biological age are mediated by changes in
body composition (Kresovich et al., 2021). This seems to support our findings, as improvements
in BMI, body fat mass, and visceral fat area were observed in the exercise group over time.
Improvements in PHQ-9 and PSQI score were also seen in the exercise group over time.

Observed changes to body composition were consistent with previous studies’ findings,
indicating that this study’s specific implementation of HIIT imparted the expected effects
demonstrated in prior investigations. This serves as a positive control, or paradigm validation of

the trial’s specific HIIT intervention. However, it is important to note that none of these
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biometric changes differed significantly across groups, likely due to the limited statistical power

available from this relatively small sample.

Significance

Starting and adhering to a new exercise program is difficult, a fact perhaps best
illustrated by the current sedentary behavior rate in the United States. A recent Center for
Disease Control and Prevention (CDC) telephone survey estimates that more than 25% of
Americans participate in no physical activity outside of work (CDC, 2022) and contrary to
popular opinion, this is not a uniquely American problem. A large European Union study found
that 53.1% of the adult EU population participated in >4.5 hours of sedentary behavior per day
(Lopez-Valenciano et al., 2020). Inadequate physical activity is no longer just a western problem
either, with the World Health Organization estimating that one third of the global population
aged 15 years or older engages in insufficient physical activity, with some countries, such as
Korea, engaging in >8 hours per day of sedentary behavior on average (Park, Moon, Kim, Kong,
& Oh, 2020).

HIIT is a potential tool to help combat this trend given the decreased time commitment
(Cobbold, 2018; Ito, 2019) and similar (or improved) health benefits to those bestowed by other
forms of exercise (Hannan et al., 2018; Scott et al., 2019), but with increased adherence and
compliance rates (lto, 2019).

Despite the modest gene expression findings generally, the pre-specified hypothesis
regarding HIIT-induced transcriptomic age reversal was proven out by the analysis. Considering

that each exercise participant completed a combined 276 minutes of exercise over 1 month,
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only 2 hours of which was high intensity exercise, the effect of HIIT on biological age appears
promising.

This study further supports the notion that adding even a small amount of exercise can
be beneficial, given that just 12 HIIT sessions were shown to significantly improve TA and
TAaccel. To the authors’ knowledge, this is the first trial to demonstrate the effects of a specific
exercise protocol on a next generation measure of biological age. The results suggest that
exercise exerts a causal effect on age-related patterns of gene expression, and that such effects
could potentially contribute to the positive health and longevity effects associated with

exercise.

Conclusion
A low dose of HIIT over 4 weeks is sufficient to reduce transcriptomic age in sedentary middle-
aged males and females. Other changes to gene expression were relatively modest in
comparison to the transcriptomic age reduction effect size. These findings, along with
modification to autophagic pathways, may indicate a particular HIIT specificity for age-related
biological pathway modulation. The key observations presented here, namely reduced
transcriptomic age, indicate that exercise may potentially improve health and longevity by

altering age-related transcriptional processes.
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CHAPTER FOUR

DISCUSSION

There is a quote attributed to Galileo which reads “measure what is measurable and
make measurable what is not so”. It is an aphorism which lies at the heart of good research
methodology, and its relevance to biological aging is particularly significant.

In the context of aging research, chronological age is readily measurable. The
measurement of biological aging processes, however, is much more elusive. It is easy to
imagine two individuals with different age-related disease risk profiles, different life
expectancies, and different comorbidities, who are the same chronological age. The field of
biological age prediction is as an attempt to measure the dissociation between chronological
age and these age-related health outcomes. Not only are these capabilities informative, but
they are also pragmatic.

Biological age is hard to measure and even harder to change, but new advances in
molecular biology and the well-established virtues of exercise raise an exciting possibility that
we now attempt to seize in this dissertation. Can exercise reduce biological age?

Prior to the creation of valid predictors of biological age, a researcher wishing to assess
the effects of an intervention on aging processes, life expectancy, and age-related disease
would need to design a multi-decade longitudinal trial. Alternatively, they could look for
correlations in retrospective epidemiological data. In either case, a logistically challenging and
expensive research endeavor needed to be undertaken. One that was potentially rife with
confounding and unintentional bias. Biological age prediction models offer an intermediate

step, where the effects of an intervention on biological aging can be assessed over
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comparatively shorter time frames. These studies could provide a basis for selecting
interventions for additional investigation and investment. Therefore, these models would not
take the place of longitudinal validation, but they could catalyze the pace and efficiency of
aging research discovery.

With biological age prediction models, researchers now possess the means to evaluate
the effects of interventions on aging processes within practical time frames. Chapter Two of
this text reviewed a sampling of these models and described the current state of biological age
prediction methodology. The models described there serve as accessible measures of biological
aging, providing a framework for the investigation of biological age modulating interventions. In
numerous cases they are determined to be externally and longitudinally valid predictors of life
expectancy and time-to-disease.

One category of biological age prediction model, transcriptomic age prediction, relies on
gene expression inputs to assess biological age. The underlying transcriptomic data associated
with these models also provides the basis for interesting secondary bioinformatic analyses.
These analyses have the potential to help elucidate the mechanistic interplay between an
intervention and biological age modulation.

It is this type of model, a transcriptomic age predictor, that served as the primary
outcome measure for the experimental trial described in Chapter Three. This trial assessed the
effects of High-intensity interval training on gene expression and transcriptomic age. Reduction
in transcriptomic age was observed in the exercise group compared to the control group.

Exercise is a generally accepted modulator of health outcomes and life expectancy.

However, it has not been previously demonstrated to modulate aging processes via
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transcriptional means. In this way, the trial is significant, and to the authors’ knowledge the first
trial to assess the effects of a specific intervention on a modern measure of biological age. A
secondary hypothesis generation analysis was performed, and multiple age-related pathways
were amongst the most heavily enriched biological processes. Some of these processes
included cancer pathways, neurotrophin signaling, and autophagy signaling. All are age-related,
but of particular interest was the potential exercise-induced up-regulation of autophagic
processes. Future trials with larger samples and larger exercise doses should investigate this
further. Future research is also needed to assess the durability of these effects —i.e., are the
“biological age reductions” observed here persistent over months or years of follow-up, or do
they dissipate over time? Are such effects maintained if participants continue exercising
following study cessation? And perhaps most importantly, do these “biological age” reductions
observed here with exercise accurately forecast increases in health and longevity? These are all
important topics for future research, and this dissertation’s identification of HIIT as a viable
strategy for reducing transcriptomic age in sedentary middle-aged adults provides a highly

feasible paradigm for those future investigations.

Conclusions and Future Directions
The authors conclude that a low dose HIIT intervention is sufficient to reduce
transcriptomic age in sedentary middle-aged males and females. Other changes to gene
expression were relatively modest in comparison to the transcriptomic age reversal effect size.
These changes included potential modification to autophagic signaling, neurotrophin signaling,

and cancer-related pathways. This may indicate a particular HIIT specificity for age-related
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biological pathway modulation. The key trial observations, namely reduced transcriptomic age,
indicate that exercise may potentially improve health and longevity via age-related
transcriptional mechanisms.

Future studies should seek to quantify the biological age modulation capability of other
exercise protocols, with the goal to identify forms of exercise which have the greatest affinity
for biological age modification. Additionally, dose response curves should be established, and

sex specific differences should be quantified.
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-0.3966495
-0.3410379
-0.3060881
-0.2812814
-0.1782137
-0.1246852
-0.3119298
0.01525324
-0.1793618
-0.2266769
-0.1850418
-0.3044191
-0.1215818
-0.2662193
-0.2905454
-0.1464642
-0.4676243
-0.1807555

-0.332162
-0.3483787

-0.218426
-0.0570127
-0.2514549
-0.2903559
-0.0737076

0.5567968
0.55550518
0.55404753
0.55362578
0.55324294
0.55135532
0.55029462
0.54883177
0.54865567
0.54647673
0.54544845
0.54531199
0.54459417
0.54412095

0.5434652
0.54267559
0.54012674
0.53919743
0.53796171
0.53761011
0.53760916
0.53717649
0.53650631
0.53617304
0.53614628
0.53605068
0.53514767
0.53479418
0.53212895
0.53185784
0.52999583
0.52955724

0.5287879
0.52683678
0.52647422

0.5256965

0.5245195
0.52446051
0.52410085
0.52328111
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1.47099954
1.46968317
1.468199
1.46776986
1.46738042
1.46546176
1.46438472
1.46290063
1.46272206
1.46051455
1.45947394
1.4593359
1.45860998
1.45813161
1.457469
1.45667153
1.45410025
1.4531639
1.45191975
1.45156594
1.45156498
1.45112972
1.45045578
1.45012075
1.45009385
1.44999777
1.44909048
1.44873546
1.44606154
1.44578982
1.44392503
1.44348612
1.44271656
1.44076674
1.4404047
1.43962844
1.43845441
1.43839559
1.43803705
1.43722019



BAG3
TCTN1
ZHX1

MYL9
DDX20
PET100
AC079174.1
VSTM1
AASDH
AKAP1
TRIM65
AFF3

coLq
WDR74
COX15
RNU6-60P
CFAP20
SART1
CDCA7L
ZFPL1
TMCC3
AC008764.7
UNC13D
DHRS12
RHBDD2
PLPPR2
CBX1
TMEM218
TBC1D13
ENSG00000274961
RNU4-40P
OSGEP
HS3ST3B1
EXD3
FAM214A
POLL
NKX3-1
YIF1B
AC100835.2
AL627309.7

-0.2615884
-0.3051124
-0.1342493
-0.0159531
-0.4430085
-0.4362205
-0.2036104
-0.5758656
-0.7317649
-0.2185469
-0.4379087
-0.1661235
-0.5466495
-0.1498772
0.06084605
-0.1634298
-0.1866775
-0.3042603
-0.0639965
-0.4549406
-0.2861175
-0.2632673
-0.2286469
-0.2589359
-0.2020571
-0.2957056
-0.1882025
-0.3000107
-0.1503596
-0.1259208
-0.4465834
-0.3183966
-0.1774161
-0.2220811
-0.2856373
-0.3200469
-0.2436954
-0.3984205
-0.3656302
-0.2979935

0.52292194

0.5228695
0.52275595
0.52262378
0.52155221
0.52147926
0.52119332
0.52050224
0.52047212
0.51946709
0.51849793
0.51710788
0.51697961
0.51667768
0.51665073
0.51617827

0.5156232
0.51532803
0.51500376
0.51460269
0.51291232

0.5127003

0.5126595
0.51167822
0.51121368
0.51119506
0.51055178
0.51013318
0.50940128

0.5087276

0.5087088
0.50828067
0.50574946
0.50432839
0.50393682
0.50352752
0.50233225
0.50216046
0.50215371
0.50031727
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1.43686243
1.43681021
1.43669712

1.4365655
1.43549889

1.4354263
1.43514182
1.43445453
1.43442458
1.43342567
1.43246306
1.43108352
1.43095629
1.43065685
1.43063013

1.4301617
1.42961155
1.42931909
1.42899786
1.42860066
1.42692778

1.4267181
1.42667775
1.42570769
1.42524869

1.4252303
1.42459495
1.42418166
1.42345933
1.42279479
1.42277625

1.4223541
1.41986076
1.41846288
1.41807793
1.41767567
1.41650162
1.41633296
1.41632633

1.4145246



TOE1
QTRT2
LRCH1
APEX2
CACNA2D3
ARHGEF19
OGDH
ENGASE
TRERF1
ZDHHC24
AL135818.1
NDUFS4
TMEMS80
GLT8D1
FBXO31
THOCS
DOT1L
AC007969.1
ADARB1
CCDC124
FOLR3
FHL1
AC079922.2
PRKRIP1
IGHG4
GUCY1A3
AC022167.3
BRAP
PDCD2L
TSC22D2
AP003170.4
MFSD3
TBCE
AHDC1
FLCN
ATP6VOA1
PHC1
GSK3A
TRAPPC9
CABLES2

-0.1681936
-0.3482938
0.08718628
-0.4903039
-0.1699026
-0.3029106
-0.3240059
-0.4373334
-0.2807537
-0.1078827
-0.2339124
-0.0698791
-0.1715758
0.08966936
-0.0828242
-0.1389121
-0.4702729
-0.2587203
-0.3067947
-0.1858478

-0.286569
-0.3186283
-0.0833325
-0.2357345
-0.1369804
-0.3265557
-0.5337414
-0.1550853
-0.2535678
-0.1033341

-0.198984
-0.1529965
-0.2358556
-0.2315792
-0.1408546
-0.1757019
0.11513416
-0.1962269
0.00443283
-0.2571972

0.49996678
0.49968486
0.49967179
0.49959658
0.49955912
0.49794048
0.49768512
0.49751757
0.49732753
0.49728092
0.49604442
0.49510358
0.49503705
0.49501254
0.49461207
0.49372199
0.49233873
0.49129732
0.49080789
0.48893116
0.48882891
0.488471
0.4884342
0.48819643
0.48808
0.48772985
0.48678243
0.48677338
0.48632986
0.48517714
0.48415201
0.48350666
0.48346291
0.48264627
0.4825262
0.4824965
0.48212184
0.48189389
0.48003436
0.47937134
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1.41418099
1.41390468
1.41389187
1.41381816
1.41378146
1.41219614
1.4119462
1.41178223
1.41159627
1.41155067
1.41034139
1.40942195
1.40935695
1.409333
1.40894185
1.40807286
1.40672345
1.40570837
1.40523156
1.40340476
1.4033053
1.4029572
1.40292142
1.40269022
1.40257702
1.40223666
1.4013161
1.40130731
1.40087658
1.39975772
1.39876346
1.3981379
1.3980955
1.39730433
1.39718804
1.39715928
1.39679649
1.39657581
1.39477689
1.39413604



IL21R
AC132008.2
CD82

BMX
SLC38A5
HNRNPAB
EEF1DP7
IFRD2
NTNG2
GPR68
FBXO25
PMEPA1
KPNA1
PRR5
ZNF585A
BEX4
CUEDC1
TMEM186
ANKRDS
LONRF1
GHRLOS
MSANTD2
MOSPD1
RBM38
TOP2A
TRPT1
ABAT
MBOAT?7
PRDX2
AL353625.1
NBPF12
YARS
RN7SL130P
CAMKK1
AC024075.2
DGAT2
SOWAHD
JUN
TSPAN17
P2RX5

-0.2147398
-0.2238712
-0.1779405
-0.0289746
-0.1811634
-0.1096536
-0.2218548
-0.4114312
-0.2807018
-0.2247503
-0.1921096
-0.3472359
-0.1520799
-0.3205043
-0.2527989
-0.2424373
0.02948843
-0.5360925
-0.0198612
-0.2163587
-0.3892258
-0.4785298
-0.2132502
-0.2544374
-0.0373594
-0.2924127
-0.2883687
-0.1966464
-0.3478633
-0.3614803

-0.089666
-0.1730098
-0.0271253

-0.370001
-0.3693556
-0.0830078
-0.3168653
-0.1116049
-0.1328349
-0.1109969

0.47909135
0.47851933
0.47760695
0.47637353

0.4754105
0.47511875
0.47487196
0.47458403
0.47420376
0.47372432

0.4734976
0.47323352

0.4721168
0.47181225
0.47162179
0.47131623
0.47118408
0.47075986
0.47054878
0.47014477
0.47011801

0.4686362
0.46830622
0.46750068
0.46741854
0.46447052
0.46288555
0.46241724
0.46239217
0.46214629
0.45952885
0.45902501
0.45889858
0.45880781
0.45876863
0.45862504
0.45831912
0.45805131
0.45744195
0.45692097
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1.3938655
1.39331294
1.39243207
1.39124214
1.39031376
1.39003263
1.38979487
1.38951753
1.38915132
1.38868975
1.38847153
1.38821741
1.38714326
1.38685047

1.3866674
1.38637374
1.38624675
1.38583919
1.38563644
1.38524847
1.38522277
1.38380073
1.38348425
1.38271199
1.38263327
1.37981086
1.37829581
1.37784848
1.37782453
1.37758973
1.37509267
1.37461252
1.37449206
1.37440559
1.37436827
1.37423148
1.37394012
1.37368509

1.373105
1.37260924



AP000919.1
TAF12
MAP1LC3B2
MAN1B1
NIPSNAP1
NKAPP1
CLN8
CPEB3
EPHB1
HPGD
RCC1
SPSB2
SENP3
SPACA6
MEMO1
IGHGP
A2M-AS1
GAB1
PTOV1
TAGLN
PCNX3
BOP1
GRK3
ALG6
AL162578.1
IFT122
LINCO0174
COPG1
DGAT1
SPTAN1
MEGF6
ETV3
LINCO0649
GEMINS
SIRT7
AMT

NAB2
P2RX1
APEH
PLEKHM1

0.1505438
-0.1191498

-0.259206
-0.2013445
-0.0921137
-0.3594402
-0.4665033
-0.1146493
-0.0828387

-0.228964
-0.3098555
0.14370278
-0.1538807
0.22774673
-0.2066501
0.02551773
-0.3802431
-0.4423975
-0.1514213
-0.3893765
-0.3306968
0.04417632
-0.1023915

-0.227763
-0.2598738
-0.4883499
-0.3508658
0.03646722
-0.1366957
-0.3278315
-0.3007511
-0.5106206
-0.1398142
-0.5218342
-0.2666454
-0.3838838
-0.0796287
-0.2071179
-0.0977164
-0.2907388

0.45647667
0.45452372
0.45420839
0.45305375
0.45268809
0.45246307
0.45212342
0.45150529
0.45024485
0.44967158
0.44956347
0.44853312
0.44837826
0.44798515
0.44765464
0.44677492
0.44631815
0.44631704
0.44596372
0.44523638
0.44492871

0.4446433
0.44408634
0.44370986
0.44251453
0.44175572
0.44149608
0.43950329
0.43929915
0.43851773
0.43841662
0.43779727
0.43769692
0.43687985
0.43672136
0.43661135
0.43644874
0.43636963
0.43633416
0.43549706
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1.37218659
1.37033034
1.37003086
1.36893482

1.3685879
1.36837445
1.36805233
1.36746631
1.36627212
1.36572932
1.36562698
1.36465202
1.36450554

1.3641338
1.36382132
1.36298995
1.36255848
1.36255744
1.36222378
1.36153718
1.36124685
1.36097758
1.36045227
1.36009729
1.35897087
1.35825629
1.35801186
1.35613734
1.35594546
1.35521123
1.35511625
1.35453463

1.3544404
1.35367354
1.35352483
1.35342163
1.35326909
1.35319488
1.35316162

1.3523767



RN7SL368P
GAS2L1
HDACS8
RAP1GAP2
AKIRIN2
TMEMA40
ACOT11
GTF2H2B
E2F5

SFI1
AC099811.5
GGCX
C8orf58
RNF5
NUBP1
SNRNP40
799129.4
AC003072.1
TCIRG1
FLNB

KIF3C
COX10-AS1
ARL13B
NECTIN1
UBR5-AS1
ERVK13-1
ATRN
CCM2
ARAP3
SCAMP3
KIF27
GTPBP1
ZNF362
SH3GL1
MRPL2
ACP1
AC079331.2
TLE3
PANX2
TFRC

-0.1262462
-0.2637717
-0.0741331
-0.1866019
-0.1080695

-0.117485
-0.0608947
-0.0929866
-0.2430937
-0.3192002
-0.1168342
-0.4969922
0.08370768
-0.1441914

-0.035427
-0.3504302
-0.3344965
-0.3352077
-0.0642302
-0.3492828
-0.3230062
-0.2789203
-0.1146617
-0.1075764

0.0999111
-0.2165189
-0.1435705
-0.2290329
-0.2830255
-0.1023459
0.13453808
-0.0262024
-0.0313056
-0.0626953

-0.397059
-0.0921607
0.00387469

-0.196971
-0.0986921

-0.190036

0.43547659
0.43400713
0.43388649
0.43349058
0.43280411
0.43276362
0.43182095
0.4317098
0.43170803
0.43084812
0.43032094
0.4303059
0.4302883
0.43004229
0.429934
0.42992206
0.4292774
0.42884183
0.4281949
0.42812348
0.42784945
0.42753199
0.42739219
0.42724789
0.42672161
0.42625026
0.42575785
0.42562194
0.42561085
0.42557279
0.42277333
0.42248349
0.42247543
0.42215311
0.42211802
0.42198409
0.42192171
0.42139558
0.42069678
0.4203619
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1.3523575
1.35098076

1.3508678
1.35049713
1.34985469
1.34981681
1.34893511
1.34883119
1.34882953
1.34802581
1.34753332
1.34751926
1.34750283
1.34727307
1.34717194

1.3471608
1.34655896
1.34615248
1.34554897
1.34548237
1.34522682
1.34493084
1.34480052
1.34466602
1.34417559

1.3437365
1.34327794
1.34315141
1.34314108
1.34310565
1.34050196
1.34023268
1.34022519

1.3399258
1.33989321
1.33976883

1.3397109
1.33922241
1.33857389
1.33826321



TRIB1
GSKIP
ATGOB
RN7SL600P
GOLGA2P5
ZNF230
AC119428.2
USP36
VNN1
NSUN5P1
AATF
SNHG15
AC009404.1
AF131215.4
MPIG6B
PLEK2

F5
ZDHHC14
KCNH2
RNF169
DGCR6L
CLDN5
NPRL2
STAM
UBA1l
MTMR4
RECQL5
PPP5C
PDE6B
DEF8
RAB4A
ST20-AS1
POFUT1
ZFYVE16
SMUG1
RHOB

NRM
AC008850.1
ATP6V1E2
CBR3-AS1

-0.482512
-0.2332573
-0.2008824
-0.1542351
-0.1245028

0.00410286
-0.0115124
-0.3533773
-0.4433843
-0.0155447
-0.1552241
-0.3664954
-0.0083607
-0.0919612
-0.2921812
-0.1803954
-0.1728106

-0.021213
-0.2532273
-0.2810418
-0.1759298
-0.4214938
-0.0714837

0.03744119

0.01328011
-0.3166795
-0.1175817
-0.2060544

-0.19342
-0.2503439

-0.154305
-0.1357741
-0.2827934
-0.2324554
-0.0029297
-0.1486932
-0.2198614
-0.4328104
-0.3530385
-0.1458184

0.42016769
0.42012382
0.42012331
0.41950536
0.41934277
0.41902239
0.41893714
0.41891543
0.41885153
0.41779035
0.41745385
0.41742161
0.41625987

0.4161656
0.41606634
0.41435279
0.41396811
0.41354824
0.41348993
0.41314835

0.4131157
0.41284426
0.41161084
0.41107462
0.41071883
0.41031603
0.41028307

0.4100413
0.40995218
0.40980459
0.40910255
0.40868748
0.40863571
0.40833703
0.40798151
0.40752624
0.40733246

0.4073214
0.40712443
0.40700287
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1.33808308
1.33804239
1.33804191
1.33746891
1.33731819
1.33702124
1.33694224
1.33692213
1.33686291
1.33587993
1.33556839
1.33553854
1.33446353
1.33437632
1.33428453
1.33270068
1.33234538
1.33195768
1.33190385
1.33158853
1.33155839
1.33130789
1.33017018
1.32967588
1.32934801

1.3289769
1.32894654
1.32872385
1.32864178
1.32850586
1.32785954
1.32747757
1.32742993
1.32715514
1.32682813

1.3264095
1.32623134
1.32622118
1.32604012

1.3259284



NUP37
AC135050.6
AC103703.1
BATF
ZNF568
DMAP1
ADHFE1
RASGRP1
TM2D2
MRM3
SNORAS1
OAT
TNNT1

NF1
ZCWPW1
HADHB
KRT23

IRS1

GYPB
SH2B1
NQO2
SH2D1B
PDCD6IPP2
TGS1

LSP1
DUSP16
UBE2M
DEFA3
SLC9B2
Y_RNA
MTCO1P11
CRADD
AL162274.2
MAP3K6
KPNAS
CYB5R1
TBL3
AL135999.1
AC092620.2
PTCD1

-0.3089221

-0.334056
-0.2508415
0.00446394
-0.1159454
-0.4210306
-0.2562397
-0.1835697
0.19580425
-0.2809332
-0.1010323
-0.2180063
-0.3182025
-0.1331046
-0.1291002
-0.1756553
-0.1062494
-0.0653654
-0.1731154
0.03058466
-0.1007105
-0.3825377
-0.1401386
-0.0218344
-0.2148102

-0.344975
-0.0236636
-0.4843099
-0.2060556
-0.1546488
-0.2490509
-0.2666571
-0.3678429
-0.1368724
0.04957496
-0.0261975
-0.0175065
-0.1581626
-0.2730135
-0.4666319

0.4069239
0.40659384
0.40623439
0.40587711
0.40532226
0.40528373
0.40482288
0.40455708
0.40420713
0.40412192
0.40350221
0.40301014
0.40299394
0.40293887
0.40204687
0.40129253
0.40124104
0.40035121
0.40011663
0.40001086
0.39960337
0.39857813
0.39822719
0.39822294
0.39722981
0.39704258
0.39673603

0.3965464
0.39643524
0.39603163
0.39593286
0.39565628
0.39547715
0.39513536
0.39497866
0.39474512
0.39426763
0.39420075
0.39357875
0.39357555
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1.32585582
1.32555252
1.3252223
1.32489416
1.32438471
1.32434934
1.32392636
1.32368246
1.32336143
1.32328326
1.32271497
1.3222639
1.32224905
1.32219858
1.32138134
1.32069061
1.32064347
1.31982917
1.31961459
1.31951785
1.3191452
1.31820809
1.31788748
1.31788359
1.31697669
1.31680579
1.31652601
1.31635298
1.31625156
1.31588338
1.31579329
1.31554106
1.31537773
1.31506614
1.31492331
1.31471047
1.31427542
1.31421448
1.313648
1.31364508



KIAA1324
GP6
SOCS4
CUEDC2
GCNT1P3
DRAM1
CHI3L2
POLD2
SAC3D1
TRPM6
MIS12
TMEM458B
NRGN
TEX2

PHB
UNC45A
FAMA45A
CTDP1
ZNF573
HIST2H2BE
ALA450384.2
LINCO0173
AlM2
AVEN
DNAJA4
BRF2
SLC16A10
HIST1H3H
BLOC1S3
RHBDD3
AC132938.5
AC093010.2
ARID5A
GEMIN7
NOL10
RBM47
TUBGCP6
NT5M
LINCO1506
FER

-0.115381
-0.3413907
0.17807252
-0.0168815
-0.0618248
-0.3322266
-0.2694522
-0.6063309
-0.1186426
-0.0385792
-0.1580441
-0.3211783
-0.2929701

-0.269787
-0.2742423
-0.1069037
-0.2949867
-0.1357414
-0.2927845
-0.1524721
-0.3930081

0.0755757
-0.0901725
-0.1518255
-0.0476329
-0.1187187
-0.0609458
-0.3501192
-0.3423568
-0.0683995
-0.1306595
-0.0997504
-0.4668407
0.11219303
0.18742876
-0.1714522
-0.2708615
-0.4010784
0.08258465
-0.2987946

0.39352383
0.39324056
0.3930848
0.39278227
0.39217885
0.39171332
0.39162479
0.391504
0.39142442
0.39127864
0.39127826
0.39110701
0.3907631
0.39037677
0.39015115
0.39004892
0.38996464
0.38972825
0.38946218
0.38923497
0.38880193
0.38870323
0.38863344
0.3884988
0.38848298
0.38770422
0.38613693
0.38574643
0.38448355
0.38387115
0.38358678
0.38344867
0.38295062
0.38291079
0.38282172
0.3824509
0.38231107
0.38203407
0.38181691
0.38161693
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1.313598
1.3133401
1.31319831
1.31292297
1.31237394
1.31195053
1.31187002
1.31176019
1.31168784
1.3115553
1.31155495
1.31139928
1.31108671
1.31073567
1.3105307
1.31043784
1.31036129
1.3101466
1.30990499
1.30969871
1.30930566
1.30921608
1.30915275
1.30903058
1.30901623
1.30830982
1.30688929
1.3065356
1.30539241
1.3048384
1.30458124
1.30445635
1.3040061
1.3039701
1.30388959
1.3035545
1.30342816
1.30317793
1.30298178
1.30280118



KCNE1
GAL3ST4
FAM173A
FAMS50A
NEMP2
SCAF1
RAB11FIP4
AC010894.5
LRRC61
GAMT
TOX4P1
TRMT61A
RABGEF1
NUP133
IL2RA
ALOX5
TIMMS50
ZFYVE1
LUCAT1
PCK2
AC242376.2
ANAPC7
AP2A1
NCAM1
GTPBP2
ZER1
TPM2
AC007038.2
CACNB3
ABHD5
NR1D2
TMEM69
LINCO0959
IP6K1
WASH2P
EFTUD2
DUSP10
HAPLN3
SRPK1
HIST1H2AE

0.12806852
-0.2804141
-0.0895083

-0.256601
-0.2226338
-0.2999622
-0.1860819
-0.1023152
-0.0883192

-0.016461

0.04710268

0.01055551
-0.1764644
-0.2315316
-0.1610351
-0.1150462
-0.1399033
-0.1736327
-0.2386506
-0.1444592
-0.0294897

-0.037771
-0.327667
-0.1767601
-0.1488745
-0.2004651

0.09615399
-0.1767713
-0.1343614
-0.1891572
-0.1528977
-0.0751871
-0.2013845
-0.1362551
-0.2417434
-0.1088806
-0.2364224

0.07273678
-0.0051964
-0.2554516

0.38143265
0.38105708
0.38102031
0.38094476
0.38082985
0.38067499
0.38032124
0.38021874
0.37886425
0.37878902
0.37863191
0.37849884
0.37841624
0.37731891
0.37721016
0.37658682
0.37658378
0.37651868
0.37626211
0.37620306

0.3757574
0.37447155
0.37356591
0.37292372
0.37230629
0.37209425
0.37173228
0.37163163

0.3714787
0.37136211

0.3712742
0.37110839
0.37076281
0.36958297

0.3693385
0.36900176
0.36850897
0.36812054
0.36753651
0.36713528
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1.30263478
1.30229571
1.30226252
1.30219432
1.30209061
1.30195085
1.30163166
1.30153918
1.30031778
1.30024998
1.30010839
1.29998848
1.29991405
1.2989257
1.29882779
1.29826673
1.298264
1.29820542
1.29797456
1.29792143
1.29752056
1.29636461
1.29555109
1.29497453
1.29442044
1.29423021
1.29390553
1.29381526
1.29367812
1.29357357
1.29349475
1.2933461
1.29303633
1.29197931
1.2917604
1.29145893
1.29101787
1.29067033
1.29014794
1.28978919



HGSNAT
SYNGR1
MRM1
RAB11FIP2
CDC14B
TRMT2A
AL139246.5
SLC25A11
ICAM4
CLU
FKBP14
STK39
MASTL
LMNA
MTHFSD
AP000350.6
CAMK2D
C3AR1
PDzZD4
CD27-AS1
MMP9
ABCG1
NLRP12
ARL2
C220rf39
MAF
SIAH1
TSPAN18
NOA1

PXK
PPP1R12C
SCAMP4
SCN1B
SMOX
UBIAD1
FCHO1
KCTD9
KIAA0232
CST7
PAXBP1-AS1

-0.1074215
-0.1489139
-0.1978006
-0.1072883
-0.1863541
0.02654285
0.10072249
-0.0892464
-0.0960881
-0.1869963
-0.3347579
-0.0303229
-0.1825676
-0.1437981
0.12732865
-0.1011546
-0.2782453
0.01173705
-0.2187484
-0.1493033
-0.2474186
-0.2410365
-0.0387351
-0.3653601
-0.3427197
-0.2196775
-0.0067269
0.05109312
-0.0220366
-0.2074391
-0.0761258
-0.2049999
-0.4334039
-0.2203589
-0.2607539
-0.1166249
-0.3796829
-0.2020164
-0.2958905

-0.12634

0.36628993
0.36510134
0.36504826
0.3637445
0.36368706
0.36360388
0.36319737
0.36316118
0.36291273
0.36288364
0.36246299
0.36185544
0.3617723
0.3617544
0.36172047
0.36170209
0.36152056
0.36125465
0.3611508
0.36086491
0.36050062
0.35975338
0.35962308
0.35960446
0.35955845
0.35949691
0.35926317
0.35885408
0.35884758
0.35874814
0.35862815
0.35799909
0.35785494
0.35762634
0.35757871
0.35718705
0.3571709
0.35685597
0.35644731
0.356427
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1.28903366
1.2879721
1.28792471
1.28676135
1.28671011
1.28663593
1.28627344
1.28624118
1.28601969
1.28599376
1.28561885
1.28507756
1.28500351
1.28498756
1.28495735
1.28494098
1.2847793
1.28454253
1.28445006
1.28419555
1.28387133
1.28320653
1.28309064
1.28307407
1.28303316
1.28297843
1.28277058
1.28240689
1.28240111
1.28231272
1.28220607
1.28164712
1.28151907
1.28131602
1.28127372
1.28092592
1.28091159
1.280632
1.2802693
1.28025128



XPR1
SLC37A3
DENND5A
DHX35
GCN1
MRPS30
NBPF11
uQccs
LZTR1
USPL1
PPP1R21
OGFOD1
DPY19L4
PTGIR
PITRM1
UBE2Q2P1
NTAN1
NDUFV1
TPM1
MAST3
SLC25A43
COMTD1
USP46
RNU6-892P
NCOR2
PIGP
JAKMIP2
TSPAN33
CTDSPL2
GOLGA2
MCEE
RNU6-611P
AC026401.2
DDHD2
LINC02397
RHOT1
ZMIZ2
FAAP100
TMEDS
PYURF

-0.5246787
0.00688956
-0.2532989

-0.325838
-0.4649605

-0.356943
-0.0219041
-0.2688658
-0.2687327
0.00720297

0.1162695
-0.0854064
-0.2303069
-0.0823818
-0.2694549
-0.2642683
0.01519603
-0.0528541
-0.1961086
-0.0838027
-0.4066433
-0.4304424
0.02646187
-0.0096946
-0.0730915
-0.5030071
-0.4884988
-0.2383935
-0.2507573
-0.2303052
-0.0514035
-0.1827913
-0.1581531
-0.2179965
0.07282417
-0.1144671
0.00330417

-0.341996
-0.2729483
-0.2860079

0.35631359
0.35529016
0.35493384
0.35431297
0.35428893
0.35370745
0.35360322
0.35298749
0.35290428
0.35276192
0.35260056
0.35242412
0.35209864
0.35175539
0.35174768
0.35163267
0.35155881
0.35145746
0.35142394
0.35119823
0.35116123
0.35092927
0.35088545
0.35086646

0.3506475
0.35037043
0.35000576
0.34979065

0.3497751
0.34964867
0.34923539
0.34855826
0.34808769
0.34798809
0.34770621
0.34726817

0.3472367
0.34689901
0.34658986
0.34589043
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1.28015065
1.27924284
1.27892693
1.27837666
1.27835535
1.27784022
1.2777479
1.27720268
1.27712902
1.277003
1.27686019
1.27670404
1.27641603
1.27611239
1.27610556
1.27600384
1.27593852
1.27584889
1.27581924
1.27561966
1.27558694
1.27538187
1.27534313
1.27532634
1.2751328
1.27488793
1.27456572
1.27437569
1.27436196
1.27425028
1.2738853
1.27328755
1.2728723
1.27278442
1.27253577
1.27214945
1.2721217
1.27182397
1.27155147
1.27093516



NGLY1
HRK
ABCA2
MCM7
ASRGL1
PNKP
FAM160B1
THEMIS
MIATNB
TTI2

TSR3
FAMS89B
HM13-IT1
AC008610.1
ADSL
AP2A2
NDUFA8
AQP10
ZNF692
LRRC47
DNAIJC11
TNFRSF18
FOXP1-IT1
ZNF581
RFX1
PPP2R2D
CREBBP
CHST13
coQs8B
FCER2
POLDIP3
FAM174B
NEURL1
CCs
C5orf63
OXSR1
CccDC170
ATAD3A
TRAV17
HAL

0.00386638
-0.1158205
-0.5626393

0.0713182
-0.1085534
-0.2141952

6.28E-04
-0.1925606
-0.2633099
-0.0515892
-0.1793451
-0.2375985
-0.137176
-0.1850678

0.0672639
-0.1321578

0.00699929
-0.2356023
-0.1787109
-0.0536163
-0.1280771
-0.1902915
-0.1424313
-0.1364686
-0.1308228
-0.0268387
-0.0726447
-0.0085111
-0.2033539
-0.4883237
-0.1251261
-0.0420986

-0.240091
-0.1666029
-0.2815439

0.07981769

0.22752851
-0.2874766
-0.0362644
-0.2610438

0.34578178
0.34570173
0.3454925
0.34544437
0.34519991
0.344968
0.34480149
0.34438417
0.3442277
0.34421123
0.34378497
0.34318913
0.34315049
0.34314449
0.34313773
0.34309572
0.3430715
0.34266739
0.34237781
0.34228893
0.34215285
0.34208725
0.3420111
0.34197331
0.34190961
0.34183493
0.34139672
0.34109649
0.34065633
0.34058055
0.34054115
0.3395786
0.33938682
0.33909618
0.33907111
0.33901395
0.33876502
0.33841721
0.33812417
0.33802306
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1.27083945
1.27076894
1.27058466
1.27054227
1.270327
1.27012281
1.26997623
1.26960892
1.26947123
1.26945674
1.26908172
1.26855769
1.26852371
1.26851844
1.2685125
1.26847556
1.26845426
1.26809901
1.2678445
1.26776639
1.26764682
1.26758918
1.26752228
1.26748907
1.26743311
1.26736751
1.26698261
1.26671898
1.26633256
1.26626605
1.26623146
1.26538693
1.26521873
1.26496387
1.26494189
1.26489178
1.26467354
1.26436869
1.2641119
1.2640233



XK

GOLIM4
GPHN
TOR2A
TSTA3
MTIF2
PACS2
PAXIP1-AS1
TCAF2
LRRC8A
IGLC2
GPS1

H6PD
CERS5
SETD6
AC012368.1
PEX16
MTMR11
ITSN1
QSOX2
CCDC191
B3GALT4
BSG

DAPK2
LINC02035
AC013264.1
THAP7
DSTYK
PTPN11
EXO5
FAAP20
SRM
LYRM9
RN7SL200P
JPT2
GGACT
IGHMBP2
EPS15L1
CIPC
FRMDA4A

-0.1231095
-0.2023103
-0.1609478
-0.2046227
-0.0929294
0.03131453
-0.3720201
-0.1086272
0.0053998
-0.1031996
-0.1016147
0.04423065
0.07798604
0.07758708
-0.1961313
-0.0099041
-0.2317357
-0.1773196
-0.317525
-0.068606
-0.096852
-0.2987378
-0.2499639
-0.1263049
-0.1341412
-3.10E-04
-0.5411695
-0.0746474
-0.147956
-0.0155847
0.08962832
-0.0564346
-0.1570537
-0.2883969
-0.2128382
-0.2723953
-0.5074483
-0.0512358
-0.0556217
-0.3380957

0.33769934

0.3375674
0.33746355
0.33722853
0.33694281
0.33691832
0.33677725
0.33651203
0.33627418
0.33616142
0.33606158
0.33573965
0.33573644
0.33546026

0.3352273
0.33508482
0.33462377
0.33459387
0.33445269
0.33418009
0.33389974
0.33361922
0.33314362
0.33281908
0.33270825
0.33259344
0.33255296
0.33253574
0.33225247
0.33204793
0.33201255
0.33186163
0.33161539
0.33160813
0.33127703
0.33124098
0.33093447
0.33062853
0.33027345
0.32996374
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1.26373971
1.26362414
1.26353318
1.26332736
1.2630772
1.26305575
1.26293225
1.2627001
1.26249195
1.26239327
1.26230591
1.26202427
1.26202146
1.26177989
1.26157616
1.26145157
1.26104851
1.26102237
1.26089897
1.26066075
1.2604158
1.26017074
1.25975538
1.25947203
1.25937528
1.25927506
1.25923972
1.25922469
1.25897748
1.258799
1.25876812
1.25863645
1.25842164
1.25841531
1.25812653
1.2580951
1.25782784
1.25756113
1.25725166
1.25698179



SLC10A7
EIF5A2
LSM10
CDC42EP4
PI3

PSMA®G6
LINC01252
DBR1
NCAPH2
ISOC1
AC125437.2
PLCB1
RAB33B
FANCE
DLGAP4
TRPS1
EMC8
CRISPLD2
CORO1A
MAN1A1
FAF1
BCL2L1
MESDC1
AC012645.1
DLG1
GCDH
DNAJB2
MEDS8
PDXK
Y_RNA
POP7
KIFAP3
C140rf80
ATP6AP1
FECH
GALNS
CCDC9%4
SDSL
ATXN10
AC022098.1

-0.2092143
-0.0715938
-0.1298749

-0.208618
-0.2027383
-0.0613662
-0.1798688
-0.3186823
0.05184511
-0.0603541

0.0070033
-0.0591847
-0.0548638
0.00841767
-0.1698516
-0.0097543
-0.1626601
-0.1246986
-0.2407758
-0.1448974
-0.1774553
-0.1199657
-0.2209351
-0.1056793
-0.1207002
-0.0749604
-0.1670054
-0.2580009
-0.2839079
-0.1721769
-0.2160421
-0.1295218
-0.3196419
-0.0871403
-0.1933723

-0.023196
-0.2674219
-0.2058582
-0.0255319
0.00246826

0.32993282
0.32989818
0.32919218

0.3289538
0.32840811
0.32816573
0.32794604

0.3278146
0.32774383

0.3277371
0.32726001
0.32713681
0.32699806
0.32682409
0.32678016
0.32659014
0.32559596
0.32547116
0.32495604
0.32478246
0.32447912
0.32439646
0.32425018
0.32413532
0.32395702
0.32373717
0.32365591
0.32333196
0.32327255
0.32302868
0.32294642
0.32290394
0.32288641
0.32285501
0.32281496
0.32248106
0.32240327
0.32239122
0.32187789
0.32187218
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1.25695485
1.25692466
1.25630973
1.25610216
1.25562713

1.2554162
1.25522504
1.25511069
1.25504912
1.25504326

1.2546283
1.25452116
1.25440052
1.25424926
1.25421107
1.25404589
1.25318201
1.25307361
1.25262627
1.25247556
1.25221225
1.25214051
1.25201356
1.25191387
1.25175917
1.25156842
1.25149793
1.25121695
1.25116542
1.25095395
1.25088263
1.25084579
1.25083059
1.25080337
1.25076865

1.2504792
1.25041178
1.25040133
1.24995651
1.24995156



AC104695.2
VAMP2
RHOBTB3
AP001189.1
ENO2
ZFHX2-AS1
ALKBH2
RASGEF1A
C3o0rf18
LAMTOR2
UTP14A
ZNF620
IRF2BP1
TJP2
AC231981.1
FUK

SMC2
GTF2A1
GID4

PHF2

GBF1
UPF3A
AC114490.1
AC134407.3
ZNF576
AC027279.1
AAAS

TNIP2
C3orf62
BLOC1S5
CASK
SMAD1
DPP9
TNFAIP1
SVIL

CD5
SHKBP1
ABHD2
EFNB1
STYXL1

-0.0085975
-0.0680806
-0.1377878
-0.1274492
-0.0189556
-0.3346091
-0.2222829
-0.3578324
-0.1801665
-0.4770045
-0.0015565
-0.0295085
-0.1088627
-0.1354053
-0.0682355
-0.4821387
-0.1235512
0.03247355
-0.1143876

-0.136402
-0.0567193
-0.2229811
0.26428801
-0.2833853

-0.296571

-0.330735
-0.2441698
-0.1147821
-0.1763407
-0.3545319
-0.0034511
-0.1199228
-0.2351157
-0.3301743

-0.241206
-0.1247826
-0.0834903
-0.1337339
-0.0490435
-0.0235376

0.32143926
0.32126975
0.32063752
0.32053619
0.32041354

0.3203486
0.32012754

0.3200886
0.31999881
0.31939951
0.31933727
0.31918014
0.31860943
0.31832774
0.31792076
0.31786431
0.31774133
0.31762405
0.31744449
0.31724343
0.31722389
0.31707988
0.31704938
0.31704755
0.31687306
0.31684237
0.31665982
0.31657814
0.31644914
0.31635164
0.31626245

0.3160432

0.3160175
0.31589708
0.31586393
0.31535981
0.31500699
0.31499717
0.31484019
0.31477783

&9

1.24957653
1.24942972

1.2488823
1.24879459
1.24868843
1.24863222
1.24844091
1.24840721
1.24832952
1.24781107
1.24775723
1.24762135

1.2471279
1.24688442
1.24653273
1.24648395
1.24637771
1.24627638
1.24612128
1.24594763
1.24593076
1.24580639
1.24578006
1.24577847
1.24562781
1.24560131
1.24544372

1.2453732
1.24526185

1.2451777
1.24510072
1.24491152
1.24488933
1.24478543
1.24475683
1.24432195
1.24401768
1.24400922
1.24387386

1.2438201



ADGRG3
LRRC45
WWOX
AC009831.1
CSPP1
AL031666.3
USP31
CCDC102A
TIMM9
GMPPA
SMG1P1
AMMECRI1L
YIPF2
OBSCN
TMEM131
PLOD3
ORAOV1
AC020659.1
SLC22A15
RFK

LRRC14
WDR76
SBF2-AS1
ZNF778
UQCRC1
HEMGN
EEPD1
MITD1
ACSS3
ABCC3
HES1
CLSPN
KIAA1586
PRNP

ALG1
G6PC3
IL1R1
AC010997.6
TMEM62
KIF16B

-0.2023849
-0.0546942
-0.0079266
-0.1243312
-0.1134872
-0.1185152
-0.1599853
-0.0468556
-0.0130791
-0.2414461
-0.1196365
-0.4198981
-0.430961
-0.1188819
-0.1233567
-0.0464291
-0.2176838
-0.3697486
-0.4798423
-0.0989338
0.1485859
-0.0488663
-0.32114
-0.1413268
-0.0011126
-0.1823566
0.08458237
-0.0239727
-0.3015988
-0.3766045
-0.2215449
-0.1095735
-0.1739905
0.13227145
-0.4465646
-0.0638363
-0.2751903
-0.2328812
-0.2190609
0.09705766

0.31449242
0.31439427
0.31423863
0.31407964

0.3139432
0.31389307

0.3137621
0.31372419
0.31369419
0.31368402
0.31333213
0.31314331
0.31311609
0.31290618
0.31280585
0.31261615
0.31260809
0.31240549
0.31226121
0.31189117
0.31168863
0.31154991
0.31152289
0.31147971

0.3112434
0.31124224
0.31107012
0.31076231

0.3107094
0.31059827
0.31056722
0.31052448
0.31019036
0.31017634
0.31016978

0.3101556
0.30992441
0.30992411
0.30987587
0.30969678
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1.24357405
1.24348945
1.24335531
1.24321829
1.24310072
1.24305753
1.24294469
1.24291203
1.24288619
1.24287743
1.24257431
1.24241169
1.24238825
1.24220749
1.24212111
1.24195779
1.24195086
1.24177646
1.24165228
1.24133385
1.24115959
1.24104025
1.24101701
1.24097987
1.24077662
1.24077561

1.2406276
1.24036293
1.24031744

1.2402219
1.24019521
1.24015847
1.23987128
1.23985924

1.2398536
1.23984141
1.23964274
1.23964249
1.23960104
1.23944717



IRF3
RCBTB1
CYB561D2
ENTPDS5
NDUFV3
PBRM1
AMIGO1
CEACAM3
SORD
CoQs6
CDADC1
IGHG1
ZNF598
TBXA2R
NSUN3
TMEM144
ROGDI
CHMP6
PEX10
RIN3
P3H1
TRG-AS1
CLYBL
AC011374.2
AP3B1
GLT1D1
RABEPK
PBXIP1
RNU4-78P
ZNF25
PARP10
FARS2
AC104451.1
CR1
MINCR
PAWR
MED25
PRRC2A
AC116366.2
KATNAL1

-0.26382
-0.19339
-0.1800421
-0.3289712
-0.1845102
-0.1335047
-0.1936934
-0.0826436
-0.2161243
-0.1143769
-0.3158219
0.1067466
-0.2698129
0.05778465
-0.150405
-0.1589699
-0.2198375
-0.0238969
0.06060047
-0.043614
0.12771283
-0.1451012
-0.0385257
-0.2288685
0.00956355
-0.2100043
-0.0802895
-0.1037769
-0.0293195
-0.021469
-0.1794139
-0.0755768
-0.3547065
-0.198326
-0.1819399
0.03208121
-0.0518403
-0.1860768
-0.2331478
-0.0682081

0.30941486
0.30940522
0.30933745
0.30928045
0.30927282
0.30915932
0.30884878
0.30878252
0.30823915
0.30794154
0.30788561
0.30783808
0.30768519
0.30767267
0.30735746
0.30722428
0.30707528
0.30703503
0.30689801
0.30681053
0.3066742
0.30662658
0.30660141
0.30625369
0.30612114
0.30602398
0.30587689
0.305641
0.30559031
0.30557442
0.30544374
0.30526278
0.30498962
0.30484424
0.3046943
0.30464304
0.30448583
0.30434466
0.30426917
0.30406514
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1.23920499
1.23919671
1.2391385
1.23908954
1.23908299
1.23898552
1.23871885
1.23866196
1.23819552
1.23794012
1.23789214
1.23785135
1.23772018
1.23770944
1.23743904
1.23732482
1.23719704
1.23716252
1.23704503
1.23697002
1.23685314
1.2368123
1.23679073
1.23649267
1.23637907
1.23629581
1.23616977
1.23596767
1.23592424
1.23591063
1.23579868
1.23564369
1.23540975
1.23528526
1.23515689
1.235113
1.23497842
1.23485758
1.23479297
1.23461835



AP000936.3
CCDC9
XAB2

LTF

CLPP
AC022211.3
MYOF
CITED4
E4F1
HUWE1
FP565260.1
AC243829.1
TNIP1
RABAC1
HEIH
MROH6
PPIL2
ARHGEF10
ANKRD39
PYCR2
RASGRP4
PAQR3
PRRC2B
HPCAL4
CDKAL1
FNBP1L
BRD4
ZNF143
CENPV
MCF2L

PPIF
PRKCQ-AS1
ZNF593
DENND6B
ZFP90
CYP1B1-AS1
AC007278.1
GPR107
OGFR
POLD3

-0.1743906
-0.1229655
-0.3362505
-0.1503608
-0.0944364
-0.1308846
-0.1872366
-0.1018454
-0.181966
-0.2573305
-0.0834707
-0.1061701
-0.172943
0.05018446
-0.1015615
0.10041826
-0.1538654
0.08924792
-0.3552087
-0.2399175
-0.130983
-0.2954338
-0.0674767
-0.1476291
-0.2946752
-0.0578526
-0.1756417
0.0125878
-0.1809626
2.49E-04
-0.2697225
-0.2620158
-0.2204915
-0.1828593
-0.2688965
-0.0599493
-0.1978952
-0.1765708
-0.1524395
0.27485539

0.30386975
0.30372904

0.3036111
0.30341683
0.30301077
0.30260652
0.30248789

0.3023773
0.30227547
0.30223689
0.30209297

0.3018919
0.30179284
0.30150038

0.3013312
0.30132476
0.30112829
0.30110816
0.30101242
0.30098171

0.3008168
0.30080485
0.30080063

0.3006408
0.30063667

0.3005919
0.30036673
0.30016629
0.30011491
0.30010412
0.29995384
0.29993337
0.29947887
0.29873197
0.29827562
0.29811459
0.29799237
0.29786792
0.29783453
0.29760016
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1.23445115
1.23433076
1.23422986
1.23406367
1.23371638
1.23337073
1.23326932
1.23317479
1.23308775
1.23305478
1.23293177
1.23275995
1.23267531
1.23242545
1.23228094
1.23227544
1.23210763
1.23209044
1.23200868
1.23198245
1.23184164
1.23183144
1.23182784
1.23169137
1.23168784
1.23164962
1.23145741
1.23128633
1.23124248
1.23123327
1.23110502
1.23108756
1.23069978

1.2300628
1.22967377
1.22953652
1.22943237
1.22932631
1.22929786
1.22909817



ETFB
NDUFAF5
ERMN
FAMS50B
PUSL1
C150rf39
ZFP41
ATP6V1A
UBALD1
RIC1
KIAA1147
ARHGAP35
SIRT6
UNC93B1
RPL17P50
PEX6
AC024293.1
HDDC3
BFSP1
TAF9
AC026401.3
CCP110
RNF168
ANAPC16
CHMP7
CMTM5
AL731557.1
ARHGAP10
TMOD3
SSNA1
ENOSF1
ATP5L2
WDTC1
YY1AP1
SLC6A16
NPLOCA4
BIN1
CDK11B
KLHL12
AC144521.1

-0.0684461
-0.1163495
-0.1975764

-0.052984
-0.1951457
-0.0379976
-0.1650942
-0.1063724
-0.1706281
-0.4554856
-0.2080568
-0.1010804
-0.0815158
-0.1282129
-0.1160814

-3.63E-04
-0.1899447
-0.2725958
-0.2916882
-0.2460298
-0.2107954
-0.2506538
-0.0400451
-0.0561136
-0.1375007
-0.0767719
-0.2808527
-0.1682932
-0.0966115
-0.2444664
0.04316675
0.12067538
-0.1086326
-0.1545972
-0.2798684
-0.1942359
-0.0714214
-0.0927066
-0.1118309
-0.2082674

0.29756233
0.29751729
0.29737208

0.2971466
0.29701464

0.2966775
0.29632283
0.29611929
0.29597374
0.29582154
0.29570293
0.29564793
0.29545097
0.29538806
0.29530032
0.29489209
0.29476936
0.29461963
0.29432163
0.29415159
0.29400835
0.29381881
0.29363407
0.29340872
0.29332155
0.29286614
0.29218746
0.29205427
0.29193703
0.29189211
0.29115555

0.2907911
0.29053427
0.29032373
0.29013368
0.28946671

0.2894265
0.28942576
0.28922463
0.28922434
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1.22906595
1.22902758
1.22890388
1.22871183
1.22859945
1.22831238
1.22801044
1.22783721
1.22771334
1.22758383
1.22748291
1.22743611
1.22726855
1.22721503

1.2271404
1.22679321
1.22668885
1.22656155
1.22630822
1.22616369
1.22604196
1.22588089
1.22572392
1.22553248
1.22545843
1.22507166
1.22449549
1.22438245
1.22428295
1.22424484
1.22361997
1.22331089
1.22309314
1.22291466
1.22275357
1.22218842
1.22215435
1.22215372
1.22198335
1.22198311



CIDECP
ABTB1
CEP85
FAM153B
GTF2E1
AC092135.3
GFM2
PEAK1
DDX27
CYB5R3
CEP44
TCN2
FAMS58A
HACD2
ZNF385D
CLK3
KDELC2
MNAT1
METTLS8
RPH3AL
ACADS
LINC01002
PAKS5
PNRC2
ZNF48

VILL
SH2D2A
PRKACA
AC245884.12
DIXDC1
NBPF20
MGST3
USP11
CPA3
SULT1A1
TIMM10B
GIMAPS
RNU7-181P
MSS51
AC036108.4

0.02207779
-0.1442131
-0.1439211
-0.0740223
-0.0509024

0.02491255
-0.0262481
-0.0382046
-0.1258226
-0.0843729
-0.1665431
-0.0299435
-0.0076644
-0.1144913
-0.0677462
-0.1820735
-0.0672473

0.00605085
-0.3259143
-0.1098528
-0.0115425
-0.0133677
-0.0641384
-0.0925548
-0.3978339
-0.2180168
-0.1920163

-0.112184
-0.2540466
-0.1050375
-0.1725419
-0.2450324
-0.2644864
-0.2076044
-0.1834582

0.08889535
-0.0020207

0.02187704
-0.0882911
-0.0827879

0.28855626
0.28838268
0.28825937
0.28825715
0.28819371

0.2881558
0.28811258

0.2880114
0.28796938
0.28791854
0.28768336
0.28764196
0.28752165
0.28719739
0.28699312
0.28668389
0.28634067
0.28632206
0.28626284
0.28610286
0.28578908
0.28570222
0.28539657

0.2852793
0.28519482
0.28517723
0.28486159
0.28471033
0.28468449
0.28445066
0.28433056
0.28397886

0.2839705
0.28337044
0.28290744
0.28274116
0.28273238
0.28270822
0.28254669
0.28245874
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1.22141736
1.22127041
1.22116604
1.22116416
1.22111046
1.22107837
1.22104179
1.22095616

1.2209206
1.22087758
1.22067857
1.22064355
1.22054176
1.22026746

1.2200947

1.2198332
1.21954304

1.2195273
1.21947725
1.21934202
1.21907685
1.21900346
1.21874523
1.21864616

1.2185748
1.21855995
1.21829338
1.21816565
1.21814384
1.21794641
1.21784502
1.21754818
1.21754112
1.21703481

1.2166443
1.21650408
1.21649667
1.21647631
1.21634011
1.21626596



NEGR1
AC008741.2
HOMEZ
TP53
GIGYF2
DAP

CHST?7
NDE1

IFT27
SMPD4
ILAR2
PARD6B
AC090152.1
ZNF318
AL355488.2
C190rfa7
MOB2
SNX19
MPST
Cl4orf132
LIPE-AS1
SMAGP
TUBA4A
ARHGEF7
SUCLG1
ZNF512
S1PR3
IFT172
Y_RNA
R3HDMA4
TPST1
ENO3
GMDS-AS1
GUF1

SNX9
SEC14L1
EDEM3
DHRS3
GMIP
AC097376.1

-0.1202978
-0.0840276
0.19146851
-0.1408048
-0.0712334
-0.1607768
-0.3446244
-0.144085
-0.1073646
0.12892783
-0.2066585
0.11057666
-0.1599694
-0.2079336
-0.2545342
-0.0175657
-0.0309548
-0.0026173
-0.1900128
-0.1198597
-0.213937
0.06816113
-0.0745764
0.0162537
-0.1180027
-0.3006785
-0.0925765
-0.2085263
-0.0316106
-0.0604069
-0.0182053
-3.48E-04
-0.1160702
-0.0702768
-0.2775561
-0.1126659
-0.0609334
-0.0465334
-0.0283299
-0.3416858

0.28244118
0.28183108

0.2817814
0.28166901
0.28160974

0.2815139
0.28146749
0.28127763
0.28124371
0.28119568
0.28117524
0.28106498
0.28078763
0.28064937
0.28045319
0.28020892
0.27982955
0.27974889
0.27959891
0.27953825
0.27953104
0.27941384
0.27938566
0.27900687
0.27851633
0.27843106
0.27838013
0.27823942
0.27795937
0.27772315
0.27694335
0.27690354
0.27682585
0.27671434
0.27636292
0.27630363
0.27628749
0.27599949
0.27586655
0.27571577
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1.21625116
1.21573693
1.21569506
1.21560036
1.21555043
1.21546968
1.21543057
1.21527063
1.21524207
1.21520161
1.21518439
1.21509152
1.21485795
1.21474153
1.21457636
1.21437073
1.21405144
1.21398356
1.21385737
1.21380633
1.21380026
1.21370167
1.21367795
1.21335934
1.21294685
1.21287515
1.21283234
1.21271406
1.21247867
1.21228016
1.21162508
1.21159165
1.21152641
1.21143277
1.21113771
1.21108795

1.2110744
1.21083266
1.21072109
1.21059456



NUDT19P5
CFAP45
CECR6
IGHG3
MAP4K2
MMP25
EIFAG1
SRRD
SETD1A
TRMT2B
AC103691.1
NCR3

ZFP64
SAMD3
LINC01637
HCAR2
SLC16A3
WRNIP1
TBC1D25
DTX4
AP000866.5
RNF20
THOP1

HTT
AC147651.3
SUMF1
SMIM5
MLST8
NUMBL
AC109454.2
LYNX1
DBN1
AC015883.1
PIAS4
RAB34
TSGA10
ZNF394
SETD3
Cllorf49
ZMPSTE24

-0.1526922
0.04295757
0.11733248

-0.0391016

-0.0784941

-0.0996872

-0.1707392

-0.2513172

-0.2692021

-0.2994028

-0.0201649

-0.0901079

-0.0270375

-0.221599
-0.12243

-0.2677148

-0.0727072

-0.0360616
0.16446628

0.0282441
0.11797035
0.05482927
0.06114692
0.00156489
-0.2117295
-0.3409979

-0.145286

-0.0799666

-0.0447285

-0.0554589

-0.2161286
0.11960091

-0.0284182
0.06556956

-0.113142

-0.1264672

-0.1131722

-0.0422596

-0.2086395

-0.2015615

0.27570245
0.27569533
0.27552967
0.2744724
0.27422414
0.27408964
0.27394663
0.27362199
0.27346571
0.27337215
0.27336395
0.27332127
0.27307105
0.27302761
0.27293105
0.27290488
0.27276107
0.27250046
0.27236453
0.27229832
0.27196698
0.27196
0.2719262
0.27137548
0.2713434
0.27120502
0.27119798
0.27029882
0.27022444
0.27014162
0.27002992
0.27002025
0.26934093
0.26926474
0.26901977
0.26892025
0.26868489
0.26863148
0.26862329
0.2681158
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1.21058338

1.2105774
1.21043841
1.20955167
1.20934355

1.2092308
1.20911094

1.2088389
1.20870796
1.20862958
1.20862271
1.20858695
1.20837735
1.20834097

1.2082601
1.20823818
1.20811775
1.20789953
1.20778573

1.2077303
1.20745296
1.20744711
1.20741882
1.20695801
1.20693117

1.2068154
1.20680952
1.20605761
1.20599543

1.2059262
1.20583283
1.20582475

1.2052571
1.20519345
1.20498883
1.20490571
1.20470915
1.20466456
1.20465772
1.20423404



SAR1B
PRSS21
EXOSC5
SLC24A3
AC114495.2
HPS6
MAP1LC3A
EXOC6B
LINCO0694
ABCG2
FRG1BP
KIFC2
ZNF211
ZNF467
RDH11
JDP2
SLC25A1
SIGIRR
AP003733.4
MARK4
ASCL2
AC007382.1
BCL7A
BAK1

GID8
SLC35A4
PCYT2
AC009061.2
SESTD1
CLDN15
QPRT
SLC12A9
NETO2
CLN3
SMIM3
PDzZD11
ELP6

GSEC
GTF2E2
NAE1

0.1504018
-0.2145917
-0.2253994
-0.1723996

-0.01768
-0.0201259
0.09439463

0.0053399
-0.0031125
-0.2173632

0.0152745

-0.222687
0.04948567
-0.0639577
-0.0998039
-0.2031044
-0.0990668
-0.1040322
-0.2531794
-0.1308958
-0.4033947

-0.079032
-0.0340896

-0.202741
-0.1499683
-0.1837232
-0.2329255
0.05985855
-0.1242792

-0.356609

-0.251585
0.05406507
-0.1412634
0.06458063

-0.310394
0.03139022
-0.2293136
-0.0148911
0.22027403
-0.0382278

0.26782921
0.26782875
0.26777054
0.26752774
0.2675168
0.26734738
0.26718358
0.26718292
0.26695929
0.26666931
0.26639878
0.26587301
0.26571076
0.26561663
0.26546082
0.26540689
0.26539541
0.265364
0.26511943
0.26506214
0.26493681
0.26460105
0.26440139
0.26435479
0.26424957
0.26417537
0.26399867
0.26390521
0.26387361
0.26368044
0.26363469
0.26358412
0.26355548
0.26354591
0.26347828
0.26346584
0.26344129
0.26338243
-0.322143
-0.3222062
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1.20399484
1.20399446
1.20394588
1.20374328
1.20373415
1.2035928
1.20345615
1.2034556
1.20326907
1.20302724
1.20280167
1.20236341
1.20222819
1.20214976
1.20201994
1.201975
1.20196543
1.20193927
1.20173553
1.20168781
1.20158342
1.20130381
1.20113756
1.20109877
1.20101117
1.2009494
1.20080232
1.20072453
1.20069824
1.20053747
1.20049941
1.20045733
1.2004335
1.20042554
1.20036926
1.20035891
1.20033848
1.20028952
0.79988082
0.79984581



MRPL18
SERTAD3
ZMAT1
RAP2C
ANKRD13C
MGAT2
TBC1D4
RPL23AP2
LDLR
ARHGAP6
ERCC6
NFYA
UBE2E3
ZNF703
KANSL2
AC005261.2
KANSL1

ANKHD1-EIF4EBP3

ERO1A
BPHL
RIMKLB
CEP120
SMYD4
TTC28-AS1
SSB
NDC1
VPS16
METTL15
GPRIN3
MRPS15
MBD2
ARF6
GIMAP6
DYNLL1
CALU
PBX3
DIS3
PITPNM1
RGS9
AKAP7

0.04549837
0.20161596
0.04189816
-0.0297137
-0.1309529
-0.0503842
0.23361093
0.09715618
0.12535631
0.07650212
-0.1703002
0.40394864
0.40182102
0.33447169
-0.0627506
0.21352484
0.19401216
0.27420265
0.22386928
0.15908703
0.25038115
0.30838914
0.25161499
0.06488395
0.17569162
0.10530092
0.30597685
0.18231217
0.40378515
0.38019845
0.20248531
0.08687857
0.24130203
0.11550213
0.04675371
0.23983811
0.23478684
0.09313406
-0.0164896
-0.0643048

-0.3222329
-0.322533
-0.3226247
-0.3231668
-0.3232337
-0.323272
-0.3232788
-0.3233098
-0.3233906
-0.3236782
-0.3240019
-0.3240454
-0.3242197
-0.3244286
-0.3244809
-0.3245275
-0.3245589
-0.3248218
-0.3248329
-0.3248464
-0.324961
-0.3252014
-0.32524
-0.3252541
-0.3255755
-0.3256378
-0.3256981
-0.3258669
-0.3259727
-0.3260518
-0.3260558
-0.3261848
-0.3262425
-0.3263343
-0.3263446
-0.3263967
-0.3264877
-0.3267334
-0.3268777
-0.3269052
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0.79983099
0.79966462
0.79961382
0.79931339
0.79927637
0.79925513
0.79925139
0.79923421
0.79918944
0.79903012
0.79885087
0.79882678
0.79873028
0.79861464
0.79858567
0.79855986

0.7985425
0.79839701
0.79839084

0.7983834
0.79831996
0.79818694

0.7981656
0.79815778
0.79797998
0.79794556
0.79791218
0.79781883
0.79776034
0.79771662
0.79771437
0.79764305
0.79761118
0.79756044
0.79755471
0.79752594
0.79747562
0.79733981
0.79726003
0.79724484



MBD1
ZNF550
LCLAT1
OTUD7A
AC131212.2
DHX32
AC135983.2
DERL2
SPG21
YKT6
LYRM1
DDX1
TTC27
SUGP1
H3F3AP4
ATF7
CYB5A
VPREB3
ZNF540
TRNAU1AP
ZNF141
LRBA
PDLIM5
RNF157
SPPL2A
PPP2R2B
AP001157.1
FAM69A
PTPRA
ZSWIM3
TGFA
KPNA2
TRIM62
MAP3K1
EBPL
TP53RK
TNRC18
UAP1
TAF6
PCNT

0.26835355
0.21506313
0.10164742
0.17516423
0.15349684
0.15281711
0.1178253
0.04263901
0.3096931
0.246283
0.31176847
0.21797367
0.16633805
0.20474142
-0.0960724
0.17391452
0.49197169
0.30574567
0.26986567
0.04368695
0.34845044
0.33691423
-0.0286238
0.30463632
0.32538195
0.21078105
0.50836693
0.06477302
0.13453631
0.3702373
-0.1842213
0.02621205
0.09297827
0.30740989
0.34351738
0.16605829
0.389333
0.18026986
0.39275531
0.29993868

-0.3269683
-0.3270245
-0.3271042
-0.3271316
-0.3271382
-0.3272838
-0.3272894
-0.3272933
-0.3273019
-0.3273872
-0.3274104
-0.3276816
-0.3277963
-0.3278434
-0.3278925
-0.3279315
-0.3279733
-0.3280062
-0.3283027
-0.328382
-0.3283984
-0.3284
-0.3284277
-0.328604
-0.3287847
-0.328855
-0.3288707
-0.3289919
-0.3289952
-0.3293938
-0.329408
-0.3296273
-0.3298564
-0.329857
-0.3304035
-0.3304067
-0.3305564
-0.3306464
-0.3306833
-0.330712
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0.79720997
0.79717892
0.79713493
0.79711978

0.7971161
0.79703566

0.7970326
0.79703041
0.79702569
0.79697853
0.79696574
0.79681594
0.79675257
0.79672656
0.79669947
0.79667793
0.79665487
0.79663667
0.79647294
0.79642918
0.79642014
0.79641923
0.79640396
0.79630662
0.79620689
0.79616814
0.79615943
0.79609255
0.79609076
0.79587082
0.79586299
0.79574204
0.79561568
0.79561537
0.79531404
0.79531227
0.79522973
0.79518012
0.79515981
0.79514396



DNAJB11
SERTAD1
WDR54
HCP5
GMEB1
MCM6
FBXO11
SCAF8
SNU13
MCFD2
MYD88
VAMP8
AC008026.3
TMPO
LARP4B
JCHAIN
ZNF514
FBXO22
ALKBH8
C1GALT1
SIPA1L2
SLAIN1
RNU6-672P
FGFBP2
ZNF19
KCNK6
GNL2
VAMP1
HLA-DRB6
ZNF502
EXD2
SCARB2
NTPCR

KiZ

CNOTS8
FADS3
AC055839.1
SRPRB
ZNF419
AC008969.1

0.36102459
0.51672999
0.31719132
0.03248543
0.45772494
0.42245704
-0.0226408
0.23840273
0.21400475
0.17406334
0.24314285
0.17741463
0.07076387
0.21496175
0.32225543
0.21532751
0.33614657
0.11618301
0.13807688
5.97E-04
0.38228146
0.18221473
0.07476057
0.13198082
0.10645101
0.26300608
0.1634124
0.11373208
0.30790647
0.30467322
0.03459901
0.23273354
0.27189192
0.35779426
0.2589306
0.40742886
0.09011165
0.16985055
0.11130248
0.17447487

-0.3307534
-0.3308629
-0.3309435
-0.3309779
-0.3310549
-0.3311944
-0.3313519
-0.3313902
-0.3315605
-0.3316513
-0.3318262

-0.331878
-0.3318879
-0.3319755
-0.3320271
-0.3320459
-0.3321902
-0.3322586
-0.3322623
-0.3322805
-0.3323443
-0.3324629
-0.3324663
-0.3325216
-0.3325756
-0.3328526
-0.3330919
-0.3332041
-0.3332271
-0.3332458
-0.3333966
-0.3334601
-0.3335303
-0.3336275
-0.3336591
-0.3337615
-0.3339979
-0.3344401
-0.3344708
-0.3344904
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0.79512117
0.79506078
0.79501638
0.79499745
0.79495499
0.79487813
0.79479136
0.79477027
0.79467645
0.79462645
0.79453009
0.7945016
0.79449613
0.79444789
0.79441945
0.79440911
0.79432966
0.794292
0.79428995
0.79427995
0.79424483
0.79417956
0.79417767
0.79414722
0.79411751
0.79396505
0.79383334
0.79377161
0.79375899
0.79374869
0.7936657
0.79363079
0.79359218
0.79353871
0.79352134
0.79346499
0.79333501
0.79309189
0.79307501
0.7930642



DENND4B
AHSA2
ZNF22
MRPL58
TPCN1
NOD1
ATP11C
UQCRB
TMEM245
SRP14
FBXL3
CNOT9
ZNF644
ANKDD1A
CTBP2
IDI1
cuLl
RRM1
RRAS2
SPRYD3
MYBL1
BIRC2
LAP3
RIC8A
RPL6
ARHGAP27P1-BPTFP1-
KPNA2P3
BLOC1S6
CEP68
HGF
KLHL22
PKD2
MRPL57
ATAD2
ATPS5)
GABPB1
ZNF330
LRRC57
ZNF283
CNOT10

0.18820223
0.22976181
0.19215955
-0.1311963
-0.0438985

0.0472078
0.32240851

0.1120165
0.19854747
0.28922339

0.2800616
0.15350348

0.4677847
0.37457391
0.23486141
0.09859391
0.26628938
0.36321264
0.19986013
0.32616843
-0.0732788
0.29303274
0.21544205

0.0670294
0.25722601

0.19077341
0.13640719

0.2451738
0.15747801

0.1107453
0.19081644
0.09322167
0.04807364
0.33324261
0.19115167
0.32882987
-0.1400543
0.23653668
0.07135508

-0.3345028
-0.3347199
-0.3347979
-0.3348266
-0.3349261
-0.3349618
-0.3351484
-0.3351577
-0.3352406

-0.335361
-0.3353835
-0.3354758
-0.3354814
-0.3358153
-0.3358232
-0.3360254
-0.3360993
-0.3362264
-0.3362279
-0.3363488
-0.3363941
-0.3368346
-0.3368954
-0.3370916
-0.3372437

-0.3372466
-0.3372956
-0.3373225
-0.3376827
-0.337832
-0.3378922
-0.3379866
-0.3380586
-0.3381592
-0.3381926
-0.338394
-0.3384212
-0.3384344
-0.33856
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0.79305743
0.79293806
0.79289521
0.79287944
0.79282476
0.79280511
0.79270259
0.79269749
0.79265193
0.79258581
0.79257341
0.79252272
0.79251967
0.79233624
0.79233188
0.79222086
0.79218031
0.79211051

0.7921097
0.79204329
0.79201843
0.79177663
0.79174327
0.79163561
0.79155214

0.79155053
0.79152367
0.79150893
0.79131134
0.79122942
0.79119644
0.79114467
0.79110519
0.79105002

0.7910317
0.79092126
0.79090634
0.79089913
0.79083029



P2RX4
AF131215.6
RPS3A
CASC4
RALA
DCAF16
BCCIP
CACTIN
ANKRD6
MRPL3
ATG4D
SGSM2
IKZF2
FLJ20021
CCDC58
TMEM116
THBD
MED9
UBL3
EMG1
C190rf25
Clilorf71
NEK6
ARL16
SEC11C
RGS6
MBOAT2
HSDL1
ABLIM1
PRKACB
ANKRD42
SQLE
GRAP2
WDR12
ILF3-AS1
HIC2
ESF1
RCOR3
ATP5A1
U62317.5

0.64711725
-0.018947
0.161853
0.27465634
0.25909037
0.17580578
0.25428047
0.39395018
0.22600088
0.06137767
0.38433812
0.07366506
0.28188731
0.14823332
0.20960872
0.04296602
0.19178426
0.05007031
0.18591446
0.2474304
0.12002893
0.3128076
0.3443029
0.08510724
0.4375899
0.05940188
0.12936018
0.130519
0.24584768
0.04512056
0.25770408
0.16603118
0.09978591
-0.0034199
0.29146344
0.31187496
0.24308535
0.18281238
0.22881056
0.13563566

-0.3386162
-0.3386481
-0.3386983
-0.3387913
-0.3388494
-0.3388671
-0.3389731

-0.338982
-0.3390648
-0.3390785
-0.3391741
-0.3392651
-0.3392775
-0.3392846
-0.3397623
-0.3398464

-0.339853
-0.3398768
-0.3400681
-0.3400727
-0.3401074
-0.3401903

-0.340424

-0.340466
-0.3406361
-0.3406595
-0.3406923
-0.3407676
-0.3411697
-0.3412047
-0.3415625
-0.3416902
-0.3416985
-0.3417385
-0.3418205

-0.341829
-0.3418872
-0.3418955
-0.3419864

-0.342124
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0.79079949
0.79078196
0.79075449
0.7907035
0.79067163
0.79066197
0.79060384
0.79059896
0.79055363
0.79054609
0.79049373
0.79044387
0.79043707
0.79043317
0.79017148
0.79012545
0.79012182
0.79010879
0.79000404
0.79000152
0.78998251
0.78993713
0.78980913
0.78978615
0.78969305
0.78968025
0.78966231
0.78962107
0.78940102
0.7893819
0.78918615
0.7891163
0.78911175
0.78908985
0.789045
0.78904037
0.78900851
0.78900399
0.7889543
0.78887903



SNORA72
DRAXIN
CCDC12
MTX3
TBC1D14
ARF4
TM2D1
ZC2HC1A
DNAIJB9
ZBTB11
UHRF2
PKIA
RBP7
SLC12A7
TMEM18
ANAPC13
MAT2A
UBLCP1
ABHD14A
UTP3
FAM89A
SRSF6
RBMXL1
RAN
SIGLEC1
COMMD6
MEI1
BCL9
TPCN2
CD86
AP1AR
INPP5B
GBA2
MYO18A
AL683813.1
TMEM398B
LPIN1
PIK3C3
SMADS5
TMEM176A

0.33181607
0.21699161
0.15255939
0.20133268
0.14822455
0.21436754
0.26786627

0.1373946
0.22146497
0.37468125
0.16748439
0.27067202
0.19489769
0.28856959
-0.0250585
0.15621233
-0.1636468
0.22940748
0.10538232
0.17587103

0.2526876
0.15583454
0.22426433
0.12689725
0.29886606
0.22824912
0.29069755
0.16241868
0.30511293
0.19676128
0.02095163
-0.0761182
0.30020832
0.19214318
-0.0288312
0.56109051
0.23679811
0.06271795
0.16655368
0.16768004

-0.3421459
-0.3421856
-0.3422119
-0.3423188
-0.3424298
-0.3424596
-0.3424681
-0.3426807
-0.3429553
-0.3430393

-0.343212
-0.3432382
-0.3432856
-0.3433317
-0.3433358
-0.3435301
-0.3436715
-0.3440038
-0.3442262
-0.3443497
-0.3444027
-0.3444281
-0.3445978
-0.3447059
-0.3448486
-0.3449305
-0.3452949
-0.3453584
-0.3454645
-0.3455323
-0.3455988
-0.3457121
-0.3457425
-0.3458389
-0.3458554
-0.3461418
-0.3461798
-0.3462589
-0.3462717
-0.3464453
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0.78886708
0.78884534
0.788831
0.78877252
0.78871183
0.78869556
0.78869089
0.78857467
0.7884246
0.7883787
0.78828435
0.78827001
0.78824411
0.78821892
0.78821667
0.78811053
0.78803332
0.78785181
0.78773038
0.78766294
0.78763398
0.78762015
0.78752749
0.78746847
0.78739063
0.7873459
0.78714705
0.78711242
0.78705455
0.78701756
0.78698126
0.78691948
0.78690287
0.78685032
0.78684132
0.7866851
0.7866644
0.78662129
0.7866143
0.78651963



ZNF346
EXOSC9
AP5M1
MIR1254-1
RPS27
ITLN1

JTB

ZBED6
ZFAT
MOSPD3
CRTAP
ANAPC15
ITM2A
GOT1
MRFAP1
CEP41
NUP43
INSL3
EFCAB2
WBP1L
IFITM3
LINC01772
SETDB1
NEMP1
ANKHD1
LGALS12
BX284668.5
CRLF3
GANAB
Clorf43
TRAF3IP2
CLINT1
AC006033.2
MBTD1
LRPPRC
RNUG6-890P
HIST1H2BJ

Metazoa_SRP

WHAMMP2
FUT8

0.29797981
0.09949655
-0.0214985
0.08830005
0.08468337
0.19673662
0.32258833
0.44516815
0.16855287
0.01220792
0.11844523

0.2738532
0.20304673
0.08073668
0.20795586
0.23935096
0.39286003
0.17436459
0.19792913

0.2166233
0.31683204
0.06292051
0.31992443

0.3515557
0.22564425
-0.0786191

0.1109656
0.31952317
0.16823523
0.15484822
0.33366514
0.37383665
0.09393082
0.07897398
0.07468417
0.23771297
0.06607229
0.14519216
0.15526622
0.07056013

-0.346733
-0.3468469
-0.3468992
-0.3469381
-0.3469389
-0.3470167
-0.3471014
-0.3471237
-0.3472581
-0.3472935
-0.3474475
-0.3475475
-0.3475883
-0.3476028
-0.3477813
-0.3478321
-0.3485426
-0.3485526

-0.34869
-0.3487369
-0.3488063
-0.3489089
-0.3489331
-0.3489664
-0.3490065

-0.349044
-0.3491542
-0.3494017
-0.3494278
-0.3495157
-0.3495436
-0.3495821
-0.3500973
-0.3501033
-0.3504032
-0.3505301
-0.3506787
-0.3507517
-0.3508839
-0.3508975
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0.7863628
0.78630076
0.78627225
0.78625104
0.78625057
0.78620818
0.78616202
0.78614991
0.78607667
0.78605738
0.78597343
0.78591898
0.78589673
0.78588886
0.78579164
0.78576394
0.78537708
0.78537165
0.78529684
0.78527133
0.78523355
0.78517769
0.78516454
0.78514639
0.78512457
0.78510418
0.78504421
0.78490956
0.78489531

0.7848475
0.78483235
0.78481138
0.78453116
0.78452794
0.78436483
0.78429588
0.78421508
0.78417538
0.78410353
0.78409618



HPS4
NCOA2
SLC40A1
SGMS2
RPS15A
USP33
SCOo1
ZNF845
ZNF696
GOT2
STAT1
AC008622.2
HSF2
DNAIJCS
SLC35B3
CCDC115
HNRNPA1
TCEAL4
TOGARAM?2
BOD2
ZNF780A
MS4A2
ZNF331

BPI

ACAA2
AC112496.1
SUSD3
CXorf38
UGT8

YIPF1
ZNF219
GOLGA5P1
ASTE1
RAD51C
NUDT19
STXBP3
MAN2B2
LINCO1184
PARN
AC105749.1

0.28285787
0.37932495
0.21341577
0.06447379
0.08424962
0.20421221
0.31558897
0.32094454

0.2346698
0.47765492
0.30346463
0.26669339

0.1761189
0.15737471
0.23390269
0.23643034

0.2791291

0.3218512
0.13594563
0.31726447
0.26297856
0.28715035
0.46951747
-0.0452562
0.28573873
0.06978677
0.19799015
0.25670439
0.16599427
0.29873291
0.21032255

0.0200973
0.04839941

0.3097138

0.1900916
0.08189229
0.27436936
0.14644136
0.14435266
0.24233441

-0.351063
-0.3513244
-0.3514216
-0.3514896
-0.3515874
-0.3516283
-0.3518066
-0.3518552
-0.3518901
-0.3521293
-0.3521399
-0.3522585
-0.3525152
-0.3526945
-0.3527534
-0.3532608
-0.3533259
-0.3533292
-0.3533662
-0.3534007
-0.3538201
-0.3538365

-0.353955
-0.3541384
-0.3541748
-0.3542011
-0.3542471
-0.3542738
-0.3543174
-0.3543791
-0.3545326
-0.3546661
-0.3546848
-0.3549568
-0.3549733
-0.3550209
-0.3550388
-0.3550536

-0.355118
-0.3551463
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0.78400622
0.78386418
0.78381135
0.78377444
0.78372129
0.78369907

0.7836022
0.78357582

0.7835569
0.78342699
0.78342124
0.78335683
0.78321744
0.78312012
0.78308814
0.78281279
0.78277743
0.78277566
0.78275556
0.78273686
0.78250933
0.78250043
0.78243617
0.78233675
0.78231702
0.78230273
0.78227781

0.7822633
0.78223964
0.78220623
0.78212302
0.78205062
0.78204048
0.78189308

0.7818841
0.78185834
0.78184861

0.7818406
0.78180571
0.78179034



DDHD1
TCEA2
CHAMP1
B2M
CEP85L
DUSP12
TNFRSF4
ALG11
AC127024.4
IGFLR1
TTC14
AL118508.4
ZNF518B
RPS24
AKAP8
KIFC3
TMEM94
ZNF3
AMMECR1
MRPL20
TMEM128
CDK5R1
GSTO1
EPG5
IPCEF1
Y_RNA
RPS27A
ANOG6
CoA4
TASP1
RPL26
TRIM69
RANGRF
C1RL-AS1
Cllorf24
SENP5
IMPA1
CCR2
CTPS1
SUMO2

0.18360797

-0.071576
0.07666938
0.24283509
0.34068159
0.08443966
0.02651499
0.34708389
0.26899288
0.35364341
0.12925805
0.21170828
0.26063199
0.28047436
0.07967071
0.25059992
0.17338219
0.17625633
0.19085355
0.09627774
0.19710477
0.16406309
0.23653791
0.28203035
0.37221077
0.48285972
0.20396224

0.2525435
0.15192994
0.33201937
0.18485621
0.17075319
0.22781872
0.39722371
0.20725993
0.29367164
0.25680316

0.1786691
0.19711413
0.33507518

-0.3551965
-0.3552157
-0.3552491
-0.3553212
-0.3559306
-0.3559779
-0.3560562
-0.3560578
-0.3563392
-0.3564293
-0.3564755
-0.3565001
-0.3566025
-0.3567899

-0.356827
-0.3570027

-0.357081
-0.3572596
-0.3572817
-0.3572817
-0.3573144
-0.3573809
-0.3573996

-0.357458
-0.3576454
-0.3576684
-0.3577273
-0.3578845
-0.3579193
-0.3580918
-0.3581579
-0.3583635
-0.3583703
-0.3587334
-0.3588363
-0.3588436

-0.358949
-0.3590256
-0.3590468

-0.359374
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0.78176315
0.78175275
0.78173463
0.78169556
0.78136545
0.78133982
0.78129745
0.78129659
0.78114419
0.78109541
0.78107039
0.78105706
0.78100164
0.78090022
0.78088013
0.78078505
0.78074263
0.78064603
0.78063407
0.78063407
0.78061637
0.78058037
0.78057024
0.78053866
0.78043729
0.78042485

0.780393
0.78030797
0.78028915
0.78019586
0.78016007
0.78004892
0.78004522
0.77984895
0.77979329
0.77978936
0.77973242

0.779691
0.77967953
0.77950275



TRAF4
SEC61B
MRPS35
UQCRFS1
AC016394.1
TIGD3
PEA15
TMEM177
AGFG2
MATK
SNHG14
ALDH3A2
BTN3A1l
ALAS1
PMM1
ICOS
PLAG1
LMTK2
PRKAG2-AS1
KNTC1
TMEM147
SNRNP35
MADD
GNGT2
RAB18
NDUFA4
NSUN2
TC2N
PEX2
SGPL1
ZBTB37
Cl4o0rf93
TTYH3
ZNF101
WDSUB1
CSGALNACT2
FKBP2
METTL2B
FMC1
NBEAL1

0.12377104
0.27879823
0.33529188
0.03832607
0.22616761

0.1874398
0.27462489
0.21092983
0.11547653
0.37057914
0.33804621
0.24479884
0.25326898

-0.040511
0.24972333
0.06209093

0.1739656

0.1317528
0.14213001
0.34088483
0.09371171
0.00385525
0.03040979
0.23367046
0.37132919
0.00655677
0.25936451
0.19308176
0.10564746
0.25475036
0.28083824
0.15848974
0.29284325
0.20007002
0.18646914
0.27669604
0.21490206
0.31426504
0.01881289
0.36281524

-0.3594353
-0.3595064
-0.3595481

-0.359681

-0.359704
-0.3597373
-0.3598348
-0.3599055
-0.3599452
-0.3599616
-0.3603009
-0.3603115

-0.360439
-0.3605458
-0.3607533
-0.3608495
-0.3610231
-0.3611049
-0.3612353

-0.361245

-0.361347

-0.361624
-0.3616767
-0.3617667
-0.3618342
-0.3619941
-0.3620872
-0.3622092
-0.3622809
-0.3623809
-0.3624419

-0.362609
-0.3626166
-0.3626448
-0.3628719
-0.3629353
-0.3631173
-0.3633108
-0.3633961
-0.3634217
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0.77946963
0.77943122
0.77940867
0.77933691
0.77932445
0.77930648
0.77925379
0.77921561

0.7791942
0.77918535

0.7790021
0.77899636
0.77892753
0.77886984
0.77875787
0.77870595
0.77861225
0.77856807
0.77849771
0.77849249
0.77843744
0.77828801
0.77825956
0.77821102
0.77817462
0.77808835
0.77803816
0.77797239
0.77793369
0.77787979

0.7778469
0.77775678
0.77775271
0.77773752
0.77761507
0.77758093
0.77748284
0.77737856
0.77733257
0.77731879



U2AF2
PWWP2B
RGL4
SDHAF2
HAUS2
CISD2
cwcz7
MTCO1P40
EPB41L4A-AS1
SRBD1
SUZ12
RBM3
TNFRSF10D
AC108673.3
AC018445.4
ZNF268
HSP90B1
NUP88
TMEM230
AC116618.1
TMEM251
IER5L
PRPF4B
SUGP2
RAB27B
STXBP5
VAMP4
MTG2
KCNG1
CD72
KLHL3
IFIT2
ATP6V1H
TMX3
NPTN
TP53I11
UBL4A
FBXO34
MRPL40
SLC25A20

0.28973181
0.32778419

0.1213842
0.14257224
0.19600157
0.57310361
0.05099297
0.23101034
0.03039151
0.19142894
0.19289769
0.25526552
0.23181046
0.35931742
0.22574922
0.18699976
0.15558753
0.41143505
0.04557965
0.07710664
0.25407271
0.21248014
0.15920808
0.35419056
-0.1241248
0.23611277

0.1035674
0.13036388
0.15835503
0.37735005
0.05257509
0.41964664
0.55722064
0.04957039
0.06747596
0.31173995
0.03657624
0.29862151
0.30097862
0.33459783

-0.3634455
-0.3635605
-0.3637108
-0.3637149
-0.3638237
-0.3638988
-0.3639596
-0.3646491
-0.3648024
-0.3649508
-0.3651957
-0.3656103
-0.3656182
-0.3656369
-0.3656476

-0.365652
-0.3656588
-0.3660041
-0.3660356
-0.3660964
-0.3663228
-0.3663913
-0.3665707
-0.3667191
-0.3670836
-0.3671758
-0.3672211
-0.3673125
-0.3673343
-0.3673731
-0.3674124
-0.3675434
-0.3675465

-0.367705
-0.3679804

-0.368457
-0.3685588
-0.3685723
-0.3686055

-0.368623
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0.77730597
0.77724402
0.77716303
0.77716082
0.77710225
0.77706178
0.77702905
0.77665776
0.77657521
0.77649534
0.77636358
0.77614049
0.77613622
0.77612619

0.7761204
0.77611805

0.7761144
0.77592862
0.77591169
0.77587903
0.77575728
0.77572041
0.77562397
0.77554419
0.77534828
0.77529875

0.7752744
0.77522529
0.77521357
0.77519273
0.77517156
0.77510119
0.77509952
0.77501441
0.77486648
0.77461052
0.77455586
0.77454863
0.77453077
0.77452142



NAGPA
SLC11A2
FHIT
UHRF1BP1L
PRR14L
Cl40rf166
YWHAG
CD302
TIMM23
UBASH3B
F2RL1
SECISBP2L
IPMK
ALDH1A1
SLC39A9
AC245060.5
SEL1L3
UFSP2
ZNF687
RAP1GDS1
MMACHC
SUMO3
SPAG7
THAP3
AC009831.4
TMOSF3
TXN2
ATADS
BISPR
RIN2
ZBTB18
CEP97
MYDGF
RRP15
ZMYNDS8
LANCL1
PSEN2
XRN1
R3HDM1
RDX

0.26470952
0.31915056
0.20926688
0.24193558
0.28345209
0.31071837
0.25689305

0.1546113
-0.1390269
0.16873042
0.33152819
0.21635876
0.50238458
0.25894966
0.14699644
0.27059852
0.18643982
0.32740106
0.18479799
0.25230534
0.22626568

0.1673368
0.18643311
0.42630923
0.14801335
0.35726705
0.38272549
0.43200651
0.40897945

0.2624528
0.24943242

0.1684057
0.33535087
0.36232107
0.29215271
-0.0132804
0.19186163
0.22607126
0.31846457
0.15504065

-0.3688693
-0.3691464
-0.3693415
-0.3693563
-0.3693868
-0.3695619
-0.3695773
-0.3695885
-0.3696717
-0.3697153
-0.3699814
-0.3702227
-0.3702753
-0.3704562
-0.3705819
-0.3706156
-0.3706818
-0.3707355
-0.3714757
-0.3714843
-0.3715749
-0.3717329
-0.3718376
-0.3718476
-0.3719223
-0.3720308
-0.3721406
-0.3723068
-0.3724882
-0.3725411
-0.3726428
-0.3727056
-0.3727863
-0.3729154
-0.3729909
-0.3729976
-0.3730388
-0.3732238
-0.3734858
-0.3734871
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0.7743892
0.77424048
0.77413576
0.77412782
0.77411148
0.77401752
0.77400926
0.77400324
0.77395863
0.77393522
0.77379248
0.77366307
0.77363486
0.77353784
0.77347048
0.77345239

0.7734169
0.77338812

0.7729914

0.7729868
0.77293826
0.77285363
0.77279755
0.77279216
0.77275215
0.77269405
0.77263527
0.77254622
0.77244912
0.77242081
0.77236635
0.77233273
0.77228954

0.7722204
0.77218003
0.77217641
0.77215437
0.77205536
0.77191516
0.77191447



KYNU
ZNF542P
CBX3
AC027449.1
ADK
TNFSF13B
CKAPS5
RBFA
ZNF75D
TUBAI1C
BORCS6
ZNF439
PIGH
ICE2
ADAT2
PLAGL2
TRAPPC2
SLC35A3
TTC1
ZNF710
CNTNAP2
CSTB
ECD
MIOS
GMPS
TCF12
NAXD
AC055822.1
Cl6orf74
MRPS33
DIMT1
NRIP1
BACH1
EXOC5
GALNT3
FAM175B
CSTA
CYTH3
ZNF808
RBM45

0.2306765
-0.0026661
0.27513251
-0.0122331
0.16212584
0.16395077

0.1890668
0.19835255
0.07818992
0.25509451
0.49202717
0.40690535
0.42722404
0.16803989

0.2621788
0.13010596
0.33854239
0.30091072
0.20582806
0.11249121
0.38067704
0.21246466
0.23113912
0.34706277

0.4350639
0.06156862
0.07597032
0.09677902
0.21852659
0.33592233
0.08167075
-0.0015505
0.14814687
0.19084302
0.28579555
0.19106468
0.21755087
0.39212707
0.42174627
-0.0043867

-0.373542
-0.3736064
-0.3737059
-0.3737194
-0.3740119
-0.3743881
-0.3745987
-0.3747029
-0.3747495
-0.3747711

-0.374781
-0.3748618
-0.3748693
-0.3749244
-0.3750152
-0.3752149
-0.3752967
-0.3754075
-0.3754202
-0.3754616
-0.3758033
-0.3758639
-0.3759693
-0.3759696
-0.3760503

-0.37624

-0.376278
-0.3763259
-0.3764913
-0.3764991
-0.3768372
-0.3769066
-0.3769524
-0.3770677
-0.3771937
-0.3772661
-0.3773387

-0.377509
-0.3778537
-0.3778865
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0.77188508
0.77185064

0.7717974

0.7717902
0.77163371
0.77143254
0.77131992
0.77126423
0.77123931
0.77122776
0.77122248
0.77117929
0.77117525
0.77114584
0.77109731
0.77099058
0.77094687
0.77088764
0.77088084
0.77085874
0.77067617

0.7706438
0.77058753
0.77058735
0.77054425
0.77044294
0.77042266
0.77039709
0.77030876
0.77030457
0.77012405
0.77008706

0.7700626
0.77000104
0.76993379
0.76989518
0.76985641
0.76976552
0.76958164
0.76956416



SSFA2
STT3B
SARAF
CPEB2
NHLRC2
CAPZA1
NUDT14
TCF7L2
ARPIN
NAA35
KCNJ2
FAM118B
TBC1D32
ASF1B
SLC25A40
ZNF764
FBRSL1
GOLGASB
CMTR1
SLC22A18
KLHL42
PPP2R5E
EIF4A2
FARSB
MRPL36
DDB2
SSR3
C4dorf32
ATXN7L1
ECHDC2
NDOR1
ARRB1
FAM114A2
SLFN11
NDUFC1
CCDC186
GIMAP7
SMIM14
MAGED1
ZNF45

0.47821528
0.41663988

0.3294216
0.14845697
0.17810215
0.20897707
0.04164228

0.3115611
0.12918804
0.08568969
0.22999587
0.33576172
0.34386317
0.05229844
0.26302047
0.16250258
0.30920773
0.29508894
0.27402145

0.1806257
0.20018282
0.18744897
0.16373094
0.33838914
0.56019545
0.15460964
0.16357874
0.10789216
0.18452198

-0.018716
0.15338649
0.17139912
0.14284246
0.44191482
0.05972144
0.12023483
0.15010394
0.17031615
0.27947802
0.14529005

-0.3780177
-0.3780327
-0.3781546
-0.3782306

-0.37846
-0.3784614
-0.3788322
-0.3789754
-0.3792261
-0.3792293
-0.3793649
-0.3794458
-0.3795211
-0.3795695
-0.3795753
-0.3796435
-0.3797863
-0.3798704
-0.3801356
-0.3803802
-0.3806741
-0.3810553
-0.3810573
-0.3811493
-0.3812218
-0.3812695
-0.3814435
-0.3814528
-0.3815873
-0.3816481
-0.3817269
-0.3818347
-0.3824315
-0.3826509
-0.3827184
-0.3827881
-0.3828559
-0.3828951
-0.3829574
-0.3831067
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0.76949414
0.76948616
0.76942114
0.76938061
0.76925832
0.76925754
0.76905987
0.76898354
0.76884992
0.7688482
0.76877595
0.76873282
0.76869273
0.76866693
0.76866383
0.76862748
0.7685514
0.7685066
0.76836537
0.76823512
0.76807861
0.7678757
0.76787461
0.76782567
0.76778711
0.76776172
0.76766914
0.76766414
0.76759261
0.76756023
0.76751832
0.76746097
0.76714356
0.76702693
0.76699105
0.76695399
0.76691791
0.76689707
0.766864
0.76678463



RPS6KB1
RFX3-AS1
IFFO1
CCR5
PHKA?2
C8orf33
DR1
MOAP1
AC007406.5
MTMR12
SLC46A3
SLC43A1
ENTPD4
MR1
DIAPH2
GALC
FAM208A
CHCHD3
SNPH
EEF1B2
PRR7-AS1
GZMA
PARP15
RNMT
SENP1
NEK1
ASPM
TMEM192
TMEM135
SLU7
LTBP4
DNAJB14
WARS
EMSY
FOXN2
RSBN1L
SUGT1
AL0O80317.3
ZNRD1ASP
SS18L2

0.24918526
0.19957708
0.15107686
-0.0432772
0.21448712
0.31570037
0.23859858
0.27265185
0.11977853
0.15655132
0.19486932
0.26700724
0.38318509
0.21635649
0.28748375
0.33104042
0.36932095
0.22443872
0.17256036
0.28795192
0.09817894
0.26015356
0.05749631
0.2122768
0.33777729
-0.1245734
0.19118562
-0.0018952
0.19509636
0.25920361
0.33634275
0.20810597
0.241373
0.21912785
0.15105246
0.39752655
0.09821055
0.2977868
0.19072256
0.16741315

-0.3831899
-0.3834353
-0.3836371
-0.3838949
-0.3840346
-0.3842957
-0.3844465
-0.3845132
-0.3845706
-0.3846599
-0.3850108
-0.3851127
-0.3852181
-0.3852203
-0.3853011
-0.3853481
-0.3858294
-0.3858841
-0.3861422
-0.3862943
-0.3865074
-0.3867605
-0.3868087
-0.3869423
-0.3869696
-0.3873097
-0.3874955
-0.3875059
-0.3876254
-0.3877127
-0.3877694
-0.3878259
-0.3878437
-0.3880242

-0.388101
-0.3887591
-0.3888603
-0.3889365

-0.389275
-0.3895852

112

0.76674041
0.76661001
0.76650277
0.76636583
0.76629159
0.76615294
0.76607287
0.76603746
0.76600694
0.76595954
0.76577329
0.76571919
0.76566324
0.76566209
0.76561918
0.76559428
0.76533888
0.76530988
0.76517298
0.76509231
0.76497928
0.76484512
0.76481953
0.76474871
0.76473428

0.764554
0.76445551
0.76445001
0.76438672
0.76434046
0.76431042
0.76428048
0.76427107
0.76417545
0.76413474
0.76378628
0.76373271
0.76369235
0.76351322
0.76334905



CREG1
CARHSP1
SFT2D1
ZBTB40
DCK
ZNF326
DPM1
SLF2
FXYD6
FOCAD
TCN1
CD244
TMX2
OTUD1
ACOT7
cb47

SCAMP1-AS1

STRAP
NBPF15
LEO1
FCER1A
SAMD9
SLC24A1
CDK17
PIK3R6
AC023157.3
GPBP1
MCTP1
CRYZL1
EBAGY
AMN1
ZFANDG6
RIN1
CAPN7
TTC12
Céorf136
EDRF1
CNPY4
POLI

FXN

0.02078636
0.29899599
0.47750488
0.11675432
0.21677982
0.23972104
0.00229164
0.32225787
0.35514966

0.1954297

0.1253512

-0.048677
0.42033235
0.27871256
0.31459864

0.2533716
0.25680113
0.11477929
0.14149157
-0.0273387
0.41614968

0.3168457
0.16285132
0.17567493

-0.073684

0.0533058
0.33679552
0.36428536
0.13274865
0.25407071
0.23468878
0.29759687
0.05292968
0.23267734
0.19067404
0.26050276
0.28159298
0.02872064
-0.0617254
0.16994334

-0.3898247

-0.390169
-0.3903182
-0.3905857
-0.3906398

-0.390813
-0.3908457
-0.3910216
-0.3912051
-0.3912078
-0.3913035
-0.3913374

-0.391598
-0.3917509
-0.3918035

-0.392038

-0.392147
-0.3922956
-0.3924124

-0.392691
-0.3927755
-0.3928907

-0.392898
-0.3931717
-0.3932976
-0.3935068

-0.393548
-0.3940564
-0.3946177
-0.3950426
-0.3952998

-0.395572
-0.3957499
-0.3962979
-0.3963752
-0.3964023
-0.3964458
-0.3965003
-0.3965687
-0.3966824

113

0.76322233
0.76304019
0.76296131
0.76281983
0.76279125
0.76269968
0.76268238
0.76258941
0.76249241
0.76249102
0.76244042
0.76242251

0.7622848
0.76220401
0.76217623
0.76205237
0.76199479
0.76191631
0.76185463
0.76170748

0.7616629
0.76160205
0.76159822
0.76145372
0.76138727
0.76127691
0.76125516
0.76098695
0.76069091
0.76046693
0.76033135
0.76018791
0.76009418
0.75980554
0.75976483
0.75975054
0.75972762
0.75969892
0.75966292
0.75960303



DUSP5
LRRFIP2
ZSWIM8
MAP4KS5
ZNF84
ANGPT1
NDUFAF4
PRPF38A
SGF29
TTC39C
PCCB
TIMM8B

ENSG00000188206

ARL10
RN7SL589P
GRWD1
SLC41A1

ENSG00000283013

CYCS
ALG5

GNS
PRPF39
ZNF275
FPGS
MAPKS8IP3
0OSTM1
TMEM216
COPS6
RAB3GAP2
TRMT61B
CD164
NCBP2-AS2
ZNF675
CFAP97
SNX16
MGST2
ZNF280D
ZC3H8
CEP290
ITPR3

-0.0661783
0.34966577
0.15342764

0.1154905

0.4904437
0.23613438
0.05931289
0.13955452
0.26131454
0.45618577

-0.1401332
0.35751931
0.29010127
0.22942126
0.32760807

-0.2449651
0.12143629
0.27610327
0.06089674
0.11347468
0.22990055

0.3184793
0.12498478
0.33346528
0.30460806
0.31658507
0.39482416
0.39592955
0.22709905
0.32532561
0.28163667
0.13419628

-0.0151319
0.12571809
0.24281927
0.09577909
0.36163729
0.24615256
0.42427052
0.32560516

-0.3967259
-0.3968296
-0.3970452
-0.3970669
-0.39721
-0.3972575
-0.3975871
-0.3978252
-0.3979748
-0.3980319
-0.398043
-0.3983637
-0.3986082
-0.3986148
-0.398672
-0.3987572
-0.3988106
-0.3988108
-0.3989379
-0.3989381
-0.3989566
-0.3992472
-0.3993636
-0.3994619
-0.3996677
-0.4001449
-0.4002258
-0.4003976
-0.4006369
-0.4006462
-0.4007145
-0.4008964
-0.4010243
-0.4014757
-0.4018126
-0.4020832
-0.4025758
-0.4025862
-0.40291
-0.4031042
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0.75958013
0.75952556
0.75941204
0.75940062
0.75932531
0.75930031
0.75912686
0.75900161
0.7589229
0.75889284
0.758887
0.75871834
0.75858976
0.7585863
0.75855623
0.75851142
0.75848335
0.75848324
0.75841643
0.75841633
0.75840657
0.75825385
0.75819264
0.75814098
0.75803287
0.75778216
0.75773969
0.75764945
0.75752381
0.75751889
0.75748305
0.75738753
0.75732039
0.75708347
0.75690669
0.75676478
0.75650643
0.75650095
0.75633118
0.75622936



ERCC3
KBTBD11
ZNF566
ZKSCAN4
SLC17A5
CXCR3
PTAR1
PPARGC1B
RTN1
SNX4
LINCO2019
RECQL
MICB
BCAS3
MAPS
RRP9
MAP3K13
TMIGD2
SLC25A19
AC006141.1
VBP1
CD3G
NUP155
LILRAS
CCDC43
TIAl
PSME2
FAM105A
GIN1
ZBTB21
HAT1
TCEANC2
CHORDC1
SLC20A2
AKAP11
TRAF6
TMEMS87B
PAM
SLC25A30
UGDH

0.25691381

0.2188689
0.37150474
0.07429404
0.30329088
0.27844845
0.37051376
0.35330915
0.31609141
0.20340114
0.40405366
0.21628019
0.16333539
0.57341153
0.29919633
0.19577245
0.13390884
0.25164412
0.21434746
0.44487304
0.13475456
0.28662588
0.40716217
-0.0130547
0.43184613
0.32010901
0.22902838
0.26224378
0.18101578
0.16075035
0.31318941
0.30567881
0.10135283

0.1820282
0.05770778
-0.1168812
0.13209469
0.37196029
0.18650516

0.0870543

-0.4032179
-0.4032981
-0.4037155
-0.4037629
-0.4040614
-0.4043842
-0.4046519
-0.4050585
-0.4051595
-0.4052729
-0.4053747
-0.4054602
-0.4055577
-0.4056842
-0.4057127
-0.4057215
-0.4057791
-0.4061425
-0.4063195
-0.4063441
-0.406351
-0.4066159
-0.4066218
-0.4066828
-0.4071074
-0.40732
-0.4074023
-0.4076184
-0.4077573
-0.4078235
-0.4079052
-0.407912
-0.408098
-0.4086017
-0.4087426
-0.4089192
-0.4090198
-0.4090777
-0.4091601
-0.4094965
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0.75616979
0.75612773
0.75590903

0.7558842
0.75572778
0.75555874
0.75541854
0.75520568
0.75515281
0.75509344
0.75504018
0.75499542
0.75494441
0.75487822
0.75486331
0.75485871
0.75482857
0.75463842
0.75454586
0.75453302
0.75452938
0.75439086
0.75438777

0.7543559
0.75413392
0.75402279
0.75397975
0.75386686
0.75379425
0.75375965
0.75371697
0.75371343
0.75361625
0.75335317
0.75327962
0.75318743
0.75313487
0.75310467
0.75306165

0.7528861



793930.2
RPL31
KDM1B
NFE2L3
CISD3
ADO
SLC33A1
MIER3
AC083798.2
PPIL3
RAB29
NELFA
TPD52
C0Q2
LGALSS
CPD
SNORD8&9
CROCC
AC004865.2
PARP9
PYROXD1
AC012467.2
FBXO4
RB1CC1
MRPS18C
STARD4
PTCD2
HEG1
MRPL51
RXRB
YIPF3
ECT2
BRCA1l
MCRS1
SNRPG
ZNF420

CLDND1
Clorf27
NHS

44621

0.14955409
0.17842717
0.26989667
0.18050246
0.16794142
0.32399677
0.17302929
0.23098812
0.27974385
0.05722602
0.34745807
0.23288667
9.37E-04
0.13474723
0.18158074
0.27377987
0.16309728
0.18117268
0.13076091
0.28673085
0.22688599
0.0799176
0.41620951
0.31678953
0.33746252
0.08570406
0.4326092
0.27452881
0.10879071
0.25196223
0.38215303
0.26183833
0.21593629
0.22888646
0.01337633
0.25466641
0.31391588
0.2277806
0.25399461
0.29062678

-0.4095447
-0.4096568
-0.4098351
-0.4099432
-0.4101512
-0.4101552
-0.4104212
-0.4105896

-0.410624
-0.4106327
-0.4106634
-0.4107692

-0.410911
-0.4115988
-0.4117638
-0.4118402

-0.412059
-0.4121361
-0.4121721
-0.4123943
-0.4125808
-0.4127325
-0.4128739
-0.4129236
-0.4129441
-0.4129729
-0.4131216
-0.4132721
-0.4136915
-0.4137827
-0.4138668
-0.4138967
-0.4139453
-0.4142357
-0.4144217
-0.4147662
-0.4147687
-0.4150225
-0.4150434
-0.4150703
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0.75286096
0.75280245
0.75270942
0.752653
0.75254452
0.75254243
0.75240369
0.75231588
0.75229789
0.75229338
0.7522774
0.75222222
0.75214825
0.75178976
0.7517038
0.75166401
0.75154999
0.75150984
0.75149107
0.75137534
0.75127825
0.75119926
0.7511256
0.75109972
0.75108906
0.75107409
0.75099668
0.75091832
0.75070007
0.7506526
0.75060884
0.75059331
0.75056798
0.75041693
0.7503202
0.75014104
0.75013973
0.75000781
0.74999693
0.74998297



METTL26
AC006504.1
AC009120.1
TSEN2
XPO4
TOR1B
CNOT7
GBP3
KDM6A
ARHGAPS
PRSS23
RAB10
NUP85
VMA21
HLA-DRA
TMEMS9B
ARID1B
ADAM28
EPSTI1
CGGBP1
MRI1
ESCO1
MRPL9
AP1G1
SNRPB2
PRICKLE1
PLEKHG2
VPS50
FAM96A
AC007191.1
SASS6
UBOX5
METTL2A
GMPR2
LTN1
ADH5
COMMDA4
CSNK1E
IPO8
TRGC1

0.59075883

0.1642084
0.51942661
0.03677919
0.40107135
0.07007701
0.12797425
0.26507309
-0.1633649
0.20260714

0.2222114
0.28203701
0.27630214
0.21587751
0.25492902
0.13318147
0.15160799

0.1238952
0.24034791

0.1782828
0.20180063
-0.0420416
0.35886445

0.4390786
0.20546381

0.3752908
0.43209607
0.00393719
0.22185901
0.16991324
0.16634699
0.19126772
0.35794958
0.30652242
0.30501585
0.19788041
0.18795807
0.51992924
0.23109686
0.37782228

-0.4151774
-0.4153345
-0.4153357
-0.4154116
-0.4155591
-0.4156092
-0.4158455
-0.4162193
-0.4163112
-0.4165837
-0.4165951
-0.4166645
-0.4168596
-0.4170131
-0.4170293
-0.4173422
-0.4176077
-0.4179669
-0.4180326
-0.4181423
-0.4181632
-0.4182607
-0.4183654
-0.4183862
-0.4185722
-0.4189554
-0.4192265

-0.419258

-0.419291
-0.4194373
-0.4206721

-0.420759
-0.4208641
-0.4212703
-0.4213254
-0.4213999
-0.4219215
-0.4222302
-0.4223223
-0.4223926
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0.74992729
0.74984562
0.74984498
0.74980555
0.74972891
0.74970284
0.74958009
0.74938586
0.74933813
0.74919663
0.74919069
0.74915465
0.74905334
0.74897365
0.74896528
0.74880285
0.74866505
0.74847866
0.74844457
0.74838765
0.74837684
0.74832627
0.74827193
0.74826118
0.74816468
0.747966
0.74782546
0.74780914
0.74779203
0.74771619
0.74707649
0.74703149
0.74697709
0.74676682
0.74673826
0.74669971
0.74642982
0.74627013
0.74622248
0.7461861



AHCY
GPR27
SPATS2L
AL021368.3
SRD5A3
PDCL
TRIM6S
Y_RNA
XRCC4
SNRPD1
KCTD12
CSAD
NLRX1
PRPF19
CHP1
CCDC112
ELMO2
FXR1
ZNF526
ZBTB41
ZNF480
SERPING1
TRIM4
RBM4B
ACSM3
ZCCHC4
GRB10
ZNF831
LNPK
HMGXB3
TUBG1
E2F6
NOP9
DTD1
NEK9
HIBADH
NOLC1
NINJ2
AP4E1
CCAR2

0.36993154
0.55133497
0.18228943
0.18835012
0.27179054
0.09729367
0.11056464
0.50036187
0.24544024
-0.0479431
0.24237909
0.21694497
0.34699673
0.19343354
0.31822927
0.44795104
0.33281769
0.31181003
0.34776416
0.19349992
0.10210759
0.31923605

0.0265374
0.45286121
0.17752795
0.24502761
0.21039725
0.45961044
0.34571853
-0.0711334
-0.0063638
0.22682402
0.18599215
0.20525932
0.41583896
0.15495998
0.38070191
0.24688947
0.00856148
0.46521707

-0.4228304
-0.4228727
-0.4228982
-0.4232716
-0.4233158
-0.4233553
-0.4235782
-0.4236585
-0.4238145
-0.4242304
-0.4249836
-0.4250373
-0.4251221
-0.4251265
-0.4251387
-0.4252457
-0.4254218
-0.4254663

-0.425728
-0.4259295
-0.4259423
-0.4259448
-0.4267119
-0.4267872
-0.4269034
-0.4273735
-0.4274393
-0.4276371
-0.4280745
-0.4282249
-0.4283915

-0.428527
-0.4286797
-0.4290347

-0.429211
-0.4293517
-0.4296898
-0.4298022
-0.4298235
-0.4299398
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0.74595969
0.74593785
0.74592465
0.74573159
0.74570877
0.74568837
0.74557317
0.74553162
0.74545102
0.74523619
0.74484719
0.74481945
0.74477567
0.74477344
0.74476713
0.74471189
0.744621
0.74459803
0.74446295
0.74435899
0.74435242
0.7443511
0.74395544
0.74391659
0.74385668
0.74361434
0.74358041
0.74347847
0.74325312
0.74317563
0.74308983
0.74302004
0.74294139
0.74275858
0.74266782
0.74259541
0.74242138
0.74236357
0.7423526
0.74229274



AC004893.2
HKR1
RALGPS1
MALSU1
ZNF600
C5orf22
PPP4R3B
XPA
OARD1
MT-TV
NAA15
UGGT2
IFT88
TOMM?20
DDX59
Clilorfl
AP003168.2
NUP50-AS1
UTP6
RN7SL32P
ATG101
CNEP1R1
NFKBIB
NUPL2
ANXA1
PAAF1
WDFY1
LRRC42
GRAP

SNX2
SLC41A3
ZNF140
DUS4L
CENPBD1
MYL5
AL390728.4
UBA3
EIF2D
NABP2
ITPR1

0.58733054
0.62043131
0.2048356
0.188717
0.41588882
0.30159026
0.04345268
0.01399719
0.49363257
-0.1093021
0.326826
0.23249959
0.0945475
0.27131291
0.15170751
0.12909392
0.27281797
0.24355164
0.27272944
0.42106699
0.20306544
0.25517036
-0.016409
0.3097442
0.27748853
0.44784441
0.43337119
0.18191664
0.18290231
0.22626842
0.49204927
0.18128831
0.2971357
0.3671078
0.11325799
0.38733843
0.29451685
0.16076385
-0.1343687
0.36786296

-0.4302345
-0.4303722
-0.4304375
-0.4308694
-0.4312205

-0.431667
-0.4317898
-0.4318958
-0.4319107
-0.4321037

-0.432592
-0.4329227
-0.4330395
-0.4331008
-0.4331856
-0.4333006
-0.4334212
-0.4334433
-0.4339307
-0.4339812
-0.4343571
-0.4343875
-0.4344336
-0.4350042

-0.435042
-0.4351394
-0.4352115
-0.4352925
-0.4355745
-0.4356013
-0.4358389
-0.4359289
-0.4363025
-0.4364493
-0.4368445
-0.4374057
-0.4375989
-0.4376937
-0.4377296
-0.4377432
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0.74214114
0.74207033
0.74203675
0.74181462
0.74163411

0.7414046
0.74134154
0.74128706
0.74127937
0.74118022
0.74092939
0.74075961
0.74069962
0.74066813
0.74062463
0.74056557
0.74050369
0.74049235
0.74024223
0.74021628
0.74002347
0.74000784
0.73998422
0.73969162
0.73967221
0.73962227
0.73958533
0.73954378
0.73939926
0.73938554
0.73926377
0.73921763
0.73902623
0.73895104
0.73874865
0.73846132
0.73836243
0.73831395
0.73829558
0.73828861



SLC39A3
SSX2IP
EMC4
HMGB2
SRP9
CRELD1
APOL6
SLC25A17
DCPS
uTP23
MIR320D1
LMO7
AL035071.1
ZNF638
SAMSN1
FAM109A
CCL4
STXBP4

SP4
METAP1
ZNF623
NAXE

CKB
ZNF519
STAG3L5P-PVRIG2P-PILRB
NDUFB1
KRIT1

OSTC
C5orf56
Clorf109
AC073869.1
BEX3

RPL41
DEGS1
TMEM150A
C180rf32
ISCA2
CWF19L1
ARFGAP3
AC018628.1

-0.1465408

0.1057979
0.35783248
0.19085077
0.27841821
0.17473338
0.31455745
0.19387159
0.30333337

0.0600036
0.23752292
0.18835961
0.20115654
0.41240655
0.25981004
0.18408959

0.3083286
0.02260167
0.21549562
0.31934219
0.54348167
0.53534733
0.19880999
0.09954123
0.27210251
0.27676247
0.55897706
0.23200566
0.23761366
0.19573949
0.30605084
0.38046128
0.17697356
0.09026962
-0.1782082
0.10810211
-0.0213302
0.50739179
0.26489159
0.12981299

-0.4378631
-0.4384573
-0.4387226
-0.4393146
-0.4393523
-0.4393575
-0.4394865
-0.4395122
-0.4396539
-0.4399
-0.4399344
-0.4399375
-0.4399912
-0.4399961
-0.4400297
-0.4401797
-0.4402747
-0.4404769
-0.4407453
-0.4408156
-0.4410159
-0.4410442
-0.4415167
-0.441984
-0.4419935
-0.4423233
-0.4426638
-0.442873
-0.4429748
-0.4429854
-0.4430163
-0.4431687
-0.4433129
-0.4433884
-0.4435525
-0.443709
-0.4437629
-0.4438627
-0.444092
-0.4447969
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0.73822727
0.73792324
0.73778758
0.73748491
0.73746561
0.73746298
0.73739703
0.73738387
0.73731149
0.73718573
0.73716812
0.73716656
0.73713913
0.73713663
0.73711944
0.73704281
0.73699426
0.73689099
0.73675389
0.73671799
0.73661573
0.73660125
0.73636007
0.73612158
0.73611677
0.73594849
0.73577483
0.73566811
0.73561623
0.73561084
0.73559506
0.73551736
0.73544385
0.73540538
0.73532174
0.73524197
0.73521448
0.73516365
0.73504679
0.73468774



SGK494
UNKL
SMARCD3
FMN1
DTWD1
PPCS
GPR18
PRIMPOL
BNIP3
RRNAD1

ENSG00000271997

AL158212.3
FAM111A
NDUFAF8
FAM129B
RTL8A
c0Q10B
CD300C
TMEMS50B
SEC11A
SLF1
KIAA1143
ZC3HC1
PTP4A1
1QCG
Cl1orf58
AC027020.2
ZNF200
FASTKD2
LCORL
KIF5C
TEX10
PPP3CC
RAB11B-AS1
RNF8
SMC4
SUMF2
MED10
CcMC2
CTDSPL

0.14489019
0.12316868
0.03503493
0.11283446
0.03992111
0.28358499
0.22329951
0.23156364
0.09377927
0.01955797
0.43259582
0.24029918
0.26217516
0.29683144
0.20873869
0.19340302
0.02369316
0.20312285
0.14696442
0.43106266
0.26366636
0.18843309
0.25584326

0.1801324
0.04163051
0.27333244
-0.0449452

0.0800228
0.50899709
0.17976349
0.13685791
0.27634735
0.21150238
0.04335586
0.26694583
0.26300106
0.24382745
0.56822121
0.16900824
0.12182942

-0.4448556
-0.4450564
-0.4456162
-0.4457279
-0.4459457
-0.4461176
-0.4461849
-0.4465028
-0.4470149
-0.4470973
-0.4472585
-0.4472747
-0.4473727
-0.4476759
-0.4477951
-0.4478917
-0.4486657
-0.4488393
-0.4489432
-0.4489562
-0.4490608
-0.4495188
-0.4496897
-0.4497046
-0.4497136
-0.4498179

-0.450485
-0.4508051
-0.4512053
-0.4514409
-0.4515327
-0.4517569
-0.4522874
-0.4528691
-0.4529962
-0.4535327
-0.4535947
-0.4537608
-0.4540412
-0.4544983
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0.73465784
0.73455558
0.73427063

0.7342138
0.73410297
0.73401549
0.73398126
0.73381952
0.73355909

0.7335172
0.73343526
0.73342701
0.73337719
0.73322309
0.73316248
0.73311343
0.73272021
0.73263202

0.7325793

0.7325727
0.73251957
0.73228706
0.73220034
0.73219277
0.73218818
0.73213524

0.7317968
0.73163447
0.73143154
0.73131208
0.73126555
0.73115194
0.73088313
0.73058849
0.73052412
0.73025248
0.73022111
0.73013706
0.72999517
0.72976389



CASP3
ATP50
TMEM238

AC008764.10

FCRL3
KCTD5
TENM1
TMEM56
MED19
SLC25A32
POM121
RCHY1
SLC39A13
ATL3
MFSD5
MAD2L2
PDCD10
RAP2B
PATL2
CCND2
LRRC75A
B3GNTL1
ERO1B
RNF6
AC136475.9
KATNB1
MANBAL
NFX1
DCP2
CD59
BLOC1S2
NDUFS5
DDOST
ZNF384
ALDH6A1
MPP5
FAM169A
PQLC3
HKDC1
KAT14

0.22693385
0.12880127

0.2063181
0.25288026
0.31975892
0.21972804
0.16404083
0.06756473
0.35773654
0.46852885
0.34640899
0.22151803
0.41997941
-0.0609238
0.16394523
0.27400055
0.27019693
0.05089878
0.26502384
0.24992529
0.33576194
0.13108871
0.25703133
0.31373685
0.19821774
0.07132421

-0.006695
0.49576308
0.32196695
0.25031023
-0.1176534
0.47686557
0.25515345
0.24700896

0.2707458

0.2849041
0.27717948
0.22793868
0.26918577
0.25931343

-0.4545758
-0.4551771
-0.4552297
-0.4557252
-0.4557737
-0.4561928
-0.456234
-0.4563213
-0.4567013
-0.456785
-0.4568426
-0.4569866
-0.4575264
-0.4576764
-0.4579781
-0.45806
-0.4583291
-0.4584118
-0.4587677
-0.459431
-0.4595243
-0.4606069
-0.4611209
-0.4612796
-0.4613368
-0.4615146
-0.4616249
-0.4617582
-0.4618118
-0.4618211
-0.461869
-0.4619293
-0.4620169
-0.4621055
-0.4622033
-0.4625
-0.4625493
-0.4629194
-0.4629792
-0.46299
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0.72972468
0.72942062
0.72939405
0.72914358
0.72911906
0.72890728
0.72888645
0.72884236
0.72865039
0.72860815
0.72857904
0.72850632
0.72823378

0.7281581
0.72800584
0.72796451
0.72782872
0.72778703

0.7276075
0.72727305
0.72722601
0.72668048
0.72642166
0.72634174
0.72631296
0.72622343
0.72616794
0.72610084
0.72607384
0.72606919
0.72604506

0.7260147
0.72597062
0.72592603
0.72587684
0.72572757
0.72570277
0.72551664
0.72548657
0.72548116



NFKBIL1
RANBP9
NAA20
PDE4DIP
TAF1C
PTPN2
AC073957.3
REEP4
ACADS8
FAM162A
FGD2
IFT80

AK3
AC117382.1
OGFOD3
RAD1
NDUFAS5
FUOM
TRIM22
PTRHD1
NR6A1
GPR65
RHOU
VRK2

LNX2
SLC27A1
MAP3K7
NIPSNAP2
WDR18
SCRN1
CIAPIN1
SUFU
SLC25A25-AS1
SKA2
SCIMP
BEX2
AC138409.2
REV1
COMMDS
CNIH1

0.32847483
0.30224636

0.1197608

0.3061694
0.18191752
0.21660584
0.30504112
0.29770531
0.04132302
0.25074311
0.38051654
0.36854821

0.4136225
0.13625774
0.41211923
0.18416123
0.13541567

0.1744848
0.23634823
-0.1020098
0.22443343
0.38199208
0.13730135
0.34419709
0.36849159
0.52843506
0.27050636
0.30905982
0.46922596
0.10799368
0.41326626
0.45216825

0.2314522
0.31728169
0.28824579
0.23572195
0.04623071
0.47364026
0.13116832
0.33133924

-0.4630631
-0.4632123
-0.4632621
-0.4634365
-0.4641628
-0.4643749
-0.4644444
-0.4646143
-0.4656184

-0.465944
-0.4659999
-0.4660309
-0.4660686
-0.4662058
-0.4667281
-0.4667806
-0.4669498
-0.4669815
-0.4669963
-0.4671548
-0.4672616
-0.4675632

-0.467631

-0.467648
-0.4677757
-0.4681421
-0.4682585
-0.4682881
-0.4687105
-0.4687677
-0.4690493

-0.469531
-0.4695686

-0.469692
-0.4698532
-0.4701538
-0.4702741
-0.4705202

-0.470944
-0.4711421
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0.72544438
0.72536934
0.72534432
0.72525662
0.72489163
0.72478507
0.72475014
0.72466481
0.72416059
0.72399719
0.72396911
0.72395357
0.72393466

0.7238658

0.7236038
0.72357747
0.72349262
0.72347675

0.7234693

0.7233898
0.72333627
0.72318506

0.7231511
0.72314257
0.72307856
0.72289494
0.72283663
0.72282179
0.72261019
0.72258154
0.72244049
0.72219933
0.72218053
0.72211872
0.72203808
0.72188762
0.72182742
0.72170432
0.72149237
0.72139329



ZNF761
KBTBD3
PAICS
PFDN5
FAM210A
MYCL

IKZF4
FAM3C
CYP4V?2
MRPL22
MIER2
DCAF4
LATS2
ZNF706
SRC
ANAPC4
USP30
CLK2

CTSH
CROCCP3
TRMT10C
PLCB3
AC131009.4
ZNF720
CUTC

CCNK
MIFAGD
PGAM5
KLRC1
ZNF252P
TMEM106C
IKBIP
ZNF264
MAP3K12
ZXDC
DNAAF5
CXorf21
EZH2
AC079630.1
AC090948.1

0.3103
0.26234166
0.23635216
0.12517472
0.10713171
0.27250248
0.47752663
0.12003152
0.22632343
0.18217746
0.30737344
0.16693087
0.36569634
0.21468989

0.0048908
0.16327228
0.21205578
0.31339442
0.39811845
0.23195301
-0.0203989
-0.0576885
-0.0705998
0.28154491
0.13059801
0.24372544
0.25326895
0.25457317
0.27337779
0.09192304
0.27085045
0.11849893
0.16510241
0.33796796
0.33692633
0.15664465
0.311953
0.19274783
0.1655604
0.27414189

-0.471305

-0.471309
-0.4714046
-0.4721652
-0.4722964
-0.4723415

-0.472739
-0.4728465
-0.4731256
-0.4736961
-0.4737035
-0.4738207
-0.4744224
-0.4749776
-0.4751136
-0.4754366
-0.4756491
-0.4758283
-0.4761006

-0.476332
-0.4770425
-0.4773856
-0.4775222
-0.4779691
-0.4780476
-0.4781045
-0.4788174
-0.4791732
-0.4791904
-0.4796734
-0.4797207
-0.4800045
-0.4801746
-0.4804243
-0.4804926
-0.4815823
-0.4824997
-0.4825188
-0.4834496
-0.4834812
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0.72131182
0.72130984
0.72126204
0.72088189
0.72081632
0.72079378
0.72059523
0.72054154
0.72040216
0.72011731
0.72011363
0.72005513
0.71975491
0.71947796
0.71941014
0.71924912
0.71914318
0.71905384
0.71891816
0.71880285
0.71844891

0.7182781
0.71821006
0.71798762
0.71794856
0.71792025
0.71756558
0.71738866

0.7173801
0.71713997
0.71711645
0.71697537
0.71689084
0.71676679
0.71673288
0.71619171
0.71573643
0.71572694
0.71526535
0.71524964



FAM76A
FANCD2
RPL23
PLA2G6
PKD1
ATP1B1
LINCO0869
FLAD1
DCTPP1
IF144
EPHA4
HIST1H2BC
YAF2
SCLT1
NIPA2
EXOSC3
MRPL34
NKAP
AP003486.2
SMCO4
UBE2D4
DCUN1D1
PARP8
MAPK8
RAD18
MARCO
HEXDC
SMYD2
API5
FBXO46
UBFD1
POLA2
SF3B6
STAT2
SRP54
ANXA3
ACVR1B
COPS7A
ZNRF2
ILF2

0.30287668
0.17463318
0.27927256
0.12365616
0.30379667
0.35920712
0.40592628
0.11928346
0.22681231
0.2956611
0.43000921
0.0729906
0.30069476
0.22832532
0.2073633
0.27083485
-0.0933727
0.32026515
0.0113402
0.37916519
0.41286655
0.10940058
0.26255714
0.35212246
0.03198495
0.10504734
0.36913225
0.3615202
0.24898672
0.30380171
-0.0746536
0.36737666
0.47690701
0.32716329
0.11376053
0.341318
0.71308821
0.25201662
0.2419997
0.31197691

-0.4836453
-0.4836891
-0.4838331
-0.4838658
-0.4843178
-0.4845066
-0.4857498
-0.485839
-0.4862594
-0.4865564
-0.4867794
-0.4869475
-0.4870087
-0.48702
-0.4871887
-0.4872318
-0.4874162
-0.4882709
-0.4885484
-0.4886427
-0.4887843
-0.4894481
-0.4896751
-0.4899512
-0.4900762
-0.4901777
-0.4905125
-0.4906529
-0.4910914
-0.4913743
-0.4914606
-0.4915931
-0.4921732
-0.492216
-0.492256
-0.4922797
-0.4928369
-0.4931016
-0.4931401
-0.4932648

125

0.7151683
0.71514659

0.7150752
0.71505901
0.71483502
0.71474147
0.71412583
0.71408169
0.71387361
0.71372666
0.71361635
0.71353324
0.71350295
0.71349736
0.71341391
0.71339262
0.71330145
0.71287899
0.71274189

0.7126953
0.71262535
0.71229755
0.71218547
0.71204919
0.71198748
0.71193743
0.71177222
0.71170296
0.71148665
0.71134715
0.71130462
0.71123926
0.71095334
0.71093227
0.71091257
0.71090087
0.71062638
0.71049597
0.71047701
0.71041564



LRRK1
PABPC1P3
KCMF1
NCDN
REEP3
INSIG2
YIF1A
MUS81
AC027097.1
APOL1
SUN1

SZT2

PMVK
HPF1

RNF4
RBM19
CLCN7
BRIX1
ANKZF1
PGM1
ZC3H10
PAOX
YPEL2
HIST1H2BD
PDCL3
DUSP23
AL079342.1
AC064805.1
RRAS
TUBB6
FAM189B
GBP1
POLR3C
APEX1
NOM1
FAM13B
AGK
FBXO3
SERINC1
PCSK5

0.37801502
0.28370802
0.26328608

0.2376791
0.41503554
-0.0120828
0.38738079
0.26083188
0.25178175
0.27831503
0.23358508
0.24907752
0.33688849
-0.0020332
0.20485729
0.07477179
0.08822398
0.29748582
0.15321837
0.29725544
0.41685889

0.3239905
0.14498665
0.22034284
0.27816175
0.14490495
0.31453782
0.15679553
0.48527442
0.30704152
0.36598804
0.30909687

0.1106285
0.32948442
0.26496549
0.20143445
0.30168435
0.33787454
0.36484354
0.23227621

-0.4934014
-0.4934929
-0.4936122
-0.4938482
-0.4939274
-0.4939571
-0.4939875
-0.4940477
-0.4941163
-0.4947905
-0.4950832
-0.4952915
-0.4953404
-0.4953467
-0.4955043
-0.4957539
-0.4957605
-0.4963421
-0.4964162
-0.4964969
-0.4965859
-0.4966577

-0.496688
-0.4970684
-0.4973424
-0.4981307
-0.4981753
-0.4981803
-0.4982466
-0.4986678
-0.4988264
-0.4991747
-0.4993937

-0.499537
-0.4996772
-0.4997242
-0.5003358

-0.500526
-0.5009466
-0.5012839
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0.71034837
0.7103033
0.71024455
0.71012839
0.71008941
0.71007481
0.71005984
0.7100302
0.70999645
0.70966475
0.70952075
0.70941834
0.70939428
0.70939119
0.70931371
0.709191
0.70918772
0.70890191
0.70886548
0.70882586
0.7087821
0.70874685
0.70873194
0.70854508
0.70841056
0.70802356
0.70800167
0.70799924
0.70796667
0.70776001
0.70768224
0.70751141
0.707404
0.70733377
0.70726503
0.70724196
0.70694224
0.70684903
0.70664298
0.70647779



HLA-F-AS1
ERH
C21orf58
EIF4E
IL2RB
EIF3E
RABL2B
NXT1
HCAR3
ATP1B3
AC048341.2
CCDC174
C150rf57
MED30
NAA16
ZNF783
HEXB
RFXAP
Cl12orf43
ATG12
RASGRF2
HTATSF1
ZFP62
LPCAT2
ZMYM6
TNNI2
ZNF224
BNC2
HAUS6
CEP95
DBI
HLA-DQA2
HSPE1
GYPA
Clorfl62
PPP1R16A
KIAA1191
GFPT1
VASH1
ATP10A

0.34185198
0.41244631

0.1269842
0.47047711
0.44940525
0.35616985
0.14263806
0.44047595
0.13164043
0.18424155
0.47958877
0.32934011
0.39921614
0.11054003
-0.0846635
0.22619824
0.40601618
0.29067375
0.26719763
0.34052801
0.30966822
0.23085639
0.49788731
0.34154865
0.40241705
0.33172981
0.29183639
0.24130693
0.31635775
0.32950289
0.21302719
0.05635635
0.40537714

0.3377087
0.27971326
0.29681282
0.26270855
0.00748512
0.18340474
0.18044634

-0.5016486
-0.5024452
-0.5024553
-0.5026444
-0.5028177
-0.5029492
-0.5029674
-0.5038898
-0.5039464

-0.503949
-0.5046069
-0.5047704
-0.5048233
-0.5049237
-0.5051541
-0.5053471
-0.5053889
-0.5059656
-0.5063232
-0.5064251
-0.5066458
-0.5067321
-0.5070671
-0.5071837
-0.5072634
-0.5074403
-0.5076231
-0.5076282
-0.5076861
-0.5081772
-0.5081947
-0.5083914
-0.5086151
-0.5087627
-0.5091203
-0.5096313

-0.509666
-0.5096874

-0.509916
-0.5099359
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0.70629921
0.70590933
0.70590439
0.70581188
0.70572708
0.70566277
0.70565386
0.70520283
0.70517519
0.70517391
0.70485241
0.70477255
0.70474671
0.70469767
0.70458513
0.70449085
0.70447047
0.70418889
0.70401437
0.70396463
0.70385696
0.70381488
0.70365147
0.70359457
0.70355573
0.70346946
0.70338035
0.70337785
0.70334963
0.70311023
0.70310169
0.70300583
0.70289683
0.70282496
0.70265075
0.70240191
0.70238501

0.7023746
0.70226331
0.70225365



OSGIN2
7773
SNHG7
TIMM17A
RAB20
ZNF776
RIT1

CPM

IFITS
CCDC28B
AC147067.1
MAPK9
MRE11
AP003068.2
ERMP1
IFIT3
DVL2
CTNS
FBX021
WDR47
DDX10
CAPN10
NOMO1
ADCY7
CEBPE
CDPF1
GTPBP10
TP53113
ANXA2R
DCUN1D5
ZCCHC9
TRAV6
ELOC
SEPSECS
POLG2
C18orf21
SCoC
MRPL35
AC004846.2
MED11

0.54988399
0.49943319
0.38830795
0.3170955
0.16903857
0.39376122
-0.034273
0.23089745
0.53575819
0.20934838
-0.109573
0.50514331
0.30737145
0.13129916
0.07746774
0.436477
0.30552842
0.05529016
0.21172247
0.36810201
0.42993599
0.55950292
0.42057602
0.49993947
0.08096707
0.22732031
0.37859277
0.2012278
0.23062341
0.26416487
0.25631649
0.07456909
0.01068259
0.42445587
0.23865392
0.37346303
0.2851498
0.07323783
0.25432959
0.21790482

-0.5106142
-0.5122195
-0.5126505
-0.5128059
-0.5130011
-0.5134185
-0.5134348
-0.5140542
-0.5141225

-0.514145
-0.5151593

-0.515432
-0.5156901

-0.515988
-0.5168524

-0.516883

-0.517131
-0.5174707
-0.5177332
-0.5177891
-0.5180798
-0.5183174
-0.5185701
-0.5187271
-0.5190073
-0.5193292
-0.5197326
-0.5197895
-0.5198595
-0.5203682
-0.5205113
-0.5205785
-0.5208313
-0.5208623
-0.5214257
-0.5217497
-0.5222429
-0.5229521
-0.5230104
-0.5231475
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0.70192355
0.70114296
0.70093353
0.70085802
0.70076317
0.70056049
0.70055254
0.70025185

0.7002187
0.70020777
0.69971565

0.6995834
0.69945826
0.69931385
0.69889497
0.69888014
0.69876003
0.69859552
0.69846841
0.69844138
0.69830063
0.69818565
0.69806338
0.69798742
0.69785186
0.69769616
0.69750109
0.69747362
0.69743975
0.69719388
0.69712474
0.69709225
0.69697013
0.69695515
0.69668304

0.6965266

0.6962885
0.69594629

0.6959182
0.69585206



SLC43A3
SEC24A
AC008467.1
ZNF768
UBE4A
BZW2
COPRS
JAK2
SH3BGRL2
OAS1
HAVCR2
APTX
CKS1B

ANKRD36BP2

UMPS
POMGNT?2
VDAC3
ELL2
SORT1
STK35
OTUD6B
NEIL2
FEM1B
GTPBP3
NMD3
PLCH2
SLC25A28
RCAN1
KNOP1
KCNQ5-IT1
N4BP2L1
SLC15A2
BTBD10
CEP162
APOBEC3D
CDC42-IT1
GBP5
SUB1
CyB561
IDH3A

0.28413997
0.12330836
0.45064391
0.45959204
0.20385608

0.4167312
0.24848193
0.19148597
0.10601825
0.25195281
0.15161684
0.28579738
0.31153139
0.33972347
0.42620504
0.25723241
0.31721547
0.39913096
0.25987241
0.54447833
0.35243726
0.64008911
0.44811698
0.18855608

0.3581546
-0.0767174
0.34963505
0.35323076
0.44920653

0.3407492
0.32054967
0.45689141
0.56972175
0.22844998
0.36980302
0.30039937
0.26612713
0.20049282
0.19739173
0.20020652

-0.5232598
-0.5240715
-0.5240811
-0.5240858
-0.5244791
-0.5247019
-0.5253737
-0.5256863
-0.5259398
-0.5261317
-0.5263368
-0.5269076
-0.5269275
-0.5275204
-0.5275753
-0.5281726
-0.5285101
-0.5285943
-0.5302382
-0.5313634
-0.5313833
-0.5314798
-0.5320253
-0.5323475
-0.5323656
-0.5325064

-0.532909
-0.5334845
-0.5336726
-0.5337566
-0.5341157
-0.5345424
-0.5350401
-0.5351226
-0.5354596
-0.5354721
-0.5369115
-0.5376172
-0.5379575
-0.5381749
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0.69579787
0.69540653
0.69540187
0.69539961
0.69521006
0.69510272

0.6947791
0.69462859
0.69450656
0.69441416
0.69431544
0.69404083
0.69403123
0.69374608
0.69371965
0.69343253

0.6932703
0.69322984
0.69244039
0.69190058
0.69189101
0.69184471
0.69158319
0.69142877

0.6914201

0.6913526
0.69115971
0.69088405
0.69079397
0.69075374
0.69058183
0.69037761
0.69013951
0.69010002
0.68993886
0.68993286
0.68924484
0.68890779
0.68874533
0.68864151



AP000560.1
POLR2M
CoG7
COMMDS5
DHRS9
Cl6orf87
VAV?2
CSE1L
RPP14
NAGA
PPP1CC
PRDX1
HINFP
RFC5
TYW5S
CYBRD1
SNAPIN
LRRC37B
LINCO0476
ETNK1
MRPS6
TOR1AIP1
TGFBR1
VRK1
BNIP2
EHBP1
VAV3
TOR3A
C21o0rf91
FAM168B
RNF121
REPS2
SIGLEC7?
CEACAM1
STK36
SACS
DUSP7
ZNF175
BTRC
CASP8AP2

0.28537449
0.16744376
0.04535491
0.06117082
0.17530463
0.09649566
0.32573069
0.24749541
0.10927296
0.41346988
0.24197462
0.24382701
0.30688752

0.4419482
0.25459406
0.26132325
0.29904276
0.38325704
0.07716242
0.34864189
0.22798522
0.32401109
0.18428456
0.40306034
0.23894521
0.63211649
0.55517554
0.58607304
0.34339147
0.41552142
0.25943759
0.28640374
0.24267091
0.18078107
0.21077662
0.38387805
0.53712116
0.39572242
0.10124267
0.35242655

-0.5383831
-0.5384033
-0.539178
-0.5402475
-0.5410519
-0.5411181
-0.5412898
-0.5414454
-0.5416943
-0.5421406
-0.5424926
-0.54253
-0.5432049
-0.5438292
-0.5439608
-0.544596
-0.5449396
-0.5452157
-0.5455432
-0.545949
-0.5460868
-0.5461546
-0.5466845
-0.5471227
-0.5471616
-0.547391
-0.5475957
-0.5476338
-0.547988
-0.5482539
-0.548557
-0.5488917
-0.5493071
-0.5497726
-0.5498844
-0.5501722
-0.5507946
-0.550998
-0.5511888
-0.5512179
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0.68854216
0.68853254
0.68816287
0.68765291
0.68726961
0.68723807
0.68715628

0.6870822
0.68696367
0.68675118
0.68658364
0.68656584
0.68624474
0.68594786
0.68588528
0.68558337
0.68542011
0.68528892

0.6851334

0.6849407
0.68487526
0.68484309
0.68459162
0.68438368
0.68436526
0.68425644
0.68415935
0.68414131
0.68397333
0.68384727
0.68370363
0.68354505
0.68334824
0.68312779
0.68307486

0.6829386
0.68264404
0.68254782
0.68245755
0.68244379



SS18
MT1E
CSTF3
POLR2H
RPLS
R3HCC1L
UBE2E1
ZNF555
LRRC37A4P
GINM1
FKBP3
LRSAM1
CTSL
SH2B3
LILRB1
ATG3
AC069366.2
NAPG
SYNJ2BP
SRSF7
MRPL46
INTS6L
SP3
WDR36
AC007292.2
DNASE1L1
ZC3H12D
KLF4
TMED4
PIGB

ZBP1
AC004918.1
ZNF506
ILI8RAP
REXO2
PHLDB2
ACOX3
ARRDC4
DERA
ZNF587B

0.2175692
0.24183071
-0.0760332

0.4828162
0.30479109
0.28212255
0.14449946

0.2976875
0.50284259
0.39037238
0.34616079
0.49683188
0.14332503
0.35622885
0.45425952
0.46718784
0.36330965
0.38020846
0.24951434

0.3944804
0.22636181
0.25636243
0.24780015
0.19772271
0.15442147
0.25193462
0.47418919
0.47882113

0.4528178
0.38031806

0.4209725
0.32030017
0.41668561
0.24487164

0.3745028
0.38392746
0.62060697
0.40098764

0.4376798

0.3288217

-0.5512249
-0.551371
-0.5513927
-0.55166
-0.5519788
-0.5527678
-0.5533878
-0.5538038
-0.5541064
-0.5542179
-0.554346
-0.5543784
-0.5550357
-0.5558327
-0.5560084
-0.5564985
-0.556568
-0.5567444
-0.5570892
-0.5572211
-0.5574802
-0.5578826
-0.5579806
-0.5583479
-0.5585167
-0.5586309
-0.559438
-0.5594624
-0.5601307
-0.5606026
-0.5607245
-0.5613332
-0.5614565
-0.5617942
-0.5623667
-0.562687
-0.5628414
-0.5628862
-0.5629106
-0.5632363
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0.68244045
0.68237138
0.6823611
0.68223469
0.68208392
0.681711
0.6814181
0.68122166
0.6810788
0.68102617
0.68096569
0.68095041
0.68064022
0.68026433
0.68018145
0.67995042
0.67991767
0.67983456
0.67967208
0.67960994
0.67948794
0.67929841
0.67925229
0.67907935
0.67899991
0.67894615
0.67856647
0.67855499
0.67824072
0.67801891
0.6779616
0.67767564
0.67761771
0.67745914
0.67719033
0.67704002
0.67696756
0.67694655
0.67693507
0.67678229



ITGAE
AKR7A2
MFSD8
SLC25A24
AC024075.1
PPARD
RPAIN
ZNF426
NSMCE3
ANKRD52
ETHE1
ST3GALS
TSNAX
BUB3
TAPT1
CDCA4
RNF125
AL121839.2
LRIG1
SMIM24
FUCA1
TTC37
TRIB2
MCUB
MOV10
RCC1L
MPHOSPH10
C21orf62-AS1
ZBED5-AS1
TMEM14C
TIMM21
SNRPA1
C20rf49
MIA3
CwcCis
LACTB
SDF2L1
TRMT12
SLC25A46
MRPS7

0.18221559
0.22677002
0.22520456
0.34197327
0.3610122
0.51203405
0.26239334
0.4375588
0.48689987
0.63633168
0.2726024
0.30762644
0.34318213
0.1498339
0.3938171
0.32089026
0.31819361
0.29895045
0.3075266
0.20784533
0.40335879
0.36006279
0.42610764
0.34885098
0.37625687
0.15339665
0.67739412
0.0807822
0.42952121
0.31255082
0.28477728
0.13467213
0.39973113
0.49068961
0.37130509
0.24465619
0.375582
0.25683595
0.37603537
0.31776684

-0.5633471
-0.5635193
-0.5635951
-0.5636636
-0.5640617
-0.5655798
-0.5661443
-0.5663532
-0.5664338
-0.5664402
-0.5664459
-0.5665751
-0.5672945
-0.5674447
-0.5677979
-0.56782
-0.5683152
-0.5685526
-0.5688711
-0.5699294
-0.5704828
-0.5710417
-0.5712906
-0.5714659
-0.5718121
-0.5718284
-0.572187
-0.572512
-0.5730451
-0.5731243
-0.5735288
-0.5737524
-0.5740071
-0.5740204
-0.574085
-0.5745456
-0.5745632
-0.5747168
-0.5751936
-0.5763622
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0.6767303
0.67664954
0.67661397
0.67658185

0.6763952
0.67568382
0.67541948
0.67532171
0.67528398
0.67528098

0.6752783
0.67521784

0.6748812
0.67481094
0.67464578
0.67463544
0.67440392
0.67429292
0.67414408
0.67364973
0.67339139
0.67313057
0.67301447
0.67293267
0.67277121
0.67276363
0.67259642

0.6724449

0.6721965
0.67215957
0.67197115
0.67186703
0.67174842
0.67174223
0.67171213
0.67149773
0.67148954
0.67141806
0.67119616
0.67065272



EXOSC2
MEAF6
DNAJC27
HS2ST1
TMOSF2
GM2A
GCLM
HS6ST1
IGFBP7
STAMBP
RAB9A
CD28
HENMT1
ADAP2
ATRAID
CPOX
ADGRL1
CTBP1-AS2
ALG2
SLC35A1
POP4
TRIT1
EIF4ENIF1
DIS3L2
ZNF92
EYA3
SRFBP1
ZNF780B
LMAN2L
DHX40
AC007342.2
ITGB3
TNFAIP6
CCDC117
DHRS4-AS1
CLTA
DNAJC19
ABCC13
LINCO0937
G3BP2

0.43416838
0.22524402
0.36274287
0.12717139
0.27108696
0.25527905
0.19351929
0.48572125
0.57502794
0.24647058
0.25769777
0.1197685
0.0305696
0.08271462
0.37988799
0.17844495
0.42911323
0.50787123
0.310622
0.34660475
0.35712816
0.22496698
0.54972147
0.32244481
0.37700274
0.20230016
0.18657489
0.28411456
0.21597964
0.36822548
0.4764585
0.26258765
0.24465924
0.16055438
0.28993711
0.19619904
0.3263287
0.74951404
0.49068181
0.22767234

-0.5765167
-0.5765454
-0.5765611
-0.5774231
-0.5778195
-0.5783423
-0.5784328

-0.578759
-0.5791244
-0.5793082
-0.5796769
-0.5802018
-0.5806168

-0.580942
-0.5811475
-0.5811868
-0.5813731

-0.581535
-0.5818883
-0.5823312
-0.5824886
-0.5825759
-0.5832766
-0.5832959
-0.5837533
-0.5842243
-0.5847715
-0.5848826
-0.5859553

-0.586004
-0.5863035
-0.5867549
-0.5868261

-0.587052
-0.5870939
-0.5874209
-0.5879153
-0.5892952
-0.5894321
-0.5897318
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0.67058088
0.67056758
0.67056025
0.67015974

0.6699756
0.66973286
0.66969087
0.66953949
0.66936991
0.66928464
0.66911363

0.6688702
0.66867781

0.6685271
0.66843192
0.66841369
0.66832738

0.6682524
0.66808877

0.6678837
0.66781082
0.66777043
0.66744619
0.66743723
0.66722565
0.66700786
0.66675495
0.66670361
0.66620803
0.66618559

0.6660473
0.66583893
0.66580604

0.6657018
0.66568248
0.66553163
0.66530356
0.66466753
0.66460446
0.66446642



PYM1
RSPH3
AC093726.1
PRELID3B
AC125257.1
TMEM170B
RABGGTA
ASH2L
ARL1
COASY
PAPD7
CEBPG
AL355816.2
LIG1
ARMC1
YARS2
ACTR5
LPAR6

SLA2
NPEPL1
METTL17

OTUD6B-AS1

AC096733.2
BDH1
ZSCAN30
FAM157A
DDX19A
EXOSC7
NFU1
CLPX
COPS8
SUCO
ZNF589
HIGD1A
CCDC82
SLC25A12
TPT1-AS1
DLD

TOB1
WWP1

0.29528397
0.47104657
0.41747707
0.32457978
0.21582165
0.18066244
0.48538053
0.35573953
0.34996559
0.51457313

0.4658788
0.38872228
0.19397258
0.36352806
0.37989193
0.63072166
0.28077353
0.39009009
0.62283007
0.38180197
0.49275936
0.09935679
0.24256687
0.23875439
0.22994223
0.28820034

0.3746681
0.56727384
0.32001014
0.45802972
0.45213509
0.34925665
0.22873686
0.27038195
0.31581846
0.36639639
0.38372687
0.38666015
0.19771933
0.29364808

-0.5902329
-0.5903633
-0.5912356
-0.5922033
-0.5930497
-0.5932044
-0.5939876
-0.5942729
-0.5945762
-0.5947763
-0.594828
-0.5950129
-0.595394
-0.5954996
-0.5955223
-0.596498
-0.5967832
-0.5970064
-0.5971227
-0.597783
-0.5981831
-0.59832
-0.5985983
-0.5991338
-0.5992306
-0.5995536
-0.6003431
-0.6006299
-0.602152
-0.6022572
-0.6024318
-0.6030708
-0.6031025
-0.6032688
-0.6033537
-0.6034197
-0.6044603
-0.6048756
-0.6060954
-0.6070459
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0.66423569
0.66417561
0.66377419
0.66332908
0.66294002
0.66286895

0.6625092
0.66237819
0.66223898
0.66214711
0.66212339
0.66203854
0.66186368
0.66181522
0.66180482

0.6613574
0.66122667
0.66112438
0.66107106
0.66076858
0.66058534
0.66052267
0.66039527
0.66015018
0.66010588
0.65995812
0.65959706
0.65946594
0.65877059
0.65872252

0.6586428
0.65835117
0.65833668

0.6582608
0.65822205
0.65819196
0.65771737
0.65752805
0.65697236
0.65653966



RYK

LDAH
TUBE1
MRPL33
CLEC2B
AUTS2

EED
PSMA4
PPID

AlG1
TULP4
usP44
MGLL
AC098679.1
TBC1D2
NDUFB3
AC007066.2
CCDC127
LINCO1215
PHTF2
MICA
REPS1
AC093323.1
ELAVL1
ATP6V1G1
GPRASP1
MGMT
HMGN3
IGIP
RNU7-41P
DDX51
TIMM44
CLASP2
MORC2
TSTD2
AACS
PHF10
GTPBP8
OPN3
TRIAP1

0.38120918
0.65253797
0.19029744
0.28415064

0.6054436
0.16268594
0.41348899
0.53271951
0.53771149
0.23451166
0.33087381
0.37205584
0.33993067
0.46761006
0.41945465
0.29421763
0.13767262
0.28436167
0.28921013
0.54408768
-0.0452541
0.41772596

0.2848851
0.19125857
0.29985219
0.23249846
0.00873528
0.52925394
0.26443859
0.30117361
0.25840853
0.32465391
0.07883851

0.5205878
0.21397427

0.2139599
0.27319912
0.37035892
0.43734987
0.46229163

-0.6076026
-0.6080247
-0.6082422
-0.6087801
-0.6100798
-0.6103144
-0.6114876
-0.6121488
-0.6122513
-0.6130079
-0.6132468
-0.6135845
-0.6137911
-0.6139001
-0.6149463
-0.6152436
-0.6152559
-0.6170503

-0.617446
-0.6178684
-0.6179363
-0.6181979

-0.618253
-0.6183643
-0.6185096

-0.618861
-0.6193016
-0.6193366
-0.6193516
-0.6197624
-0.6205085
-0.6215507
-0.6220518

-0.622603
-0.6231728
-0.6235623
-0.6235683
-0.6236931
-0.6239718
-0.6245284
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0.65628636
0.65609441
0.6559955
0.65575094
0.65516045
0.65505393
0.65452145
0.65422154
0.65417508
0.65383209
0.65372385
0.65357084
0.65347726
0.65342788
0.65295422
0.65281965
0.65281409
0.65200264
0.65182384
0.651633
0.65160236
0.65148421
0.65145932
0.65140906
0.65134345
0.65118482
0.65098599
0.65097018
0.65096341
0.65077809
0.65044165
0.64997194
0.64974621
0.649498
0.64924155
0.64906628
0.64906358
0.64900744
0.64888207
0.64863177



CAMKMT
GMPPB
UTP4
MTA2
HDHD5
STX6
TERF2
PGGT1B
ANKRD10
SERGEF
WDR89
AC007342.4
ZDHHC20
TSPOAP1
METTL12
PTER
PDP2
NAA30
EID2
DRG1
C180rf25
ACTA2
POLR3E
DRAM2
TOGARAM1
ASF1A
EHD4
TTC26
MCM2
CHIC1
FBXO45
NLRP3
ASNSD1
SPATAS
MICU2
RIPK2
RIOK1
DOHH
ISY1
FCGR1A

0.33865432
0.32514183
0.65612392
0.43248222
0.27319034
0.26606473
0.46721027
0.36659484
0.44307329
0.25169874
0.57231473
0.24889933
0.44549818
0.35037685
0.55457331
0.17467689
0.62445806
0.27862553

0.4021904
0.18807819
0.12302748
0.56850337
0.30159791
0.50671939
0.34197438
0.34405122
0.19381227
0.37904948
0.34358344

0.4226668
0.07576634
0.26792019
0.51455094
0.40580301
0.60510523
0.57915099
0.57192841

0.2863982
0.71138492

0.1511084

-0.6248707
-0.6256407

-0.625646
-0.6264714
-0.6268372
-0.6274502
-0.6279452
-0.6280465
-0.6281094
-0.6284942
-0.6285056
-0.6286221
-0.6294618

-0.629755
-0.6298757
-0.6300902
-0.6303698
-0.6308753
-0.6314439
-0.6325726
-0.6343495
-0.6355724
-0.6372841
-0.6377389
-0.6378807
-0.6379259
-0.6388315
-0.6401126
-0.6411976

-0.641294
-0.6420157
-0.6420501
-0.6427813
-0.6432652
-0.6449818
-0.6453327
-0.6453472
-0.6456693
-0.6457006

-0.646132
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0.64847788
0.64813189
0.64812951
0.64775881
0.64759457
0.64731946
0.64709739
0.64705199
0.64702377

0.6468512
0.64684608
0.64679388

0.6464175
0.64628615
0.64623208
0.64613603

0.6460108
0.64578451
0.64553004
0.64502519
0.64423124
0.64368536
0.64292212
0.64271946
0.64265631
0.64263619
0.64223289
0.64166285
0.64118046
0.64113765
0.64081699
0.64080173
0.64047702
0.64026224
0.63950084
0.63934532
0.63933892
0.63919616
0.63918232
0.63899121



VIM-AS1
THAPS
MAN1C1
CYSLTR2
ALG10B
AC110769.2
CSTF2T
SEC24D
NEPRO
PRKCI
HNMT
SETDB2
FBXO8
GTF2H5
SEC23IP
EMC2
TMEMA42
MTHFD2
AC004951.1
TANGOG6
TMEM123
IMPAD1
ARHGAP19
TRIMS
ZNHIT3
UBE2N
CEBPZ
TSHZ1
C3orf38
TOP1IMT
IFI44L
COPS3
COA3
CAND1
XPNPEP3
ACADS
RPL22L1
CHUK
RTL6
AL021707.6

0.24381816
0.30779649
0.52603156
0.05174081
0.45745988
0.14147817
0.35272811
0.54023754
0.23385526
0.20532297
0.30698192
0.23044233
0.18758995
0.30271918
0.16832564
0.47420209
0.42576945
0.16831495
0.47310857
0.32122883
0.26874455
0.33491893
0.23056323
0.33060853

0.6880678
0.43013319
0.40137135
0.46105552
0.45501645
0.16423452
0.53753961
0.24259899
0.26433507
0.40615412

0.2904909
0.33206502
0.36279309
0.47131066
0.56652108
0.40480124

-0.6466187
-0.6475021
-0.6479659
-0.6483334
-0.6487929
-0.6490654
-0.6496537
-0.6516363
-0.6521151
-0.6523502
-0.6524503
-0.6525192
-0.6528041
-0.6539692

-0.654319
-0.6552245
-0.6558248
-0.6558259
-0.6565383
-0.6575326
-0.6592102
-0.6597623
-0.6626502
-0.6643601
-0.6650312
-0.6651349
-0.6660423

-0.666637
-0.6677288

-0.668235
-0.6715076
-0.6722308
-0.6740733
-0.6759598
-0.6761266
-0.6766329
-0.6774987
-0.6779616
-0.6781334
-0.6785982
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0.63877569
0.63838466
0.63817949
0.63801693
0.63781377
0.63769328
0.63743329
0.63655794

0.6363467
0.63624301
0.63619888
0.63616847
0.63604286
0.63552941
0.63537536
0.63497669
0.63471251
0.63471204
0.63439871
0.63396164
0.63322488
0.63298257
0.63171677
0.63096849
0.63067505
0.63062973
0.63023323
0.62997346
0.62949691
0.62927607
0.62785025
0.62753561
0.62673468
0.62591565

0.6258433
0.62562372
0.62524836
0.62504777
0.62497334
0.62477206



HACL1
UBP1
KIAA0100
EME2
STX11
TBK1

XAF1
HOPX
HEATR1
SPG20
ZNF337
ZDHHC12
LINCO0909
NDUFB5
BCOR
TFPT
METTL25
RPARP-AS1
GCFC2
RBM27
ZNF551
WDR5
MUT
RSAD2
GPALPP1
SOCS2
NSUN5P2
DNAIJA3
ZNF12
TRIM52-AS1
KLRF1
ANKRD36B
LSM6
TAMM41
PCNP
SLC38A6
PURB
RNF185
PIGK
PNOC

0.60067252
0.23681497
0.21452431
0.29307962
0.37389423
0.51396741
0.35868211
0.36278675
0.27469993
0.38327512
0.55347425
0.26629529
0.38872564
0.11559163
0.40614023

0.2487434
0.17997373
0.21111883
0.06193899
0.41196276
0.34446227
0.43223076
0.56098705
0.47718184
0.48770144
0.44645497

0.3085176
0.42033062
0.29130002
0.33719391
0.53565664
0.26271798
0.20827894

0.1249127
0.36543286
0.50117759
0.33864419
0.69285692
0.53186248
0.27340947

-0.6796417
-0.6800293
-0.6803577

-0.681758
-0.6818086
-0.6820271
-0.6823789
-0.6832517
-0.6836659
-0.6838657
-0.6839658
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Appendix C

iPathwayGuide

Title: The Effects of High Intensity Interval Training on Gene Expression

Description: Effects of a 3 times per week, 4-week, 10X1 HIIT protocol on gene expression. Functional Enrichment analysis cutoff threshold
>1.2 0r<.8

Organism: Homo sapiens (9606)

Contrast Condition vs. Control - mRNA (RNA-seq)

Creation time: 10-23-2022 06:42 PM

1. Introduction

In this experiment, 2,653 differentially expressed (DE) genes were identified out of a total of 54,683 genes in Advaita Knowledge Base (AKB). These data
were analyzed in the context of pathways obtained from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (Release 100.0+/11-12, Nov
21) (Kanehisa et al., 2000; Kanehisa et al., 2002), gene ontologies from the Gene Ontology Consortium database (2021-Nov4) (Ashburner et al., 2000;
Gene Ontology Consortium, 2001), miRNAs from the miRBase (MIRBASE Version:Version22.1,10/18) and TARGETSCAN (Targetscan version: Mouse:8.0,
Human:8.0) databases (Agarwal et al., 2015; Nam et al., 2014; Griffiths-Jones et al., 2008; Kozomara and Giriffiths-Jones, 2014; Friedman et al., 2009;
Grimson et al., 2007), network of regulatory relations from BioGRID: Biological General Repository for Interaction Datasets v4.4.203. Oct. 25th, 2021
(Szklarczyk et al., 2017), chemicals/drugs/toxicants from the Comparative Toxicogenomics Database Nov 2021 (Davis et al., 2019), and diseases from the
KEGG database (Release 100.0+/11-12, Nov 21) (Kanehisa et al., 2000; Kanehisa et al., 2002). In summary, 229 pathways were found to be significantly
impacted. In addition, 1,365 Gene Ontology (GO) terms, 0 miRNAs , 477 gene upstream regulators, 231 chemical upstream regulators and 259 diseases
were found to be significantly enriched before the correction for multiple comparisons.
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Fig. 1.1: a) Violin plot: All 2653 significantly differentially expressed (DE) genes are represented in terms of their measured expression change (x-axis) and frequency of genes measured at a
given expression change (y-axis) b) Pathways perturbation vs over-representation: The top 5 pathways are plotted in terms of the two types of evidence computed by iPathwayGuide: over-
representation on the x-axis (pORA) and the total pathway accumulation on the y-axis (pAcc). Each pathway is represented by a single dot, with significant pathways shown in red, non-

significant in black, and the size of each dot is proportional to the size of the pathway it represents. Both p-values are shown in terms of their negative log (base 10) values.
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2. Pathway Analysis
2.1. Methods

iPathwayGuide scores pathways using the Impact Analysis method (Draghici et al., 2007; Tarca et al., 2009, Khatri et al., 2007). Impact analysis uses two
types of evidence: i) the over-representation of differentially expressed (DE) genes in a given pathway and ii) the perturbation of that pathway computed
by propagating the measured expression changes across the pathway topology. These aspects are captured by two independent probability values,
pORA and pAcc, that are then combined in a unique pathway-specific p-value. The underlying pathway topologies, comprised of genes and their
directional interactions, are obtained from the KEGG database (Kanehisa et al., 2000; Kanehisa et al., 2010; Kanehisa et al., 2012; Kanehisa et al., 2014).

The first probability, pPORA, expresses the probability of observing the number of DE genes in a given pathway that is greater than or equal to the number
observed, by random chance (Draghici et al., 2003; Draghici 2011). Let us consider there are N genes measured in the experiment, with M of these on the
given pathway. Based on the user-defined a priori selection of DE genes, K out of M genes were found to be differentially expressed. The probability of
observing exactly x differentially expressed genes on the given pathway is computed based on the hypergeometric distribution:

(F)(KY)
(%)

Because the hypergeometric distribution is discrete, the probability of observing fewer than x genes on the given pathway just by chance can be
calculated by summing the probabilities of randomly observing 0, 7, 2, ..., up to x-7 DE genes on the pathway:

MY\( N-M
- ( i )( K—i)
(2) pux-1) = P(X=1)+P(X=2)+..+P(X=x-1) = Z—

(%)

iPathwayGuide calculates the probability of randomly observing a number of DE genes on the given pathway that is greater than or equal to the number
of DE genes obtained from data, by computing the over-representation p-value: pORA = py(x) = 1 - p,(x-1):

()
< i K-i
i=0 ( N )
K
The second probability, pAcc, is calculated based on the amount of total accumulation measured in each pathway. A perturbation factor is computed for
each gene on the pathway using:

(1) P(X=xINM,K) =

X

(3) po(x) =1 -

PF.
(4) PF(g) = a(g) - AE(g) + Zﬂmi

m‘US_U ds (u)

In Equation 4, PF(g) is the perturbation factor for gene g, the term AE(g) represents the signed normalized measured expression change of gene g, and
a(g) is a priori weight based on the type of the gene. The last term is the sum of the perturbation factors of all genes u, directly upstream of the target
gene g, normalized by the number of downstream genes of each such gene Nys(u). The value of B,4 quantifies the strength of the interaction between
genes g and u. The sign of B represents the type of interaction: positive for activation-like signals, and negative for inhibition-like signals. Subsequently,
iPathwayGuide calculates the accumulation at the level of each gene, Acc(g), as the difference between the perturbation factor PF(g) and the observed
log fold-change:

(5) Acc(g;) = PF(g;) - /\E(g;)

All perturbation accumulations are computed at the same time by solving the system of linear equations resulting from combining Equation 4 for all genes
on a given pathway. Once all gene perturbation accumulations are computed, iPathwayGuide computes the total accumulation of the pathway as the
sum of all absolute accumulations of the genes in a given pathway. The significance of obtaining a total accumulation (pAcc) at least as large as
observed, just by chance, is assessed through bootstrap analysis.

The two types of evidence, pORA and pAcc, are combined into an overall pathway score by calculating a p-value using Fisher's method. This p-value is
then corrected for multiple comparisons using false dicovery rate (FDR) and Bonferroni corrections. Bonferroni is simpler and more conservative of the

two (Bonferroni, 1935; Bonferroni, 1936). It reduces the false discovery rate by imposing a stringent threshold on each comparison adjusted for the total
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number of comparisons. The FDR correction has more power, but only controls the family-wise false positives rate (Benjamini and Hochberg, 1995;

Benjamini and Yekutieli, 2001).

2.2. Results

Table 2.2.1: Top pathways and their associated p-values

Pathway name Pathway Id p-value p-value (FDR) p-value (Bonferroni)
Human T-cell leukemia virus 1 infection 05166 2.033e-7 3.888e-5 6.851e-5
Pathways in cancer 05200 2.308e-7 3.888e-5 7.776e-5
Neurotrophin signaling pathway 04722 4.670e-7 5.246e-5 1.574e-4
RNA degradation 03018 1.140e-6 5.939%e-5 3.842e-4
Autophagy - animal 04140 1.190e-6 5.939%e-5 4.009e-4

* the p-value corresponding to the pathway was computed using only over-representation analysis.

Human T-cell leukemia virus 1 infection (KEGG: 05166)

Human T-cell leukemia virus type 1 (HTLV-1) is a pathogenic retrovirus that is associated with adult T-cell leukemia/lymphoma (ATL). It is also strongly
implicated in non-neoplastic chronic inflammatory diseases such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Expression
of Tax, a viral regulatory protein is critical to the pathogenesis. Tax is a transcriptional co-factor that interfere several signaling pathways related to anti-
apoptosis or cell proliferation. The modulation of the signaling by Tax involve its binding to transcription factors like CREB/ATF, NF-kappa B, and SRF.
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Fig. 2.2.1: Human T-cell leukemia virus 1 infection (KEGG: 05166): The pathway diagram is overlayed with the computed perturbation of each gene. The perturbation accounts both for the

gene's measured fold change and for the accumulated perturbation propagated from any upstream genes (accumulation). The highest negative perturbation is shown in dark blue, while the

highest positive perturbation in dark red. The legend describes the values on the gradient. Note: For legibility, one gene may be represented in multiple places in the diagram and one box may

represent multiple genes in the same gene family. A gene is highlighted in all locations it occurs in the diagram. For each gene family, the color corresponding to the gene with the highest

absolute perturbation is displayed.

145

https://ipathwayguide.advaitabio.com/report/56822/contrast/73693/summary/print 3/40



10/24/22,10:21 AM Report Summary | iPathwayGuide

2.0

15 __

iy

2 0.0

I§ 77777777 mr N'm' -4 < '\'n-' ‘-71-7 1—707 <7 ) N - m'”' z'm' -

£ 05 ; 2 5 3 & 9 &8 3 & & 5 3 B E ¥ 8 5 %5 3
1.0 & & 8 ° 2 g 8 g a 2 g § F I & § & & g @
: Z < Z ¢ 3 L g £ 2 g

-1.5 ° g & ez <

-2.0
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Fig. 2.2.2: Gene measured expression bar plot: All the differentially expressed genes in Human T-cell leukemia virus 1 infection (KEGG: 05166) are ranked based on their absolute value of log

fold change. The plot is limited to the top 20 genes out of a total of 35 differentially expressed genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and
whisker plot on the left summarizes the distribution of all the differentially expressed genes in this pathway. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers

are represented by circles.
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Fig. 2.2.3: a) Perturbation vs over-representation: Human T-cell leukemia virus 1 infection (KEGG: 05166) (yellow) is shown, using negative log of the accumulation and over-representation p-
values, along with the other most significant pathways. Pathways in red are significant based on the combined uncorrected p-values, whereas the ones in black are non-significant (where
applicable). b) Gene measured expression vs accumulation: All the genes from this pathway are represented in terms of their measured fold change (y-axis) and accumulation (x-axis).
Accumulation is the perturbation received by the gene from any upstream genes. Genes displayed in red had both accumulation and measured fold change.Genes in blue had only measured
fold change.Genes in green had only accumulation.The remaining genes that were not measured and had no accumulation are shown in black. c) Bootstrap diagram: The perturbation p-value
is computed using bootstrap analysis. Bootstrapping assesses the probability of observing a sum of all absolute gene accumulation total accumulation at least as extreme as the computed one
just by chance. A null distribution (gray bars) is computed through an iterative process that is repeated 2000 times. At each iteration, a number of genes equal to the number of differentially
expressed genes in this pathway is randomly assigned anywhere in the pathway and the total accumulation is recomputed. The red line indicates the observed total accumulation of genes in the

given pathway in relation to the distribution of expected values. The perturbation p-value is more significant the further away from the mean it is.

Pathways in cancer (KEGG: 05200)
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Fig. 2.2.4: Pathways in cancer (KEGG: 05200) The pathway diagram is overlayed with the computed perturbation of each gene. The perturbation accounts both for the gene's measured fold
change and for the accumulated perturbation propagated from any upstream genes (accumulation). The highest negative perturbation is shown in dark blue, while the highest positive
perturbation in dark red. The legend describes the values on the gradient. Note: For legibility, one gene may be represented in multiple places in the diagram and one box may represent multiple

genes in the same gene family. A gene is highlighted in all locations it occurs in the diagram. For each gene family, the color corresponding to the gene with the highest absolute perturbation is

displayed.

2.0

[&]

w

1=

2 -0 5
-1.0
-1.5
-2.0

Fig. 2.2.5: Gene measured expression bar plot: All the differentially expressed genes in Pathways in cancer (KEGG: 05200) are ranked based on their absolute value of log fold change. The
plot is limited to the top 20 genes out of a total of 57 differentially expressed genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on

the left summarizes the distribution of all the differentially expressed genes in this pathway. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented

by circles.
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Fig. 2.2.6: a) Perturbation vs over-representation: Pathways in cancer (KEGG: 05200) (yellow) is shown, using negative log of the accumulation and over-representation p-values, along with
the other most significant pathways. Pathways in red are significant based on the combined uncorrected p-values, whereas the ones in black are non-significant (where applicable). b) Gene
measured expression vs accumulation: All the genes from this pathway are represented in terms of their measured fold change (y-axis) and accumulation (x-axis). Accumulation is the
perturbation received by the gene from any upstream genes. Genes displayed in red had both accumulation and measured fold change.Genes in blue had only measured fold change.Genes in
green had only accumulation.The remaining genes that were not measured and had no accumulation are shown in black. c) Bootstrap diagram: The perturbation p-value is computed using
bootstrap analysis. Bootstrapping assesses the probability of observing a sum of all absolute gene accumulation total accumulation at least as extreme as the computed one just by chance. A
null distribution (gray bars) is computed through an iterative process that is repeated 2000 times. At each iteration, a number of genes equal to the number of differentially expressed genes in
this pathway is randomly assigned anywhere in the pathway and the total accumulation is recomputed. The red line indicates the observed total accumulation of genes in the given pathway in

relation to the distribution of expected values. The perturbation p-value is more significant the further away from the mean it is.

Neurotrophin signaling pathway (KEGG: 04722)

Neurotrophins are a family of trophic factors involved in differentiation and survival of neural cells. The neurotrophin family consists of nerve growth factor
(NGF), brain derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3), and neurotrophin 4 (NT-4). Neurotrophins exert their functions through
engagement of Trk tyrosine kinase receptors or p75 neurotrophin receptor (p75NTR). Neurotrophin/Trk signaling is regulated by connecting a variety of
intracellular signaling cascades, which include MAPK pathway, PI-3 kinase pathway, and PLC pathway, transmitting positive signals like enhanced
survival and growth. On the other hand, p75NTR transmits both positive and nagative signals. These signals play an important role for neural
development and additional higher-order activities such as learning and memory.
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Fig. 2.2.7: Neurotrophin signaling pathway (KEGG: 04722): The pathway diagram is overlayed with the computed perturbation of each gene. The perturbation accounts both for the gene's
measured fold change and for the accumulated perturbation propagated from any upstream genes (accumulation). The highest negative perturbation is shown in dark blue, while the highest
positive perturbation in dark red. The legend describes the values on the gradient. Note: For legibility, one gene may be represented in multiple places in the diagram and one box may represent

multiple genes in the same gene family. A gene is highlighted in all locations it occurs in the diagram. For each gene family, the color corresponding to the gene with the highest absolute

perturbation is displayed.

logFC

Fig. 2.2.8: Gene measured expression bar plot: All the differentially expressed genes in Neurotrophin signaling pathway (KEGG: 04722) are ranked based on their absolute value of log fold

change. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the differentially expressed genes in
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Fig. 2.2.9: a) Perturbation vs over-representation: Neurotrophin signaling pathway (KEGG: 04722) (yellow) is shown, using negative log of the accumulation and over-representation p-values,
along with the other most significant pathways. Pathways in red are significant based on the combined uncorrected p-values, whereas the ones in black are non-significant (where applicable). b)
Gene measured expression vs accumulation: All the genes from this pathway are represented in terms of their measured fold change (y-axis) and accumulation (x-axis). Accumulation is the
perturbation received by the gene from any upstream genes. Genes displayed in red had both accumulation and measured fold change.Genes in blue had only measured fold change.Genes in
green had only accumulation.The remaining genes that were not measured and had no accumulation are shown in black. c) Bootstrap diagram: The perturbation p-value is computed using
bootstrap analysis. Bootstrapping assesses the probability of observing a sum of all absolute gene accumulation total accumulation at least as extreme as the computed one just by chance. A
null distribution (gray bars) is computed through an iterative process that is repeated 2000 times. At each iteration, a number of genes equal to the number of differentially expressed genes in
this pathway is randomly assigned anywhere in the pathway and the total accumulation is recomputed. The red line indicates the observed total accumulation of genes in the given pathway in

relation to the distribution of expected values. The perturbation p-value is more significant the further away from the mean it is.

RNA degradation (KEGG: 03018)

The correct processing, quality control and turnover of cellular RNA molecules are critical to many aspects in the expression of genetic information. In
eukaryotes, two major pathways of mRNA decay exist and both pathways are initiated by poly(A) shortening of the mRNA. In the 5' to 3' pathway, this is
followed by decapping which then permits the 5' to 3' exonucleolytic degradation of transcripts. In the 3' to 5' pathway, the exosome, a large
multisubunit complex, plays a key role. The exosome exists in archaeal cells, too. In bacteria, endoribonuclease E, a key enzyme involved in RNA decay
and processing, organizes a protein complex called degradosome. RNase E or R interacts with the phosphate-dependent exoribonuclease
polynucleotide phosphorylase, DEAD-box helicases, and additional factors in the RNA-degrading complex.
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Fig. 2.2.10: RNA degradation (KEGG: 03018): The pathway diagram is overlayed with the computed perturbation of each gene. The perturbation accounts both for the gene's measured fold

change and for the accumulated perturbation propagated from any upstream genes (accumulation). The highest negative perturbation is shown in dark blue, while the highest positive

perturbation in dark red. The legend describes the values on the gradient. Note: For legibility, one gene may be represented in multiple places in the diagram and one box may represent multiple

genes in the same gene family. A gene is highlighted in all locations it occurs in the diagram. For each gene family, the color corresponding to the gene with the highest absolute perturbation is

displayed.
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Fig. 2.2.11: Gene measured expression bar plot: A/l the differentially expressed genes
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in RNA degradation (KEGG: 03018) are ranked based on their absolute value of log fold change. The

plot is limited to the top 20 genes out of a total of 21 differentially expressed genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on

the left summarizes the distribution of all the differentially expressed genes in this pathway. The box represents the 1st quartile, the median and the 3rd quatrtile, while the outliers are represented

by circles.
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Fig. 2.2.12: a) Perturbation vs over-representation: RNA degradation (KEGG: 03018) (yellow) is shown, using negative log of the accumulation and over-representation p-values, along with
the other most significant pathways. Pathways in red are significant based on the combined uncorrected p-values, whereas the ones in black are non-significant (where applicable). b) Gene
measured expression vs accumulation: All the genes from this pathway are represented in terms of their measured fold change (y-axis) and accumulation (x-axis). Accumulation is the
perturbation received by the gene from any upstream genes. Genes in blue had only measured fold change.The remaining genes that were not measured and had no accumulation are shown in
black. c) Bootstrap diagram: The perturbation p-value is computed using bootstrap analysis. Bootstrapping assesses the probability of observing a sum of all absolute gene accumulation total
accumulation at least as extreme as the computed one just by chance. A null distribution (gray bars) is computed through an iterative process that is repeated 2000 times. At each iteration, a
number of genes equal to the number of differentially expressed genes in this pathway is randomly assigned anywhere in the pathway and the total accumulation is recomputed. The red line
indicates the observed total accumulation of genes in the given pathway in relation to the distribution of expected values. The perturbation p-value is more significant the further away from the

mean it is.

Autophagy - animal (KEGG: 04140)

Autophagy (or macroautophagy) is a cellular catabolic pathway involving in protein degradation, organelle turnover, and non-selective breakdown of
cytoplasmic components, which is evolutionarily conserved among eukaryotes and exquisitely regulated. This progress initiates with production of the
autophagosome, a double-membrane intracellular structure of reticular origin that engulfs cytoplasmic contents and ultimately fuses with lysosomes for
cargo degradation. Autophagy is regulated in response to extra- or intracellular stress and signals such as starvation, growth factor deprivation and ER
stress. Constitutive level of autophagy plays an important role in cellular homeostasis and maintains quality control of essential cellular components.
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Fig. 2.2.13: Autophagy - animal (KEGG: 04140): The pathway diagram is overlayed with the computed perturbation of each gene. The perturbation accounts both for the gene's measured

fold change and for the accumulated perturbation propagated from any upstream genes (accumulation). The highest negative perturbation is shown in dark blue, while the highest positive

perturbation in dark red. The legend describes the values on the gradient. Note: For legibility, one gene may be represented in multiple places in the diagram and one box may represent multiple

genes in the same gene family. A gene is highlighted in all locations it occurs in the diagram. For each gene family, the color corresponding to the gene with the highest absolute perturbation is

displayed.
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Fig. 2.2.14: Gene measured expression bar plot: All the differentially expressed genes in Autophagy - animal (KEGG: 04140) are ranked based on their absolute value of log fold change. The

plot is limited to the top 20 genes out of a total of 31 differentially expressed genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on

the left summarizes the distribution of all the differentially expressed genes in this pathway. The box represents the 1st quartile, the median and the 3rd quatrtile, while the outliers are represented

by circles.
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Fig. 2.2.15: a) Perturbation vs over-representation: Autophagy - animal (KEGG: 04140) (yellow) is shown, using negative log of the accumulation and over-representation p-values, along with
the other most significant pathways. Pathways in red are significant based on the combined uncorrected p-values, whereas the ones in black are non-significant (where applicable). b) Gene
measured expression vs accumulation: All the genes from this pathway are represented in terms of their measured fold change (y-axis) and accumulation (x-axis). Accumulation is the
perturbation received by the gene from any upstream genes. Genes displayed in red had both accumulation and measured fold change.Genes in blue had only measured fold change.Genes in
green had only accumulation.The remaining genes that were not measured and had no accumulation are shown in black. c) Bootstrap diagram: The perturbation p-value is computed using
bootstrap analysis. Bootstrapping assesses the probability of observing a sum of all absolute gene accumulation total accumulation at least as extreme as the computed one just by chance. A
null distribution (gray bars) is computed through an iterative process that is repeated 2000 times. At each iteration, a number of genes equal to the number of differentially expressed genes in
this pathway is randomly assigned anywhere in the pathway and the total accumulation is recomputed. The red line indicates the observed total accumulation of genes in the given pathway in

relation to the distribution of expected values. The perturbation p-value is more significant the further away from the mean it is.

3. Gene Ontology Analysis
3.1. Methods

For each Gene Ontology (GO) term (Ashburner et al., 2002; Gene Ontology Consortium, 2004), the number of differentially expressed (DE) genes
annotated to the term is compared to the number of DE genes expected just by chance. iPathwayGuide uses an over-representation approach to
compute the statistical significance of observing at least the given number of DE genes. The p-value is computed using the hypergeometric distribution
as described for pORA in the Pathway Analysis section. This p-value is corrected for multiple comparisons using FDR and Bonferroni.

The classical enrichment method used above considers all GO terms to be independent. By definition, all genes annotated to a GO term are also
annotated to its ancestors. Because of this, the enrichment approach counts each gene multiple times by propagating it through the GO hierarchy from
the most specific term the gene is associated with, all the way to the root of the ontology. This introduces redundancy in the analysis and reports many
general and non-informative terms as significant. To overcome this limitation, iPathwayGuide allows users to use two more sophisticated pruning
methods: high-specificity pruning and smallest common denominator pruning. The high-specificity pruning method identifies the most specific GO terms
that are significantly associated with the set of DE genes. Let us consider, BP1 = “induction of apoptosis by intracellular signals” and BP2 = “induction of
apoptosis by extracellular signals,” which are two of the children of BP3 = “induction of apoptosis.” If enough DE genes are associated with BP1 and
BP2, the high-specificity pruning will report them as significant. The smallest common denominator pruning method identifies the GO terms that best
encapsulate the set of DE genes, at times consolidating significance of two or more specific terms into their common parent. In the example above, this
pruning method might report BP3 as significant because it is the most specific biological term that would include all DE genes that make both BP1 and
BP2 significant.
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3.2. Biological Processes results

Table 3.2.1: Top identified biological processes. Only the top scoring biological process for each pruning type is described below the table.

Report Summary | iPathwayGuide

Pruning Type: None

Pruning Type: High-specificity

Pruning Type: Smallest Common

Denominator

GO Term p-value p-value p-value GO Term p-value GO Term p-value
(FDR) (Bonferroni)

cellular metabolic 4.100e-19 3.769e-15 3.769e-15 exonucleolytic catabolism 5.883e-5 | exonucleolytic 5.883e-5
process of deadenylated mRNA catabolism of

deadenylated mRNA
organonitrogen 3.600e-15 1.655e-11 3.309e-11 nuclear-transcribed 0.029 tRNA processing 0.004
compound metabolic mRNA catabolic process,
process exonucleolytic, 3'-5'
nitrogen compound 1.400e-14 | 4.290e-11 1.287e-10 | U4 snRNA 3'-end 0.248 | RNA methylation 0.006
metabolic process processing
cellular 2.100e-14 4.826e-11 1.930e-10 nuclear polyadenylation- 0.294 nuclear-transcribed 0.015
macromolecule dependent rRNA mRNA catabolic
metabolic process catabolic process process,

exonucleolytic, 3'-5'
macromolecule 2.300e-13 | 3.677e-10 2.114e-9 | nuclear polyadenylation- 0.294 | ribosome biogenesis 0.034
modification dependent tRNA

catabolic process

cellular metabolic process (G0:0044237)

The chemical reactions and pathways by which individual cells transform chemical substances. In this experiment, the algorithm identified 1,540

differentially expressed gene(s) out of ALL 10,861 gene(s).
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change. The plot is limited to the top 20 genes out of a total of 1540 differentially expressed genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and

Q
o
I
I
[=]
N

MYBBP1A
LCN2
VPS39

B4GALT7
Ws B2
LR P8

PILRB

RSAD1

TAF1 3
ZNF21 3
ZBED4
PTGS1

CC2D1A

MEPCE
ALPL

NIT1

HD
CTSF
VPS18

(c) Advaita Corporation 2022
Fig. 3.2.1: Gene measured expression bar plot: All the differentially expressed genes that are annotated to cellular metabolic process are ranked based on their absolute value of log fold

whisker plot on the left summarizes the distribution of all the differentially expressed genes that are annotated to this GO term. The box represents the 1st quartile, the median and the 3rd

quartile, while the outliers are represented by circles.

exonucleolytic catabolism of deadenylated mRNA (G0O:0043928)

The chemical reactions and pathways resulting in the breakdown of the transcript body of a nuclear-transcribed mRNA that occurs when the ends are not

protected by the 3'-poly(A) tail. In this experiment, the algorithm identified 11 differentially expressed gene(s) out of ALL 13 gene(s).
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Fig. 3.2.2: Gene measured expression bar plot: A/l the differentially expressed genes that are annotated to exonucleolytic catabolism of deadenylated mRNA are ranked based on their
absolute value of log fold change. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the

differentially expressed genes that are annotated to this GO term. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.

3.3. Molecular Functions results

Table 3.3.1: Top identified molecular functions. Only the top scoring molecular function for each pruning type is described below the table.

Pruning Type: None Pruning Type: High-specificity Pruning Type: Smallest Common
Denominator
GO Term p-value p-value p-value GO Term p-value GO Term p-value
(FDR) (Bonferroni)
catalytic activity 1.500e-18 2.183e-15 3.447e-15 protein binding 1.907e-9 protein binding 1.769e-12
protein binding 1.900e-18 | 2.183e-15 4.366e-15 | guanyl-nucleotide 0.010 | 3'-5'exonuclease 0.003
exchange factor activity activity
catalytic activity, acting 3.100e-10 2.375e-7 7.124e-7 | RNA binding 0.041 guanyl-nucleotide 0.007
on a nucleic acid exchange factor
activity
transferase activity 2.700e-9 1.551e-6 6.205e-6 | 3'-5'-exoribonuclease 0.155 | exoribonuclease 0.007
activity activity
catalytic activity, acting 1.900e-8 8.732e-6 4.366e-5 | GTP binding 0.234 RNA binding 0.011
on RNA

catalytic activity (GO:0003824)

Catalysis of a biochemical reaction at physiological temperatures. In biologically catalyzed reactions, the reactants are known as substrates, and the
catalysts are naturally occurring macromolecular substances known as enzymes. Enzymes possess specific binding sites for substrates, and are usually
composed wholly or largely of protein, but RNA that has catalytic activity (ribozyme) is often also regarded as enzymatic. In this experiment, the algorithm
identified 911 differentially expressed gene(s) out of ALL 5,574 gene(s).
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Fig. 3.3.3: Gene measured expression bar plot: All the differentially expressed genes that are annotated to catalytic activity are ranked based on their absolute value of log fold change. The

plot is limited to the top 20 genes out of a total of 911 differentially expressed genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on
the left summarizes the distribution of all the differentially expressed genes that are annotated to this GO term. The box represents the 1st quartile, the median and the 3rd quartile, while the

outliers are represented by circles.

protein binding (GO:0005515)

Binding to a protein. In this experiment, the algorithm identified 1,963 differentially expressed gene(s) out of ALL 13,830 gene(s).
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Fig. 3.3.4: Gene measured expression bar plot: All the differentially expressed genes that are annotated to protein binding are ranked based on their absolute value of log fold change. The
plot is limited to the top 20 genes out of a total of 1963 differentially expressed genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot
on the left summarizes the distribution of all the differentially expressed genes that are annotated to this GO term. The box represents the 1st quartile, the median and the 3rd quartile, while the

outliers are represented by circles.

3.4. Cellular Components results

Table 3.4.1: Top identified cellular components. Only the top scoring cellular component for each pruning type is described below the table.

Pruning Type: None Pruning Type: High- Pruning Type: Smallest Common
specificity Denominator
GO Term p-value p-value p-value GO Term p-value GO Term p-value
(FDR) (Bonferroni)
intracellular anatomical 1.000e-24 1.000e-24 1.000e-24 nucleoplasm 4.388e-21 cytoplasm 1.000e-24
structure
intracellular membrane- 1.000e-24 1.000e-24 1.000e-24 cytosol 5.546e-20 nucleoplasm 7.314e-23
bounded organelle
cytoplasm 1.000e-24 1.000e-24 1.000e-24 | mitochondrion 3.169e-6 | organelle envelope 6.095e-12
intracellular organelle 1.000e-24 1.000e-24 1.000e-24 mitochondrial 1.219e-5 intracellular 6.400e-6
matrix membrane-bounded
organelle

membrane-bounded 1.000e-24 1.000e-24 1.000e-24 | cytoplasm 1.463e-5 | transferase complex 4.876e-4
organelle

intracellular anatomical structure (GO:0005622)

A component of a cell contained within (but not including) the plasma membrane. In eukaryotes it includes the nucleus and cytoplasm. In this experiment,
the algorithm identified 2,189 differentially expressed gene(s) out of ALL 15,336 gene(s).
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(c) Advaita Corporation 2022
Fig. 3.4.5: Gene measured expression bar plot: All the differentially expressed genes that are annotated to intracellular anatomical structure are ranked based on their absolute value of log

fold change. The plot is limited to the top 20 genes out of a total of 2189 differentially expressed genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box
and whisker plot on the left summarizes the distribution of all the differentially expressed genes that are annotated to this GO term. The box represents the 1st quartile, the median and the 3rd

quartile, while the outliers are represented by circles.

nucleoplasm (GO:0005654)

That part of the nuclear content other than the chromosomes or the nucleolus. In this experiment, the algorithm identified 720 differentially expressed
gene(s) out of ALL 4,085 gene(s).
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Fig. 3.4.6: Gene measured expression bar plot: All the differentially expressed genes that are annotated to nucleoplasm are ranked based on their absolute value of log fold change. The plot
is limited to the top 20 genes out of a total of 720 differentially expressed genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the
left summarizes the distribution of all the differentially expressed genes that are annotated to this GO term. The box represents the 1st quartile, the median and the 3rd quatrtile, while the outliers

are represented by circles.

cytoplasm (GO:0005737)

The contents of a cell excluding the plasma membrane and nucleus, but including other subcellular structures. In this experiment, the algorithm identified
1,814 differentially expressed gene(s) out of ALL 11,909 gene(s).
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(c) Advaita Corporation 2022
Fig. 3.4.7: Gene measured expression bar plot: All the differentially expressed genes that are annotated to cytoplasm are ranked based on their absolute value of log fold change. The plot is

limited to the top 20 genes out of a total of 1814 differentially expressed genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the
left summarizes the distribution of all the differentially expressed genes that are annotated to this GO term. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers

are represented by circles.

4. Predicted Upstream Regulator Analysis - miRNAs
4.1. Methods

The prediction of active miRNAs (Friedman et al., 2009; Lewis et al., 2005) is based on enrichment of differentially downregulated target genes of the
miRNAs. In general, miRNAs have an inhibitory effect on their targets. Therefore, for any given miRNA the method computes the ratio between the
number of differentially downregulated targets and all differentially expressed targets, and compares it to the ratio of all downwardly expressed targets to
all targets. Overall, iPathwayGuide calculates the probability of observing at least the number of differentially downregulated target genes for a given
miRNA just by chance. This p-value is computed using the hypergeometric distribution as described for pORA in the Pathway Analysis section.

4.2. Results

Table 4.2.1: Top identified miRNAs

miRNA Name p-value p-value (FDR) p-value (Bonferroni)
hsa-miR-34c-5p 1.000 1.000 1.000
hsa-miR-892¢-3p 1.000 1.000 1.000
hsa-miR-330-3p 1.000 1.000 1.000
hsa-let-7g-5p 1.000 1.000 1.000
hsa-miR-299-3p 1.000 1.000 1.000
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hsa-miR-34c-5p (MIMAT0000686)
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(c) Advaita Corporation 2022
Fig. 4.2.1: Gene measured expression bar plot: All the differentially expressed genes that are targeted by hsa-miR-34c-5p are ranked based on their measured expression change (most

downregulated to upregulated). The downregulated genes are shown in blue, and the upregulated ones are shown in red (where applicable). The plot is limited to the top 20 genes out of a total
of 103 differentially expressed target genes. Out of all the differentially expressed target genes, 0 were found to be downregulated. The box and whisker plot on the left summarizes the

distribution of all the differentially expressed genes targeted by this miRNA. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.

hsa-miR-892c-3p (MIMAT0025858)

0.8
0.6
0.4
0.2
0.0
-0.2 5
-0.4 <
-0.6

-0.8

logFC

ANKRD10
CYBRD1
C160rf87
DCUN1D1
ANAPC4
TENM1
DCPS
NAA15
HAT1

DR1

(c) Advaita Corporation 2022
Fig. 4.2.2: Gene measured expression bar plot: All the differentially expressed genes that are targeted by hsa-miR-892c-3p are ranked based on their measured expression change (most

downregulated to upregulated). The downregulated genes are shown in blue, and the upregulated ones are shown in red (where applicable). The plot is limited to the top 20 genes out of a total
of 41 differentially expressed target genes. Out of all the differentially expressed target genes, 0 were found to be downregulated. The box and whisker plot on the left summarizes the

distribution of all the differentially expressed genes targeted by this miRNA. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.
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(c) Advaita Corporation 2022
Fig. 4.2.3: Gene measured expression bar plot: All the differentially expressed genes that are targeted by hsa-miR-330-3p are ranked based on their measured expression change (most

downregulated to upregulated). The downregulated genes are shown in blue, and the upregulated ones are shown in red (where applicable). The plot is limited to the top 20 genes out of a total
of 153 differentially expressed target genes. Out of all the differentially expressed target genes, 0 were found to be downregulated. The box and whisker plot on the left summarizes the

distribution of all the differentially expressed genes targeted by this miRNA. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.

hsa-let-7g-5p (MIMAT0000414)
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(c) Advaita Corporation 2022
Fig. 4.2.4: Gene measured expression bar plot: All the differentially expressed genes that are targeted by hsa-let-7g-5p are ranked based on their measured expression change (most

downregulated to upregulated). The downregulated genes are shown in blue, and the upregulated ones are shown in red (where applicable). The plot is limited to the top 20 genes out of a total
of 193 differentially expressed target genes. Out of all the differentially expressed target genes, 0 were found to be downregulated. The box and whisker plot on the left summarizes the

distribution of all the differentially expressed genes targeted by this miRNA. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.
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Fig. 4.2.5: Gene measured expression bar plot: All the differentially expressed genes that are targeted by hsa-miR-299-3p are ranked based on their measured expression change (most

downregulated to upregulated). The downregulated genes are shown in blue, and the upregulated ones are shown in red (where applicable). The plot is limited to the top 20 genes out of a total
of 51 differentially expressed target genes. Out of all the differentially expressed target genes, 0 were found to be downregulated. The box and whisker plot on the left summarizes the

distribution of all the differentially expressed genes targeted by this miRNA. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.

5. Predicted Upstream Regulator Analysis - Genes
5.1. Methods

The prediction of upstream regulators is based on two types of information: i) the enrichment of differentially expressed genes from the experiment and ii)
a network of regulatory interactions from our proprietary knowledge base (see the report information for details). The network is a directed graph in which
the nodes represent genes, and the edges represent regulatory interactions between two genes. A signed edge in this graph consists of a source gene, a
target gene, and a sign to indicate the type of signal: activation (+) or inhibition (-). To create the network, the analysis selects only those edges observed
in the literature with at least a medium confidence (evidence score greater than or equal to 400). The analysis considers two hypotheses:

HA. The upstream regulator is activated in the condition studied.
HI. The upstream regulator is inhibited in the condition studied.

The analysis divides the set of all the genes obtained from NCBI Gene database into several subsets based on the measurements in the experiment and
the definitions shown in Figure 5.1.1 and Figure 5.1.2. Let the sign of a measured DE gene be the sign of the log fold change value: (+) for up-regulated genes
and (-) for down-regulated genes. A gene is a target gene if it corresponds to a node in the network that has at least one incoming edge. We define a
consistent gene as a target DE gene such that the sign of the gene is consistent both with the type of the signal and with the hypothesis considered.
Formally, by definition, a target DE gene g is consistent with Hypothesis HA if and only if an incoming edge e exists such that sign(g) = sign(e). In other
words, this describes the situation when the upstream regulator is predicted as activated, the signal is activation and the target DE gene is up-regulated,
or the signal is inhibition and the target DE gene is down-regulated (see panel A in Figure 5.1.1). A target DE gene g is consistent with Hypothesis HI if and
only if an incoming edge e exists such that sign(g) # sign(e). This second case captures the situation in which the upstream regulator is inhibited, the
signal is inhibition and the target DE gene is up-regulated, or the signal is activation and the target DE gene is down-regulated (see panel B in Figure 5.1.1).

A) DE target genes consistent with B) DE target genes consistent with @ upstream regulator
upstream regulator predicted as activated upstream regulator predicted as inhibited
(+) DE gene (logFC > 0)

9—? @ - ) DE gene (logFC < 0)
+ -

+
[N ——>  activation

—+ inhibition

Fig. 5.1.1: Target genes consistent with the hypothesis considered: In panel A, the signs of the DE genes match the signs of their respective incoming edges, increasing the likelihood that

Vet

(i~

the upstream regulator u is activated. In panel B, the signs of the DE genes are opposite to the signs of their edges, increasing the likelihood that the upstream regulator u is inhibited.

@ upstream regulator
FroN - R (*) DE gene (logFC > 0)
vy / »/ Jf \\\
~ v ¥ Wi ¥ ¥ - N - ) DE gene (logFC < 0)
© P00 ® ®®O ®O©® OO N
(_) measured gene
DTA() (O not measured gene
DT(u)
+
MT(u) —>  activation
-— —+ inhibition
DTA
. J
T
MT

Fig. 5.1.2: The set of all genes includes the set of measured genes that are also targets in the network, or Measured Targets (MT). We define the subset of "DE Targets consistent with the first
hypothesis that the upstream regulators are Activated", DTA. For a selected upstream regulator u, we have the set of "Measured Targets of u" MT(u), "Differentially expressed Targets

downstream of u" DT(u), and the set of "DE targets consistent with the hypothesis HA that u iféﬁtivated" DTA(u). The equivalent graphic for the hypothesis Hl associated with DTl and DTI(u) is
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not shown.

Upstream regulators Z-score

For both research hypotheses, the analysis computes a Z-score for each upstream regulator z(u) by iterating over the genes in DT(u) and their incoming
edges in(g). We can then compute the p-value corresponding to the z-score P, as the one-tailed area under the probability density function for a normal
distribution, N(0,1).

Upstream regulators predicted as activated

Here, the research hypothesis considers the upstream regulator as activated. For each upstream regulator u, the number of consistent DE genes
downstream of u, DTA(u) is compared to the number of measured target genes expected to be both consistent and DE just by chance. iPathwayGuide
uses an over-representation approach to compute the statistical significance of observing at least the given number of consistent DE genes. The p-value
Pt is computed using the hypergeometric distribution (Draghici et al., 2003, Draghici 2011).

After computing a p-value for both types of evidence, P, and P,.;, we need to combine these two probabilities into one global probability value, Pg that is
used to rank the upstream regulators and test the research hypothesis that the upstream regulators are predicted as activated in the condition studied.
Since only a positive z-score indicates that the upstream regulator is predicted as activated, we only combine p-values for a positive z-score. Moreover,
to avoid introducing false positives, only P, for significant z-scores (z = 2) are combined. The analysis uses the standard Fisher's method to combine p-
values into one test statistic (Fisher 1925).

Upstream regulators predicted as inhibited

In parallel with upstream regulators predicted as activated, we use P;,, and P, to predict upstream regulators that are inhibited. Here, the research
hypothesis states that the upstream regulators are inhibited in the conditions studied. For each upstream regulator u, the number of consistent DE genes
downstream of u, DTI(u) is compared to the number of measured target genes expected to be both consistent and DE just by chance. Using the Fisher's
method as above, the analysis combines P;,;, and P,, where P, is considered only for significant negative z-scores (z < -2).

5.2. Results: upstream regulators predicted as activated

Upstream Regulator (u) DTA(u) DT(u) p-value p-value p-value B
(FDR) (Bonferroni) ’
RANBP2 38 38 9.188e-14 1.664e-10 1.664e-10 | 47
[5)
N
NUP160 36 36 6.001e-13 4.112e-10 1.087e-9$
S o-
NUP107 36 36 6.811e-13 4.112e-10 1.233e-9
NUP43 35 35 1.624e-12 6.657e-10 2.941e-9 0
I T 1
NUP37 35 35 1.838e-12 | 6.657e-10 3.328e-9 0 5 10
-log10(pv_zscore)

(c) Advaita Corporation 2022
Table 5.2.1: Top upstream regulators predicted as activated. For each upstream regulator u, the table shows the number of DE targets supporting the hypothesis that the regulator is

activated DTA(u) the total number of DE genes downstream of u DT(u), the combined raw p-value, and the p-value corrected for multiple comparisons.Fig. 5.2.1: A two-way plot showing the
top five upstream regulators predicted as activated. Dots representing upstream regulators are positioned using P,score 0N the horizontal axis, and using Pt on the vertical axis. Pyt is the p-
value based on the number of DE targets consistent with the typeof the incoming signal and with the selected hypothesis type. Upstream regulators with a significant combined p-value are

shown in red. The size of each dot represents the number of consistent DE genes for that regulator.
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(c) Advaita Corporation 2022
Fig. 5.2.3: Gene measured expression bar plot: All the consistent differentially expressed genes that are targeted by RANBP2 are ranked based on their absolute value of log fold change. The

plot is limited to the top 20 genes out of a total of 38 consistent differentially expressed target genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and
whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator. The box shows the 1st quartile, the median and the

3rd quartile, while the outliers are represented by circles.
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Fig. 5.2.4: Activation p-value vs zscore p-value: RANBP2, RAN binding protein 2, (yellow) is shown, using negative log of the activation and zscore p-values, along with the other most

significant upstream regulators. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 38.
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(c) Advaita Corporation 2022
Fig. 5.2.5: Gene measured expression bar plot: All the consistent differentially expressed genes that are targeted by NUP160 are ranked based on their absolute value of log fold change. The

plot is limited to the top 20 genes out of a total of 36 consistent differentially expressed target genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and
whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator. The box shows the 1st quartile, the median and the

3rd quartile, while the outliers are represented by circles.
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(c) Advaita Corporation 2022
Fig. 5.2.6: Activation p-value vs zscore p-value: NUP160, nucleoporin 160, (yellow) is shown, using negative log of the activation and zscore p-values, along with the other most significant

upstream regulators. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 36.
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NUP107 (nucleoporin 107)
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(c) Advaita Corporation 2022
Fig. 5.2.7: Gene measured expression bar plot: All the consistent differentially expressed genes that are targeted by NUP107 are ranked based on their absolute value of log fold change. The

plot is limited to the top 20 genes out of a total of 36 consistent differentially expressed target genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and
whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator. The box shows the 1st quartile, the median and the

3rd quartile, while the outliers are represented by circles.
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(c) Advaita Corporation 2022
Fig. 5.2.8: Activation p-value vs zscore p-value: NUP107, nucleoporin 107, (yellow) is shown, using negative log of the activation and zscore p-values, along with the other most significant

upstream regulators. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 36.

NUP43 (nucleoporin 43)

2.0
1.5
1.0
g 00 . ........
'Y ] i | | 1
g 05 ' § 8 2 5 ¢ 582 2 5 5 3 8 &K 8 5 & 8 8 oW
x o = o (2] - - a [=) a = (7] [d [) = < o § o
1.0 a § =2 2 s =2 & 1§ Z z Z2 £ & @ =z o > o
. a = g 4 3 g ° E 0 o >3 =] 4 o &
-1.5 o a
-2.0

(c) Advaita Corporation 2022
Fig. 5.2.9: Gene measured expression bar plot: All the consistent differentially expressed genes that are targeted by NUP43 are ranked based on their absolute value of log fold change. The

plot is limited to the top 20 genes out of a total of 35 consistent differentially expressed target genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and
whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator. The box shows the 1st quartile, the median and the

3rd quartile, while the outliers are represented by circles.
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Fig. 5.2.10: Activation p-value vs zscore p-value: NUP43, nucleoporin 43, (yellow) is shown, using negative log of the activation and zscore p-values, along with the other most significant

upstream regulators. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 35.
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(c) Advaita Corporation 2022
Fig. 5.2.11: Gene measured expression bar plot: A/l the consistent differentially expressed genes that are targeted by NUP37 are ranked based on their absolute value of log fold change. The

plot is limited to the top 20 genes out of a total of 35 consistent differentially expressed target genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and
whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator. The box shows the 1st quartile, the median and the

3rd quartile, while the outliers are represented by circles.
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(c) Advaita Corporation 2022
Fig. 5.2.12: Activation p-value vs zscore p-value: NUP37, nucleoporin 37, (yellow) is shown, using negative log of the activation and zscore p-values, along with the other most significant

upstream regulators. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 35.
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5.3. Results: upstream regulators predicted as inhibited

-log10(pv_inh)

Upstream Regulator (u) DTI(u) DT(u) p-value p-value p-value
(FDR) (Bonferroni)
RBX1 19 19 1.077e-11 4.952e-9 1.950e-8
SKP2 17 17 2.189e-11 4.952¢e-9 3.965e-8
COMMD3 18 18 2.415e-11 4.952e-9 4.374e-8
CCDC22 18 18 2.415e-11 4.952e-9 4.374e-8
COMMD2 18 18 2.415e-11 4.952e-9 4.374e-8

8_

0 2 4
-log10(pv_zscore)
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Table 5.3.1: Top upstream regulators predicted as inhibited. For each upstream regulator u, the table shows the number of DE targets supporting the hypothesis that the regulator is

inhibited DTI(u) the total number of DE genes downstream of u DT(u), the combined raw p-value, and the p-value corrected for multiple comparisons.Fig. 5.3.1: A two-way plot showing the

top five upstream regulators predicted as inhibited. Dots representing upstream regulators are positioned using P,score 0N the horizontal axis, and using Pjn, on the vertical axis. Pipp is the p-

value based on the number of DE targets consistent with the typeof the incoming signal and with the selected hypothesis type. Upstream regulators with a significant combined p-value are

shown in red. The size of each dot represents the number of consistent DE genes for that regulator.

RBX1 (ring-box 1)

Fig. 5.3.13: Gene measured expression bar plot: All the consistent differentially expressed genes that are targeted by RBX1 are ranked based on their absolute value of log fold change.
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Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes

targeted by this upstream regulator. The box shows the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.
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Fig. 5.3.14: Inhibition p-value vs zscore p-value: RBX1, ring-box 1, (yellow) is shown, using negative log of the inhibition and zscore p-values, along with the other most significant upstream

regulators. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 19.
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SKP2 (S-phase kinase associated protein 2)
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(c) Advaita Corporation 2022
Fig. 5.3.15: Gene measured expression bar plot: All the consistent differentially expressed genes that are targeted by SKP2 are ranked based on their absolute value of log fold change.

Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes

targeted by this upstream regulator. The box shows the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.
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Fig. 5.3.16: Inhibition p-value vs zscore p-value: SKP2, S-phase kinase associated protein 2, (yellow) is shown, using negative log of the inhibition and zscore p-values, along with the other

most significant upstream regulators. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 17.
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Fig. 5.3.17: Gene measured expression bar plot: All the consistent differentially expressed genes that are targeted by COMMD3 are ranked based on their absolute value of log fold change.

Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes

targeted by this upstream regulator. The box shows the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.
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Fig. 5.3.18: Inhibition p-value vs zscore p-value: COMMD3, COMM domain containing 3, (yellow) is shown, using negative log of the inhibition and zscore p-values, along with the other most

significant upstream regulators. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 18.

CCDC22 (coiled-coil domain containing 22)
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Fig. 5.3.19: Gene measured expression bar plot: All the consistent differentially expressed genes that are targeted by CCDC22 are ranked based on their absolute value of log fold change.

Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes
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targeted by this upstream regulator. The box shows the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.
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Fig. 5.3.20: Inhibition p-value vs zscore p-value: CCDC22, coiled-coil domain containing 22, (yellow) is shown, using negative log of the inhibition and zscore p-values, along with the other

most significant upstream regulators. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 18.
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COMMD2 (COMM domain containing 2)
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Fig. 5.3.21: Gene measured expression bar plot: All the consistent differentially expressed genes that are targeted by COMMD?2 are ranked based on their absolute value of log fold change.

Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes

targeted by this upstream regulator. The box shows the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.
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Fig. 5.3.22: Inhibition p-value vs zscore p-value: COMMD2, COMM domain containing 2, (yellow) is shown, using negative log of the inhibition and zscore p-values, along with the other most

significant upstream regulators. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 18.

6. Predicted Upstream Regulator Analysis — Chemicals, Drugs,
Toxicants (CDTs)

6.1. Methods

The prediction of upstream Chemicals, Drugs, Toxicants (CDTs) is based on two types of information: i) the enrichment of differentially expressed genes
from the experiment and ii) a network of interactions from the Advaita Knowledge Base (AKB v2201). The network is a directed graph in which the source
node represents either a chemical substance or compound (e.g. zinc), a drug (e.g. aspirin), or a toxicant (e.g. tobacco smoke). The generic abbreviation
CDT will be used henceforth to designate any of these. The edges represent known effects that these CDTs have on various genes. A signed edge in this
graph consists of a source CDT, a target gene, and a sign to indicate the type of effect: activation (+) or inhibition (-). The analysis considers two
hypotheses:

HP. The upstream chemical, drug or toxicant is present (or overly abundant) in the condition studied.
HA. The upstream chemical, drug or toxicant is absent (or insufficient) in the condition studied.

The analysis divides the set of all the genes from AKB into several subsets based on the measurements in the experiment and the definitions shown in
Figure 6.1.1 and Figure 6.1.2. Let the sign of a measured DE gene be the sign of the log fold change value: (+) for up-regulated genes and (-) for down-
regulated genes. A gene is a target gene if it corresponds to a node in the network that has at least one incoming edge. We define a consistent gene as a
target DE gene such that the sign of the gene is consistent both with the type of the signal and with the hypothesis considered. Formally, by definition, a
target DE gene g is consistent with Hypothesis HP if and only if an incoming edge e exists such that sign(g) = sign(e). In other words, this describes the
situation when the CDT is predicted as present, the signal is activation and the target DE gene is up-regulated, or the signal is inhibition and the target DE
gene is down-regulated (see panel A in Figure 6.1.1). A target DE gene g is consistent with Hypothesis HA if and only if an incoming edge e exists such that
sign(g) # sign(e). This second case captures the situation in which the CDT is absent (or insufficient), the signal is inhibition and the target DE gene is up-
regulated, or the signal is activation and the target DE gene is down-regulated (see panel B in Figure 6.1.1).
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Fig. 6.1.1: Target genes consistent with the hypothesis considered: In panel A, the signs of the DE genes match the signs of their respective incoming edges, increasing the likelihood that

the CDT u is present. In panel B, the signs of the DE genes are opposite to the signs of their edges, increasing the likelihood that the CDT u is absent.
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Fig. 6.1.2: The set of all genes includes the set of measured genes that are also targets in the network, or Measured Targets (MT). We define the subset of "DE Targets consistent with the first
hypothesis that the CDTs are Present (or overly abundant)", DTA. For a selected upstream CDT u, we have the set of "Measured Targets of u" MT(u), "Differentially expressed Targets
downstream of u" DT(u), and the set of "DE targets consistent with the hypothesis HP that u is Present" DTA(u). The equivalent graphic for the hypothesis HA associated with DTl and DTl(u) is

not shown.

Z-score

For both research hypotheses, the analysis computes a Z-score for each CDT z(u) by iterating over the genes in DT(u) and their incoming edges in(g). We
can then compute the p-value corresponding to the z-score P, as the one-tailed area under the probability density function for a normal distribution,
N(O,1).

Upstream CDTs predicted as present (or overly abundant)

Here, the research hypothesis considers presence of the CDT. This hypothesis is useful when investigating whether the given phenotype has been
impacted by the presence of a given chemical, drug or toxicant (e.g. tobacco smoke, dioxin, etc.). For each CDT u, the number of consistent DE genes
downstream of u, DTA(u) is compared to the number of measured target genes expected to be both consistent and DE just by chance. iPathwayGuide
uses an over-representation approach to compute the statistical significance of observing at least the given number of consistent DE genes. The p-value
Ppres is computed using the hypergeometric distribution (Draghici et al., 2003, Draghici 2011).

After computing a p-value for both types of evidence, P, and Py, we combine these two probabilities into one global probability value, Pg that is used
to rank the upstream regulators and test the research hypothesis that the upstream CDTs are predicted as present in the condition studied. The analysis
uses the standard Fisher's method to combine p-values into one test statistic (Fisher 1925).

Upstream CDTs predicted as absent (or insufficient)

In parallel with upstream CDTs predicted as present, we use P,,s and P, to predict upstream CDTs that are absent. This hypothesis is relevant when
investigating whether the given phenotype has been impacted by the lack of a given chemical that is necessary for the well-functioning of the organism or
cell (e.g. a vitamin deficiency, iron deficiency, etc.). Here, the research hypothesis states that the upstream CDT are insufficient in the condition studied.
For each upstream CDT u, the number of consistent DE genes downstream of u, DTI(u) is compared to the number of measured target genes expected to
be both consistent and DE just by chance. Using the Fisher's method as above, the analysis combines P,,s and P,, where P, is considered only for
significant negative z-scores (z < -2).
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6.2. Results: upstream CDTs predicted as present (or overly abundant)

CDT (u) DTA(u) DT(u) p-value p-value p-value 7 o) .
(FDR) (Bonferroni)
4 4]
Naphthoquinones 62 63 1.957e-16 2.972e-13 4.323e-13 A
5 @)
>
geldanamycin 59 61 2.437e-15 1.794e-12 5.383e-12 §
I
o 2+
Dihydrotestosterone 131 135 2.691e-16 | 2.972e-13 5.944e-13 .
cylindrospermopsin 77 85 1.435e-14 7.922e-12 3.169e-11 0
I T T
Sodium Selenite 167 224 7.077e-13 | 3.127e-10 1.563e-9 0 10 20
-log10(pv_zscore)

(c) Advaita Corporation 2022
Table 6.2.1: Top upstream CDTs predicted as present (or overly abundant). For each upstream CDT u, the table shows the number of DE targets supporting the hypothesis that the CDT is
present DTA(u) the total number of DE genes downstream of u DT(u), the combined raw p-value, and the p-value corrected for multiple comparisons.Fig. 6.2.1: A two-way plot showing the
top five upstream CDTs predicted as present (or overly abundant). Dots representing upstream CDTs are positioned using P;score 0N the horizontal axis, and using Ppres on the vertical axis.
Ppres is the p-value based on the number of DE targets consistent with the typeof the incoming signal and with the selected hypothesis type. Upstream CDTs with a significant combined p-value

are shown in red. The size of each dot represents the relative number of consistent DE genes for that CDT.
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(c) Advaita Corporation 2022
Fig. 6.2.3: Consistent DE target genes measured expression bar plot: All the consistent differentially expressed genes that are targeted by Naphthoquinones are ranked based on their

absolute value of log fold change. The plot is limited to the top 20 genes out of a total of 62 consistent differentially expressed target genes. Upregulated genes are shown in red, downregulated
genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator. The box shows

the 1st quartile, the median and the 3rd quartile, while any outliers are represented by circles.
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Fig. 6.2.4: a) Present (overly abundant) p-value vs zscore p-value: The significance of Naphthoquinones is plotted on two axes, with negative log of P, on x-axis and negative log of Ppres on
y-axis. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 62. b) Volcano plot: There are 62 DE genes that are targets of
Naphthoquinones consistent with the hypothesis that Naphthoquinones is present (overly abundant) The target genes are represented in terms of their measured expression change (x-axis) and

the significance of the change (y-axis). The significance is represented in terms of the negative log (base 10) of the p-value, so that more significant genes are plotted higher on the y-axis.
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(c) Advaita Corporation 2022
Fig. 6.2.5: Consistent DE target genes measured expression bar plot: A/l the consistent differentially expressed genes that are targeted by geldanamycin are ranked based on their absolute

value of log fold change. The plot is limited to the top 20 genes out of a total of 59 consistent differentially expressed target genes. Upregulated genes are shown in red, downregulated genes
are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator. The box shows the 1st

quartile, the median and the 3rd quartile, while any outliers are represented by circles.
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Fig. 6.2.6: a) Present (overly abundant) p-value vs zscore p-value: The significance of geldanamycin is plotted on two axes, with negative log of P, on x-axis and negative log of Ppes on y-
axis. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 59. b) Volcano plot: There are 59 DE genes that are targets of
geldanamycin consistent with the hypothesis that geldanamycin is present (overly abundant) The target genes are represented in terms of their measured expression change (x-axis) and the

significance of the change (y-axis). The significance is represented in terms of the negative log (base 10) of the p-value, so that more significant genes are plotted higher on the y-axis.
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(c) Advaita Corporation 2022
Fig. 6.2.7: Consistent DE target genes measured expression bar plot: All the consistent differentially expressed genes that are targeted by Dihydrotestosterone are ranked based on their

absolute value of log fold change. The plot is limited to the top 20 genes out of a total of 131 consistent differentially expressed target genes. Upregulated genes are shown in red,
downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator.

The box shows the 1st quartile, the median and the 3rd quartile, while any outliers are represented by circles.
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Fig. 6.2.8: a) Present (overly abundant) p-value vs zscore p-value: The significance of Dihydrotestosterone is plotted on two axes, with negative log of P, on x-axis and negative log of Ppres

on y-axis. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 131. b) Volcano plot: There are 131 DE genes that are targets of

Dihydrotestosterone consistent with the hypothesis that Dihydrotestosterone is present (overly abundant) The target genes are represented in terms of their measured expression change (x-axis)

and the significance of the change (y-axis). The significance is represented in terms of the negative log (base 10) of the p-value, so that more significant genes are plotted higher on the y-axis.
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Fig. 6.2.9: Consistent DE target genes measured expression bar plot: All the consistent differentially expressed genes that are targeted by cylindrospermopsin are ranked based on their

absolute value of log fold change. The plot is limited to the top 20 genes out of a total of 77 consistent differentially expressed target genes. Upregulated genes are shown in red, downregulated

genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator. The box shows

the 1st quartile, the median and the 3rd quartile, while any outliers are represented by circles.
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Fig. 6.2.10: a) Present (overly abundant) p-value vs zscore p-value: The significance of cylindrospermopsin is plotted on two axes, with negative log of P, on x-axis and negative log of Ppes

on y-axis. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 77. b) Volcano plot: There are 77 DE genes that are targets of

cylindrospermopsin consistent with the hypothesis that cylindrospermopsin is present (overly abundant) The target genes are represented in terms of their measured expression change (x-axis)

and the significance of the change (y-axis). The significance is represented in terms of the negative log (base 10) of the p-value, so that more significant genes are plotted higher on the y-axis.
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Sodium Selenite
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(c) Advaita Corporation 2022
Fig. 6.2.11: Consistent DE target genes measured expression bar plot: All the consistent differentially expressed genes that are targeted by Sodium Selenite are ranked based on their

absolute value of log fold change. The plot is limited to the top 20 genes out of a total of 167 consistent differentially expressed target genes. Upregulated genes are shown in red,
downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator.

The box shows the 1st quartile, the median and the 3rd quartile, while any outliers are represented by circles.
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Fig. 6.2.12: a) Present (overly abundant) p-value vs zscore p-value: The significance of Sodium Selenite is plotted on two axes, with negative log of P, on x-axis and negative log of Ppres on
y-axis. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 167. b) Volcano plot: There are 167 DE genes that are targets of
Sodium Selenite consistent with the hypothesis that Sodium Selenite is present (overly abundant) The target genes are represented in terms of their measured expression change (x-axis) and the

significance of the change (y-axis). The significance is represented in terms of the negative log (base 10) of the p-value, so that more significant genes are plotted higher on the y-axis.
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6.3. Results: upstream CDTs predicted as absent (or insufficient)

CDT (u) DTI(u) DT(u) p-value p-value p-value 7
(FDR) (Bonferroni) 80 - .

Doxorubicin 932 1131 5.626e-23 | 3.355e-20 1.243e-19 |5 60-

2

o
Ivermectin 833 | 848 | 5.626e-23 | 3.355e-20 | 1.243e-19 |3 ,o_

2
dicrotophos 499 696 5.626e-23 | 3.355e-20 1.243e-19 20 .
3-((6-(2- 162 167 6.075e-23 | 3.355e-20 1.342e-19 ’
methoxyphenyl)pyrimidin-4- 0-

. I T T T
yl)amino)phenyl)methane 0 50 100 150
sulfonamide -log10(pv_zscore)

(c) Advaita Corporation 2022
7,8-Dihydro-7,8- 440 563 7.519e-19 | 3.322e-16 1.661e-15
dihydroxybenzo(a)pyrene 9,10-
oxide

Table 6.3.1: Top upstream CDTs predicted as absent (or insufficient). For each upstream CDT u, the table shows the number of DE targets supporting the hypothesis that the CDT is absent
DTl(u) the total number of DE genes downstream of u DT(u), the combined raw p-value, and the p-value corrected for multiple comparisons.Fig. 6.3.1: A two-way plot showing the top five
upstream CDTs predicted as absent (or insufficient). Dots representing upstream CDTs are positioned using P,score 0N the horizontal axis, and using Paps on the vertical axis. Pgps is the p-
value based on the number of DE targets consistent with the typeof the incoming signal and with the selected hypothesis type. Upstream CDTs with a significant combined p-value are shown in

red. The size of each dot represents the relative number of consistent DE genes for that CDT.
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(c) Advaita Corporation 2022
Fig. 6.3.13: Consistent DE target genes measured expression bar plot: All the consistent differentially expressed genes that are targeted by Doxorubicin are ranked based on their absolute

value of log fold change. The plot is limited to the top 20 genes out of a total of 932 consistent differentially expressed target genes. Upregulated genes are shown in red, downregulated genes
are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator. The box shows the 1st

quartile, the median and the 3rd quartile, while any outliers are represented by circles.
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Fig. 6.3.14: a) Absent (or insufficient) p-value vs zscore p-value: The significance of Doxorubicin is plotted on two axes, with negative log of P, on x-axis and negative log of Paps On y-axis.
The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 932. b) Volcano plot: There are 932 DE genes that are targets of Doxorubicin
consistent with the hypothesis that Doxorubicin is absent (or insufficient) The target genes are represented in terms of their measured expression change (x-axis) and the significance of the

change (y-axis). The significance is represented in terms of the negative log (base 10) of the p-value, so that more significant genes are plotted higher on the y-axis.
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(c) Advaita Corporation 2022
Fig. 6.3.15: Consistent DE target genes measured expression bar plot: All the consistent differentially expressed genes that are targeted by Ivermectin are ranked based on their absolute

value of log fold change. The plot is limited to the top 20 genes out of a total of 833 consistent differentially expressed target genes. Upregulated genes are shown in red, downregulated genes
are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator. The box shows the 1st

quartile, the median and the 3rd quartile, while any outliers are represented by circles.
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Fig. 6.3.16: a) Absent (or insufficient) p-value vs zscore p-value: The significance of Ivermectin is plotted on two axes, with negative log of P, on x-axis and negative log of Paps On y-axis.
The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 833. b) Volcano plot: There are 833 DE genes that are targets of lvermectin
consistent with the hypothesis that lvermectin is absent (or insufficient) The target genes are represented in terms of their measured expression change (x-axis) and the significance of the

change (y-axis). The significance is represented in terms of the negative log (base 10) of the p-value, so that more significant genes are plotted higher on the y-axis.
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(c) Advaita Corporation 2022
Fig. 6.3.17: Consistent DE target genes measured expression bar plot: All the consistent differentially expressed genes that are targeted by dicrotophos are ranked based on their absolute

value of log fold change. The plot is limited to the top 20 genes out of a total of 499 consistent differentially expressed target genes. Upregulated genes are shown in red, downregulated genes
are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator. The box shows the 1st

quartile, the median and the 3rd quartile, while any outliers are represented by circles.
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Fig. 6.3.18: a) Absent (or insufficient) p-value vs zscore p-value: The significance of dicrotophos is plotted on two axes, with negative log of P, on x-axis and negative log of Paps on y-axis.
The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 499. b) Volcano plot: There are 499 DE genes that are targets of dicrotophos
consistent with the hypothesis that dicrotophos is absent (or insufficient) The target genes are represented in terms of their measured expression change (x-axis) and the significance of the

change (y-axis). The significance is represented in terms of the negative log (base 10) of the p-value, so that more significant genes are plotted higher on the y-axis.
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(c) Advaita Corporation 2022
Fig. 6.3.19: Consistent DE target genes measured expression bar plot: All the consistent differentially expressed genes that are targeted by 3-((6-(2-methoxyphenyl)pyrimidin-4-

yllamino)phenyl)methane sulfonamide are ranked based on their absolute value of log fold change. The plot is limited to the top 20 genes out of a total of 162 consistent differentially expressed
target genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially

expressed genes targeted by this upstream regulator. The box shows the 1st quartile, the median and the 3rd quartile, while any outliers are represented by circles.

176
https://ipathwayguide.advaitabio.com/report/56822/contrast/73693/summary/print 34/40



10/24/22,10:21 AM Report Summary | iPathwayGuide

m 6- O CuIED @BIDPD @O Q0
g0- @
E 60—
S' g "
2 g
2 40— )
g s
' k3
k)
- g @ '
0-
I T T T
0 50 100 150 0 , . .
-log10(pv_zscore) 0.5 1.0 1.5
(c) Advaita Corporation 2022 logFC
(c) Advaita Corporation 2022
a) b)

Fig. 6.3.20: a) Absent (or insufficient) p-value vs zscore p-value: The significance of 3-((6-(2-methoxyphenyl)pyrimidin-4-yl)amino)phenyl)methane sulfonamide is plotted on two axes, with
negative log of P, on x-axis and negative log of Pg,s On y-axis. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 162. b)
Volcano plot: There are 162 DE genes that are targets of 3-((6-(2-methoxyphenyl)pyrimidin-4-yllamino)phenyl)methane sulfonamide consistent with the hypothesis that 3-((6-(2-
methoxyphenyl)pyrimidin-4-yl)lamino)phenyl)methane sulfonamide is absent (or insufficient) The target genes are represented in terms of their measured expression change (x-axis) and the

significance of the change (y-axis). The significance is represented in terms of the negative log (base 10) of the p-value, so that more significant genes are plotted higher on the y-axis.

7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide
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(c) Advaita Corporation 2022
Fig. 6.3.21: Consistent DE target genes measured expression bar plot: All the consistent differentially expressed genes that are targeted by 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-

oxide are ranked based on their absolute value of log fold change. The plot is limited to the top 20 genes out of a total of 440 consistent differentially expressed target genes. Upregulated genes
are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this

upstream regulator. The box shows the 1st quartile, the median and the 3rd quartile, while any outliers are represented by circles.
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Fig. 6.3.22: a) Absent (or insufficient) p-value vs zscore p-value: The significance of 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide is plotted on two axes, with negative log of P, on x-
axis and negative log of P,ps on y-axis. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 440. b) Volcano plot: There are 440
DE genes that are targets of 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide consistent with the hypothesis that 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide is absent (or
insufficient) The target genes are represented in terms of their measured expression change (x-axis) and the significance of the change (y-axis). The significance is represented in terms of the

negative log (base 10) of the p-value, so that more significant genes are plotted higher on the y-axis.
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7.1. Methods

For each disease, the number of differentially expressed (DE) genes annotated to a disease term is compared to the number of DE genes expected just
by chance. iPathwayGuide uses an over-representation approach to compute the statistical significance of observing at least the given number of DE
genes. The p-value is computed using the hypergeometric distribution as described for pORA in the Pathway Analysis section. This p-value is corrected
for multiple comparisons using FDR and Bonferroni.

7.2. Results

Table 7.2.1: Top identified diseases

Disease Name p-value p-value p-value
(FDR) (Bonferroni)
Congenital disorders of glycosylation type | 5.272e-8 1.763e-5 2.673e-5
Autosomal recessive mental retardation 6.954e-8 1.763e-5 3.526e-5
Joubert syndrome 9.091e-7 1.536e-4 4.609e-4
Pontocerebellar hypoplasia 2.861e-6 2.901e-4 0.001
Cytochrome c oxidase (COX) deficiency; Mitochondrial complex IV deficiency (MT-C4D) 2.861e-6 | 2.901e-4 0.001

Congenital disorders of glycosylation type | (H00118)

Congenital disorders of glycosylation (CDG) are a group of disorders caused by defects in various genes for N-glycan biosynthesis. CDG type | is defined
by mutations in genes encoding enzymes which involves disrupted synthesis of the lipid linked oligosaccharide precursor and its transfer to polypeptide
chain of protein, affecting N-glycan assembly in cytosol and endoplasmic reticulum. An increasing number of disorders have been discovered, with many
subtypes identified. PMM2-CDG is the most common form, with over 800 patients diagnosed mostly in Europe. Almost all type present in infancy. These
diseases demonstrate a broad range of clinical manifestation, associated with developmental delay, psychomotor retardation, hypotonia, seizures,
hepatomegaly, microcephaly, and pericardial effusion. In this experiment, the algorithm identified 11 differentially expressed genes out of 29 genes
associated with the disease.
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(c) Advaita Corporation 2022
Fig. 7.2.1: Gene measured expression bar plot: All the differentially expressed genes that are annotated to Congenital disorders of glycosylation type | are ranked based on their absolute

value of log fold change. Upregulated genes are shown in red, downregulated genes are shown in blue. The box plot on the left summarizes the distribution of all the differentially expressed

genes that are annotated to this disease. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.
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Autosomal recessive mental retardation (H00768)

Mental retardation (MR) is a neurodevelopmental disorder characterized by low intelligence quotient (IQ) and deficits in adaptive behaviors. Although X-
linked MR has been extensively studied, and over 80 causal genes have been cloned, little is known about the genetic basis of autosomal recessive
mental retardation (MRT). To date, several genes have been identified. These genes have a variety of functions and participate in multiple biochemical
pathways. In addition, there are several known disease loci for which genes have not yet been identified. In this experiment, the algorithm identified 14
differentially expressed genes out of 50 genes associated with the disease.
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(c) Advaita Corporation 2022
Fig. 7.2.2: Gene measured expression bar plot: All the differentially expressed genes that are annotated to Autosomal recessive mental retardation are ranked based on their absolute value of

log fold change. Upregulated genes are shown in red, downregulated genes are shown in blue. The box plot on the left summarizes the distribution of all the differentially expressed genes that

are annotated to this disease. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.

Joubert syndrome (H00530)

Joubert syndrome and related disorders are a group of multiple congenital anomaly syndromes characterized by 'molar tooth sign', a specific midbrain-
hindbrain malformation seen in brain images. Joubert syndrome is associated with retinal dystrophy, nephronophthisis, liver fibrosis and polydactyly.
Most of the causative genes encode cilium-related proteins. In this experiment, the algorithm identified 11 differentially expressed genes out of 37 genes
associated with the disease.
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(c) Advaita Corporation 2022
Fig. 7.2.3: Gene measured expression bar plot: All the differentially expressed genes that are annotated to Joubert syndrome are ranked based on their absolute value of log fold change.

Upregulated genes are shown in red, downregulated genes are shown in blue. The box plot on the left summarizes the distribution of all the differentially expressed genes that are annotated to

this disease. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.

Pontocerebellar hypoplasia (H00897)

Pontocerebellar hypoplasia (PCH) is a group of inherited progressive neurodegenerative disorders with prenatal onset. Up to now ten different subtypes
have been reported. All subtypes share common characteristics, including hypoplasia/atrophy of cerebellum and pons, progressive microcephaly, and
variable cerebral involvement. Mutations in three tRNA splicing endonuclease subunit genes were found to be responsible for PCH2, PCH4 and PCHS5.
Mutations in the nuclear encoded mitochondrial arginyl- tRNA synthetase gene underlie PCH6. PCH1 is caused by homozygous mutation in the VRK1
gene. In this experiment, the algorithm identified 7 differentially expressed genes out of 15 genes associated with the disease.
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(c) Advaita Corporation 2022
Fig. 7.2.4: Gene measured expression bar plot: All the differentially expressed genes that are annotated to Pontocerebellar hypoplasia are ranked based on their absolute value of log fold

change. Upregulated genes are shown in red, downregulated genes are shown in blue. The box plot on the left summarizes the distribution of all the differentially expressed genes that are

annotated to this disease. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.
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Cytochrome ¢ oxidase (COX) deficiency; Mitochondrial complex IV deficiency (MT-C4D) (HO1368)

Cytochrome ¢ oxidase (COX) deficiency is a mitochondrial disease that is caused by the lack of the COX. Cytochrome c oxidase (COX) is the terminal
enzyme of the mitochondrial respiratory chain (complex IV). Since COX is encoded by nuclear and mitochondrial genes, COX deficiency can be inherited
in either an autosomal recessive or a maternal pattern. Patients can present with a number of different clinical phenotypes, including Leigh syndrome,
Fatal infantile cardioencephalomyopathy, and Leber hereditary optic neuropathy. In this experiment, the algorithm identified 7 differentially expressed
genes out of 15 genes associated with the disease.
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Fig. 7.2.5: Gene measured expression bar plot: All the differentially expressed genes that are annotated to Cytochrome c oxidase (COX) deficiency; Mitochondrial complex IV deficiency (MT-

C4D) are ranked based on their absolute value of log fold change. Upregulated genes are shown in red, downregulated genes are shown in blue. The box plot on the left summarizes the
distribution of all the differentially expressed genes that are annotated to this disease. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by

circles.
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Appendix D

X
LOMA LINDA UNIVERSITY
School of Allied Health Professions

INFORMED CONSENT
TITLE: THE EFFECTS OF HIGH INTENSITY EXERCISE ON
BIOLOGICAL AGE
SPONSOR: Loma Linda University Department of Physical Therapy
PRINCIPAL
INVESTIGATOR: Gurinder Bains PhD. Associate Professor School of Allied Health
Professions

Voluntary Consent. You are being asked to volunteer for a research study. It isup
to you whether you choose to participate or not. There will be no penalty or loss of
benefits to which you are otherwise entitled if you choose not to participate or
discontinue participation.

Purpose. The purpose of this graduate student research study is to determine if a
high-intensity exercise program can slow or reverse biological aging and shed light
on the underlying pathways involved.

Duration. It is expected that your participation will last one month. You are asked to
visit the Physical Therapy laboratory a total of 14 times: twelve 1-hour exercise
visits 3-times per week, and two 1-hour data collection visits.

Procedures and Activities. If you are eligible to participate, you will be randomized
to 1 of 2 groups: Control group or Exercise group. Control group participants will
make no modifications to regular diet or exercise habits. Exercise group participants
will perform supervised high intensity exercise three times per week at the LLU
department of physical therapy laboratory utilizing treadmills, stationary bicycles,
and rowing machines. You will have your body composition and vital signs
measured. You will complete 5 questionnaires (on stress, sleep, depression, activity
level, and fitness) taking you approximately 25 minutes. You will provide
approximately 1.5 teaspoons of blood drawn by a certified phlebotomist to measure
gene expression levels on visit 1 and the final day.

Risks. Some of the foreseeable risks or discomforts of your participation include
exercise induced fatigue, falls, and breach of confidentiality.

Benefits. No direct benefit to you. However, the knowledge we gain may help
researchers better understand the effects of high intensity exercise on gene
expression and mortality risk. This information may help pinpoint the specific
mechanism behind exercise’s effect on health and lifespan.

Alternatives. Participation is voluntary and the only alternative is to not participate.

A Seventh-day Adventist Institution
DEPARTMENT OF PHYSICALTHERAPY |, Nichol Hall, Loma Linda, California 92350
(909) 558-4632 - (800) 422-4558 - fax (909) 558-0459 - www:llu.edu/llu/sahp/pt
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WHY IS THIS STUDY BEING DONE?

The purpose of this graduate student research study is to determine if a high-intensity

exercise program can slow or reverse biological aging and shed light on the underlying pathways
involved. Biological aging is a method for predicting remaining lifespan based on your health
status,

You are invited to be in this study because you are a 45 to 60-year-old male or female of below
average fitness and low activity levels. You will be excluded from the study if you have a prior
(within the last 5 years) or current history of cardiovascular disease, stroke, unexplained weight
loss, clinical depression, congestive heart failure, cancer, lrregular heartbeat, respiratory disease,
ot other serious medical conditions that would make exercise unsafe or prevent full participation
in the exercise protocol. Additional reasons for exclusion include any significant increase or
decrease in activity levels within the past thirty days, or the current use of the following
medications; antibiotics, glucocorticoids, anticoagulants, narcotics, antiepileptic medications,
antipsychotics, antidepressants, or hypoglycemic agents.

Approximately 48 subjects (24 males and 24 females) will participate at LLU.

You will be asked to visit the Physical Therapy laboratory a total of 14 times: twelve 1-hour
exercise visits 3-times per week, and two 1-hour data collection visits over the course of
approximately 1 month.

HOW WILL 1 BE INVOLVED?
Participation in this study involves the following:

On visit 1 you will:
¢ Complete a Covid-19 screening form
e Complete the Informed Consent Document and PHI form
o Berandomly assigned (through a random block assignment) to either a non-exercise
control group or a 3-times per week, approximately 20-minute duration, high intensity
exercise group for 1-month

If you are in the non-exercise control group, you will
e Avoid modification of your usual diet and activity level
e Complete a compliance log on diet and activity level changes

If you are in the exercise group, you will
¢ Perform high-intensity exercise including warmups and cool downs on a treadmill,
stationary bike, and a rower
¢ Complete a compliance log on diet and activity level changes
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On visit 1 and the final visit you will:

e Provide approximately 1.5 teaspoons of blood drawn by a certified phlebotomist in order
to measure gene expression levels

o Complete five questionnaires on stress, sleep, depression, activity level, and fitness
(approximately 25 minutes)

¢ Have your Body composition assessed utilizing the InBody 770 bioelectrical impedance
machine

e Have your vital signs (heart rate, blood pressure) and waist to hip ratio assessed

WHAT ARE THE REASONABLY FORESEEABLE RISKS OR DISCOMFORTS I
MIGHT HAVE?

This study poses no greater risk to you than what you routinely encounter in day-to-day life.
Participating in this study will involve the following risks: exercise induced fatigue, potential to
fall while using a treadmill, and breach of confidentiality.

All records and research materials that identify you will be held confidential. Any published
document resulting from this study will not disclose your identity without your permission.
Information identifying you will only be available to the study personnel.

The use of your Protected Health Information is explained in the separate authorization form.
WILL THERE BE ANY BENEFIT TO ME OR OTHERS?

Although you may not personally benefit from this study, your participation may help practitioners
better identify/provide insights into the effects of high intensity exercise on gene expression and
mortality risk. This information may help pinpoint the specific mechanism behind exercise’s effect
on health and lifespan. .

WHAT ARE MY RIGHTS AS A SUBJECT?

Your participation in this study is entirely voluntary. You may refuse to participate or withdraw
once the study has started. Your decision whether or not to participate or terminate at any time
will not affect your standing with the researchers. You do not give up any legal rights by
participating in this study. ‘

Regarding the questionnaires in this study: If at any time you feel uncomfortable, you may skip a
question, stop the questionnaire, or refuse to submit the questionnaire.

WHAT COSTS ARE INVOLVED?

There is no cost to you for participating in this study. Inbody 770 body composition exam and
biological age predictions are provided free of charge.
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WILL I BE PAID TO PARTICIPATE IN THIS STUDY?

Upon completion of all your responsibilities you will be paid $100 gift card for completing this
study.

In order to receive such payments, you may be asked to provide your home address and/or your
Social Security number. If you receive $600 or more from Loma Linda University for taking
part in this research study or a combination of studies in one tax year, you will be sent a 1099
form as required by IRS.

WHO DO I CALL IF I AM INJURED AS A RESULT OF BEING IN THIS STUDY?

If you feel you have been injured by taking part in this study, consult with a physician or call 911
if the situation is a medical emergency. No funds have been set aside nor any plans made to
compensate you for time lost for work, disability, pain, or other discomforts resulting from your
participation in this research.

WHO DO I CALL IF I HAVE QUESTIONS?

Call 909-558-4647 or e-mail patientrelations@llu.edu for information and assistance with
complaints or concerns about your rights in this study.

SUBJECT’S STATEMENT OF CONSENT

¢ I have read the contents of the consent form and have listened to the verbal explanation given
by the investigator.

» My questions concerning this study have been answered to my satisfaction.

o Signing this consent document does not waive my rights nor does it release the investigators,
institution or sponsors from their responsibilities. _

o Imay call the principal investigator Gurinder Bains PhD at 909-558-7274 during routine
office hours if I have additional questions or concerns.

» I hereby give voluntary consent to participate in this study.

I understand I will be given a copy of this consent form after signing it.

Signature of Subject Printed Name of Subject

Date
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INVESTIGATOR’S STATEMENT
I have reviewed the contents of this consent form with the person signing above. I have explained

potential risks and benefits of the study. ‘ -

Signature of Investigator Printed Name of Investigator

Date
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