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ABSTRACT OF THE DISSERTATION 

High-Intensity Interval Training and Biological Age 

By 

Trevor Lohman 

Doctor of Philosophy, Graduate Program in Physical Therapy 
Loma Linda University, December 2022 

Dr. Gurinder Bains, Chairperson 
 

 The emergence of valid predictors of biological age has enabled researchers to test the 

effects of various interventions on biological aging processes. The established virtues of 

exercise and its effects on health and longevity make it a suitable candidate for investigation.  

This dissertation reviews the current state of biological age prediction models and 

presents a trial in which a specific exercise protocol’s ability to modulate biological age is 

tested. The specific protocol used is a 10X1 high-intensity interval training (HIIT) protocol, 10X1 

referring to the quantity and duration of high intensity exercise intervals in each exercise 

session. The specific biological age prediction model chosen as the trial’s primary outcome 

measure relies on transcriptomic inputs to make biological age predictions.  

A significant difference in biological age was observed between groups. Reduction in 

biological age was observed in the exercise group, while increased biological age was observed 

in the control group. Exploratory, hypothesis generation analyses of gene expression revealed 

potential modification of autophagy, neurotrophin, and cancer biological pathways.  

This dissertation concludes that HIIT induces transcriptional changes which may in part 

account for the established beneficial effects of exercise on health and longevity.  
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CHAPTER ONE 

 
INTRODUCTION 

 

Age-related diseases are a persistent and increasingly prevalent burden on healthcare 

systems around the world. An analysis of the 2017 Global Burden of Disease identified 92 

diseases that increase quadratically with age including: cardiovascular diseases, cancers, 

chronic respiratory diseases, digestive diseases, diabetes, kidney diseases, and others (Chang, 

Skirbekk, Tyrovolas, Kassebaum, & Dieleman, 2019).  These age-related diseases were found to 

account for 51.3% of total global health burden, defined as the sum of disability-associated life-

years (Chang et al., 2019).  In addition to age-related disease prevalence, the cost is staggering 

as well. Heart disease and stroke alone accounted for 352 billion dollars per year in healthcare 

costs and lost productivity in 2018 (Benjamin et al., 2018). Another age-related disease, Cancer, 

is expected to account for 174 billion dollars in cost by 2020 (Mariotto, Yabroff, Shao, Feuer, & 

Brown, 2011), with an average of 1.7 million Americans being diagnosed each year.  As of 2013, 

the cost attributable to Arthritis was 305 billion dollars (Murphy, Cisternas, Pasta, Helmick, & 

Yelin, 2018). Alzheimer’s accounts for an additional 215 billion dollars in healthcare costs as of 

2010 (Hurd, Martorell, Delavande, Mullen, & Langa, 2013). Unfortunately, these costs are 

predicted to continue to rise (Atella et al., 2019), and any affordable and accessible protocol 

capable of ameliorating these trends would be of significant value.  

While experimental aging research has progressed a great deal in the past decades, an 

inherent challenge to progress is the inability to measure an intervention’s effects on lifespan 

without a costly multi-decade longitudinal study. Recently, a new class of biomarkers has 
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emerged that could potentially address this challenge called biological age predictors. The term 

biological age has become more prevalent in aging research as a reference to the apparent fact 

that humans do not seem to age at a homogenous rate. This is intuitive, as anyone would 

suspect a group of people with the same chronological age to be in varying states of health and 

mortality risk. Until relatively recently however, there had not been validated markers designed 

to measure mortality-risk, time-to-death, time-to-cancer, biological age, or other markers of 

lifespan and healthspan from peripheral blood samples.  

The term “predictors of biological age” widely encompasses many different tools 

designed to predict mortality risk and remaining lifespan. One category of biomarkers within 

this larger group that has received significant attention is called epigenetic “clocks”.  The term 

epigenetic clock refers to tools that analyze DNA methylation levels within a set of Cytosine-

Phosphate-Guanine (CpG) sites and are generally acknowledged as accurate measures of 

biological age (Bell et al., 2019; Jylhävä, Pedersen, & Hägg, 2017; Lohman, Bains, Berk, & 

Lohman, 2021; Lu et al., 2019). Like the broader category, epigenetic clocks are a group of tools 

rather than specific biomarkers, and therefore the nature and capability of each tool varies. 

One metric known as GrimAge for example, can significantly predict time-to-death, time-to-

coronary artery disease, and time-to cancer (Lu et al., 2019). These capabilities provide a useful 

“proxy biomarker” mechanism to assess the effectiveness of interventions designed to increase 

lifespan.  

While GrimAge is one of the most highly validated measures of mortality risk, it does not 

provide any information regarding the underlying changes to genetic expression associated 

with methylation (Li et al., 2020; Lu et al., 2019).  Chapter 2 of this dissertation presents a 
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review of biological age prediction models that was published in the journal of Gerontology and 

Geriatric Medicine. Among the categories of models reviewed in the paper is transcriptomic age 

prediction. An example of such a model was published in a paper titled “The Transcriptional 

Landscape of Age in Human Peripheral Blood” written by Peters et al and it identified 1,497 

genes that are differentially expressed with age (Peters et al., 2015). The data required for the 

model’s input is derived from peripheral whole blood samples and subsequent mRNA 

extraction (Peters et al., 2015). Using a statistical formula called the Transcriptomic Age 

Prediction Tool (TRAP), this genetic expression data can be used to estimate biological age 

(Peters et al., 2015). Gene expression data from Affymetrix Human Exon (1.0 ST) Arrays can be 

uploaded to a freely available online platform. The TRAP tool then provides an estimate of 

biological age measured in years for each sample. In doing so, this tool provides a means to 

analyze the effects of an intervention on biological age from a gene expression profile. We will 

utilize this tool in chapter 3 to quantify the effects of high-intensity interval training on 

biological age. 

The availability and validity of these tools has provided a new mechanism to measure 

the effectiveness of biological age reversal interventions in clinical trials. Studies have now 

successfully used these metrics to demonstrate that epigenetic aging (biological age as 

measured by a DNA methylation “clock”) can be reversed in humans (Fahy et al., 2019; 

Fitzgerald et al., 2020). The study performed by Fahy et al in 2019 utilized a metformin and 1 yr. 

exogenous human growth hormone protocol, that demonstrated a 2.5 year mean reversal of 

epigenetic aging as well as a significant increase in thymic fat free fraction (Fahy et al., 2019). 

This was the first study to date to demonstrate a reduction of epigenetic aging and thymic 
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involution in humans. While these are very exciting results, exogenous human growth hormone 

administration is not risk free and it is also not accessible to the general population. This has led 

us to ask the question, “Can biological age be reversed through a safer, more affordable 

method such as lifestyle modification?”  

Intuitively, the answer should be yes, however no controlled trial to date has quantified 

the effects of a lifestyle intervention on biological age using a transcriptomic age prediction 

model. Although there are many potential interventions like diet, sleep quality, and stress 

reduction strategies that could potentially reduce biological ge, we have chosen to examine the 

effects of exercise on biological age due to its relevance to the field of physical therapy, known 

health benefits, general safety, and accessibility.  

Given the volume of research regarding the benefits of exercise, it seems a likely 

candidate intervention to promote longevity. For example, an analysis of 16 recent systematic 

reviews found a dose-dependent relationship between exercise and improved health outcomes 

related to cardiovascular disease, all-cause mortality, all-cancer mortality, type 2 diabetes, 

hypertension, breast cancer, colon cancer, gestational diabetes, gallstone disease, ischemic 

heart disease, and ischemic stroke (Warburton & Bredin, 2017).  There is also epidemiological 

data that supports exercise being associated with decreased biological age, as well as increased 

lifespan and healthspan (Gremeaux et al., 2012; Quach et al., 2017; Zhao et al., 2019). 

Like the term biological age, exercise is a broad category rather than a specific 

intervention. Exercise protocols are highly variable and can fall into many different categories 

with many different physiological effects. There is also no consensus on which type of exercise 

best promotes longevity. In recent decades, high intensity exercise (HIE) has become an 
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increasingly popular subject of research interest. HIE can be defined in various ways, most often 

described as exercise above a certain heart rate percentage. When HIE is punctuated by rest 

breaks it is referred to as high-intensity interval training (HIIT), which can be further categorized 

as aerobic HIIT, or anaerobic HIIT (sprint interval training (SIT) (Ito, 2019). This type of exercise 

is further described in terms of activity and active rest period durations that occur at certain 

heart rate percentages, most often 85-95% of peak heart rate (Gibala, Little, Macdonald, & 

Hawley, 2012; Ito, 2019; Levinger et al., 2015). The most commonly researched SIT protocol 

being the Wingate test (Burgomaster, Hughes, Heigenhauser, Bradwell, & Gibala, 2005), and 

the most commonly researched HIIT exercise protocols being the 4X4 and 10X1 protocols (Ito, 

2019). A 4X4 protocol consists of 4, 4-minute HIE sessions, while a 10X1 consists of 10, 1-minute 

HIE sessions. Rest break durations vary, with research studies supporting various ratios of work 

to rest. 

The selection of our specific protocol was based in part on a meta-analysis performed by 

O’Donoghue et al. comparing six different exercise regimes’ (vigorous-intensity aerobic, 

moderate-intensity aerobic, high-load resistance, moderate-load resistance, combined vigorous 

intensity, and combined moderate intensity) effects on cardiorespiratory fitness and 

anthropometry in obese individuals. The authors concluded that combined aerobic and 

resistance training at moderate or high intensity, and moderate aerobic intensity exercise had 

the most significant effects on body composition and physical fitness (O'Donoghue, Blake, 

Cunningham, Lennon, & Perrotta, 2021). Moderate aerobic exercise was defined according to 

the American College of Sports Medicine definition: 65%-75% of HR max 3-5 times per week for 

30-60 minutes (O'Donoghue et al., 2021).  Another study performed by Nayor et al. which was 
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relevant to the selection of our protocol examined the metabolic effects of six minutes of no-

resistance cycle ergometry and 6 minutes of a ramped resistance high intensity cycle ergometry 

session (Nayor et al., 2020). Following this single, short bout of exercise the authors found 

statistically significant changes in over 500 circulating metabolites (Nayor et al., 2020). This 

study supports the notion that significant physiological changes can occur with even short 

duration acute exercise bouts. Possible mechanisms for exercise’s role in increased longevity 

are the cardioprotective effects associated with exercise. These could include effects on 

endothelial function, autonomic tone, and inflammation among other potential 

cardioprotective mechanisms.  A 2020 randomized controlled clinical trial by Stensvold et al. 

investigated the effects on mortality between three different exercise protocols in older 

women: high intensity interval training (HIIT) versus moderate intensity continuous training, 

versus standard exercise guidelines (Stensvold et al., 2020). Mortality in the HIIT group was 37% 

lower than in the control group, and 49% lower than in the moderate intensity continuous 

exercise group (Stensvold et al., 2020), although these differences did not reach statistical 

significance due to the overall low mortality rate, and involved wide confidence intervals. 

Despite the significant volume of exercise research, including the effects of exercise on aging 

processes and longevity, no studies to date have examined the specific effects of exercise on 

biological age and the underlying genes that are differentially expressed as we age.  Until 

recently in fact, there had not been a single study investigating any non-pharmaceutical 

intervention’s effect on biological age. That changed in July 2020 however, when a pilot study 

was published showing a greater than 3-year epigenetic age (using the Horvath DNAmAge 

clock) reversal through lifestyle modification, including exercise (Fitzgerald et al., 2020). 
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Unfortunately, multiple interventions were included in this study making it impossible 

to determine what portion of epigenetic age reversal is attributable to exercise. However, this 

study serves to validate the general hypothesis that lifestyle modification can reverse biological 

aging, but there is still a gap in the literature regarding the specific effects of exercise on 

biological aging and the mechanistic pathways underlying those effects.  

The purpose of this graduate student research study is to determine the effect of a 4-

week duration, 3-times per week, high-intensity interval exercise protocol on biological age as 

measured by blood cell RNA profiles (i.e., transcriptomic age).  Although not directly studied, 

our overarching hope is that such effects might forecast longer-term benefits for healthspan 

and lifespan. Furthermore, we suggest specific transcriptomic mechanisms behind this exercise-

induced reversal of biological age by examining the underlying genetic expression profiles of 

our participants at baseline and at the conclusion of our trial.  
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CHAPTER TWO 

Predictors of Biological Age: The Implications for Wellness and Aging Research 
 
 

Abstract 

As healthspan and lifespan research breakthroughs have become more commonplace, the need 

for valid, practical markers of biological age is becoming increasingly paramount. The 

accessibility and affordability of biological age predictors that can reveal information about 

mortality and morbidity risk, as well as remaining years of life, has profound clinical and 

research implications. In this review, we examine 5 groups of aging biomarkers capable of 

providing accurate biological age estimations. The unique capabilities of these biomarkers have 

far-reaching implications for the testing of both pharmaceutical and non-pharmaceutical 

interventions designed to slow or reverse biological aging. Additionally, the enhanced validity 

and availability of these tools may have increasingly relevant clinical value. The authors of this 

review explore those implications, with an emphasis on lifestyle modification research, and 

provide an overview of the current evidence regarding 5 biological age predictor categories: 

Telomere length, composite biomarkers, DNA methylation "epigenetic clocks," transcriptional 

predictors of biological age, and functional age predictors. 
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Introduction 

 

Age-related disease is a persistent and increasingly prevalent burden on healthcare 

systems around the world.(Atella et al., 2019; Benjamin et al., 2018; Chang et al., 2019; Hurd et 

al., 2013; Mariotto et al., 2011)  Any affordable and accessible intervention capable of 

ameliorating this trend would therefore be of significant value. One class of interventions that 

seems well suited for this challenge is lifestyle modification. (Ruiz-Estigarribia et al., 2020; Wu 

et al., 2020; Y. B. Zhang et al., 2021) Although lifestyle-based interventions such as diet and 

exercise are generally known to increase lifespan, (Chudasama et al., 2020) experimental 

evidence is not as abundant as one might expect. Large volumes of research show positive 

effects from exercise on specific disease processes,(Campbell & Turner, 2018; Edwards et al., 

2007; Larson & Bruce, 1987; Warburton & Bredin, 2017) and other studies have found 

association between lifestyle factors and longevity.(Quach et al., 2017; Sae-Lee et al., 2018; 

Zhao et al., 2019) However, fewer studies experimentally validate or quantify the causal effects 

of non-pharmaceutical lifestyle modification interventions on lifespan. This is likely due in part 

to the inherent time scale challenge that longevity research entails. Any future studies that 

examine lifestyle modification interventions would benefit from a practical tool that is capable 

of measuring change in expected lifespan. 

 One persistent challenge when studying the efficacy of interventions intended to 

increase lifespan is identifying an outcome measure that is both valid and feasible to use 

experimentally. From a validity perspective, change in total years of lifespan between 

experimental and control groups would be ideal, except for the fact that it would necessitate 

multi-decade longitudinal studies. Not only does this add significant cost and effort, but it also 

makes controlling for confounding variables exceedingly difficult. The apparent alternative to 

measuring actual lifespan would be to identify a biomarker or group of biomarkers capable of 

estimating remaining years of life. This would grant researchers the ability to test the efficacy of 
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interventions designed to increase lifespan without necessitating the use of long-term 

longitudinal studies.  

Generally, metrics designed to predict remaining lifespan, mortality risk, and age-related 

morbidity risk have come to be known as predictors of biological age or biomarkers of aging. 

Consensus around these terms’ definitions is lacking, as is the definition of aging more 

generally.(Butler et al., 2004)  In his review of recent papers attempting to identify biomarkers 

of aging, Thomas Johnson cites one of the original clarifying statements by Baker and Sprott 

(Johnson, 2006): 

“A Biomarker of Aging is a biological parameter of an organism that either alone or in some 

multivariate composite will, in the absence of disease, better predict functional capability at 

some late age, than will chronological age.”(Baker & Sprott, 1988)  

Even though it was written in 1988, this statement went a long way towards establishing 

the current criteria for biomarkers of aging. A potential concern with this definition for a 

researcher interested in examining interventions capable of biological age reversal is that there 

is no mention of lifespan. This definition discusses functional capability only. Another potential 

point of disagreement among researchers may be the “in the absence of disease” criterion. It 

seems that a useful metric for aging research would include the effects of age-related disease 

on lifespan.   

In the time since this statement was published there has been much development and 

discussion regarding the exact meaning of the term, “biomarker of aging”. An interdisciplinary 

workshop cosponsored by the International Longevity Center-USA, The Ellison Medical 

Foundation, Kronos Longevity Research Institute, the Institute for the Study of Aging, and 

Canyon Ranch Health Resort proposed the following three parameters for biomarkers of aging: 

1. The biomarker should predict the outcome of a wide range of age-sensitive tests in 

multiple physiological and behavioral domains, in an age-coherent way, and do so 

better than chronological age. 
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2. It should predict remaining longevity at an age at which 90% of the population is still 

alive and do so for most of the specific illnesses that afflict the species under study. 

3. Its measurement should not alter life expectancy or the outcome of subsequent tests 

of other age-sensitive tests. 

The American Federation for Aging Research (AFAR) formulated the criteria for aging 
biomarkers as follows(Butler et al., 2004; Johnson, 2006; Jylhävä et al., 2017) 

1. It must predict the rate of aging. In other words, it would tell exactly where a person 
is in their total life span. It must be a better predictor of life span than chronological 
age. 

2. It must monitor a basic process that underlies the aging process, not the effects of 
disease. 

3. It must be able to be tested repeatedly without harming the person. For example, a 
blood test or an imaging technique. 

4. It must be something that works in humans and in laboratory animals, such as mice. 
This is so it can be tested in lab animals before being validated in humans. 

Although both clear and thorough lists, the existence of a biomarker that meets all of 

the criteria above may be unlikely.(Johnson, 2006) Perhaps the most challenging criterion for 

researchers intending to measure the effects of interventions on lifespan and healthspan is the 

American Federation for Aging Research criterion 2 listed above. This statement outlines the 

need for an aging biomarker to separate the aging process from disease processes. This may 

not always be possible, and it is hard to differentiate the effects of the aging process from the 

effects of age-related disease. That said, this criterion does illustrate the need to create 

markers that are not influenced by acute illnesses or diseases that have no effect on lifespan. 

As mentioned earlier there is not consensus on what the definition of aging is within the aging 

research community, let alone agreement that there is a specific aging process or aging rate 

that is separate from disease processes.(Butler et al., 2004; Johnson, 2006) What is clear, even 

to a lay observer, is that if we examine a large group of 70-year-old people, we would find a 

phenotypically diverse sample, despite all members being the same chronological age. This is 

described clearly and concisely by Lowsky et al. in their paper’s introductory sentence: “For a 
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surprisingly large segment of the older population, chronological age is not a relevant marker 

for understanding, measuring, or experiencing healthy aging.”(Lowsky, Olshansky, 

Bhattacharya, & Goldman, 2014) This may be the most concise way to illustrate the need for a 

valid and easy to obtain measure of biological age.  

For the purposes of this scoping review, we will be focusing on biomarkers of aging that 

satisfy at least some of the American Federation of Aging Research biomarkers of aging criteria. 

Given the lack of consensus around terminology and definition, we will seek to view biomarkers 

in the context of their ability to predict two aspects of biological age: healthspan and lifespan. 

These criteria best facilitate the selection of a marker that measures the effectiveness of 

interventions on biological age reversal. Until recently, the possibility of biological age reversal 

was uncertain, but thanks to recent experimental trials utilizing biological age predictors we 

now know that biological age as measured by biomarkers of aging can be slowed or even 

reversed. (Fahy et al., 2019; Fitzgerald et al., 2020; Hachmo et al., 2020) With that in mind, our 

specific aim is to compile the available evidence related to various readily accessible biological 

age predictors. In doing so we hope to provide a basis for selection in future experimental 

studies that utilizes wellness and lifestyle interventions to slow or reverse biological aging. For 

example, investigators could choose to examine diet modification, sleep quality, exercise type 

or quantity, supplementation, implementation of a stress management program, or any 

number of other wellness interventions’ effects on biological age. This has far reaching 

implications for the wellness and successful aging research communities, as it provides a means 

to assess the effectiveness of an intervention on biological age in a comparatively short time 

frame.  

This paper investigates and summarizes the following predictors of biological age: 

Telomere length, allostatic load index, DNA methylation clocks, functional age, and 

transcriptional predictors of biological age. The ability of these tools to estimate mortality risk 

and biological age, operationally defined as an estimate of remaining healthspan/lifespan, will 

be highlighted. Various capabilities and weaknesses of each will be examined as well, including 
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criteria such as: ease of use, accessibility, ability to glean underlying mechanisms influencing 

lifespan/healthspan, and other relevant features.  

 

Search Strategy and Selection Criteria 

 

Using the PubMed database, Medical Subject Headings (MeSH) terms “Aging” and 

“Humans” and the specific terms for each of the biomarkers of aging categories: 1) Telomere 

Length, 2.) Frailty Index or Deficit Accumulation or Functional age, 3.) Epigenetic clock, 4.) 

Transcriptomic age or Transcriptional age, 5) Composite biomarker or Allostatic load index, 

were combined. Cited papers in the selected publications and papers that referenced the 

selected publications were also considered. The searches were performed between December 

2020 and May 2021. 

 

Telomere Length 

 

Telomeres are repeating sequences of nucleoprotein caps located at the ends of 

chromosomes.(Sanders & Newman, 2013) Each time a cell undergoes mitosis, a section of these 

nucleotides is cleaved, and the telomere shortens incrementally. This is an overly simplistic 

description given that oxidative stress is also associated with telomere shortening and multiple 

mechanisms exist for telomere lengthening as well.(Sanders & Newman, 2013) Even with this 

simple definition however, an inference can be drawn that telomere length serves in part as a 

cumulative measure of cellular division and by extension, age. This would be a well-founded 

inference and one that has received significant attention from the aging research community. 

As of March 13, 2021, the search phrase “Telomere Length” on the PubMed database yielded 

10,245 results, making it the most investigated biomarker of aging discussed in this article.  

Multiple meta-analyses exist examining the relationship between telomere length and 

age.(Gardner et al., 2014; Lapham et al., 2015) Additionally, many studies have shown 
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relationships between telomere length and specific disease processes associated with increased 

chronological age. A 2014 meta-analysis (43,725 individuals) showed an inverse relationship 

between telomere length and coronary heart disease independent of traditional vascular risk 

factors.(Haycock et al., 2014) Similar results have been obtained when investigating Alzheimer’s 

disease and telomere length. Both observational and mendelian randomization studies (a 

method of analyzing single nucleotide polymorphisms to determine causation) have shown that 

patients diagnosed with Alzheimer’s disease have shorter telomere lengths.(Forero et al., 2016; 

Zhan & Hägg, 2018) Despite this prevalence of age-related telomere research, data pertaining 

to telomere length and mortality risk specifically has been less consistent. Perhaps the most 

compelling investigation is a meta-analysis performed by Wang et al. in 2018 that examined the 

relationship between telomere length and all-cause mortality. Twenty-five studies were 

determined to meet eligibility for inclusion (121,749 combined individuals), including 4 Swedish 

Twin Registry (STR) cohorts (12,083 individuals). Results from the Swedish twin registry studies 

showed one standard deviation reduction of leukocytic telomere length corresponded to 13% 

increased all-cause mortality risk (95% confidence interval 7%-19%).(Wang, Zhan, Pedersen, 

Fang, & Hägg, 2018) However, a study by Li et al that examined 9 different biomarkers of aging 

over a 20 year timeframe found that the only marker not associated with mortality risk was in 

fact, telomere length.(Li et al., 2020) Another Swedish study performed by Svensson et al. 

examined the relationship between telomere length and mortality in 2744 elderly men and also 

found no association.(Svensson et al., 2014) The evidence presented here indicates that 

telomere length is associated with various disease processes, but that the research pertaining 

to its use as a predictor of biological age may be contradictory.  

 

Table 1: 
Telomere Length 

Study Title BA Predictor 
Used 

Cohort name (if 
applicable) 

n Results 

Telomere Length 
and All-Cause 

Telomere 
Length 

Multiple cohorts 121,749 one standard deviation 
reduction of leukocytic 
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Mortality: A Meta-
analysis  

   telomere length 
corresponded to 13% 
increased all-cause 
mortality risk (95% 
confidence interval 7%-
19%)(Wang et al., 2018) 
 

Longitudinal 
trajectories, 
correlations, and 
mortality 
associations of nine 
biological ages 
across 20-years 
follow-up 
 

Telomere 
Length, DNAm 
Age (4 types), 
Physiological 
Age, Cognitive 
Function, 
Functional 
Aging Index, 
and Frailty 
Index  

Swedish Population 
Based Cohort 
 

636 
 

No evidence that telomere 
length associated with 
mortality risk.(Li et al., 
2020) 
 

Leukocyte 
telomere length is 
not associated with 
mortality in older 
men  

Telomere 
Length 

Prospective 
population-based 
MrOS-Sweden study 

2744 Using Cox proportional 
hazards regression, tertile 
of LTL did not associate 
with all-cause mortality 
[tertile 1 (shortest) or 2 
(middle) vs. tertile 3 
(longest); hazard ratio 
(HR)=1.05, 95% confidence 
interval (CI) 0.85-1.28 and 
HR=0.97, 95% CI 0.79-1.19, 
respectively].(Svensson et 
al., 2014) 

 

 

Composite Biomarkers/Allostatic Load Indices 

 

In 1998 Bruce McEwen described allostasis as “adaptation in the face of potentially stressful 

challenges [that] involves activation of neural, neuroendocrine, and neuroendocrine-immune 

mechanisms.”(McEwen, 1998) The phrase “constancy through change” is often used as 

shorthand to describe allostasis, as it so concisely describes the constant changing physiological 

processes that maintain homeostasis. Fava et al. describes allostatic load as reflecting the 

cumulative effects of stressful experiences in daily life that may lead to disease over time(Fava 
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et al., 2019). Like telomere length, allostasis and allostatic load have been extensively 

researched. Most commonly, this research focuses on the relationship between allostatic load 

and various health outcomes such as cognition,(Juster, McEwen, & Lupien, 2010) chronic 

stress,(Juster et al., 2010) sleep quality,(McEwen & Karatsoreos, 2015) age-related 

disease,(Danese & McEwen, 2012) cardiovascular disease,(Logan & Barksdale, 2008) and 

addiction(Koob & Schulkin, 2019) among others. A smaller portion of allostasis research is 

dedicated to evaluating the performance of allostatic load as a predictor of biological age. The 

study that has perhaps best demonstrated the capability of an allostatic predictor of biological 

age is part of the MacArthur studies of successful aging series in 2005 that utilized 10 

physiological parameters to generate allostatic load scores in 171 70–79-year-old 

adults.(Karlamangla, Singer, & Seeman, 2006) An Allostatic load score or index falls under a 

broader category of biological age predictors called composite biomarkers of aging. This is due 

to the combination of multiple blood biomarkers and clinical measures used to make an 

estimation regarding mortality risk. Other predictors within this category include phenotypic 

age(Levine et al., 2018) and physiological age.(Li et al., 2020)  

In the previously mentioned study published by Karlamangla in 2005,(Karlamangla et al., 

2006) allostatic load scores were generated first in 1988 and again in 1991. The mortality status 

of these individuals was determined 4.5 years later in 1995.  This study found that individuals 

with increased allostatic load in 1991 compared to 1988 had increased risk of all-cause 

mortality (15% versus 5% respectively p =.47). Further analysis revealed that each incremental 

increase in allostatic load score was associated with a mortality odds ratio of 3.3 (95% 

confidence interval 1.1-9.8).(Karlamangla et al., 2006)  

A study by Castagne et al (2018), took another significant step towards establishing 

allostatic load as a predictor of biological age. This study examined the relationship between 14 

biomarkers across 4 physiological systems and their relationship to mortality in a UK birth 

cohort study of 8,113 adults.(Castagné et al., 2018) The hazard ratio for participants with a high 

allostatic load score was found to be 3.56 (2.2 to 5.3) and was significantly higher than in 
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participants with a low allostatic load score.(Castagné et al., 2018) Their data suggests that 

those with a high allostatic load score at age 44 are approximately 3 times more likely to die by 

age 55.(Castagné et al., 2018) The authors also analyzed the relative contribution of each of the 

14 biomarkers that comprised the allostatic load score. Interestingly, after adjusting for various 

risk factors and adverse childhood experiences, 5 of the 14 biomarkers stood out as being 

significantly related to mortality (C-Reactive Protein, fibrinogen, glycated hemoglobin, heart 

rate, and peak expiratory flow).(Castagné et al., 2018) This highlights one potential challenge 

and opportunity for the future use of allostatic load indices as BA prediction tools. The 

challenge is the general lack of consensus regarding the relative contribution of each marker or 

combination of markers, and the opportunity is the potential to develop even simpler yet more 

accurate composite age biomarkers. Future validation studies examining a variety of different 

indices will be helpful in making these determinations. As it stands, allostatic load appears to be 

significantly correlated with mortality-risk, and allostatic indices will serve as valuable tools for 

aging research. 

 

Table 2: 
Allostatic Load/Composite Biomarkers 

Study Title BA Predictor 

Used 

Cohort name (if 

applicable) 

n Results 

Reduction in 
allostatic load in 
older adults is 
associated with 
lower all-cause 
mortality risk: 
MacArthur studies 
of successful aging.  

Allostatic Load 
Index 

 171 Adjusted for age and 
baseline allostatic load, 
each unit increment in the 
allostatic load change score 
was associated with 
mortality odds ratio of 3.3 
(95% confidence interval, 
1.1-9.8).(Karlamangla et al., 
2006) 
 

Allostatic load 
and subsequent 
all-cause 
mortality: which 

Allostatic Load 
Index 
 

1958 British birth 
cohort 

8113 Hazard ratios for 
participants with a mid 
(3 ≤ AL < 5) and high AL 
(≥ 5) were 1.98 (1.25 to 
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biological 
markers drive the 
relationship? 
Findings from a 
UK birth cohort  

 

3.13) and 3.56 (2.2 to 
5.53), respectively and 
were found to be 
significantly greater than in 
participants with a low AL 
(< 3)(Castagné et al., 2018) 
 

An epigenetic 
biomarker of aging 
for lifespan and 
healthspan 
 

Phenotypic Age 
Estimator 
 

Third and Fourth 
National Health and 
Nutrition 
Examination Survey 
 

9926, 
6209 
 

a one-year increase in 
phenotypic age is 
associated with a 9% 
increase in the risk of all-
cause mortality (HR=1.09, 
p=3.8E-49), a 9% increase 
in the risk of mortality from 
aging-related diseases 
(HR=1.09, p=4.5E-34), a 
10% increase in the risk of 
CVD mortality (HR=1.10, 
p=5.1E-17), a 7% increase 
in the risk of cancer 
mortality (HR=1.07, 
p=7.9E-10), a 20% increase 
in the risk of diabetes 
mortality (HR=1.20, 
p=1.9E-11), and a 9% 
increase in the risk of 
chronic lower respiratory 
disease mortality (HR=1.09, 
p=6.3E-4)(Levine et al., 
2018) 
 

 

 

DNA Methylation “Epigenetic Clocks” 

 

The term epigenetic “clock” refers to tools that analyze DNA methylation levels within a 

set of Cytosine-Phosphate-Guanine (CpG) sites and are generally acknowledged as accurate 

measures of biological age.(Bell et al., 2019; Fransquet, Wrigglesworth, Woods, Ernst, & Ryan, 

2019; Jylhävä et al., 2017; Lu et al., 2019; Perna et al., 2016) In fact, one study we examined 

made the claim that DNA methylation clocks are the current best predictors of 
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mortality.(Unnikrishnan et al., 2019) While this may be true, it is important to realize that the 

term DNA methylation age or epigenetic clock can refer to many different tools. While all of 

these “clocks” analyze methylation in specific CpG sites, they all do so in different ways. For 

example, two clocks that were among the first to generate widespread interest are the Horvath 

clock(Horvath, 2013) and Hannum clock.(Hannum et al., 2013) The Horvath clock is based on 

methylation levels of 353 CpG sites using the Illumina 27k or 450k array,(Horvath, 2013) while 

the Hannum clock uses 71 CpG sites, and utilizes data from the Illumina 450k array.(Hannum et 

al., 2013) Epigenetic clocks’ ability to predict biological and chronological age can also be tissue 

dependent. For example, the Horvath clock performs similarly among various tissue 

types(Horvath, 2013) (“whole blood, peripheral blood mononuclear cells, cerebellar samples, 

occipital cortex, buccal epithelium, colon, adipose, liver, lung, saliva, uterine cervix as well as in 

individual cell types such as CD4 T cells and CD14 monocytes, and immortalized B cells”), while 

the Hannum clock performs best using peripheral whole blood samples(Hannum et al., 2013; 

Jylhävä et al., 2017). These clocks also vary in terms of their ability to predict biological and 

chronological age (chronological age r2 values = 0.96 for Horvath and 0.91 for Hannum).(Jylhävä 

et al., 2017) Accessibility is also highly variable; as property of the specific inventor or 

institution that created the algorithm capable of converting array-based methylation data into 

other useful data (such as biological age estimation in years or mortality risk among others), 

some of these tools may be commercial. While other clocks, such as the Horvath clock or 

GrimAge marker created by Steve Horvath and Ake Lu are freely available online.  

The clocks mentioned so far are just a few examples of DNA methylation biomarkers of aging. 

This is to illustrate that the term “epigenetic clock” is broad and not a specific marker. With this 

in mind, we can say generally that one of the most interesting and unique features of 

epigenetic clocks is their ability to predict mortality risk, also referenced as time-to-death. A 

2016 meta-analysis of 13 cohorts representing a combined sample size of 13,089 showed that 

epigenetic age acceleration (a measure of the difference between chronological age and 

epigenetic age) was predictive of mortality independent of chronological age (p ≤ to 8.2 x 10-
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9).(Chen et al., 2016) This was still found to be true after adjusting for additional risk factors, but 

at a significance of p<5.4 x 10-4.(Chen et al., 2016) When epigenetic age estimates incorporated 

additional information pertaining to blood cell composition, the resulting time-to-death 

predictions were highly significant (p=7.5x10-43).(Chen et al., 2016) 

In the time since this 2016 meta-analysis, new DNA methylation clocks have emerged 

that are even more capable in terms of their ability to estimate mortality risk. For example, a 

2017 study by Zhang et al. proposes a mortality risk score based on 10 CpG sites that is strongly 

associated with all-cause mortality.(Y. Zhang et al., 2017) Participants with scores of 1 display a 

hazard ratio (95% confidence intervals) of 2.16 (1.1-4.24), compared to those with scores of 2-5 

showing a hazard ratio of 3.42 (1.81-6.46) compared to those with 5+ scores showing a hazard 

ratio of 7.36 (3.69-14.68).(Y. Zhang et al., 2017) Another marker called DNAm PhenoAge was 

calculated in a meta-analysis of five large samples (n=2,016, n=2,191, n=2,553, and n=657). It 

was found that a 1-year increase in DNAm PhenoAge is associated with a highly significant 4.5% 

increase in all-cause mortality risk (meta p-value= 7.9 x 10-47).(Levine et al., 2018) 

In addition to measuring mortality risk, some markers have the added capability of 

predicting the risk of developing specific disease processes. For example, a metric known as 

GrimAge can strongly predict time-to-death (Cox regression P=2.0 x10-75), time-to-coronary 

heart disease (Cox regression P=6.2 x10-24), and time-to-cancer (P= 1.3 x10-12).(Lu et al., 2019) 

The study authors used large scale validation data from the Framingham heart study to 

complete this analysis. By adding a calculation that quantifies the difference between GrimAge 

and chronological age (AgeAccelGrim) other relevant age-related associations are found to be 

present. For example, AgeAccelGrim is associated with comorbidity count (p=3.45x10-17), time 

to congestive heart failure (p=4.9x10-10), time-to-incident coronary heart disease (p=6.2x10-24), 

hypertension (p=5.1x10-13), and type 2 diabetes (p=0.01).(Lu et al., 2019) All associations were 

in the expected direction (increased AgeAccelGrim=increased likelihood of poor outcome) with 

varying odds ratios.(Lu et al., 2019)  
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Table 3: 
DNA Methylation “Clocks” 

Study Title BA Predictor 

Used 

Cohort name (if 

applicable) 

n Results 

DNA methylation 
GrimAge strongly 
predicts lifespan 
and healthspan  

GrimAge 
 

Framingham Heart 
Study Offspring 
Cohort 
 

2356 
 

predictive ability for time-
to-death (Cox regression 
P=2.0E-75), time-to-
coronary heart disease 
(Cox P=6.2E-24), time-to-
cancer (P= 1.3E-12)(Lu et 
al., 2019) 
 

DNA methylation 
age of human 
tissues and cell 
types  

DNAm Age 
"Horvath Clock" 
 

82 publicly available 
datasets 
 

7844 
 

The multi-tissue age 
predictor performs 
remarkably well in most 
tissues and cell types. (Age 
correlation 0.97, error = 2.9 
years)(Horvath, 2013) 
 

Genome-wide 
Methylation 
Profiles Reveal 
Quantitative Views 
of Human Aging 
Rates  
 

"Hannum 
Clock" 
 

 656 
 

 Correlation between age 
and predicted age of 96% 
and an error of 3.9 
years(Hannum et al., 2013) 

An epigenetic 
biomarker of aging 
for lifespan and 
healthspan  
 

PhenoAge 
 

Women’s Health 
Initiative (WHI), the 
Framingham Heart 
Study (FHS), the 
Normative Aging 
Study (NAS), the 
Jackson Heart Study 
(JHS)  
 

2016, 
2191, 
2553, 
657, 
1747 
 

A one-year increase in 
DNAm PhenoAge is 
associated with a 4.5% 
increase in the risk of all-
cause mortality 
(Meta(FE)=1.045, Meta 
p=7.9E-47(Levine et al., 
2018) 
 

Longitudinal 
trajectories, 
correlations and 
mortality 
associations of nine 
biological ages 
across 20-years 
follow-up  

Telomere 
Length, DNAm 
Age (4 types), 
Physiological 
Age, Cognitive 
Function, 
Functional 
Aging Index, 

Swedish Population 
Based Cohort 
 

845 Individually, all BAs except 
for telomere length were 
associated with mortality 
risk independently of CA. 
The largest effects were 
seen for methylation age 
estimators (GrimAge) and 
the frailty index (FI). (Li et 
al., 2020) 
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 and Frailty 
Index 

 

DNA methylation-
based measures of 
biological age: 
meta-analysis 
predicting time to 
death  

Horvath and 
Hannum 
 

13 cohorts 
 

13,089 
 

All considered measures of 
epigenetic age acceleration 
were predictive of 
mortality (p≤8.2x10-9)(Chen 
et al., 2016) 
 

DNA methylation 
signatures in 
peripheral blood 
strongly predict all-
cause mortality  
 

Zhang 10 CpG 
clock 
 

 1900 
 

demonstrated that a risk 
score based on DNAm of 
ten identified CpGs was a 
very strong predictor for 
all-cause, CVD and cancer 
mortality(Y. Zhang et al., 
2017) 
 

 

 

Transcriptional Predictors of Biological Age 

 

A transcriptional predictor of biological age analyzes genetic expression in genes 

associated with aging to make some prediction regarding the biological aging process. One 

example of this tool is the Transcriptomic Age Prediction Tool (TRAP) which is described in the 

paper titled “The transcriptional landscape of age in human peripheral blood” written by Peters 

et al. in 2015. This study performed a whole-blood gene expression meta-analysis in 14,983 

individuals and identified 1,497 genes that are differentially expressed with chronological age. 

This provided the basis for calculating a “transcriptomic age” and associating it with various 

age-related phenotypes including: blood pressure, fasting glucose, and BMI.(Peters et al., 2015) 

This was the first large scale meta-analysis to examine age-related gene expression profiles and 

build a predictor of biological age from this data. The correlation between the transcriptomic 

age predictor and chronological age was significant (p<2x10-29),(Peters et al., 2015) and 

observed differences between the transcriptomic age predictor (TRAP) and chronological age 

are thought to reflect altered biological age. This is supported by consistent associations 



 25 

between increased delta age (increased TRAP compared to chronological age) and higher blood 

pressure, total cholesterol, fasting glucose levels, and BMI(Peters et al., 2015). Peters et al. 

identified a subset of 1,396 individuals from two studies within their meta-analysis 

(KORA(Holle, Happich, Löwel, & Wichmann, 2005) and Rotterdam studies(Hofman et al., 2007)) 

that had both methylation and gene expression data available. The presence of these two 

datasets allowed the investigators to generate a transcriptomic predictor of biological age, in 

addition to Horvath(Horvath, 2013) and Hannum(Hannum et al., 2013) clock values.  This gave 

investigators the opportunity to examine correlation between three different biomarkers of 

aging: TRAP, Horvath Clock, Hannum Clock. They found TRAP to correlate positively, albeit 

weakly, with both clocks (r2=.1 for Hannum and .33 for Horvath).  

Other transcriptional predictors of biological age exist, such as the healthy ageing gene 

score, (Sood et al., 2015) and RNAageCalc. (Ren & Kuan, 2020) Like the previously discussed 

epigenetic clocks, these measures’ ability to predict disease process, mortality, and association 

with age-related phenotypes varies. At the time of this writing the literature seems to indicate 

that the transcriptome is an age-associated variable indicating its utility in creating biological 

age predictors, but existing transcriptomic clocks are pending broader validation.(Harries et al., 

2011; Holly et al., 2013; Jylhävä et al., 2017)  

 

Table 4: 
Transcriptomics 

Study Title BA Predictor 
Used 

Cohort name (if 
applicable) 

n Results 

The Transcriptional 
Landscape of Age 
in Human 
Peripheral Blood  
 

Transcriptomic 
Age Prediction 
Tool 
 

The Rotterdam 
Study 
 

14926 
 

The correlation between 
chronological age and 
transcriptomic age was 
significant in all cohorts 
(P<2E−29) 
A positive delta age, 
interpreted as reflecting 
more rapid biological 
ageing, was consistently 
associated with higher 
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systolic and diastolic blood 
pressure, total cholesterol, 
HDL cholesterol, fasting 
glucose levels and body 
mass index (BMI) 
Transcriptomic age and 
epigenetic age (both 
Hannum and Horvath) 
were positively correlated, 
with r2 values varying 
between 0.10 and 
0.33(Peters et al., 2015) 

 

 

Functional Age Estimators 

Although not blood biomarkers, functional age estimators are included here due to their 

ease of use and relevance to aging research. The term functional age is now commonly found in 

literature, but these tools were initially intended to be a method for estimating frailty and the 

likelihood of care entry, not biological age. More recently, some functional age estimators have 

been shown to estimate mortality-risk(Burn et al., 2018; Church, Rogers, Rockwood, & Theou, 

2020; Finkel, Sternäng, Jylhävä, Bai, & Pedersen, 2019; Kojima, Iliffe, & Walters, 2018; Li et al., 

2020) and therefore present as highly practical measures for lifestyle modification research. 

The large volume of functional age estimators merits a standalone review, but some notable 

examples will be discussed here. Two of these are the frailty index (FI) and frailty phenotype 

(FP). Although they are sometimes discussed as being interchangeable, they are two different 

tools for different purposes. The term frailty index refers to a method of quantifying frailty in 

older individuals, with the underlying mechanism being a measurement of deficit accumulation 

(deficits identified/deficits measured). Rather than a specific tool or metric, it is a method in 

which various measures of frailty and functional capability can be assessed and from which a 

scoring system can be derived. Frailty Phenotype on the other hand is based on the presence or 

absence of 5 signs or symptoms (>10lbs unintentional weight loss in the past 12 mo., self-

reported exhaustion, weak grip strength, slow walking speed, and low physical activity).(Cesari, 
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Gambassi, Abellan van Kan, & Vellas, 2014; Fried et al., 2001) Although both FP and FI are 

associated with mortality-risk,(Shi et al., 2019) we will focus our discussion on Frailty index. This 

is not necessarily a comment on either’s ability to predict biological age, but rather how 

responsive each may be to lifestyle interventions. Given the relatively broad scope and ordinal 

nature of the 5-item Frailty phenotype, it may be less responsive to intervention and less suited 

as a research variable compared to the Frailty Index.(Cesari et al., 2014; Clegg, Young, Iliffe, 

Rikkert, & Rockwood, 2013) The Frailty Phenotype may be better implemented as a screening 

tool, inclusion/exclusion criterion, or stratification mechanism given that it does not require a 

full geriatric comprehensive assessment like the FI.(Clegg et al., 2013)  

One of the originally described functional indices, called the Canadian Study of Healthy 

Aging (CSHA) Frailty Index is validated by the Canadian Study of Healthy Aging and examines 

the presence or absence of 70 clinical deficits in order to quantify fitness and frailty in the 

elderly.(Kenneth Rockwood et al., 2005) This list of deficits was not meant to be a fixed index 

however, in fact it has been reported that indices with as few as 50 clinical deficits can be highly 

useful, and some indices with as few as 20 items have been explored.(K. Rockwood & Mitnitski, 

2012) Other tools related to the frailty index have been developed such as the Edmonton Frailty 

scale(Clegg et al., 2013; Rolfson, Majumdar, Tsuyuki, Tahir, & Rockwood, 2006) and Clinical 

Frailty Scale.(Kenneth Rockwood et al., 2005) The Clinical Frailty Scale is a 7-point scale that is 

highly correlated to the original 70-point index (r2=.90).(Kenneth Rockwood et al., 2005) More 

importantly given an aging research context, each 1 point increase in the scale was found to 

correspond with a 21.2% increased risk of death in the next 70 months.(Kenneth Rockwood et 

al., 2005) In a study of 1788 community-dwelling elders frailty as defined by the FI was 

associated with a 2.31 fold increased risk of all-cause death compared to those who scored 

robust on the index.(Shi et al., 2019) Another study of 5536 community-dwelling elderly found 

the relationship between FI and mortality to be significant (P < .0001). Interestingly, a meta-

analysis examining frailty index scores between men and women found what the authors 

described as a “male-female health-survival paradox”.(Gordon et al., 2017) The paradox was 
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that at all ages females displayed higher FI scores, despite males having higher mortality rates 

at each level of the frailty index.(Gordon et al., 2017) Frailty sex differences extended to diet as 

well. A study examining older adults found that low meat consumption (less than 2x/wk.) was 

associated with increased frailty in men only. Increased frailty in women was associated with 

decreased fish, meat, vegetables, and potatoes.(Shibasaki, Kin, Yamada, Akishita, & Ogawa, 

2019) Perhaps most relevant to the aim of this paper, one study comparing nine different 

biological age predictors, found Frailty Index (42-item Rockwood(Jiang et al., 2017)) to have one 

of the strongest associations with mortality risk among the nine markers examined, being 

exceeded only by GrimAge.(Li et al., 2020) Given these results, some frailty indices may serve 

lifestyle intervention research well alongside other biomarkers, or perhaps even as stand-alone 

outcome variables.  

 

Table 5: 
Functional Age Estimators 

Study Title BA Predictor 

Used 

Cohort name (if 

applicable) 

n Results 

Frailty index as a 
predictor of all-
cause and cause-
specific mortality 
in a Swedish 
population-based 
cohort  

42-item 
Rockwood  

Swedish 
Adoption/Twin 
Study of Aging  
 

1477 The categorized FI levels 
demonstrated a dose-
response increase in 
mortality risk with 
increased frailty in both 
men and women.(Jiang et 
al., 2017) 
 

Frailty 
phenotype, frailty 
index and risk of 
mortality in 
Chinese elderly 
population- 
Rugao longevity 
and ageing study  

Frailty Index Ageing arm of 
Rugao Longevity 
and Ageing Study 
 

1788 Frailty defined by the 
frailty index was associated 
with a 2.31 fold (95% CI 
1.16-4.6) risk of all-cause 
death compared with 
robust elderly.(Shi et al., 
2019) 
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Frailty index as a 
predictor of 
mortality: a 
systematic review 
and meta-analysis  

 

 

Frailty Index 18 cohorts  All meta-analyses 
suggested that higher FI 
was significantly 
associated with higher 
mortality risk.(Kojima et 
al., 2018) 
 

 

 

Discussion 

 

No statement in this paper is intended to make a recommendation regarding the use of 

a specific biological age predictor; neither is this review an exhaustive list. In addition to less 

investigated biological age predictors like proteomics, and metabolomics, there are multitudes 

of individual markers associated with accelerated biological aging such as glycated hemoglobin, 

triglycerides, blood pressure, resting heart rate, waist-to-hip ratio, fibrinogen, albumin, crp, 

interleukin-6, and many others. (Jylhävä et al., 2017; Kane & Sinclair, 2019) Our aim is to 

compile relevant information pertaining to various promising predictors of biological age 

validated in large cohorts to assist future researchers interested in using them as outcome 

measures. There is also no implication that all biomarkers of aging are equally valid. A 

compelling comparison of nine biological age estimators that examined longitudinal 

trajectories, correlations, and mortality associations across 20 years was performed by Li et al. 

2020.(Li et al., 2020) Their study examined data from a Swedish based cohort of 845 men and 

women aged 63.6 (8.6) at baseline and compared the validity of four different DNA methylation 

age estimators Horvath,(Horvath, 2013) Hannum,(Hannum et al., 2013) PhenoAge,(Levine et al., 

2018) and GrimAge(Lu et al., 2019)), three different functional age estimators (functional aging 

index,(Finkel et al., 2019) frailty index,(Jiang et al., 2017) cognitive function(Reynolds et al., 

2005)), telomere length,(Berglund et al., 2016) and a composite biomarker called physiological 

age that included various biomarkers and measures of body composition. All four DNA 

methylation age estimators, physiological age, and all three functional age estimators were 
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associated with mortality risk independent of chronological age, while telomere length was not. 

Of the nine biomarkers of aging examined, GrimAge and the Frailty index stood out as being 

most associated with mortality risk.   

The information presented here sheds light on the large variety of biomarkers of aging 

available, each with its own specific capabilities. Even still, the markers discussed are just a 

small portion of the available biomarkers of aging in existence. Like any other biomarker, the 

predictor used in future experimental studies should be based on the specific aims and needs of 

those studies. A study that aims to assess the effects of a vegan diet on coronary heart disease 

risk may benefit from utilizing the GrimAge marker since it has been shown to predict time-to-

coronary heart disease.(Lu et al., 2019) Investigators could obtain a baseline GrimAge value, 

implement an intervention protocol, and obtain a GrimAge value at the conclusion of the trial. 

When compared to a control group, the difference in GrimAge values could be analyzed to 

determine if biological age was slowed or reversed. An example of this methodology was 

implemented in the 2019 Fahy et al study, Reversal of Epigenetic Aging and Immunosenescent 

Trends in Humans, in which investigators reported a 2.5 year reversal in mean epigenetic age 

following a 1 yr. human growth hormone and metformin treatment protocol.(Fahy et al., 2019) 

A study that aims to determine the transcriptional basis for any observed changes in biological 

age resulting from lifestyle modification may find a transcriptomic predictor most appropriate 

due to the ability to obtain a biological age estimation and gene expression profile from a single 

blood sample. If an investigator is limited in terms of their capability to analyze gene expression 

profiles, DNA methylation of CpG sites, or blood biomarkers, perhaps a functional age estimator 

such as a frailty index could provide relevant data on biological aging changes in an intervention 

group. If feasibility allows it, the combination of various predictors of biological age could yield 

even more robust results. Various factors will dictate the most appropriate selection for future 

lifestyle modification research, not the least of which being accessibility, cost, applicability to 

multiple tissue types, and conversely, specificity to a study’s specific tissue of interest. A 

possible limitation to this review may be that only papers written in English were included. 

Additionally, this is an emerging field with many potential biological age predictors to consider. 

We selected five of the most investigated biological age predictors with large-scale cohort 
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validation and therefore there may be promising new predictors that were not included in this 

review.   

 

Conclusion: 

This paper highlights an inherent challenge in searching for the “best” biomarker(s) of 

aging. Any researcher seeking to utilize one of these biomarkers must first clearly define their 

aims. They must also seek to understand and explain how they are using the term biological age 

or biomarker(s) of aging. It may be preferable to instead use more descriptive terminology such 

as DNA methylation age/Epigenetic age (BA as measured by an epigenetic clock), transcriptomic 

age (BA as measured by a transcriptomic age predictor), or functional age (BA as measured by a 

deficit accumulation index such as a frailty index). These terms go further to explain the nature 

of the data, how it is obtained, and how it may be best interpreted. They also help to add some 

clarity given the array of emergent terminology used in biological age prediction research. 

Our aim at the outset of this paper was to view these markers in the context of their ability to 

predict healthspan and lifespan. Telomere length is certainly the most extensively studied 

biomarker of age-related disease. Consequentially, many conclusions have been made 

regarding the association between telomere length, age, disease, stress, and multiple other 

health outcomes. While no study that we know of has sought to produce an easy-to-use 

telomere length biological age prediction tool, TL has been used to predict mortality risk, albeit 

with mixed results. Epigenetic clocks appear to have the upper hand in terms of accessibility 

(many are freely accessed online), and they also appear to best predict time-to-death, time-to-

cancer, and other age-related processes.(Li et al., 2020; Lu et al., 2019; McCrory et al., 2020) It 

also seems that they may have the greatest degree of large-scale cohort validation. Perhaps the 

only area where epigenetic clocks are not the apparent “leader” of the biological age prediction 

discussion is in their ability to identify the mechanism behind differences in chronological and 

biological aging, although discovery is taking place rapidly.(W. Zhang, Qu, Liu, & Belmonte, 

2020) It is in this domain that transcriptional predictors of biological aging may add value as 
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they rely on gene expression data to estimate biological age. A researcher could potentially 

examine changes in both biological age and genetic expression to make an inference regarding 

the mechanism behind the observed biological age acceleration/deceleration from a single 

blood sample. A “best of both worlds” scenario may involve the inclusion of a more validated 

DNA methylation marker like GrimAge, alongside a genetic expression profile of relevant 

genetic pathways. This would allow an investigator to report an intervention’s effect on 

biological age, as well as an analysis of the specific changes in gene expression that may have 

contributed to that change.  

Each of these tools has unique capabilities and limitations. For this reason, the most 

robust option for a future researcher is likely the inclusion of multiple biomarkers of aging 

based on those unique features.  

A central goal of lifestyle modification is to reduce disease risk and promote healthy, 

successful aging. The ability of biological age predictors to assess an intervention’s contribution 

to mortality/morbidity risk makes them highly relevant measures for studies examining the 

effects of lifestyle modification on age-related disease. Future studies examining the effects of 

diet, supplementation, exercise, stress-reduction techniques, sleep quality/quantity, or any 

number of other lifestyle modification interventions could benefit greatly from the inclusion of 

a biological age predictor.  
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CHAPTER 3 

High-Intensity Interval Training Reduces Transcriptomic Age: A Randomized Controlled Trial 

Abstract 

Background: While the relationship between exercise and lifespan is well documented, 

little is known about the effects of specific exercise protocols on modern measures of biological 

age. Transcriptomic age predictors provide an opportunity to test the effects of high intensity 

interval training (HIIT) on biological age utilizing whole-genome expression data.  

Methods: A single-site, single-blinded, randomized controlled clinical trial design was 

utilized. Thirty sedentary participants (aged 40 to 65) were assigned to either a HIIT group or a 

no-exercise control group. After collecting baseline measures, HIIT participants performed 

three 10X1 HIIT sessions per week for 4 weeks. Each session lasted 23 minutes, and total 

exercise duration was 276 minutes over the course of the 1-month exercise protocol. 

Transcriptomic age, PSS-10 score, PSQI score, PHQ-9 score, and various measures of body 

composition were all measured at baseline and again following the conclusion of 

exercise/control protocols.  

Results: Transcriptomic age reduction of 3.59 years was observed in the exercise group 

while a 3.28-year increase was observed in the control group. PHQ-9, PSQI, BMI, body fat mass, 

and visceral fat measures were all improved in the exercise group. A hypothesis-generation 

gene expression analysis suggested exercise may modify autophagy, mTOR, AMPK, IP3K, 

neurotrophin signaling, insulin signaling, and other age-related pathways. 

Conclusion: A low dose of HIIT can reduce an RNA-based measure of biological age in 

sedentary males and females between the ages of 40 and 65. Other changes to gene expression 
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were relatively modest, which may indicate a focal effect of exercise on age-related biological 

processes.  
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Introduction 

The beneficial effects of exercise on healthspan and lifespan are among the most well 

documented scientific findings in health science research (Aune et al., 2021; Han et al., 2022; 

Myers et al., 2002; Northey, Cherbuin, Pumpa, Smee, & Rattray, 2018). Despite this, there are 

relatively few trials investigating the effects of exercise on gene regulatory mechanisms of 

healthspan and lifespan. Of those that have been performed, most examine the effects of a 

single bout of exercise on gene expression, rather than repeated bouts (Amar et al., 2021).  

Given that many beneficial effects of exercise require repeated bouts over time to 

manifest, this represents an opportunity for discovery. Consider for example the inappropriate 

conclusions that could be drawn when studying the effects of a single bout of exercise on 

muscle hypertrophy, strength, or inflammation. The beneficial effects of exercise on biological 

aging is likely most apparent when studied over time. 

The central theme of molecular biology holds that a cell’s function and status are 

dictated by the specific sets of genes undergoing transcription at any given time, and to what 

degree these processes are occurring (O'Brien, Costin, & Miles, 2012). Genome-wide expression 

analyses allow us to take a snapshot of those processes, capturing a gene expression profile at 

the time of blood draw. A comparison of gene expression profiles before and after an 

intervention provides the means to identify patterns of differentially expressed genes.  

As high throughput RNA sequencing becomes more commonplace, gene expression-

based predictive models have emerged. Some of these models are designed to predict 
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biological age (Meyer & Schumacher, 2021; Peters et al., 2015; Ren & Kuan, 2020), or more 

specifically, transcriptomic age (TA). These models are easily accessible and comprehensive 

molecular surveys of biological processes that collectively contribute to healthspan and 

lifespan. It is this type of biological age predictor, a “transcriptomic clock” that is used in the 

trial described here.  

The biological age prediction field is diverse and rapidly evolving, with models composed 

of various inputs (Cesari et al., 2014; Jylhävä et al., 2017; Levine et al., 2018; Lohman et al., 

2021; Lu et al., 2019) and predictive capabilities (Li et al., 2020; McCrory et al., 2020). The 

discrepancy between a participant’s actual age and their predicted age is often of particular 

interest (Fahy et al., 2019; Fiorito et al., 2021). This measure, called age acceleration (biological 

age minus chronological age), can take a positive or negative value. Positive values are 

considered hazardous and indicative of an increased aging rate, while negative values are 

considered beneficial and evidence of a slowed aging rate. Any intervention that reverses age 

acceleration could therefore be considered beneficial and potentially health protective.  

The effect of exercise on various biological age predictors is inconsistent. Most 

experimental studies that examine the relationship between exercise and biological age use 

telomere length as their primary biomarker of aging. These results are mixed, with positive 

relationships, U-shaped relationships, and no relationship all being reported (Sellami, Bragazzi, 

Prince, Denham, & Elrayess, 2021). This could be due to any number of factors, from 

differences in sample characteristics to the open question of whether telomere length even has 
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utility as a measure of biological age (Glei et al., 2016; Li et al., 2020; Svensson et al., 2014; 

Vaiserman & Krasnienkov, 2020; Wang et al., 2018).  

Fewer studies have been performed using epigenetic alteration, such as DNA 

methylation or histone methylation/acetylation as an outcome measure. Of those that have 

been performed, various types of exercise have been shown to induce widespread changes to 

the methylome and associated gene expression (Barrès et al., 2012; Denham, O'Brien, Marques, 

& Charchar, 2015; Nakajima et al., 2010), but the number of studies performed is few.  

To the authors’ knowledge only two lifestyle modification trials have utilized a next 

generation predictor of biological age in humans, such as an epigenetic clock (Fiorito et al., 

2021; Fitzgerald et al., 2020), and no prior study has used a transcriptomic predictor of 

biological age.  

The trial described here aims to address this by utilizing high throughput RNA 

sequencing to explore the effects of twelve high intensity interval training (HIIT) sessions on 

biological age as measured by a blood mRNA-based “transcriptomic clock” (Peters et al., 2015). 

 To confirm previously observed effects of HIIT on various physiological parameters (Gu, 

Hao, Chen, & Wu, 2022; Min, Wang, You, Fu, & Ma, 2021; Ouerghi et al., 2017; Su et al., 2019; 

M. Wewege, van den Berg, Ward, & Keech, 2017) we also measured changes to body mass 

index (BMI), body fat mass (BFM) and visceral fat area, as well as measures of psychological 

stress, depression, and sleep quality. 
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Methods 

A randomized controlled trial design was used to investigate the effects of HIIT on the 

following dependent variables: 10-item Perceived Stress Scale (PSS-10) (Lee, 2012), Pittsburgh 

Sleep Quality Index (PSQI) (C. Zhang et al., 2020), Patient Health Questionnaire 9-item 

depression module (PHQ-9) (Kroenke, Spitzer, & Williams, 2001; Levis et al., 2020), body mass 

index (BMI), body fat mass, visceral fat area, skeletal muscle mass, waist-to-hip ratio, blood 

pressure, resting heart rate, and whole-genome RNA expression. The transcriptomic age 

prediction (TRAP) tool (Peters et al., 2015) was used to assess transcriptomic age and 

transcriptomic age acceleration (TAaccel = TA – chronological age) using the RNA AGE Calc 

Shiny App (Ren & Kuan, 2020). The TRAP biological age prediction model was trained to predict 

chronological age in a meta-analysis of 14,983 individuals and is based on 11,908 input gene 

expression levels (Peters et al., 2015).  

Trial participants were recruited from local communities surrounding the Loma Linda 

University campus via flyers, approved social media, and word of mouth. The Loma Linda 

University Institutional Review Board approved the study on 11/18/2021 (IRB# 5210437, 

clinicaltrials.gov trial registration ID: NCT05156918). Males and females between the ages of 40 

and 65 who self-identified as non-exercisers, were categorized as low activity using the 

International Physical Activity Questionnaire (IPAQ) (Hagströmer, Oja, & Sjöström, 2006), had 

no significant change to activity levels within the past 30 days, were not pregnant, had no prior 

or current history of any condition that would make exercise unsafe, and were not currently 
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taking antibiotics, glucocorticoids, anticoagulants, narcotics, antiepileptics, antipsychotics, or 

hypoglycemic agents were eligible for participation. 

Study participants were instructed to avoid modifying their usual physical activity level 

or diet for the duration of the four-week study protocols, except for the additional HIIT 

assigned to exercise group. All participants maintained a compliance log, comprised of two 

questions weekly. For the control group: Have you performed more than your usual amount of 

physical activity this week? Secondly, have you made any significant changes to your diet this 

week? For the exercise group: Excluding the exercise assigned to you in this study, have you 

performed more than your usual amount of physical activity this week? Secondly, have you 

made any significant changes to your diet this week?  

All participants arrived at the laboratory between the hours of 8am and 11am, and 

baseline measures were obtained. Body composition measurements were obtained using the 

InBody 770 body composition and body water analyzer (InBody USA, USA), surveys were 

completed in a private room, and a single vial of blood was collected by a certified 

phlebotomist from the antecubital vein into a PAXgene® Blood RNA Tube, PLH 16X100 2.5 

PLBLCE CLR (Becton Dickinson, USA)  

Following the completion of Day-1 data collection, exercise group participants returned 

the following day to begin the HIIT protocol which took place at the Loma Linda University 

Physical Fitness Laboratory. The authors chose a routinely studied 10X1 HIIT protocol that has 

been determined as safe and effective in various groups, including sedentary individuals (Ito, 

2019; Little, Safdar, Wilkin, Tarnopolsky, & Gibala, 2010; Rozenek, Salassi, Pinto, & Fleming, 
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2016; M. A. Wewege, Ahn, Yu, Liou, & Keech, 2018). The protocol consists of a 2-minute warm 

up and cool down, with 10, 1-minute high intensity exercise intervals at 77-93% of the 

participants predicted maximum heart rate (Committee; Riebe, Ehrman, Liguori, & Magal) 

determined using Karvonen’s formula (Camarda et al., 2008), followed by 1-minute self-

selected intensity rest periods. The total exercise session lasted 23 minutes, of which 10 

minutes was high intensity exercise and 13 minutes was warm-up/rest/cool down periods. 

Participants rotated between three exercise machines (randomly assigned rotation 

order at outset): A Concept2 rowing ergometer, Concept2 bicycle ergometer, and a Noraxon 

PhysTread Pressure treadmill. Participants used a different machine each day so that they used 

each of the three exercise machines once per week.  

Following the conclusion of the 4-week control and exercise protocols, all participants 

returned for results collection. Exercise group data was collected approximately 48 hours after 

their last HIIT session. Blood samples were stored at -79 degrees Celsius until RNA extraction 

(Qiagen RNeasy), quality assurance assays, mRNA sequencing, and related statistical analyses of 

differential gene expression and interpretive bioinformatics were performed by the UCLA Social 

Genomics Core Laboratory.  Transcriptional profiling utilized a high-efficiency mRNA targeted 

reverse transcription and cDNA library synthesis system (QuantSeq 3’ FWD; Lexogen Inc.) with 

cDNA libraries sequenced on in Illumina NovaSeq system by Lexogen Services GmbH.  Assays 

targeted 5 million sequencing reads per sample (achieved median = 7.1 million), each of which 

was mapped to the GRCh38 reference human transcriptome using the STAR aligner (median 

99.7% mapping rate) and quantified as gene transcripts per million total mapped reads, with 

values floored at 1 transcript per million to suppress spurious low-range variability, and log2-
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transformed to stabilize variance.  One follow-up sample yielded insufficient sequencing reads 

for valid analysis (< 1 million reads), and that sample and its paired pre-intervention baseline 

sample were excluded from all subsequent analyses.  These data served as input into the RNA 

AGE Calc Shiny App for computation of the TRAP RNA age score. RNA AGE Calc Shiny App inputs 

were as follows: Tissue type: Blood, type of gene expression data: Count, samples used when 

building the calculator: All samples, gene ID type: Ensembl ID, signature: Peters. 

A secondary analysis of differentially expressed genes (DEGs) was performed using two 

sets of cut off criteria. First, genes which displayed a group x time interaction expression fold 

change greater than 1.5 or less than .5 were selected for analysis. Also, an 

exploratory/hypothesis-generation analysis was performed using more liberal fold change 

values, greater than 1.2 or less than .8. Functional enrichment and pathway analyses were 

performed using Advaita Bio’s iPathway Guide (Supplementary File 2). 

 

Data Analysis 

  Mean ± SD was computed for quantitative variables and frequency (percentage) for 

categorical variables. Normality of quantitative variables was assessed using Shapiro-Wilk test 

and box plots. Independent t-test was used for all continuous and independent variables in 

both groups at baseline. The Mann-Whitney U test was used to compare the same variables 

due to small sample and lack of normality on some variables. The dependent paired t test was 

used to compare pre- and post-variables in both groups. Also, Wilcoxon Signed Rank test was 

used to compare the pre- and post-variables due to small sample and lack of normality on some 

variables. 
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Data were analyzed using SPSS Statistics Software version 28.0 (SPSS Inc, Chicago, IL, 

USA). All analyses were performed at an alpha level of .05. 

 

Results 

Of the 35 participants screened, 30 subjects satisfied the eligibility criteria, agreed to 

participate, were randomly assigned to the experimental group (n=15) and the control group 

(n=15) using computer-generated block randomization, and completed all subsequent analyses 
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(Figure 1).

 

Figure 1: CONSORT chart diagram. 35 participants recruited, 2 excluded due to high activity 
level, 1 excluded due to an inability to draw blood sample. 1 control participant lost to follow 
up, 1 exercise participant excluded from analysis due to low blood volume in post exercise 
blood sample detected during RNA quality control tests. In total, 15 control participants and 15 
experimental participants completed all aspects of the trial and subsequent analysis. 
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 Baseline characteristics of participants are shown in Table 1. None of the demographic 
variables were significant for randomized design. 

 

Table 1. Selected Characteristics of Participants at Baseline. 
Variables Experimental  

Frequency (%) 
(n=15) 

Control  
Frequency (%) 
(n=15) 

Age (years) 51.00±7.9d 47.93±7.6d 
BMI (kg/m2) 31.08±4.9d 29.59±5.4d 
Race/Ethnicity 
     White 
     Black 
     Hispanic 
     Asian 
     Other 

 
7 (46.7) 
2 (13.3) 
4 (26.7) 
1 (6.7) 
1 (6.7) 

 
5 (33.3) 
1 (6.7) 
4 (26.7) 
5 (33.3) 
0 (0) 

Sex 
      Female 
      Male 

 
10 (66.7) 
5 (33.3) 

 
10 (66.7) 
5 (33.3) 

Diabetic 
     No 
     Yes 
     Pre-Diabetic 

 
13 (86.7) 
0(0) 
2 (13.3) 

 
14 (93.3) 
0 (0) 
1 (6.7) 

d Values are presented as mean ± SD 

 

Intervention Validation 

There was a significant decrease in body fat mass, BMI, and visceral fat area (p= .031, 

.048, and .015 respectively) (Table 2), over time for the experimental group, a non-significant 

increase in BFM in the control group (p=.244), and a non-significant decrease in BMI and 

Visceral Fat Area in the control group (p=.598 and p=.062 respectively) (Table 2). No changes in 

body composition displayed group x time statistical significance. 

 

Primary Analysis: Transcriptomic Age 
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 A significant group x time difference in TA (p=.026) was observed. A significant decrease 

in TA was observed in the experimental group (p=.043) and a significant increase in TA was 

observed in the control group (p=.018) (Table 2). Changes to TAaccel were also significant 

between groups (p=.025), with similar magnitude and direction of change as TA (Table 2). 

Table 2.  Effects of High Intensity Interval Training on Transcriptomic Age, PHQ-9, PSS-10, 

PSQI, Skeletal Muscle Mass, Body Fat Mass, and Visceral Fat Area. Between and Within Group 

Effects 
Variables Experimental (n=15) Control (n=15)  

 Pre Post 

Mean 
difference 

(P*) pre post 

Mean 
difference 

(P*) 

P** 

TA 
(years) 73.4±8.2 69.8±7.7 

-3.59±7.72 
(.043) 67.8±9.3 71.1±9.2 

3.28±8.26 
(.018) 

.026 

TAaccel 
(years) 21.8±7.6 17.9±9.2 

-3.84±7.98 
(.078) 19.2±7.9 22.4±6.8 

3.21±8.26 
(.156) 

.025 

PHQ-9 5.3±3.9 2.3±1.9 
-3.07± 3.10 

(.002b)  6.9±6.9 7.0±5.9 
.07± 6.15 

(.964b) 
.063a 

PSS-10 20.1±5.3 19.8±4.0 
-.33±5.89 

(.53b) 21.2±3.4 19.7±5.2 
1.47±4.09 

(.054b) 
.739a 

PSQI 7.0±3.9 5.5±3.5 
-1.53± 2.42 

(.042b) 7.6±4.7 7.7±4.4 
.07± 2.55 

(.670b) 
.158a 

SMM 
(lbs) 69.5±11.7 69.6±11.5 

.15± 1.39 
(.676) 63.1±14.0 63.5±14.0 

.39± 1.99 
(.456) 

.705 

BFM (lbs) 74.6±22.1 73.1±22.2 
-1.47± 2.29 

(.031b) 66.9±22.1 67.0±22.7 
.17± 4.5 
(.244b) 

.263a 

BMI 
(kg/m2) 31.1±4.9 30.9±5.0 

-.23±.40 
(.048) 29.6±5.4 29.5±5.1 

-0.08±.57 
(.598) 

.513 

Visceral 
Fat Area 

cm2 162.3±46.2 158.1±46.1 
-4.25± 5.95 

(.015) 157.0±58.3 154.3±58.3 

-2.66± 
5.08 

(.062) 

.426 

Values are presented as mean ± SD  
* p- values for the null hypothesis that there is no difference between pre and post. 
** p- values for the null hypothesis that there is no difference between groups. 
a: Mann-Whitney U test 
b: Wilcoxon Signed Rank test 
Abbreviations. TA: transcriptomic age, TAaccel: Transcriptomic Age Acceleration (transcriptomic age minus chronological age), PHQ-9: Patient 
Health Questionnaire 9 item depression module, PSS-10: 10 item Perceived Stress Scale, PSQI: Pittsburgh Sleep Quality Index, SMM: Skeletal 
Muscle Mass (lbs.), BFM: Body Fat mass (lbs.), BMI: Body Mass Index. 

 

 

 

 

 

 



 55 

Secondary Analyses: Gene Expression Analyses, Depression, Sleep, and Stress Ratings 
 
There was a significant decrease in mean PHQ-9 (depression) and PSQI (sleep) (p=.002 and 

p=.042), over time for the experimental group but no significant change for control group 

(p=.063 and p=.158 respectively) (Table2). Lastly, there was no significant change in mean PSS-

10 and SMM (p=.53 and p=.676 respectively) for the experimental group and similarly for the 

control group (p=.054 and p=.456). However, no changes in stress, sleep, or depression ratings 

displayed group x time statistical significance. 

The group x time interaction gene expression analysis identified 98 genes that were 

differentially expressed using routinely accepted fold change cutoff values (86 up-regulated 

genes >1.5-fold change, and 12 down regulated genes <.5-fold change in the exercise group 

compared to control group). This number is insufficient for secondary enrichment analyses. 

Using more liberal fold change values of >1.2 and < .8 for this exploratory analysis, 2,653 DEGs 

were identified (1075 up-regulated genes >1.2-fold change, and 1778 down-regulated genes 

<.8-fold change) (Supplementary File 1). In addition, 1,365 Gene Ontology (GO) terms, 477 gene 

upstream regulators, 231 chemical upstream regulators and 259 diseases were found to be 

significantly enriched before correction for multiple comparisons (Supplementary File 2).  

Pathway analysis was performed using Advaita Bio’s iPathwayGuide, which scores 

pathways using the Impact Analysis method (Draghici et al., 2007; Tarca et al., 2009). Impact 

analysis uses two types of evidence: i) the over-representation of differentially expressed (DE) 

genes in a pathway and ii) the perturbation of that pathway computed by propagating the 

measured expression changes across the pathway topology. The top five pathways identified by 

this analysis and their associated p-values are as follows: Human T-cell leukemia virus 1 
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infection (p-value= 2.033e-7, p-value (FDR)= 3.888e-5, p-value (Bonferroni)= 6.851e-5), 

pathways in cancer (p-value= 2.308e-7, p-value (FDR)= 3.888e-5, p-value (Bonferroni)= 7.776e-

5), neurotrophin signaling pathway (p-value= 4.670e-7, p-value (FDR)= 5.246e-5, p-value 

(Bonferroni)= 1.574e-4), RNA degradation (p-value= 1.140e-6, p-value (FDR)= 5.939e-5, p-value 

(Bonferroni)= 3.842e-4), and autophagy (p-value= 1.190e-6, p-value (FDR)= 5.939e-5, p-value 

(Bonferroni)= 4.009e-4). A detailed description of these results, including pathway diagrams, is 

shown in Supplementary File 2.  

 

Discussion 

In this randomized controlled trial examining the effects of HIIT on an RNA-based 

measure of biological age, participants in the HIIT group showed greater reductions in TA and 

TAaccel than did those in the no-exercise control group. This improvement in biological age 

coincided with improvements in body composition, ratings of sleep quality, and ratings of 

depression within the exercise group. These results suggest that exercise exerts a causal effect 

on age-related patterns of gene expression, and that such effects could potentially contribute 

to the positive health and longevity effects associated with exercise. 

 

Transcriptomic Age and Transcriptomic Age Acceleration 

Both groups began the trial with positive transcriptomic age acceleration. In other 

words, mean transcriptomic age (as computed by the TRAP algorithm) was significantly higher 

than mean chronological age in both groups. This baseline age bias most likely stems from 

methodological issues discussed below, and affected both groups similarly (i.e., exercise and 
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control groups did not differ in their baseline biological age measures).  In the exercise group, 

TA and TAaccel decreased following the HIIT protocol, while both measures increased in the 

control group over the same timeframe.  A 3.59-year reduction in TA was observed in the 

exercise group, which can be interpreted as the average gene expression pattern among 

exercise participants changing to reflect that of a person 3.59 years younger than their mean 

baseline TA. The 6.87-year difference in TA change, and 7.04-year difference in TAaccel change 

between exercise and control groups was statistically significant.  

The only significant change observed in the control group was increased TA, and the 

authors propose two potential mechanisms for this. Control participants were asked to avoid 

altering their typical physical activity levels during the duration of the four-week control 

protocol. It is possible that once under observation, participants inadvertently lowered their 

activity levels. In essence, a Hawthorne effect (Merrett, 2006). Secondly, it is important to note 

the impact that loneliness, social exclusion, and isolation can have on gene expression (Steve 

W. Cole, 2009; S. W. Cole et al., 2015). Many control participants expressed disappointment at 

not being included in the exercise group. It is at least conceivable that this adversely affected 

their transcriptomic age.  

Of note was that the TRAP model consistently overestimated participant age in all blood 

samples. The authors believe this is due to differences in data type between the TRAP training 

dataset and our sample. The TRAP model was developed and trained using microarray data 

(Peters et al., 2015), while our transcript counts were derived from RNAseq data. However, 

since this discrepancy applies equally to all blood samples regardless of group assignment or 
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time of collection, there is no reason to believe that this introduced any bias into the observed 

magnitude and direction of TA change.  

 

Gene Expression 

The use of a gene expression-based measure of biological age has the added advantage 

of facilitating additional transcriptomic analyses which could shed light on the mechanisms 

underlying exercise’s effect on aging processes. However, in an untargeted genome-wide 

expression analysis, 12 HIIT sessions had only modest effects on gene expression.  

Although there were transcriptomic effects associated with HIIT, less than 100 genes displayed 

a fold change greater than 1.5 or less than .5, the values typically used to identify DEGs. This 

DEG count is less than the amount required for subsequent higher order bioinformatic analyses 

such as a functional enrichment analysis.   

While these modest findings may seem surprising given the systemic physiological 

changes induced by exercise, it is important to remember that this trial examined the effects of 

a 1-month HIIT protocol on steady state (baseline) gene expression levels. The follow-up blood 

draw occurred approximately 48 hours after the final exercise session, meaning that whole 

genome expression was assessed while the participants were not experiencing the acute 

physiological aftereffects of exercise. Given the small dose and duration of our exercise 

protocol and the small sample size, this modest between group effect may not be surprising 

An exploratory genome-wide discovery analysis using more liberal fold change cutoff 

values (greater than 1.2 or less than .8) revealed 1075 upregulated transcripts and 1778 

downregulated transcripts potentially associated with HIIT (Supplementary File 1). The 
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subsequent bioinformatic analyses associated with these DEGs were performed using Advaita 

Bio’s iPathwayGuide. This analysis suggests that autophagy processes, cancer pathways, 

neurotrophin signaling pathways, mRNA degradation processes, and other pathways were 

modified by HIIT (Supplementary File 2). These modifications are particularly interesting in the 

context of aging, especially autophagy. Various age-related signaling pathways were modified 

including mTOR signaling, AMPK signaling, PI3K signaling, and insulin signaling pathways. 

Inhibition of 3 out of 5 mTORC1 complex component genes (Raptor, Deptor, and mTOR) was 

noteworthy, since mTORC1 inhibition is associated with increased lifespan in every species 

studied so far, including humans (Papadopoli et al., 2019; Weichhart, 2018). Given the 

exploratory nature of these enrichment analyses, and the relatively liberal threshold for DEG 

detection however, these results should be treated as descriptive hypotheses to be tested in 

future research using more rigorous methods. 

Body Composition and Self-Reported Measures of Sleep Quality and Depression 
 

Previous work suggests that the effects of exercise on biological age are mediated by changes in 

body composition (Kresovich et al., 2021). This seems to support our findings, as improvements 

in BMI, body fat mass, and visceral fat area were observed in the exercise group over time. 

Improvements in PHQ-9 and PSQI score were also seen in the exercise group over time.   

Observed changes to body composition were consistent with previous studies’ findings, 

indicating that this study’s specific implementation of HIIT imparted the expected effects 

demonstrated in prior investigations. This serves as a positive control, or paradigm validation of 

the trial’s specific HIIT intervention.  However, it is important to note that none of these 
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biometric changes differed significantly across groups, likely due to the limited statistical power 

available from this relatively small sample. 

 

Significance 

Starting and adhering to a new exercise program is difficult, a fact perhaps best 

illustrated by the current sedentary behavior rate in the United States. A recent Center for 

Disease Control and Prevention (CDC) telephone survey estimates that more than 25% of 

Americans participate in no physical activity outside of work (CDC, 2022) and contrary to 

popular opinion, this is not a uniquely American problem.  A large European Union study found 

that 53.1% of the adult EU population participated in >4.5 hours of sedentary behavior per day 

(López-Valenciano et al., 2020). Inadequate physical activity is no longer just a western problem 

either, with the World Health Organization estimating that one third of the global population 

aged 15 years or older engages in insufficient physical activity, with some countries, such as 

Korea, engaging in >8 hours per day of sedentary behavior on average (Park, Moon, Kim, Kong, 

& Oh, 2020).   

HIIT is a potential tool to help combat this trend given the decreased time commitment 

(Cobbold, 2018; Ito, 2019) and similar (or improved) health benefits to those bestowed by other 

forms of exercise (Hannan et al., 2018; Scott et al., 2019), but with increased adherence and 

compliance rates (Ito, 2019).  

Despite the modest gene expression findings generally, the pre-specified hypothesis 

regarding HIIT-induced transcriptomic age reversal was proven out by the analysis. Considering 

that each exercise participant completed a combined 276 minutes of exercise over 1 month, 
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only 2 hours of which was high intensity exercise, the effect of HIIT on biological age appears 

promising.  

This study further supports the notion that adding even a small amount of exercise can 

be beneficial, given that just 12 HIIT sessions were shown to significantly improve TA and 

TAaccel. To the authors’ knowledge, this is the first trial to demonstrate the effects of a specific 

exercise protocol on a next generation measure of biological age. The results suggest that 

exercise exerts a causal effect on age-related patterns of gene expression, and that such effects 

could potentially contribute to the positive health and longevity effects associated with 

exercise. 

 

Conclusion 

A low dose of HIIT over 4 weeks is sufficient to reduce transcriptomic age in sedentary middle-

aged males and females. Other changes to gene expression were relatively modest in 

comparison to the transcriptomic age reduction effect size. These findings, along with 

modification to autophagic pathways, may indicate a particular HIIT specificity for age-related 

biological pathway modulation. The key observations presented here, namely reduced 

transcriptomic age, indicate that exercise may potentially improve health and longevity by 

altering age-related transcriptional processes.  
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CHAPTER FOUR 
 

DISCUSSION 
 

 
There is a quote attributed to Galileo which reads “measure what is measurable and 

make measurable what is not so”. It is an aphorism which lies at the heart of good research 

methodology, and its relevance to biological aging is particularly significant.  

In the context of aging research, chronological age is readily measurable. The 

measurement of biological aging processes, however, is much more elusive. It is easy to 

imagine two individuals with different age-related disease risk profiles, different life 

expectancies, and different comorbidities, who are the same chronological age. The field of 

biological age prediction is as an attempt to measure the dissociation between chronological 

age and these age-related health outcomes. Not only are these capabilities informative, but 

they are also pragmatic.  

Biological age is hard to measure and even harder to change, but new advances in 

molecular biology and the well-established virtues of exercise raise an exciting possibility that 

we now attempt to seize in this dissertation. Can exercise reduce biological age?  

Prior to the creation of valid predictors of biological age, a researcher wishing to assess 

the effects of an intervention on aging processes, life expectancy, and age-related disease 

would need to design a multi-decade longitudinal trial. Alternatively, they could look for 

correlations in retrospective epidemiological data. In either case, a logistically challenging and 

expensive research endeavor needed to be undertaken. One that was potentially rife with 

confounding and unintentional bias. Biological age prediction models offer an intermediate 

step, where the effects of an intervention on biological aging can be assessed over 
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comparatively shorter time frames. These studies could provide a basis for selecting 

interventions for additional investigation and investment. Therefore, these models would not 

take the place of longitudinal validation, but they could catalyze the pace and efficiency of 

aging research discovery.  

With biological age prediction models, researchers now possess the means to evaluate 

the effects of interventions on aging processes within practical time frames. Chapter Two of 

this text reviewed a sampling of these models and described the current state of biological age 

prediction methodology. The models described there serve as accessible measures of biological 

aging, providing a framework for the investigation of biological age modulating interventions. In 

numerous cases they are determined to be externally and longitudinally valid predictors of life 

expectancy and time-to-disease.  

One category of biological age prediction model, transcriptomic age prediction, relies on 

gene expression inputs to assess biological age. The underlying transcriptomic data associated 

with these models also provides the basis for interesting secondary bioinformatic analyses. 

These analyses have the potential to help elucidate the mechanistic interplay between an 

intervention and biological age modulation.  

It is this type of model, a transcriptomic age predictor, that served as the primary 

outcome measure for the experimental trial described in Chapter Three. This trial assessed the 

effects of High-intensity interval training on gene expression and transcriptomic age. Reduction 

in transcriptomic age was observed in the exercise group compared to the control group.  

Exercise is a generally accepted modulator of health outcomes and life expectancy. 

However, it has not been previously demonstrated to modulate aging processes via 
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transcriptional means. In this way, the trial is significant, and to the authors’ knowledge the first 

trial to assess the effects of a specific intervention on a modern measure of biological age. A 

secondary hypothesis generation analysis was performed, and multiple age-related pathways 

were amongst the most heavily enriched biological processes. Some of these processes 

included cancer pathways, neurotrophin signaling, and autophagy signaling. All are age-related, 

but of particular interest was the potential exercise-induced up-regulation of autophagic 

processes. Future trials with larger samples and larger exercise doses should investigate this 

further.  Future research is also needed to assess the durability of these effects – i.e., are the 

“biological age reductions” observed here persistent over months or years of follow-up, or do 

they dissipate over time?  Are such effects maintained if participants continue exercising 

following study cessation?  And perhaps most importantly, do these “biological age” reductions 

observed here with exercise accurately forecast increases in health and longevity?  These are all 

important topics for future research, and this dissertation’s identification of HIIT as a viable 

strategy for reducing transcriptomic age in sedentary middle-aged adults provides a highly 

feasible paradigm for those future investigations.   

 

Conclusions and Future Directions 

The authors conclude that a low dose HIIT intervention is sufficient to reduce 

transcriptomic age in sedentary middle-aged males and females. Other changes to gene 

expression were relatively modest in comparison to the transcriptomic age reversal effect size. 

These changes included potential modification to autophagic signaling, neurotrophin signaling, 

and cancer-related pathways. This may indicate a particular HIIT specificity for age-related 
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biological pathway modulation. The key trial observations, namely reduced transcriptomic age, 

indicate that exercise may potentially improve health and longevity via age-related 

transcriptional mechanisms. 

Future studies should seek to quantify the biological age modulation capability of other 

exercise protocols, with the goal to identify forms of exercise which have the greatest affinity 

for biological age modification. Additionally, dose response curves should be established, and 

sex specific differences should be quantified.  
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Gene Intercept Intervention 

Between 
Group Fold 
Change 

ZDHHC4 -0.64318 1.10685792 2.15376064 
MYBBP1A -0.7140497 1.07325568 2.10417643 
PREB -0.5967144 1.01629142 2.0227127 
MROH1 -0.8331493 0.96407741 1.9508156 
LCN2 -0.6619749 0.95137977 1.93372115 
HMGN1P8 -0.2241092 0.90334621 1.87039919 
VPS39 -0.4116895 0.90099762 1.86735681 
AP003108.4 -0.7705609 0.89689913 1.86205944 
EPB41L2 -0.6040875 0.86804415 1.82518684 
B4GALT7 -0.3555211 0.85998163 1.8150152 
WSB2 -0.3373061 0.82855551 1.77590636 
LRP8 -0.1076038 0.79815986 1.73888179 
PILRB -0.5574056 0.78197963 1.71948869 
UMAD1 -0.5534117 0.77002794 1.7053028 
RSAD1 -0.4137279 0.75449579 1.68704188 
OXER1 -0.5325214 0.75321724 1.68554744 
TAF13 -0.3187047 0.73840708 1.66833276 
ZNF213 -0.4543647 0.73500036 1.66439789 
ZBED4 -0.3624368 0.73056263 1.65928607 
MT-TT -0.7968331 0.72466956 1.65252209 
WLS -0.3127526 0.71846703 1.64543272 
FAM234A -0.2748992 0.71572082 1.64230356 
CHCHD5 -0.4153742 0.70857759 1.63419211 
PTGS1 -0.4770252 0.70455667 1.62964381 
PGBD4 -0.3579984 0.70408233 1.62910809 
PWAR6 -0.3889218 0.69805886 1.62232049 
INAFM1 -0.0578553 0.69300494 1.61664727 
CC2D1A -0.4118007 0.68719569 1.61015067 
HS1BP3 -0.3823085 0.68577978 1.60857118 
XRRA1 -0.374259 0.67874249 1.60074387 
MEPCE -0.2877406 0.67652697 1.59828753 
PLXNA3 -0.4264685 0.67628948 1.59802445 
ALPL -0.3432847 0.67585005 1.59753778 
AC004448.1 -0.6120066 0.67423682 1.5957524 
NIT1 -0.3100206 0.672585 1.59392639 
HDC -0.1141744 0.67202723 1.59331026 
CTSF -0.4429797 0.67141132 1.59263019 
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LINC01410 -0.5440711 0.67117044 1.5923643 
VPS18 -0.1744318 0.67105478 1.59223665 
RELB -0.2268861 0.66384517 1.58429959 
TTC7A -0.2945996 0.66109695 1.5812845 
NEDD4L -0.0902757 0.6598819 1.57995329 
ZMYM3 -0.3767391 0.65962037 1.57966689 
NT5DC1 -0.2980943 0.65829361 1.57821484 
AC099489.1 -0.3388034 0.65382112 1.5733298 
CMAS -0.3050014 0.6514107 1.57070331 
APOBR -0.1895204 0.64210889 1.56060874 
CLUHP3 -0.2542009 0.63568555 1.55367586 
RRP12 -0.4857814 0.63459408 1.55250088 
ZCCHC14 -0.4657457 0.63344361 1.55126334 
SCCPDH -0.2193439 0.62658131 1.54390214 
PLCD1 -0.217631 0.6239616 1.5411012 
RNASEH1 -0.2105514 0.62384601 1.54097773 
ORC4 -0.2485718 0.6228535 1.53991797 
TMTC1 -0.2063448 0.62125078 1.53820819 
CAPN5 -0.194019 0.62010772 1.53698994 
SLC35C1 -0.4708322 0.61965238 1.53650491 
GPAM 0.08477275 0.61851179 1.53529063 
PLB1 -0.1548765 0.61734945 1.5340542 
BX322557.1 -0.4050067 0.61554667 1.53213845 
ZFY -0.1898008 0.61479749 1.53134302 
WDR4 -0.1598787 0.61473618 1.53127795 
TRIM35 -0.4301148 0.61400216 1.53049906 
ZCCHC24 -0.6062427 0.6133715 1.52983016 
ZSCAN16-AS1 -0.3764581 0.61238904 1.52878872 
LINC00243 -0.4671886 0.61237287 1.52877159 
SAYSD1 -0.2396999 0.60771439 1.52384312 
ATG2A -0.3127145 0.60638105 1.52243544 
RPS18P9 -0.3239201 0.60535822 1.52135646 
NCALD -0.2110895 0.60421595 1.52015238 
PGAP2 -0.6060393 0.60067149 1.51642221 
TTC21A -0.1784798 0.59969287 1.51539392 
NFKB2 -0.2431417 0.59675255 1.51230859 
CYB561D2 -0.3030504 0.59513086 1.5106096 
NTMT1 -0.2585302 0.59462974 1.51008498 
PBX1 -0.441581 0.59452011 1.50997023 
ZBTB16 0.05446244 0.59442258 1.50986816 
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ZBTB48 -0.1832489 0.59276524 1.50813464 
B3GALNT2 -0.1574718 0.59197858 1.50731253 
NUTM2A-AS1 -0.2719236 0.59024932 1.5055069 
SLC6A8 -0.3737017 0.58890297 1.50410258 
AC026356.2 -0.4109483 0.58866921 1.50385889 
BICD1 -0.2914786 0.58865075 1.50383966 
DHX33 -0.1698499 0.58785255 1.50300785 
PRPSAP1 -0.4375926 0.58637201 1.50146622 
FADD -0.3283961 0.58563744 1.50070191 
PARVB -0.2322521 0.58429014 1.4993011 
TMEM91 -0.2385151 0.58316557 1.49813286 
LRIG2 -0.229744 0.58270335 1.49765295 
CTTN -0.477424 0.58179135 1.49670651 
PAFAH2 -0.338788 0.58178623 1.4967012 
MCUR1 -0.2730608 0.58091198 1.49579449 
CCDC77 -0.4224037 0.58055334 1.4954227 
SUPT7L -0.4378561 0.57878557 1.49359144 
SCYL1 -0.4654756 0.57781109 1.49258293 
PDCD5 -0.2164347 0.57711012 1.49185789 
IRF5 -0.3378033 0.57691036 1.49165134 
BLOC1S1 -0.3794059 0.57521352 1.48989796 
ANO9 -0.2263428 0.57498788 1.48966495 
LRFN1 -0.2233739 0.57400263 1.48864797 
ZNF296 -0.0663251 0.57380409 1.48844312 
ZDHHC16 -0.299086 0.57360436 1.48823707 
NMRAL1 -0.382243 0.57203658 1.48662068 
AC103769.1 -0.1149116 0.57033869 1.48487212 
FAR2 -0.1629727 0.56920888 1.48370974 
AVIL -0.1416968 0.5681596 1.48263102 
AL157392.3 0.03026011 0.56800704 1.48247424 
TXNDC17 0.07644287 0.5677581 1.48221846 
ERCC6L2 -0.0293469 0.56734231 1.48179135 
MAN2C1 -0.2122632 0.56498011 1.47936711 
GNB1L -0.2694688 0.56166851 1.47597523 
AC025171.1 -0.3266479 0.56148698 1.47578953 
ING5 -0.5000257 0.56103858 1.47533091 
CAMTA1 -0.5893283 0.56033197 1.47460849 
PRR14 -0.3086059 0.55756662 1.47178468 
SH2B2 -0.3682654 0.55755397 1.47177177 
COX14 -0.4744719 0.55727741 1.47148967 
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CMSS1 -0.4683867 0.5567968 1.47099954 
SLC25A42 0.01731021 0.55550518 1.46968317 
AL162424.1 -0.4308048 0.55404753 1.468199 
SGSH -0.1923809 0.55362578 1.46776986 
AC092910.3 -0.4228364 0.55324294 1.46738042 
TCEAL3 -0.2008306 0.55135532 1.46546176 
MYO1E -0.0943561 0.55029462 1.46438472 
FADS1 -0.3146488 0.54883177 1.46290063 
CAPN12 -0.2091913 0.54865567 1.46272206 
ANKRD55 -0.3267835 0.54647673 1.46051455 
ADCY9 -0.3803629 0.54544845 1.45947394 
SLC10A3 -0.4019852 0.54531199 1.4593359 
SLC31A1 -0.3788484 0.54459417 1.45860998 
DHX37 -0.343388 0.54412095 1.45813161 
N4BP2L2-IT2 -0.2740561 0.5434652 1.457469 
IRF4 -0.3966495 0.54267559 1.45667153 
TIAM2 -0.3410379 0.54012674 1.45410025 
SLPI -0.3060881 0.53919743 1.4531639 
TTYH2 -0.2812814 0.53796171 1.45191975 
HECW2 -0.1782137 0.53761011 1.45156594 
ACO1 -0.1246852 0.53760916 1.45156498 
C10orf105 -0.3119298 0.53717649 1.45112972 
IRGQ 0.01525324 0.53650631 1.45045578 
TREML1 -0.1793618 0.53617304 1.45012075 
GDPD3 -0.2266769 0.53614628 1.45009385 
TNFRSF8 -0.1850418 0.53605068 1.44999777 
OSER1-AS1 -0.3044191 0.53514767 1.44909048 
PYCARD-AS1 -0.1215818 0.53479418 1.44873546 
AL356356.1 -0.2662193 0.53212895 1.44606154 
NDRG2 -0.2905454 0.53185784 1.44578982 
AC137932.2 -0.1464642 0.52999583 1.44392503 
CEP128 -0.4676243 0.52955724 1.44348612 
SAP130 -0.1807555 0.5287879 1.44271656 
WDR19 -0.332162 0.52683678 1.44076674 
MTHFD1 -0.3483787 0.52647422 1.4404047 
STK3 -0.218426 0.5256965 1.43962844 
ODF2 -0.0570127 0.5245195 1.43845441 
TARBP2 -0.2514549 0.52446051 1.43839559 
STAM2 -0.2903559 0.52410085 1.43803705 
ELMOD3 -0.0737076 0.52328111 1.43722019 
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BAG3 -0.2615884 0.52292194 1.43686243 
TCTN1 -0.3051124 0.5228695 1.43681021 
ZHX1 -0.1342493 0.52275595 1.43669712 
MYL9 -0.0159531 0.52262378 1.4365655 
DDX20 -0.4430085 0.52155221 1.43549889 
PET100 -0.4362205 0.52147926 1.4354263 
AC079174.1 -0.2036104 0.52119332 1.43514182 
VSTM1 -0.5758656 0.52050224 1.43445453 
AASDH -0.7317649 0.52047212 1.43442458 
AKAP1 -0.2185469 0.51946709 1.43342567 
TRIM65 -0.4379087 0.51849793 1.43246306 
AFF3 -0.1661235 0.51710788 1.43108352 
COLQ -0.5466495 0.51697961 1.43095629 
WDR74 -0.1498772 0.51667768 1.43065685 
COX15 0.06084605 0.51665073 1.43063013 
RNU6-60P -0.1634298 0.51617827 1.4301617 
CFAP20 -0.1866775 0.5156232 1.42961155 
SART1 -0.3042603 0.51532803 1.42931909 
CDCA7L -0.0639965 0.51500376 1.42899786 
ZFPL1 -0.4549406 0.51460269 1.42860066 
TMCC3 -0.2861175 0.51291232 1.42692778 
AC008764.7 -0.2632673 0.5127003 1.4267181 
UNC13D -0.2286469 0.5126595 1.42667775 
DHRS12 -0.2589359 0.51167822 1.42570769 
RHBDD2 -0.2020571 0.51121368 1.42524869 
PLPPR2 -0.2957056 0.51119506 1.4252303 
CBX1 -0.1882025 0.51055178 1.42459495 
TMEM218 -0.3000107 0.51013318 1.42418166 
TBC1D13 -0.1503596 0.50940128 1.42345933 
ENSG00000274961 -0.1259208 0.5087276 1.42279479 
RNU4-40P -0.4465834 0.5087088 1.42277625 
OSGEP -0.3183966 0.50828067 1.4223541 
HS3ST3B1 -0.1774161 0.50574946 1.41986076 
EXD3 -0.2220811 0.50432839 1.41846288 
FAM214A -0.2856373 0.50393682 1.41807793 
POLL -0.3200469 0.50352752 1.41767567 
NKX3-1 -0.2436954 0.50233225 1.41650162 
YIF1B -0.3984205 0.50216046 1.41633296 
AC100835.2 -0.3656302 0.50215371 1.41632633 
AL627309.7 -0.2979935 0.50031727 1.4145246 
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TOE1 -0.1681936 0.49996678 1.41418099 
QTRT2 -0.3482938 0.49968486 1.41390468 
LRCH1 0.08718628 0.49967179 1.41389187 
APEX2 -0.4903039 0.49959658 1.41381816 
CACNA2D3 -0.1699026 0.49955912 1.41378146 
ARHGEF19 -0.3029106 0.49794048 1.41219614 
OGDH -0.3240059 0.49768512 1.4119462 
ENGASE -0.4373334 0.49751757 1.41178223 
TRERF1 -0.2807537 0.49732753 1.41159627 
ZDHHC24 -0.1078827 0.49728092 1.41155067 
AL135818.1 -0.2339124 0.49604442 1.41034139 
NDUFS4 -0.0698791 0.49510358 1.40942195 
TMEM80 -0.1715758 0.49503705 1.40935695 
GLT8D1 0.08966936 0.49501254 1.409333 
FBXO31 -0.0828242 0.49461207 1.40894185 
THOC5 -0.1389121 0.49372199 1.40807286 
DOT1L -0.4702729 0.49233873 1.40672345 
AC007969.1 -0.2587203 0.49129732 1.40570837 
ADARB1 -0.3067947 0.49080789 1.40523156 
CCDC124 -0.1858478 0.48893116 1.40340476 
FOLR3 -0.286569 0.48882891 1.4033053 
FHL1 -0.3186283 0.488471 1.4029572 
AC079922.2 -0.0833325 0.4884342 1.40292142 
PRKRIP1 -0.2357345 0.48819643 1.40269022 
IGHG4 -0.1369804 0.48808 1.40257702 
GUCY1A3 -0.3265557 0.48772985 1.40223666 
AC022167.3 -0.5337414 0.48678243 1.4013161 
BRAP -0.1550853 0.48677338 1.40130731 
PDCD2L -0.2535678 0.48632986 1.40087658 
TSC22D2 -0.1033341 0.48517714 1.39975772 
AP003170.4 -0.198984 0.48415201 1.39876346 
MFSD3 -0.1529965 0.48350666 1.3981379 
TBCE -0.2358556 0.48346291 1.3980955 
AHDC1 -0.2315792 0.48264627 1.39730433 
FLCN -0.1408546 0.4825262 1.39718804 
ATP6V0A1 -0.1757019 0.4824965 1.39715928 
PHC1 0.11513416 0.48212184 1.39679649 
GSK3A -0.1962269 0.48189389 1.39657581 
TRAPPC9 0.00443283 0.48003436 1.39477689 
CABLES2 -0.2571972 0.47937134 1.39413604 
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IL21R -0.2147398 0.47909135 1.3938655 
AC132008.2 -0.2238712 0.47851933 1.39331294 
CD82 -0.1779405 0.47760695 1.39243207 
BMX -0.0289746 0.47637353 1.39124214 
SLC38A5 -0.1811634 0.4754105 1.39031376 
HNRNPAB -0.1096536 0.47511875 1.39003263 
EEF1DP7 -0.2218548 0.47487196 1.38979487 
IFRD2 -0.4114312 0.47458403 1.38951753 
NTNG2 -0.2807018 0.47420376 1.38915132 
GPR68 -0.2247503 0.47372432 1.38868975 
FBXO25 -0.1921096 0.4734976 1.38847153 
PMEPA1 -0.3472359 0.47323352 1.38821741 
KPNA1 -0.1520799 0.4721168 1.38714326 
PRR5 -0.3205043 0.47181225 1.38685047 
ZNF585A -0.2527989 0.47162179 1.3866674 
BEX4 -0.2424373 0.47131623 1.38637374 
CUEDC1 0.02948843 0.47118408 1.38624675 
TMEM186 -0.5360925 0.47075986 1.38583919 
ANKRD9 -0.0198612 0.47054878 1.38563644 
LONRF1 -0.2163587 0.47014477 1.38524847 
GHRLOS -0.3892258 0.47011801 1.38522277 
MSANTD2 -0.4785298 0.4686362 1.38380073 
MOSPD1 -0.2132502 0.46830622 1.38348425 
RBM38 -0.2544374 0.46750068 1.38271199 
TOP2A -0.0373594 0.46741854 1.38263327 
TRPT1 -0.2924127 0.46447052 1.37981086 
ABAT -0.2883687 0.46288555 1.37829581 
MBOAT7 -0.1966464 0.46241724 1.37784848 
PRDX2 -0.3478633 0.46239217 1.37782453 
AL353625.1 -0.3614803 0.46214629 1.37758973 
NBPF12 -0.089666 0.45952885 1.37509267 
YARS -0.1730098 0.45902501 1.37461252 
RN7SL130P -0.0271253 0.45889858 1.37449206 
CAMKK1 -0.370001 0.45880781 1.37440559 
AC024075.2 -0.3693556 0.45876863 1.37436827 
DGAT2 -0.0830078 0.45862504 1.37423148 
SOWAHD -0.3168653 0.45831912 1.37394012 
JUN -0.1116049 0.45805131 1.37368509 
TSPAN17 -0.1328349 0.45744195 1.373105 
P2RX5 -0.1109969 0.45692097 1.37260924 
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AP000919.1 0.1505438 0.45647667 1.37218659 
TAF12 -0.1191498 0.45452372 1.37033034 
MAP1LC3B2 -0.259206 0.45420839 1.37003086 
MAN1B1 -0.2013445 0.45305375 1.36893482 
NIPSNAP1 -0.0921137 0.45268809 1.3685879 
NKAPP1 -0.3594402 0.45246307 1.36837445 
CLN8 -0.4665033 0.45212342 1.36805233 
CPEB3 -0.1146493 0.45150529 1.36746631 
EPHB1 -0.0828387 0.45024485 1.36627212 
HPGD -0.228964 0.44967158 1.36572932 
RCC1 -0.3098555 0.44956347 1.36562698 
SPSB2 0.14370278 0.44853312 1.36465202 
SENP3 -0.1538807 0.44837826 1.36450554 
SPACA6 0.22774673 0.44798515 1.3641338 
MEMO1 -0.2066501 0.44765464 1.36382132 
IGHGP 0.02551773 0.44677492 1.36298995 
A2M-AS1 -0.3802431 0.44631815 1.36255848 
GAB1 -0.4423975 0.44631704 1.36255744 
PTOV1 -0.1514213 0.44596372 1.36222378 
TAGLN -0.3893765 0.44523638 1.36153718 
PCNX3 -0.3306968 0.44492871 1.36124685 
BOP1 0.04417632 0.4446433 1.36097758 
GRK3 -0.1023915 0.44408634 1.36045227 
ALG6 -0.227763 0.44370986 1.36009729 
AL162578.1 -0.2598738 0.44251453 1.35897087 
IFT122 -0.4883499 0.44175572 1.35825629 
LINC00174 -0.3508658 0.44149608 1.35801186 
COPG1 0.03646722 0.43950329 1.35613734 
DGAT1 -0.1366957 0.43929915 1.35594546 
SPTAN1 -0.3278315 0.43851773 1.35521123 
MEGF6 -0.3007511 0.43841662 1.35511625 
ETV3 -0.5106206 0.43779727 1.35453463 
LINC00649 -0.1398142 0.43769692 1.3544404 
GEMIN8 -0.5218342 0.43687985 1.35367354 
SIRT7 -0.2666454 0.43672136 1.35352483 
AMT -0.3838838 0.43661135 1.35342163 
NAB2 -0.0796287 0.43644874 1.35326909 
P2RX1 -0.2071179 0.43636963 1.35319488 
APEH -0.0977164 0.43633416 1.35316162 
PLEKHM1 -0.2907388 0.43549706 1.3523767 
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RN7SL368P -0.1262462 0.43547659 1.3523575 
GAS2L1 -0.2637717 0.43400713 1.35098076 
HDAC8 -0.0741331 0.43388649 1.3508678 
RAP1GAP2 -0.1866019 0.43349058 1.35049713 
AKIRIN2 -0.1080695 0.43280411 1.34985469 
TMEM40 -0.117485 0.43276362 1.34981681 
ACOT11 -0.0608947 0.43182095 1.34893511 
GTF2H2B -0.0929866 0.4317098 1.34883119 
E2F5 -0.2430937 0.43170803 1.34882953 
SFI1 -0.3192002 0.43084812 1.34802581 
AC099811.5 -0.1168342 0.43032094 1.34753332 
GGCX -0.4969922 0.4303059 1.34751926 
C8orf58 0.08370768 0.4302883 1.34750283 
RNF5 -0.1441914 0.43004229 1.34727307 
NUBP1 -0.035427 0.429934 1.34717194 
SNRNP40 -0.3504302 0.42992206 1.3471608 
Z99129.4 -0.3344965 0.4292774 1.34655896 
AC003072.1 -0.3352077 0.42884183 1.34615248 
TCIRG1 -0.0642302 0.4281949 1.34554897 
FLNB -0.3492828 0.42812348 1.34548237 
KIF3C -0.3230062 0.42784945 1.34522682 
COX10-AS1 -0.2789203 0.42753199 1.34493084 
ARL13B -0.1146617 0.42739219 1.34480052 
NECTIN1 -0.1075764 0.42724789 1.34466602 
UBR5-AS1 0.0999111 0.42672161 1.34417559 
ERVK13-1 -0.2165189 0.42625026 1.3437365 
ATRN -0.1435705 0.42575785 1.34327794 
CCM2 -0.2290329 0.42562194 1.34315141 
ARAP3 -0.2830255 0.42561085 1.34314108 
SCAMP3 -0.1023459 0.42557279 1.34310565 
KIF27 0.13453808 0.42277333 1.34050196 
GTPBP1 -0.0262024 0.42248349 1.34023268 
ZNF362 -0.0313056 0.42247543 1.34022519 
SH3GL1 -0.0626953 0.42215311 1.3399258 
MRPL2 -0.397059 0.42211802 1.33989321 
ACP1 -0.0921607 0.42198409 1.33976883 
AC079331.2 0.00387469 0.42192171 1.3397109 
TLE3 -0.196971 0.42139558 1.33922241 
PANX2 -0.0986921 0.42069678 1.33857389 
TFRC -0.190036 0.4203619 1.33826321 
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TRIB1 -0.482512 0.42016769 1.33808308 
GSKIP -0.2332573 0.42012382 1.33804239 
ATG9B -0.2008824 0.42012331 1.33804191 
RN7SL600P -0.1542351 0.41950536 1.33746891 
GOLGA2P5 -0.1245028 0.41934277 1.33731819 
ZNF230 0.00410286 0.41902239 1.33702124 
AC119428.2 -0.0115124 0.41893714 1.33694224 
USP36 -0.3533773 0.41891543 1.33692213 
VNN1 -0.4433843 0.41885153 1.33686291 
NSUN5P1 -0.0155447 0.41779035 1.33587993 
AATF -0.1552241 0.41745385 1.33556839 
SNHG15 -0.3664954 0.41742161 1.33553854 
AC009404.1 -0.0083607 0.41625987 1.33446353 
AF131215.4 -0.0919612 0.4161656 1.33437632 
MPIG6B -0.2921812 0.41606634 1.33428453 
PLEK2 -0.1803954 0.41435279 1.33270068 
F5 -0.1728106 0.41396811 1.33234538 
ZDHHC14 -0.021213 0.41354824 1.33195768 
KCNH2 -0.2532273 0.41348993 1.33190385 
RNF169 -0.2810418 0.41314835 1.33158853 
DGCR6L -0.1759298 0.4131157 1.33155839 
CLDN5 -0.4214938 0.41284426 1.33130789 
NPRL2 -0.0714837 0.41161084 1.33017018 
STAM 0.03744119 0.41107462 1.32967588 
UBA1 0.01328011 0.41071883 1.32934801 
MTMR4 -0.3166795 0.41031603 1.3289769 
RECQL5 -0.1175817 0.41028307 1.32894654 
PPP5C -0.2060544 0.4100413 1.32872385 
PDE6B -0.19342 0.40995218 1.32864178 
DEF8 -0.2503439 0.40980459 1.32850586 
RAB4A -0.154305 0.40910255 1.32785954 
ST20-AS1 -0.1357741 0.40868748 1.32747757 
POFUT1 -0.2827934 0.40863571 1.32742993 
ZFYVE16 -0.2324554 0.40833703 1.32715514 
SMUG1 -0.0029297 0.40798151 1.32682813 
RHOB -0.1486932 0.40752624 1.3264095 
NRM -0.2198614 0.40733246 1.32623134 
AC008850.1 -0.4328104 0.4073214 1.32622118 
ATP6V1E2 -0.3530385 0.40712443 1.32604012 
CBR3-AS1 -0.1458184 0.40700287 1.3259284 
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NUP37 -0.3089221 0.4069239 1.32585582 
AC135050.6 -0.334056 0.40659384 1.32555252 
AC103703.1 -0.2508415 0.40623439 1.3252223 
BATF 0.00446394 0.40587711 1.32489416 
ZNF568 -0.1159454 0.40532226 1.32438471 
DMAP1 -0.4210306 0.40528373 1.32434934 
ADHFE1 -0.2562397 0.40482288 1.32392636 
RASGRP1 -0.1835697 0.40455708 1.32368246 
TM2D2 0.19580425 0.40420713 1.32336143 
MRM3 -0.2809332 0.40412192 1.32328326 
SNORA81 -0.1010323 0.40350221 1.32271497 
OAT -0.2180063 0.40301014 1.3222639 
TNNT1 -0.3182025 0.40299394 1.32224905 
NF1 -0.1331046 0.40293887 1.32219858 
ZCWPW1 -0.1291002 0.40204687 1.32138134 
HADHB -0.1756553 0.40129253 1.32069061 
KRT23 -0.1062494 0.40124104 1.32064347 
IRS1 -0.0653654 0.40035121 1.31982917 
GYPB -0.1731154 0.40011663 1.31961459 
SH2B1 0.03058466 0.40001086 1.31951785 
NQO2 -0.1007105 0.39960337 1.3191452 
SH2D1B -0.3825377 0.39857813 1.31820809 
PDCD6IPP2 -0.1401386 0.39822719 1.31788748 
TGS1 -0.0218344 0.39822294 1.31788359 
LSP1 -0.2148102 0.39722981 1.31697669 
DUSP16 -0.344975 0.39704258 1.31680579 
UBE2M -0.0236636 0.39673603 1.31652601 
DEFA3 -0.4843099 0.3965464 1.31635298 
SLC9B2 -0.2060556 0.39643524 1.31625156 
Y_RNA -0.1546488 0.39603163 1.31588338 
MTCO1P11 -0.2490509 0.39593286 1.31579329 
CRADD -0.2666571 0.39565628 1.31554106 
AL162274.2 -0.3678429 0.39547715 1.31537773 
MAP3K6 -0.1368724 0.39513536 1.31506614 
KPNA5 0.04957496 0.39497866 1.31492331 
CYB5R1 -0.0261975 0.39474512 1.31471047 
TBL3 -0.0175065 0.39426763 1.31427542 
AL135999.1 -0.1581626 0.39420075 1.31421448 
AC092620.2 -0.2730135 0.39357875 1.313648 
PTCD1 -0.4666319 0.39357555 1.31364508 
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KIAA1324 -0.115381 0.39352383 1.313598 
GP6 -0.3413907 0.39324056 1.3133401 
SOCS4 0.17807252 0.3930848 1.31319831 
CUEDC2 -0.0168815 0.39278227 1.31292297 
GCNT1P3 -0.0618248 0.39217885 1.31237394 
DRAM1 -0.3322266 0.39171332 1.31195053 
CHI3L2 -0.2694522 0.39162479 1.31187002 
POLD2 -0.6063309 0.391504 1.31176019 
SAC3D1 -0.1186426 0.39142442 1.31168784 
TRPM6 -0.0385792 0.39127864 1.3115553 
MIS12 -0.1580441 0.39127826 1.31155495 
TMEM45B -0.3211783 0.39110701 1.31139928 
NRGN -0.2929701 0.3907631 1.31108671 
TEX2 -0.269787 0.39037677 1.31073567 
PHB -0.2742423 0.39015115 1.3105307 
UNC45A -0.1069037 0.39004892 1.31043784 
FAM45A -0.2949867 0.38996464 1.31036129 
CTDP1 -0.1357414 0.38972825 1.3101466 
ZNF573 -0.2927845 0.38946218 1.30990499 
HIST2H2BE -0.1524721 0.38923497 1.30969871 
AL450384.2 -0.3930081 0.38880193 1.30930566 
LINC00173 0.0755757 0.38870323 1.30921608 
AIM2 -0.0901725 0.38863344 1.30915275 
AVEN -0.1518255 0.3884988 1.30903058 
DNAJA4 -0.0476329 0.38848298 1.30901623 
BRF2 -0.1187187 0.38770422 1.30830982 
SLC16A10 -0.0609458 0.38613693 1.30688929 
HIST1H3H -0.3501192 0.38574643 1.3065356 
BLOC1S3 -0.3423568 0.38448355 1.30539241 
RHBDD3 -0.0683995 0.38387115 1.3048384 
AC132938.5 -0.1306595 0.38358678 1.30458124 
AC093010.2 -0.0997504 0.38344867 1.30445635 
ARID5A -0.4668407 0.38295062 1.3040061 
GEMIN7 0.11219303 0.38291079 1.3039701 
NOL10 0.18742876 0.38282172 1.30388959 
RBM47 -0.1714522 0.3824509 1.3035545 
TUBGCP6 -0.2708615 0.38231107 1.30342816 
NT5M -0.4010784 0.38203407 1.30317793 
LINC01506 0.08258465 0.38181691 1.30298178 
FER -0.2987946 0.38161693 1.30280118 
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KCNE1 0.12806852 0.38143265 1.30263478 
GAL3ST4 -0.2804141 0.38105708 1.30229571 
FAM173A -0.0895083 0.38102031 1.30226252 
FAM50A -0.256601 0.38094476 1.30219432 
NEMP2 -0.2226338 0.38082985 1.30209061 
SCAF1 -0.2999622 0.38067499 1.30195085 
RAB11FIP4 -0.1860819 0.38032124 1.30163166 
AC010894.5 -0.1023152 0.38021874 1.30153918 
LRRC61 -0.0883192 0.37886425 1.30031778 
GAMT -0.016461 0.37878902 1.30024998 
TOX4P1 0.04710268 0.37863191 1.30010839 
TRMT61A 0.01055551 0.37849884 1.29998848 
RABGEF1 -0.1764644 0.37841624 1.29991405 
NUP133 -0.2315316 0.37731891 1.2989257 
IL2RA -0.1610351 0.37721016 1.29882779 
ALOX5 -0.1150462 0.37658682 1.29826673 
TIMM50 -0.1399033 0.37658378 1.298264 
ZFYVE1 -0.1736327 0.37651868 1.29820542 
LUCAT1 -0.2386506 0.37626211 1.29797456 
PCK2 -0.1444592 0.37620306 1.29792143 
AC242376.2 -0.0294897 0.3757574 1.29752056 
ANAPC7 -0.037771 0.37447155 1.29636461 
AP2A1 -0.327667 0.37356591 1.29555109 
NCAM1 -0.1767601 0.37292372 1.29497453 
GTPBP2 -0.1488745 0.37230629 1.29442044 
ZER1 -0.2004651 0.37209425 1.29423021 
TPM2 0.09615399 0.37173228 1.29390553 
AC007038.2 -0.1767713 0.37163163 1.29381526 
CACNB3 -0.1343614 0.3714787 1.29367812 
ABHD5 -0.1891572 0.37136211 1.29357357 
NR1D2 -0.1528977 0.3712742 1.29349475 
TMEM69 -0.0751871 0.37110839 1.2933461 
LINC00959 -0.2013845 0.37076281 1.29303633 
IP6K1 -0.1362551 0.36958297 1.29197931 
WASH2P -0.2417434 0.3693385 1.2917604 
EFTUD2 -0.1088806 0.36900176 1.29145893 
DUSP10 -0.2364224 0.36850897 1.29101787 
HAPLN3 0.07273678 0.36812054 1.29067033 
SRPK1 -0.0051964 0.36753651 1.29014794 
HIST1H2AE -0.2554516 0.36713528 1.28978919 
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HGSNAT -0.1074215 0.36628993 1.28903366 
SYNGR1 -0.1489139 0.36510134 1.2879721 
MRM1 -0.1978006 0.36504826 1.28792471 
RAB11FIP2 -0.1072883 0.3637445 1.28676135 
CDC14B -0.1863541 0.36368706 1.28671011 
TRMT2A 0.02654285 0.36360388 1.28663593 
AL139246.5 0.10072249 0.36319737 1.28627344 
SLC25A11 -0.0892464 0.36316118 1.28624118 
ICAM4 -0.0960881 0.36291273 1.28601969 
CLU -0.1869963 0.36288364 1.28599376 
FKBP14 -0.3347579 0.36246299 1.28561885 
STK39 -0.0303229 0.36185544 1.28507756 
MASTL -0.1825676 0.3617723 1.28500351 
LMNA -0.1437981 0.3617544 1.28498756 
MTHFSD 0.12732865 0.36172047 1.28495735 
AP000350.6 -0.1011546 0.36170209 1.28494098 
CAMK2D -0.2782453 0.36152056 1.2847793 
C3AR1 0.01173705 0.36125465 1.28454253 
PDZD4 -0.2187484 0.3611508 1.28445006 
CD27-AS1 -0.1493033 0.36086491 1.28419555 
MMP9 -0.2474186 0.36050062 1.28387133 
ABCG1 -0.2410365 0.35975338 1.28320653 
NLRP12 -0.0387351 0.35962308 1.28309064 
ARL2 -0.3653601 0.35960446 1.28307407 
C22orf39 -0.3427197 0.35955845 1.28303316 
MAF -0.2196775 0.35949691 1.28297843 
SIAH1 -0.0067269 0.35926317 1.28277058 
TSPAN18 0.05109312 0.35885408 1.28240689 
NOA1 -0.0220366 0.35884758 1.28240111 
PXK -0.2074391 0.35874814 1.28231272 
PPP1R12C -0.0761258 0.35862815 1.28220607 
SCAMP4 -0.2049999 0.35799909 1.28164712 
SCN1B -0.4334039 0.35785494 1.28151907 
SMOX -0.2203589 0.35762634 1.28131602 
UBIAD1 -0.2607539 0.35757871 1.28127372 
FCHO1 -0.1166249 0.35718705 1.28092592 
KCTD9 -0.3796829 0.3571709 1.28091159 
KIAA0232 -0.2020164 0.35685597 1.280632 
CST7 -0.2958905 0.35644731 1.2802693 
PAXBP1-AS1 -0.12634 0.356427 1.28025128 
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XPR1 -0.5246787 0.35631359 1.28015065 
SLC37A3 0.00688956 0.35529016 1.27924284 
DENND5A -0.2532989 0.35493384 1.27892693 
DHX35 -0.325838 0.35431297 1.27837666 
GCN1 -0.4649605 0.35428893 1.27835535 
MRPS30 -0.356943 0.35370745 1.27784022 
NBPF11 -0.0219041 0.35360322 1.2777479 
UQCC3 -0.2688658 0.35298749 1.27720268 
LZTR1 -0.2687327 0.35290428 1.27712902 
USPL1 0.00720297 0.35276192 1.277003 
PPP1R21 0.1162695 0.35260056 1.27686019 
OGFOD1 -0.0854064 0.35242412 1.27670404 
DPY19L4 -0.2303069 0.35209864 1.27641603 
PTGIR -0.0823818 0.35175539 1.27611239 
PITRM1 -0.2694549 0.35174768 1.27610556 
UBE2Q2P1 -0.2642683 0.35163267 1.27600384 
NTAN1 0.01519603 0.35155881 1.27593852 
NDUFV1 -0.0528541 0.35145746 1.27584889 
TPM1 -0.1961086 0.35142394 1.27581924 
MAST3 -0.0838027 0.35119823 1.27561966 
SLC25A43 -0.4066433 0.35116123 1.27558694 
COMTD1 -0.4304424 0.35092927 1.27538187 
USP46 0.02646187 0.35088545 1.27534313 
RNU6-892P -0.0096946 0.35086646 1.27532634 
NCOR2 -0.0730915 0.3506475 1.2751328 
PIGP -0.5030071 0.35037043 1.27488793 
JAKMIP2 -0.4884988 0.35000576 1.27456572 
TSPAN33 -0.2383935 0.34979065 1.27437569 
CTDSPL2 -0.2507573 0.3497751 1.27436196 
GOLGA2 -0.2303052 0.34964867 1.27425028 
MCEE -0.0514035 0.34923539 1.2738853 
RNU6-611P -0.1827913 0.34855826 1.27328755 
AC026401.2 -0.1581531 0.34808769 1.2728723 
DDHD2 -0.2179965 0.34798809 1.27278442 
LINC02397 0.07282417 0.34770621 1.27253577 
RHOT1 -0.1144671 0.34726817 1.27214945 
ZMIZ2 0.00330417 0.3472367 1.2721217 
FAAP100 -0.341996 0.34689901 1.27182397 
TMED5 -0.2729483 0.34658986 1.27155147 
PYURF -0.2860079 0.34589043 1.27093516 
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NGLY1 0.00386638 0.34578178 1.27083945 
HRK -0.1158205 0.34570173 1.27076894 
ABCA2 -0.5626393 0.3454925 1.27058466 
MCM7 0.0713182 0.34544437 1.27054227 
ASRGL1 -0.1085534 0.34519991 1.270327 
PNKP -0.2141952 0.344968 1.27012281 
FAM160B1 6.28E-04 0.34480149 1.26997623 
THEMIS -0.1925606 0.34438417 1.26960892 
MIATNB -0.2633099 0.3442277 1.26947123 
TTI2 -0.0515892 0.34421123 1.26945674 
TSR3 -0.1793451 0.34378497 1.26908172 
FAM89B -0.2375985 0.34318913 1.26855769 
HM13-IT1 -0.137176 0.34315049 1.26852371 
AC008610.1 -0.1850678 0.34314449 1.26851844 
ADSL 0.0672639 0.34313773 1.2685125 
AP2A2 -0.1321578 0.34309572 1.26847556 
NDUFA8 0.00699929 0.3430715 1.26845426 
AQP10 -0.2356023 0.34266739 1.26809901 
ZNF692 -0.1787109 0.34237781 1.2678445 
LRRC47 -0.0536163 0.34228893 1.26776639 
DNAJC11 -0.1280771 0.34215285 1.26764682 
TNFRSF18 -0.1902915 0.34208725 1.26758918 
FOXP1-IT1 -0.1424313 0.3420111 1.26752228 
ZNF581 -0.1364686 0.34197331 1.26748907 
RFX1 -0.1308228 0.34190961 1.26743311 
PPP2R2D -0.0268387 0.34183493 1.26736751 
CREBBP -0.0726447 0.34139672 1.26698261 
CHST13 -0.0085111 0.34109649 1.26671898 
COQ8B -0.2033539 0.34065633 1.26633256 
FCER2 -0.4883237 0.34058055 1.26626605 
POLDIP3 -0.1251261 0.34054115 1.26623146 
FAM174B -0.0420986 0.3395786 1.26538693 
NEURL1 -0.240091 0.33938682 1.26521873 
CCS -0.1666029 0.33909618 1.26496387 
C5orf63 -0.2815439 0.33907111 1.26494189 
OXSR1 0.07981769 0.33901395 1.26489178 
CCDC170 0.22752851 0.33876502 1.26467354 
ATAD3A -0.2874766 0.33841721 1.26436869 
TRAV17 -0.0362644 0.33812417 1.2641119 
HAL -0.2610438 0.33802306 1.2640233 



 87 

XK -0.1231095 0.33769934 1.26373971 
GOLIM4 -0.2023103 0.3375674 1.26362414 
GPHN -0.1609478 0.33746355 1.26353318 
TOR2A -0.2046227 0.33722853 1.26332736 
TSTA3 -0.0929294 0.33694281 1.2630772 
MTIF2 0.03131453 0.33691832 1.26305575 
PACS2 -0.3720201 0.33677725 1.26293225 
PAXIP1-AS1 -0.1086272 0.33651203 1.2627001 
TCAF2 0.0053998 0.33627418 1.26249195 
LRRC8A -0.1031996 0.33616142 1.26239327 
IGLC2 -0.1016147 0.33606158 1.26230591 
GPS1 0.04423065 0.33573965 1.26202427 
H6PD 0.07798604 0.33573644 1.26202146 
CERS5 0.07758708 0.33546026 1.26177989 
SETD6 -0.1961313 0.3352273 1.26157616 
AC012368.1 -0.0099041 0.33508482 1.26145157 
PEX16 -0.2317357 0.33462377 1.26104851 
MTMR11 -0.1773196 0.33459387 1.26102237 
ITSN1 -0.317525 0.33445269 1.26089897 
QSOX2 -0.068606 0.33418009 1.26066075 
CCDC191 -0.096852 0.33389974 1.2604158 
B3GALT4 -0.2987378 0.33361922 1.26017074 
BSG -0.2499639 0.33314362 1.25975538 
DAPK2 -0.1263049 0.33281908 1.25947203 
LINC02035 -0.1341412 0.33270825 1.25937528 
AC013264.1 -3.10E-04 0.33259344 1.25927506 
THAP7 -0.5411695 0.33255296 1.25923972 
DSTYK -0.0746474 0.33253574 1.25922469 
PTPN11 -0.147956 0.33225247 1.25897748 
EXO5 -0.0155847 0.33204793 1.258799 
FAAP20 0.08962832 0.33201255 1.25876812 
SRM -0.0564346 0.33186163 1.25863645 
LYRM9 -0.1570537 0.33161539 1.25842164 
RN7SL200P -0.2883969 0.33160813 1.25841531 
JPT2 -0.2128382 0.33127703 1.25812653 
GGACT -0.2723953 0.33124098 1.2580951 
IGHMBP2 -0.5074483 0.33093447 1.25782784 
EPS15L1 -0.0512358 0.33062853 1.25756113 
CIPC -0.0556217 0.33027345 1.25725166 
FRMD4A -0.3380957 0.32996374 1.25698179 
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SLC10A7 -0.2092143 0.32993282 1.25695485 
EIF5A2 -0.0715938 0.32989818 1.25692466 
LSM10 -0.1298749 0.32919218 1.25630973 
CDC42EP4 -0.208618 0.3289538 1.25610216 
PI3 -0.2027383 0.32840811 1.25562713 
PSMA6 -0.0613662 0.32816573 1.2554162 
LINC01252 -0.1798688 0.32794604 1.25522504 
DBR1 -0.3186823 0.3278146 1.25511069 
NCAPH2 0.05184511 0.32774383 1.25504912 
ISOC1 -0.0603541 0.3277371 1.25504326 
AC125437.2 0.0070033 0.32726001 1.2546283 
PLCB1 -0.0591847 0.32713681 1.25452116 
RAB33B -0.0548638 0.32699806 1.25440052 
FANCE 0.00841767 0.32682409 1.25424926 
DLGAP4 -0.1698516 0.32678016 1.25421107 
TRPS1 -0.0097543 0.32659014 1.25404589 
EMC8 -0.1626601 0.32559596 1.25318201 
CRISPLD2 -0.1246986 0.32547116 1.25307361 
CORO1A -0.2407758 0.32495604 1.25262627 
MAN1A1 -0.1448974 0.32478246 1.25247556 
FAF1 -0.1774553 0.32447912 1.25221225 
BCL2L1 -0.1199657 0.32439646 1.25214051 
MESDC1 -0.2209351 0.32425018 1.25201356 
AC012645.1 -0.1056793 0.32413532 1.25191387 
DLG1 -0.1207002 0.32395702 1.25175917 
GCDH -0.0749604 0.32373717 1.25156842 
DNAJB2 -0.1670054 0.32365591 1.25149793 
MED8 -0.2580009 0.32333196 1.25121695 
PDXK -0.2839079 0.32327255 1.25116542 
Y_RNA -0.1721769 0.32302868 1.25095395 
POP7 -0.2160421 0.32294642 1.25088263 
KIFAP3 -0.1295218 0.32290394 1.25084579 
C14orf80 -0.3196419 0.32288641 1.25083059 
ATP6AP1 -0.0871403 0.32285501 1.25080337 
FECH -0.1933723 0.32281496 1.25076865 
GALNS -0.023196 0.32248106 1.2504792 
CCDC94 -0.2674219 0.32240327 1.25041178 
SDSL -0.2058582 0.32239122 1.25040133 
ATXN10 -0.0255319 0.32187789 1.24995651 
AC022098.1 0.00246826 0.32187218 1.24995156 
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AC104695.2 -0.0085975 0.32143926 1.24957653 
VAMP2 -0.0680806 0.32126975 1.24942972 
RHOBTB3 -0.1377878 0.32063752 1.2488823 
AP001189.1 -0.1274492 0.32053619 1.24879459 
ENO2 -0.0189556 0.32041354 1.24868843 
ZFHX2-AS1 -0.3346091 0.3203486 1.24863222 
ALKBH2 -0.2222829 0.32012754 1.24844091 
RASGEF1A -0.3578324 0.3200886 1.24840721 
C3orf18 -0.1801665 0.31999881 1.24832952 
LAMTOR2 -0.4770045 0.31939951 1.24781107 
UTP14A -0.0015565 0.31933727 1.24775723 
ZNF620 -0.0295085 0.31918014 1.24762135 
IRF2BP1 -0.1088627 0.31860943 1.2471279 
TJP2 -0.1354053 0.31832774 1.24688442 
AC231981.1 -0.0682355 0.31792076 1.24653273 
FUK -0.4821387 0.31786431 1.24648395 
SMC2 -0.1235512 0.31774133 1.24637771 
GTF2A1 0.03247355 0.31762405 1.24627638 
GID4 -0.1143876 0.31744449 1.24612128 
PHF2 -0.136402 0.31724343 1.24594763 
GBF1 -0.0567193 0.31722389 1.24593076 
UPF3A -0.2229811 0.31707988 1.24580639 
AC114490.1 0.26428801 0.31704938 1.24578006 
AC134407.3 -0.2833853 0.31704755 1.24577847 
ZNF576 -0.296571 0.31687306 1.24562781 
AC027279.1 -0.330735 0.31684237 1.24560131 
AAAS -0.2441698 0.31665982 1.24544372 
TNIP2 -0.1147821 0.31657814 1.2453732 
C3orf62 -0.1763407 0.31644914 1.24526185 
BLOC1S5 -0.3545319 0.31635164 1.2451777 
CASK -0.0034511 0.31626245 1.24510072 
SMAD1 -0.1199228 0.3160432 1.24491152 
DPP9 -0.2351157 0.3160175 1.24488933 
TNFAIP1 -0.3301743 0.31589708 1.24478543 
SVIL -0.241206 0.31586393 1.24475683 
CD5 -0.1247826 0.31535981 1.24432195 
SHKBP1 -0.0834903 0.31500699 1.24401768 
ABHD2 -0.1337339 0.31499717 1.24400922 
EFNB1 -0.0490435 0.31484019 1.24387386 
STYXL1 -0.0235376 0.31477783 1.2438201 
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ADGRG3 -0.2023849 0.31449242 1.24357405 
LRRC45 -0.0546942 0.31439427 1.24348945 
WWOX -0.0079266 0.31423863 1.24335531 
AC009831.1 -0.1243312 0.31407964 1.24321829 
CSPP1 -0.1134872 0.3139432 1.24310072 
AL031666.3 -0.1185152 0.31389307 1.24305753 
USP31 -0.1599853 0.3137621 1.24294469 
CCDC102A -0.0468556 0.31372419 1.24291203 
TIMM9 -0.0130791 0.31369419 1.24288619 
GMPPA -0.2414461 0.31368402 1.24287743 
SMG1P1 -0.1196365 0.31333213 1.24257431 
AMMECR1L -0.4198981 0.31314331 1.24241169 
YIPF2 -0.430961 0.31311609 1.24238825 
OBSCN -0.1188819 0.31290618 1.24220749 
TMEM131 -0.1233567 0.31280585 1.24212111 
PLOD3 -0.0464291 0.31261615 1.24195779 
ORAOV1 -0.2176838 0.31260809 1.24195086 
AC020659.1 -0.3697486 0.31240549 1.24177646 
SLC22A15 -0.4798423 0.31226121 1.24165228 
RFK -0.0989338 0.31189117 1.24133385 
LRRC14 0.1485859 0.31168863 1.24115959 
WDR76 -0.0488663 0.31154991 1.24104025 
SBF2-AS1 -0.32114 0.31152289 1.24101701 
ZNF778 -0.1413268 0.31147971 1.24097987 
UQCRC1 -0.0011126 0.3112434 1.24077662 
HEMGN -0.1823566 0.31124224 1.24077561 
EEPD1 0.08458237 0.31107012 1.2406276 
MITD1 -0.0239727 0.31076231 1.24036293 
ACSS3 -0.3015988 0.3107094 1.24031744 
ABCC3 -0.3766045 0.31059827 1.2402219 
HES1 -0.2215449 0.31056722 1.24019521 
CLSPN -0.1095735 0.31052448 1.24015847 
KIAA1586 -0.1739905 0.31019036 1.23987128 
PRNP 0.13227145 0.31017634 1.23985924 
ALG1 -0.4465646 0.31016978 1.2398536 
G6PC3 -0.0638363 0.3101556 1.23984141 
IL1R1 -0.2751903 0.30992441 1.23964274 
AC010997.6 -0.2328812 0.30992411 1.23964249 
TMEM62 -0.2190609 0.30987587 1.23960104 
KIF16B 0.09705766 0.30969678 1.23944717 



 91 

IRF3 -0.26382 0.30941486 1.23920499 
RCBTB1 -0.19339 0.30940522 1.23919671 
CYB561D2 -0.1800421 0.30933745 1.2391385 
ENTPD5 -0.3289712 0.30928045 1.23908954 
NDUFV3 -0.1845102 0.30927282 1.23908299 
PBRM1 -0.1335047 0.30915932 1.23898552 
AMIGO1 -0.1936934 0.30884878 1.23871885 
CEACAM3 -0.0826436 0.30878252 1.23866196 
SORD -0.2161243 0.30823915 1.23819552 
COQ6 -0.1143769 0.30794154 1.23794012 
CDADC1 -0.3158219 0.30788561 1.23789214 
IGHG1 0.1067466 0.30783808 1.23785135 
ZNF598 -0.2698129 0.30768519 1.23772018 
TBXA2R 0.05778465 0.30767267 1.23770944 
NSUN3 -0.150405 0.30735746 1.23743904 
TMEM144 -0.1589699 0.30722428 1.23732482 
ROGDI -0.2198375 0.30707528 1.23719704 
CHMP6 -0.0238969 0.30703503 1.23716252 
PEX10 0.06060047 0.30689801 1.23704503 
RIN3 -0.043614 0.30681053 1.23697002 
P3H1 0.12771283 0.3066742 1.23685314 
TRG-AS1 -0.1451012 0.30662658 1.2368123 
CLYBL -0.0385257 0.30660141 1.23679073 
AC011374.2 -0.2288685 0.30625369 1.23649267 
AP3B1 0.00956355 0.30612114 1.23637907 
GLT1D1 -0.2100043 0.30602398 1.23629581 
RABEPK -0.0802895 0.30587689 1.23616977 
PBXIP1 -0.1037769 0.305641 1.23596767 
RNU4-78P -0.0293195 0.30559031 1.23592424 
ZNF25 -0.021469 0.30557442 1.23591063 
PARP10 -0.1794139 0.30544374 1.23579868 
FARS2 -0.0755768 0.30526278 1.23564369 
AC104451.1 -0.3547065 0.30498962 1.23540975 
CR1 -0.198326 0.30484424 1.23528526 
MINCR -0.1819399 0.3046943 1.23515689 
PAWR 0.03208121 0.30464304 1.235113 
MED25 -0.0518403 0.30448583 1.23497842 
PRRC2A -0.1860768 0.30434466 1.23485758 
AC116366.2 -0.2331478 0.30426917 1.23479297 
KATNAL1 -0.0682081 0.30406514 1.23461835 
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AP000936.3 -0.1743906 0.30386975 1.23445115 
CCDC9 -0.1229655 0.30372904 1.23433076 
XAB2 -0.3362505 0.3036111 1.23422986 
LTF -0.1503608 0.30341683 1.23406367 
CLPP -0.0944364 0.30301077 1.23371638 
AC022211.3 -0.1308846 0.30260652 1.23337073 
MYOF -0.1872366 0.30248789 1.23326932 
CITED4 -0.1018454 0.3023773 1.23317479 
E4F1 -0.181966 0.30227547 1.23308775 
HUWE1 -0.2573305 0.30223689 1.23305478 
FP565260.1 -0.0834707 0.30209297 1.23293177 
AC243829.1 -0.1061701 0.3018919 1.23275995 
TNIP1 -0.172943 0.30179284 1.23267531 
RABAC1 0.05018446 0.30150038 1.23242545 
HEIH -0.1015615 0.3013312 1.23228094 
MROH6 0.10041826 0.30132476 1.23227544 
PPIL2 -0.1538654 0.30112829 1.23210763 
ARHGEF10 0.08924792 0.30110816 1.23209044 
ANKRD39 -0.3552087 0.30101242 1.23200868 
PYCR2 -0.2399175 0.30098171 1.23198245 
RASGRP4 -0.130983 0.3008168 1.23184164 
PAQR3 -0.2954338 0.30080485 1.23183144 
PRRC2B -0.0674767 0.30080063 1.23182784 
HPCAL4 -0.1476291 0.3006408 1.23169137 
CDKAL1 -0.2946752 0.30063667 1.23168784 
FNBP1L -0.0578526 0.3005919 1.23164962 
BRD4 -0.1756417 0.30036673 1.23145741 
ZNF143 0.0125878 0.30016629 1.23128633 
CENPV -0.1809626 0.30011491 1.23124248 
MCF2L 2.49E-04 0.30010412 1.23123327 
PPIF -0.2697225 0.29995384 1.23110502 
PRKCQ-AS1 -0.2620158 0.29993337 1.23108756 
ZNF593 -0.2204915 0.29947887 1.23069978 
DENND6B -0.1828593 0.29873197 1.2300628 
ZFP90 -0.2688965 0.29827562 1.22967377 
CYP1B1-AS1 -0.0599493 0.29811459 1.22953652 
AC007278.1 -0.1978952 0.29799237 1.22943237 
GPR107 -0.1765708 0.29786792 1.22932631 
OGFR -0.1524395 0.29783453 1.22929786 
POLD3 0.27485539 0.29760016 1.22909817 
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ETFB -0.0684461 0.29756233 1.22906595 
NDUFAF5 -0.1163495 0.29751729 1.22902758 
ERMN -0.1975764 0.29737208 1.22890388 
FAM50B -0.052984 0.2971466 1.22871183 
PUSL1 -0.1951457 0.29701464 1.22859945 
C15orf39 -0.0379976 0.2966775 1.22831238 
ZFP41 -0.1650942 0.29632283 1.22801044 
ATP6V1A -0.1063724 0.29611929 1.22783721 
UBALD1 -0.1706281 0.29597374 1.22771334 
RIC1 -0.4554856 0.29582154 1.22758383 
KIAA1147 -0.2080568 0.29570293 1.22748291 
ARHGAP35 -0.1010804 0.29564793 1.22743611 
SIRT6 -0.0815158 0.29545097 1.22726855 
UNC93B1 -0.1282129 0.29538806 1.22721503 
RPL17P50 -0.1160814 0.29530032 1.2271404 
PEX6 -3.63E-04 0.29489209 1.22679321 
AC024293.1 -0.1899447 0.29476936 1.22668885 
HDDC3 -0.2725958 0.29461963 1.22656155 
BFSP1 -0.2916882 0.29432163 1.22630822 
TAF9 -0.2460298 0.29415159 1.22616369 
AC026401.3 -0.2107954 0.29400835 1.22604196 
CCP110 -0.2506538 0.29381881 1.22588089 
RNF168 -0.0400451 0.29363407 1.22572392 
ANAPC16 -0.0561136 0.29340872 1.22553248 
CHMP7 -0.1375007 0.29332155 1.22545843 
CMTM5 -0.0767719 0.29286614 1.22507166 
AL731557.1 -0.2808527 0.29218746 1.22449549 
ARHGAP10 -0.1682932 0.29205427 1.22438245 
TMOD3 -0.0966115 0.29193703 1.22428295 
SSNA1 -0.2444664 0.29189211 1.22424484 
ENOSF1 0.04316675 0.29115555 1.22361997 
ATP5L2 0.12067538 0.2907911 1.22331089 
WDTC1 -0.1086326 0.29053427 1.22309314 
YY1AP1 -0.1545972 0.29032373 1.22291466 
SLC6A16 -0.2798684 0.29013368 1.22275357 
NPLOC4 -0.1942359 0.28946671 1.22218842 
BIN1 -0.0714214 0.2894265 1.22215435 
CDK11B -0.0927066 0.28942576 1.22215372 
KLHL12 -0.1118309 0.28922463 1.22198335 
AC144521.1 -0.2082674 0.28922434 1.22198311 
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CIDECP 0.02207779 0.28855626 1.22141736 
ABTB1 -0.1442131 0.28838268 1.22127041 
CEP85 -0.1439211 0.28825937 1.22116604 
FAM153B -0.0740223 0.28825715 1.22116416 
GTF2E1 -0.0509024 0.28819371 1.22111046 
AC092135.3 0.02491255 0.2881558 1.22107837 
GFM2 -0.0262481 0.28811258 1.22104179 
PEAK1 -0.0382046 0.2880114 1.22095616 
DDX27 -0.1258226 0.28796938 1.2209206 
CYB5R3 -0.0843729 0.28791854 1.22087758 
CEP44 -0.1665431 0.28768336 1.22067857 
TCN2 -0.0299435 0.28764196 1.22064355 
FAM58A -0.0076644 0.28752165 1.22054176 
HACD2 -0.1144913 0.28719739 1.22026746 
ZNF385D -0.0677462 0.28699312 1.2200947 
CLK3 -0.1820735 0.28668389 1.2198332 
KDELC2 -0.0672473 0.28634067 1.21954304 
MNAT1 0.00605085 0.28632206 1.2195273 
METTL8 -0.3259143 0.28626284 1.21947725 
RPH3AL -0.1098528 0.28610286 1.21934202 
ACAD9 -0.0115425 0.28578908 1.21907685 
LINC01002 -0.0133677 0.28570222 1.21900346 
PAK5 -0.0641384 0.28539657 1.21874523 
PNRC2 -0.0925548 0.2852793 1.21864616 
ZNF48 -0.3978339 0.28519482 1.2185748 
VILL -0.2180168 0.28517723 1.21855995 
SH2D2A -0.1920163 0.28486159 1.21829338 
PRKACA -0.112184 0.28471033 1.21816565 
AC245884.12 -0.2540466 0.28468449 1.21814384 
DIXDC1 -0.1050375 0.28445066 1.21794641 
NBPF20 -0.1725419 0.28433056 1.21784502 
MGST3 -0.2450324 0.28397886 1.21754818 
USP11 -0.2644864 0.2839705 1.21754112 
CPA3 -0.2076044 0.28337044 1.21703481 
SULT1A1 -0.1834582 0.28290744 1.2166443 
TIMM10B 0.08889535 0.28274116 1.21650408 
GIMAP5 -0.0020207 0.28273238 1.21649667 
RNU7-181P 0.02187704 0.28270822 1.21647631 
MSS51 -0.0882911 0.28254669 1.21634011 
AC036108.4 -0.0827879 0.28245874 1.21626596 
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NEGR1 -0.1202978 0.28244118 1.21625116 
AC008741.2 -0.0840276 0.28183108 1.21573693 
HOMEZ 0.19146851 0.2817814 1.21569506 
TP53 -0.1408048 0.28166901 1.21560036 
GIGYF2 -0.0712334 0.28160974 1.21555043 
DAP -0.1607768 0.2815139 1.21546968 
CHST7 -0.3446244 0.28146749 1.21543057 
NDE1 -0.144085 0.28127763 1.21527063 
IFT27 -0.1073646 0.28124371 1.21524207 
SMPD4 0.12892783 0.28119568 1.21520161 
IL1R2 -0.2066585 0.28117524 1.21518439 
PARD6B 0.11057666 0.28106498 1.21509152 
AC090152.1 -0.1599694 0.28078763 1.21485795 
ZNF318 -0.2079336 0.28064937 1.21474153 
AL355488.2 -0.2545342 0.28045319 1.21457636 
C19orf47 -0.0175657 0.28020892 1.21437073 
MOB2 -0.0309548 0.27982955 1.21405144 
SNX19 -0.0026173 0.27974889 1.21398356 
MPST -0.1900128 0.27959891 1.21385737 
C14orf132 -0.1198597 0.27953825 1.21380633 
LIPE-AS1 -0.213937 0.27953104 1.21380026 
SMAGP 0.06816113 0.27941384 1.21370167 
TUBA4A -0.0745764 0.27938566 1.21367795 
ARHGEF7 0.0162537 0.27900687 1.21335934 
SUCLG1 -0.1180027 0.27851633 1.21294685 
ZNF512 -0.3006785 0.27843106 1.21287515 
S1PR3 -0.0925765 0.27838013 1.21283234 
IFT172 -0.2085263 0.27823942 1.21271406 
Y_RNA -0.0316106 0.27795937 1.21247867 
R3HDM4 -0.0604069 0.27772315 1.21228016 
TPST1 -0.0182053 0.27694335 1.21162508 
ENO3 -3.48E-04 0.27690354 1.21159165 
GMDS-AS1 -0.1160702 0.27682585 1.21152641 
GUF1 -0.0702768 0.27671434 1.21143277 
SNX9 -0.2775561 0.27636292 1.21113771 
SEC14L1 -0.1126659 0.27630363 1.21108795 
EDEM3 -0.0609334 0.27628749 1.2110744 
DHRS3 -0.0465334 0.27599949 1.21083266 
GMIP -0.0283299 0.27586655 1.21072109 
AC097376.1 -0.3416858 0.27571577 1.21059456 
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NUDT19P5 -0.1526922 0.27570245 1.21058338 
CFAP45 0.04295757 0.27569533 1.2105774 
CECR6 0.11733248 0.27552967 1.21043841 
IGHG3 -0.0391016 0.2744724 1.20955167 
MAP4K2 -0.0784941 0.27422414 1.20934355 
MMP25 -0.0996872 0.27408964 1.2092308 
EIF4G1 -0.1707392 0.27394663 1.20911094 
SRRD -0.2513172 0.27362199 1.2088389 
SETD1A -0.2692021 0.27346571 1.20870796 
TRMT2B -0.2994028 0.27337215 1.20862958 
AC103691.1 -0.0201649 0.27336395 1.20862271 
NCR3 -0.0901079 0.27332127 1.20858695 
ZFP64 -0.0270375 0.27307105 1.20837735 
SAMD3 -0.221599 0.27302761 1.20834097 
LINC01637 -0.12243 0.27293105 1.2082601 
HCAR2 -0.2677148 0.27290488 1.20823818 
SLC16A3 -0.0727072 0.27276107 1.20811775 
WRNIP1 -0.0360616 0.27250046 1.20789953 
TBC1D25 0.16446628 0.27236453 1.20778573 
DTX4 0.0282441 0.27229832 1.2077303 
AP000866.5 0.11797035 0.27196698 1.20745296 
RNF20 0.05482927 0.27196 1.20744711 
THOP1 0.06114692 0.2719262 1.20741882 
HTT 0.00156489 0.27137548 1.20695801 
AC147651.3 -0.2117295 0.2713434 1.20693117 
SUMF1 -0.3409979 0.27120502 1.2068154 
SMIM5 -0.145286 0.27119798 1.20680952 
MLST8 -0.0799666 0.27029882 1.20605761 
NUMBL -0.0447285 0.27022444 1.20599543 
AC109454.2 -0.0554589 0.27014162 1.2059262 
LYNX1 -0.2161286 0.27002992 1.20583283 
DBN1 0.11960091 0.27002025 1.20582475 
AC015883.1 -0.0284182 0.26934093 1.2052571 
PIAS4 0.06556956 0.26926474 1.20519345 
RAB34 -0.113142 0.26901977 1.20498883 
TSGA10 -0.1264672 0.26892025 1.20490571 
ZNF394 -0.1131722 0.26868489 1.20470915 
SETD3 -0.0422596 0.26863148 1.20466456 
C11orf49 -0.2086395 0.26862329 1.20465772 
ZMPSTE24 -0.2015615 0.2681158 1.20423404 
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SAR1B 0.1504018 0.26782921 1.20399484 
PRSS21 -0.2145917 0.26782875 1.20399446 
EXOSC5 -0.2253994 0.26777054 1.20394588 
SLC24A3 -0.1723996 0.26752774 1.20374328 
AC114495.2 -0.01768 0.2675168 1.20373415 
HPS6 -0.0201259 0.26734738 1.2035928 
MAP1LC3A 0.09439463 0.26718358 1.20345615 
EXOC6B 0.0053399 0.26718292 1.2034556 
LINC00694 -0.0031125 0.26695929 1.20326907 
ABCG2 -0.2173632 0.26666931 1.20302724 
FRG1BP 0.0152745 0.26639878 1.20280167 
KIFC2 -0.222687 0.26587301 1.20236341 
ZNF211 0.04948567 0.26571076 1.20222819 
ZNF467 -0.0639577 0.26561663 1.20214976 
RDH11 -0.0998039 0.26546082 1.20201994 
JDP2 -0.2031044 0.26540689 1.201975 
SLC25A1 -0.0990668 0.26539541 1.20196543 
SIGIRR -0.1040322 0.265364 1.20193927 
AP003733.4 -0.2531794 0.26511943 1.20173553 
MARK4 -0.1308958 0.26506214 1.20168781 
ASCL2 -0.4033947 0.26493681 1.20158342 
AC007382.1 -0.079032 0.26460105 1.20130381 
BCL7A -0.0340896 0.26440139 1.20113756 
BAK1 -0.202741 0.26435479 1.20109877 
GID8 -0.1499683 0.26424957 1.20101117 
SLC35A4 -0.1837232 0.26417537 1.2009494 
PCYT2 -0.2329255 0.26399867 1.20080232 
AC009061.2 0.05985855 0.26390521 1.20072453 
SESTD1 -0.1242792 0.26387361 1.20069824 
CLDN15 -0.356609 0.26368044 1.20053747 
QPRT -0.251585 0.26363469 1.20049941 
SLC12A9 0.05406507 0.26358412 1.20045733 
NETO2 -0.1412634 0.26355548 1.2004335 
CLN3 0.06458063 0.26354591 1.20042554 
SMIM3 -0.310394 0.26347828 1.20036926 
PDZD11 0.03139022 0.26346584 1.20035891 
ELP6 -0.2293136 0.26344129 1.20033848 
GSEC -0.0148911 0.26338243 1.20028952 
GTF2E2 0.22027403 -0.322143 0.79988082 
NAE1 -0.0382278 -0.3222062 0.79984581 
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MRPL18 0.04549837 -0.3222329 0.79983099 
SERTAD3 0.20161596 -0.322533 0.79966462 
ZMAT1 0.04189816 -0.3226247 0.79961382 
RAP2C -0.0297137 -0.3231668 0.79931339 
ANKRD13C -0.1309529 -0.3232337 0.79927637 
MGAT2 -0.0503842 -0.323272 0.79925513 
TBC1D4 0.23361093 -0.3232788 0.79925139 
RPL23AP2 0.09715618 -0.3233098 0.79923421 
LDLR 0.12535631 -0.3233906 0.79918944 
ARHGAP6 0.07650212 -0.3236782 0.79903012 
ERCC6 -0.1703002 -0.3240019 0.79885087 
NFYA 0.40394864 -0.3240454 0.79882678 
UBE2E3 0.40182102 -0.3242197 0.79873028 
ZNF703 0.33447169 -0.3244286 0.79861464 
KANSL2 -0.0627506 -0.3244809 0.79858567 
AC005261.2 0.21352484 -0.3245275 0.79855986 
KANSL1 0.19401216 -0.3245589 0.7985425 
ANKHD1-EIF4EBP3 0.27420265 -0.3248218 0.79839701 
ERO1A 0.22386928 -0.3248329 0.79839084 
BPHL 0.15908703 -0.3248464 0.7983834 
RIMKLB 0.25038115 -0.324961 0.79831996 
CEP120 0.30838914 -0.3252014 0.79818694 
SMYD4 0.25161499 -0.32524 0.7981656 
TTC28-AS1 0.06488395 -0.3252541 0.79815778 
SSB 0.17569162 -0.3255755 0.79797998 
NDC1 0.10530092 -0.3256378 0.79794556 
VPS16 0.30597685 -0.3256981 0.79791218 
METTL15 0.18231217 -0.3258669 0.79781883 
GPRIN3 0.40378515 -0.3259727 0.79776034 
MRPS15 0.38019845 -0.3260518 0.79771662 
MBD2 0.20248531 -0.3260558 0.79771437 
ARF6 0.08687857 -0.3261848 0.79764305 
GIMAP6 0.24130203 -0.3262425 0.79761118 
DYNLL1 0.11550213 -0.3263343 0.79756044 
CALU 0.04675371 -0.3263446 0.79755471 
PBX3 0.23983811 -0.3263967 0.79752594 
DIS3 0.23478684 -0.3264877 0.79747562 
PITPNM1 0.09313406 -0.3267334 0.79733981 
RGS9 -0.0164896 -0.3268777 0.79726003 
AKAP7 -0.0643048 -0.3269052 0.79724484 
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MBD1 0.26835355 -0.3269683 0.79720997 
ZNF550 0.21506313 -0.3270245 0.79717892 
LCLAT1 0.10164742 -0.3271042 0.79713493 
OTUD7A 0.17516423 -0.3271316 0.79711978 
AC131212.2 0.15349684 -0.3271382 0.7971161 
DHX32 0.15281711 -0.3272838 0.79703566 
AC135983.2 0.1178253 -0.3272894 0.7970326 
DERL2 0.04263901 -0.3272933 0.79703041 
SPG21 0.3096931 -0.3273019 0.79702569 
YKT6 0.246283 -0.3273872 0.79697853 
LYRM1 0.31176847 -0.3274104 0.79696574 
DDX1 0.21797367 -0.3276816 0.79681594 
TTC27 0.16633805 -0.3277963 0.79675257 
SUGP1 0.20474142 -0.3278434 0.79672656 
H3F3AP4 -0.0960724 -0.3278925 0.79669947 
ATF7 0.17391452 -0.3279315 0.79667793 
CYB5A 0.49197169 -0.3279733 0.79665487 
VPREB3 0.30574567 -0.3280062 0.79663667 
ZNF540 0.26986567 -0.3283027 0.79647294 
TRNAU1AP 0.04368695 -0.328382 0.79642918 
ZNF141 0.34845044 -0.3283984 0.79642014 
LRBA 0.33691423 -0.3284 0.79641923 
PDLIM5 -0.0286238 -0.3284277 0.79640396 
RNF157 0.30463632 -0.328604 0.79630662 
SPPL2A 0.32538195 -0.3287847 0.79620689 
PPP2R2B 0.21078105 -0.328855 0.79616814 
AP001157.1 0.50836693 -0.3288707 0.79615943 
FAM69A 0.06477302 -0.3289919 0.79609255 
PTPRA 0.13453631 -0.3289952 0.79609076 
ZSWIM3 0.3702373 -0.3293938 0.79587082 
TGFA -0.1842213 -0.329408 0.79586299 
KPNA2 0.02621205 -0.3296273 0.79574204 
TRIM62 0.09297827 -0.3298564 0.79561568 
MAP3K1 0.30740989 -0.329857 0.79561537 
EBPL 0.34351738 -0.3304035 0.79531404 
TP53RK 0.16605829 -0.3304067 0.79531227 
TNRC18 0.389333 -0.3305564 0.79522973 
UAP1 0.18026986 -0.3306464 0.79518012 
TAF6 0.39275531 -0.3306833 0.79515981 
PCNT 0.29993868 -0.330712 0.79514396 
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DNAJB11 0.36102459 -0.3307534 0.79512117 
SERTAD1 0.51672999 -0.3308629 0.79506078 
WDR54 0.31719132 -0.3309435 0.79501638 
HCP5 0.03248543 -0.3309779 0.79499745 
GMEB1 0.45772494 -0.3310549 0.79495499 
MCM6 0.42245704 -0.3311944 0.79487813 
FBXO11 -0.0226408 -0.3313519 0.79479136 
SCAF8 0.23840273 -0.3313902 0.79477027 
SNU13 0.21400475 -0.3315605 0.79467645 
MCFD2 0.17406334 -0.3316513 0.79462645 
MYD88 0.24314285 -0.3318262 0.79453009 
VAMP8 0.17741463 -0.331878 0.7945016 
AC008026.3 0.07076387 -0.3318879 0.79449613 
TMPO 0.21496175 -0.3319755 0.79444789 
LARP4B 0.32225543 -0.3320271 0.79441945 
JCHAIN 0.21532751 -0.3320459 0.79440911 
ZNF514 0.33614657 -0.3321902 0.79432966 
FBXO22 0.11618301 -0.3322586 0.794292 
ALKBH8 0.13807688 -0.3322623 0.79428995 
C1GALT1 5.97E-04 -0.3322805 0.79427995 
SIPA1L2 0.38228146 -0.3323443 0.79424483 
SLAIN1 0.18221473 -0.3324629 0.79417956 
RNU6-672P 0.07476057 -0.3324663 0.79417767 
FGFBP2 0.13198082 -0.3325216 0.79414722 
ZNF19 0.10645101 -0.3325756 0.79411751 
KCNK6 0.26300608 -0.3328526 0.79396505 
GNL2 0.1634124 -0.3330919 0.79383334 
VAMP1 0.11373208 -0.3332041 0.79377161 
HLA-DRB6 0.30790647 -0.3332271 0.79375899 
ZNF502 0.30467322 -0.3332458 0.79374869 
EXD2 0.03459901 -0.3333966 0.7936657 
SCARB2 0.23273354 -0.3334601 0.79363079 
NTPCR 0.27189192 -0.3335303 0.79359218 
KIZ 0.35779426 -0.3336275 0.79353871 
CNOT8 0.2589306 -0.3336591 0.79352134 
FADS3 0.40742886 -0.3337615 0.79346499 
AC055839.1 0.09011165 -0.3339979 0.79333501 
SRPRB 0.16985055 -0.3344401 0.79309189 
ZNF419 0.11130248 -0.3344708 0.79307501 
AC008969.1 0.17447487 -0.3344904 0.7930642 
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DENND4B 0.18820223 -0.3345028 0.79305743 
AHSA2 0.22976181 -0.3347199 0.79293806 
ZNF22 0.19215955 -0.3347979 0.79289521 
MRPL58 -0.1311963 -0.3348266 0.79287944 
TPCN1 -0.0438985 -0.3349261 0.79282476 
NOD1 0.0472078 -0.3349618 0.79280511 
ATP11C 0.32240851 -0.3351484 0.79270259 
UQCRB 0.1120165 -0.3351577 0.79269749 
TMEM245 0.19854747 -0.3352406 0.79265193 
SRP14 0.28922339 -0.335361 0.79258581 
FBXL3 0.2800616 -0.3353835 0.79257341 
CNOT9 0.15350348 -0.3354758 0.79252272 
ZNF644 0.4677847 -0.3354814 0.79251967 
ANKDD1A 0.37457391 -0.3358153 0.79233624 
CTBP2 0.23486141 -0.3358232 0.79233188 
IDI1 0.09859391 -0.3360254 0.79222086 
CUL1 0.26628938 -0.3360993 0.79218031 
RRM1 0.36321264 -0.3362264 0.79211051 
RRAS2 0.19986013 -0.3362279 0.7921097 
SPRYD3 0.32616843 -0.3363488 0.79204329 
MYBL1 -0.0732788 -0.3363941 0.79201843 
BIRC2 0.29303274 -0.3368346 0.79177663 
LAP3 0.21544205 -0.3368954 0.79174327 
RIC8A 0.0670294 -0.3370916 0.79163561 
RPL6 0.25722601 -0.3372437 0.79155214 
ARHGAP27P1-BPTFP1-
KPNA2P3 0.19077341 -0.3372466 0.79155053 
BLOC1S6 0.13640719 -0.3372956 0.79152367 
CEP68 0.2451738 -0.3373225 0.79150893 
HGF 0.15747801 -0.3376827 0.79131134 
KLHL22 0.1107453 -0.337832 0.79122942 
PKD2 0.19081644 -0.3378922 0.79119644 
MRPL57 0.09322167 -0.3379866 0.79114467 
ATAD2 0.04807364 -0.3380586 0.79110519 
ATP5J 0.33324261 -0.3381592 0.79105002 
GABPB1 0.19115167 -0.3381926 0.7910317 
ZNF330 0.32882987 -0.338394 0.79092126 
LRRC57 -0.1400543 -0.3384212 0.79090634 
ZNF283 0.23653668 -0.3384344 0.79089913 
CNOT10 0.07135508 -0.33856 0.79083029 
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P2RX4 0.64711725 -0.3386162 0.79079949 
AF131215.6 -0.018947 -0.3386481 0.79078196 
RPS3A 0.161853 -0.3386983 0.79075449 
CASC4 0.27465634 -0.3387913 0.7907035 
RALA 0.25909037 -0.3388494 0.79067163 
DCAF16 0.17580578 -0.3388671 0.79066197 
BCCIP 0.25428047 -0.3389731 0.79060384 
CACTIN 0.39395018 -0.338982 0.79059896 
ANKRD6 0.22600088 -0.3390648 0.79055363 
MRPL3 0.06137767 -0.3390785 0.79054609 
ATG4D 0.38433812 -0.3391741 0.79049373 
SGSM2 0.07366506 -0.3392651 0.79044387 
IKZF2 0.28188731 -0.3392775 0.79043707 
FLJ20021 0.14823332 -0.3392846 0.79043317 
CCDC58 0.20960872 -0.3397623 0.79017148 
TMEM116 0.04296602 -0.3398464 0.79012545 
THBD 0.19178426 -0.339853 0.79012182 
MED9 0.05007031 -0.3398768 0.79010879 
UBL3 0.18591446 -0.3400681 0.79000404 
EMG1 0.2474304 -0.3400727 0.79000152 
C19orf25 0.12002893 -0.3401074 0.78998251 
C11orf71 0.3128076 -0.3401903 0.78993713 
NEK6 0.3443029 -0.340424 0.78980913 
ARL16 0.08510724 -0.340466 0.78978615 
SEC11C 0.4375899 -0.3406361 0.78969305 
RGS6 0.05940188 -0.3406595 0.78968025 
MBOAT2 0.12936018 -0.3406923 0.78966231 
HSDL1 0.130519 -0.3407676 0.78962107 
ABLIM1 0.24584768 -0.3411697 0.78940102 
PRKACB 0.04512056 -0.3412047 0.7893819 
ANKRD42 0.25770408 -0.3415625 0.78918615 
SQLE 0.16603118 -0.3416902 0.7891163 
GRAP2 0.09978591 -0.3416985 0.78911175 
WDR12 -0.0034199 -0.3417385 0.78908985 
ILF3-AS1 0.29146344 -0.3418205 0.789045 
HIC2 0.31187496 -0.341829 0.78904037 
ESF1 0.24308535 -0.3418872 0.78900851 
RCOR3 0.18281238 -0.3418955 0.78900399 
ATP5A1 0.22881056 -0.3419864 0.7889543 
U62317.5 0.13563566 -0.342124 0.78887903 
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SNORA72 0.33181607 -0.3421459 0.78886708 
DRAXIN 0.21699161 -0.3421856 0.78884534 
CCDC12 0.15255939 -0.3422119 0.788831 
MTX3 0.20133268 -0.3423188 0.78877252 
TBC1D14 0.14822455 -0.3424298 0.78871183 
ARF4 0.21436754 -0.3424596 0.78869556 
TM2D1 0.26786627 -0.3424681 0.78869089 
ZC2HC1A 0.1373946 -0.3426807 0.78857467 
DNAJB9 0.22146497 -0.3429553 0.7884246 
ZBTB11 0.37468125 -0.3430393 0.7883787 
UHRF2 0.16748439 -0.343212 0.78828435 
PKIA 0.27067202 -0.3432382 0.78827001 
RBP7 0.19489769 -0.3432856 0.78824411 
SLC12A7 0.28856959 -0.3433317 0.78821892 
TMEM18 -0.0250585 -0.3433358 0.78821667 
ANAPC13 0.15621233 -0.3435301 0.78811053 
MAT2A -0.1636468 -0.3436715 0.78803332 
UBLCP1 0.22940748 -0.3440038 0.78785181 
ABHD14A 0.10538232 -0.3442262 0.78773038 
UTP3 0.17587103 -0.3443497 0.78766294 
FAM89A 0.2526876 -0.3444027 0.78763398 
SRSF6 0.15583454 -0.3444281 0.78762015 
RBMXL1 0.22426433 -0.3445978 0.78752749 
RAN 0.12689725 -0.3447059 0.78746847 
SIGLEC1 0.29886606 -0.3448486 0.78739063 
COMMD6 0.22824912 -0.3449305 0.7873459 
MEI1 0.29069755 -0.3452949 0.78714705 
BCL9 0.16241868 -0.3453584 0.78711242 
TPCN2 0.30511293 -0.3454645 0.78705455 
CD86 0.19676128 -0.3455323 0.78701756 
AP1AR 0.02095163 -0.3455988 0.78698126 
INPP5B -0.0761182 -0.3457121 0.78691948 
GBA2 0.30020832 -0.3457425 0.78690287 
MYO18A 0.19214318 -0.3458389 0.78685032 
AL683813.1 -0.0288312 -0.3458554 0.78684132 
TMEM39B 0.56109051 -0.3461418 0.7866851 
LPIN1 0.23679811 -0.3461798 0.7866644 
PIK3C3 0.06271795 -0.3462589 0.78662129 
SMAD5 0.16655368 -0.3462717 0.7866143 
TMEM176A 0.16768004 -0.3464453 0.78651963 
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ZNF346 0.29797981 -0.346733 0.7863628 
EXOSC9 0.09949655 -0.3468469 0.78630076 
AP5M1 -0.0214985 -0.3468992 0.78627225 
MIR1254-1 0.08830005 -0.3469381 0.78625104 
RPS27 0.08468337 -0.3469389 0.78625057 
ITLN1 0.19673662 -0.3470167 0.78620818 
JTB 0.32258833 -0.3471014 0.78616202 
ZBED6 0.44516815 -0.3471237 0.78614991 
ZFAT 0.16855287 -0.3472581 0.78607667 
MOSPD3 0.01220792 -0.3472935 0.78605738 
CRTAP 0.11844523 -0.3474475 0.78597343 
ANAPC15 0.2738532 -0.3475475 0.78591898 
ITM2A 0.20304673 -0.3475883 0.78589673 
GOT1 0.08073668 -0.3476028 0.78588886 
MRFAP1 0.20795586 -0.3477813 0.78579164 
CEP41 0.23935096 -0.3478321 0.78576394 
NUP43 0.39286003 -0.3485426 0.78537708 
INSL3 0.17436459 -0.3485526 0.78537165 
EFCAB2 0.19792913 -0.34869 0.78529684 
WBP1L 0.2166233 -0.3487369 0.78527133 
IFITM3 0.31683204 -0.3488063 0.78523355 
LINC01772 0.06292051 -0.3489089 0.78517769 
SETDB1 0.31992443 -0.3489331 0.78516454 
NEMP1 0.3515557 -0.3489664 0.78514639 
ANKHD1 0.22564425 -0.3490065 0.78512457 
LGALS12 -0.0786191 -0.349044 0.78510418 
BX284668.5 0.1109656 -0.3491542 0.78504421 
CRLF3 0.31952317 -0.3494017 0.78490956 
GANAB 0.16823523 -0.3494278 0.78489531 
C1orf43 0.15484822 -0.3495157 0.7848475 
TRAF3IP2 0.33366514 -0.3495436 0.78483235 
CLINT1 0.37383665 -0.3495821 0.78481138 
AC006033.2 0.09393082 -0.3500973 0.78453116 
MBTD1 0.07897398 -0.3501033 0.78452794 
LRPPRC 0.07468417 -0.3504032 0.78436483 
RNU6-890P 0.23771297 -0.3505301 0.78429588 
HIST1H2BJ 0.06607229 -0.3506787 0.78421508 
Metazoa_SRP 0.14519216 -0.3507517 0.78417538 
WHAMMP2 0.15526622 -0.3508839 0.78410353 
FUT8 0.07056013 -0.3508975 0.78409618 
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HPS4 0.28285787 -0.351063 0.78400622 
NCOA2 0.37932495 -0.3513244 0.78386418 
SLC40A1 0.21341577 -0.3514216 0.78381135 
SGMS2 0.06447379 -0.3514896 0.78377444 
RPS15A 0.08424962 -0.3515874 0.78372129 
USP33 0.20421221 -0.3516283 0.78369907 
SCO1 0.31558897 -0.3518066 0.7836022 
ZNF845 0.32094454 -0.3518552 0.78357582 
ZNF696 0.2346698 -0.3518901 0.7835569 
GOT2 0.47765492 -0.3521293 0.78342699 
STAT1 0.30346463 -0.3521399 0.78342124 
AC008622.2 0.26669339 -0.3522585 0.78335683 
HSF2 0.1761189 -0.3525152 0.78321744 
DNAJC5 0.15737471 -0.3526945 0.78312012 
SLC35B3 0.23390269 -0.3527534 0.78308814 
CCDC115 0.23643034 -0.3532608 0.78281279 
HNRNPA1 0.2791291 -0.3533259 0.78277743 
TCEAL4 0.3218512 -0.3533292 0.78277566 
TOGARAM2 0.13594563 -0.3533662 0.78275556 
B9D2 0.31726447 -0.3534007 0.78273686 
ZNF780A 0.26297856 -0.3538201 0.78250933 
MS4A2 0.28715035 -0.3538365 0.78250043 
ZNF331 0.46951747 -0.353955 0.78243617 
BPI -0.0452562 -0.3541384 0.78233675 
ACAA2 0.28573873 -0.3541748 0.78231702 
AC112496.1 0.06978677 -0.3542011 0.78230273 
SUSD3 0.19799015 -0.3542471 0.78227781 
CXorf38 0.25670439 -0.3542738 0.7822633 
UGT8 0.16599427 -0.3543174 0.78223964 
YIPF1 0.29873291 -0.3543791 0.78220623 
ZNF219 0.21032255 -0.3545326 0.78212302 
GOLGA5P1 0.0200973 -0.3546661 0.78205062 
ASTE1 0.04839941 -0.3546848 0.78204048 
RAD51C 0.3097138 -0.3549568 0.78189308 
NUDT19 0.1900916 -0.3549733 0.7818841 
STXBP3 0.08189229 -0.3550209 0.78185834 
MAN2B2 0.27436936 -0.3550388 0.78184861 
LINC01184 0.14644136 -0.3550536 0.7818406 
PARN 0.14435266 -0.355118 0.78180571 
AC105749.1 0.24233441 -0.3551463 0.78179034 
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DDHD1 0.18360797 -0.3551965 0.78176315 
TCEA2 -0.071576 -0.3552157 0.78175275 
CHAMP1 0.07666938 -0.3552491 0.78173463 
B2M 0.24283509 -0.3553212 0.78169556 
CEP85L 0.34068159 -0.3559306 0.78136545 
DUSP12 0.08443966 -0.3559779 0.78133982 
TNFRSF4 0.02651499 -0.3560562 0.78129745 
ALG11 0.34708389 -0.3560578 0.78129659 
AC127024.4 0.26899288 -0.3563392 0.78114419 
IGFLR1 0.35364341 -0.3564293 0.78109541 
TTC14 0.12925805 -0.3564755 0.78107039 
AL118508.4 0.21170828 -0.3565001 0.78105706 
ZNF518B 0.26063199 -0.3566025 0.78100164 
RPS24 0.28047436 -0.3567899 0.78090022 
AKAP8 0.07967071 -0.356827 0.78088013 
KIFC3 0.25059992 -0.3570027 0.78078505 
TMEM94 0.17338219 -0.357081 0.78074263 
ZNF3 0.17625633 -0.3572596 0.78064603 
AMMECR1 0.19085355 -0.3572817 0.78063407 
MRPL20 0.09627774 -0.3572817 0.78063407 
TMEM128 0.19710477 -0.3573144 0.78061637 
CDK5R1 0.16406309 -0.3573809 0.78058037 
GSTO1 0.23653791 -0.3573996 0.78057024 
EPG5 0.28203035 -0.357458 0.78053866 
IPCEF1 0.37221077 -0.3576454 0.78043729 
Y_RNA 0.48285972 -0.3576684 0.78042485 
RPS27A 0.20396224 -0.3577273 0.780393 
ANO6 0.2525435 -0.3578845 0.78030797 
COA4 0.15192994 -0.3579193 0.78028915 
TASP1 0.33201937 -0.3580918 0.78019586 
RPL26 0.18485621 -0.3581579 0.78016007 
TRIM69 0.17075319 -0.3583635 0.78004892 
RANGRF 0.22781872 -0.3583703 0.78004522 
C1RL-AS1 0.39722371 -0.3587334 0.77984895 
C11orf24 0.20725993 -0.3588363 0.77979329 
SENP5 0.29367164 -0.3588436 0.77978936 
IMPA1 0.25680316 -0.358949 0.77973242 
CCR2 0.1786691 -0.3590256 0.779691 
CTPS1 0.19711413 -0.3590468 0.77967953 
SUMO2 0.33507518 -0.359374 0.77950275 
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TRAF4 0.12377104 -0.3594353 0.77946963 
SEC61B 0.27879823 -0.3595064 0.77943122 
MRPS35 0.33529188 -0.3595481 0.77940867 
UQCRFS1 0.03832607 -0.359681 0.77933691 
AC016394.1 0.22616761 -0.359704 0.77932445 
TIGD3 0.1874398 -0.3597373 0.77930648 
PEA15 0.27462489 -0.3598348 0.77925379 
TMEM177 0.21092983 -0.3599055 0.77921561 
AGFG2 0.11547653 -0.3599452 0.7791942 
MATK 0.37057914 -0.3599616 0.77918535 
SNHG14 0.33804621 -0.3603009 0.7790021 
ALDH3A2 0.24479884 -0.3603115 0.77899636 
BTN3A1 0.25326898 -0.360439 0.77892753 
ALAS1 -0.040511 -0.3605458 0.77886984 
PMM1 0.24972333 -0.3607533 0.77875787 
ICOS 0.06209093 -0.3608495 0.77870595 
PLAG1 0.1739656 -0.3610231 0.77861225 
LMTK2 0.1317528 -0.3611049 0.77856807 
PRKAG2-AS1 0.14213001 -0.3612353 0.77849771 
KNTC1 0.34088483 -0.361245 0.77849249 
TMEM147 0.09371171 -0.361347 0.77843744 
SNRNP35 0.00385525 -0.361624 0.77828801 
MADD 0.03040979 -0.3616767 0.77825956 
GNGT2 0.23367046 -0.3617667 0.77821102 
RAB18 0.37132919 -0.3618342 0.77817462 
NDUFA4 0.00655677 -0.3619941 0.77808835 
NSUN2 0.25936451 -0.3620872 0.77803816 
TC2N 0.19308176 -0.3622092 0.77797239 
PEX2 0.10564746 -0.3622809 0.77793369 
SGPL1 0.25475036 -0.3623809 0.77787979 
ZBTB37 0.28083824 -0.3624419 0.7778469 
C14orf93 0.15848974 -0.362609 0.77775678 
TTYH3 0.29284325 -0.3626166 0.77775271 
ZNF101 0.20007002 -0.3626448 0.77773752 
WDSUB1 0.18646914 -0.3628719 0.77761507 
CSGALNACT2 0.27669604 -0.3629353 0.77758093 
FKBP2 0.21490206 -0.3631173 0.77748284 
METTL2B 0.31426504 -0.3633108 0.77737856 
FMC1 0.01881289 -0.3633961 0.77733257 
NBEAL1 0.36281524 -0.3634217 0.77731879 
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U2AF2 0.28973181 -0.3634455 0.77730597 
PWWP2B 0.32778419 -0.3635605 0.77724402 
RGL4 0.1213842 -0.3637108 0.77716303 
SDHAF2 0.14257224 -0.3637149 0.77716082 
HAUS2 0.19600157 -0.3638237 0.77710225 
CISD2 0.57310361 -0.3638988 0.77706178 
CWC27 0.05099297 -0.3639596 0.77702905 
MTCO1P40 0.23101034 -0.3646491 0.77665776 
EPB41L4A-AS1 0.03039151 -0.3648024 0.77657521 
SRBD1 0.19142894 -0.3649508 0.77649534 
SUZ12 0.19289769 -0.3651957 0.77636358 
RBM3 0.25526552 -0.3656103 0.77614049 
TNFRSF10D 0.23181046 -0.3656182 0.77613622 
AC108673.3 0.35931742 -0.3656369 0.77612619 
AC018445.4 0.22574922 -0.3656476 0.7761204 
ZNF268 0.18699976 -0.365652 0.77611805 
HSP90B1 0.15558753 -0.3656588 0.7761144 
NUP88 0.41143505 -0.3660041 0.77592862 
TMEM230 0.04557965 -0.3660356 0.77591169 
AC116618.1 0.07710664 -0.3660964 0.77587903 
TMEM251 0.25407271 -0.3663228 0.77575728 
IER5L 0.21248014 -0.3663913 0.77572041 
PRPF4B 0.15920808 -0.3665707 0.77562397 
SUGP2 0.35419056 -0.3667191 0.77554419 
RAB27B -0.1241248 -0.3670836 0.77534828 
STXBP5 0.23611277 -0.3671758 0.77529875 
VAMP4 0.1035674 -0.3672211 0.7752744 
MTG2 0.13036388 -0.3673125 0.77522529 
KCNG1 0.15835503 -0.3673343 0.77521357 
CD72 0.37735005 -0.3673731 0.77519273 
KLHL3 0.05257509 -0.3674124 0.77517156 
IFIT2 0.41964664 -0.3675434 0.77510119 
ATP6V1H 0.55722064 -0.3675465 0.77509952 
TMX3 0.04957039 -0.367705 0.77501441 
NPTN 0.06747596 -0.3679804 0.77486648 
TP53I11 0.31173995 -0.368457 0.77461052 
UBL4A 0.03657624 -0.3685588 0.77455586 
FBXO34 0.29862151 -0.3685723 0.77454863 
MRPL40 0.30097862 -0.3686055 0.77453077 
SLC25A20 0.33459783 -0.368623 0.77452142 
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NAGPA 0.26470952 -0.3688693 0.7743892 
SLC11A2 0.31915056 -0.3691464 0.77424048 
FHIT 0.20926688 -0.3693415 0.77413576 
UHRF1BP1L 0.24193558 -0.3693563 0.77412782 
PRR14L 0.28345209 -0.3693868 0.77411148 
C14orf166 0.31071837 -0.3695619 0.77401752 
YWHAG 0.25689305 -0.3695773 0.77400926 
CD302 0.1546113 -0.3695885 0.77400324 
TIMM23 -0.1390269 -0.3696717 0.77395863 
UBASH3B 0.16873042 -0.3697153 0.77393522 
F2RL1 0.33152819 -0.3699814 0.77379248 
SECISBP2L 0.21635876 -0.3702227 0.77366307 
IPMK 0.50238458 -0.3702753 0.77363486 
ALDH1A1 0.25894966 -0.3704562 0.77353784 
SLC39A9 0.14699644 -0.3705819 0.77347048 
AC245060.5 0.27059852 -0.3706156 0.77345239 
SEL1L3 0.18643982 -0.3706818 0.7734169 
UFSP2 0.32740106 -0.3707355 0.77338812 
ZNF687 0.18479799 -0.3714757 0.7729914 
RAP1GDS1 0.25230534 -0.3714843 0.7729868 
MMACHC 0.22626568 -0.3715749 0.77293826 
SUMO3 0.1673368 -0.3717329 0.77285363 
SPAG7 0.18643311 -0.3718376 0.77279755 
THAP3 0.42630923 -0.3718476 0.77279216 
AC009831.4 0.14801335 -0.3719223 0.77275215 
TM9SF3 0.35726705 -0.3720308 0.77269405 
TXN2 0.38272549 -0.3721406 0.77263527 
ATAD5 0.43200651 -0.3723068 0.77254622 
BISPR 0.40897945 -0.3724882 0.77244912 
RIN2 0.2624528 -0.3725411 0.77242081 
ZBTB18 0.24943242 -0.3726428 0.77236635 
CEP97 0.1684057 -0.3727056 0.77233273 
MYDGF 0.33535087 -0.3727863 0.77228954 
RRP15 0.36232107 -0.3729154 0.7722204 
ZMYND8 0.29215271 -0.3729909 0.77218003 
LANCL1 -0.0132804 -0.3729976 0.77217641 
PSEN2 0.19186163 -0.3730388 0.77215437 
XRN1 0.22607126 -0.3732238 0.77205536 
R3HDM1 0.31846457 -0.3734858 0.77191516 
RDX 0.15504065 -0.3734871 0.77191447 
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KYNU 0.2306765 -0.373542 0.77188508 
ZNF542P -0.0026661 -0.3736064 0.77185064 
CBX3 0.27513251 -0.3737059 0.7717974 
AC027449.1 -0.0122331 -0.3737194 0.7717902 
ADK 0.16212584 -0.3740119 0.77163371 
TNFSF13B 0.16395077 -0.3743881 0.77143254 
CKAP5 0.1890668 -0.3745987 0.77131992 
RBFA 0.19835255 -0.3747029 0.77126423 
ZNF75D 0.07818992 -0.3747495 0.77123931 
TUBA1C 0.25509451 -0.3747711 0.77122776 
BORCS6 0.49202717 -0.374781 0.77122248 
ZNF439 0.40690535 -0.3748618 0.77117929 
PIGH 0.42722404 -0.3748693 0.77117525 
ICE2 0.16803989 -0.3749244 0.77114584 
ADAT2 0.2621788 -0.3750152 0.77109731 
PLAGL2 0.13010596 -0.3752149 0.77099058 
TRAPPC2 0.33854239 -0.3752967 0.77094687 
SLC35A3 0.30091072 -0.3754075 0.77088764 
TTC1 0.20582806 -0.3754202 0.77088084 
ZNF710 0.11249121 -0.3754616 0.77085874 
CNTNAP2 0.38067704 -0.3758033 0.77067617 
CSTB 0.21246466 -0.3758639 0.7706438 
ECD 0.23113912 -0.3759693 0.77058753 
MIOS 0.34706277 -0.3759696 0.77058735 
GMPS 0.4350639 -0.3760503 0.77054425 
TCF12 0.06156862 -0.37624 0.77044294 
NAXD 0.07597032 -0.376278 0.77042266 
AC055822.1 0.09677902 -0.3763259 0.77039709 
C16orf74 0.21852659 -0.3764913 0.77030876 
MRPS33 0.33592233 -0.3764991 0.77030457 
DIMT1 0.08167075 -0.3768372 0.77012405 
NRIP1 -0.0015505 -0.3769066 0.77008706 
BACH1 0.14814687 -0.3769524 0.7700626 
EXOC5 0.19084302 -0.3770677 0.77000104 
GALNT3 0.28579555 -0.3771937 0.76993379 
FAM175B 0.19106468 -0.3772661 0.76989518 
CSTA 0.21755087 -0.3773387 0.76985641 
CYTH3 0.39212707 -0.377509 0.76976552 
ZNF808 0.42174627 -0.3778537 0.76958164 
RBM45 -0.0043867 -0.3778865 0.76956416 
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SSFA2 0.47821528 -0.3780177 0.76949414 
STT3B 0.41663988 -0.3780327 0.76948616 
SARAF 0.3294216 -0.3781546 0.76942114 
CPEB2 0.14845697 -0.3782306 0.76938061 
NHLRC2 0.17810215 -0.37846 0.76925832 
CAPZA1 0.20897707 -0.3784614 0.76925754 
NUDT14 0.04164228 -0.3788322 0.76905987 
TCF7L2 0.3115611 -0.3789754 0.76898354 
ARPIN 0.12918804 -0.3792261 0.76884992 
NAA35 0.08568969 -0.3792293 0.7688482 
KCNJ2 0.22999587 -0.3793649 0.76877595 
FAM118B 0.33576172 -0.3794458 0.76873282 
TBC1D32 0.34386317 -0.3795211 0.76869273 
ASF1B 0.05229844 -0.3795695 0.76866693 
SLC25A40 0.26302047 -0.3795753 0.76866383 
ZNF764 0.16250258 -0.3796435 0.76862748 
FBRSL1 0.30920773 -0.3797863 0.7685514 
GOLGA8B 0.29508894 -0.3798704 0.7685066 
CMTR1 0.27402145 -0.3801356 0.76836537 
SLC22A18 0.1806257 -0.3803802 0.76823512 
KLHL42 0.20018282 -0.3806741 0.76807861 
PPP2R5E 0.18744897 -0.3810553 0.7678757 
EIF4A2 0.16373094 -0.3810573 0.76787461 
FARSB 0.33838914 -0.3811493 0.76782567 
MRPL36 0.56019545 -0.3812218 0.76778711 
DDB2 0.15460964 -0.3812695 0.76776172 
SSR3 0.16357874 -0.3814435 0.76766914 
C4orf32 0.10789216 -0.3814528 0.76766414 
ATXN7L1 0.18452198 -0.3815873 0.76759261 
ECHDC2 -0.018716 -0.3816481 0.76756023 
NDOR1 0.15338649 -0.3817269 0.76751832 
ARRB1 0.17139912 -0.3818347 0.76746097 
FAM114A2 0.14284246 -0.3824315 0.76714356 
SLFN11 0.44191482 -0.3826509 0.76702693 
NDUFC1 0.05972144 -0.3827184 0.76699105 
CCDC186 0.12023483 -0.3827881 0.76695399 
GIMAP7 0.15010394 -0.3828559 0.76691791 
SMIM14 0.17031615 -0.3828951 0.76689707 
MAGED1 0.27947802 -0.3829574 0.766864 
ZNF45 0.14529005 -0.3831067 0.76678463 
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RPS6KB1 0.24918526 -0.3831899 0.76674041 
RFX3-AS1 0.19957708 -0.3834353 0.76661001 
IFFO1 0.15107686 -0.3836371 0.76650277 
CCR5 -0.0432772 -0.3838949 0.76636583 
PHKA2 0.21448712 -0.3840346 0.76629159 
C8orf33 0.31570037 -0.3842957 0.76615294 
DR1 0.23859858 -0.3844465 0.76607287 
MOAP1 0.27265185 -0.3845132 0.76603746 
AC007406.5 0.11977853 -0.3845706 0.76600694 
MTMR12 0.15655132 -0.3846599 0.76595954 
SLC46A3 0.19486932 -0.3850108 0.76577329 
SLC43A1 0.26700724 -0.3851127 0.76571919 
ENTPD4 0.38318509 -0.3852181 0.76566324 
MR1 0.21635649 -0.3852203 0.76566209 
DIAPH2 0.28748375 -0.3853011 0.76561918 
GALC 0.33104042 -0.3853481 0.76559428 
FAM208A 0.36932095 -0.3858294 0.76533888 
CHCHD3 0.22443872 -0.3858841 0.76530988 
SNPH 0.17256036 -0.3861422 0.76517298 
EEF1B2 0.28795192 -0.3862943 0.76509231 
PRR7-AS1 0.09817894 -0.3865074 0.76497928 
GZMA 0.26015356 -0.3867605 0.76484512 
PARP15 0.05749631 -0.3868087 0.76481953 
RNMT 0.2122768 -0.3869423 0.76474871 
SENP1 0.33777729 -0.3869696 0.76473428 
NEK1 -0.1245734 -0.3873097 0.764554 
ASPM 0.19118562 -0.3874955 0.76445551 
TMEM192 -0.0018952 -0.3875059 0.76445001 
TMEM135 0.19509636 -0.3876254 0.76438672 
SLU7 0.25920361 -0.3877127 0.76434046 
LTBP4 0.33634275 -0.3877694 0.76431042 
DNAJB14 0.20810597 -0.3878259 0.76428048 
WARS 0.241373 -0.3878437 0.76427107 
EMSY 0.21912785 -0.3880242 0.76417545 
FOXN2 0.15105246 -0.388101 0.76413474 
RSBN1L 0.39752655 -0.3887591 0.76378628 
SUGT1 0.09821055 -0.3888603 0.76373271 
AL080317.3 0.2977868 -0.3889365 0.76369235 
ZNRD1ASP 0.19072256 -0.389275 0.76351322 
SS18L2 0.16741315 -0.3895852 0.76334905 
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CREG1 0.02078636 -0.3898247 0.76322233 
CARHSP1 0.29899599 -0.390169 0.76304019 
SFT2D1 0.47750488 -0.3903182 0.76296131 
ZBTB40 0.11675432 -0.3905857 0.76281983 
DCK 0.21677982 -0.3906398 0.76279125 
ZNF326 0.23972104 -0.390813 0.76269968 
DPM1 0.00229164 -0.3908457 0.76268238 
SLF2 0.32225787 -0.3910216 0.76258941 
FXYD6 0.35514966 -0.3912051 0.76249241 
FOCAD 0.1954297 -0.3912078 0.76249102 
TCN1 0.1253512 -0.3913035 0.76244042 
CD244 -0.048677 -0.3913374 0.76242251 
TMX2 0.42033235 -0.391598 0.7622848 
OTUD1 0.27871256 -0.3917509 0.76220401 
ACOT7 0.31459864 -0.3918035 0.76217623 
CD47 0.2533716 -0.392038 0.76205237 
SCAMP1-AS1 0.25680113 -0.392147 0.76199479 
STRAP 0.11477929 -0.3922956 0.76191631 
NBPF15 0.14149157 -0.3924124 0.76185463 
LEO1 -0.0273387 -0.392691 0.76170748 
FCER1A 0.41614968 -0.3927755 0.7616629 
SAMD9 0.3168457 -0.3928907 0.76160205 
SLC24A1 0.16285132 -0.392898 0.76159822 
CDK17 0.17567493 -0.3931717 0.76145372 
PIK3R6 -0.073684 -0.3932976 0.76138727 
AC023157.3 0.0533058 -0.3935068 0.76127691 
GPBP1 0.33679552 -0.393548 0.76125516 
MCTP1 0.36428536 -0.3940564 0.76098695 
CRYZL1 0.13274865 -0.3946177 0.76069091 
EBAG9 0.25407071 -0.3950426 0.76046693 
AMN1 0.23468878 -0.3952998 0.76033135 
ZFAND6 0.29759687 -0.395572 0.76018791 
RIN1 0.05292968 -0.3957499 0.76009418 
CAPN7 0.23267734 -0.3962979 0.75980554 
TTC12 0.19067404 -0.3963752 0.75976483 
C6orf136 0.26050276 -0.3964023 0.75975054 
EDRF1 0.28159298 -0.3964458 0.75972762 
CNPY4 0.02872064 -0.3965003 0.75969892 
POLI -0.0617254 -0.3965687 0.75966292 
FXN 0.16994334 -0.3966824 0.75960303 
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DUSP5 -0.0661783 -0.3967259 0.75958013 
LRRFIP2 0.34966577 -0.3968296 0.75952556 
ZSWIM8 0.15342764 -0.3970452 0.75941204 
MAP4K5 0.1154905 -0.3970669 0.75940062 
ZNF84 0.4904437 -0.39721 0.75932531 
ANGPT1 0.23613438 -0.3972575 0.75930031 
NDUFAF4 0.05931289 -0.3975871 0.75912686 
PRPF38A 0.13955452 -0.3978252 0.75900161 
SGF29 0.26131454 -0.3979748 0.7589229 
TTC39C 0.45618577 -0.3980319 0.75889284 
PCCB -0.1401332 -0.398043 0.758887 
TIMM8B 0.35751931 -0.3983637 0.75871834 
ENSG00000188206 0.29010127 -0.3986082 0.75858976 
ARL10 0.22942126 -0.3986148 0.7585863 
RN7SL589P 0.32760807 -0.398672 0.75855623 
GRWD1 -0.2449651 -0.3987572 0.75851142 
SLC41A1 0.12143629 -0.3988106 0.75848335 
ENSG00000283013 0.27610327 -0.3988108 0.75848324 
CYCS 0.06089674 -0.3989379 0.75841643 
ALG5 0.11347468 -0.3989381 0.75841633 
GNS 0.22990055 -0.3989566 0.75840657 
PRPF39 0.3184793 -0.3992472 0.75825385 
ZNF275 0.12498478 -0.3993636 0.75819264 
FPGS 0.33346528 -0.3994619 0.75814098 
MAPK8IP3 0.30460806 -0.3996677 0.75803287 
OSTM1 0.31658507 -0.4001449 0.75778216 
TMEM216 0.39482416 -0.4002258 0.75773969 
COPS6 0.39592955 -0.4003976 0.75764945 
RAB3GAP2 0.22709905 -0.4006369 0.75752381 
TRMT61B 0.32532561 -0.4006462 0.75751889 
CD164 0.28163667 -0.4007145 0.75748305 
NCBP2-AS2 0.13419628 -0.4008964 0.75738753 
ZNF675 -0.0151319 -0.4010243 0.75732039 
CFAP97 0.12571809 -0.4014757 0.75708347 
SNX16 0.24281927 -0.4018126 0.75690669 
MGST2 0.09577909 -0.4020832 0.75676478 
ZNF280D 0.36163729 -0.4025758 0.75650643 
ZC3H8 0.24615256 -0.4025862 0.75650095 
CEP290 0.42427052 -0.40291 0.75633118 
ITPR3 0.32560516 -0.4031042 0.75622936 
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ERCC3 0.25691381 -0.4032179 0.75616979 
KBTBD11 0.2188689 -0.4032981 0.75612773 
ZNF566 0.37150474 -0.4037155 0.75590903 
ZKSCAN4 0.07429404 -0.4037629 0.7558842 
SLC17A5 0.30329088 -0.4040614 0.75572778 
CXCR3 0.27844845 -0.4043842 0.75555874 
PTAR1 0.37051376 -0.4046519 0.75541854 
PPARGC1B 0.35330915 -0.4050585 0.75520568 
RTN1 0.31609141 -0.4051595 0.75515281 
SNX4 0.20340114 -0.4052729 0.75509344 
LINC02019 0.40405366 -0.4053747 0.75504018 
RECQL 0.21628019 -0.4054602 0.75499542 
MICB 0.16333539 -0.4055577 0.75494441 
BCAS3 0.57341153 -0.4056842 0.75487822 
MAP9 0.29919633 -0.4057127 0.75486331 
RRP9 0.19577245 -0.4057215 0.75485871 
MAP3K13 0.13390884 -0.4057791 0.75482857 
TMIGD2 0.25164412 -0.4061425 0.75463842 
SLC25A19 0.21434746 -0.4063195 0.75454586 
AC006141.1 0.44487304 -0.4063441 0.75453302 
VBP1 0.13475456 -0.406351 0.75452938 
CD3G 0.28662588 -0.4066159 0.75439086 
NUP155 0.40716217 -0.4066218 0.75438777 
LILRA5 -0.0130547 -0.4066828 0.7543559 
CCDC43 0.43184613 -0.4071074 0.75413392 
TIA1 0.32010901 -0.40732 0.75402279 
PSME2 0.22902838 -0.4074023 0.75397975 
FAM105A 0.26224378 -0.4076184 0.75386686 
GIN1 0.18101578 -0.4077573 0.75379425 
ZBTB21 0.16075035 -0.4078235 0.75375965 
HAT1 0.31318941 -0.4079052 0.75371697 
TCEANC2 0.30567881 -0.407912 0.75371343 
CHORDC1 0.10135283 -0.408098 0.75361625 
SLC20A2 0.1820282 -0.4086017 0.75335317 
AKAP11 0.05770778 -0.4087426 0.75327962 
TRAF6 -0.1168812 -0.4089192 0.75318743 
TMEM87B 0.13209469 -0.4090198 0.75313487 
PAM 0.37196029 -0.4090777 0.75310467 
SLC25A30 0.18650516 -0.4091601 0.75306165 
UGDH 0.0870543 -0.4094965 0.7528861 
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Z93930.2 0.14955409 -0.4095447 0.75286096 
RPL31 0.17842717 -0.4096568 0.75280245 
KDM1B 0.26989667 -0.4098351 0.75270942 
NFE2L3 0.18050246 -0.4099432 0.752653 
CISD3 0.16794142 -0.4101512 0.75254452 
ADO 0.32399677 -0.4101552 0.75254243 
SLC33A1 0.17302929 -0.4104212 0.75240369 
MIER3 0.23098812 -0.4105896 0.75231588 
AC083798.2 0.27974385 -0.410624 0.75229789 
PPIL3 0.05722602 -0.4106327 0.75229338 
RAB29 0.34745807 -0.4106634 0.7522774 
NELFA 0.23288667 -0.4107692 0.75222222 
TPD52 9.37E-04 -0.410911 0.75214825 
COQ2 0.13474723 -0.4115988 0.75178976 
LGALS9 0.18158074 -0.4117638 0.7517038 
CPD 0.27377987 -0.4118402 0.75166401 
SNORD89 0.16309728 -0.412059 0.75154999 
CROCC 0.18117268 -0.4121361 0.75150984 
AC004865.2 0.13076091 -0.4121721 0.75149107 
PARP9 0.28673085 -0.4123943 0.75137534 
PYROXD1 0.22688599 -0.4125808 0.75127825 
AC012467.2 0.0799176 -0.4127325 0.75119926 
FBXO4 0.41620951 -0.4128739 0.7511256 
RB1CC1 0.31678953 -0.4129236 0.75109972 
MRPS18C 0.33746252 -0.4129441 0.75108906 
STARD4 0.08570406 -0.4129729 0.75107409 
PTCD2 0.4326092 -0.4131216 0.75099668 
HEG1 0.27452881 -0.4132721 0.75091832 
MRPL51 0.10879071 -0.4136915 0.75070007 
RXRB 0.25196223 -0.4137827 0.7506526 
YIPF3 0.38215303 -0.4138668 0.75060884 
ECT2 0.26183833 -0.4138967 0.75059331 
BRCA1 0.21593629 -0.4139453 0.75056798 
MCRS1 0.22888646 -0.4142357 0.75041693 
SNRPG 0.01337633 -0.4144217 0.7503202 
ZNF420 0.25466641 -0.4147662 0.75014104 

44621 0.31391588 -0.4147687 0.75013973 
CLDND1 0.2277806 -0.4150225 0.75000781 
C1orf27 0.25399461 -0.4150434 0.74999693 
NHS 0.29062678 -0.4150703 0.74998297 
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METTL26 0.59075883 -0.4151774 0.74992729 
AC006504.1 0.1642084 -0.4153345 0.74984562 
AC009120.1 0.51942661 -0.4153357 0.74984498 
TSEN2 0.03677919 -0.4154116 0.74980555 
XPO4 0.40107135 -0.4155591 0.74972891 
TOR1B 0.07007701 -0.4156092 0.74970284 
CNOT7 0.12797425 -0.4158455 0.74958009 
GBP3 0.26507309 -0.4162193 0.74938586 
KDM6A -0.1633649 -0.4163112 0.74933813 
ARHGAP5 0.20260714 -0.4165837 0.74919663 
PRSS23 0.2222114 -0.4165951 0.74919069 
RAB10 0.28203701 -0.4166645 0.74915465 
NUP85 0.27630214 -0.4168596 0.74905334 
VMA21 0.21587751 -0.4170131 0.74897365 
HLA-DRA 0.25492902 -0.4170293 0.74896528 
TMEM9B 0.13318147 -0.4173422 0.74880285 
ARID1B 0.15160799 -0.4176077 0.74866505 
ADAM28 0.1238952 -0.4179669 0.74847866 
EPSTI1 0.24034791 -0.4180326 0.74844457 
CGGBP1 0.1782828 -0.4181423 0.74838765 
MRI1 0.20180063 -0.4181632 0.74837684 
ESCO1 -0.0420416 -0.4182607 0.74832627 
MRPL9 0.35886445 -0.4183654 0.74827193 
AP1G1 0.4390786 -0.4183862 0.74826118 
SNRPB2 0.20546381 -0.4185722 0.74816468 
PRICKLE1 0.3752908 -0.4189554 0.747966 
PLEKHG2 0.43209607 -0.4192265 0.74782546 
VPS50 0.00393719 -0.419258 0.74780914 
FAM96A 0.22185901 -0.419291 0.74779203 
AC007191.1 0.16991324 -0.4194373 0.74771619 
SASS6 0.16634699 -0.4206721 0.74707649 
UBOX5 0.19126772 -0.420759 0.74703149 
METTL2A 0.35794958 -0.4208641 0.74697709 
GMPR2 0.30652242 -0.4212703 0.74676682 
LTN1 0.30501585 -0.4213254 0.74673826 
ADH5 0.19788041 -0.4213999 0.74669971 
COMMD4 0.18795807 -0.4219215 0.74642982 
CSNK1E 0.51992924 -0.4222302 0.74627013 
IPO8 0.23109686 -0.4223223 0.74622248 
TRGC1 0.37782228 -0.4223926 0.7461861 



 118 

AHCY 0.36993154 -0.4228304 0.74595969 
GPR27 0.55133497 -0.4228727 0.74593785 
SPATS2L 0.18228943 -0.4228982 0.74592465 
AL021368.3 0.18835012 -0.4232716 0.74573159 
SRD5A3 0.27179054 -0.4233158 0.74570877 
PDCL 0.09729367 -0.4233553 0.74568837 
TRIM68 0.11056464 -0.4235782 0.74557317 
Y_RNA 0.50036187 -0.4236585 0.74553162 
XRCC4 0.24544024 -0.4238145 0.74545102 
SNRPD1 -0.0479431 -0.4242304 0.74523619 
KCTD12 0.24237909 -0.4249836 0.74484719 
CSAD 0.21694497 -0.4250373 0.74481945 
NLRX1 0.34699673 -0.4251221 0.74477567 
PRPF19 0.19343354 -0.4251265 0.74477344 
CHP1 0.31822927 -0.4251387 0.74476713 
CCDC112 0.44795104 -0.4252457 0.74471189 
ELMO2 0.33281769 -0.4254218 0.744621 
FXR1 0.31181003 -0.4254663 0.74459803 
ZNF526 0.34776416 -0.425728 0.74446295 
ZBTB41 0.19349992 -0.4259295 0.74435899 
ZNF480 0.10210759 -0.4259423 0.74435242 
SERPING1 0.31923605 -0.4259448 0.7443511 
TRIM4 0.0265374 -0.4267119 0.74395544 
RBM4B 0.45286121 -0.4267872 0.74391659 
ACSM3 0.17752795 -0.4269034 0.74385668 
ZCCHC4 0.24502761 -0.4273735 0.74361434 
GRB10 0.21039725 -0.4274393 0.74358041 
ZNF831 0.45961044 -0.4276371 0.74347847 
LNPK 0.34571853 -0.4280745 0.74325312 
HMGXB3 -0.0711334 -0.4282249 0.74317563 
TUBG1 -0.0063638 -0.4283915 0.74308983 
E2F6 0.22682402 -0.428527 0.74302004 
NOP9 0.18599215 -0.4286797 0.74294139 
DTD1 0.20525932 -0.4290347 0.74275858 
NEK9 0.41583896 -0.429211 0.74266782 
HIBADH 0.15495998 -0.4293517 0.74259541 
NOLC1 0.38070191 -0.4296898 0.74242138 
NINJ2 0.24688947 -0.4298022 0.74236357 
AP4E1 0.00856148 -0.4298235 0.7423526 
CCAR2 0.46521707 -0.4299398 0.74229274 
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AC004893.2 0.58733054 -0.4302345 0.74214114 
HKR1 0.62043131 -0.4303722 0.74207033 
RALGPS1 0.2048356 -0.4304375 0.74203675 
MALSU1 0.188717 -0.4308694 0.74181462 
ZNF600 0.41588882 -0.4312205 0.74163411 
C5orf22 0.30159026 -0.431667 0.7414046 
PPP4R3B 0.04345268 -0.4317898 0.74134154 
XPA 0.01399719 -0.4318958 0.74128706 
OARD1 0.49363257 -0.4319107 0.74127937 
MT-TV -0.1093021 -0.4321037 0.74118022 
NAA15 0.326826 -0.432592 0.74092939 
UGGT2 0.23249959 -0.4329227 0.74075961 
IFT88 0.0945475 -0.4330395 0.74069962 
TOMM20 0.27131291 -0.4331008 0.74066813 
DDX59 0.15170751 -0.4331856 0.74062463 
C11orf1 0.12909392 -0.4333006 0.74056557 
AP003168.2 0.27281797 -0.4334212 0.74050369 
NUP50-AS1 0.24355164 -0.4334433 0.74049235 
UTP6 0.27272944 -0.4339307 0.74024223 
RN7SL32P 0.42106699 -0.4339812 0.74021628 
ATG101 0.20306544 -0.4343571 0.74002347 
CNEP1R1 0.25517036 -0.4343875 0.74000784 
NFKBIB -0.016409 -0.4344336 0.73998422 
NUPL2 0.3097442 -0.4350042 0.73969162 
ANXA1 0.27748853 -0.435042 0.73967221 
PAAF1 0.44784441 -0.4351394 0.73962227 
WDFY1 0.43337119 -0.4352115 0.73958533 
LRRC42 0.18191664 -0.4352925 0.73954378 
GRAP 0.18290231 -0.4355745 0.73939926 
SNX2 0.22626842 -0.4356013 0.73938554 
SLC41A3 0.49204927 -0.4358389 0.73926377 
ZNF140 0.18128831 -0.4359289 0.73921763 
DUS4L 0.2971357 -0.4363025 0.73902623 
CENPBD1 0.3671078 -0.4364493 0.73895104 
MYL5 0.11325799 -0.4368445 0.73874865 
AL390728.4 0.38733843 -0.4374057 0.73846132 
UBA3 0.29451685 -0.4375989 0.73836243 
EIF2D 0.16076385 -0.4376937 0.73831395 
NABP2 -0.1343687 -0.4377296 0.73829558 
ITPR1 0.36786296 -0.4377432 0.73828861 
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SLC39A3 -0.1465408 -0.4378631 0.73822727 
SSX2IP 0.1057979 -0.4384573 0.73792324 
EMC4 0.35783248 -0.4387226 0.73778758 
HMGB2 0.19085077 -0.4393146 0.73748491 
SRP9 0.27841821 -0.4393523 0.73746561 
CRELD1 0.17473338 -0.4393575 0.73746298 
APOL6 0.31455745 -0.4394865 0.73739703 
SLC25A17 0.19387159 -0.4395122 0.73738387 
DCPS 0.30333337 -0.4396539 0.73731149 
UTP23 0.0600036 -0.4399 0.73718573 
MIR320D1 0.23752292 -0.4399344 0.73716812 
LMO7 0.18835961 -0.4399375 0.73716656 
AL035071.1 0.20115654 -0.4399912 0.73713913 
ZNF638 0.41240655 -0.4399961 0.73713663 
SAMSN1 0.25981004 -0.4400297 0.73711944 
FAM109A 0.18408959 -0.4401797 0.73704281 
CCL4 0.3083286 -0.4402747 0.73699426 
STXBP4 0.02260167 -0.4404769 0.73689099 
SP4 0.21549562 -0.4407453 0.73675389 
METAP1 0.31934219 -0.4408156 0.73671799 
ZNF623 0.54348167 -0.4410159 0.73661573 
NAXE 0.53534733 -0.4410442 0.73660125 
CKB 0.19880999 -0.4415167 0.73636007 
ZNF519 0.09954123 -0.441984 0.73612158 
STAG3L5P-PVRIG2P-PILRB 0.27210251 -0.4419935 0.73611677 
NDUFB1 0.27676247 -0.4423233 0.73594849 
KRIT1 0.55897706 -0.4426638 0.73577483 
OSTC 0.23200566 -0.442873 0.73566811 
C5orf56 0.23761366 -0.4429748 0.73561623 
C1orf109 0.19573949 -0.4429854 0.73561084 
AC073869.1 0.30605084 -0.4430163 0.73559506 
BEX3 0.38046128 -0.4431687 0.73551736 
RPL41 0.17697356 -0.4433129 0.73544385 
DEGS1 0.09026962 -0.4433884 0.73540538 
TMEM150A -0.1782082 -0.4435525 0.73532174 
C18orf32 0.10810211 -0.443709 0.73524197 
ISCA2 -0.0213302 -0.4437629 0.73521448 
CWF19L1 0.50739179 -0.4438627 0.73516365 
ARFGAP3 0.26489159 -0.444092 0.73504679 
AC018628.1 0.12981299 -0.4447969 0.73468774 
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SGK494 0.14489019 -0.4448556 0.73465784 
UNKL 0.12316868 -0.4450564 0.73455558 
SMARCD3 0.03503493 -0.4456162 0.73427063 
FMN1 0.11283446 -0.4457279 0.7342138 
DTWD1 0.03992111 -0.4459457 0.73410297 
PPCS 0.28358499 -0.4461176 0.73401549 
GPR18 0.22329951 -0.4461849 0.73398126 
PRIMPOL 0.23156364 -0.4465028 0.73381952 
BNIP3 0.09377927 -0.4470149 0.73355909 
RRNAD1 0.01955797 -0.4470973 0.7335172 
ENSG00000271997 0.43259582 -0.4472585 0.73343526 
AL158212.3 0.24029918 -0.4472747 0.73342701 
FAM111A 0.26217516 -0.4473727 0.73337719 
NDUFAF8 0.29683144 -0.4476759 0.73322309 
FAM129B 0.20873869 -0.4477951 0.73316248 
RTL8A 0.19340302 -0.4478917 0.73311343 
COQ10B 0.02369316 -0.4486657 0.73272021 
CD300C 0.20312285 -0.4488393 0.73263202 
TMEM50B 0.14696442 -0.4489432 0.7325793 
SEC11A 0.43106266 -0.4489562 0.7325727 
SLF1 0.26366636 -0.4490608 0.73251957 
KIAA1143 0.18843309 -0.4495188 0.73228706 
ZC3HC1 0.25584326 -0.4496897 0.73220034 
PTP4A1 0.1801324 -0.4497046 0.73219277 
IQCG 0.04163051 -0.4497136 0.73218818 
C11orf58 0.27333244 -0.4498179 0.73213524 
AC027020.2 -0.0449452 -0.450485 0.7317968 
ZNF200 0.0800228 -0.4508051 0.73163447 
FASTKD2 0.50899709 -0.4512053 0.73143154 
LCORL 0.17976349 -0.4514409 0.73131208 
KIF5C 0.13685791 -0.4515327 0.73126555 
TEX10 0.27634735 -0.4517569 0.73115194 
PPP3CC 0.21150238 -0.4522874 0.73088313 
RAB11B-AS1 0.04335586 -0.4528691 0.73058849 
RNF8 0.26694583 -0.4529962 0.73052412 
SMC4 0.26300106 -0.4535327 0.73025248 
SUMF2 0.24382745 -0.4535947 0.73022111 
MED10 0.56822121 -0.4537608 0.73013706 
CMC2 0.16900824 -0.4540412 0.72999517 
CTDSPL 0.12182942 -0.4544983 0.72976389 
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CASP3 0.22693385 -0.4545758 0.72972468 
ATP5O 0.12880127 -0.4551771 0.72942062 
TMEM238 0.2063181 -0.4552297 0.72939405 
AC008764.10 0.25288026 -0.4557252 0.72914358 
FCRL3 0.31975892 -0.4557737 0.72911906 
KCTD5 0.21972804 -0.4561928 0.72890728 
TENM1 0.16404083 -0.456234 0.72888645 
TMEM56 0.06756473 -0.4563213 0.72884236 
MED19 0.35773654 -0.4567013 0.72865039 
SLC25A32 0.46852885 -0.456785 0.72860815 
POM121 0.34640899 -0.4568426 0.72857904 
RCHY1 0.22151803 -0.4569866 0.72850632 
SLC39A13 0.41997941 -0.4575264 0.72823378 
ATL3 -0.0609238 -0.4576764 0.7281581 
MFSD5 0.16394523 -0.4579781 0.72800584 
MAD2L2 0.27400055 -0.45806 0.72796451 
PDCD10 0.27019693 -0.4583291 0.72782872 
RAP2B 0.05089878 -0.4584118 0.72778703 
PATL2 0.26502384 -0.4587677 0.7276075 
CCND2 0.24992529 -0.459431 0.72727305 
LRRC75A 0.33576194 -0.4595243 0.72722601 
B3GNTL1 0.13108871 -0.4606069 0.72668048 
ERO1B 0.25703133 -0.4611209 0.72642166 
RNF6 0.31373685 -0.4612796 0.72634174 
AC136475.9 0.19821774 -0.4613368 0.72631296 
KATNB1 0.07132421 -0.4615146 0.72622343 
MANBAL -0.006695 -0.4616249 0.72616794 
NFX1 0.49576308 -0.4617582 0.72610084 
DCP2 0.32196695 -0.4618118 0.72607384 
CD59 0.25031023 -0.4618211 0.72606919 
BLOC1S2 -0.1176534 -0.461869 0.72604506 
NDUFS5 0.47686557 -0.4619293 0.7260147 
DDOST 0.25515345 -0.4620169 0.72597062 
ZNF384 0.24700896 -0.4621055 0.72592603 
ALDH6A1 0.2707458 -0.4622033 0.72587684 
MPP5 0.2849041 -0.4625 0.72572757 
FAM169A 0.27717948 -0.4625493 0.72570277 
PQLC3 0.22793868 -0.4629194 0.72551664 
HKDC1 0.26918577 -0.4629792 0.72548657 
KAT14 0.25931343 -0.46299 0.72548116 



 123 

NFKBIL1 0.32847483 -0.4630631 0.72544438 
RANBP9 0.30224636 -0.4632123 0.72536934 
NAA20 0.1197608 -0.4632621 0.72534432 
PDE4DIP 0.3061694 -0.4634365 0.72525662 
TAF1C 0.18191752 -0.4641628 0.72489163 
PTPN2 0.21660584 -0.4643749 0.72478507 
AC073957.3 0.30504112 -0.4644444 0.72475014 
REEP4 0.29770531 -0.4646143 0.72466481 
ACAD8 0.04132302 -0.4656184 0.72416059 
FAM162A 0.25074311 -0.465944 0.72399719 
FGD2 0.38051654 -0.4659999 0.72396911 
IFT80 0.36854821 -0.4660309 0.72395357 
AK3 0.4136225 -0.4660686 0.72393466 
AC117382.1 0.13625774 -0.4662058 0.7238658 
OGFOD3 0.41211923 -0.4667281 0.7236038 
RAD1 0.18416123 -0.4667806 0.72357747 
NDUFA5 0.13541567 -0.4669498 0.72349262 
FUOM 0.1744848 -0.4669815 0.72347675 
TRIM22 0.23634823 -0.4669963 0.7234693 
PTRHD1 -0.1020098 -0.4671548 0.7233898 
NR6A1 0.22443343 -0.4672616 0.72333627 
GPR65 0.38199208 -0.4675632 0.72318506 
RHOU 0.13730135 -0.467631 0.7231511 
VRK2 0.34419709 -0.467648 0.72314257 
LNX2 0.36849159 -0.4677757 0.72307856 
SLC27A1 0.52843506 -0.4681421 0.72289494 
MAP3K7 0.27050636 -0.4682585 0.72283663 
NIPSNAP2 0.30905982 -0.4682881 0.72282179 
WDR18 0.46922596 -0.4687105 0.72261019 
SCRN1 0.10799368 -0.4687677 0.72258154 
CIAPIN1 0.41326626 -0.4690493 0.72244049 
SUFU 0.45216825 -0.469531 0.72219933 
SLC25A25-AS1 0.2314522 -0.4695686 0.72218053 
SKA2 0.31728169 -0.469692 0.72211872 
SCIMP 0.28824579 -0.4698532 0.72203808 
BEX2 0.23572195 -0.4701538 0.72188762 
AC138409.2 0.04623071 -0.4702741 0.72182742 
REV1 0.47364026 -0.4705202 0.72170432 
COMMD9 0.13116832 -0.470944 0.72149237 
CNIH1 0.33133924 -0.4711421 0.72139329 
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ZNF761 0.3103 -0.471305 0.72131182 
KBTBD3 0.26234166 -0.471309 0.72130984 
PAICS 0.23635216 -0.4714046 0.72126204 
PFDN5 0.12517472 -0.4721652 0.72088189 
FAM210A 0.10713171 -0.4722964 0.72081632 
MYCL 0.27250248 -0.4723415 0.72079378 
IKZF4 0.47752663 -0.472739 0.72059523 
FAM3C 0.12003152 -0.4728465 0.72054154 
CYP4V2 0.22632343 -0.4731256 0.72040216 
MRPL22 0.18217746 -0.4736961 0.72011731 
MIER2 0.30737344 -0.4737035 0.72011363 
DCAF4 0.16693087 -0.4738207 0.72005513 
LATS2 0.36569634 -0.4744224 0.71975491 
ZNF706 0.21468989 -0.4749776 0.71947796 
SRC 0.0048908 -0.4751136 0.71941014 
ANAPC4 0.16327228 -0.4754366 0.71924912 
USP30 0.21205578 -0.4756491 0.71914318 
CLK2 0.31339442 -0.4758283 0.71905384 
CTSH 0.39811845 -0.4761006 0.71891816 
CROCCP3 0.23195301 -0.476332 0.71880285 
TRMT10C -0.0203989 -0.4770425 0.71844891 
PLCB3 -0.0576885 -0.4773856 0.7182781 
AC131009.4 -0.0705998 -0.4775222 0.71821006 
ZNF720 0.28154491 -0.4779691 0.71798762 
CUTC 0.13059801 -0.4780476 0.71794856 
CCNK 0.24372544 -0.4781045 0.71792025 
MIF4GD 0.25326895 -0.4788174 0.71756558 
PGAM5 0.25457317 -0.4791732 0.71738866 
KLRC1 0.27337779 -0.4791904 0.7173801 
ZNF252P 0.09192304 -0.4796734 0.71713997 
TMEM106C 0.27085045 -0.4797207 0.71711645 
IKBIP 0.11849893 -0.4800045 0.71697537 
ZNF264 0.16510241 -0.4801746 0.71689084 
MAP3K12 0.33796796 -0.4804243 0.71676679 
ZXDC 0.33692633 -0.4804926 0.71673288 
DNAAF5 0.15664465 -0.4815823 0.71619171 
CXorf21 0.311953 -0.4824997 0.71573643 
EZH2 0.19274783 -0.4825188 0.71572694 
AC079630.1 0.1655604 -0.4834496 0.71526535 
AC090948.1 0.27414189 -0.4834812 0.71524964 
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FAM76A 0.30287668 -0.4836453 0.7151683 
FANCD2 0.17463318 -0.4836891 0.71514659 
RPL23 0.27927256 -0.4838331 0.7150752 
PLA2G6 0.12365616 -0.4838658 0.71505901 
PKD1 0.30379667 -0.4843178 0.71483502 
ATP1B1 0.35920712 -0.4845066 0.71474147 
LINC00869 0.40592628 -0.4857498 0.71412583 
FLAD1 0.11928346 -0.485839 0.71408169 
DCTPP1 0.22681231 -0.4862594 0.71387361 
IFI44 0.2956611 -0.4865564 0.71372666 
EPHA4 0.43000921 -0.4867794 0.71361635 
HIST1H2BC 0.0729906 -0.4869475 0.71353324 
YAF2 0.30069476 -0.4870087 0.71350295 
SCLT1 0.22832532 -0.48702 0.71349736 
NIPA2 0.2073633 -0.4871887 0.71341391 
EXOSC3 0.27083485 -0.4872318 0.71339262 
MRPL34 -0.0933727 -0.4874162 0.71330145 
NKAP 0.32026515 -0.4882709 0.71287899 
AP003486.2 0.0113402 -0.4885484 0.71274189 
SMCO4 0.37916519 -0.4886427 0.7126953 
UBE2D4 0.41286655 -0.4887843 0.71262535 
DCUN1D1 0.10940058 -0.4894481 0.71229755 
PARP8 0.26255714 -0.4896751 0.71218547 
MAPK8 0.35212246 -0.4899512 0.71204919 
RAD18 0.03198495 -0.4900762 0.71198748 
MARCO 0.10504734 -0.4901777 0.71193743 
HEXDC 0.36913225 -0.4905125 0.71177222 
SMYD2 0.3615202 -0.4906529 0.71170296 
API5 0.24898672 -0.4910914 0.71148665 
FBXO46 0.30380171 -0.4913743 0.71134715 
UBFD1 -0.0746536 -0.4914606 0.71130462 
POLA2 0.36737666 -0.4915931 0.71123926 
SF3B6 0.47690701 -0.4921732 0.71095334 
STAT2 0.32716329 -0.492216 0.71093227 
SRP54 0.11376053 -0.492256 0.71091257 
ANXA3 0.341318 -0.4922797 0.71090087 
ACVR1B 0.71308821 -0.4928369 0.71062638 
COPS7A 0.25201662 -0.4931016 0.71049597 
ZNRF2 0.2419997 -0.4931401 0.71047701 
ILF2 0.31197691 -0.4932648 0.71041564 
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LRRK1 0.37801502 -0.4934014 0.71034837 
PABPC1P3 0.28370802 -0.4934929 0.7103033 
KCMF1 0.26328608 -0.4936122 0.71024455 
NCDN 0.2376791 -0.4938482 0.71012839 
REEP3 0.41503554 -0.4939274 0.71008941 
INSIG2 -0.0120828 -0.4939571 0.71007481 
YIF1A 0.38738079 -0.4939875 0.71005984 
MUS81 0.26083188 -0.4940477 0.7100302 
AC027097.1 0.25178175 -0.4941163 0.70999645 
APOL1 0.27831503 -0.4947905 0.70966475 
SUN1 0.23358508 -0.4950832 0.70952075 
SZT2 0.24907752 -0.4952915 0.70941834 
PMVK 0.33688849 -0.4953404 0.70939428 
HPF1 -0.0020332 -0.4953467 0.70939119 
RNF4 0.20485729 -0.4955043 0.70931371 
RBM19 0.07477179 -0.4957539 0.709191 
CLCN7 0.08822398 -0.4957605 0.70918772 
BRIX1 0.29748582 -0.4963421 0.70890191 
ANKZF1 0.15321837 -0.4964162 0.70886548 
PGM1 0.29725544 -0.4964969 0.70882586 
ZC3H10 0.41685889 -0.4965859 0.7087821 
PAOX 0.3239905 -0.4966577 0.70874685 
YPEL2 0.14498665 -0.496688 0.70873194 
HIST1H2BD 0.22034284 -0.4970684 0.70854508 
PDCL3 0.27816175 -0.4973424 0.70841056 
DUSP23 0.14490495 -0.4981307 0.70802356 
AL079342.1 0.31453782 -0.4981753 0.70800167 
AC064805.1 0.15679553 -0.4981803 0.70799924 
RRAS 0.48527442 -0.4982466 0.70796667 
TUBB6 0.30704152 -0.4986678 0.70776001 
FAM189B 0.36598804 -0.4988264 0.70768224 
GBP1 0.30909687 -0.4991747 0.70751141 
POLR3C 0.1106285 -0.4993937 0.707404 
APEX1 0.32948442 -0.499537 0.70733377 
NOM1 0.26496549 -0.4996772 0.70726503 
FAM13B 0.20143445 -0.4997242 0.70724196 
AGK 0.30168435 -0.5003358 0.70694224 
FBXO3 0.33787454 -0.500526 0.70684903 
SERINC1 0.36484354 -0.5009466 0.70664298 
PCSK5 0.23227621 -0.5012839 0.70647779 
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HLA-F-AS1 0.34185198 -0.5016486 0.70629921 
ERH 0.41244631 -0.5024452 0.70590933 
C21orf58 0.1269842 -0.5024553 0.70590439 
EIF4E 0.47047711 -0.5026444 0.70581188 
IL2RB 0.44940525 -0.5028177 0.70572708 
EIF3E 0.35616985 -0.5029492 0.70566277 
RABL2B 0.14263806 -0.5029674 0.70565386 
NXT1 0.44047595 -0.5038898 0.70520283 
HCAR3 0.13164043 -0.5039464 0.70517519 
ATP1B3 0.18424155 -0.503949 0.70517391 
AC048341.2 0.47958877 -0.5046069 0.70485241 
CCDC174 0.32934011 -0.5047704 0.70477255 
C15orf57 0.39921614 -0.5048233 0.70474671 
MED30 0.11054003 -0.5049237 0.70469767 
NAA16 -0.0846635 -0.5051541 0.70458513 
ZNF783 0.22619824 -0.5053471 0.70449085 
HEXB 0.40601618 -0.5053889 0.70447047 
RFXAP 0.29067375 -0.5059656 0.70418889 
C12orf43 0.26719763 -0.5063232 0.70401437 
ATG12 0.34052801 -0.5064251 0.70396463 
RASGRF2 0.30966822 -0.5066458 0.70385696 
HTATSF1 0.23085639 -0.5067321 0.70381488 
ZFP62 0.49788731 -0.5070671 0.70365147 
LPCAT2 0.34154865 -0.5071837 0.70359457 
ZMYM6 0.40241705 -0.5072634 0.70355573 
TNNI2 0.33172981 -0.5074403 0.70346946 
ZNF224 0.29183639 -0.5076231 0.70338035 
BNC2 0.24130693 -0.5076282 0.70337785 
HAUS6 0.31635775 -0.5076861 0.70334963 
CEP95 0.32950289 -0.5081772 0.70311023 
DBI 0.21302719 -0.5081947 0.70310169 
HLA-DQA2 0.05635635 -0.5083914 0.70300583 
HSPE1 0.40537714 -0.5086151 0.70289683 
GYPA 0.3377087 -0.5087627 0.70282496 
C1orf162 0.27971326 -0.5091203 0.70265075 
PPP1R16A 0.29681282 -0.5096313 0.70240191 
KIAA1191 0.26270855 -0.509666 0.70238501 
GFPT1 0.00748512 -0.5096874 0.7023746 
VASH1 0.18340474 -0.509916 0.70226331 
ATP10A 0.18044634 -0.5099359 0.70225365 
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OSGIN2 0.54988399 -0.5106142 0.70192355 
ZZZ3 0.49943319 -0.5122195 0.70114296 
SNHG7 0.38830795 -0.5126505 0.70093353 
TIMM17A 0.3170955 -0.5128059 0.70085802 
RAB20 0.16903857 -0.5130011 0.70076317 
ZNF776 0.39376122 -0.5134185 0.70056049 
RIT1 -0.034273 -0.5134348 0.70055254 
CPM 0.23089745 -0.5140542 0.70025185 
IFIT5 0.53575819 -0.5141225 0.7002187 
CCDC28B 0.20934838 -0.514145 0.70020777 
AC147067.1 -0.109573 -0.5151593 0.69971565 
MAPK9 0.50514331 -0.515432 0.6995834 
MRE11 0.30737145 -0.5156901 0.69945826 
AP003068.2 0.13129916 -0.515988 0.69931385 
ERMP1 0.07746774 -0.5168524 0.69889497 
IFIT3 0.436477 -0.516883 0.69888014 
DVL2 0.30552842 -0.517131 0.69876003 
CTNS 0.05529016 -0.5174707 0.69859552 
FBXO21 0.21172247 -0.5177332 0.69846841 
WDR47 0.36810201 -0.5177891 0.69844138 
DDX10 0.42993599 -0.5180798 0.69830063 
CAPN10 0.55950292 -0.5183174 0.69818565 
NOMO1 0.42057602 -0.5185701 0.69806338 
ADCY7 0.49993947 -0.5187271 0.69798742 
CEBPE 0.08096707 -0.5190073 0.69785186 
CDPF1 0.22732031 -0.5193292 0.69769616 
GTPBP10 0.37859277 -0.5197326 0.69750109 
TP53I13 0.2012278 -0.5197895 0.69747362 
ANXA2R 0.23062341 -0.5198595 0.69743975 
DCUN1D5 0.26416487 -0.5203682 0.69719388 
ZCCHC9 0.25631649 -0.5205113 0.69712474 
TRAV6 0.07456909 -0.5205785 0.69709225 
ELOC 0.01068259 -0.5208313 0.69697013 
SEPSECS 0.42445587 -0.5208623 0.69695515 
POLG2 0.23865392 -0.5214257 0.69668304 
C18orf21 0.37346303 -0.5217497 0.6965266 
SCOC 0.2851498 -0.5222429 0.6962885 
MRPL35 0.07323783 -0.5229521 0.69594629 
AC004846.2 0.25432959 -0.5230104 0.6959182 
MED11 0.21790482 -0.5231475 0.69585206 
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SLC43A3 0.28413997 -0.5232598 0.69579787 
SEC24A 0.12330836 -0.5240715 0.69540653 
AC008467.1 0.45064391 -0.5240811 0.69540187 
ZNF768 0.45959204 -0.5240858 0.69539961 
UBE4A 0.20385608 -0.5244791 0.69521006 
BZW2 0.4167312 -0.5247019 0.69510272 
COPRS 0.24848193 -0.5253737 0.6947791 
JAK2 0.19148597 -0.5256863 0.69462859 
SH3BGRL2 0.10601825 -0.5259398 0.69450656 
OAS1 0.25195281 -0.5261317 0.69441416 
HAVCR2 0.15161684 -0.5263368 0.69431544 
APTX 0.28579738 -0.5269076 0.69404083 
CKS1B 0.31153139 -0.5269275 0.69403123 
ANKRD36BP2 0.33972347 -0.5275204 0.69374608 
UMPS 0.42620504 -0.5275753 0.69371965 
POMGNT2 0.25723241 -0.5281726 0.69343253 
VDAC3 0.31721547 -0.5285101 0.6932703 
ELL2 0.39913096 -0.5285943 0.69322984 
SORT1 0.25987241 -0.5302382 0.69244039 
STK35 0.54447833 -0.5313634 0.69190058 
OTUD6B 0.35243726 -0.5313833 0.69189101 
NEIL2 0.64008911 -0.5314798 0.69184471 
FEM1B 0.44811698 -0.5320253 0.69158319 
GTPBP3 0.18855608 -0.5323475 0.69142877 
NMD3 0.3581546 -0.5323656 0.6914201 
PLCH2 -0.0767174 -0.5325064 0.6913526 
SLC25A28 0.34963505 -0.532909 0.69115971 
RCAN1 0.35323076 -0.5334845 0.69088405 
KNOP1 0.44920653 -0.5336726 0.69079397 
KCNQ5-IT1 0.3407492 -0.5337566 0.69075374 
N4BP2L1 0.32054967 -0.5341157 0.69058183 
SLC15A2 0.45689141 -0.5345424 0.69037761 
BTBD10 0.56972175 -0.5350401 0.69013951 
CEP162 0.22844998 -0.5351226 0.69010002 
APOBEC3D 0.36980302 -0.5354596 0.68993886 
CDC42-IT1 0.30039937 -0.5354721 0.68993286 
GBP5 0.26612713 -0.5369115 0.68924484 
SUB1 0.20049282 -0.5376172 0.68890779 
CYB561 0.19739173 -0.5379575 0.68874533 
IDH3A 0.20020652 -0.5381749 0.68864151 
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AP000560.1 0.28537449 -0.5383831 0.68854216 
POLR2M 0.16744376 -0.5384033 0.68853254 
COG7 0.04535491 -0.539178 0.68816287 
COMMD5 0.06117082 -0.5402475 0.68765291 
DHRS9 0.17530463 -0.5410519 0.68726961 
C16orf87 0.09649566 -0.5411181 0.68723807 
VAV2 0.32573069 -0.5412898 0.68715628 
CSE1L 0.24749541 -0.5414454 0.6870822 
RPP14 0.10927296 -0.5416943 0.68696367 
NAGA 0.41346988 -0.5421406 0.68675118 
PPP1CC 0.24197462 -0.5424926 0.68658364 
PRDX1 0.24382701 -0.54253 0.68656584 
HINFP 0.30688752 -0.5432049 0.68624474 
RFC5 0.4419482 -0.5438292 0.68594786 
TYW5 0.25459406 -0.5439608 0.68588528 
CYBRD1 0.26132325 -0.544596 0.68558337 
SNAPIN 0.29904276 -0.5449396 0.68542011 
LRRC37B 0.38325704 -0.5452157 0.68528892 
LINC00476 0.07716242 -0.5455432 0.6851334 
ETNK1 0.34864189 -0.545949 0.6849407 
MRPS6 0.22798522 -0.5460868 0.68487526 
TOR1AIP1 0.32401109 -0.5461546 0.68484309 
TGFBR1 0.18428456 -0.5466845 0.68459162 
VRK1 0.40306034 -0.5471227 0.68438368 
BNIP2 0.23894521 -0.5471616 0.68436526 
EHBP1 0.63211649 -0.547391 0.68425644 
VAV3 0.55517554 -0.5475957 0.68415935 
TOR3A 0.58607304 -0.5476338 0.68414131 
C21orf91 0.34339147 -0.547988 0.68397333 
FAM168B 0.41552142 -0.5482539 0.68384727 
RNF121 0.25943759 -0.548557 0.68370363 
REPS2 0.28640374 -0.5488917 0.68354505 
SIGLEC7 0.24267091 -0.5493071 0.68334824 
CEACAM1 0.18078107 -0.5497726 0.68312779 
STK36 0.21077662 -0.5498844 0.68307486 
SACS 0.38387805 -0.5501722 0.6829386 
DUSP7 0.53712116 -0.5507946 0.68264404 
ZNF175 0.39572242 -0.550998 0.68254782 
BTRC 0.10124267 -0.5511888 0.68245755 
CASP8AP2 0.35242655 -0.5512179 0.68244379 
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SS18 0.2175692 -0.5512249 0.68244045 
MT1E 0.24183071 -0.551371 0.68237138 
CSTF3 -0.0760332 -0.5513927 0.6823611 
POLR2H 0.4828162 -0.55166 0.68223469 
RPL9 0.30479109 -0.5519788 0.68208392 
R3HCC1L 0.28212255 -0.5527678 0.681711 
UBE2E1 0.14449946 -0.5533878 0.6814181 
ZNF555 0.2976875 -0.5538038 0.68122166 
LRRC37A4P 0.50284259 -0.5541064 0.6810788 
GINM1 0.39037238 -0.5542179 0.68102617 
FKBP3 0.34616079 -0.554346 0.68096569 
LRSAM1 0.49683188 -0.5543784 0.68095041 
CTSL 0.14332503 -0.5550357 0.68064022 
SH2B3 0.35622885 -0.5558327 0.68026433 
LILRB1 0.45425952 -0.5560084 0.68018145 
ATG3 0.46718784 -0.5564985 0.67995042 
AC069366.2 0.36330965 -0.556568 0.67991767 
NAPG 0.38020846 -0.5567444 0.67983456 
SYNJ2BP 0.24951434 -0.5570892 0.67967208 
SRSF7 0.3944804 -0.5572211 0.67960994 
MRPL46 0.22636181 -0.5574802 0.67948794 
INTS6L 0.25636243 -0.5578826 0.67929841 
SP3 0.24780015 -0.5579806 0.67925229 
WDR36 0.19772271 -0.5583479 0.67907935 
AC007292.2 0.15442147 -0.5585167 0.67899991 
DNASE1L1 0.25193462 -0.5586309 0.67894615 
ZC3H12D 0.47418919 -0.559438 0.67856647 
KLF4 0.47882113 -0.5594624 0.67855499 
TMED4 0.4528178 -0.5601307 0.67824072 
PIGB 0.38031806 -0.5606026 0.67801891 
ZBP1 0.4209725 -0.5607245 0.6779616 
AC004918.1 0.32030017 -0.5613332 0.67767564 
ZNF506 0.41668561 -0.5614565 0.67761771 
IL18RAP 0.24487164 -0.5617942 0.67745914 
REXO2 0.3745028 -0.5623667 0.67719033 
PHLDB2 0.38392746 -0.562687 0.67704002 
ACOX3 0.62060697 -0.5628414 0.67696756 
ARRDC4 0.40098764 -0.5628862 0.67694655 
DERA 0.4376798 -0.5629106 0.67693507 
ZNF587B 0.3288217 -0.5632363 0.67678229 
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ITGAE 0.18221559 -0.5633471 0.6767303 
AKR7A2 0.22677002 -0.5635193 0.67664954 
MFSD8 0.22520456 -0.5635951 0.67661397 
SLC25A24 0.34197327 -0.5636636 0.67658185 
AC024075.1 0.3610122 -0.5640617 0.6763952 
PPARD 0.51203405 -0.5655798 0.67568382 
RPAIN 0.26239334 -0.5661443 0.67541948 
ZNF426 0.4375588 -0.5663532 0.67532171 
NSMCE3 0.48689987 -0.5664338 0.67528398 
ANKRD52 0.63633168 -0.5664402 0.67528098 
ETHE1 0.2726024 -0.5664459 0.6752783 
ST3GAL5 0.30762644 -0.5665751 0.67521784 
TSNAX 0.34318213 -0.5672945 0.6748812 
BUB3 0.1498339 -0.5674447 0.67481094 
TAPT1 0.3938171 -0.5677979 0.67464578 
CDCA4 0.32089026 -0.56782 0.67463544 
RNF125 0.31819361 -0.5683152 0.67440392 
AL121839.2 0.29895045 -0.5685526 0.67429292 
LRIG1 0.3075266 -0.5688711 0.67414408 
SMIM24 0.20784533 -0.5699294 0.67364973 
FUCA1 0.40335879 -0.5704828 0.67339139 
TTC37 0.36006279 -0.5710417 0.67313057 
TRIB2 0.42610764 -0.5712906 0.67301447 
MCUB 0.34885098 -0.5714659 0.67293267 
MOV10 0.37625687 -0.5718121 0.67277121 
RCC1L 0.15339665 -0.5718284 0.67276363 
MPHOSPH10 0.67739412 -0.572187 0.67259642 
C21orf62-AS1 0.0807822 -0.572512 0.6724449 
ZBED5-AS1 0.42952121 -0.5730451 0.6721965 
TMEM14C 0.31255082 -0.5731243 0.67215957 
TIMM21 0.28477728 -0.5735288 0.67197115 
SNRPA1 0.13467213 -0.5737524 0.67186703 
C2orf49 0.39973113 -0.5740071 0.67174842 
MIA3 0.49068961 -0.5740204 0.67174223 
CWC15 0.37130509 -0.574085 0.67171213 
LACTB 0.24465619 -0.5745456 0.67149773 
SDF2L1 0.375582 -0.5745632 0.67148954 
TRMT12 0.25683595 -0.5747168 0.67141806 
SLC25A46 0.37603537 -0.5751936 0.67119616 
MRPS7 0.31776684 -0.5763622 0.67065272 
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EXOSC2 0.43416838 -0.5765167 0.67058088 
MEAF6 0.22524402 -0.5765454 0.67056758 
DNAJC27 0.36274287 -0.5765611 0.67056025 
HS2ST1 0.12717139 -0.5774231 0.67015974 
TM9SF2 0.27108696 -0.5778195 0.6699756 
GM2A 0.25527905 -0.5783423 0.66973286 
GCLM 0.19351929 -0.5784328 0.66969087 
HS6ST1 0.48572125 -0.578759 0.66953949 
IGFBP7 0.57502794 -0.5791244 0.66936991 
STAMBP 0.24647058 -0.5793082 0.66928464 
RAB9A 0.25769777 -0.5796769 0.66911363 
CD28 0.1197685 -0.5802018 0.6688702 
HENMT1 0.0305696 -0.5806168 0.66867781 
ADAP2 0.08271462 -0.580942 0.6685271 
ATRAID 0.37988799 -0.5811475 0.66843192 
CPOX 0.17844495 -0.5811868 0.66841369 
ADGRL1 0.42911323 -0.5813731 0.66832738 
CTBP1-AS2 0.50787123 -0.581535 0.6682524 
ALG2 0.310622 -0.5818883 0.66808877 
SLC35A1 0.34660475 -0.5823312 0.6678837 
POP4 0.35712816 -0.5824886 0.66781082 
TRIT1 0.22496698 -0.5825759 0.66777043 
EIF4ENIF1 0.54972147 -0.5832766 0.66744619 
DIS3L2 0.32244481 -0.5832959 0.66743723 
ZNF92 0.37700274 -0.5837533 0.66722565 
EYA3 0.20230016 -0.5842243 0.66700786 
SRFBP1 0.18657489 -0.5847715 0.66675495 
ZNF780B 0.28411456 -0.5848826 0.66670361 
LMAN2L 0.21597964 -0.5859553 0.66620803 
DHX40 0.36822548 -0.586004 0.66618559 
AC007342.2 0.4764585 -0.5863035 0.6660473 
ITGB3 0.26258765 -0.5867549 0.66583893 
TNFAIP6 0.24465924 -0.5868261 0.66580604 
CCDC117 0.16055438 -0.587052 0.6657018 
DHRS4-AS1 0.28993711 -0.5870939 0.66568248 
CLTA 0.19619904 -0.5874209 0.66553163 
DNAJC19 0.3263287 -0.5879153 0.66530356 
ABCC13 0.74951404 -0.5892952 0.66466753 
LINC00937 0.49068181 -0.5894321 0.66460446 
G3BP2 0.22767234 -0.5897318 0.66446642 
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PYM1 0.29528397 -0.5902329 0.66423569 
RSPH3 0.47104657 -0.5903633 0.66417561 
AC093726.1 0.41747707 -0.5912356 0.66377419 
PRELID3B 0.32457978 -0.5922033 0.66332908 
AC125257.1 0.21582165 -0.5930497 0.66294002 
TMEM170B 0.18066244 -0.5932044 0.66286895 
RABGGTA 0.48538053 -0.5939876 0.6625092 
ASH2L 0.35573953 -0.5942729 0.66237819 
ARL1 0.34996559 -0.5945762 0.66223898 
COASY 0.51457313 -0.5947763 0.66214711 
PAPD7 0.4658788 -0.594828 0.66212339 
CEBPG 0.38872228 -0.5950129 0.66203854 
AL355816.2 0.19397258 -0.595394 0.66186368 
LIG1 0.36352806 -0.5954996 0.66181522 
ARMC1 0.37989193 -0.5955223 0.66180482 
YARS2 0.63072166 -0.596498 0.6613574 
ACTR5 0.28077353 -0.5967832 0.66122667 
LPAR6 0.39009009 -0.5970064 0.66112438 
SLA2 0.62283007 -0.5971227 0.66107106 
NPEPL1 0.38180197 -0.597783 0.66076858 
METTL17 0.49275936 -0.5981831 0.66058534 
OTUD6B-AS1 0.09935679 -0.59832 0.66052267 
AC096733.2 0.24256687 -0.5985983 0.66039527 
BDH1 0.23875439 -0.5991338 0.66015018 
ZSCAN30 0.22994223 -0.5992306 0.66010588 
FAM157A 0.28820034 -0.5995536 0.65995812 
DDX19A 0.3746681 -0.6003431 0.65959706 
EXOSC7 0.56727384 -0.6006299 0.65946594 
NFU1 0.32001014 -0.602152 0.65877059 
CLPX 0.45802972 -0.6022572 0.65872252 
COPS8 0.45213509 -0.6024318 0.6586428 
SUCO 0.34925665 -0.6030708 0.65835117 
ZNF589 0.22873686 -0.6031025 0.65833668 
HIGD1A 0.27038195 -0.6032688 0.6582608 
CCDC82 0.31581846 -0.6033537 0.65822205 
SLC25A12 0.36639639 -0.6034197 0.65819196 
TPT1-AS1 0.38372687 -0.6044603 0.65771737 
DLD 0.38666015 -0.6048756 0.65752805 
TOB1 0.19771933 -0.6060954 0.65697236 
WWP1 0.29364808 -0.6070459 0.65653966 
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RYK 0.38120918 -0.6076026 0.65628636 
LDAH 0.65253797 -0.6080247 0.65609441 
TUBE1 0.19029744 -0.6082422 0.6559955 
MRPL33 0.28415064 -0.6087801 0.65575094 
CLEC2B 0.6054436 -0.6100798 0.65516045 
AUTS2 0.16268594 -0.6103144 0.65505393 
EED 0.41348899 -0.6114876 0.65452145 
PSMA4 0.53271951 -0.6121488 0.65422154 
PPID 0.53771149 -0.6122513 0.65417508 
AIG1 0.23451166 -0.6130079 0.65383209 
TULP4 0.33087381 -0.6132468 0.65372385 
USP44 0.37205584 -0.6135845 0.65357084 
MGLL 0.33993067 -0.6137911 0.65347726 
AC098679.1 0.46761006 -0.6139001 0.65342788 
TBC1D2 0.41945465 -0.6149463 0.65295422 
NDUFB3 0.29421763 -0.6152436 0.65281965 
AC007066.2 0.13767262 -0.6152559 0.65281409 
CCDC127 0.28436167 -0.6170503 0.65200264 
LINC01215 0.28921013 -0.617446 0.65182384 
PHTF2 0.54408768 -0.6178684 0.651633 
MICA -0.0452541 -0.6179363 0.65160236 
REPS1 0.41772596 -0.6181979 0.65148421 
AC093323.1 0.2848851 -0.618253 0.65145932 
ELAVL1 0.19125857 -0.6183643 0.65140906 
ATP6V1G1 0.29985219 -0.6185096 0.65134345 
GPRASP1 0.23249846 -0.618861 0.65118482 
MGMT 0.00873528 -0.6193016 0.65098599 
HMGN3 0.52925394 -0.6193366 0.65097018 
IGIP 0.26443859 -0.6193516 0.65096341 
RNU7-41P 0.30117361 -0.6197624 0.65077809 
DDX51 0.25840853 -0.6205085 0.65044165 
TIMM44 0.32465391 -0.6215507 0.64997194 
CLASP2 0.07883851 -0.6220518 0.64974621 
MORC2 0.5205878 -0.622603 0.649498 
TSTD2 0.21397427 -0.6231728 0.64924155 
AACS 0.2139599 -0.6235623 0.64906628 
PHF10 0.27319912 -0.6235683 0.64906358 
GTPBP8 0.37035892 -0.6236931 0.64900744 
OPN3 0.43734987 -0.6239718 0.64888207 
TRIAP1 0.46229163 -0.6245284 0.64863177 
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CAMKMT 0.33865432 -0.6248707 0.64847788 
GMPPB 0.32514183 -0.6256407 0.64813189 
UTP4 0.65612392 -0.625646 0.64812951 
MTA2 0.43248222 -0.6264714 0.64775881 
HDHD5 0.27319034 -0.6268372 0.64759457 
STX6 0.26606473 -0.6274502 0.64731946 
TERF2 0.46721027 -0.6279452 0.64709739 
PGGT1B 0.36659484 -0.6280465 0.64705199 
ANKRD10 0.44307329 -0.6281094 0.64702377 
SERGEF 0.25169874 -0.6284942 0.6468512 
WDR89 0.57231473 -0.6285056 0.64684608 
AC007342.4 0.24889933 -0.6286221 0.64679388 
ZDHHC20 0.44549818 -0.6294618 0.6464175 
TSPOAP1 0.35037685 -0.629755 0.64628615 
METTL12 0.55457331 -0.6298757 0.64623208 
PTER 0.17467689 -0.6300902 0.64613603 
PDP2 0.62445806 -0.6303698 0.6460108 
NAA30 0.27862553 -0.6308753 0.64578451 
EID2 0.4021904 -0.6314439 0.64553004 
DRG1 0.18807819 -0.6325726 0.64502519 
C18orf25 0.12302748 -0.6343495 0.64423124 
ACTA2 0.56850337 -0.6355724 0.64368536 
POLR3E 0.30159791 -0.6372841 0.64292212 
DRAM2 0.50671939 -0.6377389 0.64271946 
TOGARAM1 0.34197438 -0.6378807 0.64265631 
ASF1A 0.34405122 -0.6379259 0.64263619 
EHD4 0.19381227 -0.6388315 0.64223289 
TTC26 0.37904948 -0.6401126 0.64166285 
MCM2 0.34358344 -0.6411976 0.64118046 
CHIC1 0.4226668 -0.641294 0.64113765 
FBXO45 0.07576634 -0.6420157 0.64081699 
NLRP3 0.26792019 -0.6420501 0.64080173 
ASNSD1 0.51455094 -0.6427813 0.64047702 
SPATA5 0.40580301 -0.6432652 0.64026224 
MICU2 0.60510523 -0.6449818 0.63950084 
RIPK2 0.57915099 -0.6453327 0.63934532 
RIOK1 0.57192841 -0.6453472 0.63933892 
DOHH 0.2863982 -0.6456693 0.63919616 
ISY1 0.71138492 -0.6457006 0.63918232 
FCGR1A 0.1511084 -0.646132 0.63899121 
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VIM-AS1 0.24381816 -0.6466187 0.63877569 
THAP5 0.30779649 -0.6475021 0.63838466 
MAN1C1 0.52603156 -0.6479659 0.63817949 
CYSLTR2 0.05174081 -0.6483334 0.63801693 
ALG10B 0.45745988 -0.6487929 0.63781377 
AC110769.2 0.14147817 -0.6490654 0.63769328 
CSTF2T 0.35272811 -0.6496537 0.63743329 
SEC24D 0.54023754 -0.6516363 0.63655794 
NEPRO 0.23385526 -0.6521151 0.6363467 
PRKCI 0.20532297 -0.6523502 0.63624301 
HNMT 0.30698192 -0.6524503 0.63619888 
SETDB2 0.23044233 -0.6525192 0.63616847 
FBXO8 0.18758995 -0.6528041 0.63604286 
GTF2H5 0.30271918 -0.6539692 0.63552941 
SEC23IP 0.16832564 -0.654319 0.63537536 
EMC2 0.47420209 -0.6552245 0.63497669 
TMEM42 0.42576945 -0.6558248 0.63471251 
MTHFD2 0.16831495 -0.6558259 0.63471204 
AC004951.1 0.47310857 -0.6565383 0.63439871 
TANGO6 0.32122883 -0.6575326 0.63396164 
TMEM123 0.26874455 -0.6592102 0.63322488 
IMPAD1 0.33491893 -0.6597623 0.63298257 
ARHGAP19 0.23056323 -0.6626502 0.63171677 
TRIM5 0.33060853 -0.6643601 0.63096849 
ZNHIT3 0.6880678 -0.6650312 0.63067505 
UBE2N 0.43013319 -0.6651349 0.63062973 
CEBPZ 0.40137135 -0.6660423 0.63023323 
TSHZ1 0.46105552 -0.666637 0.62997346 
C3orf38 0.45501645 -0.6677288 0.62949691 
TOP1MT 0.16423452 -0.668235 0.62927607 
IFI44L 0.53753961 -0.6715076 0.62785025 
COPS3 0.24259899 -0.6722308 0.62753561 
COA3 0.26433507 -0.6740733 0.62673468 
CAND1 0.40615412 -0.6759598 0.62591565 
XPNPEP3 0.2904909 -0.6761266 0.6258433 
ACADS 0.33206502 -0.6766329 0.62562372 
RPL22L1 0.36279309 -0.6774987 0.62524836 
CHUK 0.47131066 -0.6779616 0.62504777 
RTL6 0.56652108 -0.6781334 0.62497334 
AL021707.6 0.40480124 -0.6785982 0.62477206 
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HACL1 0.60067252 -0.6796417 0.62432032 
UBP1 0.23681497 -0.6800293 0.62415261 
KIAA0100 0.21452431 -0.6803577 0.62401053 
EME2 0.29307962 -0.681758 0.62340517 
STX11 0.37389423 -0.6818086 0.62338328 
TBK1 0.51396741 -0.6820271 0.6232889 
XAF1 0.35868211 -0.6823789 0.62313691 
HOPX 0.36278675 -0.6832517 0.62276006 
HEATR1 0.27469993 -0.6836659 0.62258126 
SPG20 0.38327512 -0.6838657 0.62249507 
ZNF337 0.55347425 -0.6839658 0.62245187 
ZDHHC12 0.26629529 -0.6846674 0.62214925 
LINC00909 0.38872564 -0.6847554 0.62211128 
NDUFB5 0.11559163 -0.6856903 0.62170827 
BCOR 0.40614023 -0.6866822 0.62128099 
TFPT 0.2487434 -0.6874322 0.62095811 
METTL25 0.17997373 -0.6885275 0.62048685 
RPARP-AS1 0.21111883 -0.6886346 0.62044077 
GCFC2 0.06193899 -0.6897091 0.61997887 
RBM27 0.41196276 -0.6898268 0.61992826 
ZNF551 0.34446227 -0.6898568 0.61991536 
WDR5 0.43223076 -0.6902369 0.61975207 
MUT 0.56098705 -0.6919383 0.61902164 
RSAD2 0.47718184 -0.6922944 0.61886886 
GPALPP1 0.48770144 -0.6947095 0.61783373 
SOCS2 0.44645497 -0.6969387 0.61687981 
NSUN5P2 0.3085176 -0.6971769 0.61677795 
DNAJA3 0.42033062 -0.6972964 0.61672688 
ZNF12 0.29130002 -0.6979019 0.61646808 
TRIM52-AS1 0.33719391 -0.6981069 0.61638051 
KLRF1 0.53565664 -0.7013684 0.61498863 
ANKRD36B 0.26271798 -0.7017282 0.61483525 
LSM6 0.20827894 -0.7019493 0.61474104 
TAMM41 0.1249127 -0.7027764 0.61438869 
PCNP 0.36543286 -0.703237 0.61419258 
SLC38A6 0.50117759 -0.7057952 0.61310444 
PURB 0.33864419 -0.7060952 0.612977 
RNF185 0.69285692 -0.7063878 0.61285266 
PIGK 0.53186248 -0.7085614 0.61193004 
PNOC 0.27340947 -0.7089064 0.6117837 
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TRIM37 0.72484646 -0.7098384 0.61138863 
ABHD15 0.22967023 -0.7108756 0.61094923 
MYO19 0.39473693 -0.710911 0.61093423 
LINC00847 0.62901603 -0.711478 0.61069416 
PHAX 0.51029318 -0.7122145 0.61038249 
AC005674.2 0.32085342 -0.7125435 0.61024331 
PRR4 0.44347322 -0.7126001 0.61021939 
MRPS21 0.51273489 -0.7141537 0.6095626 
HMGN2 0.38895856 -0.7146105 0.60936965 
PMS1 0.30176727 -0.7150763 0.6091729 
IFIH1 0.47350336 -0.7158202 0.60885889 
GLMP 0.41847798 -0.7160721 0.60875258 
PCYOX1 0.38849522 -0.7175359 0.60813523 
LINC00342 0.08875924 -0.7179473 0.60796183 
ECI2 0.1704326 -0.7184963 0.60773056 
COQ5 0.45994799 -0.7187226 0.6076352 
TSEN15 0.61608425 -0.7198774 0.60714903 
LINC00106 0.50766377 -0.720425 0.60691864 
RAPGEF6 0.26144382 -0.7214468 0.60648892 
HERC5 0.5500807 -0.7216829 0.60638966 
SNAPC2 0.32452912 -0.7222438 0.60615397 
HNRNPH2 0.38027 -0.7224319 0.60607495 
EIF4B 0.25691819 -0.7237282 0.6055306 
ARAP2 0.54018184 -0.7241376 0.60535882 
SAP30 0.35553362 -0.7247085 0.60511929 
SLC30A6 0.31407636 -0.7267344 0.60427016 
NPHP3 0.30207004 -0.7290153 0.60331557 
ZDHHC8 0.48980464 -0.7294129 0.6031493 
SLC39A8 0.33971355 -0.7300894 0.60286654 
MRPS9 0.18463673 -0.7306279 0.60264157 
FARP2 0.6075814 -0.7340335 0.60122067 
RABEP2 0.41991911 -0.7346168 0.60097762 
FUNDC1 0.37749198 -0.7360859 0.60036597 
STT3A 0.38084183 -0.7367379 0.60009472 
ALKBH3 0.32381501 -0.7368252 0.60005839 
TATDN1 0.36058326 -0.7371272 0.59993278 
TWNK 0.15090349 -0.737303 0.59985968 
AC126474.2 0.4237729 -0.7377252 0.59968418 
FOPNL 0.46180653 -0.7378365 0.59963791 
PRKAG2 0.65511854 -0.7390349 0.59914002 



 140 

ACSL3 0.6138204 -0.7405506 0.59851088 
TMEM261 0.6660953 -0.7405737 0.5985013 
TTC21B 0.16607896 -0.7416772 0.5980437 
SACM1L 0.3547082 -0.7419484 0.59793129 
FAM160B2 0.27791081 -0.7430068 0.59749279 
MTM1 0.38854459 -0.7457783 0.59634607 
PAXIP1-AS2 0.15559803 -0.7465902 0.59601057 
HINT2 0.17641131 -0.746926 0.59587187 
STK26 0.39671861 -0.7513877 0.5940319 
BORCS7 0.38584505 -0.752541 0.59355722 
CDC37L1 0.61299382 -0.7529727 0.59337964 
TERF1 0.4295469 -0.7562717 0.59202429 
NXPE3 0.38821601 -0.757872 0.59136796 
ICMT 0.18717468 -0.7589029 0.59094556 
DPH3 0.48299479 -0.7606723 0.59022121 
ZHX2 0.41692908 -0.7608314 0.59015614 
NMRK1 0.57558821 -0.7613364 0.58994959 
DENND1B 0.31978163 -0.7643329 0.58872552 
LINC-PINT 0.56614117 -0.7662082 0.58796076 
TGFBR3 0.34016682 -0.7665316 0.587829 
AL139317.3 0.3773741 -0.7671616 0.58757236 
BAG4 0.21456842 -0.7673217 0.58750715 
ABHD13 0.44501871 -0.7766461 0.58372224 
TBC1D7 0.38698684 -0.7781668 0.58310727 
ACLY 0.32686842 -0.7789768 0.58277997 
SMPD1 0.64551982 -0.7800691 0.58233891 
TNF 0.62814665 -0.7802054 0.5822839 
CCNG1 0.27419765 -0.7820665 0.58153321 
TTBK2 0.59190952 -0.7821702 0.58149143 
CHMP5 0.4192272 -0.7850124 0.58034695 
RABGGTB 0.33448594 -0.7864085 0.57978563 
BCL2A1 0.51791453 -0.7866522 0.5796877 
DCAF1 0.4067458 -0.7896976 0.57846533 
SASH3 0.37410722 -0.7939937 0.57674533 
CASZ1 0.57519267 -0.7977674 0.5752387 
GABPA 0.52776665 -0.7992251 0.57465776 
CAAP1 0.37959998 -0.7993815 0.57459546 
AP002807.1 0.46042755 -0.8003675 0.57420289 
LAMTOR3 0.2110276 -0.8062366 0.5718717 
FBXW4P1 0.51459154 -0.814339 0.56866897 
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TBC1D8 0.46314392 -0.8149069 0.56844515 
FAM228B 0.69770894 -0.8162421 0.56791932 
ASCC3 0.32792581 -0.8164842 0.56782401 
ZCCHC3 0.35090018 -0.8174676 0.56743712 
AUH 0.6748279 -0.8282834 0.56319896 
INPP1 0.47272785 -0.8318421 0.56181143 
SPCS2 0.43581477 -0.8326532 0.56149568 
LARP4 0.614324 -0.8374876 0.55961726 
RBM48 0.50431628 -0.8405551 0.55842868 
EXOSC8 0.40959721 -0.841446 0.55808392 
ITPRIPL2 0.35932106 -0.8423234 0.55774461 
SPRTN 0.63937445 -0.8429861 0.55748848 
ANXA4 0.4040994 -0.8478668 0.55560566 
HIST1H1D 0.49308917 -0.8521192 0.55397039 
PRDX3 0.50816714 -0.8540047 0.55324686 
S1PR1 0.34904898 -0.8590901 0.55130013 
MIB2 0.54967584 -0.8596429 0.55108896 
TIFA 0.39029922 -0.8629608 0.54982301 
NEDD1 0.77937265 -0.8652615 0.54894689 
C2orf69 0.55594837 -0.8758478 0.54493356 
ZNF721 0.44979948 -0.8816068 0.54276261 
LINC00467 0.37088467 -0.8891567 0.53992963 
PDSS2 0.42236348 -0.8892627 0.53988997 
WDR92 0.4803565 -0.8895374 0.53978716 
VEZT 0.46325508 -0.8913678 0.53910274 
MLH1 0.59378846 -0.8961707 0.537311 
COA5 0.57012382 -0.9050896 0.53399953 
GTF2B 0.41302292 -0.9054514 0.53386563 
NCAPG2 0.51953865 -0.9080439 0.53290715 
PRR11 0.64098019 -0.9099551 0.53220166 
ALAD 0.68081784 -0.9109087 0.53185 
MPP6 0.8280456 -0.9189691 0.5288868 
MPC1 0.58578116 -0.9199784 0.52851693 
NOL6 0.66332978 -0.92354 0.5272138 
PPA2 0.46133653 -0.9321429 0.52407934 
POLE 1.00898157 -0.9365726 0.52247263 
SLC35D2 0.33614511 -0.9415693 0.52066623 
STYX 0.56882509 -0.9463232 0.51895336 
VPS26A 0.69096991 -0.9469412 0.51873111 
MRPL14 0.64881938 -0.9574389 0.5149703 
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ABL2 0.60588384 -0.9700431 0.51049082 
SNHG8 0.53611476 -0.9760422 0.50837248 
MOB4 0.7955774 -0.9913664 0.50300116 
OAF 0.76143337 -0.99139 0.50299292 
VWA8 0.59256699 -0.9969772 0.50104871 
MED27 0.57234929 -1.0031718 0.49890195 
ZNF136 0.48531187 -1.0129802 0.49552159 
RNGTT 0.38236088 -1.0264231 0.49092579 
DNAJC15 0.67101698 -1.0292873 0.48995211 
NOG 0.67577579 -1.0547855 0.48136877 
POFUT2 0.57708345 -1.090505 0.46959696 
GIMAP2 0.46251612 -1.0967864 0.46755682 
TMX1 0.44286519 -1.1166881 0.46115125 
XPOT 0.65340427 -1.1358213 0.45507579 
DESI2 0.61411435 -1.1417261 0.453217 
POLE4 0.39893314 -1.1544675 0.44923198 
PGRMC1 0.4348273 -1.1721843 0.44374896 
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Title: The Effects of High Intensity Interval Training on Gene Expression

Description: Effects of a 3 times per week, 4-week, 10X1 HIIT protocol on gene expression. Functional Enrichment analysis cutoff threshold
>1.2 or <.8

Organism: Homo sapiens (9606)

Contrast Condition vs. Control - mRNA (RNA-seq)

Creation time: 10-23-2022 06:42 PM

1. Introduction
In this experiment, 2,653 differentially expressed (DE) genes were identified out of a total of 54,683 genes in Advaita Knowledge Base (AKB). These data
were analyzed in the context of pathways obtained from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (Release 100.0+/11-12, Nov
21) (Kanehisa et al., 2000; Kanehisa et al., 2002), gene ontologies from the Gene Ontology Consortium database (2021-Nov4) (Ashburner et al., 2000;
Gene Ontology Consortium, 2001), miRNAs from the miRBase (MIRBASE Version:Version22.1,10/18) and TARGETSCAN (Targetscan version: Mouse:8.0,
Human:8.0) databases (Agarwal et al., 2015; Nam et al., 2014; Griffiths-Jones et al., 2008; Kozomara and Griffiths-Jones, 2014; Friedman et al., 2009;
Grimson et al., 2007), network of regulatory relations from BioGRID: Biological General Repository for Interaction Datasets v4.4.203. Oct. 25th, 2021
(Szklarczyk et al., 2017), chemicals/drugs/toxicants from the Comparative Toxicogenomics Database Nov 2021 (Davis et al., 2019), and diseases from the
KEGG database (Release 100.0+/11-12, Nov 21) (Kanehisa et al., 2000; Kanehisa et al., 2002). In summary, 229 pathways were found to be significantly
impacted. In addition, 1,365 Gene Ontology (GO) terms, 0 miRNAs , 477 gene upstream regulators, 231 chemical upstream regulators and 259 diseases
were found to be significantly enriched before the correction for multiple comparisons.

Fig. 1.1:  a) Violin plot: All 2653 significantly differentially expressed (DE) genes are represented in terms of their measured expression change (x-axis) and frequency of genes measured at a

given expression change (y-axis) b) Pathways perturbation vs over-representation: The top 5 pathways are plotted in terms of the two types of evidence computed by iPathwayGuide: over-

representation on the x-axis (pORA) and the total pathway accumulation on the y-axis (pAcc). Each pathway is represented by a single dot, with significant pathways shown in red, non-

significant in black, and the size of each dot is proportional to the size of the pathway it represents. Both p-values are shown in terms of their negative log (base 10) values.
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2.  Pathway Analysis
2.1.  Methods
iPathwayGuide scores pathways using the Impact Analysis method (Draghici et al., 2007; Tarca et al., 2009, Khatri et al., 2007). Impact analysis uses two
types of evidence: i) the over-representation of differentially expressed (DE) genes in a given pathway and ii) the perturbation of that pathway computed
by propagating the measured expression changes across the pathway topology. These aspects are captured by two independent probability values,
pORA and pAcc, that are then combined in a unique pathway-specific p-value. The underlying pathway topologies, comprised of genes and their
directional interactions, are obtained from the KEGG database (Kanehisa et al., 2000; Kanehisa et al., 2010; Kanehisa et al., 2012; Kanehisa et al., 2014).

The first probability, pORA, expresses the probability of observing the number of DE genes in a given pathway that is greater than or equal to the number
observed, by random chance (Draghici et al., 2003; Draghici 2011). Let us consider there are N genes measured in the experiment, with M of these on the
given pathway. Based on the user-defined a priori selection of DE genes, K out of M genes were found to be differentially expressed. The probability of
observing exactly x differentially expressed genes on the given pathway is computed based on the hypergeometric distribution:

Because the hypergeometric distribution is discrete, the probability of observing fewer than x genes on the given pathway just by chance can be
calculated by summing the probabilities of randomly observing 0, 1, 2, ..., up to x-1 DE genes on the pathway:

iPathwayGuide calculates the probability of randomly observing a number of DE genes on the given pathway that is greater than or equal to the number
of DE genes obtained from data, by computing the over-representation p-value: pORA = p (x) = 1 - p (x-1):

The second probability, pAcc, is calculated based on the amount of total accumulation measured in each pathway. A perturbation factor is computed for
each gene on the pathway using:

In Equation 4, PF(g) is the perturbation factor for gene g, the term ΔE(g) represents the signed normalized measured expression change of gene g, and
α(g) is a priori weight based on the type of the gene. The last term is the sum of the perturbation factors of all genes u, directly upstream of the target
gene g, normalized by the number of downstream genes of each such gene N (u). The value of β  quantifies the strength of the interaction between
genes g and u. The sign of β represents the type of interaction: positive for activation-like signals, and negative for inhibition-like signals. Subsequently,
iPathwayGuide calculates the accumulation at the level of each gene, Acc(g), as the difference between the perturbation factor PF(g) and the observed
log fold-change:

All perturbation accumulations are computed at the same time by solving the system of linear equations resulting from combining Equation 4 for all genes
on a given pathway. Once all gene perturbation accumulations are computed, iPathwayGuide computes the total accumulation of the pathway as the
sum of all absolute accumulations of the genes in a given pathway. The significance of obtaining a total accumulation (pAcc) at least as large as
observed, just by chance, is assessed through bootstrap analysis.

The two types of evidence, pORA and pAcc, are combined into an overall pathway score by calculating a p-value using Fisher's method. This p-value is
then corrected for multiple comparisons using false dicovery rate (FDR) and Bonferroni corrections. Bonferroni is simpler and more conservative of the
two (Bonferroni, 1935; Bonferroni, 1936). It reduces the false discovery rate by imposing a stringent threshold on each comparison adjusted for the total
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number of comparisons. The FDR correction has more power, but only controls the family-wise false positives rate (Benjamini and Hochberg, 1995;
Benjamini and Yekutieli, 2001).

2.2.  Results
Table 2.2.1:  Top pathways and their associated p-values

* the p-value corresponding to the pathway was computed using only over-representation analysis.

Human T-cell leukemia virus 1 infection (KEGG: 05166)
Human T-cell leukemia virus type 1 (HTLV-1) is a pathogenic retrovirus that is associated with adult T-cell leukemia/lymphoma (ATL). It is also strongly
implicated in non-neoplastic chronic inflammatory diseases such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Expression
of Tax, a viral regulatory protein is critical to the pathogenesis. Tax is a transcriptional co-factor that interfere several signaling pathways related to anti-
apoptosis or cell proliferation. The modulation of the signaling by Tax involve its binding to transcription factors like CREB/ATF, NF-kappa B, and SRF.

Fig. 2.2.1:  Human T-cell leukemia virus 1 infection (KEGG: 05166): The pathway diagram is overlayed with the computed perturbation of each gene. The perturbation accounts both for the

gene's measured fold change and for the accumulated perturbation propagated from any upstream genes (accumulation). The highest negative perturbation is shown in dark blue, while the

highest positive perturbation in dark red. The legend describes the values on the gradient. Note: For legibility, one gene may be represented in multiple places in the diagram and one box may

represent multiple genes in the same gene family. A gene is highlighted in all locations it occurs in the diagram. For each gene family, the color corresponding to the gene with the highest

absolute perturbation is displayed. 

Pathway name Pathway Id p-value p-value (FDR) p-value (Bonferroni)

Human T-cell leukemia virus 1 infection 05166 2.033e-7 3.888e-5 6.851e-5

Pathways in cancer 05200 2.308e-7 3.888e-5 7.776e-5

Neurotrophin signaling pathway 04722 4.670e-7 5.246e-5 1.574e-4

RNA degradation 03018 1.140e-6 5.939e-5 3.842e-4

Autophagy - animal 04140 1.190e-6 5.939e-5 4.009e-4

-1.6 3.9
Perturbation

(c) Advaita Corporation 2022
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Fig. 2.2.2:  Gene measured expression bar plot: All the differentially expressed genes in Human T-cell leukemia virus 1 infection (KEGG: 05166) are ranked based on their absolute value of log

fold change. The plot is limited to the top 20 genes out of a total of 35 differentially expressed genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and

whisker plot on the left summarizes the distribution of all the differentially expressed genes in this pathway. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers

are represented by circles.

Fig. 2.2.3:  a) Perturbation vs over-representation: Human T-cell leukemia virus 1 infection (KEGG: 05166) (yellow) is shown, using negative log of the accumulation and over-representation p-

values, along with the other most significant pathways. Pathways in red are significant based on the combined uncorrected p-values, whereas the ones in black are non-significant (where

applicable). b) Gene measured expression vs accumulation: All the genes from this pathway are represented in terms of their measured fold change (y-axis) and accumulation (x-axis).

Accumulation is the perturbation received by the gene from any upstream genes. Genes displayed in red had both accumulation and measured fold change.Genes in blue had only measured

fold change.Genes in green had only accumulation.The remaining genes that were not measured and had no accumulation are shown in black. c) Bootstrap diagram: The perturbation p-value

is computed using bootstrap analysis. Bootstrapping assesses the probability of observing a sum of all absolute gene accumulation total accumulation at least as extreme as the computed one

just by chance. A null distribution (gray bars) is computed through an iterative process that is repeated 2000 times. At each iteration, a number of genes equal to the number of differentially

expressed genes in this pathway is randomly assigned anywhere in the pathway and the total accumulation is recomputed. The red line indicates the observed total accumulation of genes in the

given pathway in relation to the distribution of expected values. The perturbation p-value is more significant the further away from the mean it is.

Pathways in cancer (KEGG: 05200)
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Fig. 2.2.4:  Pathways in cancer (KEGG: 05200): The pathway diagram is overlayed with the computed perturbation of each gene. The perturbation accounts both for the gene's measured fold

change and for the accumulated perturbation propagated from any upstream genes (accumulation). The highest negative perturbation is shown in dark blue, while the highest positive

perturbation in dark red. The legend describes the values on the gradient. Note: For legibility, one gene may be represented in multiple places in the diagram and one box may represent multiple

genes in the same gene family. A gene is highlighted in all locations it occurs in the diagram. For each gene family, the color corresponding to the gene with the highest absolute perturbation is

displayed. 
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Fig. 2.2.5:  Gene measured expression bar plot: All the differentially expressed genes in Pathways in cancer (KEGG: 05200) are ranked based on their absolute value of log fold change. The

plot is limited to the top 20 genes out of a total of 57 differentially expressed genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on

the left summarizes the distribution of all the differentially expressed genes in this pathway. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented

by circles.
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Fig. 2.2.6:  a) Perturbation vs over-representation: Pathways in cancer (KEGG: 05200) (yellow) is shown, using negative log of the accumulation and over-representation p-values, along with

the other most significant pathways. Pathways in red are significant based on the combined uncorrected p-values, whereas the ones in black are non-significant (where applicable). b) Gene

measured expression vs accumulation: All the genes from this pathway are represented in terms of their measured fold change (y-axis) and accumulation (x-axis). Accumulation is the

perturbation received by the gene from any upstream genes. Genes displayed in red had both accumulation and measured fold change.Genes in blue had only measured fold change.Genes in

green had only accumulation.The remaining genes that were not measured and had no accumulation are shown in black. c) Bootstrap diagram: The perturbation p-value is computed using

bootstrap analysis. Bootstrapping assesses the probability of observing a sum of all absolute gene accumulation total accumulation at least as extreme as the computed one just by chance. A

null distribution (gray bars) is computed through an iterative process that is repeated 2000 times. At each iteration, a number of genes equal to the number of differentially expressed genes in

this pathway is randomly assigned anywhere in the pathway and the total accumulation is recomputed. The red line indicates the observed total accumulation of genes in the given pathway in

relation to the distribution of expected values. The perturbation p-value is more significant the further away from the mean it is.

Neurotrophin signaling pathway (KEGG: 04722)
Neurotrophins are a family of trophic factors involved in differentiation and survival of neural cells. The neurotrophin family consists of nerve growth factor
(NGF), brain derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3), and neurotrophin 4 (NT-4). Neurotrophins exert their functions through
engagement of Trk tyrosine kinase receptors or p75 neurotrophin receptor (p75NTR). Neurotrophin/Trk signaling is regulated by connecting a variety of
intracellular signaling cascades, which include MAPK pathway, PI-3 kinase pathway, and PLC pathway, transmitting positive signals like enhanced
survival and growth. On the other hand, p75NTR transmits both positive and nagative signals. These signals play an important role for neural
development and additional higher-order activities such as learning and memory.
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Fig. 2.2.7:  Neurotrophin signaling pathway (KEGG: 04722): The pathway diagram is overlayed with the computed perturbation of each gene. The perturbation accounts both for the gene's

measured fold change and for the accumulated perturbation propagated from any upstream genes (accumulation). The highest negative perturbation is shown in dark blue, while the highest

positive perturbation in dark red. The legend describes the values on the gradient. Note: For legibility, one gene may be represented in multiple places in the diagram and one box may represent

multiple genes in the same gene family. A gene is highlighted in all locations it occurs in the diagram. For each gene family, the color corresponding to the gene with the highest absolute

perturbation is displayed. 
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Fig. 2.2.8:  Gene measured expression bar plot: All the differentially expressed genes in Neurotrophin signaling pathway (KEGG: 04722) are ranked based on their absolute value of log fold

change. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the differentially expressed genes in

this pathway. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.

-0.22 2.8
Perturbation

(c) Advaita Corporation 2022

149



10/24/22, 10:21 AM Report Summary | iPathwayGuide

https://ipathwayguide.advaitabio.com/report/56822/contrast/73693/summary/print 8/40

Fig. 2.2.9:  a) Perturbation vs over-representation: Neurotrophin signaling pathway (KEGG: 04722) (yellow) is shown, using negative log of the accumulation and over-representation p-values,

along with the other most significant pathways. Pathways in red are significant based on the combined uncorrected p-values, whereas the ones in black are non-significant (where applicable). b)

Gene measured expression vs accumulation: All the genes from this pathway are represented in terms of their measured fold change (y-axis) and accumulation (x-axis). Accumulation is the

perturbation received by the gene from any upstream genes. Genes displayed in red had both accumulation and measured fold change.Genes in blue had only measured fold change.Genes in

green had only accumulation.The remaining genes that were not measured and had no accumulation are shown in black. c) Bootstrap diagram: The perturbation p-value is computed using

bootstrap analysis. Bootstrapping assesses the probability of observing a sum of all absolute gene accumulation total accumulation at least as extreme as the computed one just by chance. A

null distribution (gray bars) is computed through an iterative process that is repeated 2000 times. At each iteration, a number of genes equal to the number of differentially expressed genes in

this pathway is randomly assigned anywhere in the pathway and the total accumulation is recomputed. The red line indicates the observed total accumulation of genes in the given pathway in

relation to the distribution of expected values. The perturbation p-value is more significant the further away from the mean it is.

RNA degradation (KEGG: 03018)
The correct processing, quality control and turnover of cellular RNA molecules are critical to many aspects in the expression of genetic information. In
eukaryotes, two major pathways of mRNA decay exist and both pathways are initiated by poly(A) shortening of the mRNA. In the 5' to 3' pathway, this is
followed by decapping which then permits the 5' to 3' exonucleolytic degradation of transcripts. In the 3' to 5' pathway, the exosome, a large
multisubunit complex, plays a key role. The exosome exists in archaeal cells, too. In bacteria, endoribonuclease E, a key enzyme involved in RNA decay
and processing, organizes a protein complex called degradosome. RNase E or R interacts with the phosphate-dependent exoribonuclease
polynucleotide phosphorylase, DEAD-box helicases, and additional factors in the RNA-degrading complex.
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Fig. 2.2.10:  RNA degradation (KEGG: 03018): The pathway diagram is overlayed with the computed perturbation of each gene. The perturbation accounts both for the gene's measured fold

change and for the accumulated perturbation propagated from any upstream genes (accumulation). The highest negative perturbation is shown in dark blue, while the highest positive

perturbation in dark red. The legend describes the values on the gradient. Note: For legibility, one gene may be represented in multiple places in the diagram and one box may represent multiple

genes in the same gene family. A gene is highlighted in all locations it occurs in the diagram. For each gene family, the color corresponding to the gene with the highest absolute perturbation is

displayed. 
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Fig. 2.2.11:  Gene measured expression bar plot: All the differentially expressed genes in RNA degradation (KEGG: 03018) are ranked based on their absolute value of log fold change. The

plot is limited to the top 20 genes out of a total of 21 differentially expressed genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on

the left summarizes the distribution of all the differentially expressed genes in this pathway. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented

by circles.
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Fig. 2.2.12:  a) Perturbation vs over-representation: RNA degradation (KEGG: 03018) (yellow) is shown, using negative log of the accumulation and over-representation p-values, along with

the other most significant pathways. Pathways in red are significant based on the combined uncorrected p-values, whereas the ones in black are non-significant (where applicable). b) Gene

measured expression vs accumulation: All the genes from this pathway are represented in terms of their measured fold change (y-axis) and accumulation (x-axis). Accumulation is the

perturbation received by the gene from any upstream genes. Genes in blue had only measured fold change.The remaining genes that were not measured and had no accumulation are shown in

black. c) Bootstrap diagram: The perturbation p-value is computed using bootstrap analysis. Bootstrapping assesses the probability of observing a sum of all absolute gene accumulation total

accumulation at least as extreme as the computed one just by chance. A null distribution (gray bars) is computed through an iterative process that is repeated 2000 times. At each iteration, a

number of genes equal to the number of differentially expressed genes in this pathway is randomly assigned anywhere in the pathway and the total accumulation is recomputed. The red line

indicates the observed total accumulation of genes in the given pathway in relation to the distribution of expected values. The perturbation p-value is more significant the further away from the

mean it is.

Autophagy - animal (KEGG: 04140)
Autophagy (or macroautophagy) is a cellular catabolic pathway involving in protein degradation, organelle turnover, and non-selective breakdown of
cytoplasmic components, which is evolutionarily conserved among eukaryotes and exquisitely regulated. This progress initiates with production of the
autophagosome, a double-membrane intracellular structure of reticular origin that engulfs cytoplasmic contents and ultimately fuses with lysosomes for
cargo degradation. Autophagy is regulated in response to extra- or intracellular stress and signals such as starvation, growth factor deprivation and ER
stress. Constitutive level of autophagy plays an important role in cellular homeostasis and maintains quality control of essential cellular components.
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Fig. 2.2.13:  Autophagy - animal (KEGG: 04140): The pathway diagram is overlayed with the computed perturbation of each gene. The perturbation accounts both for the gene's measured

fold change and for the accumulated perturbation propagated from any upstream genes (accumulation). The highest negative perturbation is shown in dark blue, while the highest positive

perturbation in dark red. The legend describes the values on the gradient. Note: For legibility, one gene may be represented in multiple places in the diagram and one box may represent multiple

genes in the same gene family. A gene is highlighted in all locations it occurs in the diagram. For each gene family, the color corresponding to the gene with the highest absolute perturbation is

displayed. 
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Fig. 2.2.14:  Gene measured expression bar plot: All the differentially expressed genes in Autophagy - animal (KEGG: 04140) are ranked based on their absolute value of log fold change. The

plot is limited to the top 20 genes out of a total of 31 differentially expressed genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on

the left summarizes the distribution of all the differentially expressed genes in this pathway. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented

by circles.
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Fig. 2.2.15:  a) Perturbation vs over-representation: Autophagy - animal (KEGG: 04140) (yellow) is shown, using negative log of the accumulation and over-representation p-values, along with

the other most significant pathways. Pathways in red are significant based on the combined uncorrected p-values, whereas the ones in black are non-significant (where applicable). b) Gene

measured expression vs accumulation: All the genes from this pathway are represented in terms of their measured fold change (y-axis) and accumulation (x-axis). Accumulation is the

perturbation received by the gene from any upstream genes. Genes displayed in red had both accumulation and measured fold change.Genes in blue had only measured fold change.Genes in

green had only accumulation.The remaining genes that were not measured and had no accumulation are shown in black. c) Bootstrap diagram: The perturbation p-value is computed using

bootstrap analysis. Bootstrapping assesses the probability of observing a sum of all absolute gene accumulation total accumulation at least as extreme as the computed one just by chance. A

null distribution (gray bars) is computed through an iterative process that is repeated 2000 times. At each iteration, a number of genes equal to the number of differentially expressed genes in

this pathway is randomly assigned anywhere in the pathway and the total accumulation is recomputed. The red line indicates the observed total accumulation of genes in the given pathway in

relation to the distribution of expected values. The perturbation p-value is more significant the further away from the mean it is.

3.  Gene Ontology Analysis
3.1.  Methods
For each Gene Ontology (GO) term (Ashburner et al., 2002; Gene Ontology Consortium, 2004), the number of differentially expressed (DE) genes
annotated to the term is compared to the number of DE genes expected just by chance. iPathwayGuide uses an over-representation approach to
compute the statistical significance of observing at least the given number of DE genes. The p-value is computed using the hypergeometric distribution
as described for pORA in the Pathway Analysis section. This p-value is corrected for multiple comparisons using FDR and Bonferroni.

The classical enrichment method used above considers all GO terms to be independent. By definition, all genes annotated to a GO term are also
annotated to its ancestors. Because of this, the enrichment approach counts each gene multiple times by propagating it through the GO hierarchy from
the most specific term the gene is associated with, all the way to the root of the ontology. This introduces redundancy in the analysis and reports many
general and non-informative terms as significant. To overcome this limitation, iPathwayGuide allows users to use two more sophisticated pruning
methods: high-specificity pruning and smallest common denominator pruning. The high-specificity pruning method identifies the most specific GO terms
that are significantly associated with the set of DE genes. Let us consider, BP1 = “induction of apoptosis by intracellular signals” and BP2 = “induction of
apoptosis by extracellular signals,” which are two of the children of BP3 = “induction of apoptosis.” If enough DE genes are associated with BP1 and
BP2, the high-specificity pruning will report them as significant. The smallest common denominator pruning method identifies the GO terms that best
encapsulate the set of DE genes, at times consolidating significance of two or more specific terms into their common parent. In the example above, this
pruning method might report BP3 as significant because it is the most specific biological term that would include all DE genes that make both BP1 and
BP2 significant.
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3.2.  Biological Processes results
Table 3.2.1:  Top identified biological processes. Only the top scoring biological process for each pruning type is described below the table.

Pruning Type: None Pruning Type: High-specificity Pruning Type: Smallest Common
Denominator

GO Term p-value p-value
(FDR)

p-value
(Bonferroni)

GO Term p-value GO Term p-value

cellular metabolic
process

4.100e-19 3.769e-15 3.769e-15 exonucleolytic catabolism
of deadenylated mRNA

5.883e-5 exonucleolytic
catabolism of
deadenylated mRNA

5.883e-5

organonitrogen
compound metabolic
process

3.600e-15 1.655e-11 3.309e-11 nuclear-transcribed
mRNA catabolic process,
exonucleolytic, 3'-5'

0.029 tRNA processing 0.004

nitrogen compound
metabolic process

1.400e-14 4.290e-11 1.287e-10 U4 snRNA 3'-end
processing

0.248 RNA methylation 0.006

cellular
macromolecule
metabolic process

2.100e-14 4.826e-11 1.930e-10 nuclear polyadenylation-
dependent rRNA
catabolic process

0.294 nuclear-transcribed
mRNA catabolic
process,
exonucleolytic, 3'-5'

0.015

macromolecule
modification

2.300e-13 3.677e-10 2.114e-9 nuclear polyadenylation-
dependent tRNA
catabolic process

0.294 ribosome biogenesis 0.034

cellular metabolic process (GO:0044237)
The chemical reactions and pathways by which individual cells transform chemical substances. In this experiment, the algorithm identified 1,540
differentially expressed gene(s) out of ALL 10,861 gene(s).
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Fig. 3.2.1:  Gene measured expression bar plot: All the differentially expressed genes that are annotated to cellular metabolic process are ranked based on their absolute value of log fold

change. The plot is limited to the top 20 genes out of a total of 1540 differentially expressed genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and

whisker plot on the left summarizes the distribution of all the differentially expressed genes that are annotated to this GO term. The box represents the 1st quartile, the median and the 3rd

quartile, while the outliers are represented by circles.

exonucleolytic catabolism of deadenylated mRNA (GO:0043928)
The chemical reactions and pathways resulting in the breakdown of the transcript body of a nuclear-transcribed mRNA that occurs when the ends are not
protected by the 3'-poly(A) tail. In this experiment, the algorithm identified 11 differentially expressed gene(s) out of ALL 13 gene(s).
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Fig. 3.2.2:  Gene measured expression bar plot: All the differentially expressed genes that are annotated to exonucleolytic catabolism of deadenylated mRNA are ranked based on their

absolute value of log fold change. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the

differentially expressed genes that are annotated to this GO term. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.

3.3.  Molecular Functions results
Table 3.3.1:  Top identified molecular functions. Only the top scoring molecular function for each pruning type is described below the table.

Pruning Type: None Pruning Type: High-specificity Pruning Type: Smallest Common
Denominator

GO Term p-value p-value
(FDR)

p-value
(Bonferroni)

GO Term p-value GO Term p-value

catalytic activity 1.500e-18 2.183e-15 3.447e-15 protein binding 1.907e-9 protein binding 1.769e-12

protein binding 1.900e-18 2.183e-15 4.366e-15 guanyl-nucleotide
exchange factor activity

0.010 3'-5' exonuclease
activity

0.003

catalytic activity, acting
on a nucleic acid

3.100e-10 2.375e-7 7.124e-7 RNA binding 0.041 guanyl-nucleotide
exchange factor
activity

0.007

transferase activity 2.700e-9 1.551e-6 6.205e-6 3'-5'-exoribonuclease
activity

0.155 exoribonuclease
activity

0.007

catalytic activity, acting
on RNA

1.900e-8 8.732e-6 4.366e-5 GTP binding 0.234 RNA binding 0.011

catalytic activity (GO:0003824)
Catalysis of a biochemical reaction at physiological temperatures. In biologically catalyzed reactions, the reactants are known as substrates, and the
catalysts are naturally occurring macromolecular substances known as enzymes. Enzymes possess specific binding sites for substrates, and are usually
composed wholly or largely of protein, but RNA that has catalytic activity (ribozyme) is often also regarded as enzymatic. In this experiment, the algorithm
identified 911 differentially expressed gene(s) out of ALL 5,574 gene(s).
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Fig. 3.3.3:  Gene measured expression bar plot: All the differentially expressed genes that are annotated to catalytic activity are ranked based on their absolute value of log fold change. The

plot is limited to the top 20 genes out of a total of 911 differentially expressed genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on

the left summarizes the distribution of all the differentially expressed genes that are annotated to this GO term. The box represents the 1st quartile, the median and the 3rd quartile, while the

outliers are represented by circles.

protein binding (GO:0005515)
Binding to a protein. In this experiment, the algorithm identified 1,963 differentially expressed gene(s) out of ALL 13,830 gene(s).
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Fig. 3.3.4:  Gene measured expression bar plot: All the differentially expressed genes that are annotated to protein binding are ranked based on their absolute value of log fold change. The

plot is limited to the top 20 genes out of a total of 1963 differentially expressed genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot

on the left summarizes the distribution of all the differentially expressed genes that are annotated to this GO term. The box represents the 1st quartile, the median and the 3rd quartile, while the

outliers are represented by circles.

3.4.  Cellular Components results
Table 3.4.1:  Top identified cellular components. Only the top scoring cellular component for each pruning type is described below the table.

Pruning Type: None Pruning Type: High-
specificity

Pruning Type: Smallest Common
Denominator

GO Term p-value p-value
(FDR)

p-value
(Bonferroni)

GO Term p-value GO Term p-value

intracellular anatomical
structure

1.000e-24 1.000e-24 1.000e-24 nucleoplasm 4.388e-21 cytoplasm 1.000e-24

intracellular membrane-
bounded organelle

1.000e-24 1.000e-24 1.000e-24 cytosol 5.546e-20 nucleoplasm 7.314e-23

cytoplasm 1.000e-24 1.000e-24 1.000e-24 mitochondrion 3.169e-6 organelle envelope 6.095e-12

intracellular organelle 1.000e-24 1.000e-24 1.000e-24 mitochondrial
matrix

1.219e-5 intracellular
membrane-bounded
organelle

6.400e-6

membrane-bounded
organelle

1.000e-24 1.000e-24 1.000e-24 cytoplasm 1.463e-5 transferase complex 4.876e-4

intracellular anatomical structure (GO:0005622)
A component of a cell contained within (but not including) the plasma membrane. In eukaryotes it includes the nucleus and cytoplasm. In this experiment,
the algorithm identified 2,189 differentially expressed gene(s) out of ALL 15,336 gene(s).
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Fig. 3.4.5:  Gene measured expression bar plot: All the differentially expressed genes that are annotated to intracellular anatomical structure are ranked based on their absolute value of log

fold change. The plot is limited to the top 20 genes out of a total of 2189 differentially expressed genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box

and whisker plot on the left summarizes the distribution of all the differentially expressed genes that are annotated to this GO term. The box represents the 1st quartile, the median and the 3rd

quartile, while the outliers are represented by circles.

nucleoplasm (GO:0005654)
That part of the nuclear content other than the chromosomes or the nucleolus. In this experiment, the algorithm identified 720 differentially expressed
gene(s) out of ALL 4,085 gene(s).
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Fig. 3.4.6:  Gene measured expression bar plot: All the differentially expressed genes that are annotated to nucleoplasm are ranked based on their absolute value of log fold change. The plot

is limited to the top 20 genes out of a total of 720 differentially expressed genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the

left summarizes the distribution of all the differentially expressed genes that are annotated to this GO term. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers

are represented by circles.

cytoplasm (GO:0005737)
The contents of a cell excluding the plasma membrane and nucleus, but including other subcellular structures. In this experiment, the algorithm identified
1,814 differentially expressed gene(s) out of ALL 11,909 gene(s).
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Fig. 3.4.7:  Gene measured expression bar plot: All the differentially expressed genes that are annotated to cytoplasm are ranked based on their absolute value of log fold change. The plot is

limited to the top 20 genes out of a total of 1814 differentially expressed genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the

left summarizes the distribution of all the differentially expressed genes that are annotated to this GO term. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers

are represented by circles.

4.  Predicted Upstream Regulator Analysis - miRNAs
4.1.  Methods
The prediction of active miRNAs (Friedman et al., 2009; Lewis et al., 2005) is based on enrichment of differentially downregulated target genes of the
miRNAs. In general, miRNAs have an inhibitory effect on their targets. Therefore, for any given miRNA the method computes the ratio between the
number of differentially downregulated targets and all differentially expressed targets, and compares it to the ratio of all downwardly expressed targets to
all targets. Overall, iPathwayGuide calculates the probability of observing at least the number of differentially downregulated target genes for a given
miRNA just by chance. This p-value is computed using the hypergeometric distribution as described for pORA in the Pathway Analysis section.  

4.2.  Results
Table 4.2.1:  Top identified miRNAs

miRNA Name p-value p-value (FDR) p-value (Bonferroni)

hsa-miR-34c-5p 1.000 1.000 1.000

hsa-miR-892c-3p 1.000 1.000 1.000

hsa-miR-330-3p 1.000 1.000 1.000

hsa-let-7g-5p 1.000 1.000 1.000

hsa-miR-299-3p 1.000 1.000 1.000
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hsa-miR-34c-5p (MIMAT0000686)
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Fig. 4.2.1:    Gene measured expression bar plot: All the differentially expressed genes that are targeted by hsa-miR-34c-5p are ranked based on their measured expression change (most

downregulated to upregulated). The downregulated genes are shown in blue, and the upregulated ones are shown in red (where applicable). The plot is limited to the top 20 genes out of a total

of 103 differentially expressed target genes. Out of all the differentially expressed target genes, 0 were found to be downregulated. The box and whisker plot on the left summarizes the

distribution of all the differentially expressed genes targeted by this miRNA. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.

hsa-miR-892c-3p (MIMAT0025858)
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Fig. 4.2.2:   Gene measured expression bar plot: All the differentially expressed genes that are targeted by hsa-miR-892c-3p are ranked based on their measured expression change (most

downregulated to upregulated). The downregulated genes are shown in blue, and the upregulated ones are shown in red (where applicable). The plot is limited to the top 20 genes out of a total

of 41 differentially expressed target genes. Out of all the differentially expressed target genes, 0 were found to be downregulated. The box and whisker plot on the left summarizes the

distribution of all the differentially expressed genes targeted by this miRNA. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.

hsa-miR-330-3p (MIMAT0000751)
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Fig. 4.2.3:    Gene measured expression bar plot: All the differentially expressed genes that are targeted by hsa-miR-330-3p are ranked based on their measured expression change (most

downregulated to upregulated). The downregulated genes are shown in blue, and the upregulated ones are shown in red (where applicable). The plot is limited to the top 20 genes out of a total

of 153 differentially expressed target genes. Out of all the differentially expressed target genes, 0 were found to be downregulated. The box and whisker plot on the left summarizes the

distribution of all the differentially expressed genes targeted by this miRNA. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.

hsa-let-7g-5p (MIMAT0000414)
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Fig. 4.2.4:     Gene measured expression bar plot: All the differentially expressed genes that are targeted by hsa-let-7g-5p are ranked based on their measured expression change (most

downregulated to upregulated). The downregulated genes are shown in blue, and the upregulated ones are shown in red (where applicable). The plot is limited to the top 20 genes out of a total

of 193 differentially expressed target genes. Out of all the differentially expressed target genes, 0 were found to be downregulated. The box and whisker plot on the left summarizes the

distribution of all the differentially expressed genes targeted by this miRNA. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.
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hsa-miR-299-3p (MIMAT0000687)
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Fig. 4.2.5:    Gene measured expression bar plot: All the differentially expressed genes that are targeted by hsa-miR-299-3p are ranked based on their measured expression change (most

downregulated to upregulated). The downregulated genes are shown in blue, and the upregulated ones are shown in red (where applicable). The plot is limited to the top 20 genes out of a total

of 51 differentially expressed target genes. Out of all the differentially expressed target genes, 0 were found to be downregulated. The box and whisker plot on the left summarizes the

distribution of all the differentially expressed genes targeted by this miRNA. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.

5.  Predicted Upstream Regulator Analysis - Genes
5.1.  Methods
The prediction of upstream regulators is based on two types of information: i) the enrichment of differentially expressed genes from the experiment and ii)
a network of regulatory interactions from our proprietary knowledge base (see the report information for details). The network is a directed graph in which
the nodes represent genes, and the edges represent regulatory interactions between two genes. A signed edge in this graph consists of a source gene, a
target gene, and a sign to indicate the type of signal: activation (+) or inhibition (-). To create the network, the analysis selects only those edges observed
in the literature with at least a medium confidence (evidence score greater than or equal to 400). The analysis considers two hypotheses:

HA. The upstream regulator is activated in the condition studied.
HI. The upstream regulator is inhibited in the condition studied.

The analysis divides the set of all the genes obtained from NCBI Gene database into several subsets based on the measurements in the experiment and
the definitions shown in Figure 5.1.1 and Figure 5.1.2. Let the sign of a measured DE gene be the sign of the log fold change value: (+) for up-regulated genes
and (-) for down-regulated genes. A gene is a target gene if it corresponds to a node in the network that has at least one incoming edge. We define a
consistent gene as a target DE gene such that the sign of the gene is consistent both with the type of the signal and with the hypothesis considered.
Formally, by definition, a target DE gene g is consistent with Hypothesis HA if and only if an incoming edge e exists such that sign(g) = sign(e). In other
words, this describes the situation when the upstream regulator is predicted as activated, the signal is activation and the target DE gene is up-regulated,
or the signal is inhibition and the target DE gene is down-regulated (see panel A in Figure 5.1.1). A target DE gene g is consistent with Hypothesis HI if and
only if an incoming edge e exists such that sign(g) ≠ sign(e). This second case captures the situation in which the upstream regulator is inhibited, the
signal is inhibition and the target DE gene is up-regulated, or the signal is activation and the target DE gene is down-regulated (see panel B in Figure 5.1.1).

Fig. 5.1.1:  Target genes consistent with the hypothesis considered: In panel A, the signs of the DE genes match the signs of their respective incoming edges, increasing the likelihood that

the upstream regulator u is activated. In panel B, the signs of the DE genes are opposite to the signs of their edges, increasing the likelihood that the upstream regulator u is inhibited.

Fig. 5.1.2:  The set of all genes includes the set of measured genes that are also targets in the network, or Measured Targets (MT). We define the subset of "DE Targets consistent with the first

hypothesis that the upstream regulators are Activated", DTA. For a selected upstream regulator u, we have the set of "Measured Targets of u" MT(u), "Differentially expressed Targets

downstream of u" DT(u), and the set of "DE targets consistent with the hypothesis HA that u is Activated" DTA(u). The equivalent graphic for the hypothesis HI associated with DTI and DTI(u) is160
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not shown.

Upstream regulators Z-score
For both research hypotheses, the analysis computes a Z-score for each upstream regulator z(u) by iterating over the genes in DT(u) and their incoming
edges in(g). We can then compute the p-value corresponding to the z-score P  as the one-tailed area under the probability density function for a normal
distribution, N(0,1).

Upstream regulators predicted as activated
Here, the research hypothesis considers the upstream regulator as activated. For each upstream regulator u, the number of consistent DE genes
downstream of u, DTA(u) is compared to the number of measured target genes expected to be both consistent and DE just by chance. iPathwayGuide
uses an over-representation approach to compute the statistical significance of observing at least the given number of consistent DE genes. The p-value
P  is computed using the hypergeometric distribution (Draghici et al., 2003, Draghici 2011).

After computing a p-value for both types of evidence, P  and P , we need to combine these two probabilities into one global probability value, P  that is
used to rank the upstream regulators and test the research hypothesis that the upstream regulators are predicted as activated in the condition studied.
Since only a positive z-score indicates that the upstream regulator is predicted as activated, we only combine p-values for a positive z-score. Moreover,
to avoid introducing false positives, only P  for significant z-scores ( z ≥ 2 ) are combined. The analysis uses the standard Fisher's method to combine p-
values into one test statistic (Fisher 1925).

Upstream regulators predicted as inhibited
In parallel with upstream regulators predicted as activated, we use P  and P  to predict upstream regulators that are inhibited. Here, the research
hypothesis states that the upstream regulators are inhibited in the conditions studied. For each upstream regulator u, the number of consistent DE genes
downstream of u, DTI(u) is compared to the number of measured target genes expected to be both consistent and DE just by chance. Using the Fisher's
method as above, the analysis combines P  and P , where P  is considered only for significant negative z-scores ( z ≤ -2).

5.2.  Results: upstream regulators predicted as activated

Table 5.2.1:  Top upstream regulators predicted as activated. For each upstream regulator u, the table shows the number of DE targets supporting the hypothesis that the regulator is

activated DTA(u) the total number of DE genes downstream of u DT(u), the combined raw p-value, and the p-value corrected for multiple comparisons.Fig. 5.2.1:  A two-way plot showing the

top five upstream regulators predicted as activated. Dots representing upstream regulators are positioned using P  on the horizontal axis, and using P  on the vertical axis. P  is the p-

value based on the number of DE targets consistent with the typeof the incoming signal and with the selected hypothesis type. Upstream regulators with a significant combined p-value are

shown in red. The size of each dot represents the number of consistent DE genes for that regulator.
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Fig. 5.2.3:  Gene measured expression bar plot: All the consistent differentially expressed genes that are targeted by RANBP2 are ranked based on their absolute value of log fold change. The

plot is limited to the top 20 genes out of a total of 38 consistent differentially expressed target genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and

whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator. The box shows the 1st quartile, the median and the

3rd quartile, while the outliers are represented by circles.
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Upstream Regulator (u) DTA(u) DT(u) p-value p-value
(FDR)

p-value
(Bonferroni)

RANBP2 38 38 9.188e-14 1.664e-10 1.664e-10

NUP160 36 36 6.001e-13 4.112e-10 1.087e-9

NUP107 36 36 6.811e-13 4.112e-10 1.233e-9

NUP43 35 35 1.624e-12 6.657e-10 2.941e-9

NUP37 35 35 1.838e-12 6.657e-10 3.328e-9
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Fig. 5.2.4:  Activation p-value vs zscore p-value: RANBP2, RAN binding protein 2, (yellow) is shown, using negative log of the activation and zscore p-values, along with the other most

significant upstream regulators. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 38.

NUP160 (nucleoporin 160)
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Fig. 5.2.5:  Gene measured expression bar plot: All the consistent differentially expressed genes that are targeted by NUP160 are ranked based on their absolute value of log fold change. The

plot is limited to the top 20 genes out of a total of 36 consistent differentially expressed target genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and

whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator. The box shows the 1st quartile, the median and the

3rd quartile, while the outliers are represented by circles.

Fig. 5.2.6:  Activation p-value vs zscore p-value: NUP160, nucleoporin 160, (yellow) is shown, using negative log of the activation and zscore p-values, along with the other most significant

upstream regulators. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 36.
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NUP107 (nucleoporin 107)
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Fig. 5.2.7:  Gene measured expression bar plot: All the consistent differentially expressed genes that are targeted by NUP107 are ranked based on their absolute value of log fold change. The

plot is limited to the top 20 genes out of a total of 36 consistent differentially expressed target genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and

whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator. The box shows the 1st quartile, the median and the

3rd quartile, while the outliers are represented by circles.

Fig. 5.2.8:  Activation p-value vs zscore p-value: NUP107, nucleoporin 107, (yellow) is shown, using negative log of the activation and zscore p-values, along with the other most significant

upstream regulators. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 36.

NUP43 (nucleoporin 43)
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Fig. 5.2.9:  Gene measured expression bar plot: All the consistent differentially expressed genes that are targeted by NUP43 are ranked based on their absolute value of log fold change. The

plot is limited to the top 20 genes out of a total of 35 consistent differentially expressed target genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and

whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator. The box shows the 1st quartile, the median and the

3rd quartile, while the outliers are represented by circles.
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Fig. 5.2.10:  Activation p-value vs zscore p-value: NUP43, nucleoporin 43, (yellow) is shown, using negative log of the activation and zscore p-values, along with the other most significant

upstream regulators. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 35.

NUP37 (nucleoporin 37)
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Fig. 5.2.11:  Gene measured expression bar plot: All the consistent differentially expressed genes that are targeted by NUP37 are ranked based on their absolute value of log fold change. The

plot is limited to the top 20 genes out of a total of 35 consistent differentially expressed target genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and

whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator. The box shows the 1st quartile, the median and the

3rd quartile, while the outliers are represented by circles.

Fig. 5.2.12:  Activation p-value vs zscore p-value: NUP37, nucleoporin 37, (yellow) is shown, using negative log of the activation and zscore p-values, along with the other most significant

upstream regulators. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 35.
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5.3.  Results: upstream regulators predicted as inhibited

Table 5.3.1:  Top upstream regulators predicted as inhibited. For each upstream regulator u, the table shows the number of DE targets supporting the hypothesis that the regulator is

inhibited DTI(u) the total number of DE genes downstream of u DT(u), the combined raw p-value, and the p-value corrected for multiple comparisons.Fig. 5.3.1:  A two-way plot showing the

top five upstream regulators predicted as inhibited. Dots representing upstream regulators are positioned using P  on the horizontal axis, and using P  on the vertical axis. P  is the p-

value based on the number of DE targets consistent with the typeof the incoming signal and with the selected hypothesis type. Upstream regulators with a significant combined p-value are

shown in red. The size of each dot represents the number of consistent DE genes for that regulator.
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Fig. 5.3.13:  Gene measured expression bar plot: All the consistent differentially expressed genes that are targeted by RBX1 are ranked based on their absolute value of log fold change.

Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes

targeted by this upstream regulator. The box shows the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.

Fig. 5.3.14:  Inhibition p-value vs zscore p-value: RBX1, ring-box 1, (yellow) is shown, using negative log of the inhibition and zscore p-values, along with the other most significant upstream

regulators. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 19.

Upstream Regulator (u) DTI(u) DT(u) p-value p-value
(FDR)

p-value
(Bonferroni)

RBX1 19 19 1.077e-11 4.952e-9 1.950e-8

SKP2 17 17 2.189e-11 4.952e-9 3.965e-8

COMMD3 18 18 2.415e-11 4.952e-9 4.374e-8

CCDC22 18 18 2.415e-11 4.952e-9 4.374e-8

COMMD2 18 18 2.415e-11 4.952e-9 4.374e-8
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SKP2 (S-phase kinase associated protein 2)
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Fig. 5.3.15:  Gene measured expression bar plot: All the consistent differentially expressed genes that are targeted by SKP2 are ranked based on their absolute value of log fold change.

Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes

targeted by this upstream regulator. The box shows the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.

Fig. 5.3.16:  Inhibition p-value vs zscore p-value: SKP2, S-phase kinase associated protein 2, (yellow) is shown, using negative log of the inhibition and zscore p-values, along with the other

most significant upstream regulators. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 17.
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Fig. 5.3.17:  Gene measured expression bar plot: All the consistent differentially expressed genes that are targeted by COMMD3 are ranked based on their absolute value of log fold change.

Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes

targeted by this upstream regulator. The box shows the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.
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Fig. 5.3.18:  Inhibition p-value vs zscore p-value: COMMD3, COMM domain containing 3, (yellow) is shown, using negative log of the inhibition and zscore p-values, along with the other most

significant upstream regulators. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 18.

CCDC22 (coiled-coil domain containing 22)
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Fig. 5.3.19:  Gene measured expression bar plot: All the consistent differentially expressed genes that are targeted by CCDC22 are ranked based on their absolute value of log fold change.

Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes

targeted by this upstream regulator. The box shows the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.

Fig. 5.3.20:  Inhibition p-value vs zscore p-value: CCDC22, coiled-coil domain containing 22, (yellow) is shown, using negative log of the inhibition and zscore p-values, along with the other

most significant upstream regulators. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 18.
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COMMD2 (COMM domain containing 2)
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Fig. 5.3.21:  Gene measured expression bar plot: All the consistent differentially expressed genes that are targeted by COMMD2 are ranked based on their absolute value of log fold change.

Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes

targeted by this upstream regulator. The box shows the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.

Fig. 5.3.22:  Inhibition p-value vs zscore p-value: COMMD2, COMM domain containing 2, (yellow) is shown, using negative log of the inhibition and zscore p-values, along with the other most

significant upstream regulators. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 18.

6.  Predicted Upstream Regulator Analysis – Chemicals, Drugs,
Toxicants (CDTs)
6.1.  Methods
The prediction of upstream Chemicals, Drugs, Toxicants (CDTs) is based on two types of information: i) the enrichment of differentially expressed genes
from the experiment and ii) a network of interactions from the Advaita Knowledge Base (AKB v2201). The network is a directed graph in which the source
node represents either a chemical substance or compound (e.g. zinc), a drug (e.g. aspirin), or a toxicant (e.g. tobacco smoke). The generic abbreviation
CDT will be used henceforth to designate any of these. The edges represent known effects that these CDTs have on various genes. A signed edge in this
graph consists of a source CDT, a target gene, and a sign to indicate the type of effect: activation (+) or inhibition (-). The analysis considers two
hypotheses:

HP. The upstream chemical, drug or toxicant is present (or overly abundant) in the condition studied.
HA. The upstream chemical, drug or toxicant is absent (or insufficient) in the condition studied.

The analysis divides the set of all the genes from AKB into several subsets based on the measurements in the experiment and the definitions shown in
Figure 6.1.1 and Figure 6.1.2. Let the sign of a measured DE gene be the sign of the log fold change value: (+) for up-regulated genes and (-) for down-
regulated genes. A gene is a target gene if it corresponds to a node in the network that has at least one incoming edge. We define a consistent gene as a
target DE gene such that the sign of the gene is consistent both with the type of the signal and with the hypothesis considered. Formally, by definition, a
target DE gene g is consistent with Hypothesis HP if and only if an incoming edge e exists such that sign(g) = sign(e). In other words, this describes the
situation when the CDT is predicted as present, the signal is activation and the target DE gene is up-regulated, or the signal is inhibition and the target DE
gene is down-regulated (see panel A in Figure 6.1.1). A target DE gene g is consistent with Hypothesis HA if and only if an incoming edge e exists such that
sign(g) ≠ sign(e). This second case captures the situation in which the CDT is absent (or insufficient), the signal is inhibition and the target DE gene is up-
regulated, or the signal is activation and the target DE gene is down-regulated (see panel B in Figure 6.1.1).
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Fig. 6.1.1:  Target genes consistent with the hypothesis considered: In panel A, the signs of the DE genes match the signs of their respective incoming edges, increasing the likelihood that

the CDT u is present. In panel B, the signs of the DE genes are opposite to the signs of their edges, increasing the likelihood that the CDT u is absent.

Fig. 6.1.2:  The set of all genes includes the set of measured genes that are also targets in the network, or Measured Targets (MT). We define the subset of "DE Targets consistent with the first

hypothesis that the CDTs are Present (or overly abundant)", DTA. For a selected upstream CDT u, we have the set of "Measured Targets of u" MT(u), "Differentially expressed Targets

downstream of u" DT(u), and the set of "DE targets consistent with the hypothesis HP that u is Present" DTA(u). The equivalent graphic for the hypothesis HA associated with DTI and DTI(u) is

not shown.

Z-score
For both research hypotheses, the analysis computes a Z-score for each CDT z(u) by iterating over the genes in DT(u) and their incoming edges in(g). We
can then compute the p-value corresponding to the z-score P  as the one-tailed area under the probability density function for a normal distribution,
N(0,1).

Upstream CDTs predicted as present (or overly abundant)
Here, the research hypothesis considers presence of the CDT. This hypothesis is useful when investigating whether the given phenotype has been
impacted by the presence of a given chemical, drug or toxicant (e.g. tobacco smoke, dioxin, etc.). For each CDT u, the number of consistent DE genes
downstream of u, DTA(u) is compared to the number of measured target genes expected to be both consistent and DE just by chance. iPathwayGuide
uses an over-representation approach to compute the statistical significance of observing at least the given number of consistent DE genes. The p-value
P  is computed using the hypergeometric distribution (Draghici et al., 2003, Draghici 2011).

After computing a p-value for both types of evidence, P  and P , we combine these two probabilities into one global probability value, P  that is used
to rank the upstream regulators and test the research hypothesis that the upstream CDTs are predicted as present in the condition studied. The analysis
uses the standard Fisher's method to combine p-values into one test statistic (Fisher 1925).

Upstream CDTs predicted as absent (or insufficient)
In parallel with upstream CDTs predicted as present, we use P  and P  to predict upstream CDTs that are absent. This hypothesis is relevant when
investigating whether the given phenotype has been impacted by the lack of a given chemical that is necessary for the well-functioning of the organism or
cell (e.g. a vitamin deficiency, iron deficiency, etc.). Here, the research hypothesis states that the upstream CDT are insufficient in the condition studied.
For each upstream CDT u, the number of consistent DE genes downstream of u, DTI(u) is compared to the number of measured target genes expected to
be both consistent and DE just by chance. Using the Fisher's method as above, the analysis combines P  and P , where P  is considered only for
significant negative z-scores ( z ≤ -2).
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6.2.  Results: upstream CDTs predicted as present (or overly abundant)

Table 6.2.1:  Top upstream CDTs predicted as present (or overly abundant). For each upstream CDT u, the table shows the number of DE targets supporting the hypothesis that the CDT is

present DTA(u) the total number of DE genes downstream of u DT(u), the combined raw p-value, and the p-value corrected for multiple comparisons.Fig. 6.2.1:  A two-way plot showing the

top five upstream CDTs predicted as present (or overly abundant). Dots representing upstream CDTs are positioned using P  on the horizontal axis, and using P  on the vertical axis.

P  is the p-value based on the number of DE targets consistent with the typeof the incoming signal and with the selected hypothesis type. Upstream CDTs with a significant combined p-value

are shown in red. The size of each dot represents the relative number of consistent DE genes for that CDT.
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Fig. 6.2.3:  Consistent DE target genes measured expression bar plot: All the consistent differentially expressed genes that are targeted by Naphthoquinones are ranked based on their

absolute value of log fold change. The plot is limited to the top 20 genes out of a total of 62 consistent differentially expressed target genes. Upregulated genes are shown in red, downregulated

genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator. The box shows

the 1st quartile, the median and the 3rd quartile, while any outliers are represented by circles.

Fig. 6.2.4:  a) Present (overly abundant) p-value vs zscore p-value: The significance of Naphthoquinones is plotted on two axes, with negative log of P  on x-axis and negative log of P  on

y-axis. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 62. b) Volcano plot: There are 62 DE genes that are targets of

Naphthoquinones consistent with the hypothesis that Naphthoquinones is present (overly abundant) The target genes are represented in terms of their measured expression change (x-axis) and

the significance of the change (y-axis). The significance is represented in terms of the negative log (base 10) of the p-value, so that more significant genes are plotted higher on the y-axis.

CDT (u) DTA(u) DT(u) p-value p-value
(FDR)

p-value
(Bonferroni)

Naphthoquinones 62 63 1.957e-16 2.972e-13 4.323e-13

geldanamycin 59 61 2.437e-15 1.794e-12 5.383e-12

Dihydrotestosterone 131 135 2.691e-16 2.972e-13 5.944e-13

cylindrospermopsin 77 85 1.435e-14 7.922e-12 3.169e-11

Sodium Selenite 167 224 7.077e-13 3.127e-10 1.563e-9
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geldanamycin
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Fig. 6.2.5:  Consistent DE target genes measured expression bar plot: All the consistent differentially expressed genes that are targeted by geldanamycin are ranked based on their absolute

value of log fold change. The plot is limited to the top 20 genes out of a total of 59 consistent differentially expressed target genes. Upregulated genes are shown in red, downregulated genes

are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator. The box shows the 1st

quartile, the median and the 3rd quartile, while any outliers are represented by circles.

Fig. 6.2.6:  a) Present (overly abundant) p-value vs zscore p-value: The significance of geldanamycin is plotted on two axes, with negative log of P  on x-axis and negative log of P  on y-

axis. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 59. b) Volcano plot: There are 59 DE genes that are targets of

geldanamycin consistent with the hypothesis that geldanamycin is present (overly abundant) The target genes are represented in terms of their measured expression change (x-axis) and the

significance of the change (y-axis). The significance is represented in terms of the negative log (base 10) of the p-value, so that more significant genes are plotted higher on the y-axis.

Dihydrotestosterone
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Fig. 6.2.7:  Consistent DE target genes measured expression bar plot: All the consistent differentially expressed genes that are targeted by Dihydrotestosterone are ranked based on their

absolute value of log fold change. The plot is limited to the top 20 genes out of a total of 131 consistent differentially expressed target genes. Upregulated genes are shown in red,

downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator.

The box shows the 1st quartile, the median and the 3rd quartile, while any outliers are represented by circles.
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Fig. 6.2.8:  a) Present (overly abundant) p-value vs zscore p-value: The significance of Dihydrotestosterone is plotted on two axes, with negative log of P  on x-axis and negative log of P

on y-axis. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 131. b) Volcano plot: There are 131 DE genes that are targets of

Dihydrotestosterone consistent with the hypothesis that Dihydrotestosterone is present (overly abundant) The target genes are represented in terms of their measured expression change (x-axis)

and the significance of the change (y-axis). The significance is represented in terms of the negative log (base 10) of the p-value, so that more significant genes are plotted higher on the y-axis.

cylindrospermopsin
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Fig. 6.2.9:  Consistent DE target genes measured expression bar plot: All the consistent differentially expressed genes that are targeted by cylindrospermopsin are ranked based on their

absolute value of log fold change. The plot is limited to the top 20 genes out of a total of 77 consistent differentially expressed target genes. Upregulated genes are shown in red, downregulated

genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator. The box shows

the 1st quartile, the median and the 3rd quartile, while any outliers are represented by circles.

Fig. 6.2.10:  a) Present (overly abundant) p-value vs zscore p-value: The significance of cylindrospermopsin is plotted on two axes, with negative log of P  on x-axis and negative log of P

on y-axis. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 77. b) Volcano plot: There are 77 DE genes that are targets of

cylindrospermopsin consistent with the hypothesis that cylindrospermopsin is present (overly abundant) The target genes are represented in terms of their measured expression change (x-axis)

and the significance of the change (y-axis). The significance is represented in terms of the negative log (base 10) of the p-value, so that more significant genes are plotted higher on the y-axis.
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Sodium Selenite
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Fig. 6.2.11:  Consistent DE target genes measured expression bar plot: All the consistent differentially expressed genes that are targeted by Sodium Selenite are ranked based on their

absolute value of log fold change. The plot is limited to the top 20 genes out of a total of 167 consistent differentially expressed target genes. Upregulated genes are shown in red,

downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator.

The box shows the 1st quartile, the median and the 3rd quartile, while any outliers are represented by circles.

Fig. 6.2.12:  a) Present (overly abundant) p-value vs zscore p-value: The significance of Sodium Selenite is plotted on two axes, with negative log of P  on x-axis and negative log of P  on

y-axis. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 167. b) Volcano plot: There are 167 DE genes that are targets of

Sodium Selenite consistent with the hypothesis that Sodium Selenite is present (overly abundant) The target genes are represented in terms of their measured expression change (x-axis) and the

significance of the change (y-axis). The significance is represented in terms of the negative log (base 10) of the p-value, so that more significant genes are plotted higher on the y-axis.
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6.3.  Results: upstream CDTs predicted as absent (or insufficient)

Table 6.3.1:  Top upstream CDTs predicted as absent (or insufficient). For each upstream CDT u, the table shows the number of DE targets supporting the hypothesis that the CDT is absent

DTI(u) the total number of DE genes downstream of u DT(u), the combined raw p-value, and the p-value corrected for multiple comparisons.Fig. 6.3.1:  A two-way plot showing the top five

upstream CDTs predicted as absent (or insufficient). Dots representing upstream CDTs are positioned using P  on the horizontal axis, and using P  on the vertical axis. P  is the p-

value based on the number of DE targets consistent with the typeof the incoming signal and with the selected hypothesis type. Upstream CDTs with a significant combined p-value are shown in

red. The size of each dot represents the relative number of consistent DE genes for that CDT.
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Fig. 6.3.13:  Consistent DE target genes measured expression bar plot: All the consistent differentially expressed genes that are targeted by Doxorubicin are ranked based on their absolute

value of log fold change. The plot is limited to the top 20 genes out of a total of 932 consistent differentially expressed target genes. Upregulated genes are shown in red, downregulated genes

are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator. The box shows the 1st

quartile, the median and the 3rd quartile, while any outliers are represented by circles.

CDT (u) DTI(u) DT(u) p-value p-value
(FDR)

p-value
(Bonferroni)

Doxorubicin 932 1131 5.626e-23 3.355e-20 1.243e-19

Ivermectin 833 848 5.626e-23 3.355e-20 1.243e-19

dicrotophos 499 696 5.626e-23 3.355e-20 1.243e-19

3-((6-(2-
methoxyphenyl)pyrimidin-4-
yl)amino)phenyl)methane
sulfonamide

162 167 6.075e-23 3.355e-20 1.342e-19

7,8-Dihydro-7,8-
dihydroxybenzo(a)pyrene 9,10-
oxide

440 563 7.519e-19 3.322e-16 1.661e-15
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Fig. 6.3.14:  a) Absent (or insufficient) p-value vs zscore p-value: The significance of Doxorubicin is plotted on two axes, with negative log of P  on x-axis and negative log of P  on y-axis.

The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 932. b) Volcano plot: There are 932 DE genes that are targets of Doxorubicin

consistent with the hypothesis that Doxorubicin is absent (or insufficient) The target genes are represented in terms of their measured expression change (x-axis) and the significance of the

change (y-axis). The significance is represented in terms of the negative log (base 10) of the p-value, so that more significant genes are plotted higher on the y-axis.
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Fig. 6.3.15:  Consistent DE target genes measured expression bar plot: All the consistent differentially expressed genes that are targeted by Ivermectin are ranked based on their absolute

value of log fold change. The plot is limited to the top 20 genes out of a total of 833 consistent differentially expressed target genes. Upregulated genes are shown in red, downregulated genes

are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator. The box shows the 1st

quartile, the median and the 3rd quartile, while any outliers are represented by circles.

Fig. 6.3.16:  a) Absent (or insufficient) p-value vs zscore p-value: The significance of Ivermectin is plotted on two axes, with negative log of P  on x-axis and negative log of P  on y-axis.

The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 833. b) Volcano plot: There are 833 DE genes that are targets of Ivermectin

consistent with the hypothesis that Ivermectin is absent (or insufficient) The target genes are represented in terms of their measured expression change (x-axis) and the significance of the

change (y-axis). The significance is represented in terms of the negative log (base 10) of the p-value, so that more significant genes are plotted higher on the y-axis.
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dicrotophos
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Fig. 6.3.17:  Consistent DE target genes measured expression bar plot: All the consistent differentially expressed genes that are targeted by dicrotophos are ranked based on their absolute

value of log fold change. The plot is limited to the top 20 genes out of a total of 499 consistent differentially expressed target genes. Upregulated genes are shown in red, downregulated genes

are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator. The box shows the 1st

quartile, the median and the 3rd quartile, while any outliers are represented by circles.

Fig. 6.3.18:  a) Absent (or insufficient) p-value vs zscore p-value: The significance of dicrotophos is plotted on two axes, with negative log of P  on x-axis and negative log of P  on y-axis.

The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 499. b) Volcano plot: There are 499 DE genes that are targets of dicrotophos

consistent with the hypothesis that dicrotophos is absent (or insufficient) The target genes are represented in terms of their measured expression change (x-axis) and the significance of the

change (y-axis). The significance is represented in terms of the negative log (base 10) of the p-value, so that more significant genes are plotted higher on the y-axis.

3-((6-(2-methoxyphenyl)pyrimidin-4-yl)amino)phenyl)methane sulfonamide
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Fig. 6.3.19:    Consistent DE target genes measured expression bar plot: All the consistent differentially expressed genes that are targeted by 3-((6-(2-methoxyphenyl)pyrimidin-4-

yl)amino)phenyl)methane sulfonamide are ranked based on their absolute value of log fold change. The plot is limited to the top 20 genes out of a total of 162 consistent differentially expressed

target genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially

expressed genes targeted by this upstream regulator. The box shows the 1st quartile, the median and the 3rd quartile, while any outliers are represented by circles.

-log10(pv_zscore)
0 50 100 150

-lo
g1

0(
pv

_a
bs

)

0

20

40

60

80

(c) Advaita Corporation 2022

a)

0.5 1.0 1.5
logFC

0

2

4

6

-lo
g1

0(
ad

jP
Va

l)

(c) Advaita Corporation 2022

b)

z abs

176



10/24/22, 10:21 AM Report Summary | iPathwayGuide

https://ipathwayguide.advaitabio.com/report/56822/contrast/73693/summary/print 35/40

Fig. 6.3.20:  a) Absent (or insufficient) p-value vs zscore p-value: The significance of 3-((6-(2-methoxyphenyl)pyrimidin-4-yl)amino)phenyl)methane sulfonamide is plotted on two axes, with

negative log of P  on x-axis and negative log of P  on y-axis. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 162. b)

Volcano plot: There are 162 DE genes that are targets of 3-((6-(2-methoxyphenyl)pyrimidin-4-yl)amino)phenyl)methane sulfonamide consistent with the hypothesis that 3-((6-(2-

methoxyphenyl)pyrimidin-4-yl)amino)phenyl)methane sulfonamide is absent (or insufficient) The target genes are represented in terms of their measured expression change (x-axis) and the

significance of the change (y-axis). The significance is represented in terms of the negative log (base 10) of the p-value, so that more significant genes are plotted higher on the y-axis.

7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide
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Fig. 6.3.21:  Consistent DE target genes measured expression bar plot: All the consistent differentially expressed genes that are targeted by 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-

oxide are ranked based on their absolute value of log fold change. The plot is limited to the top 20 genes out of a total of 440 consistent differentially expressed target genes. Upregulated genes

are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this

upstream regulator. The box shows the 1st quartile, the median and the 3rd quartile, while any outliers are represented by circles.

Fig. 6.3.22:  a) Absent (or insufficient) p-value vs zscore p-value: The significance of 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide is plotted on two axes, with negative log of P  on x-

axis and negative log of P  on y-axis. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 440. b) Volcano plot: There are 440

DE genes that are targets of 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide consistent with the hypothesis that 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide is absent (or

insufficient) The target genes are represented in terms of their measured expression change (x-axis) and the significance of the change (y-axis). The significance is represented in terms of the

negative log (base 10) of the p-value, so that more significant genes are plotted higher on the y-axis.

7.  Disease Analysis
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7.1.  Methods
For each disease, the number of differentially expressed (DE) genes annotated to a disease term is compared to the number of DE genes expected just
by chance. iPathwayGuide uses an over-representation approach to compute the statistical significance of observing at least the given number of DE
genes. The p-value is computed using the hypergeometric distribution as described for pORA in the Pathway Analysis section. This p-value is corrected
for multiple comparisons using FDR and Bonferroni.

7.2.  Results
Table 7.2.1:  Top identified diseases

Disease Name p-value p-value
(FDR)

p-value
(Bonferroni)

Congenital disorders of glycosylation type I 5.272e-8 1.763e-5 2.673e-5

Autosomal recessive mental retardation 6.954e-8 1.763e-5 3.526e-5

Joubert syndrome 9.091e-7 1.536e-4 4.609e-4

Pontocerebellar hypoplasia 2.861e-6 2.901e-4 0.001

Cytochrome c oxidase (COX) deficiency; Mitochondrial complex IV deficiency (MT-C4D) 2.861e-6 2.901e-4 0.001

Congenital disorders of glycosylation type I (H00118)
Congenital disorders of glycosylation (CDG) are a group of disorders caused by defects in various genes for N-glycan biosynthesis. CDG type I is defined
by mutations in genes encoding enzymes which involves disrupted synthesis of the lipid linked oligosaccharide precursor and its transfer to polypeptide
chain of protein, affecting N-glycan assembly in cytosol and endoplasmic reticulum. An increasing number of disorders have been discovered, with many
subtypes identified. PMM2-CDG is the most common form, with over 800 patients diagnosed mostly in Europe. Almost all type present in infancy. These
diseases demonstrate a broad range of clinical manifestation, associated with developmental delay, psychomotor retardation, hypotonia, seizures,
hepatomegaly, microcephaly, and pericardial effusion. In this experiment, the algorithm identified 11 differentially expressed genes out of 29 genes
associated with the disease.
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Fig. 7.2.1:  Gene measured expression bar plot: All the differentially expressed genes that are annotated to Congenital disorders of glycosylation type I are ranked based on their absolute

value of log fold change. Upregulated genes are shown in red, downregulated genes are shown in blue. The box plot on the left summarizes the distribution of all the differentially expressed

genes that are annotated to this disease. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.
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Autosomal recessive mental retardation (H00768)
Mental retardation (MR) is a neurodevelopmental disorder characterized by low intelligence quotient (IQ) and deficits in adaptive behaviors. Although X-
linked MR has been extensively studied, and over 80 causal genes have been cloned, little is known about the genetic basis of autosomal recessive
mental retardation (MRT). To date, several genes have been identified. These genes have a variety of functions and participate in multiple biochemical
pathways. In addition, there are several known disease loci for which genes have not yet been identified. In this experiment, the algorithm identified 14
differentially expressed genes out of 50 genes associated with the disease.
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Fig. 7.2.2:  Gene measured expression bar plot: All the differentially expressed genes that are annotated to Autosomal recessive mental retardation are ranked based on their absolute value of

log fold change. Upregulated genes are shown in red, downregulated genes are shown in blue. The box plot on the left summarizes the distribution of all the differentially expressed genes that

are annotated to this disease. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.

Joubert syndrome (H00530)
Joubert syndrome and related disorders are a group of multiple congenital anomaly syndromes characterized by 'molar tooth sign', a specific midbrain-
hindbrain malformation seen in brain images. Joubert syndrome is associated with retinal dystrophy, nephronophthisis, liver fibrosis and polydactyly.
Most of the causative genes encode cilium-related proteins. In this experiment, the algorithm identified 11 differentially expressed genes out of 37 genes
associated with the disease.

lo
gF

C

-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0

TC
TN

1

AR
L1

3B

C
SP

P1

C
EP

12
0

C
EP

41

B9
D
2

TM
EM

21
6

C
EP

29
0

SU
FU

TO
G
AR

AM
1

TT
C
21
B

(c) Advaita Corporation 2022
Fig. 7.2.3:  Gene measured expression bar plot: All the differentially expressed genes that are annotated to Joubert syndrome are ranked based on their absolute value of log fold change.

Upregulated genes are shown in red, downregulated genes are shown in blue. The box plot on the left summarizes the distribution of all the differentially expressed genes that are annotated to

this disease. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.

Pontocerebellar hypoplasia (H00897)
Pontocerebellar hypoplasia (PCH) is a group of inherited progressive neurodegenerative disorders with prenatal onset. Up to now ten different subtypes
have been reported. All subtypes share common characteristics, including hypoplasia/atrophy of cerebellum and pons, progressive microcephaly, and
variable cerebral involvement. Mutations in three tRNA splicing endonuclease subunit genes were found to be responsible for PCH2, PCH4 and PCH5.
Mutations in the nuclear encoded mitochondrial arginyl- tRNA synthetase gene underlie PCH6. PCH1 is caused by homozygous mutation in the VRK1
gene. In this experiment, the algorithm identified 7 differentially expressed genes out of 15 genes associated with the disease.
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Fig. 7.2.4:  Gene measured expression bar plot: All the differentially expressed genes that are annotated to Pontocerebellar hypoplasia are ranked based on their absolute value of log fold

change. Upregulated genes are shown in red, downregulated genes are shown in blue. The box plot on the left summarizes the distribution of all the differentially expressed genes that are

annotated to this disease. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.
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Cytochrome c oxidase (COX) deficiency; Mitochondrial complex IV deficiency (MT-C4D) (H01368)
Cytochrome c oxidase (COX) deficiency is a mitochondrial disease that is caused by the lack of the COX. Cytochrome c oxidase (COX) is the terminal
enzyme of the mitochondrial respiratory chain (complex IV). Since COX is encoded by nuclear and mitochondrial genes, COX deficiency can be inherited
in either an autosomal recessive or a maternal pattern. Patients can present with a number of different clinical phenotypes, including Leigh syndrome,
Fatal infantile cardioencephalomyopathy, and Leber hereditary optic neuropathy. In this experiment, the algorithm identified 7 differentially expressed
genes out of 15 genes associated with the disease.

lo
gF

C
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0

C
O
X1

4

PE
T1

00

C
O
X1

5

LR
PP

R
C

SC
O
1

FA
ST

K
D
2

C
O
A5

(c) Advaita Corporation 2022
Fig. 7.2.5:  Gene measured expression bar plot: All the differentially expressed genes that are annotated to Cytochrome c oxidase (COX) deficiency; Mitochondrial complex IV deficiency (MT-

C4D) are ranked based on their absolute value of log fold change. Upregulated genes are shown in red, downregulated genes are shown in blue. The box plot on the left summarizes the

distribution of all the differentially expressed genes that are annotated to this disease. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by

circles.
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