

Loma Linda University TheScholarsRepository@LLU: Digital Archive of Research, Scholarship & Creative Works

Loma Linda University Electronic Theses, Dissertations & Projects

12-2022

# High-Intensity Interval Training and Biological Age

**Trevor Lohman** 

Follow this and additional works at: https://scholarsrepository.llu.edu/etd

Part of the Physical Therapy Commons

### **Recommended Citation**

Lohman, Trevor, "High-Intensity Interval Training and Biological Age" (2022). *Loma Linda University Electronic Theses, Dissertations & Projects*. 1761. https://scholarsrepository.llu.edu/etd/1761

This Dissertation is brought to you for free and open access by TheScholarsRepository@LLU: Digital Archive of Research, Scholarship & Creative Works. It has been accepted for inclusion in Loma Linda University Electronic Theses, Dissertations & Projects by an authorized administrator of TheScholarsRepository@LLU: Digital Archive of Research, Scholarship & Creative Works. For more information, please contact scholarsrepository@llu.edu.

LOMA LINDA UNIVERSITY School of Allied Health Professions In conjunction with the Faculty of Graduate Studies

High-Intensity Interval Training and Biological Age

by

**Trevor Lohman** 

A Dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Physical Therapy

December 2022

# ©2022

Trevor Lohman All Rights Reserved Each person whose signature appears below certifies that this dissertation in his/her opinion is adequate, in scope and quality, as a dissertation for the degree Doctor of Philosophy.

Junder S. Bain

, Chairperson

Gurinder Bains, Professor of Allied Health Studies

5

Lee Berk, Professor of Allied Health Studies, Associate Research Professor School of Medicine

Steve Cole, Professor, CLA School of Medicine

Lida Gharibvand, Associate Professor of Allied Health Studies

Everett Lohman III, Professor of Physical Therapy, Assistant Dean for Graduate Academic Affairs

#### ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to my chair, Dr. Bains, who provided me with both the autonomy and guidance that I needed to succeed at this journey in scholarship. His patience, support, mentorship, and wisdom were invaluable.

To Dr. Cole, whose generosity of knowledge is unparalleled, I offer my wholly inadequate, but extremely heartfelt, appreciation. His breadth and depth of expertise, and more importantly, his willingness to share it is what made this endeavor possible.

To Drs. Berk and Gharibvand, I can only say very gratefully and very humbly, thank you.

To Dr. Lohman, I have a great deal to be grateful for. Most relevant to this dissertation, I am grateful for your recognition that I needed to begin a new chapter. Thank you for giving me the courage to take that first step, and for all your support along the way.

To my wife Olivia, thank you for your limitless understanding and generosity. You are truly the embodiment of what it means to be a partner. I could not have done this without you.

To my children, Harper, and Nash. Thank you for understanding my dedication to this work. I can only hope you find the investment worthwhile, and that you share the same joy for discovery that I've found so fulfilling. I love you; you are both precious to me, and I will work every day to make you proud.

iv

### CONTENT

| cknowledgementsiv                                                                   | V  |
|-------------------------------------------------------------------------------------|----|
| able of Contents                                                                    | v  |
| ist of Figuresvi                                                                    | i  |
| ist of Tablesvi                                                                     | ii |
| ist of Abbreviationsi                                                               | х  |
| \bstractx                                                                           | i  |
| Chapter                                                                             |    |
| 1. Introduction1                                                                    |    |
| References8                                                                         | ,  |
| 2. Predictors of Biological Age: The Implications for Wellness and Aging Research10 | )  |
| Abstract                                                                            | )  |
| Introduction                                                                        | L  |
| Article Search Strategy and Selection Criteria                                      | 5  |
| Telomere Length                                                                     | 5  |
| Composite Biomarkers/Allostatic Load Indices                                        | 1  |
| DNA Methylation "Epigenetic Clocks"                                                 | )  |
| Transcriptional Predictors of Biological Age                                        | ł  |
| Functional Age Estimators                                                           | 5  |
| Discussion                                                                          | Э  |
| Conclusion                                                                          | L  |
| References                                                                          | }  |
|                                                                                     |    |

| 3. | High-Intensity Interval Training Reduces Transcriptomic Age: A Randomized |    |
|----|---------------------------------------------------------------------------|----|
|    | Controlled Trial                                                          | 42 |
|    | A betweet                                                                 | 40 |
|    | Abstract                                                                  | 42 |
|    | Introduction                                                              | 44 |
|    | Methods                                                                   | 47 |
|    | Data Analysis                                                             | 50 |
|    | Results                                                                   | 51 |
|    | Discussion                                                                | 56 |
|    |                                                                           |    |

|    | Significance                     | 60             |
|----|----------------------------------|----------------|
|    | Conclusion                       | 61             |
|    | References                       |                |
|    | Supplementary File 1             | See Appendix B |
|    | Supplementary File 2             | See Appendix C |
| 4. | Discussion                       |                |
|    | Discussion                       | 66             |
|    | Conclusion and Future Directions | 68             |

# Appendices

| Α. | Loma Linda University Institutional Review Board Determination Form          | .70 |
|----|------------------------------------------------------------------------------|-----|
| Β. | Supplementary File 1: Genetic Expression Data                                | .71 |
| C. | Supplementary File 2: Advaita Bioinformatics iPathway Guide Pathway Analyses | 143 |
| D. | Informed Consent Document1                                                   | 182 |

# FIGURES

| Figure | 2S                    | Page |
|--------|-----------------------|------|
| 1.     | CONSORT Chart Diagram | 52   |

# TABLES

| Table | Page                                                                                                                                                                                     |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.    | Telomere Length16                                                                                                                                                                        |
| 2.    | Composite Biomarkers/Allostatic Load Indices19                                                                                                                                           |
| 3.    | DNA Methylation Clocks23                                                                                                                                                                 |
| 4.    | Transcriptomics25                                                                                                                                                                        |
| 5.    | Functional Age Estimators                                                                                                                                                                |
| 6.    | Selected Characteristics of Participants at Baseline53                                                                                                                                   |
| 7.    | Effects of High Intensity Interval Training on Transcriptomic Age, PHQ-9, PSS-10, PSQI, Skeleta<br>Muscle Mass, Body Fat Mass, and Visceral Fat Area. Between and Within Group Effects54 |

# ABBREVIATIONS

| HIIT    | High-Intensity Interval Training                      |  |  |
|---------|-------------------------------------------------------|--|--|
| DNA     | Deoxyribonucleic Acid                                 |  |  |
| CpG     | 5' - Cytosine – Phosphate – Guanine – 3'              |  |  |
| TRAP    | Transcriptomic Age Prediction                         |  |  |
| HIE     | High Intensity Exercise                               |  |  |
| SIT     | Sprint Interval Training                              |  |  |
| DNAmAge | DNA Methylation Age                                   |  |  |
| RNA     | Ribonucleic Acid                                      |  |  |
| MeSH    | Medical Search Heading                                |  |  |
| ВА      | Biological Age                                        |  |  |
| FP      | Frailty Phenotype                                     |  |  |
| FI      | Frailty Index                                         |  |  |
| TL      | Telomere Length                                       |  |  |
| PSS-10  | 10 Item Perceived Stress Scale                        |  |  |
| PHQ-9   | 9 Item Patient Health Questionnaire Depression Module |  |  |
| PSQI    | Pittsburg Sleep Quality Index                         |  |  |
| BMI     | Body Mass Index                                       |  |  |
| mTOR    | Mammalian Target of Rapamycin                         |  |  |
| АМРК    | Adenosine Monophosphate-Activated Protein Kinase      |  |  |
| РІЗК    |                                                       |  |  |
| ТА      | Transcriptomic Age                                    |  |  |

| TAaccel | Transcriptomic Age Acceleration               |  |  |
|---------|-----------------------------------------------|--|--|
| IPAQ    | International Physical Activity Questionnaire |  |  |
| DE      | Differentially Expressed                      |  |  |
| DEG     | Differentially Expressed Gene                 |  |  |
| mRNA    | Messenger Ribonucleic Acid                    |  |  |
| mTORC1  | Mammalian Target of Rapamycin Complex 1       |  |  |
| CDC     | Centers for Disease Control and Prevention    |  |  |

#### ABSTRACT OF THE DISSERTATION

#### High-Intensity Interval Training and Biological Age

By

**Trevor Lohman** 

Doctor of Philosophy, Graduate Program in Physical Therapy Loma Linda University, December 2022 Dr. Gurinder Bains, Chairperson

The emergence of valid predictors of biological age has enabled researchers to test the effects of various interventions on biological aging processes. The established virtues of exercise and its effects on health and longevity make it a suitable candidate for investigation.

This dissertation reviews the current state of biological age prediction models and presents a trial in which a specific exercise protocol's ability to modulate biological age is tested. The specific protocol used is a 10X1 high-intensity interval training (HIIT) protocol, 10X1 referring to the quantity and duration of high intensity exercise intervals in each exercise session. The specific biological age prediction model chosen as the trial's primary outcome measure relies on transcriptomic inputs to make biological age predictions.

A significant difference in biological age was observed between groups. Reduction in biological age was observed in the exercise group, while increased biological age was observed in the control group. Exploratory, hypothesis generation analyses of gene expression revealed potential modification of autophagy, neurotrophin, and cancer biological pathways.

This dissertation concludes that HIIT induces transcriptional changes which may in part account for the established beneficial effects of exercise on health and longevity.

xi

#### CHAPTER ONE

#### INTRODUCTION

Age-related diseases are a persistent and increasingly prevalent burden on healthcare systems around the world. An analysis of the 2017 Global Burden of Disease identified 92 diseases that increase quadratically with age including: cardiovascular diseases, cancers, chronic respiratory diseases, digestive diseases, diabetes, kidney diseases, and others (Chang, Skirbekk, Tyrovolas, Kassebaum, & Dieleman, 2019). These age-related diseases were found to account for 51.3% of total global health burden, defined as the sum of disability-associated lifeyears (Chang et al., 2019). In addition to age-related disease prevalence, the cost is staggering as well. Heart disease and stroke alone accounted for 352 billion dollars per year in healthcare costs and lost productivity in 2018 (Benjamin et al., 2018). Another age-related disease, Cancer, is expected to account for 174 billion dollars in cost by 2020 (Mariotto, Yabroff, Shao, Feuer, & Brown, 2011), with an average of 1.7 million Americans being diagnosed each year. As of 2013, the cost attributable to Arthritis was 305 billion dollars (Murphy, Cisternas, Pasta, Helmick, & Yelin, 2018). Alzheimer's accounts for an additional 215 billion dollars in healthcare costs as of 2010 (Hurd, Martorell, Delavande, Mullen, & Langa, 2013). Unfortunately, these costs are predicted to continue to rise (Atella et al., 2019), and any affordable and accessible protocol capable of ameliorating these trends would be of significant value.

While experimental aging research has progressed a great deal in the past decades, an inherent challenge to progress is the inability to measure an intervention's effects on lifespan without a costly multi-decade longitudinal study. Recently, a new class of biomarkers has

emerged that could potentially address this challenge called biological age predictors. The term biological age has become more prevalent in aging research as a reference to the apparent fact that humans do not seem to age at a homogenous rate. This is intuitive, as anyone would suspect a group of people with the same chronological age to be in varying states of health and mortality risk. Until relatively recently however, there had not been validated markers designed to measure mortality-risk, time-to-death, time-to-cancer, biological age, or other markers of lifespan and healthspan from peripheral blood samples.

The term "predictors of biological age" widely encompasses many different tools designed to predict mortality risk and remaining lifespan. One category of biomarkers within this larger group that has received significant attention is called epigenetic "clocks". The term epigenetic clock refers to tools that analyze DNA methylation levels within a set of Cytosine-Phosphate-Guanine (CpG) sites and are generally acknowledged as accurate measures of biological age (Bell et al., 2019; Jylhävä, Pedersen, & Hägg, 2017; Lohman, Bains, Berk, & Lohman, 2021; Lu et al., 2019). Like the broader category, epigenetic clocks are a group of tools rather than specific biomarkers, and therefore the nature and capability of each tool varies. One metric known as GrimAge for example, can significantly predict time-to-death, time-tocoronary artery disease, and time-to cancer (Lu et al., 2019). These capabilities provide a useful "proxy biomarker" mechanism to assess the effectiveness of interventions designed to increase lifespan.

While GrimAge is one of the most highly validated measures of mortality risk, it does not provide any information regarding the underlying changes to genetic expression associated with methylation (Li et al., 2020; Lu et al., 2019). Chapter 2 of this dissertation presents a

review of biological age prediction models that was published in the journal of Gerontology and Geriatric Medicine. Among the categories of models reviewed in the paper is transcriptomic age prediction. An example of such a model was published in a paper titled "The Transcriptional Landscape of Age in Human Peripheral Blood" written by Peters et al and it identified 1,497 genes that are differentially expressed with age (Peters et al., 2015). The data required for the model's input is derived from peripheral whole blood samples and subsequent mRNA extraction (Peters et al., 2015). Using a statistical formula called the Transcriptomic Age Prediction Tool (TRAP), this genetic expression data can be used to estimate biological age (Peters et al., 2015). Gene expression data from Affymetrix Human Exon (1.0 ST) Arrays can be uploaded to a freely available online platform. The TRAP tool then provides an estimate of biological age measured in years for each sample. In doing so, this tool provides a means to analyze the effects of an intervention on biological age from a gene expression profile. We will utilize this tool in chapter 3 to quantify the effects of high-intensity interval training on biological age.

The availability and validity of these tools has provided a new mechanism to measure the effectiveness of biological age reversal interventions in clinical trials. Studies have now successfully used these metrics to demonstrate that epigenetic aging (biological age as measured by a DNA methylation "clock") can be reversed in humans (Fahy et al., 2019; Fitzgerald et al., 2020). The study performed by Fahy et al in 2019 utilized a metformin and 1 yr. exogenous human growth hormone protocol, that demonstrated a 2.5 year mean reversal of epigenetic aging as well as a significant increase in thymic fat free fraction (Fahy et al., 2019). This was the first study to date to demonstrate a reduction of epigenetic aging and thymic

involution in humans. While these are very exciting results, exogenous human growth hormone administration is not risk free and it is also not accessible to the general population. This has led us to ask the question, "Can biological age be reversed through a safer, more affordable method such as lifestyle modification?"

Intuitively, the answer should be yes, however no controlled trial to date has quantified the effects of a lifestyle intervention on biological age using a transcriptomic age prediction model. Although there are many potential interventions like diet, sleep quality, and stress reduction strategies that could potentially reduce biological ge, we have chosen to examine the effects of exercise on biological age due to its relevance to the field of physical therapy, known health benefits, general safety, and accessibility.

Given the volume of research regarding the benefits of exercise, it seems a likely candidate intervention to promote longevity. For example, an analysis of 16 recent systematic reviews found a dose-dependent relationship between exercise and improved health outcomes related to cardiovascular disease, all-cause mortality, all-cancer mortality, type 2 diabetes, hypertension, breast cancer, colon cancer, gestational diabetes, gallstone disease, ischemic heart disease, and ischemic stroke (Warburton & Bredin, 2017). There is also epidemiological data that supports exercise being associated with decreased biological age, as well as increased lifespan and healthspan (Gremeaux et al., 2012; Quach et al., 2017; Zhao et al., 2019).

Like the term biological age, exercise is a broad category rather than a specific intervention. Exercise protocols are highly variable and can fall into many different categories with many different physiological effects. There is also no consensus on which type of exercise best promotes longevity. In recent decades, high intensity exercise (HIE) has become an

increasingly popular subject of research interest. HIE can be defined in various ways, most often described as exercise above a certain heart rate percentage. When HIE is punctuated by rest breaks it is referred to as high-intensity interval training (HIIT), which can be further categorized as aerobic HIIT, or anaerobic HIIT (sprint interval training (SIT) (Ito, 2019). This type of exercise is further described in terms of activity and active rest period durations that occur at certain heart rate percentages, most often 85-95% of peak heart rate (Gibala, Little, Macdonald, & Hawley, 2012; Ito, 2019; Levinger et al., 2015). The most commonly researched SIT protocol being the Wingate test (Burgomaster, Hughes, Heigenhauser, Bradwell, & Gibala, 2005), and the most commonly researched HIIT exercise protocols being the 4X4 and 10X1 protocols (Ito, 2019). A 4X4 protocol consists of 4, 4-minute HIE sessions, while a 10X1 consists of 10, 1-minute HIE sessions. Rest break durations vary, with research studies supporting various ratios of work to rest.

The selection of our specific protocol was based in part on a meta-analysis performed by O'Donoghue et al. comparing six different exercise regimes' (vigorous-intensity aerobic, moderate-intensity aerobic, high-load resistance, moderate-load resistance, combined vigorous intensity, and combined moderate intensity) effects on cardiorespiratory fitness and anthropometry in obese individuals. The authors concluded that combined aerobic and resistance training at moderate or high intensity, and moderate aerobic intensity exercise had the most significant effects on body composition and physical fitness (O'Donoghue, Blake, Cunningham, Lennon, & Perrotta, 2021). Moderate aerobic exercise was defined according to the American College of Sports Medicine definition: 65%-75% of HR max 3-5 times per week for 30-60 minutes (O'Donoghue et al., 2021). Another study performed by Nayor et al. which was

relevant to the selection of our protocol examined the metabolic effects of six minutes of noresistance cycle ergometry and 6 minutes of a ramped resistance high intensity cycle ergometry session (Nayor et al., 2020). Following this single, short bout of exercise the authors found statistically significant changes in over 500 circulating metabolites (Nayor et al., 2020). This study supports the notion that significant physiological changes can occur with even short duration acute exercise bouts. Possible mechanisms for exercise's role in increased longevity are the cardioprotective effects associated with exercise. These could include effects on endothelial function, autonomic tone, and inflammation among other potential cardioprotective mechanisms. A 2020 randomized controlled clinical trial by Stensvold et al. investigated the effects on mortality between three different exercise protocols in older women: high intensity interval training (HIIT) versus moderate intensity continuous training, versus standard exercise guidelines (Stensvold et al., 2020). Mortality in the HIIT group was 37% lower than in the control group, and 49% lower than in the moderate intensity continuous exercise group (Stensvold et al., 2020), although these differences did not reach statistical significance due to the overall low mortality rate, and involved wide confidence intervals. Despite the significant volume of exercise research, including the effects of exercise on aging processes and longevity, no studies to date have examined the specific effects of exercise on biological age and the underlying genes that are differentially expressed as we age. Until recently in fact, there had not been a single study investigating any non-pharmaceutical intervention's effect on biological age. That changed in July 2020 however, when a pilot study was published showing a greater than 3-year epigenetic age (using the Horvath DNAmAge clock) reversal through lifestyle modification, including exercise (Fitzgerald et al., 2020).

Unfortunately, multiple interventions were included in this study making it impossible to determine what portion of epigenetic age reversal is attributable to exercise. However, this study serves to validate the general hypothesis that lifestyle modification can reverse biological aging, but there is still a gap in the literature regarding the specific effects of exercise on biological aging and the mechanistic pathways underlying those effects.

The purpose of this graduate student research study is to determine the effect of a 4week duration, 3-times per week, high-intensity interval exercise protocol on biological age as measured by blood cell RNA profiles (i.e., transcriptomic age). Although not directly studied, our overarching hope is that such effects might forecast longer-term benefits for healthspan and lifespan. Furthermore, we suggest specific transcriptomic mechanisms behind this exerciseinduced reversal of biological age by examining the underlying genetic expression profiles of our participants at baseline and at the conclusion of our trial.

#### References

- Atella, V., Piano Mortari, A., Kopinska, J., Belotti, F., Lapi, F., Cricelli, C., & Fontana, L. (2019). Trends in age-related disease burden and healthcare utilization. *Aging Cell, 18*(1), e12861. doi:10.1111/acel.12861
- Bell, C. G., Lowe, R., Adams, P. D., Baccarelli, A. A., Beck, S., Bell, J. T., . . . Rakyan, V. K. (2019). DNA methylation aging clocks: challenges and recommendations. *Genome Biology*, 20(1), 249. doi:10.1186/s13059-019-1824-y
- Benjamin, E. J., Virani, S. S., Callaway, C. W., Chamberlain, A. M., Chang, A. R., Cheng, S., . . . Muntner, P. (2018). Heart Disease and Stroke Statistics-2018 Update: A Report From the American Heart Association. *Circulation*, 137(12), e67-e492. doi:10.1161/cir.00000000000558
- Burgomaster, K. A., Hughes, S. C., Heigenhauser, G. J., Bradwell, S. N., & Gibala, M. J. (2005). Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. *J Appl Physiol (1985), 98*(6), 1985-1990. doi:10.1152/japplphysiol.01095.2004
- Chang, A. Y., Skirbekk, V. F., Tyrovolas, S., Kassebaum, N. J., & Dieleman, J. L. (2019). Measuring population ageing: an analysis of the Global Burden of Disease Study 2017. *Lancet Public Health*, 4(3), e159-e167. doi:10.1016/s2468-2667(19)30019-2
- Fahy, G. M., Brooke, R. T., Watson, J. P., Good, Z., Vasanawala, S. S., Maecker, H., . . . Horvath, S. (2019).
  Reversal of epigenetic aging and immunosenescent trends in humans. *Aging Cell*, *18*(6), e13028.
  doi:10.1111/acel.13028
- Fitzgerald, K., Hodges, R., Hanes, D., Stack, E., Cheishvili, D., Szyf, M., . . . Bradley, R. (2020). Reversal of Epigenetic Age with Diet and Lifestyle in a Pilot Randomized Clinical Trial. *medRxiv*, 2020.2007.2007.20148098. doi:10.1101/2020.07.07.20148098
- Gibala, M. J., Little, J. P., Macdonald, M. J., & Hawley, J. A. (2012). Physiological adaptations to low-volume, high-intensity interval training in health and disease. *J Physiol*, 590(5), 1077-1084. doi:10.1113/jphysiol.2011.224725
- Gremeaux, V., Gayda, M., Lepers, R., Sosner, P., Juneau, M., & Nigam, A. (2012). Exercise and longevity. *Maturitas*, 73(4), 312-317. doi:<u>https://doi.org/10.1016/j.maturitas.2012.09.012</u>
- Hurd, M. D., Martorell, P., Delavande, A., Mullen, K. J., & Langa, K. M. (2013). Monetary costs of dementia in the United States. *N Engl J Med*, *368*(14), 1326-1334. doi:10.1056/NEJMsa1204629
- Ito, S. (2019). High-intensity interval training for health benefits and care of cardiac diseases The key to an efficient exercise protocol. *World J Cardiol, 11*(7), 171-188. doi:10.4330/wjc.v11.i7.171
- Jylhävä, J., Pedersen, N. L., & Hägg, S. (2017). Biological Age Predictors. *EBioMedicine, 21*, 29-36. doi:<u>https://doi.org/10.1016/j.ebiom.2017.03.046</u>
- Levinger, I., Shaw, C. S., Stepto, N. K., Cassar, S., McAinch, A. J., Cheetham, C., & Maiorana, A. J. (2015). What Doesn't Kill You Makes You Fitter: A Systematic Review of High-Intensity Interval Exercise for Patients with Cardiovascular and Metabolic Diseases. *Clinical Medicine Insights. Cardiology*, 9, 53-63. doi:10.4137/CMC.S26230
- Li, X., Ploner, A., Wang, Y., Magnusson, P. K. E., Reynolds, C., Finkel, D., . . . Hägg, S. (2020). Longitudinal trajectories, correlations and mortality associations of nine biological ages across 20-years follow-up. *Elife*, *9*, e51507. doi:10.7554/eLife.51507
- Lohman, T., Bains, G., Berk, L., & Lohman, E. (2021). Predictors of Biological Age: The Implications for Wellness and Aging Research. *Gerontol Geriatr Med*, *7*, 23337214211046419. doi:10.1177/23337214211046419
- Lu, A. T., Quach, A., Wilson, J. G., Reiner, A. P., Aviv, A., Raj, K., . . . Horvath, S. (2019). DNA methylation GrimAge strongly predicts lifespan and healthspan. *Aging*, *11*(2), 303-327. doi:10.18632/aging.101684

- Mariotto, A. B., Yabroff, K. R., Shao, Y., Feuer, E. J., & Brown, M. L. (2011). Projections of the cost of cancer care in the United States: 2010-2020. *Journal of the National Cancer Institute, 103*(2), 117-128. doi:10.1093/jnci/djq495
- Murphy, L. B., Cisternas, M. G., Pasta, D. J., Helmick, C. G., & Yelin, E. H. (2018). Medical Expenditures and Earnings Losses Among US Adults With Arthritis in 2013. *Arthritis Care Res (Hoboken), 70*(6), 869-876. doi:10.1002/acr.23425
- Nayor, M., Shah, R. V., Miller, P. E., Blodgett, J. B., Tanguay, M., Pico, A. R., . . . Lewis, G. D. (2020). Metabolic Architecture of Acute Exercise Response in Middle-Aged Adults in the Community. *Circulation*, 142(20), 1905-1924. doi:10.1161/circulationaha.120.050281
- O'Donoghue, G., Blake, C., Cunningham, C., Lennon, O., & Perrotta, C. (2021). What exercise prescription is optimal to improve body composition and cardiorespiratory fitness in adults living with obesity? A network meta-analysis. *Obesity reviews : an official journal of the International Association for the Study of Obesity, 22*(2), e13137-e13137. doi:10.1111/obr.13137
- Peters, M. J., Joehanes, R., Pilling, L. C., Schurmann, C., Conneely, K. N., Powell, J., . . . Consortium, N. U. (2015). The transcriptional landscape of age in human peripheral blood. *Nature Communications*, 6(1), 8570. doi:10.1038/ncomms9570
- Quach, A., Levine, M. E., Tanaka, T., Lu, A. T., Chen, B. H., Ferrucci, L., . . . Horvath, S. (2017). Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. *Aging*, *9*(2), 419-446. doi:10.18632/aging.101168
- Stensvold, D., Viken, H., Steinshamn, S. L., Dalen, H., Støylen, A., Loennechen, J. P., . . . Wisløff, U. (2020).
  Effect of exercise training for five years on all cause mortality in older adults-the Generation 100 study: randomised controlled trial. *Bmj, 371*, m3485. doi:10.1136/bmj.m3485
- Warburton, D. E. R., & Bredin, S. S. D. (2017). Health benefits of physical activity: a systematic review of current systematic reviews. *Curr Opin Cardiol, 32*(5), 541-556. doi:10.1097/hco.00000000000437
- Zhao, W., Ammous, F., Ratliff, S., Liu, J., Yu, M., Mosley, T. H., . . . Smith, J. A. (2019). Education and Lifestyle Factors Are Associated with DNA Methylation Clocks in Older African Americans. Int J Environ Res Public Health, 16(17). doi:10.3390/ijerph16173141

#### CHAPTER TWO

Predictors of Biological Age: The Implications for Wellness and Aging Research

#### Abstract

As healthspan and lifespan research breakthroughs have become more commonplace, the need for valid, practical markers of biological age is becoming increasingly paramount. The accessibility and affordability of biological age predictors that can reveal information about mortality and morbidity risk, as well as remaining years of life, has profound clinical and research implications. In this review, we examine 5 groups of aging biomarkers capable of providing accurate biological age estimations. The unique capabilities of these biomarkers have far-reaching implications for the testing of both pharmaceutical and non-pharmaceutical interventions designed to slow or reverse biological aging. Additionally, the enhanced validity and availability of these tools may have increasingly relevant clinical value. The authors of this review explore those implications, with an emphasis on lifestyle modification research, and provide an overview of the current evidence regarding 5 biological age predictor categories: Telomere length, composite biomarkers, DNA methylation "epigenetic clocks," transcriptional predictors of biological age, and functional age predictors.

#### Introduction

Age-related disease is a persistent and increasingly prevalent burden on healthcare systems around the world. (Atella et al., 2019; Benjamin et al., 2018; Chang et al., 2019; Hurd et al., 2013; Mariotto et al., 2011) Any affordable and accessible intervention capable of ameliorating this trend would therefore be of significant value. One class of interventions that seems well suited for this challenge is lifestyle modification. (Ruiz-Estigarribia et al., 2020; Wu et al., 2020; Y. B. Zhang et al., 2021) Although lifestyle-based interventions such as diet and exercise are generally known to increase lifespan, (Chudasama et al., 2020) experimental evidence is not as abundant as one might expect. Large volumes of research show positive effects from exercise on specific disease processes, (Campbell & Turner, 2018; Edwards et al., 2007; Larson & Bruce, 1987; Warburton & Bredin, 2017) and other studies have found association between lifestyle factors and longevity. (Quach et al., 2017; Sae-Lee et al., 2018; Zhao et al., 2019) However, fewer studies experimentally validate or quantify the causal effects of non-pharmaceutical lifestyle modification interventions on lifespan. This is likely due in part to the inherent time scale challenge that longevity research entails. Any future studies that examine lifestyle modification interventions would benefit from a practical tool that is capable of measuring change in expected lifespan.

One persistent challenge when studying the efficacy of interventions intended to increase lifespan is identifying an outcome measure that is both valid and feasible to use experimentally. From a validity perspective, change in total years of lifespan between experimental and control groups would be ideal, except for the fact that it would necessitate multi-decade longitudinal studies. Not only does this add significant cost and effort, but it also makes controlling for confounding variables exceedingly difficult. The apparent alternative to measuring actual lifespan would be to identify a biomarker or group of biomarkers capable of estimating remaining years of life. This would grant researchers the ability to test the efficacy of

interventions designed to increase lifespan without necessitating the use of long-term longitudinal studies.

Generally, metrics designed to predict remaining lifespan, mortality risk, and age-related morbidity risk have come to be known as predictors of biological age or biomarkers of aging. Consensus around these terms' definitions is lacking, as is the definition of aging more generally.(Butler et al., 2004) In his review of recent papers attempting to identify biomarkers of aging, Thomas Johnson cites one of the original clarifying statements by Baker and Sprott (Johnson, 2006):

"A Biomarker of Aging is a biological parameter of an organism that either alone or in some multivariate composite will, in the absence of disease, better predict functional capability at some late age, than will chronological age." (Baker & Sprott, 1988)

Even though it was written in 1988, this statement went a long way towards establishing the current criteria for biomarkers of aging. A potential concern with this definition for a researcher interested in examining interventions capable of biological age reversal is that there is no mention of lifespan. This definition discusses functional capability only. Another potential point of disagreement among researchers may be the "in the absence of disease" criterion. It seems that a useful metric for aging research would include the effects of age-related disease on lifespan.

In the time since this statement was published there has been much development and discussion regarding the exact meaning of the term, "biomarker of aging". An interdisciplinary workshop cosponsored by the International Longevity Center-USA, The Ellison Medical Foundation, Kronos Longevity Research Institute, the Institute for the Study of Aging, and Canyon Ranch Health Resort proposed the following three parameters for biomarkers of aging:

 The biomarker should predict the outcome of a wide range of age-sensitive tests in multiple physiological and behavioral domains, in an age-coherent way, and do so better than chronological age.

- 2. It should predict remaining longevity at an age at which 90% of the population is still alive and do so for most of the specific illnesses that afflict the species under study.
- 3. Its measurement should not alter life expectancy or the outcome of subsequent tests of other age-sensitive tests.

The American Federation for Aging Research (AFAR) formulated the criteria for aging biomarkers as follows(Butler et al., 2004; Johnson, 2006; Jylhävä et al., 2017)

- 1. It must predict the rate of aging. In other words, it would tell exactly where a person is in their total life span. It must be a better predictor of life span than chronological age.
- 2. It must monitor a basic process that underlies the aging process, not the effects of disease.
- 3. It must be able to be tested repeatedly without harming the person. For example, a blood test or an imaging technique.
- 4. It must be something that works in humans and in laboratory animals, such as mice. This is so it can be tested in lab animals before being validated in humans.

Although both clear and thorough lists, the existence of a biomarker that meets all of the criteria above may be unlikely.(Johnson, 2006) Perhaps the most challenging criterion for researchers intending to measure the effects of interventions on lifespan and healthspan is the American Federation for Aging Research criterion 2 listed above. This statement outlines the need for an aging biomarker to separate the aging process from disease processes. This may not always be possible, and it is hard to differentiate the effects of the aging process from the effects of age-related disease. That said, this criterion does illustrate the need to create markers that are not influenced by acute illnesses or diseases that have no effect on lifespan. As mentioned earlier there is not consensus on what the definition of aging is within the aging research community, let alone agreement that there is a specific aging process or aging rate that is separate from disease processes.(Butler et al., 2004; Johnson, 2006) What is clear, even to a lay observer, is that if we examine a large group of 70-year-old people, we would find a phenotypically diverse sample, despite all members being the same chronological age. This is described clearly and concisely by Lowsky et al. in their paper's introductory sentence: "For a surprisingly large segment of the older population, chronological age is not a relevant marker for understanding, measuring, or experiencing healthy aging." (Lowsky, Olshansky, Bhattacharya, & Goldman, 2014) This may be the most concise way to illustrate the need for a valid and easy to obtain measure of biological age.

For the purposes of this scoping review, we will be focusing on biomarkers of aging that satisfy at least some of the American Federation of Aging Research biomarkers of aging criteria. Given the lack of consensus around terminology and definition, we will seek to view biomarkers in the context of their ability to predict two aspects of biological age: healthspan and lifespan. These criteria best facilitate the selection of a marker that measures the effectiveness of interventions on biological age reversal. Until recently, the possibility of biological age reversal was uncertain, but thanks to recent experimental trials utilizing biological age predictors we now know that biological age as measured by biomarkers of aging can be slowed or even reversed. (Fahy et al., 2019; Fitzgerald et al., 2020; Hachmo et al., 2020) With that in mind, our specific aim is to compile the available evidence related to various readily accessible biological age predictors. In doing so we hope to provide a basis for selection in future experimental studies that utilizes wellness and lifestyle interventions to slow or reverse biological aging. For example, investigators could choose to examine diet modification, sleep quality, exercise type or quantity, supplementation, implementation of a stress management program, or any number of other wellness interventions' effects on biological age. This has far reaching implications for the wellness and successful aging research communities, as it provides a means to assess the effectiveness of an intervention on biological age in a comparatively short time frame.

This paper investigates and summarizes the following predictors of biological age: Telomere length, allostatic load index, DNA methylation clocks, functional age, and transcriptional predictors of biological age. The ability of these tools to estimate mortality risk and biological age, operationally defined as an estimate of remaining healthspan/lifespan, will be highlighted. Various capabilities and weaknesses of each will be examined as well, including

criteria such as: ease of use, accessibility, ability to glean underlying mechanisms influencing lifespan/healthspan, and other relevant features.

### **Search Strategy and Selection Criteria**

Using the PubMed database, Medical Subject Headings (MeSH) terms "Aging" and "Humans" and the specific terms for each of the biomarkers of aging categories: 1) Telomere Length, 2.) Frailty Index or Deficit Accumulation or Functional age, 3.) Epigenetic clock, 4.) Transcriptomic age or Transcriptional age, 5) Composite biomarker or Allostatic load index, were combined. Cited papers in the selected publications and papers that referenced the selected publications were also considered. The searches were performed between December 2020 and May 2021.

#### **Telomere Length**

Telomeres are repeating sequences of nucleoprotein caps located at the ends of chromosomes.(Sanders & Newman, 2013) Each time a cell undergoes mitosis, a section of these nucleotides is cleaved, and the telomere shortens incrementally. This is an overly simplistic description given that oxidative stress is also associated with telomere shortening and multiple mechanisms exist for telomere lengthening as well.(Sanders & Newman, 2013) Even with this simple definition however, an inference can be drawn that telomere length serves in part as a cumulative measure of cellular division and by extension, age. This would be a well-founded inference and one that has received significant attention from the aging research community. As of March 13, 2021, the search phrase "Telomere Length" on the PubMed database yielded 10,245 results, making it the most investigated biomarker of aging discussed in this article. Multiple meta-analyses exist examining the relationship between telomere length and age.(Gardner et al., 2014; Lapham et al., 2015) Additionally, many studies have shown

relationships between telomere length and specific disease processes associated with increased chronological age. A 2014 meta-analysis (43,725 individuals) showed an inverse relationship between telomere length and coronary heart disease independent of traditional vascular risk factors.(Haycock et al., 2014) Similar results have been obtained when investigating Alzheimer's disease and telomere length. Both observational and mendelian randomization studies (a method of analyzing single nucleotide polymorphisms to determine causation) have shown that patients diagnosed with Alzheimer's disease have shorter telomere lengths. (Forero et al., 2016; Zhan & Hägg, 2018) Despite this prevalence of age-related telomere research, data pertaining to telomere length and mortality risk specifically has been less consistent. Perhaps the most compelling investigation is a meta-analysis performed by Wang et al. in 2018 that examined the relationship between telomere length and all-cause mortality. Twenty-five studies were determined to meet eligibility for inclusion (121,749 combined individuals), including 4 Swedish Twin Registry (STR) cohorts (12,083 individuals). Results from the Swedish twin registry studies showed one standard deviation reduction of leukocytic telomere length corresponded to 13% increased all-cause mortality risk (95% confidence interval 7%-19%).(Wang, Zhan, Pedersen, Fang, & Hägg, 2018) However, a study by Li et al that examined 9 different biomarkers of aging over a 20 year timeframe found that the only marker not associated with mortality risk was in fact, telomere length.(Li et al., 2020) Another Swedish study performed by Svensson et al. examined the relationship between telomere length and mortality in 2744 elderly men and also found no association. (Svensson et al., 2014) The evidence presented here indicates that telomere length is associated with various disease processes, but that the research pertaining to its use as a predictor of biological age may be contradictory.

| Ta | h | P | 1 | • |
|----|---|---|---|---|
| ıч |   |   | - | ٠ |

| Telomere Length |              |                  |         |                         |
|-----------------|--------------|------------------|---------|-------------------------|
| Study Title     | BA Predictor | Cohort name (if  | n       | Results                 |
|                 | Used         | applicable)      |         |                         |
| Telomere Length | Telomere     | Multiple cohorts | 121,749 | one standard deviation  |
| and All-Cause   | Length       |                  |         | reduction of leukocytic |

| Mortality: A Meta-<br>analysis                                                                                                             |                                                                                                                                                  |                                                      |      | telomere length<br>corresponded to 13%<br>increased all-cause<br>mortality risk (95%<br>confidence interval 7%-<br>19%)(Wang et al., 2018)                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Longitudinal<br>trajectories,<br>correlations, and<br>mortality<br>associations of nine<br>biological ages<br>across 20-years<br>follow-up | Telomere<br>Length, DNAm<br>Age (4 types),<br>Physiological<br>Age, Cognitive<br>Function,<br>Functional<br>Aging Index,<br>and Frailty<br>Index | Swedish Population<br>Based Cohort                   | 636  | No evidence that telomere<br>length associated with<br>mortality risk.(Li et al.,<br>2020)                                                                                                                                                                                                                                             |
| Leukocyte<br>telomere length is<br>not associated with<br>mortality in older<br>men                                                        | Telomere<br>Length                                                                                                                               | Prospective<br>population-based<br>MrOS-Sweden study | 2744 | Using Cox proportional<br>hazards regression, tertile<br>of LTL did not associate<br>with all-cause mortality<br>[tertile 1 (shortest) or 2<br>(middle) vs. tertile 3<br>(longest); hazard ratio<br>(HR)=1.05, 95% confidence<br>interval (CI) 0.85-1.28 and<br>HR=0.97, 95% CI 0.79-1.19,<br>respectively].(Svensson et<br>al., 2014) |

### **Composite Biomarkers/Allostatic Load Indices**

In 1998 Bruce McEwen described allostasis as "adaptation in the face of potentially stressful challenges [that] involves activation of neural, neuroendocrine, and neuroendocrine-immune mechanisms." (McEwen, 1998) The phrase "constancy through change" is often used as shorthand to describe allostasis, as it so concisely describes the constant changing physiological processes that maintain homeostasis. Fava et al. describes allostatic load as reflecting the cumulative effects of stressful experiences in daily life that may lead to disease over time(Fava

et al., 2019). Like telomere length, allostasis and allostatic load have been extensively researched. Most commonly, this research focuses on the relationship between allostatic load and various health outcomes such as cognition,(Juster, McEwen, & Lupien, 2010) chronic stress,(Juster et al., 2010) sleep quality,(McEwen & Karatsoreos, 2015) age-related disease,(Danese & McEwen, 2012) cardiovascular disease,(Logan & Barksdale, 2008) and addiction(Koob & Schulkin, 2019) among others. A smaller portion of allostasis research is dedicated to evaluating the performance of allostatic load as a predictor of biological age. The study that has perhaps best demonstrated the capability of an allostatic predictor of biological age is part of the MacArthur studies of successful aging series in 2005 that utilized 10 physiological parameters to generate allostatic load scores in 171 70–79-year-old adults.(Karlamangla, Singer, & Seeman, 2006) An Allostatic load score or index falls under a broader category of biological age predictors called composite biomarkers of aging. This is due to the combination of multiple blood biomarkers and clinical measures used to make an estimation regarding mortality risk. Other predictors within this category include phenotypic age(Levine et al., 2018) and physiological age.(Li et al., 2020)

In the previously mentioned study published by Karlamangla in 2005, (Karlamangla et al., 2006) allostatic load scores were generated first in 1988 and again in 1991. The mortality status of these individuals was determined 4.5 years later in 1995. This study found that individuals with increased allostatic load in 1991 compared to 1988 had increased risk of all-cause mortality (15% versus 5% respectively p =.47). Further analysis revealed that each incremental increase in allostatic load score was associated with a mortality odds ratio of 3.3 (95% confidence interval 1.1-9.8). (Karlamangla et al., 2006)

A study by Castagne et al (2018), took another significant step towards establishing allostatic load as a predictor of biological age. This study examined the relationship between 14 biomarkers across 4 physiological systems and their relationship to mortality in a UK birth cohort study of 8,113 adults.(Castagné et al., 2018) The hazard ratio for participants with a high allostatic load score was found to be 3.56 (2.2 to 5.3) and was significantly higher than in

participants with a low allostatic load score.(Castagné et al., 2018) Their data suggests that those with a high allostatic load score at age 44 are approximately 3 times more likely to die by age 55.(Castagné et al., 2018) The authors also analyzed the relative contribution of each of the 14 biomarkers that comprised the allostatic load score. Interestingly, after adjusting for various risk factors and adverse childhood experiences, 5 of the 14 biomarkers stood out as being significantly related to mortality (C-Reactive Protein, fibrinogen, glycated hemoglobin, heart rate, and peak expiratory flow).(Castagné et al., 2018) This highlights one potential challenge and opportunity for the future use of allostatic load indices as BA prediction tools. The challenge is the general lack of consensus regarding the relative contribution of each marker or combination of markers, and the opportunity is the potential to develop even simpler yet more accurate composite age biomarkers. Future validation studies examining a variety of different indices will be helpful in making these determinations. As it stands, allostatic load appears to be significantly correlated with mortality-risk, and allostatic indices will serve as valuable tools for aging research.

| Allostatic Load/Composite Biomarkers                                                                                                                        |                          |                              |      |                                                                                                                                                                                                                                              |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Study Title                                                                                                                                                 | BA Predictor             | Cohort name (if              | n    | Results                                                                                                                                                                                                                                      |  |
|                                                                                                                                                             | Used                     | applicable)                  |      |                                                                                                                                                                                                                                              |  |
| Reduction in<br>allostatic load in<br>older adults is<br>associated with<br>lower all-cause<br>mortality risk:<br>MacArthur studies<br>of successful aging. | Allostatic Load<br>Index |                              | 171  | Adjusted for age and<br>baseline allostatic load,<br>each unit increment in the<br>allostatic load change score<br>was associated with<br>mortality odds ratio of 3.3<br>(95% confidence interval,<br>1.1-9.8).(Karlamangla et al.,<br>2006) |  |
| Allostatic load<br>and subsequent<br>all-cause<br>mortality: which                                                                                          | Allostatic Load<br>Index | 1958 British birth<br>cohort | 8113 | Hazard ratios for<br>participants with a mid<br>(3 ≤ AL < 5) and high AL<br>(≥ 5) were 1.98 (1.25 to                                                                                                                                         |  |

Table 2:

| biological<br>markers drive the<br>relationship?<br>Findings from a<br>UK birth cohort |                             |                                                                            |               | 3.13) and 3.56 (2.2 to<br>5.53), respectively and<br>were found to be<br>significantly greater than in<br>participants with a low AL<br>(< 3)(Castagné et al., 2018)                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| An epigenetic<br>biomarker of aging<br>for lifespan and<br>healthspan                  | Phenotypic Age<br>Estimator | Third and Fourth<br>National Health and<br>Nutrition<br>Examination Survey | 9926,<br>6209 | a one-year increase in<br>phenotypic age is<br>associated with a 9%<br>increase in the risk of all-<br>cause mortality (HR=1.09,<br>p=3.8E-49), a 9% increase<br>in the risk of mortality from<br>aging-related diseases<br>(HR=1.09, p=4.5E-34), a<br>10% increase in the risk of<br>CVD mortality (HR=1.10,<br>p=5.1E-17), a 7% increase<br>in the risk of cancer<br>mortality (HR=1.07,<br>p=7.9E-10), a 20% increase<br>in the risk of diabetes<br>mortality (HR=1.20,<br>p=1.9E-11), and a 9%<br>increase in the risk of<br>chronic lower respiratory<br>disease mortality (HR=1.09,<br>p=6.3E-4)(Levine et al.,<br>2018) |

### **DNA Methylation "Epigenetic Clocks"**

The term epigenetic "clock" refers to tools that analyze DNA methylation levels within a set of Cytosine-Phosphate-Guanine (CpG) sites and are generally acknowledged as accurate measures of biological age.(Bell et al., 2019; Fransquet, Wrigglesworth, Woods, Ernst, & Ryan, 2019; Jylhävä et al., 2017; Lu et al., 2019; Perna et al., 2016) In fact, one study we examined made the claim that DNA methylation clocks are the current best predictors of

mortality.(Unnikrishnan et al., 2019) While this may be true, it is important to realize that the term DNA methylation age or epigenetic clock can refer to many different tools. While all of these "clocks" analyze methylation in specific CpG sites, they all do so in different ways. For example, two clocks that were among the first to generate widespread interest are the Horvath clock(Horvath, 2013) and Hannum clock.(Hannum et al., 2013) The Horvath clock is based on methylation levels of 353 CpG sites using the Illumina 27k or 450k array, (Horvath, 2013) while the Hannum clock uses 71 CpG sites, and utilizes data from the Illumina 450k array.(Hannum et al., 2013) Epigenetic clocks' ability to predict biological and chronological age can also be tissue dependent. For example, the Horvath clock performs similarly among various tissue types(Horvath, 2013) ("whole blood, peripheral blood mononuclear cells, cerebellar samples, occipital cortex, buccal epithelium, colon, adipose, liver, lung, saliva, uterine cervix as well as in individual cell types such as CD4 T cells and CD14 monocytes, and immortalized B cells"), while the Hannum clock performs best using peripheral whole blood samples (Hannum et al., 2013; Jylhävä et al., 2017). These clocks also vary in terms of their ability to predict biological and chronological age (chronological age r<sup>2</sup> values = 0.96 for Horvath and 0.91 for Hannum).(Jylhävä et al., 2017) Accessibility is also highly variable; as property of the specific inventor or institution that created the algorithm capable of converting array-based methylation data into other useful data (such as biological age estimation in years or mortality risk among others), some of these tools may be commercial. While other clocks, such as the Horvath clock or GrimAge marker created by Steve Horvath and Ake Lu are freely available online. The clocks mentioned so far are just a few examples of DNA methylation biomarkers of aging. This is to illustrate that the term "epigenetic clock" is broad and not a specific marker. With this in mind, we can say generally that one of the most interesting and unique features of epigenetic clocks is their ability to predict mortality risk, also referenced as time-to-death. A 2016 meta-analysis of 13 cohorts representing a combined sample size of 13,089 showed that epigenetic age acceleration (a measure of the difference between chronological age and epigenetic age) was predictive of mortality independent of chronological age ( $p \le to 8.2 \times 10^{-1}$ 

<sup>9</sup>).(Chen et al., 2016) This was still found to be true after adjusting for additional risk factors, but at a significance of p<5.4 x  $10^{-4}$ .(Chen et al., 2016) When epigenetic age estimates incorporated additional information pertaining to blood cell composition, the resulting time-to-death predictions were highly significant (p=7.5x10<sup>-43</sup>).(Chen et al., 2016)

In the time since this 2016 meta-analysis, new DNA methylation clocks have emerged that are even more capable in terms of their ability to estimate mortality risk. For example, a 2017 study by Zhang et al. proposes a mortality risk score based on 10 CpG sites that is strongly associated with all-cause mortality.(Y. Zhang et al., 2017) Participants with scores of 1 display a hazard ratio (95% confidence intervals) of 2.16 (1.1-4.24), compared to those with scores of 2-5 showing a hazard ratio of 3.42 (1.81-6.46) compared to those with 5+ scores showing a hazard ratio of 7.36 (3.69-14.68).(Y. Zhang et al., 2017) Another marker called DNAm PhenoAge was calculated in a meta-analysis of five large samples (n=2,016, n=2,191, n=2,553, and n=657). It was found that a 1-year increase in DNAm PhenoAge is associated with a highly significant 4.5% increase in all-cause mortality risk (meta p-value= 7.9 x 10<sup>-47</sup>).(Levine et al., 2018)

In addition to measuring mortality risk, some markers have the added capability of predicting the risk of developing specific disease processes. For example, a metric known as GrimAge can strongly predict time-to-death (Cox regression P=2.0 x10<sup>-75</sup>), time-to-coronary heart disease (Cox regression P=6.2 x10<sup>-24</sup>), and time-to-cancer (P= 1.3 x10<sup>-12</sup>).(Lu et al., 2019) The study authors used large scale validation data from the Framingham heart study to complete this analysis. By adding a calculation that quantifies the difference between GrimAge and chronological age (AgeAccelGrim) other relevant age-related associations are found to be present. For example, AgeAccelGrim is associated with comorbidity count (p=3.45x10<sup>-17</sup>), time to congestive heart failure (p=4.9x10<sup>-10</sup>), time-to-incident coronary heart disease (p=6.2x10<sup>-24</sup>), hypertension (p=5.1x10<sup>-13</sup>), and type 2 diabetes (p=0.01).(Lu et al., 2019) All associations were in the expected direction (increased AgeAccelGrim=increased likelihood of poor outcome) with varying odds ratios.(Lu et al., 2019)

| DNA Methylation "Clocks"                                                                                                                  |                                                                                                                          |                                                                                                                                                        |                                         |                                                                                                                                                                                                                                                        |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Study Title                                                                                                                               | BA Predictor                                                                                                             | Cohort name (if                                                                                                                                        | n                                       | Results                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                           | Used                                                                                                                     | applicable)                                                                                                                                            |                                         |                                                                                                                                                                                                                                                        |  |  |  |
| DNA methylation<br>GrimAge strongly<br>predicts lifespan<br>and healthspan                                                                | GrimAge                                                                                                                  | Framingham Heart<br>Study Offspring<br>Cohort                                                                                                          | 2356                                    | predictive ability for time-<br>to-death (Cox regression<br>P=2.0E-75), time-to-<br>coronary heart disease<br>(Cox P=6.2E-24), time-to-<br>cancer (P= 1.3E-12)(Lu et<br>al., 2019)                                                                     |  |  |  |
| DNA methylation<br>age of human<br>tissues and cell<br>types                                                                              | DNAm Age<br>"Horvath Clock"                                                                                              | 82 publicly available<br>datasets                                                                                                                      | 7844                                    | The multi-tissue age<br>predictor performs<br>remarkably well in most<br>tissues and cell types. (Age<br>correlation 0.97, error = 2.9<br>years)(Horvath, 2013)                                                                                        |  |  |  |
| Genome-wide<br>Methylation<br>Profiles Reveal<br>Quantitative Views<br>of Human Aging<br>Rates                                            | "Hannum<br>Clock"                                                                                                        |                                                                                                                                                        | 656                                     | Correlation between age<br>and predicted age of 96%<br>and an error of 3.9<br>years(Hannum et al., 2013)                                                                                                                                               |  |  |  |
| An epigenetic<br>biomarker of aging<br>for lifespan and<br>healthspan                                                                     | PhenoAge                                                                                                                 | Women's Health<br>Initiative (WHI), the<br>Framingham Heart<br>Study (FHS), the<br>Normative Aging<br>Study (NAS), the<br>Jackson Heart Study<br>(JHS) | 2016,<br>2191,<br>2553,<br>657,<br>1747 | A one-year increase in<br>DNAm PhenoAge is<br>associated with a 4.5%<br>increase in the risk of all-<br>cause mortality<br>(Meta(FE)=1.045, Meta<br>p=7.9E-47(Levine et al.,<br>2018)                                                                  |  |  |  |
| Longitudinal<br>trajectories,<br>correlations and<br>mortality<br>associations of nine<br>biological ages<br>across 20-years<br>follow-up | Telomere<br>Length, DNAm<br>Age (4 types),<br>Physiological<br>Age, Cognitive<br>Function,<br>Functional<br>Aging Index, | Swedish Population<br>Based Cohort                                                                                                                     | 845                                     | Individually, all BAs except<br>for telomere length were<br>associated with mortality<br>risk independently of CA.<br>The largest effects were<br>seen for methylation age<br>estimators (GrimAge) and<br>the frailty index (FI). (Li et<br>al., 2020) |  |  |  |

|                                                                                                          | and Frailty<br>Index  |            |        |                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------|-----------------------|------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DNA methylation-<br>based measures of<br>biological age:<br>meta-analysis<br>predicting time to<br>death | Horvath and<br>Hannum | 13 cohorts | 13,089 | All considered measures of<br>epigenetic age acceleration<br>were predictive of<br>mortality (p≤8.2x10 <sup>-9</sup> )(Chen<br>et al., 2016)                                     |
| DNA methylation<br>signatures in<br>peripheral blood<br>strongly predict all-<br>cause mortality         | Zhang 10 CpG<br>clock |            | 1900   | demonstrated that a risk<br>score based on DNAm of<br>ten identified CpGs was a<br>very strong predictor for<br>all-cause, CVD and cancer<br>mortality(Y. Zhang et al.,<br>2017) |

### **Transcriptional Predictors of Biological Age**

A transcriptional predictor of biological age analyzes genetic expression in genes associated with aging to make some prediction regarding the biological aging process. One example of this tool is the Transcriptomic Age Prediction Tool (TRAP) which is described in the paper titled "The transcriptional landscape of age in human peripheral blood" written by Peters et al. in 2015. This study performed a whole-blood gene expression meta-analysis in 14,983 individuals and identified 1,497 genes that are differentially expressed with chronological age. This provided the basis for calculating a "transcriptomic age" and associating it with various age-related phenotypes including: blood pressure, fasting glucose, and BMI.(Peters et al., 2015) This was the first large scale meta-analysis to examine age-related gene expression profiles and build a predictor of biological age from this data. The correlation between the transcriptomic age predictor and chronological age was significant ( $p<2x10^{-29}$ ),(Peters et al., 2015) and observed differences between the transcriptomic age predictor (TRAP) and chronological age are thought to reflect altered biological age. This is supported by consistent associations
between increased delta age (increased TRAP compared to chronological age) and higher blood pressure, total cholesterol, fasting glucose levels, and BMI(Peters et al., 2015). Peters et al. identified a subset of 1,396 individuals from two studies within their meta-analysis (KORA(Holle, Happich, Löwel, & Wichmann, 2005) and Rotterdam studies(Hofman et al., 2007)) that had both methylation and gene expression data available. The presence of these two datasets allowed the investigators to generate a transcriptomic predictor of biological age, in addition to Horvath(Horvath, 2013) and Hannum(Hannum et al., 2013) clock values. This gave investigators the opportunity to examine correlation between three different biomarkers of aging: TRAP, Horvath Clock, Hannum Clock. They found TRAP to correlate positively, albeit weakly, with both clocks (r<sup>2</sup>=.1 for Hannum and .33 for Horvath).

Other transcriptional predictors of biological age exist, such as the healthy ageing gene score, (Sood et al., 2015) and RNAageCalc. (Ren & Kuan, 2020) Like the previously discussed epigenetic clocks, these measures' ability to predict disease process, mortality, and association with age-related phenotypes varies. At the time of this writing the literature seems to indicate that the transcriptome is an age-associated variable indicating its utility in creating biological age predictors, but existing transcriptomic clocks are pending broader validation.(Harries et al., 2011; Holly et al., 2013; Jylhävä et al., 2017)

| Transcriptomics                                                         |                                          |                             |       |                                                                                                                                                                                                                                                            |  |
|-------------------------------------------------------------------------|------------------------------------------|-----------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Study Title                                                             | BA Predictor<br>Used                     | Cohort name (if applicable) | n     | Results                                                                                                                                                                                                                                                    |  |
| The Transcriptional<br>Landscape of Age<br>in Human<br>Peripheral Blood | Transcriptomic<br>Age Prediction<br>Tool | The Rotterdam<br>Study      | 14926 | The correlation between<br>chronological age and<br>transcriptomic age was<br>significant in all cohorts<br>(P<2E-29)<br>A positive delta age,<br>interpreted as reflecting<br>more rapid biological<br>ageing, was consistently<br>associated with higher |  |

Table 4:

|  |  | systolic and diastolic blood<br>pressure, total cholesterol,<br>HDL cholesterol, fasting<br>glucose levels and body<br>mass index (BMI)<br>Transcriptomic age and<br>epigenetic age (both<br>Hannum and Horvath)<br>were positively correlated, |
|--|--|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  |  | were positively correlated,<br>with $r^2$ values varving                                                                                                                                                                                        |
|  |  | between 0.10 and<br>0.33(Peters et al., 2015)                                                                                                                                                                                                   |

## **Functional Age Estimators**

Although not blood biomarkers, functional age estimators are included here due to their ease of use and relevance to aging research. The term functional age is now commonly found in literature, but these tools were initially intended to be a method for estimating frailty and the likelihood of care entry, not biological age. More recently, some functional age estimators have been shown to estimate mortality-risk(Burn et al., 2018; Church, Rogers, Rockwood, & Theou, 2020; Finkel, Sternäng, Jylhävä, Bai, & Pedersen, 2019; Kojima, Iliffe, & Walters, 2018; Li et al., 2020) and therefore present as highly practical measures for lifestyle modification research. The large volume of functional age estimators merits a standalone review, but some notable examples will be discussed here. Two of these are the frailty index (FI) and frailty phenotype (FP). Although they are sometimes discussed as being interchangeable, they are two different tools for different purposes. The term frailty index refers to a method of quantifying frailty in older individuals, with the underlying mechanism being a measurement of deficit accumulation (deficits identified/deficits measured). Rather than a specific tool or metric, it is a method in which various measures of frailty and functional capability can be assessed and from which a scoring system can be derived. Frailty Phenotype on the other hand is based on the presence or absence of 5 signs or symptoms (>10lbs unintentional weight loss in the past 12 mo., selfreported exhaustion, weak grip strength, slow walking speed, and low physical activity).(Cesari,

Gambassi, Abellan van Kan, & Vellas, 2014; Fried et al., 2001) Although both FP and FI are associated with mortality-risk,(Shi et al., 2019) we will focus our discussion on Frailty index. This is not necessarily a comment on either's ability to predict biological age, but rather how responsive each may be to lifestyle interventions. Given the relatively broad scope and ordinal nature of the 5-item Frailty phenotype, it may be less responsive to intervention and less suited as a research variable compared to the Frailty Index.(Cesari et al., 2014; Clegg, Young, Iliffe, Rikkert, & Rockwood, 2013) The Frailty Phenotype may be better implemented as a screening tool, inclusion/exclusion criterion, or stratification mechanism given that it does not require a full geriatric comprehensive assessment like the FI.(Clegg et al., 2013)

One of the originally described functional indices, called the Canadian Study of Healthy Aging (CSHA) Frailty Index is validated by the Canadian Study of Healthy Aging and examines the presence or absence of 70 clinical deficits in order to quantify fitness and frailty in the elderly. (Kenneth Rockwood et al., 2005) This list of deficits was not meant to be a fixed index however, in fact it has been reported that indices with as few as 50 clinical deficits can be highly useful, and some indices with as few as 20 items have been explored.(K. Rockwood & Mitnitski, 2012) Other tools related to the frailty index have been developed such as the Edmonton Frailty scale(Clegg et al., 2013; Rolfson, Majumdar, Tsuyuki, Tahir, & Rockwood, 2006) and Clinical Frailty Scale. (Kenneth Rockwood et al., 2005) The Clinical Frailty Scale is a 7-point scale that is highly correlated to the original 70-point index (r2=.90).(Kenneth Rockwood et al., 2005) More importantly given an aging research context, each 1 point increase in the scale was found to correspond with a 21.2% increased risk of death in the next 70 months. (Kenneth Rockwood et al., 2005) In a study of 1788 community-dwelling elders frailty as defined by the FI was associated with a 2.31 fold increased risk of all-cause death compared to those who scored robust on the index. (Shi et al., 2019) Another study of 5536 community-dwelling elderly found the relationship between FI and mortality to be significant (P < .0001). Interestingly, a metaanalysis examining frailty index scores between men and women found what the authors described as a "male-female health-survival paradox".(Gordon et al., 2017) The paradox was

that at all ages females displayed higher FI scores, despite males having higher mortality rates at each level of the frailty index.(Gordon et al., 2017) Frailty sex differences extended to diet as well. A study examining older adults found that low meat consumption (less than 2x/wk.) was associated with increased frailty in men only. Increased frailty in women was associated with decreased fish, meat, vegetables, and potatoes.(Shibasaki, Kin, Yamada, Akishita, & Ogawa, 2019) Perhaps most relevant to the aim of this paper, one study comparing nine different biological age predictors, found Frailty Index (42-item Rockwood(Jiang et al., 2017)) to have one of the strongest associations with mortality risk among the nine markers examined, being exceeded only by GrimAge.(Li et al., 2020) Given these results, some frailty indices may serve lifestyle intervention research well alongside other biomarkers, or perhaps even as stand-alone outcome variables.

| Functional Age Estimators                                                                                                                   |                      |                                                      |      |                                                                                                                                                                                  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Study Title                                                                                                                                 | BA Predictor<br>Used | Cohort name (if<br>applicable)                       | n    | Results                                                                                                                                                                          |  |
| Frailty index as a<br>predictor of all-<br>cause and cause-<br>specific mortality<br>in a Swedish<br>population-based<br>cohort             | 42-item<br>Rockwood  | Swedish<br>Adoption/Twin<br>Study of Aging           | 1477 | The categorized FI levels<br>demonstrated a dose-<br>response increase in<br>mortality risk with<br>increased frailty in both<br>men and women.(Jiang et<br>al., 2017)           |  |
| Frailty<br>phenotype, frailty<br>index and risk of<br>mortality in<br>Chinese elderly<br>population-<br>Rugao longevity<br>and ageing study | Frailty Index        | Ageing arm of<br>Rugao Longevity<br>and Ageing Study | 1788 | Frailty defined by the<br>frailty index was associated<br>with a 2.31 fold (95% CI<br>1.16-4.6) risk of all-cause<br>death compared with<br>robust elderly.(Shi et al.,<br>2019) |  |

Table 5:

| Frailty index as a | Frailty Index | 18 cohorts | All meta-analyses         |
|--------------------|---------------|------------|---------------------------|
| predictor of       |               |            | suggested that higher Fl  |
| mortality: a       |               |            | was significantly         |
| systematic review  |               |            | associated with higher    |
| and meta-analysis  |               |            | mortality risk.(Kojima et |
|                    |               |            | al., 2018)                |
|                    |               |            |                           |
|                    |               |            |                           |
|                    |               |            |                           |

## Discussion

No statement in this paper is intended to make a recommendation regarding the use of a specific biological age predictor; neither is this review an exhaustive list. In addition to less investigated biological age predictors like proteomics, and metabolomics, there are multitudes of individual markers associated with accelerated biological aging such as glycated hemoglobin, triglycerides, blood pressure, resting heart rate, waist-to-hip ratio, fibrinogen, albumin, crp, interleukin-6, and many others. (Jylhävä et al., 2017; Kane & Sinclair, 2019) Our aim is to compile relevant information pertaining to various promising predictors of biological age validated in large cohorts to assist future researchers interested in using them as outcome measures. There is also no implication that all biomarkers of aging are equally valid. A compelling comparison of nine biological age estimators that examined longitudinal trajectories, correlations, and mortality associations across 20 years was performed by Li et al. 2020.(Li et al., 2020) Their study examined data from a Swedish based cohort of 845 men and women aged 63.6 (8.6) at baseline and compared the validity of four different DNA methylation age estimators Horvath, (Horvath, 2013) Hannum, (Hannum et al., 2013) PhenoAge, (Levine et al., 2018) and GrimAge(Lu et al., 2019)), three different functional age estimators (functional aging index, (Finkel et al., 2019) frailty index, (Jiang et al., 2017) cognitive function (Reynolds et al., 2005)), telomere length, (Berglund et al., 2016) and a composite biomarker called physiological age that included various biomarkers and measures of body composition. All four DNA methylation age estimators, physiological age, and all three functional age estimators were

associated with mortality risk independent of chronological age, while telomere length was not. Of the nine biomarkers of aging examined, GrimAge and the Frailty index stood out as being most associated with mortality risk.

The information presented here sheds light on the large variety of biomarkers of aging available, each with its own specific capabilities. Even still, the markers discussed are just a small portion of the available biomarkers of aging in existence. Like any other biomarker, the predictor used in future experimental studies should be based on the specific aims and needs of those studies. A study that aims to assess the effects of a vegan diet on coronary heart disease risk may benefit from utilizing the GrimAge marker since it has been shown to predict time-tocoronary heart disease.(Lu et al., 2019) Investigators could obtain a baseline GrimAge value, implement an intervention protocol, and obtain a GrimAge value at the conclusion of the trial. When compared to a control group, the difference in GrimAge values could be analyzed to determine if biological age was slowed or reversed. An example of this methodology was implemented in the 2019 Fahy et al study, Reversal of Epigenetic Aging and Immunosenescent Trends in Humans, in which investigators reported a 2.5 year reversal in mean epigenetic age following a 1 yr. human growth hormone and metformin treatment protocol.(Fahy et al., 2019) A study that aims to determine the transcriptional basis for any observed changes in biological age resulting from lifestyle modification may find a transcriptomic predictor most appropriate due to the ability to obtain a biological age estimation and gene expression profile from a single blood sample. If an investigator is limited in terms of their capability to analyze gene expression profiles, DNA methylation of CpG sites, or blood biomarkers, perhaps a functional age estimator such as a frailty index could provide relevant data on biological aging changes in an intervention group. If feasibility allows it, the combination of various predictors of biological age could yield even more robust results. Various factors will dictate the most appropriate selection for future lifestyle modification research, not the least of which being accessibility, cost, applicability to multiple tissue types, and conversely, specificity to a study's specific tissue of interest. A possible limitation to this review may be that only papers written in English were included. Additionally, this is an emerging field with many potential biological age predictors to consider. We selected five of the most investigated biological age predictors with large-scale cohort

validation and therefore there may be promising new predictors that were not included in this review.

## **Conclusion:**

This paper highlights an inherent challenge in searching for the "best" biomarker(s) of aging. Any researcher seeking to utilize one of these biomarkers must first clearly define their aims. They must also seek to understand and explain how they are using the term biological age or biomarker(s) of aging. It may be preferable to instead use more descriptive terminology such as DNA methylation age/Epigenetic age (BA as measured by an epigenetic clock), transcriptomic age (BA as measured by a transcriptomic age predictor), or functional age (BA as measured by a deficit accumulation index such as a frailty index). These terms go further to explain the nature of the data, how it is obtained, and how it may be best interpreted. They also help to add some clarity given the array of emergent terminology used in biological age prediction research. Our aim at the outset of this paper was to view these markers in the context of their ability to predict healthspan and lifespan. Telomere length is certainly the most extensively studied biomarker of age-related disease. Consequentially, many conclusions have been made regarding the association between telomere length, age, disease, stress, and multiple other health outcomes. While no study that we know of has sought to produce an easy-to-use telomere length biological age prediction tool, TL has been used to predict mortality risk, albeit with mixed results. Epigenetic clocks appear to have the upper hand in terms of accessibility (many are freely accessed online), and they also appear to best predict time-to-death, time-tocancer, and other age-related processes.(Li et al., 2020; Lu et al., 2019; McCrory et al., 2020) It also seems that they may have the greatest degree of large-scale cohort validation. Perhaps the only area where epigenetic clocks are not the apparent "leader" of the biological age prediction discussion is in their ability to identify the mechanism behind differences in chronological and biological aging, although discovery is taking place rapidly.(W. Zhang, Qu, Liu, & Belmonte, 2020) It is in this domain that transcriptional predictors of biological aging may add value as

they rely on gene expression data to estimate biological age. A researcher could potentially examine changes in both biological age and genetic expression to make an inference regarding the mechanism behind the observed biological age acceleration/deceleration from a single blood sample. A "best of both worlds" scenario may involve the inclusion of a more validated DNA methylation marker like GrimAge, alongside a genetic expression profile of relevant genetic pathways. This would allow an investigator to report an intervention's effect on biological age, as well as an analysis of the specific changes in gene expression that may have contributed to that change.

Each of these tools has unique capabilities and limitations. For this reason, the most robust option for a future researcher is likely the inclusion of multiple biomarkers of aging based on those unique features.

A central goal of lifestyle modification is to reduce disease risk and promote healthy, successful aging. The ability of biological age predictors to assess an intervention's contribution to mortality/morbidity risk makes them highly relevant measures for studies examining the effects of lifestyle modification on age-related disease. Future studies examining the effects of diet, supplementation, exercise, stress-reduction techniques, sleep quality/quantity, or any number of other lifestyle modification interventions could benefit greatly from the inclusion of a biological age predictor.

## References

- Amar, D., Lindholm, M. E., Norrbom, J., Wheeler, M. T., Rivas, M. A., & Ashley, E. A. (2021). Time trajectories in the transcriptomic response to exercise - a meta-analysis. *Nature Communications*, 12(1), 3471. doi:10.1038/s41467-021-23579-x
- Atella, V., Piano Mortari, A., Kopinska, J., Belotti, F., Lapi, F., Cricelli, C., & Fontana, L. (2019). Trends in age-related disease burden and healthcare utilization. *Aging Cell*, *18*(1), e12861. doi:10.1111/acel.12861
- Aune, D., Schlesinger, S., Leitzmann, M. F., Tonstad, S., Norat, T., Riboli, E., & Vatten, L. J. (2021). Physical activity and the risk of heart failure: a systematic review and dose-response meta-analysis of prospective studies. *Eur J Epidemiol*, 36(4), 367-381. doi:10.1007/s10654-020-00693-6
- Baker, G. T., 3rd, & Sprott, R. L. (1988). Biomarkers of aging. *Exp Gerontol, 23*(4-5), 223-239. doi:10.1016/0531-5565(88)90025-3
- Barrès, R., Yan, J., Egan, B., Treebak, J. T., Rasmussen, M., Fritz, T., . . . Zierath, J. R. (2012). Acute exercise remodels promoter methylation in human skeletal muscle. *Cell Metab*, *15*(3), 405-411. doi:10.1016/j.cmet.2012.01.001
- Bell, C. G., Lowe, R., Adams, P. D., Baccarelli, A. A., Beck, S., Bell, J. T., . . . Rakyan, V. K. (2019). DNA methylation aging clocks: challenges and recommendations. *Genome Biology*, 20(1), 249. doi:10.1186/s13059-019-1824-y
- Benjamin, E. J., Virani, S. S., Callaway, C. W., Chamberlain, A. M., Chang, A. R., Cheng, S., . . . Muntner, P. (2018). Heart Disease and Stroke Statistics-2018 Update: A Report From the American Heart Association. *Circulation*, 137(12), e67-e492. doi:10.1161/cir.00000000000558
- Berglund, K., Reynolds, C. A., Ploner, A., Gerritsen, L., Hovatta, I., Pedersen, N. L., & Hägg, S. (2016).
  Longitudinal decline of leukocyte telomere length in old age and the association with sex and genetic risk. *Aging*, 8(7), 1398-1415. doi:10.18632/aging.100995
- Burgomaster, K. A., Hughes, S. C., Heigenhauser, G. J., Bradwell, S. N., & Gibala, M. J. (2005). Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. *J Appl Physiol (1985), 98*(6), 1985-1990. doi:10.1152/japplphysiol.01095.2004
- Burn, R., Hubbard, R. E., Scrase, R. J., Abey-Nesbit, R. K., Peel, N. M., Schluter, P. J., & Jamieson, H. A. (2018). A frailty index derived from a standardized comprehensive geriatric assessment predicts mortality and aged residential care admission. *BMC Geriatr*, 18(1), 319. doi:10.1186/s12877-018-1016-8
- Butler, R. N., Sprott, R., Warner, H., Bland, J., Feuers, R., Forster, M., . . . Wolf, N. (2004). Aging: The Reality: Biomarkers of Aging: From Primitive Organisms to Humans. *The Journals of Gerontology: Series A*, 59(6), B560-B567. doi:10.1093/gerona/59.6.B560
- Camarda, S. R., Tebexreni, A. S., Páfaro, C. N., Sasai, F. B., Tambeiro, V. L., Juliano, Y., & Barros Neto, T. L. (2008). Comparison of maximal heart rate using the prediction equations proposed by Karvonen and Tanaka. *Arq Bras Cardiol, 91*(5), 311-314. doi:10.1590/s0066-782x2008001700005
- Campbell, J. P., & Turner, J. E. (2018). Debunking the Myth of Exercise-Induced Immune Suppression: Redefining the Impact of Exercise on Immunological Health Across the Lifespan. *Frontiers in immunology*, *9*, 648-648. doi:10.3389/fimmu.2018.00648
- Castagné, R., Garès, V., Karimi, M., Chadeau-Hyam, M., Vineis, P., Delpierre, C., & Kelly-Irving, M. (2018). Allostatic load and subsequent all-cause mortality: which biological markers drive the relationship? Findings from a UK birth cohort. *Eur J Epidemiol, 33*(5), 441-458. doi:10.1007/s10654-018-0364-1

- CDC. (2022). Adult Physical Activity Prevalence. Retrieved from <u>https://www.cdc.gov/physicalactivity/data/inactivity-prevalence-maps/index.html</u>
- Cesari, M., Gambassi, G., Abellan van Kan, G., & Vellas, B. (2014). The frailty phenotype and the frailty index: different instruments for different purposes. *Age and Ageing*, *43*(1), 10-12. doi:10.1093/ageing/aft160
- Chang, A. Y., Skirbekk, V. F., Tyrovolas, S., Kassebaum, N. J., & Dieleman, J. L. (2019). Measuring population ageing: an analysis of the Global Burden of Disease Study 2017. *Lancet Public Health*, 4(3), e159-e167. doi:10.1016/s2468-2667(19)30019-2
- Chen, B. H., Marioni, R. E., Colicino, E., Peters, M. J., Ward-Caviness, C. K., Tsai, P. C., . . . Horvath, S. (2016). DNA methylation-based measures of biological age: meta-analysis predicting time to death. *Aging*, 8(9), 1844-1865. doi:10.18632/aging.101020
- Chudasama, Y. V., Khunti, K., Gillies, C. L., Dhalwani, N. N., Davies, M. J., Yates, T., & Zaccardi, F. (2020). Healthy lifestyle and life expectancy in people with multimorbidity in the UK Biobank: A longitudinal cohort study. *PLoS Med*, *17*(9), e1003332. doi:10.1371/journal.pmed.1003332
- Church, S., Rogers, E., Rockwood, K., & Theou, O. (2020). A scoping review of the Clinical Frailty Scale. BMC Geriatr, 20(1), 393. doi:10.1186/s12877-020-01801-7
- Clegg, A., Young, J., Iliffe, S., Rikkert, M. O., & Rockwood, K. (2013). Frailty in elderly people. *Lancet* (London, England), 381(9868), 752-762. doi:10.1016/S0140-6736(12)62167-9
- Cobbold, C. (2018). Battle of the sexes: Which is better for you, high- or low-intensity exercise? *J Sport Health Sci*, 7(4), 429-432. doi:10.1016/j.jshs.2018.05.004
- Cole, S. W. (2009). Social Regulation of Human Gene Expression. *Current Directions in Psychological Science*, *18*(3), 132-137. doi:10.1111/j.1467-8721.2009.01623.x
- Cole, S. W., Levine, M. E., Arevalo, J. M., Ma, J., Weir, D. R., & Crimmins, E. M. (2015). Loneliness, eudaimonia, and the human conserved transcriptional response to adversity. *Psychoneuroendocrinology*, *62*, 11-17. doi:10.1016/j.psyneuen.2015.07.001
- Committee, P. A. G. A. In. Physical Activity Guidelines Advisory Committee Report Washington, DC: U.S. Dept of Health and Human Services.
- Danese, A., & McEwen, B. S. (2012). Adverse childhood experiences, allostasis, allostatic load, and agerelated disease. *Physiol Behav*, *106*(1), 29-39. doi:10.1016/j.physbeh.2011.08.019
- Denham, J., O'Brien, B. J., Marques, F. Z., & Charchar, F. J. (2015). Changes in the leukocyte methylome and its effect on cardiovascular-related genes after exercise. *J Appl Physiol (1985), 118*(4), 475-488. doi:10.1152/japplphysiol.00878.2014
- Draghici, S., Khatri, P., Tarca, A. L., Amin, K., Done, A., Voichita, C., . . . Romero, R. (2007). A systems biology approach for pathway level analysis. *Genome Res, 17*(10), 1537-1545. doi:10.1101/gr.6202607
- Edwards, K. M., Burns, V. E., Allen, L. M., McPhee, J. S., Bosch, J. A., Carroll, D., . . . Ring, C. (2007). Eccentric exercise as an adjuvant to influenza vaccination in humans. *Brain, Behavior, and Immunity, 21*(2), 209-217. doi:<u>https://doi.org/10.1016/j.bbi.2006.04.158</u>
- Fahy, G. M., Brooke, R. T., Watson, J. P., Good, Z., Vasanawala, S. S., Maecker, H., . . . Horvath, S. (2019).
  Reversal of epigenetic aging and immunosenescent trends in humans. *Aging Cell*, 18(6), e13028.
  doi:10.1111/acel.13028
- Fava, G. A., McEwen, B. S., Guidi, J., Gostoli, S., Offidani, E., & Sonino, N. (2019). Clinical characterization of allostatic overload. *Psychoneuroendocrinology*, *108*, 94-101. doi:https://doi.org/10.1016/j.psyneuen.2019.05.028
- Finkel, D., Sternäng, O., Jylhävä, J., Bai, G., & Pedersen, N. L. (2019). Functional Aging Index Complements Frailty in Prediction of Entry Into Care and Mortality. J Gerontol A Biol Sci Med Sci, 74(12), 1980-1986. doi:10.1093/gerona/glz155

- Fiorito, G., Caini, S., Palli, D., Bendinelli, B., Saieva, C., Ermini, I., . . . Masala, G. (2021). DNA methylationbased biomarkers of aging were slowed down in a two-year diet and physical activity intervention trial: the DAMA study. *Aging Cell, 20*(10), e13439. doi:<u>https://doi.org/10.1111/acel.13439</u>
- Fitzgerald, K., Hodges, R., Hanes, D., Stack, E., Cheishvili, D., Szyf, M., . . . Bradley, R. (2020). Reversal of Epigenetic Age with Diet and Lifestyle in a Pilot Randomized Clinical Trial. *medRxiv*, 2020.2007.2007.20148098. doi:10.1101/2020.07.07.20148098
- Forero, D. A., González-Giraldo, Y., López-Quintero, C., Castro-Vega, L. J., Barreto, G. E., & Perry, G. (2016). Meta-analysis of Telomere Length in Alzheimer's Disease. *The Journals of Gerontology: Series A*, *71*(8), 1069-1073. doi:10.1093/gerona/glw053
- Fransquet, P. D., Wrigglesworth, J., Woods, R. L., Ernst, M. E., & Ryan, J. (2019). The epigenetic clock as a predictor of disease and mortality risk: a systematic review and meta-analysis. *Clinical Epigenetics*, *11*(1), 62. doi:10.1186/s13148-019-0656-7
- Fried, L. P., Tangen, C. M., Walston, J., Newman, A. B., Hirsch, C., Gottdiener, J., . . . McBurnie, M. A. (2001). Frailty in older adults: evidence for a phenotype. *J Gerontol A Biol Sci Med Sci, 56*(3), M146-156. doi:10.1093/gerona/56.3.m146
- Gardner, M., Bann, D., Wiley, L., Cooper, R., Hardy, R., Nitsch, D., . . . Ben-Shlomo, Y. (2014). Gender and telomere length: systematic review and meta-analysis. *Exp Gerontol, 51*, 15-27. doi:10.1016/j.exger.2013.12.004
- Gibala, M. J., Little, J. P., Macdonald, M. J., & Hawley, J. A. (2012). Physiological adaptations to lowvolume, high-intensity interval training in health and disease. *J Physiol*, 590(5), 1077-1084. doi:10.1113/jphysiol.2011.224725
- Glei, D. A., Goldman, N., Risques, R. A., Rehkopf, D. H., Dow, W. H., Rosero-Bixby, L., & Weinstein, M. (2016). Predicting Survival from Telomere Length versus Conventional Predictors: A Multinational Population-Based Cohort Study. *PLOS ONE*, *11*(4), e0152486. doi:10.1371/journal.pone.0152486
- Gordon, E. H., Peel, N. M., Samanta, M., Theou, O., Howlett, S. E., & Hubbard, R. E. (2017). Sex differences in frailty: A systematic review and meta-analysis. *Exp Gerontol, 89*, 30-40. doi:10.1016/j.exger.2016.12.021
- Gremeaux, V., Gayda, M., Lepers, R., Sosner, P., Juneau, M., & Nigam, A. (2012). Exercise and longevity. *Maturitas*, 73(4), 312-317. doi:<u>https://doi.org/10.1016/j.maturitas.2012.09.012</u>
- Gu, T., Hao, P., Chen, P., & Wu, Y. (2022). A Systematic Review and Meta-Analysis of the Effectiveness of High-Intensity Interval Training in People with Cardiovascular Disease at Improving Depression and Anxiety. *Evid Based Complement Alternat Med, 2022*, 8322484. doi:10.1155/2022/8322484
- Hachmo, Y., Hadanny, A., Abu Hamed, R., Daniel-Kotovsky, M., Catalogna, M., Fishlev, G., . . . Efrati, S. (2020). Hyperbaric oxygen therapy increases telomere length and decreases immunosenescence in isolated blood cells: a prospective trial. *Aging*, *12*(22), 22445-22456. doi:10.18632/aging.202188
- Hagströmer, M., Oja, P., & Sjöström, M. (2006). The International Physical Activity Questionnaire (IPAQ): a study of concurrent and construct validity. *Public Health Nutr, 9*(6), 755-762. doi:10.1079/phn2005898
- Han, M., Qie, R., Shi, X., Yang, Y., Lu, J., Hu, F., . . . Zhao, Y. (2022). Cardiorespiratory fitness and mortality from all causes, cardiovascular disease and cancer: dose–response meta-analysis of cohort studies. *British Journal of Sports Medicine, 56*(13), 733. doi:10.1136/bjsports-2021-104876
- Hannan, A. L., Hing, W., Simas, V., Climstein, M., Coombes, J. S., Jayasinghe, R., . . . Furness, J. (2018).
  High-intensity interval training versus moderate-intensity continuous training within cardiac rehabilitation: a systematic review and meta-analysis. *Open Access J Sports Med, 9*, 1-17. doi:10.2147/oajsm.s150596

- Hannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G., Sadda, S., . . . Zhang, K. (2013). Genome-wide methylation profiles reveal quantitative views of human aging rates. *Mol Cell*, 49(2), 359-367. doi:10.1016/j.molcel.2012.10.016
- Harries, L. W., Hernandez, D., Henley, W., Wood, A. R., Holly, A. C., Bradley-Smith, R. M., . . . Melzer, D. (2011). Human aging is characterized by focused changes in gene expression and deregulation of alternative splicing. *Aging Cell*, *10*(5), 868-878. doi:<u>https://doi.org/10.1111/j.1474-9726.2011.00726.x</u>
- Haycock, P. C., Heydon, E. E., Kaptoge, S., Butterworth, A. S., Thompson, A., & Willeit, P. (2014).
  Leucocyte telomere length and risk of cardiovascular disease: systematic review and metaanalysis. *Bmj, 349*, g4227. doi:10.1136/bmj.g4227
- Hofman, A., Breteler, M. M., van Duijn, C. M., Krestin, G. P., Pols, H. A., Stricker, B. H., . . . Witteman, J. C. (2007). The Rotterdam Study: objectives and design update. *Eur J Epidemiol, 22*(11), 819-829. doi:10.1007/s10654-007-9199-x
- Holle, R., Happich, M., Löwel, H., & Wichmann, H. E. (2005). KORA--a research platform for population based health research. *Gesundheitswesen, 67 Suppl 1*, S19-25. doi:10.1055/s-2005-858235
- Holly, A. C., Melzer, D., Pilling, L. C., Henley, W., Hernandez, D. G., Singleton, A. B., . . . Harries, L. W. (2013). Towards a gene expression biomarker set for human biological age. *Aging Cell*, *12*(2), 324-326. doi:<u>https://doi.org/10.1111/acel.12044</u>
- Horvath, S. (2013). DNA methylation age of human tissues and cell types. *Genome Biology, 14*(10), 3156. doi:10.1186/gb-2013-14-10-r115
- Hurd, M. D., Martorell, P., Delavande, A., Mullen, K. J., & Langa, K. M. (2013). Monetary costs of dementia in the United States. *N Engl J Med*, *368*(14), 1326-1334. doi:10.1056/NEJMsa1204629
- Ito, S. (2019). High-intensity interval training for health benefits and care of cardiac diseases The key to an efficient exercise protocol. *World J Cardiol, 11*(7), 171-188. doi:10.4330/wjc.v11.i7.171
- Jiang, M., Foebel, A. D., Kuja-Halkola, R., Karlsson, I., Pedersen, N. L., Hägg, S., & Jylhävä, J. (2017). Frailty index as a predictor of all-cause and cause-specific mortality in a Swedish population-based cohort. *Aging*, *9*(12), 2629-2646. doi:10.18632/aging.101352
- Johnson, T. E. (2006). Recent results: biomarkers of aging. *Exp Gerontol, 41*(12), 1243-1246. doi:10.1016/j.exger.2006.09.006
- Juster, R. P., McEwen, B. S., & Lupien, S. J. (2010). Allostatic load biomarkers of chronic stress and impact on health and cognition. *Neurosci Biobehav Rev, 35*(1), 2-16. doi:10.1016/j.neubiorev.2009.10.002
- Jylhävä, J., Pedersen, N. L., & Hägg, S. (2017). Biological Age Predictors. *EBioMedicine, 21*, 29-36. doi:<u>https://doi.org/10.1016/j.ebiom.2017.03.046</u>
- Kane, A. E., & Sinclair, D. A. (2019). Frailty biomarkers in humans and rodents: Current approaches and future advances. *Mech Ageing Dev, 180*, 117-128. doi:10.1016/j.mad.2019.03.007
- Karlamangla, A. S., Singer, B. H., & Seeman, T. E. (2006). Reduction in allostatic load in older adults is associated with lower all-cause mortality risk: MacArthur studies of successful aging. *Psychosom Med*, 68(3), 500-507. doi:10.1097/01.psy.0000221270.93985.82
- Kojima, G., Iliffe, S., & Walters, K. (2018). Frailty index as a predictor of mortality: a systematic review and meta-analysis. *Age Ageing*, *47*(2), 193-200. doi:10.1093/ageing/afx162
- Koob, G. F., & Schulkin, J. (2019). Addiction and stress: An allostatic view. *Neurosci Biobehav Rev, 106*, 245-262. doi:10.1016/j.neubiorev.2018.09.008
- Kresovich, J. K., Garval, E. L., Martinez Lopez, A. M., Xu, Z., Niehoff, N. M., White, A. J., . . . Taylor, J. A. (2021). Associations of Body Composition and Physical Activity Level With Multiple Measures of Epigenetic Age Acceleration. *American Journal of Epidemiology*, *190*(6), 984-993. doi:10.1093/aje/kwaa251

- Kroenke, K., Spitzer, R. L., & Williams, J. B. (2001). The PHQ-9: validity of a brief depression severity measure. *Journal of general internal medicine*, *16*(9), 606-613. doi:10.1046/j.1525-1497.2001.016009606.x
- Lapham, K., Kvale, M. N., Lin, J., Connell, S., Croen, L. A., Dispensa, B. P., . . . Blackburn, E. H. (2015).
  Automated Assay of Telomere Length Measurement and Informatics for 100,000 Subjects in the Genetic Epidemiology Research on Adult Health and Aging (GERA) Cohort. *Genetics, 200*(4), 1061-1072. doi:10.1534/genetics.115.178624
- Larson, E. B., & Bruce, R. A. (1987). Health Benefits of Exercise in an Aging Society. *Archives of Internal Medicine*, 147(2), 353-356. doi:10.1001/archinte.1987.00370020171058
- Lee, E.-H. (2012). Review of the Psychometric Evidence of the Perceived Stress Scale. *Asian Nursing Research, 6*(4), 121-127. doi:<u>https://doi.org/10.1016/j.anr.2012.08.004</u>
- Levine, M. E., Lu, A. T., Quach, A., Chen, B. H., Assimes, T. L., Bandinelli, S., . . . Horvath, S. (2018). An epigenetic biomarker of aging for lifespan and healthspan. *Aging*, *10*(4), 573-591. doi:10.18632/aging.101414
- Levinger, I., Shaw, C. S., Stepto, N. K., Cassar, S., McAinch, A. J., Cheetham, C., & Maiorana, A. J. (2015). What Doesn't Kill You Makes You Fitter: A Systematic Review of High-Intensity Interval Exercise for Patients with Cardiovascular and Metabolic Diseases. *Clinical Medicine Insights. Cardiology*, 9, 53-63. doi:10.4137/CMC.S26230
- Levis, B., Sun, Y., He, C., Wu, Y., Krishnan, A., Bhandari, P. M., . . . Zhang, Y. (2020). Accuracy of the PHQ-2 Alone and in Combination With the PHQ-9 for Screening to Detect Major Depression: Systematic Review and Meta-analysis. *Jama, 323*(22), 2290-2300. doi:10.1001/jama.2020.6504
- Li, X., Ploner, A., Wang, Y., Magnusson, P. K. E., Reynolds, C., Finkel, D., . . . Hägg, S. (2020). Longitudinal trajectories, correlations and mortality associations of nine biological ages across 20-years follow-up. *Elife*, *9*, e51507. doi:10.7554/eLife.51507
- Little, J. P., Safdar, A., Wilkin, G. P., Tarnopolsky, M. A., & Gibala, M. J. (2010). A practical model of lowvolume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms. *J Physiol*, *588*(Pt 6), 1011-1022. doi:10.1113/jphysiol.2009.181743
- Logan, J. G., & Barksdale, D. J. (2008). Allostasis and allostatic load: expanding the discourse on stress and cardiovascular disease. *J Clin Nurs*, *17*(7b), 201-208. doi:10.1111/j.1365-2702.2008.02347.x
- Lohman, T., Bains, G., Berk, L., & Lohman, E. (2021). Predictors of Biological Age: The Implications for Wellness and Aging Research. *Gerontol Geriatr Med, 7,* 23337214211046419. doi:10.1177/23337214211046419
- López-Valenciano, A., Mayo, X., Liguori, G., Copeland, R. J., Lamb, M., & Jimenez, A. (2020). Changes in sedentary behaviour in European Union adults between 2002 and 2017. *BMC Public Health*, 20(1), 1206. doi:10.1186/s12889-020-09293-1
- Lowsky, D. J., Olshansky, S. J., Bhattacharya, J., & Goldman, D. P. (2014). Heterogeneity in Healthy Aging. *The Journals of Gerontology: Series A, 69*(6), 640-649. doi:10.1093/gerona/glt162
- Lu, A. T., Quach, A., Wilson, J. G., Reiner, A. P., Aviv, A., Raj, K., . . . Horvath, S. (2019). DNA methylation GrimAge strongly predicts lifespan and healthspan. *Aging*, *11*(2), 303-327. doi:10.18632/aging.101684
- Mariotto, A. B., Yabroff, K. R., Shao, Y., Feuer, E. J., & Brown, M. L. (2011). Projections of the cost of cancer care in the United States: 2010-2020. *Journal of the National Cancer Institute, 103*(2), 117-128. doi:10.1093/jnci/djq495
- McCrory, C., Fiorito, G., Hernandez, B., Polidoro, S., O'Halloran, A. M., Hever, A., . . . Kenny, R. A. (2020). GrimAge Outperforms Other Epigenetic Clocks in the Prediction of Age-Related Clinical Phenotypes and All-Cause Mortality. *The Journals of Gerontology: Series A*. doi:10.1093/gerona/glaa286

- McEwen, B. S. (1998). Stress, adaptation, and disease. Allostasis and allostatic load. *Ann N Y Acad Sci, 840*, 33-44. doi:10.1111/j.1749-6632.1998.tb09546.x
- McEwen, B. S., & Karatsoreos, I. N. (2015). Sleep Deprivation and Circadian Disruption: Stress, Allostasis, and Allostatic Load. *Sleep Med Clin*, *10*(1), 1-10. doi:10.1016/j.jsmc.2014.11.007
- Merrett, F. (2006). Reflections on the Hawthorne Effect. *Educational Psychology, 26*(1), 143-146. doi:10.1080/01443410500341080
- Meyer, D. H., & Schumacher, B. (2021). BiT age: A transcriptome-based aging clock near the theoretical limit of accuracy. *Aging Cell, 20*(3), e13320. doi:10.1111/acel.13320
- Min, L., Wang, D., You, Y., Fu, Y., & Ma, X. (2021). Effects of High-Intensity Interval Training on Sleep: A Systematic Review and Meta-Analysis. *Int J Environ Res Public Health*, 18(20). doi:10.3390/ijerph182010973
- Murphy, L. B., Cisternas, M. G., Pasta, D. J., Helmick, C. G., & Yelin, E. H. (2018). Medical Expenditures and Earnings Losses Among US Adults With Arthritis in 2013. *Arthritis Care Res (Hoboken), 70*(6), 869-876. doi:10.1002/acr.23425
- Myers, J., Prakash, M., Froelicher, V., Do, D., Partington, S., & Atwood, J. E. (2002). Exercise Capacity and Mortality among Men Referred for Exercise Testing. *New England Journal of Medicine, 346*(11), 793-801. doi:10.1056/NEJMoa011858
- Nakajima, K., Takeoka, M., Mori, M., Hashimoto, S., Sakurai, A., Nose, H., . . . Taniguchi, S. (2010). Exercise effects on methylation of ASC gene. *Int J Sports Med*, *31*(9), 671-675. doi:10.1055/s-0029-1246140
- Nayor, M., Shah, R. V., Miller, P. E., Blodgett, J. B., Tanguay, M., Pico, A. R., . . . Lewis, G. D. (2020).
  Metabolic Architecture of Acute Exercise Response in Middle-Aged Adults in the Community. *Circulation*, 142(20), 1905-1924. doi:10.1161/circulationaha.120.050281
- Northey, J. M., Cherbuin, N., Pumpa, K. L., Smee, D. J., & Rattray, B. (2018). Exercise interventions for cognitive function in adults older than 50: a systematic review with meta-analysis. *British Journal of Sports Medicine*, *52*(3), 154. doi:10.1136/bjsports-2016-096587
- O'Brien, M. A., Costin, B. N., & Miles, M. F. (2012). Using genome-wide expression profiling to define gene networks relevant to the study of complex traits: from RNA integrity to network topology. *Int Rev Neurobiol, 104*, 91-133. doi:10.1016/b978-0-12-398323-7.00005-7
- O'Donoghue, G., Blake, C., Cunningham, C., Lennon, O., & Perrotta, C. (2021). What exercise prescription is optimal to improve body composition and cardiorespiratory fitness in adults living with obesity? A network meta-analysis. *Obesity reviews : an official journal of the International Association for the Study of Obesity, 22*(2), e13137-e13137. doi:10.1111/obr.13137
- Ouerghi, N., Fradj, M. K. B., Bezrati, I., Khammassi, M., Feki, M., Kaabachi, N., & Bouassida, A. (2017). Effects of high-intensity interval training on body composition, aerobic and anaerobic performance and plasma lipids in overweight/obese and normal-weight young men. *Biology of sport*, *34*(4), 385-392. doi:10.5114/biolsport.2017.69827
- Papadopoli, D., Boulay, K., Kazak, L., Pollak, M., Mallette, F., Topisirovic, I., & Hulea, L. (2019). mTOR as a central regulator of lifespan and aging. *F1000Research, 8*, F1000 Faculty Rev-1998. doi:10.12688/f1000research.17196.1
- Park, J. H., Moon, J. H., Kim, H. J., Kong, M. H., & Oh, Y. H. (2020). Sedentary Lifestyle: Overview of Updated Evidence of Potential Health Risks. *Korean J Fam Med*, 41(6), 365-373. doi:10.4082/kjfm.20.0165
- Perna, L., Zhang, Y., Mons, U., Holleczek, B., Saum, K.-U., & Brenner, H. (2016). Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause mortality in a German case cohort. *Clinical Epigenetics, 8*, 64-64. doi:10.1186/s13148-016-0228-z

- Peters, M. J., Joehanes, R., Pilling, L. C., Schurmann, C., Conneely, K. N., Powell, J., . . . Consortium, N. U. (2015). The transcriptional landscape of age in human peripheral blood. *Nature Communications*, 6(1), 8570. doi:10.1038/ncomms9570
- Quach, A., Levine, M. E., Tanaka, T., Lu, A. T., Chen, B. H., Ferrucci, L., . . . Horvath, S. (2017). Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. *Aging*, *9*(2), 419-446. doi:10.18632/aging.101168
- Ren, X., & Kuan, P. F. (2020). RNAAgeCalc: A multi-tissue transcriptional age calculator. *PLOS ONE, 15*(8), e0237006. doi:10.1371/journal.pone.0237006
- Reynolds, C. A., Finkel, D., McArdle, J. J., Gatz, M., Berg, S., & Pedersen, N. L. (2005). Quantitative genetic analysis of latent growth curve models of cognitive abilities in adulthood. *Dev Psychol*, 41(1), 3-16. doi:10.1037/0012-1649.41.1.3
- Riebe, D., Ehrman, J. K., Liguori, G., & Magal, M. Chapter 6 General Principles of Exercise Prescription. In: ACSM's Guidelines for Exercise Testing and Prescription. 10th Ed. In (pp. 143-179). In: ACSM's Guidelines for Exercise Testing and Prescription.: Wolters Kluwer/Lippincott Williams & Wilkins.
- Rockwood, K., & Mitnitski, A. (2012). How Might Deficit Accumulation Give Rise to Frailty? *J Frailty Aging*, *1*(1), 8-12. doi:10.14283/jfa.2012.2
- Rockwood, K., Song, X., MacKnight, C., Bergman, H., Hogan, D. B., McDowell, I., & Mitnitski, A. (2005). A global clinical measure of fitness and frailty in elderly people. *CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne, 173*(5), 489-495. doi:10.1503/cmaj.050051
- Rolfson, D. B., Majumdar, S. R., Tsuyuki, R. T., Tahir, A., & Rockwood, K. (2006). Validity and reliability of the Edmonton Frail Scale. *Age and Ageing*, *35*(5), 526-529. doi:10.1093/ageing/afl041
- Rozenek, R., Salassi, J. W., 3rd, Pinto, N. M., & Fleming, J. D. (2016). Acute Cardiopulmonary and Metabolic Responses to High-Intensity Interval Training Protocols Using 60 s of Work and 60 s Recovery. J Strength Cond Res, 30(11), 3014-3023. doi:10.1519/jsc.000000000001414
- Ruiz-Estigarribia, L., Martínez-González, M., Díaz-Gutiérrez, J., Gea, A., Rico-Campà, A., & Bes-Rastrollo, M. (2020). Lifestyle-Related Factors and Total Mortality in a Mediterranean Prospective Cohort. *Am J Prev Med*, 59(2), e59-e67. doi:10.1016/j.amepre.2020.01.032
- Sae-Lee, C., Corsi, S., Barrow, T. M., Kuhnle, G. G. C., Bollati, V., Mathers, J. C., & Byun, H. M. (2018). Dietary Intervention Modifies DNA Methylation Age Assessed by the Epigenetic Clock. *Mol Nutr Food Res, 62*(23), e1800092. doi:10.1002/mnfr.201800092
- Sanders, J. L., & Newman, A. B. (2013). Telomere length in epidemiology: a biomarker of aging, agerelated disease, both, or neither? *Epidemiol Rev, 35*(1), 112-131. doi:10.1093/epirev/mxs008
- Scott, S. N., Shepherd, S. O., Hopkins, N., Dawson, E. A., Strauss, J. A., Wright, D. J., . . . Cocks, M. (2019). Home-hit improves muscle capillarisation and eNOS/NAD(P)Hoxidase protein ratio in obese individuals with elevated cardiovascular disease risk. *The Journal of Physiology, 597*(16), 4203-4225. doi:<u>https://doi.org/10.1113/JP278062</u>
- Sellami, M., Bragazzi, N., Prince, M. S., Denham, J., & Elrayess, M. (2021). Regular, Intense Exercise Training as a Healthy Aging Lifestyle Strategy: Preventing DNA Damage, Telomere Shortening and Adverse DNA Methylation Changes Over a Lifetime. *Front Genet, 12*, 652497. doi:10.3389/fgene.2021.652497
- Shi, G. P., Ma, T., Zhu, Y. S., Wang, Z. D., Chu, X. F., Wang, Y., . . . Jiang, X. Y. (2019). Frailty phenotype, frailty index and risk of mortality in Chinese elderly population- Rugao longevity and ageing study. Arch Gerontol Geriatr, 80, 115-119. doi:10.1016/j.archger.2018.11.001
- Shibasaki, K., Kin, S. K., Yamada, S., Akishita, M., & Ogawa, S. (2019). Sex-related differences in the association between frailty and dietary consumption in Japanese older people: a cross-sectional study. *BMC Geriatr*, *19*(1), 211. doi:10.1186/s12877-019-1229-5

- Sood, S., Gallagher, I. J., Lunnon, K., Rullman, E., Keohane, A., Crossland, H., . . . Timmons, J. A. (2015). A novel multi-tissue RNA diagnostic of healthy ageing relates to cognitive health status. *Genome Biology*, *16*(1), 185-185. doi:10.1186/s13059-015-0750-x
- Stensvold, D., Viken, H., Steinshamn, S. L., Dalen, H., Støylen, A., Loennechen, J. P., . . . Wisløff, U. (2020).
  Effect of exercise training for five years on all cause mortality in older adults-the Generation 100 study: randomised controlled trial. *Bmj, 371*, m3485. doi:10.1136/bmj.m3485
- Su, L., Fu, J., Sun, S., Zhao, G., Cheng, W., Dou, C., & Quan, M. (2019). Effects of HIIT and MICT on cardiovascular risk factors in adults with overweight and/or obesity: A meta-analysis. *PLOS ONE*, 14(1), e0210644. doi:10.1371/journal.pone.0210644
- Svensson, J., Karlsson, M. K., Ljunggren, Ö., Tivesten, Å., Mellström, D., & Movérare-Skrtic, S. (2014). Leukocyte telomere length is not associated with mortality in older men. *Exp Gerontol*, 57, 6-12. doi:10.1016/j.exger.2014.04.013
- Tarca, A. L., Draghici, S., Khatri, P., Hassan, S. S., Mittal, P., Kim, J. S., . . . Romero, R. (2009). A novel signaling pathway impact analysis. *Bioinformatics*, 25(1), 75-82. doi:10.1093/bioinformatics/btn577
- Unnikrishnan, A., Freeman, W. M., Jackson, J., Wren, J. D., Porter, H., & Richardson, A. (2019). The role of DNA methylation in epigenetics of aging. *Pharmacol Ther, 195,* 172-185. doi:10.1016/j.pharmthera.2018.11.001
- Vaiserman, A., & Krasnienkov, D. (2020). Telomere Length as a Marker of Biological Age: State-of-the-Art, Open Issues, and Future Perspectives. *Front Genet*, *11*, 630186. doi:10.3389/fgene.2020.630186
- Wang, Q., Zhan, Y., Pedersen, N. L., Fang, F., & Hägg, S. (2018). Telomere Length and All-Cause Mortality: A Meta-analysis. *Ageing Res Rev, 48*, 11-20. doi:10.1016/j.arr.2018.09.002
- Warburton, D. E. R., & Bredin, S. S. D. (2017). Health benefits of physical activity: a systematic review of current systematic reviews. *Curr Opin Cardiol, 32*(5), 541-556. doi:10.1097/hco.00000000000437
- Weichhart, T. (2018). mTOR as Regulator of Lifespan, Aging, and Cellular Senescence: A Mini-Review. *Gerontology*, 64(2), 127-134. doi:10.1159/000484629
- Wewege, M., van den Berg, R., Ward, R. E., & Keech, A. (2017). The effects of high-intensity interval training vs. moderate-intensity continuous training on body composition in overweight and obese adults: a systematic review and meta-analysis. *Obesity reviews : an official journal of the International Association for the Study of Obesity, 18*(6), 635-646. doi:10.1111/obr.12532
- Wewege, M. A., Ahn, D., Yu, J., Liou, K., & Keech, A. (2018). High-Intensity Interval Training for Patients With Cardiovascular Disease—Is It Safe? A Systematic Review. *Journal of the American Heart* Association, 7(21), e009305. doi:10.1161/JAHA.118.009305
- Wu, M. Y., Wang, J. B., Zhu, Y., Lu, J. M., Li, D., Yu, Z. B., . . . Chen, K. (2020). Impact of Individual and Combined Lifestyle Factors on Mortality in China: A Cohort Study. Am J Prev Med, 59(3), 461-468. doi:10.1016/j.amepre.2020.01.029
- Zhan, Y., & Hägg, S. (2018). Telomere Length Shortening in Alzheimer's Disease: Procedures for a Causal Investigation Using Single Nucleotide Polymorphisms in a Mendelian Randomization Study. *Methods Mol Biol, 1750,* 293-306. doi:10.1007/978-1-4939-7704-8\_20
- Zhang, C., Zhang, H., Zhao, M., Li, Z., Cook, C. E., Buysse, D. J., . . . Yao, Y. (2020). Reliability, Validity, and Factor Structure of Pittsburgh Sleep Quality Index in Community-Based Centenarians. *Front Psychiatry*, 11, 573530. doi:10.3389/fpsyt.2020.573530
- Zhang, W., Qu, J., Liu, G. H., & Belmonte, J. C. I. (2020). The ageing epigenome and its rejuvenation. *Nat Rev Mol Cell Biol*, *21*(3), 137-150. doi:10.1038/s41580-019-0204-5

- Zhang, Y., Wilson, R., Heiss, J., Breitling, L. P., Saum, K. U., Schöttker, B., . . . Brenner, H. (2017). DNA methylation signatures in peripheral blood strongly predict all-cause mortality. *Nat Commun*, 8, 14617. doi:10.1038/ncomms14617
- Zhang, Y. B., Pan, X. F., Chen, J., Cao, A., Xia, L., Zhang, Y., . . . Pan, A. (2021). Combined lifestyle factors, all-cause mortality and cardiovascular disease: a systematic review and meta-analysis of prospective cohort studies. *J Epidemiol Community Health*, *75*(1), 92-99. doi:10.1136/jech-2020-214050
- Zhao, W., Ammous, F., Ratliff, S., Liu, J., Yu, M., Mosley, T. H., . . . Smith, J. A. (2019). Education and Lifestyle Factors Are Associated with DNA Methylation Clocks in Older African Americans. Int J Environ Res Public Health, 16(17). doi:10.3390/ijerph16173141

#### **CHAPTER 3**

High-Intensity Interval Training Reduces Transcriptomic Age: A Randomized Controlled Trial **Abstract** 

Background: While the relationship between exercise and lifespan is well documented, little is known about the effects of specific exercise protocols on modern measures of biological age. Transcriptomic age predictors provide an opportunity to test the effects of high intensity interval training (HIIT) on biological age utilizing whole-genome expression data.

Methods: A single-site, single-blinded, randomized controlled clinical trial design was utilized. Thirty sedentary participants (aged 40 to 65) were assigned to either a HIIT group or a no-exercise control group. After collecting baseline measures, HIIT participants performed three 10X1 HIIT sessions per week for 4 weeks. Each session lasted 23 minutes, and total exercise duration was 276 minutes over the course of the 1-month exercise protocol. Transcriptomic age, PSS-10 score, PSQI score, PHQ-9 score, and various measures of body composition were all measured at baseline and again following the conclusion of exercise/control protocols.

Results: Transcriptomic age reduction of 3.59 years was observed in the exercise group while a 3.28-year increase was observed in the control group. PHQ-9, PSQI, BMI, body fat mass, and visceral fat measures were all improved in the exercise group. A hypothesis-generation gene expression analysis suggested exercise may modify autophagy, mTOR, AMPK, IP3K, neurotrophin signaling, insulin signaling, and other age-related pathways.

Conclusion: A low dose of HIIT can reduce an RNA-based measure of biological age in sedentary males and females between the ages of 40 and 65. Other changes to gene expression

were relatively modest, which may indicate a focal effect of exercise on age-related biological

processes.

Acknowledgements: We are grateful for the work carried out by our laboratory team: Chih-Chieh Chia, Fulden Cakir, Simran Jaisinghani, Kezia Marceline, Owee Mulay, and Maxine Shih. We also thank this paper's reviewers, who improved the manuscript in meaningful ways.

Conflict of Interest Statement: The authors declare no competing interests.

Funding Statement: Research funded by School of Allied Health Professions, Loma Linda University.

Authors' Contributions: T.L. conceived and designed the study, performed transcriptomic age and associated enrichment analyses, G.B. coordinated the project and together with T.L. and E.L. designed the study. S.C. performed all RNA extraction, quality control, and associated transcriptomic analyses. L.G. performed associated statistical analyses. All authors contributed to and approved of the manuscript.

Data Availability Statement: The data that support the findings of this study are available from the corresponding author, [T.L.], upon reasonable request.

## Introduction

The beneficial effects of exercise on healthspan and lifespan are among the most well documented scientific findings in health science research (Aune et al., 2021; Han et al., 2022; Myers et al., 2002; Northey, Cherbuin, Pumpa, Smee, & Rattray, 2018). Despite this, there are relatively few trials investigating the effects of exercise on gene regulatory mechanisms of healthspan and lifespan. Of those that have been performed, most examine the effects of a single bout of exercise on gene expression, rather than repeated bouts (Amar et al., 2021).

Given that many beneficial effects of exercise require repeated bouts over time to manifest, this represents an opportunity for discovery. Consider for example the inappropriate conclusions that could be drawn when studying the effects of a single bout of exercise on muscle hypertrophy, strength, or inflammation. The beneficial effects of exercise on biological aging is likely most apparent when studied over time.

The central theme of molecular biology holds that a cell's function and status are dictated by the specific sets of genes undergoing transcription at any given time, and to what degree these processes are occurring (O'Brien, Costin, & Miles, 2012). Genome-wide expression analyses allow us to take a snapshot of those processes, capturing a gene expression profile at the time of blood draw. A comparison of gene expression profiles before and after an intervention provides the means to identify patterns of differentially expressed genes.

As high throughput RNA sequencing becomes more commonplace, gene expressionbased predictive models have emerged. Some of these models are designed to predict

biological age (Meyer & Schumacher, 2021; Peters et al., 2015; Ren & Kuan, 2020), or more specifically, transcriptomic age (TA). These models are easily accessible and comprehensive molecular surveys of biological processes that collectively contribute to healthspan and lifespan. It is this type of biological age predictor, a "transcriptomic clock" that is used in the trial described here.

The biological age prediction field is diverse and rapidly evolving, with models composed of various inputs (Cesari et al., 2014; Jylhävä et al., 2017; Levine et al., 2018; Lohman et al., 2021; Lu et al., 2019) and predictive capabilities (Li et al., 2020; McCrory et al., 2020). The discrepancy between a participant's actual age and their predicted age is often of particular interest (Fahy et al., 2019; Fiorito et al., 2021). This measure, called age acceleration (biological age minus chronological age), can take a positive or negative value. Positive values are considered hazardous and indicative of an increased aging rate, while negative values are considered beneficial and evidence of a slowed aging rate. Any intervention that reverses age acceleration could therefore be considered beneficial and potentially health protective.

The effect of exercise on various biological age predictors is inconsistent. Most experimental studies that examine the relationship between exercise and biological age use telomere length as their primary biomarker of aging. These results are mixed, with positive relationships, U-shaped relationships, and no relationship all being reported (Sellami, Bragazzi, Prince, Denham, & Elrayess, 2021). This could be due to any number of factors, from differences in sample characteristics to the open question of whether telomere length even has utility as a measure of biological age (Glei et al., 2016; Li et al., 2020; Svensson et al., 2014; Vaiserman & Krasnienkov, 2020; Wang et al., 2018).

Fewer studies have been performed using epigenetic alteration, such as DNA methylation or histone methylation/acetylation as an outcome measure. Of those that have been performed, various types of exercise have been shown to induce widespread changes to the methylome and associated gene expression (Barrès et al., 2012; Denham, O'Brien, Marques, & Charchar, 2015; Nakajima et al., 2010), but the number of studies performed is few.

To the authors' knowledge only two lifestyle modification trials have utilized a next generation predictor of biological age in humans, such as an epigenetic clock (Fiorito et al., 2021; Fitzgerald et al., 2020), and no prior study has used a transcriptomic predictor of biological age.

The trial described here aims to address this by utilizing high throughput RNA sequencing to explore the effects of twelve high intensity interval training (HIIT) sessions on biological age as measured by a blood mRNA-based "transcriptomic clock" (Peters et al., 2015).

To confirm previously observed effects of HIIT on various physiological parameters (Gu, Hao, Chen, & Wu, 2022; Min, Wang, You, Fu, & Ma, 2021; Ouerghi et al., 2017; Su et al., 2019; M. Wewege, van den Berg, Ward, & Keech, 2017) we also measured changes to body mass index (BMI), body fat mass (BFM) and visceral fat area, as well as measures of psychological stress, depression, and sleep quality.

#### Methods

A randomized controlled trial design was used to investigate the effects of HIIT on the following dependent variables: 10-item Perceived Stress Scale (PSS-10) (Lee, 2012), Pittsburgh Sleep Quality Index (PSQI) (C. Zhang et al., 2020), Patient Health Questionnaire 9-item depression module (PHQ-9) (Kroenke, Spitzer, & Williams, 2001; Levis et al., 2020), body mass index (BMI), body fat mass, visceral fat area, skeletal muscle mass, waist-to-hip ratio, blood pressure, resting heart rate, and whole-genome RNA expression. The transcriptomic age prediction (TRAP) tool (Peters et al., 2015) was used to assess transcriptomic age and transcriptomic age acceleration (TAaccel = TA – chronological age) using the RNA AGE Calc Shiny App (Ren & Kuan, 2020). The TRAP biological age prediction model was trained to predict chronological age in a meta-analysis of 14,983 individuals and is based on 11,908 input gene expression levels (Peters et al., 2015).

Trial participants were recruited from local communities surrounding the Loma Linda University campus via flyers, approved social media, and word of mouth. The Loma Linda University Institutional Review Board approved the study on 11/18/2021 (IRB# 5210437, clinicaltrials.gov trial registration ID: NCT05156918). Males and females between the ages of 40 and 65 who self-identified as non-exercisers, were categorized as low activity using the International Physical Activity Questionnaire (IPAQ) (Hagströmer, Oja, & Sjöström, 2006), had no significant change to activity levels within the past 30 days, were not pregnant, had no prior or current history of any condition that would make exercise unsafe, and were not currently

taking antibiotics, glucocorticoids, anticoagulants, narcotics, antiepileptics, antipsychotics, or hypoglycemic agents were eligible for participation.

Study participants were instructed to avoid modifying their usual physical activity level or diet for the duration of the four-week study protocols, except for the additional HIIT assigned to exercise group. All participants maintained a compliance log, comprised of two questions weekly. For the control group: Have you performed more than your usual amount of physical activity this week? Secondly, have you made any significant changes to your diet this week? For the exercise group: Excluding the exercise assigned to you in this study, have you performed more than your usual amount of physical activity this week? Secondly, have you made any significant changes to your diet this week?

All participants arrived at the laboratory between the hours of 8am and 11am, and baseline measures were obtained. Body composition measurements were obtained using the InBody 770 body composition and body water analyzer (InBody USA, USA), surveys were completed in a private room, and a single vial of blood was collected by a certified phlebotomist from the antecubital vein into a PAXgene<sup>®</sup> Blood RNA Tube, PLH 16X100 2.5 PLBLCE CLR (Becton Dickinson, USA)

Following the completion of Day-1 data collection, exercise group participants returned the following day to begin the HIIT protocol which took place at the Loma Linda University Physical Fitness Laboratory. The authors chose a routinely studied 10X1 HIIT protocol that has been determined as safe and effective in various groups, including sedentary individuals (Ito, 2019; Little, Safdar, Wilkin, Tarnopolsky, & Gibala, 2010; Rozenek, Salassi, Pinto, & Fleming,

2016; M. A. Wewege, Ahn, Yu, Liou, & Keech, 2018). The protocol consists of a 2-minute warm up and cool down, with 10, 1-minute high intensity exercise intervals at 77-93% of the participants predicted maximum heart rate (Committee; Riebe, Ehrman, Liguori, & Magal) determined using Karvonen's formula (Camarda et al., 2008), followed by 1-minute selfselected intensity rest periods. The total exercise session lasted 23 minutes, of which 10 minutes was high intensity exercise and 13 minutes was warm-up/rest/cool down periods.

Participants rotated between three exercise machines (randomly assigned rotation order at outset): A Concept2 rowing ergometer, Concept2 bicycle ergometer, and a Noraxon PhysTread Pressure treadmill. Participants used a different machine each day so that they used each of the three exercise machines once per week.

Following the conclusion of the 4-week control and exercise protocols, all participants returned for results collection. Exercise group data was collected approximately 48 hours after their last HIIT session. Blood samples were stored at -79 degrees Celsius until RNA extraction (Qiagen RNeasy), quality assurance assays, mRNA sequencing, and related statistical analyses of differential gene expression and interpretive bioinformatics were performed by the UCLA Social Genomics Core Laboratory. Transcriptional profiling utilized a high-efficiency mRNA targeted reverse transcription and cDNA library synthesis system (QuantSeq 3' FWD; Lexogen Inc.) with cDNA libraries sequenced on in Illumina NovaSeq system by Lexogen Services GmbH. Assays targeted 5 million sequencing reads per sample (achieved median = 7.1 million), each of which was mapped to the GRCh38 reference human transcriptome using the STAR aligner (median 99.7% mapping rate) and quantified as gene transcripts per million total mapped reads, with values floored at 1 transcript per million to suppress spurious low-range variability, and log2-

transformed to stabilize variance. One follow-up sample yielded insufficient sequencing reads for valid analysis (< 1 million reads), and that sample and its paired pre-intervention baseline sample were excluded from all subsequent analyses. These data served as input into the RNA AGE Calc Shiny App for computation of the TRAP RNA age score. RNA AGE Calc Shiny App inputs were as follows: Tissue type: Blood, type of gene expression data: Count, samples used when building the calculator: All samples, gene ID type: Ensembl ID, signature: Peters.

A secondary analysis of differentially expressed genes (DEGs) was performed using two sets of cut off criteria. First, genes which displayed a group x time interaction expression fold change greater than 1.5 or less than .5 were selected for analysis. Also, an exploratory/hypothesis-generation analysis was performed using more liberal fold change values, greater than 1.2 or less than .8. Functional enrichment and pathway analyses were performed using Advaita Bio's iPathway Guide (Supplementary File 2).

#### **Data Analysis**

Mean ± SD was computed for quantitative variables and frequency (percentage) for categorical variables. Normality of quantitative variables was assessed using Shapiro-Wilk test and box plots. Independent t-test was used for all continuous and independent variables in both groups at baseline. The Mann-Whitney U test was used to compare the same variables due to small sample and lack of normality on some variables. The dependent paired t test was used to compare pre- and post-variables in both groups. Also, Wilcoxon Signed Rank test was used to compare the pre- and post-variables due to small sample and lack of normality on some variables.

Data were analyzed using SPSS Statistics Software version 28.0 (SPSS Inc, Chicago, IL, USA). All analyses were performed at an alpha level of .05.

## Results

Of the 35 participants screened, 30 subjects satisfied the eligibility criteria, agreed to participate, were randomly assigned to the experimental group (n=15) and the control group (n=15) using computer-generated block randomization, and completed all subsequent analyses

# (Figure 1).



Figure 1: CONSORT chart diagram. 35 participants recruited, 2 excluded due to high activity level, 1 excluded due to an inability to draw blood sample. 1 control participant lost to follow up, 1 exercise participant excluded from analysis due to low blood volume in post exercise blood sample detected during RNA quality control tests. In total, 15 control participants and 15 experimental participants completed all aspects of the trial and subsequent analysis.

Baseline characteristics of participants are shown in Table 1. None of the demographic variables were significant for randomized design.

| Variables                | Experimental           | Control                |
|--------------------------|------------------------|------------------------|
|                          | Frequency (%)          | Frequency (%)          |
|                          | (n=15)                 | (n=15)                 |
| Age (years)              | $51.00\pm7.9^{\delta}$ | $47.93\pm7.6^{\delta}$ |
| BMI (kg/m <sup>2</sup> ) | $31.08\pm4.9^{\delta}$ | $29.59\pm5.4^{\delta}$ |
| Race/Ethnicity           |                        |                        |
| White                    | 7 (46.7)               | 5 (33.3)               |
| Black                    | 2 (13.3)               | 1 (6.7)                |
| Hispanic                 | 4 (26.7)               | 4 (26.7)               |
| Asian                    | 1 (6.7)                | 5 (33.3)               |
| Other                    | 1 (6.7)                | 0 (0)                  |
| Sex                      |                        |                        |
| Female                   | 10 (66.7)              | 10 (66.7)              |
| Male                     | 5 (33.3)               | 5 (33.3)               |
| Diabetic                 |                        |                        |
| No                       | 13 (86.7)              | 14 (93.3)              |
| Yes                      | 0(0)                   | 0 (0)                  |
| Pre-Diabetic             | 2 (13.3)               | 1 (6.7)                |

| Table 1. Selected Characteristics of Participants at Ba |
|---------------------------------------------------------|
|---------------------------------------------------------|

 $^{\delta}$  Values are presented as mean ± SD

## Intervention Validation

There was a significant decrease in body fat mass, BMI, and visceral fat area (p= .031, .048, and .015 respectively) (Table 2), over time for the experimental group, a non-significant increase in BFM in the control group (p=.244), and a non-significant decrease in BMI and Visceral Fat Area in the control group (p=.598 and p=.062 respectively) (Table 2). No changes in body composition displayed group x time statistical significance.

Primary Analysis: Transcriptomic Age

A significant group x time difference in TA (p=.026) was observed. A significant decrease

in TA was observed in the experimental group (p=.043) and a significant increase in TA was

observed in the control group (p=.018) (Table 2). Changes to TAaccel were also significant

between groups (p=.025), with similar magnitude and direction of change as TA (Table 2).

| Table 2. Effects of High Intensity Interval Training on Transcriptomic Age, PHQ-9, PSS-10, |
|--------------------------------------------------------------------------------------------|
| PSQI, Skeletal Muscle Mass, Body Fat Mass, and Visceral Fat Area. Between and Within Group |
| Effects                                                                                    |

| Variables       | Experimental (n=15) |            |                      | Control (n=15) |            |                      |                   |
|-----------------|---------------------|------------|----------------------|----------------|------------|----------------------|-------------------|
|                 |                     |            | Mean                 |                |            | Mean                 | P**               |
|                 |                     |            | difference           |                |            | difference           |                   |
|                 | Pre                 | Post       | (P <sup>*</sup> )    | pre            | post       | (P <sup>*</sup> )    |                   |
| TA              |                     |            | -3.59±7.72           |                |            | 3.28±8.26            | .026              |
| (years)         | 73.4±8.2            | 69.8±7.7   | (.043)               | 67.8±9.3       | 71.1±9.2   | (.018)               |                   |
| TAaccel         |                     |            | -3.84±7.98           |                |            | 3.21±8.26            | .025              |
| (years)         | 21.8±7.6            | 17.9±9.2   | (.078)               | 19.2±7.9       | 22.4±6.8   | (.156)               |                   |
|                 |                     |            | -3.07± 3.10          |                |            | .07± 6.15            | .063ª             |
| PHQ-9           | 5.3±3.9             | 2.3±1.9    | (.002 <sup>b</sup> ) | 6.9±6.9        | 7.0±5.9    | (.964 <sup>b</sup> ) |                   |
|                 |                     |            | 33±5.89              |                |            | 1.47±4.09            | .739 <sup>a</sup> |
| PSS-10          | 20.1±5.3            | 19.8±4.0   | (.53 <sup>b</sup> )  | 21.2±3.4       | 19.7±5.2   | (.054 <sup>b</sup> ) |                   |
|                 |                     |            | $-1.53 \pm 2.42$     |                |            | .07± 2.55            | .158ª             |
| PSQI            | 7.0±3.9             | 5.5±3.5    | (.042 <sup>b</sup> ) | 7.6±4.7        | 7.7±4.4    | (.670 <sup>b</sup> ) |                   |
| SMM             |                     |            | .15± 1.39            |                |            | .39± 1.99            | .705              |
| (lbs)           | 69.5±11.7           | 69.6±11.5  | (.676)               | 63.1±14.0      | 63.5±14.0  | (.456)               |                   |
|                 |                     |            | $-1.47 \pm 2.29$     |                |            | .17±4.5              | .263ª             |
| BFM (lbs)       | 74.6±22.1           | 73.1±22.2  | (.031 <sup>b</sup> ) | 66.9±22.1      | 67.0±22.7  | (.244 <sup>b</sup> ) |                   |
| BMI             |                     |            | 23±.40               |                |            | -0.08±.57            | .513              |
| (kg/m²)         | 31.1±4.9            | 30.9±5.0   | (.048)               | 29.6±5.4       | 29.5±5.1   | (.598)               |                   |
| Visceral        |                     |            |                      |                |            | -2.66±               | .426              |
| Fat Area        |                     |            | -4.25± 5.95          |                |            | 5.08                 |                   |
| cm <sup>2</sup> | 162.3±46.2          | 158.1±46.1 | (.015)               | 157.0±58.3     | 154.3±58.3 | (.062)               |                   |

Values are presented as mean  $\pm\,\text{SD}$ 

 $^{\ast}$  p- values for the null hypothesis that there is no difference between pre and post.

\*\* p- values for the null hypothesis that there is no difference between groups.

a: Mann-Whitney U test

b: Wilcoxon Signed Rank test

Abbreviations. TA: transcriptomic age, TAaccel: Transcriptomic Age Acceleration (transcriptomic age minus chronological age), PHQ-9: Patient Health Questionnaire 9 item depression module, PSS-10: 10 item Perceived Stress Scale, PSQI: Pittsburgh Sleep Quality Index, SMM: Skeletal Muscle Mass (lbs.), BFM: Body Fat mass (lbs.), BMI: Body Mass Index. Secondary Analyses: Gene Expression Analyses, Depression, Sleep, and Stress Ratings There was a significant decrease in mean PHQ-9 (depression) and PSQI (sleep) (p=.002 and p=.042), over time for the experimental group but no significant change for control group (p=.063 and p=.158 respectively) (Table2). Lastly, there was no significant change in mean PSS-10 and SMM (p=.53 and p=.676 respectively) for the experimental group and similarly for the control group (p=.054 and p=.456). However, no changes in stress, sleep, or depression ratings displayed group x time statistical significance.

The group x time interaction gene expression analysis identified 98 genes that were differentially expressed using routinely accepted fold change cutoff values (86 up-regulated genes >1.5-fold change, and 12 down regulated genes <.5-fold change in the exercise group compared to control group). This number is insufficient for secondary enrichment analyses. Using more liberal fold change values of >1.2 and < .8 for this exploratory analysis, 2,653 DEGs were identified (1075 up-regulated genes >1.2-fold change, and 1778 down-regulated genes <.8-fold change) (Supplementary File 1). In addition, 1,365 Gene Ontology (GO) terms, 477 gene upstream regulators, 231 chemical upstream regulators and 259 diseases were found to be significantly enriched before correction for multiple comparisons (Supplementary File 2).

Pathway analysis was performed using Advaita Bio's iPathwayGuide, which scores pathways using the Impact Analysis method (Draghici et al., 2007; Tarca et al., 2009). Impact analysis uses two types of evidence: i) the over-representation of differentially expressed (DE) genes in a pathway and ii) the perturbation of that pathway computed by propagating the measured expression changes across the pathway topology. The top five pathways identified by this analysis and their associated p-values are as follows: Human T-cell leukemia virus 1

infection (p-value= 2.033e-7, p-value (FDR)= 3.888e-5, p-value (Bonferroni)= 6.851e-5), pathways in cancer (p-value= 2.308e-7, p-value (FDR)= 3.888e-5, p-value (Bonferroni)= 7.776e-5), neurotrophin signaling pathway (p-value= 4.670e-7, p-value (FDR)= 5.246e-5, p-value (Bonferroni)= 1.574e-4), RNA degradation (p-value= 1.140e-6, p-value (FDR)= 5.939e-5, p-value (Bonferroni)= 3.842e-4), and autophagy (p-value= 1.190e-6, p-value (FDR)= 5.939e-5, p-value (Bonferroni)= 4.009e-4). A detailed description of these results, including pathway diagrams, is shown in Supplementary File 2.

## Discussion

In this randomized controlled trial examining the effects of HIIT on an RNA-based measure of biological age, participants in the HIIT group showed greater reductions in TA and TAaccel than did those in the no-exercise control group. This improvement in biological age coincided with improvements in body composition, ratings of sleep quality, and ratings of depression within the exercise group. These results suggest that exercise exerts a causal effect on age-related patterns of gene expression, and that such effects could potentially contribute to the positive health and longevity effects associated with exercise.

## Transcriptomic Age and Transcriptomic Age Acceleration

Both groups began the trial with positive transcriptomic age acceleration. In other words, mean transcriptomic age (as computed by the TRAP algorithm) was significantly higher than mean chronological age in both groups. This baseline age bias most likely stems from methodological issues discussed below, and affected both groups similarly (i.e., exercise and

control groups did not differ in their baseline biological age measures). In the exercise group, TA and TAaccel decreased following the HIIT protocol, while both measures increased in the control group over the same timeframe. A 3.59-year reduction in TA was observed in the exercise group, which can be interpreted as the average gene expression pattern among exercise participants changing to reflect that of a person 3.59 years younger than their mean baseline TA. The 6.87-year difference in TA change, and 7.04-year difference in TAaccel change between exercise and control groups was statistically significant.

The only significant change observed in the control group was increased TA, and the authors propose two potential mechanisms for this. Control participants were asked to avoid altering their typical physical activity levels during the duration of the four-week control protocol. It is possible that once under observation, participants inadvertently lowered their activity levels. In essence, a Hawthorne effect (Merrett, 2006). Secondly, it is important to note the impact that loneliness, social exclusion, and isolation can have on gene expression (Steve W. Cole, 2009; S. W. Cole et al., 2015). Many control participants expressed disappointment at not being included in the exercise group. It is at least conceivable that this adversely affected their transcriptomic age.

Of note was that the TRAP model consistently overestimated participant age in all blood samples. The authors believe this is due to differences in data type between the TRAP training dataset and our sample. The TRAP model was developed and trained using microarray data (Peters et al., 2015), while our transcript counts were derived from RNAseq data. However, since this discrepancy applies equally to all blood samples regardless of group assignment or

time of collection, there is no reason to believe that this introduced any bias into the observed magnitude and direction of TA change.

## Gene Expression

The use of a gene expression-based measure of biological age has the added advantage of facilitating additional transcriptomic analyses which could shed light on the mechanisms underlying exercise's effect on aging processes. However, in an untargeted genome-wide expression analysis, 12 HIIT sessions had only modest effects on gene expression. Although there were transcriptomic effects associated with HIIT, less than 100 genes displayed a fold change greater than 1.5 or less than .5, the values typically used to identify DEGs. This DEG count is less than the amount required for subsequent higher order bioinformatic analyses such as a functional enrichment analysis.

While these modest findings may seem surprising given the systemic physiological changes induced by exercise, it is important to remember that this trial examined the effects of a 1-month HIIT protocol on steady state (baseline) gene expression levels. The follow-up blood draw occurred approximately 48 hours after the final exercise session, meaning that whole genome expression was assessed while the participants were not experiencing the acute physiological aftereffects of exercise. Given the small dose and duration of our exercise protocol and the small sample size, this modest between group effect may not be surprising

An exploratory genome-wide discovery analysis using more liberal fold change cutoff values (greater than 1.2 or less than .8) revealed 1075 upregulated transcripts and 1778 downregulated transcripts potentially associated with HIIT (Supplementary File 1). The

subsequent bioinformatic analyses associated with these DEGs were performed using Advaita Bio's iPathwayGuide. This analysis suggests that autophagy processes, cancer pathways, neurotrophin signaling pathways, mRNA degradation processes, and other pathways were modified by HIIT (Supplementary File 2). These modifications are particularly interesting in the context of aging, especially autophagy. Various age-related signaling pathways were modified including mTOR signaling, AMPK signaling, PI3K signaling, and insulin signaling pathways. Inhibition of 3 out of 5 mTORC1 complex component genes (Raptor, Deptor, and mTOR) was noteworthy, since mTORC1 inhibition is associated with increased lifespan in every species studied so far, including humans (Papadopoli et al., 2019; Weichhart, 2018). Given the exploratory nature of these enrichment analyses, and the relatively liberal threshold for DEG detection however, these results should be treated as descriptive hypotheses to be tested in future research using more rigorous methods.

Body Composition and Self-Reported Measures of Sleep Quality and Depression Previous work suggests that the effects of exercise on biological age are mediated by changes in body composition (Kresovich et al., 2021). This seems to support our findings, as improvements in BMI, body fat mass, and visceral fat area were observed in the exercise group over time. Improvements in PHQ-9 and PSQI score were also seen in the exercise group over time.

Observed changes to body composition were consistent with previous studies' findings, indicating that this study's specific implementation of HIIT imparted the expected effects demonstrated in prior investigations. This serves as a positive control, or paradigm validation of the trial's specific HIIT intervention. However, it is important to note that none of these

biometric changes differed significantly across groups, likely due to the limited statistical power available from this relatively small sample.

## Significance

Starting and adhering to a new exercise program is difficult, a fact perhaps best illustrated by the current sedentary behavior rate in the United States. A recent Center for Disease Control and Prevention (CDC) telephone survey estimates that more than 25% of Americans participate in no physical activity outside of work (CDC, 2022) and contrary to popular opinion, this is not a uniquely American problem. A large European Union study found that 53.1% of the adult EU population participated in >4.5 hours of sedentary behavior per day (López-Valenciano et al., 2020). Inadequate physical activity is no longer just a western problem either, with the World Health Organization estimating that one third of the global population aged 15 years or older engages in insufficient physical activity, with some countries, such as Korea, engaging in >8 hours per day of sedentary behavior on average (Park, Moon, Kim, Kong, & Oh, 2020).

HIIT is a potential tool to help combat this trend given the decreased time commitment (Cobbold, 2018; Ito, 2019) and similar (or improved) health benefits to those bestowed by other forms of exercise (Hannan et al., 2018; Scott et al., 2019), but with increased adherence and compliance rates (Ito, 2019).

Despite the modest gene expression findings generally, the pre-specified hypothesis regarding HIIT-induced transcriptomic age reversal was proven out by the analysis. Considering that each exercise participant completed a combined 276 minutes of exercise over 1 month,
only 2 hours of which was high intensity exercise, the effect of HIIT on biological age appears promising.

This study further supports the notion that adding even a small amount of exercise can be beneficial, given that just 12 HIIT sessions were shown to significantly improve TA and TAaccel. To the authors' knowledge, this is the first trial to demonstrate the effects of a specific exercise protocol on a next generation measure of biological age. The results suggest that exercise exerts a causal effect on age-related patterns of gene expression, and that such effects could potentially contribute to the positive health and longevity effects associated with exercise.

#### Conclusion

A low dose of HIIT over 4 weeks is sufficient to reduce transcriptomic age in sedentary middleaged males and females. Other changes to gene expression were relatively modest in comparison to the transcriptomic age reduction effect size. These findings, along with modification to autophagic pathways, may indicate a particular HIIT specificity for age-related biological pathway modulation. The key observations presented here, namely reduced transcriptomic age, indicate that exercise may potentially improve health and longevity by altering age-related transcriptional processes.

### References

- Amar, D., Lindholm, M. E., Norrbom, J., Wheeler, M. T., Rivas, M. A., & Ashley, E. A. (2021). Time trajectories in the transcriptomic response to exercise - a meta-analysis. *Nature Communications*, 12(1), 3471. doi:10.1038/s41467-021-23579-x
- Aune, D., Schlesinger, S., Leitzmann, M. F., Tonstad, S., Norat, T., Riboli, E., & Vatten, L. J. (2021). Physical activity and the risk of heart failure: a systematic review and dose-response meta-analysis of prospective studies. *Eur J Epidemiol*, *36*(4), 367-381. doi:10.1007/s10654-020-00693-6
- Barrès, R., Yan, J., Egan, B., Treebak, J. T., Rasmussen, M., Fritz, T., . . . Zierath, J. R. (2012). Acute exercise remodels promoter methylation in human skeletal muscle. *Cell Metab*, *15*(3), 405-411. doi:10.1016/j.cmet.2012.01.001
- Camarda, S. R., Tebexreni, A. S., Páfaro, C. N., Sasai, F. B., Tambeiro, V. L., Juliano, Y., & Barros Neto, T. L. (2008). Comparison of maximal heart rate using the prediction equations proposed by Karvonen and Tanaka. Arq Bras Cardiol, 91(5), 311-314. doi:10.1590/s0066-782x2008001700005
- CDC. (2022). Adult Physical Activity Prevalence. Retrieved from <u>https://www.cdc.gov/physicalactivity/data/inactivity-prevalence-maps/index.html</u>
- Cesari, M., Gambassi, G., Abellan van Kan, G., & Vellas, B. (2014). The frailty phenotype and the frailty index: different instruments for different purposes. *Age and Ageing*, *43*(1), 10-12. doi:10.1093/ageing/aft160
- Cobbold, C. (2018). Battle of the sexes: Which is better for you, high- or low-intensity exercise? *J Sport Health Sci*, 7(4), 429-432. doi:10.1016/j.jshs.2018.05.004
- Cole, S. W. (2009). Social Regulation of Human Gene Expression. *Current Directions in Psychological Science*, *18*(3), 132-137. doi:10.1111/j.1467-8721.2009.01623.x
- Cole, S. W., Levine, M. E., Arevalo, J. M., Ma, J., Weir, D. R., & Crimmins, E. M. (2015). Loneliness, eudaimonia, and the human conserved transcriptional response to adversity. *Psychoneuroendocrinology*, *62*, 11-17. doi:10.1016/j.psyneuen.2015.07.001
- Committee, P. A. G. A. In. Physical Activity Guidelines Advisory Committee Report Washington, DC: U.S. Dept of Health and Human Services.
- Denham, J., O'Brien, B. J., Marques, F. Z., & Charchar, F. J. (2015). Changes in the leukocyte methylome and its effect on cardiovascular-related genes after exercise. *J Appl Physiol (1985), 118*(4), 475-488. doi:10.1152/japplphysiol.00878.2014
- Draghici, S., Khatri, P., Tarca, A. L., Amin, K., Done, A., Voichita, C., . . . Romero, R. (2007). A systems biology approach for pathway level analysis. *Genome Res, 17*(10), 1537-1545. doi:10.1101/gr.6202607
- Fahy, G. M., Brooke, R. T., Watson, J. P., Good, Z., Vasanawala, S. S., Maecker, H., . . . Horvath, S. (2019).
   Reversal of epigenetic aging and immunosenescent trends in humans. *Aging Cell*, 18(6), e13028.
   doi:10.1111/acel.13028
- Fiorito, G., Caini, S., Palli, D., Bendinelli, B., Saieva, C., Ermini, I., . . . Masala, G. (2021). DNA methylationbased biomarkers of aging were slowed down in a two-year diet and physical activity intervention trial: the DAMA study. *Aging Cell, 20*(10), e13439. doi:<u>https://doi.org/10.1111/acel.13439</u>
- Fitzgerald, K., Hodges, R., Hanes, D., Stack, E., Cheishvili, D., Szyf, M., . . . Bradley, R. (2020). Reversal of Epigenetic Age with Diet and Lifestyle in a Pilot Randomized Clinical Trial. *medRxiv*, 2020.2007.2007.20148098. doi:10.1101/2020.07.07.20148098
- Glei, D. A., Goldman, N., Risques, R. A., Rehkopf, D. H., Dow, W. H., Rosero-Bixby, L., & Weinstein, M. (2016). Predicting Survival from Telomere Length versus Conventional Predictors: A Multinational Population-Based Cohort Study. *PLOS ONE*, *11*(4), e0152486. doi:10.1371/journal.pone.0152486

- Gu, T., Hao, P., Chen, P., & Wu, Y. (2022). A Systematic Review and Meta-Analysis of the Effectiveness of High-Intensity Interval Training in People with Cardiovascular Disease at Improving Depression and Anxiety. *Evid Based Complement Alternat Med*, 2022, 8322484. doi:10.1155/2022/8322484
- Hagströmer, M., Oja, P., & Sjöström, M. (2006). The International Physical Activity Questionnaire (IPAQ):
   a study of concurrent and construct validity. *Public Health Nutr, 9*(6), 755-762.
   doi:10.1079/phn2005898
- Han, M., Qie, R., Shi, X., Yang, Y., Lu, J., Hu, F., . . . Zhao, Y. (2022). Cardiorespiratory fitness and mortality from all causes, cardiovascular disease and cancer: dose–response meta-analysis of cohort studies. *British Journal of Sports Medicine*, *56*(13), 733. doi:10.1136/bjsports-2021-104876
- Hannan, A. L., Hing, W., Simas, V., Climstein, M., Coombes, J. S., Jayasinghe, R., . . . Furness, J. (2018).
   High-intensity interval training versus moderate-intensity continuous training within cardiac rehabilitation: a systematic review and meta-analysis. *Open Access J Sports Med, 9*, 1-17. doi:10.2147/oajsm.s150596
- Ito, S. (2019). High-intensity interval training for health benefits and care of cardiac diseases The key to an efficient exercise protocol. *World J Cardiol*, *11*(7), 171-188. doi:10.4330/wjc.v11.i7.171
- Jylhävä, J., Pedersen, N. L., & Hägg, S. (2017). Biological Age Predictors. *EBioMedicine, 21*, 29-36. doi:<u>https://doi.org/10.1016/j.ebiom.2017.03.046</u>
- Kresovich, J. K., Garval, E. L., Martinez Lopez, A. M., Xu, Z., Niehoff, N. M., White, A. J., ... Taylor, J. A. (2021). Associations of Body Composition and Physical Activity Level With Multiple Measures of Epigenetic Age Acceleration. *American Journal of Epidemiology, 190*(6), 984-993. doi:10.1093/aje/kwaa251
- Kroenke, K., Spitzer, R. L., & Williams, J. B. (2001). The PHQ-9: validity of a brief depression severity measure. *Journal of general internal medicine*, *16*(9), 606-613. doi:10.1046/j.1525-1497.2001.016009606.x
- Lee, E.-H. (2012). Review of the Psychometric Evidence of the Perceived Stress Scale. *Asian Nursing Research, 6*(4), 121-127. doi:<u>https://doi.org/10.1016/j.anr.2012.08.004</u>
- Levine, M. E., Lu, A. T., Quach, A., Chen, B. H., Assimes, T. L., Bandinelli, S., . . . Horvath, S. (2018). An epigenetic biomarker of aging for lifespan and healthspan. *Aging*, *10*(4), 573-591. doi:10.18632/aging.101414
- Levis, B., Sun, Y., He, C., Wu, Y., Krishnan, A., Bhandari, P. M., . . . Zhang, Y. (2020). Accuracy of the PHQ-2 Alone and in Combination With the PHQ-9 for Screening to Detect Major Depression: Systematic Review and Meta-analysis. *Jama*, *323*(22), 2290-2300. doi:10.1001/jama.2020.6504
- Li, X., Ploner, A., Wang, Y., Magnusson, P. K. E., Reynolds, C., Finkel, D., . . . Hägg, S. (2020). Longitudinal trajectories, correlations and mortality associations of nine biological ages across 20-years follow-up. *Elife*, *9*, e51507. doi:10.7554/eLife.51507
- Little, J. P., Safdar, A., Wilkin, G. P., Tarnopolsky, M. A., & Gibala, M. J. (2010). A practical model of lowvolume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms. *J Physiol*, *588*(Pt 6), 1011-1022. doi:10.1113/jphysiol.2009.181743
- Lohman, T., Bains, G., Berk, L., & Lohman, E. (2021). Predictors of Biological Age: The Implications for Wellness and Aging Research. *Gerontol Geriatr Med*, *7*, 23337214211046419. doi:10.1177/23337214211046419
- López-Valenciano, A., Mayo, X., Liguori, G., Copeland, R. J., Lamb, M., & Jimenez, A. (2020). Changes in sedentary behaviour in European Union adults between 2002 and 2017. *BMC Public Health, 20*(1), 1206. doi:10.1186/s12889-020-09293-1
- Lu, A. T., Quach, A., Wilson, J. G., Reiner, A. P., Aviv, A., Raj, K., . . . Horvath, S. (2019). DNA methylation GrimAge strongly predicts lifespan and healthspan. *Aging*, *11*(2), 303-327. doi:10.18632/aging.101684

- McCrory, C., Fiorito, G., Hernandez, B., Polidoro, S., O'Halloran, A. M., Hever, A., . . . Kenny, R. A. (2020). GrimAge Outperforms Other Epigenetic Clocks in the Prediction of Age-Related Clinical Phenotypes and All-Cause Mortality. *The Journals of Gerontology: Series A*. doi:10.1093/gerona/glaa286
- Merrett, F. (2006). Reflections on the Hawthorne Effect. *Educational Psychology, 26*(1), 143-146. doi:10.1080/01443410500341080
- Meyer, D. H., & Schumacher, B. (2021). BiT age: A transcriptome-based aging clock near the theoretical limit of accuracy. *Aging Cell, 20*(3), e13320. doi:10.1111/acel.13320
- Min, L., Wang, D., You, Y., Fu, Y., & Ma, X. (2021). Effects of High-Intensity Interval Training on Sleep: A Systematic Review and Meta-Analysis. *Int J Environ Res Public Health*, *18*(20). doi:10.3390/ijerph182010973
- Myers, J., Prakash, M., Froelicher, V., Do, D., Partington, S., & Atwood, J. E. (2002). Exercise Capacity and Mortality among Men Referred for Exercise Testing. *New England Journal of Medicine, 346*(11), 793-801. doi:10.1056/NEJMoa011858
- Nakajima, K., Takeoka, M., Mori, M., Hashimoto, S., Sakurai, A., Nose, H., . . . Taniguchi, S. (2010). Exercise effects on methylation of ASC gene. *Int J Sports Med*, *31*(9), 671-675. doi:10.1055/s-0029-1246140
- Northey, J. M., Cherbuin, N., Pumpa, K. L., Smee, D. J., & Rattray, B. (2018). Exercise interventions for cognitive function in adults older than 50: a systematic review with meta-analysis. *British Journal of Sports Medicine*, *52*(3), 154. doi:10.1136/bjsports-2016-096587
- O'Brien, M. A., Costin, B. N., & Miles, M. F. (2012). Using genome-wide expression profiling to define gene networks relevant to the study of complex traits: from RNA integrity to network topology. *Int Rev Neurobiol, 104*, 91-133. doi:10.1016/b978-0-12-398323-7.00005-7
- Ouerghi, N., Fradj, M. K. B., Bezrati, I., Khammassi, M., Feki, M., Kaabachi, N., & Bouassida, A. (2017). Effects of high-intensity interval training on body composition, aerobic and anaerobic performance and plasma lipids in overweight/obese and normal-weight young men. *Biology of sport*, *34*(4), 385-392. doi:10.5114/biolsport.2017.69827
- Papadopoli, D., Boulay, K., Kazak, L., Pollak, M., Mallette, F., Topisirovic, I., & Hulea, L. (2019). mTOR as a central regulator of lifespan and aging. *F1000Research, 8*, F1000 Faculty Rev-1998. doi:10.12688/f1000research.17196.1
- Park, J. H., Moon, J. H., Kim, H. J., Kong, M. H., & Oh, Y. H. (2020). Sedentary Lifestyle: Overview of Updated Evidence of Potential Health Risks. *Korean J Fam Med*, 41(6), 365-373. doi:10.4082/kjfm.20.0165
- Peters, M. J., Joehanes, R., Pilling, L. C., Schurmann, C., Conneely, K. N., Powell, J., . . . Consortium, N. U. (2015). The transcriptional landscape of age in human peripheral blood. *Nature Communications*, 6(1), 8570. doi:10.1038/ncomms9570
- Ren, X., & Kuan, P. F. (2020). RNAAgeCalc: A multi-tissue transcriptional age calculator. *PLOS ONE, 15*(8), e0237006. doi:10.1371/journal.pone.0237006
- Riebe, D., Ehrman, J. K., Liguori, G., & Magal, M. Chapter 6 General Principles of Exercise Prescription. In: ACSM's Guidelines for Exercise Testing and Prescription. 10th Ed. In (pp. 143-179). In: ACSM's Guidelines for Exercise Testing and Prescription.: Wolters Kluwer/Lippincott Williams & Wilkins.
- Rozenek, R., Salassi, J. W., 3rd, Pinto, N. M., & Fleming, J. D. (2016). Acute Cardiopulmonary and Metabolic Responses to High-Intensity Interval Training Protocols Using 60 s of Work and 60 s Recovery. *J Strength Cond Res, 30*(11), 3014-3023. doi:10.1519/jsc.00000000001414
- Scott, S. N., Shepherd, S. O., Hopkins, N., Dawson, E. A., Strauss, J. A., Wright, D. J., . . . Cocks, M. (2019). Home-hit improves muscle capillarisation and eNOS/NAD(P)Hoxidase protein ratio in obese individuals with elevated cardiovascular disease risk. *The Journal of Physiology, 597*(16), 4203-4225. doi:https://doi.org/10.1113/JP278062

- Sellami, M., Bragazzi, N., Prince, M. S., Denham, J., & Elrayess, M. (2021). Regular, Intense Exercise Training as a Healthy Aging Lifestyle Strategy: Preventing DNA Damage, Telomere Shortening and Adverse DNA Methylation Changes Over a Lifetime. *Front Genet, 12*, 652497. doi:10.3389/fgene.2021.652497
- Su, L., Fu, J., Sun, S., Zhao, G., Cheng, W., Dou, C., & Quan, M. (2019). Effects of HIIT and MICT on cardiovascular risk factors in adults with overweight and/or obesity: A meta-analysis. *PLOS ONE*, 14(1), e0210644. doi:10.1371/journal.pone.0210644
- Svensson, J., Karlsson, M. K., Ljunggren, Ö., Tivesten, Å., Mellström, D., & Movérare-Skrtic, S. (2014). Leukocyte telomere length is not associated with mortality in older men. *Exp Gerontol*, 57, 6-12. doi:10.1016/j.exger.2014.04.013
- Tarca, A. L., Draghici, S., Khatri, P., Hassan, S. S., Mittal, P., Kim, J. S., . . . Romero, R. (2009). A novel signaling pathway impact analysis. *Bioinformatics*, 25(1), 75-82. doi:10.1093/bioinformatics/btn577
- Vaiserman, A., & Krasnienkov, D. (2020). Telomere Length as a Marker of Biological Age: State-of-the-Art, Open Issues, and Future Perspectives. *Front Genet*, *11*, 630186. doi:10.3389/fgene.2020.630186
- Wang, Q., Zhan, Y., Pedersen, N. L., Fang, F., & Hägg, S. (2018). Telomere Length and All-Cause Mortality: A Meta-analysis. *Ageing Res Rev, 48*, 11-20. doi:10.1016/j.arr.2018.09.002
- Weichhart, T. (2018). mTOR as Regulator of Lifespan, Aging, and Cellular Senescence: A Mini-Review. *Gerontology*, *64*(2), 127-134. doi:10.1159/000484629
- Wewege, M., van den Berg, R., Ward, R. E., & Keech, A. (2017). The effects of high-intensity interval training vs. moderate-intensity continuous training on body composition in overweight and obese adults: a systematic review and meta-analysis. *Obesity reviews : an official journal of the International Association for the Study of Obesity, 18*(6), 635-646. doi:10.1111/obr.12532
- Wewege, M. A., Ahn, D., Yu, J., Liou, K., & Keech, A. (2018). High-Intensity Interval Training for Patients With Cardiovascular Disease—Is It Safe? A Systematic Review. *Journal of the American Heart Association, 7*(21), e009305. doi:10.1161/JAHA.118.009305
- Zhang, C., Zhang, H., Zhao, M., Li, Z., Cook, C. E., Buysse, D. J., . . . Yao, Y. (2020). Reliability, Validity, and Factor Structure of Pittsburgh Sleep Quality Index in Community-Based Centenarians. *Front Psychiatry*, 11, 573530. doi:10.3389/fpsyt.2020.573530

#### CHAPTER FOUR

#### DISCUSSION

There is a quote attributed to Galileo which reads "measure what is measurable and make measurable what is not so". It is an aphorism which lies at the heart of good research methodology, and its relevance to biological aging is particularly significant.

In the context of aging research, chronological age is readily measurable. The measurement of biological aging processes, however, is much more elusive. It is easy to imagine two individuals with different age-related disease risk profiles, different life expectancies, and different comorbidities, who are the same chronological age. The field of biological age prediction is as an attempt to measure the dissociation between chronological age and these age-related health outcomes. Not only are these capabilities informative, but they are also pragmatic.

Biological age is hard to measure and even harder to change, but new advances in molecular biology and the well-established virtues of exercise raise an exciting possibility that we now attempt to seize in this dissertation. Can exercise reduce biological age?

Prior to the creation of valid predictors of biological age, a researcher wishing to assess the effects of an intervention on aging processes, life expectancy, and age-related disease would need to design a multi-decade longitudinal trial. Alternatively, they could look for correlations in retrospective epidemiological data. In either case, a logistically challenging and expensive research endeavor needed to be undertaken. One that was potentially rife with confounding and unintentional bias. Biological age prediction models offer an intermediate step, where the effects of an intervention on biological aging can be assessed over

comparatively shorter time frames. These studies could provide a basis for selecting interventions for additional investigation and investment. Therefore, these models would not take the place of longitudinal validation, but they could catalyze the pace and efficiency of aging research discovery.

With biological age prediction models, researchers now possess the means to evaluate the effects of interventions on aging processes within practical time frames. Chapter Two of this text reviewed a sampling of these models and described the current state of biological age prediction methodology. The models described there serve as accessible measures of biological aging, providing a framework for the investigation of biological age modulating interventions. In numerous cases they are determined to be externally and longitudinally valid predictors of life expectancy and time-to-disease.

One category of biological age prediction model, transcriptomic age prediction, relies on gene expression inputs to assess biological age. The underlying transcriptomic data associated with these models also provides the basis for interesting secondary bioinformatic analyses. These analyses have the potential to help elucidate the mechanistic interplay between an intervention and biological age modulation.

It is this type of model, a transcriptomic age predictor, that served as the primary outcome measure for the experimental trial described in Chapter Three. This trial assessed the effects of High-intensity interval training on gene expression and transcriptomic age. Reduction in transcriptomic age was observed in the exercise group compared to the control group.

Exercise is a generally accepted modulator of health outcomes and life expectancy. However, it has not been previously demonstrated to modulate aging processes via

transcriptional means. In this way, the trial is significant, and to the authors' knowledge the first trial to assess the effects of a specific intervention on a modern measure of biological age. A secondary hypothesis generation analysis was performed, and multiple age-related pathways were amongst the most heavily enriched biological processes. Some of these processes included cancer pathways, neurotrophin signaling, and autophagy signaling. All are age-related, but of particular interest was the potential exercise-induced up-regulation of autophagic processes. Future trials with larger samples and larger exercise doses should investigate this further. Future research is also needed to assess the durability of these effects – i.e., are the "biological age reductions" observed here persistent over months or years of follow-up, or do they dissipate over time? Are such effects maintained if participants continue exercising following study cessation? And perhaps most importantly, do these "biological age" reductions observed here with exercise accurately forecast increases in health and longevity? These are all important topics for future research, and this dissertation's identification of HIIT as a viable strategy for reducing transcriptomic age in sedentary middle-aged adults provides a highly feasible paradigm for those future investigations.

#### **Conclusions and Future Directions**

The authors conclude that a low dose HIIT intervention is sufficient to reduce transcriptomic age in sedentary middle-aged males and females. Other changes to gene expression were relatively modest in comparison to the transcriptomic age reversal effect size. These changes included potential modification to autophagic signaling, neurotrophin signaling, and cancer-related pathways. This may indicate a particular HIIT specificity for age-related

biological pathway modulation. The key trial observations, namely reduced transcriptomic age, indicate that exercise may potentially improve health and longevity via age-related transcriptional mechanisms.

Future studies should seek to quantify the biological age modulation capability of other exercise protocols, with the goal to identify forms of exercise which have the greatest affinity for biological age modification. Additionally, dose response curves should be established, and sex specific differences should be quantified. Appendix A



# INSTITUTIONAL REVIEW BOARD HUMAN RESEARCH & COMPLIANCE

24887 Taylor Street • Suite 201 • Loma Linda, CA 92350 (909) 558-4531 (voice) • (909) 558-0131 (fax)

Initial Approval Notice - Expedited

## IRB# 5210437

 To:
 Gurinder Bains

 Department:
 SAHP: Allied Health Sciences

 Protocol:
 The Effects of High-Intensity Exercise on Biological Age

This study was reviewed and approved administratively on behalf of the IRB. This decision includes the following determinations:

 Risk to research subjects:
 Minimal Risk

 Approval begins:
 18-Nov-2021

 Stipulations of approval:
 See attached list of items (if applicable).

 See Appendix A for Conditions of Approval.

Adverse events and unanticipated problems must be reported in accord with the attached Adverse Event Reporting Matrix A.

All investigators are responsible for assuring that studies are conducted according to the approved protocol. Principal investigators are responsible for the actions of sub-investigators and staff with regard to this approval.

Please note the PI's name and the assigned IRB number, as indicated above, on any future communications with the IRB.

Direct all communications to the IRB c/o Human Research and Compliance.

Thank you for your cooperation in LLUH's shared responsibility for the ethical use of human subject in research.

Chair/Designee

11/22/2021

|            |            |              | Between    |
|------------|------------|--------------|------------|
|            |            |              | Group Fold |
| Gene       | Intercept  | Intervention | Change     |
| ZDHHC4     | -0.64318   | 1.10685792   | 2.15376064 |
| MYBBP1A    | -0.7140497 | 1.07325568   | 2.10417643 |
| PREB       | -0.5967144 | 1.01629142   | 2.0227127  |
| MROH1      | -0.8331493 | 0.96407741   | 1.9508156  |
| LCN2       | -0.6619749 | 0.95137977   | 1.93372115 |
| HMGN1P8    | -0.2241092 | 0.90334621   | 1.87039919 |
| VPS39      | -0.4116895 | 0.90099762   | 1.86735681 |
| AP003108.4 | -0.7705609 | 0.89689913   | 1.86205944 |
| EPB41L2    | -0.6040875 | 0.86804415   | 1.82518684 |
| B4GALT7    | -0.3555211 | 0.85998163   | 1.8150152  |
| WSB2       | -0.3373061 | 0.82855551   | 1.77590636 |
| LRP8       | -0.1076038 | 0.79815986   | 1.73888179 |
| PILRB      | -0.5574056 | 0.78197963   | 1.71948869 |
| UMAD1      | -0.5534117 | 0.77002794   | 1.7053028  |
| RSAD1      | -0.4137279 | 0.75449579   | 1.68704188 |
| OXER1      | -0.5325214 | 0.75321724   | 1.68554744 |
| TAF13      | -0.3187047 | 0.73840708   | 1.66833276 |
| ZNF213     | -0.4543647 | 0.73500036   | 1.66439789 |
| ZBED4      | -0.3624368 | 0.73056263   | 1.65928607 |
| MT-TT      | -0.7968331 | 0.72466956   | 1.65252209 |
| WLS        | -0.3127526 | 0.71846703   | 1.64543272 |
| FAM234A    | -0.2748992 | 0.71572082   | 1.64230356 |
| CHCHD5     | -0.4153742 | 0.70857759   | 1.63419211 |
| PTGS1      | -0.4770252 | 0.70455667   | 1.62964381 |
| PGBD4      | -0.3579984 | 0.70408233   | 1.62910809 |
| PWAR6      | -0.3889218 | 0.69805886   | 1.62232049 |
| INAFM1     | -0.0578553 | 0.69300494   | 1.61664727 |
| CC2D1A     | -0.4118007 | 0.68719569   | 1.61015067 |
| HS1BP3     | -0.3823085 | 0.68577978   | 1.60857118 |
| XRRA1      | -0.374259  | 0.67874249   | 1.60074387 |
| MEPCE      | -0.2877406 | 0.67652697   | 1.59828753 |
| PLXNA3     | -0.4264685 | 0.67628948   | 1.59802445 |
| ALPL       | -0.3432847 | 0.67585005   | 1.59753778 |
| AC004448.1 | -0.6120066 | 0.67423682   | 1.5957524  |
| NIT1       | -0.3100206 | 0.672585     | 1.59392639 |
| HDC        | -0.1141744 | 0.67202723   | 1.59331026 |
| CTSF       | -0.4429797 | 0.67141132   | 1.59263019 |

| -0.5440711 | 0.67117044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.5923643                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -0.1744318 | 0.67105478                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.59223665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -0.2268861 | 0.66384517                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.58429959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -0.2945996 | 0.66109695                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.5812845                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -0.0902757 | 0.6598819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.57995329                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -0.3767391 | 0.65962037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.57966689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -0.2980943 | 0.65829361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.57821484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -0.3388034 | 0.65382112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.5733298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -0.3050014 | 0.6514107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.57070331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -0.1895204 | 0.64210889                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.56060874                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -0.2542009 | 0.63568555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.55367586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -0.4857814 | 0.63459408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.55250088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -0.4657457 | 0.63344361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.55126334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -0.2193439 | 0.62658131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.54390214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -0.217631  | 0.6239616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.5411012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -0.2105514 | 0.62384601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.54097773                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -0.2485718 | 0.6228535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.53991797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -0.2063448 | 0.62125078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.53820819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -0.194019  | 0.62010772                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.53698994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -0.4708322 | 0.61965238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.53650491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.08477275 | 0.61851179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.53529063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -0.1548765 | 0.61734945                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.5340542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -0.4050067 | 0.61554667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.53213845                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -0.1898008 | 0.61479749                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.53134302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -0.1598787 | 0.61473618                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.53127795                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -0.4301148 | 0.61400216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.53049906                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -0.6062427 | 0.6133715                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.52983016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -0.3764581 | 0.61238904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.52878872                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -0.4671886 | 0.61237287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.52877159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -0.2396999 | 0.60771439                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.52384312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -0.3127145 | 0.60638105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.52243544                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -0.3239201 | 0.60535822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.52135646                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -0.2110895 | 0.60421595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.52015238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -0.6060393 | 0.60067149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.51642221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -0.1784798 | 0.59969287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.51539392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -0.2431417 | 0.59675255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.51230859                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -0.3030504 | 0.59513086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.5106096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -0.2585302 | 0.59462974                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.51008498                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -0.441581  | 0.59452011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.50997023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.05446244 | 0.59442258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.50986816                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            | -0.5440711<br>-0.1744318<br>-0.2968861<br>-0.2945996<br>-0.0902757<br>-0.3767391<br>-0.2980943<br>-0.3388034<br>-0.3050014<br>-0.1895204<br>-0.2542009<br>-0.4857814<br>-0.2657457<br>-0.2193439<br>-0.217631<br>-0.2105514<br>-0.2485718<br>-0.2063448<br>-0.194019<br>-0.4708322<br>0.08477275<br>-0.1548765<br>-0.4050067<br>-0.1898008<br>-0.1598787<br>-0.4050067<br>-0.1898008<br>-0.1598787<br>-0.4050067<br>-0.1898008<br>-0.1598787<br>-0.4301148<br>-0.6062427<br>-0.3764581<br>-0.4671886<br>-0.2396999<br>-0.3127145<br>-0.3239201<br>-0.2110895<br>-0.6060393<br>-0.1784798<br>-0.2431417<br>-0.3030504<br>-0.2585302<br>-0.441581 | -0.54407110.67117044-0.17443180.67105478-0.22688610.66384517-0.29459960.66109695-0.09027570.6598819-0.37673910.65962037-0.29809430.65829361-0.33880340.65382112-0.30500140.6514107-0.18952040.64210889-0.25420090.63568555-0.48578140.63459408-0.21934390.62658131-0.21055140.62384601-0.21055140.62384601-0.24857180.6228535-0.20634480.62125078-0.1940190.62010772-0.47083220.61851179-0.15487650.61734945-0.40500670.61554667-0.18980080.61479749-0.15987870.61473618-0.43011480.61400216-0.60624270.6133715-0.37645810.61237287-0.23969990.60771439-0.31271450.60638105-0.32392010.60535822-0.21108950.60421595-0.60603930.60067149-0.17847980.59969287-0.24314170.59675255-0.30305040.59513086-0.25853020.59462974-0.4415810.594520110.054462440.59442258 |

| ZBTB48     | -0.1832489 | 0.59276524 | 1.50813464 |
|------------|------------|------------|------------|
| B3GALNT2   | -0.1574718 | 0.59197858 | 1.50731253 |
| NUTM2A-AS1 | -0.2719236 | 0.59024932 | 1.5055069  |
| SLC6A8     | -0.3737017 | 0.58890297 | 1.50410258 |
| AC026356.2 | -0.4109483 | 0.58866921 | 1.50385889 |
| BICD1      | -0.2914786 | 0.58865075 | 1.50383966 |
| DHX33      | -0.1698499 | 0.58785255 | 1.50300785 |
| PRPSAP1    | -0.4375926 | 0.58637201 | 1.50146622 |
| FADD       | -0.3283961 | 0.58563744 | 1.50070191 |
| PARVB      | -0.2322521 | 0.58429014 | 1.4993011  |
| TMEM91     | -0.2385151 | 0.58316557 | 1.49813286 |
| LRIG2      | -0.229744  | 0.58270335 | 1.49765295 |
| CTTN       | -0.477424  | 0.58179135 | 1.49670651 |
| PAFAH2     | -0.338788  | 0.58178623 | 1.4967012  |
| MCUR1      | -0.2730608 | 0.58091198 | 1.49579449 |
| CCDC77     | -0.4224037 | 0.58055334 | 1.4954227  |
| SUPT7L     | -0.4378561 | 0.57878557 | 1.49359144 |
| SCYL1      | -0.4654756 | 0.57781109 | 1.49258293 |
| PDCD5      | -0.2164347 | 0.57711012 | 1.49185789 |
| IRF5       | -0.3378033 | 0.57691036 | 1.49165134 |
| BLOC1S1    | -0.3794059 | 0.57521352 | 1.48989796 |
| ANO9       | -0.2263428 | 0.57498788 | 1.48966495 |
| LRFN1      | -0.2233739 | 0.57400263 | 1.48864797 |
| ZNF296     | -0.0663251 | 0.57380409 | 1.48844312 |
| ZDHHC16    | -0.299086  | 0.57360436 | 1.48823707 |
| NMRAL1     | -0.382243  | 0.57203658 | 1.48662068 |
| AC103769.1 | -0.1149116 | 0.57033869 | 1.48487212 |
| FAR2       | -0.1629727 | 0.56920888 | 1.48370974 |
| AVIL       | -0.1416968 | 0.5681596  | 1.48263102 |
| AL157392.3 | 0.03026011 | 0.56800704 | 1.48247424 |
| TXNDC17    | 0.07644287 | 0.5677581  | 1.48221846 |
| ERCC6L2    | -0.0293469 | 0.56734231 | 1.48179135 |
| MAN2C1     | -0.2122632 | 0.56498011 | 1.47936711 |
| GNB1L      | -0.2694688 | 0.56166851 | 1.47597523 |
| AC025171.1 | -0.3266479 | 0.56148698 | 1.47578953 |
| ING5       | -0.5000257 | 0.56103858 | 1.47533091 |
| CAMTA1     | -0.5893283 | 0.56033197 | 1.47460849 |
| PRR14      | -0.3086059 | 0.55756662 | 1.47178468 |
| SH2B2      | -0.3682654 | 0.55755397 | 1.47177177 |
| COX14      | -0.4744719 | 0.55727741 | 1.47148967 |
|            |            |            |            |

| CMSS1       | -0.4683867 | 0.5567968  | 1.47099954 |
|-------------|------------|------------|------------|
| SLC25A42    | 0.01731021 | 0.55550518 | 1.46968317 |
| AL162424.1  | -0.4308048 | 0.55404753 | 1.468199   |
| SGSH        | -0.1923809 | 0.55362578 | 1.46776986 |
| AC092910.3  | -0.4228364 | 0.55324294 | 1.46738042 |
| TCEAL3      | -0.2008306 | 0.55135532 | 1.46546176 |
| MYO1E       | -0.0943561 | 0.55029462 | 1.46438472 |
| FADS1       | -0.3146488 | 0.54883177 | 1.46290063 |
| CAPN12      | -0.2091913 | 0.54865567 | 1.46272206 |
| ANKRD55     | -0.3267835 | 0.54647673 | 1.46051455 |
| ADCY9       | -0.3803629 | 0.54544845 | 1.45947394 |
| SLC10A3     | -0.4019852 | 0.54531199 | 1.4593359  |
| SLC31A1     | -0.3788484 | 0.54459417 | 1.45860998 |
| DHX37       | -0.343388  | 0.54412095 | 1.45813161 |
| N4BP2L2-IT2 | -0.2740561 | 0.5434652  | 1.457469   |
| IRF4        | -0.3966495 | 0.54267559 | 1.45667153 |
| TIAM2       | -0.3410379 | 0.54012674 | 1.45410025 |
| SLPI        | -0.3060881 | 0.53919743 | 1.4531639  |
| TTYH2       | -0.2812814 | 0.53796171 | 1.45191975 |
| HECW2       | -0.1782137 | 0.53761011 | 1.45156594 |
| ACO1        | -0.1246852 | 0.53760916 | 1.45156498 |
| C10orf105   | -0.3119298 | 0.53717649 | 1.45112972 |
| IRGQ        | 0.01525324 | 0.53650631 | 1.45045578 |
| TREML1      | -0.1793618 | 0.53617304 | 1.45012075 |
| GDPD3       | -0.2266769 | 0.53614628 | 1.45009385 |
| TNFRSF8     | -0.1850418 | 0.53605068 | 1.44999777 |
| OSER1-AS1   | -0.3044191 | 0.53514767 | 1.44909048 |
| PYCARD-AS1  | -0.1215818 | 0.53479418 | 1.44873546 |
| AL356356.1  | -0.2662193 | 0.53212895 | 1.44606154 |
| NDRG2       | -0.2905454 | 0.53185784 | 1.44578982 |
| AC137932.2  | -0.1464642 | 0.52999583 | 1.44392503 |
| CEP128      | -0.4676243 | 0.52955724 | 1.44348612 |
| SAP130      | -0.1807555 | 0.5287879  | 1.44271656 |
| WDR19       | -0.332162  | 0.52683678 | 1.44076674 |
| MTHFD1      | -0.3483787 | 0.52647422 | 1.4404047  |
| STK3        | -0.218426  | 0.5256965  | 1.43962844 |
| ODF2        | -0.0570127 | 0.5245195  | 1.43845441 |
| TARBP2      | -0.2514549 | 0.52446051 | 1.43839559 |
| STAM2       | -0.2903559 | 0.52410085 | 1.43803705 |
| ELMOD3      | -0.0737076 | 0.52328111 | 1.43722019 |

| BAG3            | -0.2615884 | 0.52292194 | 1.43686243 |
|-----------------|------------|------------|------------|
| TCTN1           | -0.3051124 | 0.5228695  | 1.43681021 |
| ZHX1            | -0.1342493 | 0.52275595 | 1.43669712 |
| MYL9            | -0.0159531 | 0.52262378 | 1.4365655  |
| DDX20           | -0.4430085 | 0.52155221 | 1.43549889 |
| PET100          | -0.4362205 | 0.52147926 | 1.4354263  |
| AC079174.1      | -0.2036104 | 0.52119332 | 1.43514182 |
| VSTM1           | -0.5758656 | 0.52050224 | 1.43445453 |
| AASDH           | -0.7317649 | 0.52047212 | 1.43442458 |
| AKAP1           | -0.2185469 | 0.51946709 | 1.43342567 |
| TRIM65          | -0.4379087 | 0.51849793 | 1.43246306 |
| AFF3            | -0.1661235 | 0.51710788 | 1.43108352 |
| COLQ            | -0.5466495 | 0.51697961 | 1.43095629 |
| WDR74           | -0.1498772 | 0.51667768 | 1.43065685 |
| COX15           | 0.06084605 | 0.51665073 | 1.43063013 |
| RNU6-60P        | -0.1634298 | 0.51617827 | 1.4301617  |
| CFAP20          | -0.1866775 | 0.5156232  | 1.42961155 |
| SART1           | -0.3042603 | 0.51532803 | 1.42931909 |
| CDCA7L          | -0.0639965 | 0.51500376 | 1.42899786 |
| ZFPL1           | -0.4549406 | 0.51460269 | 1.42860066 |
| TMCC3           | -0.2861175 | 0.51291232 | 1.42692778 |
| AC008764.7      | -0.2632673 | 0.5127003  | 1.4267181  |
| UNC13D          | -0.2286469 | 0.5126595  | 1.42667775 |
| DHRS12          | -0.2589359 | 0.51167822 | 1.42570769 |
| RHBDD2          | -0.2020571 | 0.51121368 | 1.42524869 |
| PLPPR2          | -0.2957056 | 0.51119506 | 1.4252303  |
| CBX1            | -0.1882025 | 0.51055178 | 1.42459495 |
| TMEM218         | -0.3000107 | 0.51013318 | 1.42418166 |
| TBC1D13         | -0.1503596 | 0.50940128 | 1.42345933 |
| ENSG00000274961 | -0.1259208 | 0.5087276  | 1.42279479 |
| RNU4-40P        | -0.4465834 | 0.5087088  | 1.42277625 |
| OSGEP           | -0.3183966 | 0.50828067 | 1.4223541  |
| HS3ST3B1        | -0.1774161 | 0.50574946 | 1.41986076 |
| EXD3            | -0.2220811 | 0.50432839 | 1.41846288 |
| FAM214A         | -0.2856373 | 0.50393682 | 1.41807793 |
| POLL            | -0.3200469 | 0.50352752 | 1.41767567 |
| NKX3-1          | -0.2436954 | 0.50233225 | 1.41650162 |
| YIF1B           | -0.3984205 | 0.50216046 | 1.41633296 |
| AC100835.2      | -0.3656302 | 0.50215371 | 1.41632633 |
| AL627309.7      | -0.2979935 | 0.50031727 | 1.4145246  |

| TOE1       | -0.1681936 | 0.49996678 | 1.41418099 |
|------------|------------|------------|------------|
| QTRT2      | -0.3482938 | 0.49968486 | 1.41390468 |
| LRCH1      | 0.08718628 | 0.49967179 | 1.41389187 |
| APEX2      | -0.4903039 | 0.49959658 | 1.41381816 |
| CACNA2D3   | -0.1699026 | 0.49955912 | 1.41378146 |
| ARHGEF19   | -0.3029106 | 0.49794048 | 1.41219614 |
| OGDH       | -0.3240059 | 0.49768512 | 1.4119462  |
| ENGASE     | -0.4373334 | 0.49751757 | 1.41178223 |
| TRERF1     | -0.2807537 | 0.49732753 | 1.41159627 |
| ZDHHC24    | -0.1078827 | 0.49728092 | 1.41155067 |
| AL135818.1 | -0.2339124 | 0.49604442 | 1.41034139 |
| NDUFS4     | -0.0698791 | 0.49510358 | 1.40942195 |
| TMEM80     | -0.1715758 | 0.49503705 | 1.40935695 |
| GLT8D1     | 0.08966936 | 0.49501254 | 1.409333   |
| FBXO31     | -0.0828242 | 0.49461207 | 1.40894185 |
| THOC5      | -0.1389121 | 0.49372199 | 1.40807286 |
| DOT1L      | -0.4702729 | 0.49233873 | 1.40672345 |
| AC007969.1 | -0.2587203 | 0.49129732 | 1.40570837 |
| ADARB1     | -0.3067947 | 0.49080789 | 1.40523156 |
| CCDC124    | -0.1858478 | 0.48893116 | 1.40340476 |
| FOLR3      | -0.286569  | 0.48882891 | 1.4033053  |
| FHL1       | -0.3186283 | 0.488471   | 1.4029572  |
| AC079922.2 | -0.0833325 | 0.4884342  | 1.40292142 |
| PRKRIP1    | -0.2357345 | 0.48819643 | 1.40269022 |
| IGHG4      | -0.1369804 | 0.48808    | 1.40257702 |
| GUCY1A3    | -0.3265557 | 0.48772985 | 1.40223666 |
| AC022167.3 | -0.5337414 | 0.48678243 | 1.4013161  |
| BRAP       | -0.1550853 | 0.48677338 | 1.40130731 |
| PDCD2L     | -0.2535678 | 0.48632986 | 1.40087658 |
| TSC22D2    | -0.1033341 | 0.48517714 | 1.39975772 |
| AP003170.4 | -0.198984  | 0.48415201 | 1.39876346 |
| MFSD3      | -0.1529965 | 0.48350666 | 1.3981379  |
| TBCE       | -0.2358556 | 0.48346291 | 1.3980955  |
| AHDC1      | -0.2315792 | 0.48264627 | 1.39730433 |
| FLCN       | -0.1408546 | 0.4825262  | 1.39718804 |
| ATP6V0A1   | -0.1757019 | 0.4824965  | 1.39715928 |
| PHC1       | 0.11513416 | 0.48212184 | 1.39679649 |
| GSK3A      | -0.1962269 | 0.48189389 | 1.39657581 |
| TRAPPC9    | 0.00443283 | 0.48003436 | 1.39477689 |
| CABLES2    | -0.2571972 | 0.47937134 | 1.39413604 |

| IL21R      | -0.2147398 | 0.47909135 | 1.3938655  |
|------------|------------|------------|------------|
| AC132008.2 | -0.2238712 | 0.47851933 | 1.39331294 |
| CD82       | -0.1779405 | 0.47760695 | 1.39243207 |
| BMX        | -0.0289746 | 0.47637353 | 1.39124214 |
| SLC38A5    | -0.1811634 | 0.4754105  | 1.39031376 |
| HNRNPAB    | -0.1096536 | 0.47511875 | 1.39003263 |
| EEF1DP7    | -0.2218548 | 0.47487196 | 1.38979487 |
| IFRD2      | -0.4114312 | 0.47458403 | 1.38951753 |
| NTNG2      | -0.2807018 | 0.47420376 | 1.38915132 |
| GPR68      | -0.2247503 | 0.47372432 | 1.38868975 |
| FBXO25     | -0.1921096 | 0.4734976  | 1.38847153 |
| PMEPA1     | -0.3472359 | 0.47323352 | 1.38821741 |
| KPNA1      | -0.1520799 | 0.4721168  | 1.38714326 |
| PRR5       | -0.3205043 | 0.47181225 | 1.38685047 |
| ZNF585A    | -0.2527989 | 0.47162179 | 1.3866674  |
| BEX4       | -0.2424373 | 0.47131623 | 1.38637374 |
| CUEDC1     | 0.02948843 | 0.47118408 | 1.38624675 |
| TMEM186    | -0.5360925 | 0.47075986 | 1.38583919 |
| ANKRD9     | -0.0198612 | 0.47054878 | 1.38563644 |
| LONRF1     | -0.2163587 | 0.47014477 | 1.38524847 |
| GHRLOS     | -0.3892258 | 0.47011801 | 1.38522277 |
| MSANTD2    | -0.4785298 | 0.4686362  | 1.38380073 |
| MOSPD1     | -0.2132502 | 0.46830622 | 1.38348425 |
| RBM38      | -0.2544374 | 0.46750068 | 1.38271199 |
| TOP2A      | -0.0373594 | 0.46741854 | 1.38263327 |
| TRPT1      | -0.2924127 | 0.46447052 | 1.37981086 |
| ABAT       | -0.2883687 | 0.46288555 | 1.37829581 |
| MBOAT7     | -0.1966464 | 0.46241724 | 1.37784848 |
| PRDX2      | -0.3478633 | 0.46239217 | 1.37782453 |
| AL353625.1 | -0.3614803 | 0.46214629 | 1.37758973 |
| NBPF12     | -0.089666  | 0.45952885 | 1.37509267 |
| YARS       | -0.1730098 | 0.45902501 | 1.37461252 |
| RN7SL130P  | -0.0271253 | 0.45889858 | 1.37449206 |
| CAMKK1     | -0.370001  | 0.45880781 | 1.37440559 |
| AC024075.2 | -0.3693556 | 0.45876863 | 1.37436827 |
| DGAT2      | -0.0830078 | 0.45862504 | 1.37423148 |
| SOWAHD     | -0.3168653 | 0.45831912 | 1.37394012 |
| JUN        | -0.1116049 | 0.45805131 | 1.37368509 |
| TSPAN17    | -0.1328349 | 0.45744195 | 1.373105   |
| P2RX5      | -0.1109969 | 0.45692097 | 1.37260924 |

| AP000919.1 | 0.1505438  | 0.45647667 | 1.37218659 |
|------------|------------|------------|------------|
| TAF12      | -0.1191498 | 0.45452372 | 1.37033034 |
| MAP1LC3B2  | -0.259206  | 0.45420839 | 1.37003086 |
| MAN1B1     | -0.2013445 | 0.45305375 | 1.36893482 |
| NIPSNAP1   | -0.0921137 | 0.45268809 | 1.3685879  |
| NKAPP1     | -0.3594402 | 0.45246307 | 1.36837445 |
| CLN8       | -0.4665033 | 0.45212342 | 1.36805233 |
| CPEB3      | -0.1146493 | 0.45150529 | 1.36746631 |
| EPHB1      | -0.0828387 | 0.45024485 | 1.36627212 |
| HPGD       | -0.228964  | 0.44967158 | 1.36572932 |
| RCC1       | -0.3098555 | 0.44956347 | 1.36562698 |
| SPSB2      | 0.14370278 | 0.44853312 | 1.36465202 |
| SENP3      | -0.1538807 | 0.44837826 | 1.36450554 |
| SPACA6     | 0.22774673 | 0.44798515 | 1.3641338  |
| MEM01      | -0.2066501 | 0.44765464 | 1.36382132 |
| IGHGP      | 0.02551773 | 0.44677492 | 1.36298995 |
| A2M-AS1    | -0.3802431 | 0.44631815 | 1.36255848 |
| GAB1       | -0.4423975 | 0.44631704 | 1.36255744 |
| PTOV1      | -0.1514213 | 0.44596372 | 1.36222378 |
| TAGLN      | -0.3893765 | 0.44523638 | 1.36153718 |
| PCNX3      | -0.3306968 | 0.44492871 | 1.36124685 |
| BOP1       | 0.04417632 | 0.4446433  | 1.36097758 |
| GRK3       | -0.1023915 | 0.44408634 | 1.36045227 |
| ALG6       | -0.227763  | 0.44370986 | 1.36009729 |
| AL162578.1 | -0.2598738 | 0.44251453 | 1.35897087 |
| IFT122     | -0.4883499 | 0.44175572 | 1.35825629 |
| LINC00174  | -0.3508658 | 0.44149608 | 1.35801186 |
| COPG1      | 0.03646722 | 0.43950329 | 1.35613734 |
| DGAT1      | -0.1366957 | 0.43929915 | 1.35594546 |
| SPTAN1     | -0.3278315 | 0.43851773 | 1.35521123 |
| MEGF6      | -0.3007511 | 0.43841662 | 1.35511625 |
| ETV3       | -0.5106206 | 0.43779727 | 1.35453463 |
| LINC00649  | -0.1398142 | 0.43769692 | 1.3544404  |
| GEMIN8     | -0.5218342 | 0.43687985 | 1.35367354 |
| SIRT7      | -0.2666454 | 0.43672136 | 1.35352483 |
| AMT        | -0.3838838 | 0.43661135 | 1.35342163 |
| NAB2       | -0.0796287 | 0.43644874 | 1.35326909 |
| P2RX1      | -0.2071179 | 0.43636963 | 1.35319488 |
| APEH       | -0.0977164 | 0.43633416 | 1.35316162 |
| PLEKHM1    | -0.2907388 | 0.43549706 | 1.3523767  |

| RN7SL368P  | -0.1262462 | 0.43547659 | 1.3523575  |
|------------|------------|------------|------------|
| GAS2L1     | -0.2637717 | 0.43400713 | 1.35098076 |
| HDAC8      | -0.0741331 | 0.43388649 | 1.3508678  |
| RAP1GAP2   | -0.1866019 | 0.43349058 | 1.35049713 |
| AKIRIN2    | -0.1080695 | 0.43280411 | 1.34985469 |
| TMEM40     | -0.117485  | 0.43276362 | 1.34981681 |
| ACOT11     | -0.0608947 | 0.43182095 | 1.34893511 |
| GTF2H2B    | -0.0929866 | 0.4317098  | 1.34883119 |
| E2F5       | -0.2430937 | 0.43170803 | 1.34882953 |
| SFI1       | -0.3192002 | 0.43084812 | 1.34802581 |
| AC099811.5 | -0.1168342 | 0.43032094 | 1.34753332 |
| GGCX       | -0.4969922 | 0.4303059  | 1.34751926 |
| C8orf58    | 0.08370768 | 0.4302883  | 1.34750283 |
| RNF5       | -0.1441914 | 0.43004229 | 1.34727307 |
| NUBP1      | -0.035427  | 0.429934   | 1.34717194 |
| SNRNP40    | -0.3504302 | 0.42992206 | 1.3471608  |
| Z99129.4   | -0.3344965 | 0.4292774  | 1.34655896 |
| AC003072.1 | -0.3352077 | 0.42884183 | 1.34615248 |
| TCIRG1     | -0.0642302 | 0.4281949  | 1.34554897 |
| FLNB       | -0.3492828 | 0.42812348 | 1.34548237 |
| KIF3C      | -0.3230062 | 0.42784945 | 1.34522682 |
| COX10-AS1  | -0.2789203 | 0.42753199 | 1.34493084 |
| ARL13B     | -0.1146617 | 0.42739219 | 1.34480052 |
| NECTIN1    | -0.1075764 | 0.42724789 | 1.34466602 |
| UBR5-AS1   | 0.0999111  | 0.42672161 | 1.34417559 |
| ERVK13-1   | -0.2165189 | 0.42625026 | 1.3437365  |
| ATRN       | -0.1435705 | 0.42575785 | 1.34327794 |
| CCM2       | -0.2290329 | 0.42562194 | 1.34315141 |
| ARAP3      | -0.2830255 | 0.42561085 | 1.34314108 |
| SCAMP3     | -0.1023459 | 0.42557279 | 1.34310565 |
| KIF27      | 0.13453808 | 0.42277333 | 1.34050196 |
| GTPBP1     | -0.0262024 | 0.42248349 | 1.34023268 |
| ZNF362     | -0.0313056 | 0.42247543 | 1.34022519 |
| SH3GL1     | -0.0626953 | 0.42215311 | 1.3399258  |
| MRPL2      | -0.397059  | 0.42211802 | 1.33989321 |
| ACP1       | -0.0921607 | 0.42198409 | 1.33976883 |
| AC079331.2 | 0.00387469 | 0.42192171 | 1.3397109  |
| TLE3       | -0.196971  | 0.42139558 | 1.33922241 |
| PANX2      | -0.0986921 | 0.42069678 | 1.33857389 |
| TFRC       | -0.190036  | 0.4203619  | 1.33826321 |

| TRIB1      | -0.482512  | 0.42016769 | 1.33808308 |
|------------|------------|------------|------------|
| GSKIP      | -0.2332573 | 0.42012382 | 1.33804239 |
| ATG9B      | -0.2008824 | 0.42012331 | 1.33804191 |
| RN7SL600P  | -0.1542351 | 0.41950536 | 1.33746891 |
| GOLGA2P5   | -0.1245028 | 0.41934277 | 1.33731819 |
| ZNF230     | 0.00410286 | 0.41902239 | 1.33702124 |
| AC119428.2 | -0.0115124 | 0.41893714 | 1.33694224 |
| USP36      | -0.3533773 | 0.41891543 | 1.33692213 |
| VNN1       | -0.4433843 | 0.41885153 | 1.33686291 |
| NSUN5P1    | -0.0155447 | 0.41779035 | 1.33587993 |
| AATF       | -0.1552241 | 0.41745385 | 1.33556839 |
| SNHG15     | -0.3664954 | 0.41742161 | 1.33553854 |
| AC009404.1 | -0.0083607 | 0.41625987 | 1.33446353 |
| AF131215.4 | -0.0919612 | 0.4161656  | 1.33437632 |
| MPIG6B     | -0.2921812 | 0.41606634 | 1.33428453 |
| PLEK2      | -0.1803954 | 0.41435279 | 1.33270068 |
| F5         | -0.1728106 | 0.41396811 | 1.33234538 |
| ZDHHC14    | -0.021213  | 0.41354824 | 1.33195768 |
| KCNH2      | -0.2532273 | 0.41348993 | 1.33190385 |
| RNF169     | -0.2810418 | 0.41314835 | 1.33158853 |
| DGCR6L     | -0.1759298 | 0.4131157  | 1.33155839 |
| CLDN5      | -0.4214938 | 0.41284426 | 1.33130789 |
| NPRL2      | -0.0714837 | 0.41161084 | 1.33017018 |
| STAM       | 0.03744119 | 0.41107462 | 1.32967588 |
| UBA1       | 0.01328011 | 0.41071883 | 1.32934801 |
| MTMR4      | -0.3166795 | 0.41031603 | 1.3289769  |
| RECQL5     | -0.1175817 | 0.41028307 | 1.32894654 |
| PPP5C      | -0.2060544 | 0.4100413  | 1.32872385 |
| PDE6B      | -0.19342   | 0.40995218 | 1.32864178 |
| DEF8       | -0.2503439 | 0.40980459 | 1.32850586 |
| RAB4A      | -0.154305  | 0.40910255 | 1.32785954 |
| ST20-AS1   | -0.1357741 | 0.40868748 | 1.32747757 |
| POFUT1     | -0.2827934 | 0.40863571 | 1.32742993 |
| ZFYVE16    | -0.2324554 | 0.40833703 | 1.32715514 |
| SMUG1      | -0.0029297 | 0.40798151 | 1.32682813 |
| RHOB       | -0.1486932 | 0.40752624 | 1.3264095  |
| NRM        | -0.2198614 | 0.40733246 | 1.32623134 |
| AC008850.1 | -0.4328104 | 0.4073214  | 1.32622118 |
| ATP6V1E2   | -0.3530385 | 0.40712443 | 1.32604012 |
| CBR3-AS1   | -0.1458184 | 0.40700287 | 1.3259284  |

| NUP37      | -0.3089221 | 0.4069239  | 1.32585582 |
|------------|------------|------------|------------|
| AC135050.6 | -0.334056  | 0.40659384 | 1.32555252 |
| AC103703.1 | -0.2508415 | 0.40623439 | 1.3252223  |
| BATF       | 0.00446394 | 0.40587711 | 1.32489416 |
| ZNF568     | -0.1159454 | 0.40532226 | 1.32438471 |
| DMAP1      | -0.4210306 | 0.40528373 | 1.32434934 |
| ADHFE1     | -0.2562397 | 0.40482288 | 1.32392636 |
| RASGRP1    | -0.1835697 | 0.40455708 | 1.32368246 |
| TM2D2      | 0.19580425 | 0.40420713 | 1.32336143 |
| MRM3       | -0.2809332 | 0.40412192 | 1.32328326 |
| SNORA81    | -0.1010323 | 0.40350221 | 1.32271497 |
| OAT        | -0.2180063 | 0.40301014 | 1.3222639  |
| TNNT1      | -0.3182025 | 0.40299394 | 1.32224905 |
| NF1        | -0.1331046 | 0.40293887 | 1.32219858 |
| ZCWPW1     | -0.1291002 | 0.40204687 | 1.32138134 |
| HADHB      | -0.1756553 | 0.40129253 | 1.32069061 |
| KRT23      | -0.1062494 | 0.40124104 | 1.32064347 |
| IRS1       | -0.0653654 | 0.40035121 | 1.31982917 |
| GYPB       | -0.1731154 | 0.40011663 | 1.31961459 |
| SH2B1      | 0.03058466 | 0.40001086 | 1.31951785 |
| NQO2       | -0.1007105 | 0.39960337 | 1.3191452  |
| SH2D1B     | -0.3825377 | 0.39857813 | 1.31820809 |
| PDCD6IPP2  | -0.1401386 | 0.39822719 | 1.31788748 |
| TGS1       | -0.0218344 | 0.39822294 | 1.31788359 |
| LSP1       | -0.2148102 | 0.39722981 | 1.31697669 |
| DUSP16     | -0.344975  | 0.39704258 | 1.31680579 |
| UBE2M      | -0.0236636 | 0.39673603 | 1.31652601 |
| DEFA3      | -0.4843099 | 0.3965464  | 1.31635298 |
| SLC9B2     | -0.2060556 | 0.39643524 | 1.31625156 |
| Y_RNA      | -0.1546488 | 0.39603163 | 1.31588338 |
| MTCO1P11   | -0.2490509 | 0.39593286 | 1.31579329 |
| CRADD      | -0.2666571 | 0.39565628 | 1.31554106 |
| AL162274.2 | -0.3678429 | 0.39547715 | 1.31537773 |
| MAP3K6     | -0.1368724 | 0.39513536 | 1.31506614 |
| KPNA5      | 0.04957496 | 0.39497866 | 1.31492331 |
| CYB5R1     | -0.0261975 | 0.39474512 | 1.31471047 |
| TBL3       | -0.0175065 | 0.39426763 | 1.31427542 |
| AL135999.1 | -0.1581626 | 0.39420075 | 1.31421448 |
| AC092620.2 | -0.2730135 | 0.39357875 | 1.313648   |
| PTCD1      | -0.4666319 | 0.39357555 | 1.31364508 |

| KIAA1324   | -0.115381  | 0.39352383 | 1.313598   |
|------------|------------|------------|------------|
| GP6        | -0.3413907 | 0.39324056 | 1.3133401  |
| SOCS4      | 0.17807252 | 0.3930848  | 1.31319831 |
| CUEDC2     | -0.0168815 | 0.39278227 | 1.31292297 |
| GCNT1P3    | -0.0618248 | 0.39217885 | 1.31237394 |
| DRAM1      | -0.3322266 | 0.39171332 | 1.31195053 |
| CHI3L2     | -0.2694522 | 0.39162479 | 1.31187002 |
| POLD2      | -0.6063309 | 0.391504   | 1.31176019 |
| SAC3D1     | -0.1186426 | 0.39142442 | 1.31168784 |
| TRPM6      | -0.0385792 | 0.39127864 | 1.3115553  |
| MIS12      | -0.1580441 | 0.39127826 | 1.31155495 |
| TMEM45B    | -0.3211783 | 0.39110701 | 1.31139928 |
| NRGN       | -0.2929701 | 0.3907631  | 1.31108671 |
| TEX2       | -0.269787  | 0.39037677 | 1.31073567 |
| РНВ        | -0.2742423 | 0.39015115 | 1.3105307  |
| UNC45A     | -0.1069037 | 0.39004892 | 1.31043784 |
| FAM45A     | -0.2949867 | 0.38996464 | 1.31036129 |
| CTDP1      | -0.1357414 | 0.38972825 | 1.3101466  |
| ZNF573     | -0.2927845 | 0.38946218 | 1.30990499 |
| HIST2H2BE  | -0.1524721 | 0.38923497 | 1.30969871 |
| AL450384.2 | -0.3930081 | 0.38880193 | 1.30930566 |
| LINC00173  | 0.0755757  | 0.38870323 | 1.30921608 |
| AIM2       | -0.0901725 | 0.38863344 | 1.30915275 |
| AVEN       | -0.1518255 | 0.3884988  | 1.30903058 |
| DNAJA4     | -0.0476329 | 0.38848298 | 1.30901623 |
| BRF2       | -0.1187187 | 0.38770422 | 1.30830982 |
| SLC16A10   | -0.0609458 | 0.38613693 | 1.30688929 |
| HIST1H3H   | -0.3501192 | 0.38574643 | 1.3065356  |
| BLOC1S3    | -0.3423568 | 0.38448355 | 1.30539241 |
| RHBDD3     | -0.0683995 | 0.38387115 | 1.3048384  |
| AC132938.5 | -0.1306595 | 0.38358678 | 1.30458124 |
| AC093010.2 | -0.0997504 | 0.38344867 | 1.30445635 |
| ARID5A     | -0.4668407 | 0.38295062 | 1.3040061  |
| GEMIN7     | 0.11219303 | 0.38291079 | 1.3039701  |
| NOL10      | 0.18742876 | 0.38282172 | 1.30388959 |
| RBM47      | -0.1714522 | 0.3824509  | 1.3035545  |
| TUBGCP6    | -0.2708615 | 0.38231107 | 1.30342816 |
| NT5M       | -0.4010784 | 0.38203407 | 1.30317793 |
| LINC01506  | 0.08258465 | 0.38181691 | 1.30298178 |
| FER        | -0.2987946 | 0.38161693 | 1.30280118 |

| KCNE1      | 0.12806852 | 0.38143265 | 1.30263478 |
|------------|------------|------------|------------|
| GAL3ST4    | -0.2804141 | 0.38105708 | 1.30229571 |
| FAM173A    | -0.0895083 | 0.38102031 | 1.30226252 |
| FAM50A     | -0.256601  | 0.38094476 | 1.30219432 |
| NEMP2      | -0.2226338 | 0.38082985 | 1.30209061 |
| SCAF1      | -0.2999622 | 0.38067499 | 1.30195085 |
| RAB11FIP4  | -0.1860819 | 0.38032124 | 1.30163166 |
| AC010894.5 | -0.1023152 | 0.38021874 | 1.30153918 |
| LRRC61     | -0.0883192 | 0.37886425 | 1.30031778 |
| GAMT       | -0.016461  | 0.37878902 | 1.30024998 |
| TOX4P1     | 0.04710268 | 0.37863191 | 1.30010839 |
| TRMT61A    | 0.01055551 | 0.37849884 | 1.29998848 |
| RABGEF1    | -0.1764644 | 0.37841624 | 1.29991405 |
| NUP133     | -0.2315316 | 0.37731891 | 1.2989257  |
| IL2RA      | -0.1610351 | 0.37721016 | 1.29882779 |
| ALOX5      | -0.1150462 | 0.37658682 | 1.29826673 |
| TIMM50     | -0.1399033 | 0.37658378 | 1.298264   |
| ZFYVE1     | -0.1736327 | 0.37651868 | 1.29820542 |
| LUCAT1     | -0.2386506 | 0.37626211 | 1.29797456 |
| РСК2       | -0.1444592 | 0.37620306 | 1.29792143 |
| AC242376.2 | -0.0294897 | 0.3757574  | 1.29752056 |
| ANAPC7     | -0.037771  | 0.37447155 | 1.29636461 |
| AP2A1      | -0.327667  | 0.37356591 | 1.29555109 |
| NCAM1      | -0.1767601 | 0.37292372 | 1.29497453 |
| GTPBP2     | -0.1488745 | 0.37230629 | 1.29442044 |
| ZER1       | -0.2004651 | 0.37209425 | 1.29423021 |
| TPM2       | 0.09615399 | 0.37173228 | 1.29390553 |
| AC007038.2 | -0.1767713 | 0.37163163 | 1.29381526 |
| CACNB3     | -0.1343614 | 0.3714787  | 1.29367812 |
| ABHD5      | -0.1891572 | 0.37136211 | 1.29357357 |
| NR1D2      | -0.1528977 | 0.3712742  | 1.29349475 |
| TMEM69     | -0.0751871 | 0.37110839 | 1.2933461  |
| LINC00959  | -0.2013845 | 0.37076281 | 1.29303633 |
| IP6K1      | -0.1362551 | 0.36958297 | 1.29197931 |
| WASH2P     | -0.2417434 | 0.3693385  | 1.2917604  |
| EFTUD2     | -0.1088806 | 0.36900176 | 1.29145893 |
| DUSP10     | -0.2364224 | 0.36850897 | 1.29101787 |
| HAPLN3     | 0.07273678 | 0.36812054 | 1.29067033 |
| SRPK1      | -0.0051964 | 0.36753651 | 1.29014794 |
| HIST1H2AE  | -0.2554516 | 0.36713528 | 1.28978919 |

| HGSNAT     | -0.1074215 | 0.36628993 | 1.28903366 |
|------------|------------|------------|------------|
| SYNGR1     | -0.1489139 | 0.36510134 | 1.2879721  |
| MRM1       | -0.1978006 | 0.36504826 | 1.28792471 |
| RAB11FIP2  | -0.1072883 | 0.3637445  | 1.28676135 |
| CDC14B     | -0.1863541 | 0.36368706 | 1.28671011 |
| TRMT2A     | 0.02654285 | 0.36360388 | 1.28663593 |
| AL139246.5 | 0.10072249 | 0.36319737 | 1.28627344 |
| SLC25A11   | -0.0892464 | 0.36316118 | 1.28624118 |
| ICAM4      | -0.0960881 | 0.36291273 | 1.28601969 |
| CLU        | -0.1869963 | 0.36288364 | 1.28599376 |
| FKBP14     | -0.3347579 | 0.36246299 | 1.28561885 |
| STK39      | -0.0303229 | 0.36185544 | 1.28507756 |
| MASTL      | -0.1825676 | 0.3617723  | 1.28500351 |
| LMNA       | -0.1437981 | 0.3617544  | 1.28498756 |
| MTHFSD     | 0.12732865 | 0.36172047 | 1.28495735 |
| AP000350.6 | -0.1011546 | 0.36170209 | 1.28494098 |
| CAMK2D     | -0.2782453 | 0.36152056 | 1.2847793  |
| C3AR1      | 0.01173705 | 0.36125465 | 1.28454253 |
| PDZD4      | -0.2187484 | 0.3611508  | 1.28445006 |
| CD27-AS1   | -0.1493033 | 0.36086491 | 1.28419555 |
| MMP9       | -0.2474186 | 0.36050062 | 1.28387133 |
| ABCG1      | -0.2410365 | 0.35975338 | 1.28320653 |
| NLRP12     | -0.0387351 | 0.35962308 | 1.28309064 |
| ARL2       | -0.3653601 | 0.35960446 | 1.28307407 |
| C22orf39   | -0.3427197 | 0.35955845 | 1.28303316 |
| MAF        | -0.2196775 | 0.35949691 | 1.28297843 |
| SIAH1      | -0.0067269 | 0.35926317 | 1.28277058 |
| TSPAN18    | 0.05109312 | 0.35885408 | 1.28240689 |
| NOA1       | -0.0220366 | 0.35884758 | 1.28240111 |
| РХК        | -0.2074391 | 0.35874814 | 1.28231272 |
| PPP1R12C   | -0.0761258 | 0.35862815 | 1.28220607 |
| SCAMP4     | -0.2049999 | 0.35799909 | 1.28164712 |
| SCN1B      | -0.4334039 | 0.35785494 | 1.28151907 |
| SMOX       | -0.2203589 | 0.35762634 | 1.28131602 |
| UBIAD1     | -0.2607539 | 0.35757871 | 1.28127372 |
| FCHO1      | -0.1166249 | 0.35718705 | 1.28092592 |
| КСТD9      | -0.3796829 | 0.3571709  | 1.28091159 |
| KIAA0232   | -0.2020164 | 0.35685597 | 1.280632   |
| CST7       | -0.2958905 | 0.35644731 | 1.2802693  |
| PAXBP1-AS1 | -0.12634   | 0.356427   | 1.28025128 |

| XPR1       | -0.5246787 | 0.35631359 | 1.28015065 |
|------------|------------|------------|------------|
| SLC37A3    | 0.00688956 | 0.35529016 | 1.27924284 |
| DENND5A    | -0.2532989 | 0.35493384 | 1.27892693 |
| DHX35      | -0.325838  | 0.35431297 | 1.27837666 |
| GCN1       | -0.4649605 | 0.35428893 | 1.27835535 |
| MRPS30     | -0.356943  | 0.35370745 | 1.27784022 |
| NBPF11     | -0.0219041 | 0.35360322 | 1.2777479  |
| UQCC3      | -0.2688658 | 0.35298749 | 1.27720268 |
| LZTR1      | -0.2687327 | 0.35290428 | 1.27712902 |
| USPL1      | 0.00720297 | 0.35276192 | 1.277003   |
| PPP1R21    | 0.1162695  | 0.35260056 | 1.27686019 |
| OGFOD1     | -0.0854064 | 0.35242412 | 1.27670404 |
| DPY19L4    | -0.2303069 | 0.35209864 | 1.27641603 |
| PTGIR      | -0.0823818 | 0.35175539 | 1.27611239 |
| PITRM1     | -0.2694549 | 0.35174768 | 1.27610556 |
| UBE2Q2P1   | -0.2642683 | 0.35163267 | 1.27600384 |
| NTAN1      | 0.01519603 | 0.35155881 | 1.27593852 |
| NDUFV1     | -0.0528541 | 0.35145746 | 1.27584889 |
| TPM1       | -0.1961086 | 0.35142394 | 1.27581924 |
| MAST3      | -0.0838027 | 0.35119823 | 1.27561966 |
| SLC25A43   | -0.4066433 | 0.35116123 | 1.27558694 |
| COMTD1     | -0.4304424 | 0.35092927 | 1.27538187 |
| USP46      | 0.02646187 | 0.35088545 | 1.27534313 |
| RNU6-892P  | -0.0096946 | 0.35086646 | 1.27532634 |
| NCOR2      | -0.0730915 | 0.3506475  | 1.2751328  |
| PIGP       | -0.5030071 | 0.35037043 | 1.27488793 |
| JAKMIP2    | -0.4884988 | 0.35000576 | 1.27456572 |
| TSPAN33    | -0.2383935 | 0.34979065 | 1.27437569 |
| CTDSPL2    | -0.2507573 | 0.3497751  | 1.27436196 |
| GOLGA2     | -0.2303052 | 0.34964867 | 1.27425028 |
| MCEE       | -0.0514035 | 0.34923539 | 1.2738853  |
| RNU6-611P  | -0.1827913 | 0.34855826 | 1.27328755 |
| AC026401.2 | -0.1581531 | 0.34808769 | 1.2728723  |
| DDHD2      | -0.2179965 | 0.34798809 | 1.27278442 |
| LINC02397  | 0.07282417 | 0.34770621 | 1.27253577 |
| RHOT1      | -0.1144671 | 0.34726817 | 1.27214945 |
| ZMIZ2      | 0.00330417 | 0.3472367  | 1.2721217  |
| FAAP100    | -0.341996  | 0.34689901 | 1.27182397 |
| TMED5      | -0.2729483 | 0.34658986 | 1.27155147 |
| PYURF      | -0.2860079 | 0.34589043 | 1.27093516 |

| NGLY1      | 0.00386638 | 0.34578178 | 1.27083945 |
|------------|------------|------------|------------|
| HRK        | -0.1158205 | 0.34570173 | 1.27076894 |
| ABCA2      | -0.5626393 | 0.3454925  | 1.27058466 |
| MCM7       | 0.0713182  | 0.34544437 | 1.27054227 |
| ASRGL1     | -0.1085534 | 0.34519991 | 1.270327   |
| PNKP       | -0.2141952 | 0.344968   | 1.27012281 |
| FAM160B1   | 6.28E-04   | 0.34480149 | 1.26997623 |
| THEMIS     | -0.1925606 | 0.34438417 | 1.26960892 |
| MIATNB     | -0.2633099 | 0.3442277  | 1.26947123 |
| TTI2       | -0.0515892 | 0.34421123 | 1.26945674 |
| TSR3       | -0.1793451 | 0.34378497 | 1.26908172 |
| FAM89B     | -0.2375985 | 0.34318913 | 1.26855769 |
| HM13-IT1   | -0.137176  | 0.34315049 | 1.26852371 |
| AC008610.1 | -0.1850678 | 0.34314449 | 1.26851844 |
| ADSL       | 0.0672639  | 0.34313773 | 1.2685125  |
| AP2A2      | -0.1321578 | 0.34309572 | 1.26847556 |
| NDUFA8     | 0.00699929 | 0.3430715  | 1.26845426 |
| AQP10      | -0.2356023 | 0.34266739 | 1.26809901 |
| ZNF692     | -0.1787109 | 0.34237781 | 1.2678445  |
| LRRC47     | -0.0536163 | 0.34228893 | 1.26776639 |
| DNAJC11    | -0.1280771 | 0.34215285 | 1.26764682 |
| TNFRSF18   | -0.1902915 | 0.34208725 | 1.26758918 |
| FOXP1-IT1  | -0.1424313 | 0.3420111  | 1.26752228 |
| ZNF581     | -0.1364686 | 0.34197331 | 1.26748907 |
| RFX1       | -0.1308228 | 0.34190961 | 1.26743311 |
| PPP2R2D    | -0.0268387 | 0.34183493 | 1.26736751 |
| CREBBP     | -0.0726447 | 0.34139672 | 1.26698261 |
| CHST13     | -0.0085111 | 0.34109649 | 1.26671898 |
| COQ8B      | -0.2033539 | 0.34065633 | 1.26633256 |
| FCER2      | -0.4883237 | 0.34058055 | 1.26626605 |
| POLDIP3    | -0.1251261 | 0.34054115 | 1.26623146 |
| FAM174B    | -0.0420986 | 0.3395786  | 1.26538693 |
| NEURL1     | -0.240091  | 0.33938682 | 1.26521873 |
| CCS        | -0.1666029 | 0.33909618 | 1.26496387 |
| C5orf63    | -0.2815439 | 0.33907111 | 1.26494189 |
| OXSR1      | 0.07981769 | 0.33901395 | 1.26489178 |
| CCDC170    | 0.22752851 | 0.33876502 | 1.26467354 |
| ATAD3A     | -0.2874766 | 0.33841721 | 1.26436869 |
| TRAV17     | -0.0362644 | 0.33812417 | 1.2641119  |
| HAL        | -0.2610438 | 0.33802306 | 1.2640233  |

| ХК         | -0.1231095 | 0.33769934 | 1.26373971 |
|------------|------------|------------|------------|
| GOLIM4     | -0.2023103 | 0.3375674  | 1.26362414 |
| GPHN       | -0.1609478 | 0.33746355 | 1.26353318 |
| TOR2A      | -0.2046227 | 0.33722853 | 1.26332736 |
| TSTA3      | -0.0929294 | 0.33694281 | 1.2630772  |
| MTIF2      | 0.03131453 | 0.33691832 | 1.26305575 |
| PACS2      | -0.3720201 | 0.33677725 | 1.26293225 |
| PAXIP1-AS1 | -0.1086272 | 0.33651203 | 1.2627001  |
| TCAF2      | 0.0053998  | 0.33627418 | 1.26249195 |
| LRRC8A     | -0.1031996 | 0.33616142 | 1.26239327 |
| IGLC2      | -0.1016147 | 0.33606158 | 1.26230591 |
| GPS1       | 0.04423065 | 0.33573965 | 1.26202427 |
| H6PD       | 0.07798604 | 0.33573644 | 1.26202146 |
| CERS5      | 0.07758708 | 0.33546026 | 1.26177989 |
| SETD6      | -0.1961313 | 0.3352273  | 1.26157616 |
| AC012368.1 | -0.0099041 | 0.33508482 | 1.26145157 |
| PEX16      | -0.2317357 | 0.33462377 | 1.26104851 |
| MTMR11     | -0.1773196 | 0.33459387 | 1.26102237 |
| ITSN1      | -0.317525  | 0.33445269 | 1.26089897 |
| QSOX2      | -0.068606  | 0.33418009 | 1.26066075 |
| CCDC191    | -0.096852  | 0.33389974 | 1.2604158  |
| B3GALT4    | -0.2987378 | 0.33361922 | 1.26017074 |
| BSG        | -0.2499639 | 0.33314362 | 1.25975538 |
| DAPK2      | -0.1263049 | 0.33281908 | 1.25947203 |
| LINC02035  | -0.1341412 | 0.33270825 | 1.25937528 |
| AC013264.1 | -3.10E-04  | 0.33259344 | 1.25927506 |
| THAP7      | -0.5411695 | 0.33255296 | 1.25923972 |
| DSTYK      | -0.0746474 | 0.33253574 | 1.25922469 |
| PTPN11     | -0.147956  | 0.33225247 | 1.25897748 |
| EXO5       | -0.0155847 | 0.33204793 | 1.258799   |
| FAAP20     | 0.08962832 | 0.33201255 | 1.25876812 |
| SRM        | -0.0564346 | 0.33186163 | 1.25863645 |
| LYRM9      | -0.1570537 | 0.33161539 | 1.25842164 |
| RN7SL200P  | -0.2883969 | 0.33160813 | 1.25841531 |
| JPT2       | -0.2128382 | 0.33127703 | 1.25812653 |
| GGACT      | -0.2723953 | 0.33124098 | 1.2580951  |
| IGHMBP2    | -0.5074483 | 0.33093447 | 1.25782784 |
| EPS15L1    | -0.0512358 | 0.33062853 | 1.25756113 |
| CIPC       | -0.0556217 | 0.33027345 | 1.25725166 |
| FRMD4A     | -0.3380957 | 0.32996374 | 1.25698179 |

| SLC10A7    | -0.2092143 | 0.32993282 | 1.25695485 |
|------------|------------|------------|------------|
| EIF5A2     | -0.0715938 | 0.32989818 | 1.25692466 |
| LSM10      | -0.1298749 | 0.32919218 | 1.25630973 |
| CDC42EP4   | -0.208618  | 0.3289538  | 1.25610216 |
| PI3        | -0.2027383 | 0.32840811 | 1.25562713 |
| PSMA6      | -0.0613662 | 0.32816573 | 1.2554162  |
| LINC01252  | -0.1798688 | 0.32794604 | 1.25522504 |
| DBR1       | -0.3186823 | 0.3278146  | 1.25511069 |
| NCAPH2     | 0.05184511 | 0.32774383 | 1.25504912 |
| ISOC1      | -0.0603541 | 0.3277371  | 1.25504326 |
| AC125437.2 | 0.0070033  | 0.32726001 | 1.2546283  |
| PLCB1      | -0.0591847 | 0.32713681 | 1.25452116 |
| RAB33B     | -0.0548638 | 0.32699806 | 1.25440052 |
| FANCE      | 0.00841767 | 0.32682409 | 1.25424926 |
| DLGAP4     | -0.1698516 | 0.32678016 | 1.25421107 |
| TRPS1      | -0.0097543 | 0.32659014 | 1.25404589 |
| EMC8       | -0.1626601 | 0.32559596 | 1.25318201 |
| CRISPLD2   | -0.1246986 | 0.32547116 | 1.25307361 |
| CORO1A     | -0.2407758 | 0.32495604 | 1.25262627 |
| MAN1A1     | -0.1448974 | 0.32478246 | 1.25247556 |
| FAF1       | -0.1774553 | 0.32447912 | 1.25221225 |
| BCL2L1     | -0.1199657 | 0.32439646 | 1.25214051 |
| MESDC1     | -0.2209351 | 0.32425018 | 1.25201356 |
| AC012645.1 | -0.1056793 | 0.32413532 | 1.25191387 |
| DLG1       | -0.1207002 | 0.32395702 | 1.25175917 |
| GCDH       | -0.0749604 | 0.32373717 | 1.25156842 |
| DNAJB2     | -0.1670054 | 0.32365591 | 1.25149793 |
| MED8       | -0.2580009 | 0.32333196 | 1.25121695 |
| PDXK       | -0.2839079 | 0.32327255 | 1.25116542 |
| Y_RNA      | -0.1721769 | 0.32302868 | 1.25095395 |
| POP7       | -0.2160421 | 0.32294642 | 1.25088263 |
| KIFAP3     | -0.1295218 | 0.32290394 | 1.25084579 |
| C14orf80   | -0.3196419 | 0.32288641 | 1.25083059 |
| ATP6AP1    | -0.0871403 | 0.32285501 | 1.25080337 |
| FECH       | -0.1933723 | 0.32281496 | 1.25076865 |
| GALNS      | -0.023196  | 0.32248106 | 1.2504792  |
| CCDC94     | -0.2674219 | 0.32240327 | 1.25041178 |
| SDSL       | -0.2058582 | 0.32239122 | 1.25040133 |
| ATXN10     | -0.0255319 | 0.32187789 | 1.24995651 |
| AC022098.1 | 0.00246826 | 0.32187218 | 1.24995156 |

| -0.0085975 | 0.32143926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.24957653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -0.0680806 | 0.32126975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.24942972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -0.1377878 | 0.32063752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.2488823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -0.1274492 | 0.32053619                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.24879459                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -0.0189556 | 0.32041354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.24868843                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -0.3346091 | 0.3203486                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.24863222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -0.2222829 | 0.32012754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.24844091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -0.3578324 | 0.3200886                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.24840721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -0.1801665 | 0.31999881                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.24832952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -0.4770045 | 0.31939951                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.24781107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -0.0015565 | 0.31933727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.24775723                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -0.0295085 | 0.31918014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.24762135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -0.1088627 | 0.31860943                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.2471279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -0.1354053 | 0.31832774                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.24688442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -0.0682355 | 0.31792076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.24653273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -0.4821387 | 0.31786431                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.24648395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -0.1235512 | 0.31774133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.24637771                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.03247355 | 0.31762405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.24627638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -0.1143876 | 0.31744449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.24612128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -0.136402  | 0.31724343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.24594763                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -0.0567193 | 0.31722389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.24593076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -0.2229811 | 0.31707988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.24580639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.26428801 | 0.31704938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.24578006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -0.2833853 | 0.31704755                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.24577847                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -0.296571  | 0.31687306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.24562781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -0.330735  | 0.31684237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.24560131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -0.2441698 | 0.31665982                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.24544372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -0.1147821 | 0.31657814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.2453732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -0.1763407 | 0.31644914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.24526185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -0.3545319 | 0.31635164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.2451777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -0.0034511 | 0.31626245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.24510072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -0.1199228 | 0.3160432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.24491152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -0.2351157 | 0.3160175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.24488933                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -0.3301743 | 0.31589708                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.24478543                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -0.241206  | 0.31586393                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.24475683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -0.1247826 | 0.31535981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.24432195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -0.0834903 | 0.31500699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.24401768                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -0.1337339 | 0.31499717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.24400922                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -0.0490435 | 0.31484019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.24387386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -0.0235376 | 0.31477783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.2438201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | -0.0085975<br>-0.0680806<br>-0.1377878<br>-0.1274492<br>-0.0189556<br>-0.3346091<br>-0.2222829<br>-0.3578324<br>-0.1801665<br>-0.4770045<br>-0.0295085<br>-0.0295085<br>-0.1088627<br>-0.1354053<br>-0.1088627<br>-0.1354053<br>-0.1235512<br>0.03247355<br>-0.1143876<br>-0.136402<br>-0.0567193<br>-0.2229811<br>0.26428801<br>-0.2833853<br>-0.296571<br>-0.330735<br>-0.2441698<br>-0.1147821<br>-0.3545319<br>-0.034511<br>-0.1763407<br>-0.3545319<br>-0.034511<br>-0.1763407<br>-0.3545319<br>-0.034511<br>-0.1763407<br>-0.3545319<br>-0.034511<br>-0.1199228<br>-0.2351157<br>-0.3301743<br>-0.241206<br>-0.1247826<br>-0.0834903<br>-0.1337339<br>-0.0490435 | -0.00859750.32143926-0.06808060.32126975-0.13778780.32063752-0.12744920.3203486-0.33460910.3203486-0.22228290.32012754-0.35783240.3200886-0.18016650.31999881-0.47700450.31939951-0.00155650.31933727-0.02950850.31918014-0.10886270.31860943-0.13540530.31832774-0.06823550.31792076-0.48213870.31786431-0.12355120.317741330.032473550.31762405-0.11438760.31724343-0.05671930.31724343-0.05671930.31724343-0.298110.31704938-0.28338530.31704755-0.2965710.31684237-0.24416980.31665982-0.11478210.31657814-0.17634070.31644914-0.35453190.31635164-0.00345110.31626245-0.11992280.3160432-0.23511570.31635981-0.2412060.31586393-0.12478260.31586393-0.12478260.31586393-0.1337390.31499717-0.04904350.31477783 |

| ADGRG3     | -0.2023849 | 0.31449242 | 1.24357405 |
|------------|------------|------------|------------|
| LRRC45     | -0.0546942 | 0.31439427 | 1.24348945 |
| WWOX       | -0.0079266 | 0.31423863 | 1.24335531 |
| AC009831.1 | -0.1243312 | 0.31407964 | 1.24321829 |
| CSPP1      | -0.1134872 | 0.3139432  | 1.24310072 |
| AL031666.3 | -0.1185152 | 0.31389307 | 1.24305753 |
| USP31      | -0.1599853 | 0.3137621  | 1.24294469 |
| CCDC102A   | -0.0468556 | 0.31372419 | 1.24291203 |
| TIMM9      | -0.0130791 | 0.31369419 | 1.24288619 |
| GMPPA      | -0.2414461 | 0.31368402 | 1.24287743 |
| SMG1P1     | -0.1196365 | 0.31333213 | 1.24257431 |
| AMMECR1L   | -0.4198981 | 0.31314331 | 1.24241169 |
| YIPF2      | -0.430961  | 0.31311609 | 1.24238825 |
| OBSCN      | -0.1188819 | 0.31290618 | 1.24220749 |
| TMEM131    | -0.1233567 | 0.31280585 | 1.24212111 |
| PLOD3      | -0.0464291 | 0.31261615 | 1.24195779 |
| ORAOV1     | -0.2176838 | 0.31260809 | 1.24195086 |
| AC020659.1 | -0.3697486 | 0.31240549 | 1.24177646 |
| SLC22A15   | -0.4798423 | 0.31226121 | 1.24165228 |
| RFK        | -0.0989338 | 0.31189117 | 1.24133385 |
| LRRC14     | 0.1485859  | 0.31168863 | 1.24115959 |
| WDR76      | -0.0488663 | 0.31154991 | 1.24104025 |
| SBF2-AS1   | -0.32114   | 0.31152289 | 1.24101701 |
| ZNF778     | -0.1413268 | 0.31147971 | 1.24097987 |
| UQCRC1     | -0.0011126 | 0.3112434  | 1.24077662 |
| HEMGN      | -0.1823566 | 0.31124224 | 1.24077561 |
| EEPD1      | 0.08458237 | 0.31107012 | 1.2406276  |
| MITD1      | -0.0239727 | 0.31076231 | 1.24036293 |
| ACSS3      | -0.3015988 | 0.3107094  | 1.24031744 |
| ABCC3      | -0.3766045 | 0.31059827 | 1.2402219  |
| HES1       | -0.2215449 | 0.31056722 | 1.24019521 |
| CLSPN      | -0.1095735 | 0.31052448 | 1.24015847 |
| KIAA1586   | -0.1739905 | 0.31019036 | 1.23987128 |
| PRNP       | 0.13227145 | 0.31017634 | 1.23985924 |
| ALG1       | -0.4465646 | 0.31016978 | 1.2398536  |
| G6PC3      | -0.0638363 | 0.3101556  | 1.23984141 |
| IL1R1      | -0.2751903 | 0.30992441 | 1.23964274 |
| AC010997.6 | -0.2328812 | 0.30992411 | 1.23964249 |
| TMEM62     | -0.2190609 | 0.30987587 | 1.23960104 |
| KIF16B     | 0.09705766 | 0.30969678 | 1.23944717 |

| IRF3       | -0.26382   | 0.30941486 | 1.23920499 |
|------------|------------|------------|------------|
| RCBTB1     | -0.19339   | 0.30940522 | 1.23919671 |
| CYB561D2   | -0.1800421 | 0.30933745 | 1.2391385  |
| ENTPD5     | -0.3289712 | 0.30928045 | 1.23908954 |
| NDUFV3     | -0.1845102 | 0.30927282 | 1.23908299 |
| PBRM1      | -0.1335047 | 0.30915932 | 1.23898552 |
| AMIG01     | -0.1936934 | 0.30884878 | 1.23871885 |
| CEACAM3    | -0.0826436 | 0.30878252 | 1.23866196 |
| SORD       | -0.2161243 | 0.30823915 | 1.23819552 |
| COQ6       | -0.1143769 | 0.30794154 | 1.23794012 |
| CDADC1     | -0.3158219 | 0.30788561 | 1.23789214 |
| IGHG1      | 0.1067466  | 0.30783808 | 1.23785135 |
| ZNF598     | -0.2698129 | 0.30768519 | 1.23772018 |
| TBXA2R     | 0.05778465 | 0.30767267 | 1.23770944 |
| NSUN3      | -0.150405  | 0.30735746 | 1.23743904 |
| TMEM144    | -0.1589699 | 0.30722428 | 1.23732482 |
| ROGDI      | -0.2198375 | 0.30707528 | 1.23719704 |
| СНМР6      | -0.0238969 | 0.30703503 | 1.23716252 |
| PEX10      | 0.06060047 | 0.30689801 | 1.23704503 |
| RIN3       | -0.043614  | 0.30681053 | 1.23697002 |
| P3H1       | 0.12771283 | 0.3066742  | 1.23685314 |
| TRG-AS1    | -0.1451012 | 0.30662658 | 1.2368123  |
| CLYBL      | -0.0385257 | 0.30660141 | 1.23679073 |
| AC011374.2 | -0.2288685 | 0.30625369 | 1.23649267 |
| AP3B1      | 0.00956355 | 0.30612114 | 1.23637907 |
| GLT1D1     | -0.2100043 | 0.30602398 | 1.23629581 |
| RABEPK     | -0.0802895 | 0.30587689 | 1.23616977 |
| PBXIP1     | -0.1037769 | 0.305641   | 1.23596767 |
| RNU4-78P   | -0.0293195 | 0.30559031 | 1.23592424 |
| ZNF25      | -0.021469  | 0.30557442 | 1.23591063 |
| PARP10     | -0.1794139 | 0.30544374 | 1.23579868 |
| FARS2      | -0.0755768 | 0.30526278 | 1.23564369 |
| AC104451.1 | -0.3547065 | 0.30498962 | 1.23540975 |
| CR1        | -0.198326  | 0.30484424 | 1.23528526 |
| MINCR      | -0.1819399 | 0.3046943  | 1.23515689 |
| PAWR       | 0.03208121 | 0.30464304 | 1.235113   |
| MED25      | -0.0518403 | 0.30448583 | 1.23497842 |
| PRRC2A     | -0.1860768 | 0.30434466 | 1.23485758 |
| AC116366.2 | -0.2331478 | 0.30426917 | 1.23479297 |
| KATNAL1    | -0.0682081 | 0.30406514 | 1.23461835 |

| AP000936.3 | -0.1743906 | 0.30386975 | 1.23445115 |
|------------|------------|------------|------------|
| CCDC9      | -0.1229655 | 0.30372904 | 1.23433076 |
| XAB2       | -0.3362505 | 0.3036111  | 1.23422986 |
| LTF        | -0.1503608 | 0.30341683 | 1.23406367 |
| CLPP       | -0.0944364 | 0.30301077 | 1.23371638 |
| AC022211.3 | -0.1308846 | 0.30260652 | 1.23337073 |
| MYOF       | -0.1872366 | 0.30248789 | 1.23326932 |
| CITED4     | -0.1018454 | 0.3023773  | 1.23317479 |
| E4F1       | -0.181966  | 0.30227547 | 1.23308775 |
| HUWE1      | -0.2573305 | 0.30223689 | 1.23305478 |
| FP565260.1 | -0.0834707 | 0.30209297 | 1.23293177 |
| AC243829.1 | -0.1061701 | 0.3018919  | 1.23275995 |
| TNIP1      | -0.172943  | 0.30179284 | 1.23267531 |
| RABAC1     | 0.05018446 | 0.30150038 | 1.23242545 |
| HEIH       | -0.1015615 | 0.3013312  | 1.23228094 |
| MROH6      | 0.10041826 | 0.30132476 | 1.23227544 |
| PPIL2      | -0.1538654 | 0.30112829 | 1.23210763 |
| ARHGEF10   | 0.08924792 | 0.30110816 | 1.23209044 |
| ANKRD39    | -0.3552087 | 0.30101242 | 1.23200868 |
| PYCR2      | -0.2399175 | 0.30098171 | 1.23198245 |
| RASGRP4    | -0.130983  | 0.3008168  | 1.23184164 |
| PAQR3      | -0.2954338 | 0.30080485 | 1.23183144 |
| PRRC2B     | -0.0674767 | 0.30080063 | 1.23182784 |
| HPCAL4     | -0.1476291 | 0.3006408  | 1.23169137 |
| CDKAL1     | -0.2946752 | 0.30063667 | 1.23168784 |
| FNBP1L     | -0.0578526 | 0.3005919  | 1.23164962 |
| BRD4       | -0.1756417 | 0.30036673 | 1.23145741 |
| ZNF143     | 0.0125878  | 0.30016629 | 1.23128633 |
| CENPV      | -0.1809626 | 0.30011491 | 1.23124248 |
| MCF2L      | 2.49E-04   | 0.30010412 | 1.23123327 |
| PPIF       | -0.2697225 | 0.29995384 | 1.23110502 |
| PRKCQ-AS1  | -0.2620158 | 0.29993337 | 1.23108756 |
| ZNF593     | -0.2204915 | 0.29947887 | 1.23069978 |
| DENND6B    | -0.1828593 | 0.29873197 | 1.2300628  |
| ZFP90      | -0.2688965 | 0.29827562 | 1.22967377 |
| CYP1B1-AS1 | -0.0599493 | 0.29811459 | 1.22953652 |
| AC007278.1 | -0.1978952 | 0.29799237 | 1.22943237 |
| GPR107     | -0.1765708 | 0.29786792 | 1.22932631 |
| OGFR       | -0.1524395 | 0.29783453 | 1.22929786 |
| POLD3      | 0.27485539 | 0.29760016 | 1.22909817 |

| ETFB       | -0.0684461 | 0.29756233 | 1.22906595 |
|------------|------------|------------|------------|
| NDUFAF5    | -0.1163495 | 0.29751729 | 1.22902758 |
| ERMN       | -0.1975764 | 0.29737208 | 1.22890388 |
| FAM50B     | -0.052984  | 0.2971466  | 1.22871183 |
| PUSL1      | -0.1951457 | 0.29701464 | 1.22859945 |
| C15orf39   | -0.0379976 | 0.2966775  | 1.22831238 |
| ZFP41      | -0.1650942 | 0.29632283 | 1.22801044 |
| ATP6V1A    | -0.1063724 | 0.29611929 | 1.22783721 |
| UBALD1     | -0.1706281 | 0.29597374 | 1.22771334 |
| RIC1       | -0.4554856 | 0.29582154 | 1.22758383 |
| KIAA1147   | -0.2080568 | 0.29570293 | 1.22748291 |
| ARHGAP35   | -0.1010804 | 0.29564793 | 1.22743611 |
| SIRT6      | -0.0815158 | 0.29545097 | 1.22726855 |
| UNC93B1    | -0.1282129 | 0.29538806 | 1.22721503 |
| RPL17P50   | -0.1160814 | 0.29530032 | 1.2271404  |
| PEX6       | -3.63E-04  | 0.29489209 | 1.22679321 |
| AC024293.1 | -0.1899447 | 0.29476936 | 1.22668885 |
| HDDC3      | -0.2725958 | 0.29461963 | 1.22656155 |
| BFSP1      | -0.2916882 | 0.29432163 | 1.22630822 |
| TAF9       | -0.2460298 | 0.29415159 | 1.22616369 |
| AC026401.3 | -0.2107954 | 0.29400835 | 1.22604196 |
| CCP110     | -0.2506538 | 0.29381881 | 1.22588089 |
| RNF168     | -0.0400451 | 0.29363407 | 1.22572392 |
| ANAPC16    | -0.0561136 | 0.29340872 | 1.22553248 |
| CHMP7      | -0.1375007 | 0.29332155 | 1.22545843 |
| CMTM5      | -0.0767719 | 0.29286614 | 1.22507166 |
| AL731557.1 | -0.2808527 | 0.29218746 | 1.22449549 |
| ARHGAP10   | -0.1682932 | 0.29205427 | 1.22438245 |
| TMOD3      | -0.0966115 | 0.29193703 | 1.22428295 |
| SSNA1      | -0.2444664 | 0.29189211 | 1.22424484 |
| ENOSF1     | 0.04316675 | 0.29115555 | 1.22361997 |
| ATP5L2     | 0.12067538 | 0.2907911  | 1.22331089 |
| WDTC1      | -0.1086326 | 0.29053427 | 1.22309314 |
| YY1AP1     | -0.1545972 | 0.29032373 | 1.22291466 |
| SLC6A16    | -0.2798684 | 0.29013368 | 1.22275357 |
| NPLOC4     | -0.1942359 | 0.28946671 | 1.22218842 |
| BIN1       | -0.0714214 | 0.2894265  | 1.22215435 |
| CDK11B     | -0.0927066 | 0.28942576 | 1.22215372 |
| KLHL12     | -0.1118309 | 0.28922463 | 1.22198335 |
| AC144521.1 | -0.2082674 | 0.28922434 | 1.22198311 |

| CIDECP      | 0.02207779 | 0.28855626 | 1.22141736 |
|-------------|------------|------------|------------|
| ABTB1       | -0.1442131 | 0.28838268 | 1.22127041 |
| CEP85       | -0.1439211 | 0.28825937 | 1.22116604 |
| FAM153B     | -0.0740223 | 0.28825715 | 1.22116416 |
| GTF2E1      | -0.0509024 | 0.28819371 | 1.22111046 |
| AC092135.3  | 0.02491255 | 0.2881558  | 1.22107837 |
| GFM2        | -0.0262481 | 0.28811258 | 1.22104179 |
| PEAK1       | -0.0382046 | 0.2880114  | 1.22095616 |
| DDX27       | -0.1258226 | 0.28796938 | 1.2209206  |
| CYB5R3      | -0.0843729 | 0.28791854 | 1.22087758 |
| CEP44       | -0.1665431 | 0.28768336 | 1.22067857 |
| TCN2        | -0.0299435 | 0.28764196 | 1.22064355 |
| FAM58A      | -0.0076644 | 0.28752165 | 1.22054176 |
| HACD2       | -0.1144913 | 0.28719739 | 1.22026746 |
| ZNF385D     | -0.0677462 | 0.28699312 | 1.2200947  |
| CLK3        | -0.1820735 | 0.28668389 | 1.2198332  |
| KDELC2      | -0.0672473 | 0.28634067 | 1.21954304 |
| MNAT1       | 0.00605085 | 0.28632206 | 1.2195273  |
| METTL8      | -0.3259143 | 0.28626284 | 1.21947725 |
| RPH3AL      | -0.1098528 | 0.28610286 | 1.21934202 |
| ACAD9       | -0.0115425 | 0.28578908 | 1.21907685 |
| LINC01002   | -0.0133677 | 0.28570222 | 1.21900346 |
| PAK5        | -0.0641384 | 0.28539657 | 1.21874523 |
| PNRC2       | -0.0925548 | 0.2852793  | 1.21864616 |
| ZNF48       | -0.3978339 | 0.28519482 | 1.2185748  |
| VILL        | -0.2180168 | 0.28517723 | 1.21855995 |
| SH2D2A      | -0.1920163 | 0.28486159 | 1.21829338 |
| PRKACA      | -0.112184  | 0.28471033 | 1.21816565 |
| AC245884.12 | -0.2540466 | 0.28468449 | 1.21814384 |
| DIXDC1      | -0.1050375 | 0.28445066 | 1.21794641 |
| NBPF20      | -0.1725419 | 0.28433056 | 1.21784502 |
| MGST3       | -0.2450324 | 0.28397886 | 1.21754818 |
| USP11       | -0.2644864 | 0.2839705  | 1.21754112 |
| CPA3        | -0.2076044 | 0.28337044 | 1.21703481 |
| SULT1A1     | -0.1834582 | 0.28290744 | 1.2166443  |
| TIMM10B     | 0.08889535 | 0.28274116 | 1.21650408 |
| GIMAP5      | -0.0020207 | 0.28273238 | 1.21649667 |
| RNU7-181P   | 0.02187704 | 0.28270822 | 1.21647631 |
| MSS51       | -0.0882911 | 0.28254669 | 1.21634011 |
| AC036108.4  | -0.0827879 | 0.28245874 | 1.21626596 |

| NEGR1      | -0.1202978 | 0.28244118 | 1.21625116 |
|------------|------------|------------|------------|
| AC008741.2 | -0.0840276 | 0.28183108 | 1.21573693 |
| HOMEZ      | 0.19146851 | 0.2817814  | 1.21569506 |
| TP53       | -0.1408048 | 0.28166901 | 1.21560036 |
| GIGYF2     | -0.0712334 | 0.28160974 | 1.21555043 |
| DAP        | -0.1607768 | 0.2815139  | 1.21546968 |
| CHST7      | -0.3446244 | 0.28146749 | 1.21543057 |
| NDE1       | -0.144085  | 0.28127763 | 1.21527063 |
| IFT27      | -0.1073646 | 0.28124371 | 1.21524207 |
| SMPD4      | 0.12892783 | 0.28119568 | 1.21520161 |
| IL1R2      | -0.2066585 | 0.28117524 | 1.21518439 |
| PARD6B     | 0.11057666 | 0.28106498 | 1.21509152 |
| AC090152.1 | -0.1599694 | 0.28078763 | 1.21485795 |
| ZNF318     | -0.2079336 | 0.28064937 | 1.21474153 |
| AL355488.2 | -0.2545342 | 0.28045319 | 1.21457636 |
| C19orf47   | -0.0175657 | 0.28020892 | 1.21437073 |
| MOB2       | -0.0309548 | 0.27982955 | 1.21405144 |
| SNX19      | -0.0026173 | 0.27974889 | 1.21398356 |
| MPST       | -0.1900128 | 0.27959891 | 1.21385737 |
| C14orf132  | -0.1198597 | 0.27953825 | 1.21380633 |
| LIPE-AS1   | -0.213937  | 0.27953104 | 1.21380026 |
| SMAGP      | 0.06816113 | 0.27941384 | 1.21370167 |
| TUBA4A     | -0.0745764 | 0.27938566 | 1.21367795 |
| ARHGEF7    | 0.0162537  | 0.27900687 | 1.21335934 |
| SUCLG1     | -0.1180027 | 0.27851633 | 1.21294685 |
| ZNF512     | -0.3006785 | 0.27843106 | 1.21287515 |
| S1PR3      | -0.0925765 | 0.27838013 | 1.21283234 |
| IFT172     | -0.2085263 | 0.27823942 | 1.21271406 |
| Y_RNA      | -0.0316106 | 0.27795937 | 1.21247867 |
| R3HDM4     | -0.0604069 | 0.27772315 | 1.21228016 |
| TPST1      | -0.0182053 | 0.27694335 | 1.21162508 |
| ENO3       | -3.48E-04  | 0.27690354 | 1.21159165 |
| GMDS-AS1   | -0.1160702 | 0.27682585 | 1.21152641 |
| GUF1       | -0.0702768 | 0.27671434 | 1.21143277 |
| SNX9       | -0.2775561 | 0.27636292 | 1.21113771 |
| SEC14L1    | -0.1126659 | 0.27630363 | 1.21108795 |
| EDEM3      | -0.0609334 | 0.27628749 | 1.2110744  |
| DHRS3      | -0.0465334 | 0.27599949 | 1.21083266 |
| GMIP       | -0.0283299 | 0.27586655 | 1.21072109 |
| AC097376.1 | -0.3416858 | 0.27571577 | 1.21059456 |

| NUDT19P5   | -0.1526922 | 0.27570245 | 1.21058338 |
|------------|------------|------------|------------|
| CFAP45     | 0.04295757 | 0.27569533 | 1.2105774  |
| CECR6      | 0.11733248 | 0.27552967 | 1.21043841 |
| IGHG3      | -0.0391016 | 0.2744724  | 1.20955167 |
| MAP4K2     | -0.0784941 | 0.27422414 | 1.20934355 |
| MMP25      | -0.0996872 | 0.27408964 | 1.2092308  |
| EIF4G1     | -0.1707392 | 0.27394663 | 1.20911094 |
| SRRD       | -0.2513172 | 0.27362199 | 1.2088389  |
| SETD1A     | -0.2692021 | 0.27346571 | 1.20870796 |
| TRMT2B     | -0.2994028 | 0.27337215 | 1.20862958 |
| AC103691.1 | -0.0201649 | 0.27336395 | 1.20862271 |
| NCR3       | -0.0901079 | 0.27332127 | 1.20858695 |
| ZFP64      | -0.0270375 | 0.27307105 | 1.20837735 |
| SAMD3      | -0.221599  | 0.27302761 | 1.20834097 |
| LINC01637  | -0.12243   | 0.27293105 | 1.2082601  |
| HCAR2      | -0.2677148 | 0.27290488 | 1.20823818 |
| SLC16A3    | -0.0727072 | 0.27276107 | 1.20811775 |
| WRNIP1     | -0.0360616 | 0.27250046 | 1.20789953 |
| TBC1D25    | 0.16446628 | 0.27236453 | 1.20778573 |
| DTX4       | 0.0282441  | 0.27229832 | 1.2077303  |
| AP000866.5 | 0.11797035 | 0.27196698 | 1.20745296 |
| RNF20      | 0.05482927 | 0.27196    | 1.20744711 |
| THOP1      | 0.06114692 | 0.2719262  | 1.20741882 |
| HTT        | 0.00156489 | 0.27137548 | 1.20695801 |
| AC147651.3 | -0.2117295 | 0.2713434  | 1.20693117 |
| SUMF1      | -0.3409979 | 0.27120502 | 1.2068154  |
| SMIM5      | -0.145286  | 0.27119798 | 1.20680952 |
| MLST8      | -0.0799666 | 0.27029882 | 1.20605761 |
| NUMBL      | -0.0447285 | 0.27022444 | 1.20599543 |
| AC109454.2 | -0.0554589 | 0.27014162 | 1.2059262  |
| LYNX1      | -0.2161286 | 0.27002992 | 1.20583283 |
| DBN1       | 0.11960091 | 0.27002025 | 1.20582475 |
| AC015883.1 | -0.0284182 | 0.26934093 | 1.2052571  |
| PIAS4      | 0.06556956 | 0.26926474 | 1.20519345 |
| RAB34      | -0.113142  | 0.26901977 | 1.20498883 |
| TSGA10     | -0.1264672 | 0.26892025 | 1.20490571 |
| ZNF394     | -0.1131722 | 0.26868489 | 1.20470915 |
| SETD3      | -0.0422596 | 0.26863148 | 1.20466456 |
| C11orf49   | -0.2086395 | 0.26862329 | 1.20465772 |
| ZMPSTE24   | -0.2015615 | 0.2681158  | 1.20423404 |
| SAR1B      | 0.1504018  | 0.26782921 | 1.20399484 |
|------------|------------|------------|------------|
| PRSS21     | -0.2145917 | 0.26782875 | 1.20399446 |
| EXOSC5     | -0.2253994 | 0.26777054 | 1.20394588 |
| SLC24A3    | -0.1723996 | 0.26752774 | 1.20374328 |
| AC114495.2 | -0.01768   | 0.2675168  | 1.20373415 |
| HPS6       | -0.0201259 | 0.26734738 | 1.2035928  |
| MAP1LC3A   | 0.09439463 | 0.26718358 | 1.20345615 |
| EXOC6B     | 0.0053399  | 0.26718292 | 1.2034556  |
| LINC00694  | -0.0031125 | 0.26695929 | 1.20326907 |
| ABCG2      | -0.2173632 | 0.26666931 | 1.20302724 |
| FRG1BP     | 0.0152745  | 0.26639878 | 1.20280167 |
| KIFC2      | -0.222687  | 0.26587301 | 1.20236341 |
| ZNF211     | 0.04948567 | 0.26571076 | 1.20222819 |
| ZNF467     | -0.0639577 | 0.26561663 | 1.20214976 |
| RDH11      | -0.0998039 | 0.26546082 | 1.20201994 |
| JDP2       | -0.2031044 | 0.26540689 | 1.201975   |
| SLC25A1    | -0.0990668 | 0.26539541 | 1.20196543 |
| SIGIRR     | -0.1040322 | 0.265364   | 1.20193927 |
| AP003733.4 | -0.2531794 | 0.26511943 | 1.20173553 |
| MARK4      | -0.1308958 | 0.26506214 | 1.20168781 |
| ASCL2      | -0.4033947 | 0.26493681 | 1.20158342 |
| AC007382.1 | -0.079032  | 0.26460105 | 1.20130381 |
| BCL7A      | -0.0340896 | 0.26440139 | 1.20113756 |
| BAK1       | -0.202741  | 0.26435479 | 1.20109877 |
| GID8       | -0.1499683 | 0.26424957 | 1.20101117 |
| SLC35A4    | -0.1837232 | 0.26417537 | 1.2009494  |
| PCYT2      | -0.2329255 | 0.26399867 | 1.20080232 |
| AC009061.2 | 0.05985855 | 0.26390521 | 1.20072453 |
| SESTD1     | -0.1242792 | 0.26387361 | 1.20069824 |
| CLDN15     | -0.356609  | 0.26368044 | 1.20053747 |
| QPRT       | -0.251585  | 0.26363469 | 1.20049941 |
| SLC12A9    | 0.05406507 | 0.26358412 | 1.20045733 |
| NETO2      | -0.1412634 | 0.26355548 | 1.2004335  |
| CLN3       | 0.06458063 | 0.26354591 | 1.20042554 |
| SMIM3      | -0.310394  | 0.26347828 | 1.20036926 |
| PDZD11     | 0.03139022 | 0.26346584 | 1.20035891 |
| ELP6       | -0.2293136 | 0.26344129 | 1.20033848 |
| GSEC       | -0.0148911 | 0.26338243 | 1.20028952 |
| GTF2E2     | 0.22027403 | -0.322143  | 0.79988082 |
| NAE1       | -0.0382278 | -0.3222062 | 0.79984581 |

| MRPL18          | 0.04549837 | -0.3222329 | 0.79983099 |
|-----------------|------------|------------|------------|
| SERTAD3         | 0.20161596 | -0.322533  | 0.79966462 |
| ZMAT1           | 0.04189816 | -0.3226247 | 0.79961382 |
| RAP2C           | -0.0297137 | -0.3231668 | 0.79931339 |
| ANKRD13C        | -0.1309529 | -0.3232337 | 0.79927637 |
| MGAT2           | -0.0503842 | -0.323272  | 0.79925513 |
| TBC1D4          | 0.23361093 | -0.3232788 | 0.79925139 |
| RPL23AP2        | 0.09715618 | -0.3233098 | 0.79923421 |
| LDLR            | 0.12535631 | -0.3233906 | 0.79918944 |
| ARHGAP6         | 0.07650212 | -0.3236782 | 0.79903012 |
| ERCC6           | -0.1703002 | -0.3240019 | 0.79885087 |
| NFYA            | 0.40394864 | -0.3240454 | 0.79882678 |
| UBE2E3          | 0.40182102 | -0.3242197 | 0.79873028 |
| ZNF703          | 0.33447169 | -0.3244286 | 0.79861464 |
| KANSL2          | -0.0627506 | -0.3244809 | 0.79858567 |
| AC005261.2      | 0.21352484 | -0.3245275 | 0.79855986 |
| KANSL1          | 0.19401216 | -0.3245589 | 0.7985425  |
| ANKHD1-EIF4EBP3 | 0.27420265 | -0.3248218 | 0.79839701 |
| ERO1A           | 0.22386928 | -0.3248329 | 0.79839084 |
| BPHL            | 0.15908703 | -0.3248464 | 0.7983834  |
| RIMKLB          | 0.25038115 | -0.324961  | 0.79831996 |
| CEP120          | 0.30838914 | -0.3252014 | 0.79818694 |
| SMYD4           | 0.25161499 | -0.32524   | 0.7981656  |
| TTC28-AS1       | 0.06488395 | -0.3252541 | 0.79815778 |
| SSB             | 0.17569162 | -0.3255755 | 0.79797998 |
| NDC1            | 0.10530092 | -0.3256378 | 0.79794556 |
| VPS16           | 0.30597685 | -0.3256981 | 0.79791218 |
| METTL15         | 0.18231217 | -0.3258669 | 0.79781883 |
| GPRIN3          | 0.40378515 | -0.3259727 | 0.79776034 |
| MRPS15          | 0.38019845 | -0.3260518 | 0.79771662 |
| MBD2            | 0.20248531 | -0.3260558 | 0.79771437 |
| ARF6            | 0.08687857 | -0.3261848 | 0.79764305 |
| GIMAP6          | 0.24130203 | -0.3262425 | 0.79761118 |
| DYNLL1          | 0.11550213 | -0.3263343 | 0.79756044 |
| CALU            | 0.04675371 | -0.3263446 | 0.79755471 |
| PBX3            | 0.23983811 | -0.3263967 | 0.79752594 |
| DIS3            | 0.23478684 | -0.3264877 | 0.79747562 |
| PITPNM1         | 0.09313406 | -0.3267334 | 0.79733981 |
| RGS9            | -0.0164896 | -0.3268777 | 0.79726003 |
| АКАР7           | -0.0643048 | -0.3269052 | 0.79724484 |

| MBD1       | 0.26835355 | -0.3269683 | 0.79720997 |
|------------|------------|------------|------------|
| ZNF550     | 0.21506313 | -0.3270245 | 0.79717892 |
| LCLAT1     | 0.10164742 | -0.3271042 | 0.79713493 |
| OTUD7A     | 0.17516423 | -0.3271316 | 0.79711978 |
| AC131212.2 | 0.15349684 | -0.3271382 | 0.7971161  |
| DHX32      | 0.15281711 | -0.3272838 | 0.79703566 |
| AC135983.2 | 0.1178253  | -0.3272894 | 0.7970326  |
| DERL2      | 0.04263901 | -0.3272933 | 0.79703041 |
| SPG21      | 0.3096931  | -0.3273019 | 0.79702569 |
| ҮКТ6       | 0.246283   | -0.3273872 | 0.79697853 |
| LYRM1      | 0.31176847 | -0.3274104 | 0.79696574 |
| DDX1       | 0.21797367 | -0.3276816 | 0.79681594 |
| TTC27      | 0.16633805 | -0.3277963 | 0.79675257 |
| SUGP1      | 0.20474142 | -0.3278434 | 0.79672656 |
| H3F3AP4    | -0.0960724 | -0.3278925 | 0.79669947 |
| ATF7       | 0.17391452 | -0.3279315 | 0.79667793 |
| CYB5A      | 0.49197169 | -0.3279733 | 0.79665487 |
| VPREB3     | 0.30574567 | -0.3280062 | 0.79663667 |
| ZNF540     | 0.26986567 | -0.3283027 | 0.79647294 |
| TRNAU1AP   | 0.04368695 | -0.328382  | 0.79642918 |
| ZNF141     | 0.34845044 | -0.3283984 | 0.79642014 |
| LRBA       | 0.33691423 | -0.3284    | 0.79641923 |
| PDLIM5     | -0.0286238 | -0.3284277 | 0.79640396 |
| RNF157     | 0.30463632 | -0.328604  | 0.79630662 |
| SPPL2A     | 0.32538195 | -0.3287847 | 0.79620689 |
| PPP2R2B    | 0.21078105 | -0.328855  | 0.79616814 |
| AP001157.1 | 0.50836693 | -0.3288707 | 0.79615943 |
| FAM69A     | 0.06477302 | -0.3289919 | 0.79609255 |
| PTPRA      | 0.13453631 | -0.3289952 | 0.79609076 |
| ZSWIM3     | 0.3702373  | -0.3293938 | 0.79587082 |
| TGFA       | -0.1842213 | -0.329408  | 0.79586299 |
| KPNA2      | 0.02621205 | -0.3296273 | 0.79574204 |
| TRIM62     | 0.09297827 | -0.3298564 | 0.79561568 |
| MAP3K1     | 0.30740989 | -0.329857  | 0.79561537 |
| EBPL       | 0.34351738 | -0.3304035 | 0.79531404 |
| TP53RK     | 0.16605829 | -0.3304067 | 0.79531227 |
| TNRC18     | 0.389333   | -0.3305564 | 0.79522973 |
| UAP1       | 0.18026986 | -0.3306464 | 0.79518012 |
| TAF6       | 0.39275531 | -0.3306833 | 0.79515981 |
| PCNT       | 0.29993868 | -0.330712  | 0.79514396 |

| DNAJB11    | 0.36102459 | -0.3307534 | 0.79512117 |
|------------|------------|------------|------------|
| SERTAD1    | 0.51672999 | -0.3308629 | 0.79506078 |
| WDR54      | 0.31719132 | -0.3309435 | 0.79501638 |
| HCP5       | 0.03248543 | -0.3309779 | 0.79499745 |
| GMEB1      | 0.45772494 | -0.3310549 | 0.79495499 |
| MCM6       | 0.42245704 | -0.3311944 | 0.79487813 |
| FBXO11     | -0.0226408 | -0.3313519 | 0.79479136 |
| SCAF8      | 0.23840273 | -0.3313902 | 0.79477027 |
| SNU13      | 0.21400475 | -0.3315605 | 0.79467645 |
| MCFD2      | 0.17406334 | -0.3316513 | 0.79462645 |
| MYD88      | 0.24314285 | -0.3318262 | 0.79453009 |
| VAMP8      | 0.17741463 | -0.331878  | 0.7945016  |
| AC008026.3 | 0.07076387 | -0.3318879 | 0.79449613 |
| ТМРО       | 0.21496175 | -0.3319755 | 0.79444789 |
| LARP4B     | 0.32225543 | -0.3320271 | 0.79441945 |
| JCHAIN     | 0.21532751 | -0.3320459 | 0.79440911 |
| ZNF514     | 0.33614657 | -0.3321902 | 0.79432966 |
| FBXO22     | 0.11618301 | -0.3322586 | 0.794292   |
| ALKBH8     | 0.13807688 | -0.3322623 | 0.79428995 |
| C1GALT1    | 5.97E-04   | -0.3322805 | 0.79427995 |
| SIPA1L2    | 0.38228146 | -0.3323443 | 0.79424483 |
| SLAIN1     | 0.18221473 | -0.3324629 | 0.79417956 |
| RNU6-672P  | 0.07476057 | -0.3324663 | 0.79417767 |
| FGFBP2     | 0.13198082 | -0.3325216 | 0.79414722 |
| ZNF19      | 0.10645101 | -0.3325756 | 0.79411751 |
| KCNK6      | 0.26300608 | -0.3328526 | 0.79396505 |
| GNL2       | 0.1634124  | -0.3330919 | 0.79383334 |
| VAMP1      | 0.11373208 | -0.3332041 | 0.79377161 |
| HLA-DRB6   | 0.30790647 | -0.3332271 | 0.79375899 |
| ZNF502     | 0.30467322 | -0.3332458 | 0.79374869 |
| EXD2       | 0.03459901 | -0.3333966 | 0.7936657  |
| SCARB2     | 0.23273354 | -0.3334601 | 0.79363079 |
| NTPCR      | 0.27189192 | -0.3335303 | 0.79359218 |
| KIZ        | 0.35779426 | -0.3336275 | 0.79353871 |
| CNOT8      | 0.2589306  | -0.3336591 | 0.79352134 |
| FADS3      | 0.40742886 | -0.3337615 | 0.79346499 |
| AC055839.1 | 0.09011165 | -0.3339979 | 0.79333501 |
| SRPRB      | 0.16985055 | -0.3344401 | 0.79309189 |
| ZNF419     | 0.11130248 | -0.3344708 | 0.79307501 |
| AC008969.1 | 0.17447487 | -0.3344904 | 0.7930642  |

| DENND4B            | 0.18820223 | -0.3345028 | 0.79305743 |
|--------------------|------------|------------|------------|
| AHSA2              | 0.22976181 | -0.3347199 | 0.79293806 |
| ZNF22              | 0.19215955 | -0.3347979 | 0.79289521 |
| MRPL58             | -0.1311963 | -0.3348266 | 0.79287944 |
| TPCN1              | -0.0438985 | -0.3349261 | 0.79282476 |
| NOD1               | 0.0472078  | -0.3349618 | 0.79280511 |
| ATP11C             | 0.32240851 | -0.3351484 | 0.79270259 |
| UQCRB              | 0.1120165  | -0.3351577 | 0.79269749 |
| TMEM245            | 0.19854747 | -0.3352406 | 0.79265193 |
| SRP14              | 0.28922339 | -0.335361  | 0.79258581 |
| FBXL3              | 0.2800616  | -0.3353835 | 0.79257341 |
| CNOT9              | 0.15350348 | -0.3354758 | 0.79252272 |
| ZNF644             | 0.4677847  | -0.3354814 | 0.79251967 |
| ANKDD1A            | 0.37457391 | -0.3358153 | 0.79233624 |
| CTBP2              | 0.23486141 | -0.3358232 | 0.79233188 |
| IDI1               | 0.09859391 | -0.3360254 | 0.79222086 |
| CUL1               | 0.26628938 | -0.3360993 | 0.79218031 |
| RRM1               | 0.36321264 | -0.3362264 | 0.79211051 |
| RRAS2              | 0.19986013 | -0.3362279 | 0.7921097  |
| SPRYD3             | 0.32616843 | -0.3363488 | 0.79204329 |
| MYBL1              | -0.0732788 | -0.3363941 | 0.79201843 |
| BIRC2              | 0.29303274 | -0.3368346 | 0.79177663 |
| LAP3               | 0.21544205 | -0.3368954 | 0.79174327 |
| RIC8A              | 0.0670294  | -0.3370916 | 0.79163561 |
| RPL6               | 0.25722601 | -0.3372437 | 0.79155214 |
| ARHGAP27P1-BPTFP1- |            |            |            |
| KPNA2P3            | 0.19077341 | -0.3372466 | 0.79155053 |
| BLOC1S6            | 0.13640719 | -0.3372956 | 0.79152367 |
| CEP68              | 0.2451738  | -0.3373225 | 0.79150893 |
| HGF                | 0.15747801 | -0.3376827 | 0.79131134 |
| KLHL22             | 0.1107453  | -0.337832  | 0.79122942 |
| PKD2               | 0.19081644 | -0.3378922 | 0.79119644 |
| MRPL57             | 0.09322167 | -0.3379866 | 0.79114467 |
| ATAD2              | 0.04807364 | -0.3380586 | 0.79110519 |
| ATP5J              | 0.33324261 | -0.3381592 | 0.79105002 |
| GABPB1             | 0.19115167 | -0.3381926 | 0.7910317  |
| ZNF330             | 0.32882987 | -0.338394  | 0.79092126 |
| LRRC57             | -0.1400543 | -0.3384212 | 0.79090634 |
| ZNF283             | 0.23653668 | -0.3384344 | 0.79089913 |
| CNOT10             | 0.07135508 | -0.33856   | 0.79083029 |

| P2RX4      | 0.64711725 | -0.3386162 | 0.79079949 |
|------------|------------|------------|------------|
| AF131215.6 | -0.018947  | -0.3386481 | 0.79078196 |
| RPS3A      | 0.161853   | -0.3386983 | 0.79075449 |
| CASC4      | 0.27465634 | -0.3387913 | 0.7907035  |
| RALA       | 0.25909037 | -0.3388494 | 0.79067163 |
| DCAF16     | 0.17580578 | -0.3388671 | 0.79066197 |
| BCCIP      | 0.25428047 | -0.3389731 | 0.79060384 |
| CACTIN     | 0.39395018 | -0.338982  | 0.79059896 |
| ANKRD6     | 0.22600088 | -0.3390648 | 0.79055363 |
| MRPL3      | 0.06137767 | -0.3390785 | 0.79054609 |
| ATG4D      | 0.38433812 | -0.3391741 | 0.79049373 |
| SGSM2      | 0.07366506 | -0.3392651 | 0.79044387 |
| IKZF2      | 0.28188731 | -0.3392775 | 0.79043707 |
| FLJ20021   | 0.14823332 | -0.3392846 | 0.79043317 |
| CCDC58     | 0.20960872 | -0.3397623 | 0.79017148 |
| TMEM116    | 0.04296602 | -0.3398464 | 0.79012545 |
| THBD       | 0.19178426 | -0.339853  | 0.79012182 |
| MED9       | 0.05007031 | -0.3398768 | 0.79010879 |
| UBL3       | 0.18591446 | -0.3400681 | 0.79000404 |
| EMG1       | 0.2474304  | -0.3400727 | 0.79000152 |
| C19orf25   | 0.12002893 | -0.3401074 | 0.78998251 |
| C11orf71   | 0.3128076  | -0.3401903 | 0.78993713 |
| NEK6       | 0.3443029  | -0.340424  | 0.78980913 |
| ARL16      | 0.08510724 | -0.340466  | 0.78978615 |
| SEC11C     | 0.4375899  | -0.3406361 | 0.78969305 |
| RGS6       | 0.05940188 | -0.3406595 | 0.78968025 |
| MBOAT2     | 0.12936018 | -0.3406923 | 0.78966231 |
| HSDL1      | 0.130519   | -0.3407676 | 0.78962107 |
| ABLIM1     | 0.24584768 | -0.3411697 | 0.78940102 |
| PRKACB     | 0.04512056 | -0.3412047 | 0.7893819  |
| ANKRD42    | 0.25770408 | -0.3415625 | 0.78918615 |
| SQLE       | 0.16603118 | -0.3416902 | 0.7891163  |
| GRAP2      | 0.09978591 | -0.3416985 | 0.78911175 |
| WDR12      | -0.0034199 | -0.3417385 | 0.78908985 |
| ILF3-AS1   | 0.29146344 | -0.3418205 | 0.789045   |
| HIC2       | 0.31187496 | -0.341829  | 0.78904037 |
| ESF1       | 0.24308535 | -0.3418872 | 0.78900851 |
| RCOR3      | 0.18281238 | -0.3418955 | 0.78900399 |
| ATP5A1     | 0.22881056 | -0.3419864 | 0.7889543  |
| U62317.5   | 0.13563566 | -0.342124  | 0.78887903 |

| SNORA72    | 0.33181607 | -0.3421459 | 0.78886708 |
|------------|------------|------------|------------|
| DRAXIN     | 0.21699161 | -0.3421856 | 0.78884534 |
| CCDC12     | 0.15255939 | -0.3422119 | 0.788831   |
| MTX3       | 0.20133268 | -0.3423188 | 0.78877252 |
| TBC1D14    | 0.14822455 | -0.3424298 | 0.78871183 |
| ARF4       | 0.21436754 | -0.3424596 | 0.78869556 |
| TM2D1      | 0.26786627 | -0.3424681 | 0.78869089 |
| ZC2HC1A    | 0.1373946  | -0.3426807 | 0.78857467 |
| DNAJB9     | 0.22146497 | -0.3429553 | 0.7884246  |
| ZBTB11     | 0.37468125 | -0.3430393 | 0.7883787  |
| UHRF2      | 0.16748439 | -0.343212  | 0.78828435 |
| PKIA       | 0.27067202 | -0.3432382 | 0.78827001 |
| RBP7       | 0.19489769 | -0.3432856 | 0.78824411 |
| SLC12A7    | 0.28856959 | -0.3433317 | 0.78821892 |
| TMEM18     | -0.0250585 | -0.3433358 | 0.78821667 |
| ANAPC13    | 0.15621233 | -0.3435301 | 0.78811053 |
| MAT2A      | -0.1636468 | -0.3436715 | 0.78803332 |
| UBLCP1     | 0.22940748 | -0.3440038 | 0.78785181 |
| ABHD14A    | 0.10538232 | -0.3442262 | 0.78773038 |
| UTP3       | 0.17587103 | -0.3443497 | 0.78766294 |
| FAM89A     | 0.2526876  | -0.3444027 | 0.78763398 |
| SRSF6      | 0.15583454 | -0.3444281 | 0.78762015 |
| RBMXL1     | 0.22426433 | -0.3445978 | 0.78752749 |
| RAN        | 0.12689725 | -0.3447059 | 0.78746847 |
| SIGLEC1    | 0.29886606 | -0.3448486 | 0.78739063 |
| COMMD6     | 0.22824912 | -0.3449305 | 0.7873459  |
| MEI1       | 0.29069755 | -0.3452949 | 0.78714705 |
| BCL9       | 0.16241868 | -0.3453584 | 0.78711242 |
| TPCN2      | 0.30511293 | -0.3454645 | 0.78705455 |
| CD86       | 0.19676128 | -0.3455323 | 0.78701756 |
| AP1AR      | 0.02095163 | -0.3455988 | 0.78698126 |
| INPP5B     | -0.0761182 | -0.3457121 | 0.78691948 |
| GBA2       | 0.30020832 | -0.3457425 | 0.78690287 |
| MYO18A     | 0.19214318 | -0.3458389 | 0.78685032 |
| AL683813.1 | -0.0288312 | -0.3458554 | 0.78684132 |
| TMEM39B    | 0.56109051 | -0.3461418 | 0.7866851  |
| LPIN1      | 0.23679811 | -0.3461798 | 0.7866644  |
| PIK3C3     | 0.06271795 | -0.3462589 | 0.78662129 |
| SMAD5      | 0.16655368 | -0.3462717 | 0.7866143  |
| TMEM176A   | 0.16768004 | -0.3464453 | 0.78651963 |

| ZNF346      | 0.29797981 | -0.346733  | 0.7863628  |
|-------------|------------|------------|------------|
| EXOSC9      | 0.09949655 | -0.3468469 | 0.78630076 |
| AP5M1       | -0.0214985 | -0.3468992 | 0.78627225 |
| MIR1254-1   | 0.08830005 | -0.3469381 | 0.78625104 |
| RPS27       | 0.08468337 | -0.3469389 | 0.78625057 |
| ITLN1       | 0.19673662 | -0.3470167 | 0.78620818 |
| JTB         | 0.32258833 | -0.3471014 | 0.78616202 |
| ZBED6       | 0.44516815 | -0.3471237 | 0.78614991 |
| ZFAT        | 0.16855287 | -0.3472581 | 0.78607667 |
| MOSPD3      | 0.01220792 | -0.3472935 | 0.78605738 |
| CRTAP       | 0.11844523 | -0.3474475 | 0.78597343 |
| ANAPC15     | 0.2738532  | -0.3475475 | 0.78591898 |
| ITM2A       | 0.20304673 | -0.3475883 | 0.78589673 |
| GOT1        | 0.08073668 | -0.3476028 | 0.78588886 |
| MRFAP1      | 0.20795586 | -0.3477813 | 0.78579164 |
| CEP41       | 0.23935096 | -0.3478321 | 0.78576394 |
| NUP43       | 0.39286003 | -0.3485426 | 0.78537708 |
| INSL3       | 0.17436459 | -0.3485526 | 0.78537165 |
| EFCAB2      | 0.19792913 | -0.34869   | 0.78529684 |
| WBP1L       | 0.2166233  | -0.3487369 | 0.78527133 |
| IFITM3      | 0.31683204 | -0.3488063 | 0.78523355 |
| LINC01772   | 0.06292051 | -0.3489089 | 0.78517769 |
| SETDB1      | 0.31992443 | -0.3489331 | 0.78516454 |
| NEMP1       | 0.3515557  | -0.3489664 | 0.78514639 |
| ANKHD1      | 0.22564425 | -0.3490065 | 0.78512457 |
| LGALS12     | -0.0786191 | -0.349044  | 0.78510418 |
| BX284668.5  | 0.1109656  | -0.3491542 | 0.78504421 |
| CRLF3       | 0.31952317 | -0.3494017 | 0.78490956 |
| GANAB       | 0.16823523 | -0.3494278 | 0.78489531 |
| C1orf43     | 0.15484822 | -0.3495157 | 0.7848475  |
| TRAF3IP2    | 0.33366514 | -0.3495436 | 0.78483235 |
| CLINT1      | 0.37383665 | -0.3495821 | 0.78481138 |
| AC006033.2  | 0.09393082 | -0.3500973 | 0.78453116 |
| MBTD1       | 0.07897398 | -0.3501033 | 0.78452794 |
| LRPPRC      | 0.07468417 | -0.3504032 | 0.78436483 |
| RNU6-890P   | 0.23771297 | -0.3505301 | 0.78429588 |
| HIST1H2BJ   | 0.06607229 | -0.3506787 | 0.78421508 |
| Metazoa_SRP | 0.14519216 | -0.3507517 | 0.78417538 |
| WHAMMP2     | 0.15526622 | -0.3508839 | 0.78410353 |
| FUT8        | 0.07056013 | -0.3508975 | 0.78409618 |

| HPS4       | 0.28285787 | -0.351063  | 0.78400622 |
|------------|------------|------------|------------|
| NCOA2      | 0.37932495 | -0.3513244 | 0.78386418 |
| SLC40A1    | 0.21341577 | -0.3514216 | 0.78381135 |
| SGMS2      | 0.06447379 | -0.3514896 | 0.78377444 |
| RPS15A     | 0.08424962 | -0.3515874 | 0.78372129 |
| USP33      | 0.20421221 | -0.3516283 | 0.78369907 |
| SCO1       | 0.31558897 | -0.3518066 | 0.7836022  |
| ZNF845     | 0.32094454 | -0.3518552 | 0.78357582 |
| ZNF696     | 0.2346698  | -0.3518901 | 0.7835569  |
| GOT2       | 0.47765492 | -0.3521293 | 0.78342699 |
| STAT1      | 0.30346463 | -0.3521399 | 0.78342124 |
| AC008622.2 | 0.26669339 | -0.3522585 | 0.78335683 |
| HSF2       | 0.1761189  | -0.3525152 | 0.78321744 |
| DNAJC5     | 0.15737471 | -0.3526945 | 0.78312012 |
| SLC35B3    | 0.23390269 | -0.3527534 | 0.78308814 |
| CCDC115    | 0.23643034 | -0.3532608 | 0.78281279 |
| HNRNPA1    | 0.2791291  | -0.3533259 | 0.78277743 |
| TCEAL4     | 0.3218512  | -0.3533292 | 0.78277566 |
| TOGARAM2   | 0.13594563 | -0.3533662 | 0.78275556 |
| B9D2       | 0.31726447 | -0.3534007 | 0.78273686 |
| ZNF780A    | 0.26297856 | -0.3538201 | 0.78250933 |
| MS4A2      | 0.28715035 | -0.3538365 | 0.78250043 |
| ZNF331     | 0.46951747 | -0.353955  | 0.78243617 |
| BPI        | -0.0452562 | -0.3541384 | 0.78233675 |
| ACAA2      | 0.28573873 | -0.3541748 | 0.78231702 |
| AC112496.1 | 0.06978677 | -0.3542011 | 0.78230273 |
| SUSD3      | 0.19799015 | -0.3542471 | 0.78227781 |
| CXorf38    | 0.25670439 | -0.3542738 | 0.7822633  |
| UGT8       | 0.16599427 | -0.3543174 | 0.78223964 |
| YIPF1      | 0.29873291 | -0.3543791 | 0.78220623 |
| ZNF219     | 0.21032255 | -0.3545326 | 0.78212302 |
| GOLGA5P1   | 0.0200973  | -0.3546661 | 0.78205062 |
| ASTE1      | 0.04839941 | -0.3546848 | 0.78204048 |
| RAD51C     | 0.3097138  | -0.3549568 | 0.78189308 |
| NUDT19     | 0.1900916  | -0.3549733 | 0.7818841  |
| STXBP3     | 0.08189229 | -0.3550209 | 0.78185834 |
| MAN2B2     | 0.27436936 | -0.3550388 | 0.78184861 |
| LINC01184  | 0.14644136 | -0.3550536 | 0.7818406  |
| PARN       | 0.14435266 | -0.355118  | 0.78180571 |
| AC105749.1 | 0.24233441 | -0.3551463 | 0.78179034 |

| DDHD1      | 0.18360797 | -0.3551965 | 0.78176315 |
|------------|------------|------------|------------|
| TCEA2      | -0.071576  | -0.3552157 | 0.78175275 |
| CHAMP1     | 0.07666938 | -0.3552491 | 0.78173463 |
| B2M        | 0.24283509 | -0.3553212 | 0.78169556 |
| CEP85L     | 0.34068159 | -0.3559306 | 0.78136545 |
| DUSP12     | 0.08443966 | -0.3559779 | 0.78133982 |
| TNFRSF4    | 0.02651499 | -0.3560562 | 0.78129745 |
| ALG11      | 0.34708389 | -0.3560578 | 0.78129659 |
| AC127024.4 | 0.26899288 | -0.3563392 | 0.78114419 |
| IGFLR1     | 0.35364341 | -0.3564293 | 0.78109541 |
| TTC14      | 0.12925805 | -0.3564755 | 0.78107039 |
| AL118508.4 | 0.21170828 | -0.3565001 | 0.78105706 |
| ZNF518B    | 0.26063199 | -0.3566025 | 0.78100164 |
| RPS24      | 0.28047436 | -0.3567899 | 0.78090022 |
| AKAP8      | 0.07967071 | -0.356827  | 0.78088013 |
| KIFC3      | 0.25059992 | -0.3570027 | 0.78078505 |
| TMEM94     | 0.17338219 | -0.357081  | 0.78074263 |
| ZNF3       | 0.17625633 | -0.3572596 | 0.78064603 |
| AMMECR1    | 0.19085355 | -0.3572817 | 0.78063407 |
| MRPL20     | 0.09627774 | -0.3572817 | 0.78063407 |
| TMEM128    | 0.19710477 | -0.3573144 | 0.78061637 |
| CDK5R1     | 0.16406309 | -0.3573809 | 0.78058037 |
| GSTO1      | 0.23653791 | -0.3573996 | 0.78057024 |
| EPG5       | 0.28203035 | -0.357458  | 0.78053866 |
| IPCEF1     | 0.37221077 | -0.3576454 | 0.78043729 |
| Y_RNA      | 0.48285972 | -0.3576684 | 0.78042485 |
| RPS27A     | 0.20396224 | -0.3577273 | 0.780393   |
| ANO6       | 0.2525435  | -0.3578845 | 0.78030797 |
| COA4       | 0.15192994 | -0.3579193 | 0.78028915 |
| TASP1      | 0.33201937 | -0.3580918 | 0.78019586 |
| RPL26      | 0.18485621 | -0.3581579 | 0.78016007 |
| TRIM69     | 0.17075319 | -0.3583635 | 0.78004892 |
| RANGRF     | 0.22781872 | -0.3583703 | 0.78004522 |
| C1RL-AS1   | 0.39722371 | -0.3587334 | 0.77984895 |
| C11orf24   | 0.20725993 | -0.3588363 | 0.77979329 |
| SENP5      | 0.29367164 | -0.3588436 | 0.77978936 |
| IMPA1      | 0.25680316 | -0.358949  | 0.77973242 |
| CCR2       | 0.1786691  | -0.3590256 | 0.779691   |
| CTPS1      | 0.19711413 | -0.3590468 | 0.77967953 |
| SUMO2      | 0.33507518 | -0.359374  | 0.77950275 |

| TRAF4      | 0.12377104 | -0.3594353 | 0.77946963 |
|------------|------------|------------|------------|
| SEC61B     | 0.27879823 | -0.3595064 | 0.77943122 |
| MRPS35     | 0.33529188 | -0.3595481 | 0.77940867 |
| UQCRFS1    | 0.03832607 | -0.359681  | 0.77933691 |
| AC016394.1 | 0.22616761 | -0.359704  | 0.77932445 |
| TIGD3      | 0.1874398  | -0.3597373 | 0.77930648 |
| PEA15      | 0.27462489 | -0.3598348 | 0.77925379 |
| TMEM177    | 0.21092983 | -0.3599055 | 0.77921561 |
| AGFG2      | 0.11547653 | -0.3599452 | 0.7791942  |
| МАТК       | 0.37057914 | -0.3599616 | 0.77918535 |
| SNHG14     | 0.33804621 | -0.3603009 | 0.7790021  |
| ALDH3A2    | 0.24479884 | -0.3603115 | 0.77899636 |
| BTN3A1     | 0.25326898 | -0.360439  | 0.77892753 |
| ALAS1      | -0.040511  | -0.3605458 | 0.77886984 |
| PMM1       | 0.24972333 | -0.3607533 | 0.77875787 |
| ICOS       | 0.06209093 | -0.3608495 | 0.77870595 |
| PLAG1      | 0.1739656  | -0.3610231 | 0.77861225 |
| LMTK2      | 0.1317528  | -0.3611049 | 0.77856807 |
| PRKAG2-AS1 | 0.14213001 | -0.3612353 | 0.77849771 |
| KNTC1      | 0.34088483 | -0.361245  | 0.77849249 |
| TMEM147    | 0.09371171 | -0.361347  | 0.77843744 |
| SNRNP35    | 0.00385525 | -0.361624  | 0.77828801 |
| MADD       | 0.03040979 | -0.3616767 | 0.77825956 |
| GNGT2      | 0.23367046 | -0.3617667 | 0.77821102 |
| RAB18      | 0.37132919 | -0.3618342 | 0.77817462 |
| NDUFA4     | 0.00655677 | -0.3619941 | 0.77808835 |
| NSUN2      | 0.25936451 | -0.3620872 | 0.77803816 |
| TC2N       | 0.19308176 | -0.3622092 | 0.77797239 |
| PEX2       | 0.10564746 | -0.3622809 | 0.77793369 |
| SGPL1      | 0.25475036 | -0.3623809 | 0.77787979 |
| ZBTB37     | 0.28083824 | -0.3624419 | 0.7778469  |
| C14orf93   | 0.15848974 | -0.362609  | 0.77775678 |
| ТТҮНЗ      | 0.29284325 | -0.3626166 | 0.77775271 |
| ZNF101     | 0.20007002 | -0.3626448 | 0.77773752 |
| WDSUB1     | 0.18646914 | -0.3628719 | 0.77761507 |
| CSGALNACT2 | 0.27669604 | -0.3629353 | 0.77758093 |
| FKBP2      | 0.21490206 | -0.3631173 | 0.77748284 |
| METTL2B    | 0.31426504 | -0.3633108 | 0.77737856 |
| FMC1       | 0.01881289 | -0.3633961 | 0.77733257 |
| NBEAL1     | 0.36281524 | -0.3634217 | 0.77731879 |

| U2AF2        | 0.28973181 | -0.3634455 | 0.77730597 |
|--------------|------------|------------|------------|
| PWWP2B       | 0.32778419 | -0.3635605 | 0.77724402 |
| RGL4         | 0.1213842  | -0.3637108 | 0.77716303 |
| SDHAF2       | 0.14257224 | -0.3637149 | 0.77716082 |
| HAUS2        | 0.19600157 | -0.3638237 | 0.77710225 |
| CISD2        | 0.57310361 | -0.3638988 | 0.77706178 |
| CWC27        | 0.05099297 | -0.3639596 | 0.77702905 |
| MTCO1P40     | 0.23101034 | -0.3646491 | 0.77665776 |
| EPB41L4A-AS1 | 0.03039151 | -0.3648024 | 0.77657521 |
| SRBD1        | 0.19142894 | -0.3649508 | 0.77649534 |
| SUZ12        | 0.19289769 | -0.3651957 | 0.77636358 |
| RBM3         | 0.25526552 | -0.3656103 | 0.77614049 |
| TNFRSF10D    | 0.23181046 | -0.3656182 | 0.77613622 |
| AC108673.3   | 0.35931742 | -0.3656369 | 0.77612619 |
| AC018445.4   | 0.22574922 | -0.3656476 | 0.7761204  |
| ZNF268       | 0.18699976 | -0.365652  | 0.77611805 |
| HSP90B1      | 0.15558753 | -0.3656588 | 0.7761144  |
| NUP88        | 0.41143505 | -0.3660041 | 0.77592862 |
| TMEM230      | 0.04557965 | -0.3660356 | 0.77591169 |
| AC116618.1   | 0.07710664 | -0.3660964 | 0.77587903 |
| TMEM251      | 0.25407271 | -0.3663228 | 0.77575728 |
| IER5L        | 0.21248014 | -0.3663913 | 0.77572041 |
| PRPF4B       | 0.15920808 | -0.3665707 | 0.77562397 |
| SUGP2        | 0.35419056 | -0.3667191 | 0.77554419 |
| RAB27B       | -0.1241248 | -0.3670836 | 0.77534828 |
| STXBP5       | 0.23611277 | -0.3671758 | 0.77529875 |
| VAMP4        | 0.1035674  | -0.3672211 | 0.7752744  |
| MTG2         | 0.13036388 | -0.3673125 | 0.77522529 |
| KCNG1        | 0.15835503 | -0.3673343 | 0.77521357 |
| CD72         | 0.37735005 | -0.3673731 | 0.77519273 |
| KLHL3        | 0.05257509 | -0.3674124 | 0.77517156 |
| IFIT2        | 0.41964664 | -0.3675434 | 0.77510119 |
| ATP6V1H      | 0.55722064 | -0.3675465 | 0.77509952 |
| TMX3         | 0.04957039 | -0.367705  | 0.77501441 |
| NPTN         | 0.06747596 | -0.3679804 | 0.77486648 |
| TP53I11      | 0.31173995 | -0.368457  | 0.77461052 |
| UBL4A        | 0.03657624 | -0.3685588 | 0.77455586 |
| FBXO34       | 0.29862151 | -0.3685723 | 0.77454863 |
| MRPL40       | 0.30097862 | -0.3686055 | 0.77453077 |
| SLC25A20     | 0.33459783 | -0.368623  | 0.77452142 |

| NAGPA      | 0.26470952 | -0.3688693 | 0.7743892  |
|------------|------------|------------|------------|
| SLC11A2    | 0.31915056 | -0.3691464 | 0.77424048 |
| FHIT       | 0.20926688 | -0.3693415 | 0.77413576 |
| UHRF1BP1L  | 0.24193558 | -0.3693563 | 0.77412782 |
| PRR14L     | 0.28345209 | -0.3693868 | 0.77411148 |
| C14orf166  | 0.31071837 | -0.3695619 | 0.77401752 |
| YWHAG      | 0.25689305 | -0.3695773 | 0.77400926 |
| CD302      | 0.1546113  | -0.3695885 | 0.77400324 |
| TIMM23     | -0.1390269 | -0.3696717 | 0.77395863 |
| UBASH3B    | 0.16873042 | -0.3697153 | 0.77393522 |
| F2RL1      | 0.33152819 | -0.3699814 | 0.77379248 |
| SECISBP2L  | 0.21635876 | -0.3702227 | 0.77366307 |
| ІРМК       | 0.50238458 | -0.3702753 | 0.77363486 |
| ALDH1A1    | 0.25894966 | -0.3704562 | 0.77353784 |
| SLC39A9    | 0.14699644 | -0.3705819 | 0.77347048 |
| AC245060.5 | 0.27059852 | -0.3706156 | 0.77345239 |
| SEL1L3     | 0.18643982 | -0.3706818 | 0.7734169  |
| UFSP2      | 0.32740106 | -0.3707355 | 0.77338812 |
| ZNF687     | 0.18479799 | -0.3714757 | 0.7729914  |
| RAP1GDS1   | 0.25230534 | -0.3714843 | 0.7729868  |
| MMACHC     | 0.22626568 | -0.3715749 | 0.77293826 |
| SUM03      | 0.1673368  | -0.3717329 | 0.77285363 |
| SPAG7      | 0.18643311 | -0.3718376 | 0.77279755 |
| ТНАРЗ      | 0.42630923 | -0.3718476 | 0.77279216 |
| AC009831.4 | 0.14801335 | -0.3719223 | 0.77275215 |
| TM9SF3     | 0.35726705 | -0.3720308 | 0.77269405 |
| TXN2       | 0.38272549 | -0.3721406 | 0.77263527 |
| ATAD5      | 0.43200651 | -0.3723068 | 0.77254622 |
| BISPR      | 0.40897945 | -0.3724882 | 0.77244912 |
| RIN2       | 0.2624528  | -0.3725411 | 0.77242081 |
| ZBTB18     | 0.24943242 | -0.3726428 | 0.77236635 |
| CEP97      | 0.1684057  | -0.3727056 | 0.77233273 |
| MYDGF      | 0.33535087 | -0.3727863 | 0.77228954 |
| RRP15      | 0.36232107 | -0.3729154 | 0.7722204  |
| ZMYND8     | 0.29215271 | -0.3729909 | 0.77218003 |
| LANCL1     | -0.0132804 | -0.3729976 | 0.77217641 |
| PSEN2      | 0.19186163 | -0.3730388 | 0.77215437 |
| XRN1       | 0.22607126 | -0.3732238 | 0.77205536 |
| R3HDM1     | 0.31846457 | -0.3734858 | 0.77191516 |
| RDX        | 0.15504065 | -0.3734871 | 0.77191447 |

| KYNU       | 0.2306765  | -0.373542  | 0.77188508 |
|------------|------------|------------|------------|
| ZNF542P    | -0.0026661 | -0.3736064 | 0.77185064 |
| CBX3       | 0.27513251 | -0.3737059 | 0.7717974  |
| AC027449.1 | -0.0122331 | -0.3737194 | 0.7717902  |
| ADK        | 0.16212584 | -0.3740119 | 0.77163371 |
| TNFSF13B   | 0.16395077 | -0.3743881 | 0.77143254 |
| СКАР5      | 0.1890668  | -0.3745987 | 0.77131992 |
| RBFA       | 0.19835255 | -0.3747029 | 0.77126423 |
| ZNF75D     | 0.07818992 | -0.3747495 | 0.77123931 |
| TUBA1C     | 0.25509451 | -0.3747711 | 0.77122776 |
| BORCS6     | 0.49202717 | -0.374781  | 0.77122248 |
| ZNF439     | 0.40690535 | -0.3748618 | 0.77117929 |
| PIGH       | 0.42722404 | -0.3748693 | 0.77117525 |
| ICE2       | 0.16803989 | -0.3749244 | 0.77114584 |
| ADAT2      | 0.2621788  | -0.3750152 | 0.77109731 |
| PLAGL2     | 0.13010596 | -0.3752149 | 0.77099058 |
| TRAPPC2    | 0.33854239 | -0.3752967 | 0.77094687 |
| SLC35A3    | 0.30091072 | -0.3754075 | 0.77088764 |
| TTC1       | 0.20582806 | -0.3754202 | 0.77088084 |
| ZNF710     | 0.11249121 | -0.3754616 | 0.77085874 |
| CNTNAP2    | 0.38067704 | -0.3758033 | 0.77067617 |
| CSTB       | 0.21246466 | -0.3758639 | 0.7706438  |
| ECD        | 0.23113912 | -0.3759693 | 0.77058753 |
| MIOS       | 0.34706277 | -0.3759696 | 0.77058735 |
| GMPS       | 0.4350639  | -0.3760503 | 0.77054425 |
| TCF12      | 0.06156862 | -0.37624   | 0.77044294 |
| NAXD       | 0.07597032 | -0.376278  | 0.77042266 |
| AC055822.1 | 0.09677902 | -0.3763259 | 0.77039709 |
| C16orf74   | 0.21852659 | -0.3764913 | 0.77030876 |
| MRPS33     | 0.33592233 | -0.3764991 | 0.77030457 |
| DIMT1      | 0.08167075 | -0.3768372 | 0.77012405 |
| NRIP1      | -0.0015505 | -0.3769066 | 0.77008706 |
| BACH1      | 0.14814687 | -0.3769524 | 0.7700626  |
| EXOC5      | 0.19084302 | -0.3770677 | 0.77000104 |
| GALNT3     | 0.28579555 | -0.3771937 | 0.76993379 |
| FAM175B    | 0.19106468 | -0.3772661 | 0.76989518 |
| CSTA       | 0.21755087 | -0.3773387 | 0.76985641 |
| СҮТНЗ      | 0.39212707 | -0.377509  | 0.76976552 |
| ZNF808     | 0.42174627 | -0.3778537 | 0.76958164 |
| RBM45      | -0.0043867 | -0.3778865 | 0.76956416 |

| SSFA2    | 0.47821528 | -0.3780177 | 0.76949414 |
|----------|------------|------------|------------|
| STT3B    | 0.41663988 | -0.3780327 | 0.76948616 |
| SARAF    | 0.3294216  | -0.3781546 | 0.76942114 |
| CPEB2    | 0.14845697 | -0.3782306 | 0.76938061 |
| NHLRC2   | 0.17810215 | -0.37846   | 0.76925832 |
| CAPZA1   | 0.20897707 | -0.3784614 | 0.76925754 |
| NUDT14   | 0.04164228 | -0.3788322 | 0.76905987 |
| TCF7L2   | 0.3115611  | -0.3789754 | 0.76898354 |
| ARPIN    | 0.12918804 | -0.3792261 | 0.76884992 |
| NAA35    | 0.08568969 | -0.3792293 | 0.7688482  |
| KCNJ2    | 0.22999587 | -0.3793649 | 0.76877595 |
| FAM118B  | 0.33576172 | -0.3794458 | 0.76873282 |
| TBC1D32  | 0.34386317 | -0.3795211 | 0.76869273 |
| ASF1B    | 0.05229844 | -0.3795695 | 0.76866693 |
| SLC25A40 | 0.26302047 | -0.3795753 | 0.76866383 |
| ZNF764   | 0.16250258 | -0.3796435 | 0.76862748 |
| FBRSL1   | 0.30920773 | -0.3797863 | 0.7685514  |
| GOLGA8B  | 0.29508894 | -0.3798704 | 0.7685066  |
| CMTR1    | 0.27402145 | -0.3801356 | 0.76836537 |
| SLC22A18 | 0.1806257  | -0.3803802 | 0.76823512 |
| KLHL42   | 0.20018282 | -0.3806741 | 0.76807861 |
| PPP2R5E  | 0.18744897 | -0.3810553 | 0.7678757  |
| EIF4A2   | 0.16373094 | -0.3810573 | 0.76787461 |
| FARSB    | 0.33838914 | -0.3811493 | 0.76782567 |
| MRPL36   | 0.56019545 | -0.3812218 | 0.76778711 |
| DDB2     | 0.15460964 | -0.3812695 | 0.76776172 |
| SSR3     | 0.16357874 | -0.3814435 | 0.76766914 |
| C4orf32  | 0.10789216 | -0.3814528 | 0.76766414 |
| ATXN7L1  | 0.18452198 | -0.3815873 | 0.76759261 |
| ECHDC2   | -0.018716  | -0.3816481 | 0.76756023 |
| NDOR1    | 0.15338649 | -0.3817269 | 0.76751832 |
| ARRB1    | 0.17139912 | -0.3818347 | 0.76746097 |
| FAM114A2 | 0.14284246 | -0.3824315 | 0.76714356 |
| SLFN11   | 0.44191482 | -0.3826509 | 0.76702693 |
| NDUFC1   | 0.05972144 | -0.3827184 | 0.76699105 |
| CCDC186  | 0.12023483 | -0.3827881 | 0.76695399 |
| GIMAP7   | 0.15010394 | -0.3828559 | 0.76691791 |
| SMIM14   | 0.17031615 | -0.3828951 | 0.76689707 |
| MAGED1   | 0.27947802 | -0.3829574 | 0.766864   |
| ZNF45    | 0.14529005 | -0.3831067 | 0.76678463 |

| RPS6KB1    | 0.24918526 | -0.3831899 | 0.76674041 |
|------------|------------|------------|------------|
| RFX3-AS1   | 0.19957708 | -0.3834353 | 0.76661001 |
| IFFO1      | 0.15107686 | -0.3836371 | 0.76650277 |
| CCR5       | -0.0432772 | -0.3838949 | 0.76636583 |
| РНКА2      | 0.21448712 | -0.3840346 | 0.76629159 |
| C8orf33    | 0.31570037 | -0.3842957 | 0.76615294 |
| DR1        | 0.23859858 | -0.3844465 | 0.76607287 |
| MOAP1      | 0.27265185 | -0.3845132 | 0.76603746 |
| AC007406.5 | 0.11977853 | -0.3845706 | 0.76600694 |
| MTMR12     | 0.15655132 | -0.3846599 | 0.76595954 |
| SLC46A3    | 0.19486932 | -0.3850108 | 0.76577329 |
| SLC43A1    | 0.26700724 | -0.3851127 | 0.76571919 |
| ENTPD4     | 0.38318509 | -0.3852181 | 0.76566324 |
| MR1        | 0.21635649 | -0.3852203 | 0.76566209 |
| DIAPH2     | 0.28748375 | -0.3853011 | 0.76561918 |
| GALC       | 0.33104042 | -0.3853481 | 0.76559428 |
| FAM208A    | 0.36932095 | -0.3858294 | 0.76533888 |
| CHCHD3     | 0.22443872 | -0.3858841 | 0.76530988 |
| SNPH       | 0.17256036 | -0.3861422 | 0.76517298 |
| EEF1B2     | 0.28795192 | -0.3862943 | 0.76509231 |
| PRR7-AS1   | 0.09817894 | -0.3865074 | 0.76497928 |
| GZMA       | 0.26015356 | -0.3867605 | 0.76484512 |
| PARP15     | 0.05749631 | -0.3868087 | 0.76481953 |
| RNMT       | 0.2122768  | -0.3869423 | 0.76474871 |
| SENP1      | 0.33777729 | -0.3869696 | 0.76473428 |
| NEK1       | -0.1245734 | -0.3873097 | 0.764554   |
| ASPM       | 0.19118562 | -0.3874955 | 0.76445551 |
| TMEM192    | -0.0018952 | -0.3875059 | 0.76445001 |
| TMEM135    | 0.19509636 | -0.3876254 | 0.76438672 |
| SLU7       | 0.25920361 | -0.3877127 | 0.76434046 |
| LTBP4      | 0.33634275 | -0.3877694 | 0.76431042 |
| DNAJB14    | 0.20810597 | -0.3878259 | 0.76428048 |
| WARS       | 0.241373   | -0.3878437 | 0.76427107 |
| EMSY       | 0.21912785 | -0.3880242 | 0.76417545 |
| FOXN2      | 0.15105246 | -0.388101  | 0.76413474 |
| RSBN1L     | 0.39752655 | -0.3887591 | 0.76378628 |
| SUGT1      | 0.09821055 | -0.3888603 | 0.76373271 |
| AL080317.3 | 0.2977868  | -0.3889365 | 0.76369235 |
| ZNRD1ASP   | 0.19072256 | -0.389275  | 0.76351322 |
| SS18L2     | 0.16741315 | -0.3895852 | 0.76334905 |

| CREG1      | 0.02078636 | -0.3898247 | 0.76322233 |
|------------|------------|------------|------------|
| CARHSP1    | 0.29899599 | -0.390169  | 0.76304019 |
| SFT2D1     | 0.47750488 | -0.3903182 | 0.76296131 |
| ZBTB40     | 0.11675432 | -0.3905857 | 0.76281983 |
| DCK        | 0.21677982 | -0.3906398 | 0.76279125 |
| ZNF326     | 0.23972104 | -0.390813  | 0.76269968 |
| DPM1       | 0.00229164 | -0.3908457 | 0.76268238 |
| SLF2       | 0.32225787 | -0.3910216 | 0.76258941 |
| FXYD6      | 0.35514966 | -0.3912051 | 0.76249241 |
| FOCAD      | 0.1954297  | -0.3912078 | 0.76249102 |
| TCN1       | 0.1253512  | -0.3913035 | 0.76244042 |
| CD244      | -0.048677  | -0.3913374 | 0.76242251 |
| TMX2       | 0.42033235 | -0.391598  | 0.7622848  |
| OTUD1      | 0.27871256 | -0.3917509 | 0.76220401 |
| ACOT7      | 0.31459864 | -0.3918035 | 0.76217623 |
| CD47       | 0.2533716  | -0.392038  | 0.76205237 |
| SCAMP1-AS1 | 0.25680113 | -0.392147  | 0.76199479 |
| STRAP      | 0.11477929 | -0.3922956 | 0.76191631 |
| NBPF15     | 0.14149157 | -0.3924124 | 0.76185463 |
| LEO1       | -0.0273387 | -0.392691  | 0.76170748 |
| FCER1A     | 0.41614968 | -0.3927755 | 0.7616629  |
| SAMD9      | 0.3168457  | -0.3928907 | 0.76160205 |
| SLC24A1    | 0.16285132 | -0.392898  | 0.76159822 |
| CDK17      | 0.17567493 | -0.3931717 | 0.76145372 |
| PIK3R6     | -0.073684  | -0.3932976 | 0.76138727 |
| AC023157.3 | 0.0533058  | -0.3935068 | 0.76127691 |
| GPBP1      | 0.33679552 | -0.393548  | 0.76125516 |
| MCTP1      | 0.36428536 | -0.3940564 | 0.76098695 |
| CRYZL1     | 0.13274865 | -0.3946177 | 0.76069091 |
| EBAG9      | 0.25407071 | -0.3950426 | 0.76046693 |
| AMN1       | 0.23468878 | -0.3952998 | 0.76033135 |
| ZFAND6     | 0.29759687 | -0.395572  | 0.76018791 |
| RIN1       | 0.05292968 | -0.3957499 | 0.76009418 |
| CAPN7      | 0.23267734 | -0.3962979 | 0.75980554 |
| TTC12      | 0.19067404 | -0.3963752 | 0.75976483 |
| C6orf136   | 0.26050276 | -0.3964023 | 0.75975054 |
| EDRF1      | 0.28159298 | -0.3964458 | 0.75972762 |
| CNPY4      | 0.02872064 | -0.3965003 | 0.75969892 |
| POLI       | -0.0617254 | -0.3965687 | 0.75966292 |
| FXN        | 0.16994334 | -0.3966824 | 0.75960303 |

| DUSP5           | -0.0661783 | -0.3967259 | 0.75958013 |
|-----------------|------------|------------|------------|
| LRRFIP2         | 0.34966577 | -0.3968296 | 0.75952556 |
| ZSWIM8          | 0.15342764 | -0.3970452 | 0.75941204 |
| MAP4K5          | 0.1154905  | -0.3970669 | 0.75940062 |
| ZNF84           | 0.4904437  | -0.39721   | 0.75932531 |
| ANGPT1          | 0.23613438 | -0.3972575 | 0.75930031 |
| NDUFAF4         | 0.05931289 | -0.3975871 | 0.75912686 |
| PRPF38A         | 0.13955452 | -0.3978252 | 0.75900161 |
| SGF29           | 0.26131454 | -0.3979748 | 0.7589229  |
| TTC39C          | 0.45618577 | -0.3980319 | 0.75889284 |
| РССВ            | -0.1401332 | -0.398043  | 0.758887   |
| TIMM8B          | 0.35751931 | -0.3983637 | 0.75871834 |
| ENSG00000188206 | 0.29010127 | -0.3986082 | 0.75858976 |
| ARL10           | 0.22942126 | -0.3986148 | 0.7585863  |
| RN7SL589P       | 0.32760807 | -0.398672  | 0.75855623 |
| GRWD1           | -0.2449651 | -0.3987572 | 0.75851142 |
| SLC41A1         | 0.12143629 | -0.3988106 | 0.75848335 |
| ENSG00000283013 | 0.27610327 | -0.3988108 | 0.75848324 |
| CYCS            | 0.06089674 | -0.3989379 | 0.75841643 |
| ALG5            | 0.11347468 | -0.3989381 | 0.75841633 |
| GNS             | 0.22990055 | -0.3989566 | 0.75840657 |
| PRPF39          | 0.3184793  | -0.3992472 | 0.75825385 |
| ZNF275          | 0.12498478 | -0.3993636 | 0.75819264 |
| FPGS            | 0.33346528 | -0.3994619 | 0.75814098 |
| MAPK8IP3        | 0.30460806 | -0.3996677 | 0.75803287 |
| OSTM1           | 0.31658507 | -0.4001449 | 0.75778216 |
| TMEM216         | 0.39482416 | -0.4002258 | 0.75773969 |
| COPS6           | 0.39592955 | -0.4003976 | 0.75764945 |
| RAB3GAP2        | 0.22709905 | -0.4006369 | 0.75752381 |
| TRMT61B         | 0.32532561 | -0.4006462 | 0.75751889 |
| CD164           | 0.28163667 | -0.4007145 | 0.75748305 |
| NCBP2-AS2       | 0.13419628 | -0.4008964 | 0.75738753 |
| ZNF675          | -0.0151319 | -0.4010243 | 0.75732039 |
| CFAP97          | 0.12571809 | -0.4014757 | 0.75708347 |
| SNX16           | 0.24281927 | -0.4018126 | 0.75690669 |
| MGST2           | 0.09577909 | -0.4020832 | 0.75676478 |
| ZNF280D         | 0.36163729 | -0.4025758 | 0.75650643 |
| ZC3H8           | 0.24615256 | -0.4025862 | 0.75650095 |
| CEP290          | 0.42427052 | -0.40291   | 0.75633118 |
| ITPR3           | 0.32560516 | -0.4031042 | 0.75622936 |

| ERCC3      | 0.25691381 | -0.4032179 | 0.75616979 |
|------------|------------|------------|------------|
| KBTBD11    | 0.2188689  | -0.4032981 | 0.75612773 |
| ZNF566     | 0.37150474 | -0.4037155 | 0.75590903 |
| ZKSCAN4    | 0.07429404 | -0.4037629 | 0.7558842  |
| SLC17A5    | 0.30329088 | -0.4040614 | 0.75572778 |
| CXCR3      | 0.27844845 | -0.4043842 | 0.75555874 |
| PTAR1      | 0.37051376 | -0.4046519 | 0.75541854 |
| PPARGC1B   | 0.35330915 | -0.4050585 | 0.75520568 |
| RTN1       | 0.31609141 | -0.4051595 | 0.75515281 |
| SNX4       | 0.20340114 | -0.4052729 | 0.75509344 |
| LINC02019  | 0.40405366 | -0.4053747 | 0.75504018 |
| RECQL      | 0.21628019 | -0.4054602 | 0.75499542 |
| MICB       | 0.16333539 | -0.4055577 | 0.75494441 |
| BCAS3      | 0.57341153 | -0.4056842 | 0.75487822 |
| MAP9       | 0.29919633 | -0.4057127 | 0.75486331 |
| RRP9       | 0.19577245 | -0.4057215 | 0.75485871 |
| MAP3K13    | 0.13390884 | -0.4057791 | 0.75482857 |
| TMIGD2     | 0.25164412 | -0.4061425 | 0.75463842 |
| SLC25A19   | 0.21434746 | -0.4063195 | 0.75454586 |
| AC006141.1 | 0.44487304 | -0.4063441 | 0.75453302 |
| VBP1       | 0.13475456 | -0.406351  | 0.75452938 |
| CD3G       | 0.28662588 | -0.4066159 | 0.75439086 |
| NUP155     | 0.40716217 | -0.4066218 | 0.75438777 |
| LILRA5     | -0.0130547 | -0.4066828 | 0.7543559  |
| CCDC43     | 0.43184613 | -0.4071074 | 0.75413392 |
| TIA1       | 0.32010901 | -0.40732   | 0.75402279 |
| PSME2      | 0.22902838 | -0.4074023 | 0.75397975 |
| FAM105A    | 0.26224378 | -0.4076184 | 0.75386686 |
| GIN1       | 0.18101578 | -0.4077573 | 0.75379425 |
| ZBTB21     | 0.16075035 | -0.4078235 | 0.75375965 |
| HAT1       | 0.31318941 | -0.4079052 | 0.75371697 |
| TCEANC2    | 0.30567881 | -0.407912  | 0.75371343 |
| CHORDC1    | 0.10135283 | -0.408098  | 0.75361625 |
| SLC20A2    | 0.1820282  | -0.4086017 | 0.75335317 |
| AKAP11     | 0.05770778 | -0.4087426 | 0.75327962 |
| TRAF6      | -0.1168812 | -0.4089192 | 0.75318743 |
| TMEM87B    | 0.13209469 | -0.4090198 | 0.75313487 |
| PAM        | 0.37196029 | -0.4090777 | 0.75310467 |
| SLC25A30   | 0.18650516 | -0.4091601 | 0.75306165 |
| UGDH       | 0.0870543  | -0.4094965 | 0.7528861  |

| Z93930.2   |       | 0.14955409 | -0.4095447 | 0.75286096 |
|------------|-------|------------|------------|------------|
| RPL31      |       | 0.17842717 | -0.4096568 | 0.75280245 |
| KDM1B      |       | 0.26989667 | -0.4098351 | 0.75270942 |
| NFE2L3     |       | 0.18050246 | -0.4099432 | 0.752653   |
| CISD3      |       | 0.16794142 | -0.4101512 | 0.75254452 |
| ADO        |       | 0.32399677 | -0.4101552 | 0.75254243 |
| SLC33A1    |       | 0.17302929 | -0.4104212 | 0.75240369 |
| MIER3      |       | 0.23098812 | -0.4105896 | 0.75231588 |
| AC083798.2 |       | 0.27974385 | -0.410624  | 0.75229789 |
| PPIL3      |       | 0.05722602 | -0.4106327 | 0.75229338 |
| RAB29      |       | 0.34745807 | -0.4106634 | 0.7522774  |
| NELFA      |       | 0.23288667 | -0.4107692 | 0.75222222 |
| TPD52      |       | 9.37E-04   | -0.410911  | 0.75214825 |
| COQ2       |       | 0.13474723 | -0.4115988 | 0.75178976 |
| LGALS9     |       | 0.18158074 | -0.4117638 | 0.7517038  |
| CPD        |       | 0.27377987 | -0.4118402 | 0.75166401 |
| SNORD89    |       | 0.16309728 | -0.412059  | 0.75154999 |
| CROCC      |       | 0.18117268 | -0.4121361 | 0.75150984 |
| AC004865.2 |       | 0.13076091 | -0.4121721 | 0.75149107 |
| PARP9      |       | 0.28673085 | -0.4123943 | 0.75137534 |
| PYROXD1    |       | 0.22688599 | -0.4125808 | 0.75127825 |
| AC012467.2 |       | 0.0799176  | -0.4127325 | 0.75119926 |
| FBXO4      |       | 0.41620951 | -0.4128739 | 0.7511256  |
| RB1CC1     |       | 0.31678953 | -0.4129236 | 0.75109972 |
| MRPS18C    |       | 0.33746252 | -0.4129441 | 0.75108906 |
| STARD4     |       | 0.08570406 | -0.4129729 | 0.75107409 |
| PTCD2      |       | 0.4326092  | -0.4131216 | 0.75099668 |
| HEG1       |       | 0.27452881 | -0.4132721 | 0.75091832 |
| MRPL51     |       | 0.10879071 | -0.4136915 | 0.75070007 |
| RXRB       |       | 0.25196223 | -0.4137827 | 0.7506526  |
| YIPF3      |       | 0.38215303 | -0.4138668 | 0.75060884 |
| ECT2       |       | 0.26183833 | -0.4138967 | 0.75059331 |
| BRCA1      |       | 0.21593629 | -0.4139453 | 0.75056798 |
| MCRS1      |       | 0.22888646 | -0.4142357 | 0.75041693 |
| SNRPG      |       | 0.01337633 | -0.4144217 | 0.7503202  |
| ZNF420     |       | 0.25466641 | -0.4147662 | 0.75014104 |
|            | 44621 | 0.31391588 | -0.4147687 | 0.75013973 |
| CLDND1     |       | 0.2277806  | -0.4150225 | 0.75000781 |
| C1orf27    |       | 0.25399461 | -0.4150434 | 0.74999693 |
| NHS        |       | 0.29062678 | -0.4150703 | 0.74998297 |

| METTL26    | 0.59075883 | -0.4151774 | 0.74992729 |
|------------|------------|------------|------------|
| AC006504.1 | 0.1642084  | -0.4153345 | 0.74984562 |
| AC009120.1 | 0.51942661 | -0.4153357 | 0.74984498 |
| TSEN2      | 0.03677919 | -0.4154116 | 0.74980555 |
| XPO4       | 0.40107135 | -0.4155591 | 0.74972891 |
| TOR1B      | 0.07007701 | -0.4156092 | 0.74970284 |
| CNOT7      | 0.12797425 | -0.4158455 | 0.74958009 |
| GBP3       | 0.26507309 | -0.4162193 | 0.74938586 |
| KDM6A      | -0.1633649 | -0.4163112 | 0.74933813 |
| ARHGAP5    | 0.20260714 | -0.4165837 | 0.74919663 |
| PRSS23     | 0.2222114  | -0.4165951 | 0.74919069 |
| RAB10      | 0.28203701 | -0.4166645 | 0.74915465 |
| NUP85      | 0.27630214 | -0.4168596 | 0.74905334 |
| VMA21      | 0.21587751 | -0.4170131 | 0.74897365 |
| HLA-DRA    | 0.25492902 | -0.4170293 | 0.74896528 |
| ТМЕМ9В     | 0.13318147 | -0.4173422 | 0.74880285 |
| ARID1B     | 0.15160799 | -0.4176077 | 0.74866505 |
| ADAM28     | 0.1238952  | -0.4179669 | 0.74847866 |
| EPSTI1     | 0.24034791 | -0.4180326 | 0.74844457 |
| CGGBP1     | 0.1782828  | -0.4181423 | 0.74838765 |
| MRI1       | 0.20180063 | -0.4181632 | 0.74837684 |
| ESCO1      | -0.0420416 | -0.4182607 | 0.74832627 |
| MRPL9      | 0.35886445 | -0.4183654 | 0.74827193 |
| AP1G1      | 0.4390786  | -0.4183862 | 0.74826118 |
| SNRPB2     | 0.20546381 | -0.4185722 | 0.74816468 |
| PRICKLE1   | 0.3752908  | -0.4189554 | 0.747966   |
| PLEKHG2    | 0.43209607 | -0.4192265 | 0.74782546 |
| VPS50      | 0.00393719 | -0.419258  | 0.74780914 |
| FAM96A     | 0.22185901 | -0.419291  | 0.74779203 |
| AC007191.1 | 0.16991324 | -0.4194373 | 0.74771619 |
| SASS6      | 0.16634699 | -0.4206721 | 0.74707649 |
| UBOX5      | 0.19126772 | -0.420759  | 0.74703149 |
| METTL2A    | 0.35794958 | -0.4208641 | 0.74697709 |
| GMPR2      | 0.30652242 | -0.4212703 | 0.74676682 |
| LTN1       | 0.30501585 | -0.4213254 | 0.74673826 |
| ADH5       | 0.19788041 | -0.4213999 | 0.74669971 |
| COMMD4     | 0.18795807 | -0.4219215 | 0.74642982 |
| CSNK1E     | 0.51992924 | -0.4222302 | 0.74627013 |
| IPO8       | 0.23109686 | -0.4223223 | 0.74622248 |
| TRGC1      | 0.37782228 | -0.4223926 | 0.7461861  |

| АНСҮ       | 0.36993154 | -0.4228304 | 0.74595969 |
|------------|------------|------------|------------|
| GPR27      | 0.55133497 | -0.4228727 | 0.74593785 |
| SPATS2L    | 0.18228943 | -0.4228982 | 0.74592465 |
| AL021368.3 | 0.18835012 | -0.4232716 | 0.74573159 |
| SRD5A3     | 0.27179054 | -0.4233158 | 0.74570877 |
| PDCL       | 0.09729367 | -0.4233553 | 0.74568837 |
| TRIM68     | 0.11056464 | -0.4235782 | 0.74557317 |
| Y_RNA      | 0.50036187 | -0.4236585 | 0.74553162 |
| XRCC4      | 0.24544024 | -0.4238145 | 0.74545102 |
| SNRPD1     | -0.0479431 | -0.4242304 | 0.74523619 |
| KCTD12     | 0.24237909 | -0.4249836 | 0.74484719 |
| CSAD       | 0.21694497 | -0.4250373 | 0.74481945 |
| NLRX1      | 0.34699673 | -0.4251221 | 0.74477567 |
| PRPF19     | 0.19343354 | -0.4251265 | 0.74477344 |
| CHP1       | 0.31822927 | -0.4251387 | 0.74476713 |
| CCDC112    | 0.44795104 | -0.4252457 | 0.74471189 |
| ELMO2      | 0.33281769 | -0.4254218 | 0.744621   |
| FXR1       | 0.31181003 | -0.4254663 | 0.74459803 |
| ZNF526     | 0.34776416 | -0.425728  | 0.74446295 |
| ZBTB41     | 0.19349992 | -0.4259295 | 0.74435899 |
| ZNF480     | 0.10210759 | -0.4259423 | 0.74435242 |
| SERPING1   | 0.31923605 | -0.4259448 | 0.7443511  |
| TRIM4      | 0.0265374  | -0.4267119 | 0.74395544 |
| RBM4B      | 0.45286121 | -0.4267872 | 0.74391659 |
| ACSM3      | 0.17752795 | -0.4269034 | 0.74385668 |
| ZCCHC4     | 0.24502761 | -0.4273735 | 0.74361434 |
| GRB10      | 0.21039725 | -0.4274393 | 0.74358041 |
| ZNF831     | 0.45961044 | -0.4276371 | 0.74347847 |
| LNPK       | 0.34571853 | -0.4280745 | 0.74325312 |
| HMGXB3     | -0.0711334 | -0.4282249 | 0.74317563 |
| TUBG1      | -0.0063638 | -0.4283915 | 0.74308983 |
| E2F6       | 0.22682402 | -0.428527  | 0.74302004 |
| NOP9       | 0.18599215 | -0.4286797 | 0.74294139 |
| DTD1       | 0.20525932 | -0.4290347 | 0.74275858 |
| NEK9       | 0.41583896 | -0.429211  | 0.74266782 |
| HIBADH     | 0.15495998 | -0.4293517 | 0.74259541 |
| NOLC1      | 0.38070191 | -0.4296898 | 0.74242138 |
| NINJ2      | 0.24688947 | -0.4298022 | 0.74236357 |
| AP4E1      | 0.00856148 | -0.4298235 | 0.7423526  |
| CCAR2      | 0.46521707 | -0.4299398 | 0.74229274 |

| AC004893.2 | 0.58733054 | -0.4302345 | 0.74214114 |
|------------|------------|------------|------------|
| HKR1       | 0.62043131 | -0.4303722 | 0.74207033 |
| RALGPS1    | 0.2048356  | -0.4304375 | 0.74203675 |
| MALSU1     | 0.188717   | -0.4308694 | 0.74181462 |
| ZNF600     | 0.41588882 | -0.4312205 | 0.74163411 |
| C5orf22    | 0.30159026 | -0.431667  | 0.7414046  |
| PPP4R3B    | 0.04345268 | -0.4317898 | 0.74134154 |
| ХРА        | 0.01399719 | -0.4318958 | 0.74128706 |
| OARD1      | 0.49363257 | -0.4319107 | 0.74127937 |
| MT-TV      | -0.1093021 | -0.4321037 | 0.74118022 |
| NAA15      | 0.326826   | -0.432592  | 0.74092939 |
| UGGT2      | 0.23249959 | -0.4329227 | 0.74075961 |
| IFT88      | 0.0945475  | -0.4330395 | 0.74069962 |
| TOMM20     | 0.27131291 | -0.4331008 | 0.74066813 |
| DDX59      | 0.15170751 | -0.4331856 | 0.74062463 |
| C11orf1    | 0.12909392 | -0.4333006 | 0.74056557 |
| AP003168.2 | 0.27281797 | -0.4334212 | 0.74050369 |
| NUP50-AS1  | 0.24355164 | -0.4334433 | 0.74049235 |
| UTP6       | 0.27272944 | -0.4339307 | 0.74024223 |
| RN7SL32P   | 0.42106699 | -0.4339812 | 0.74021628 |
| ATG101     | 0.20306544 | -0.4343571 | 0.74002347 |
| CNEP1R1    | 0.25517036 | -0.4343875 | 0.74000784 |
| NFKBIB     | -0.016409  | -0.4344336 | 0.73998422 |
| NUPL2      | 0.3097442  | -0.4350042 | 0.73969162 |
| ANXA1      | 0.27748853 | -0.435042  | 0.73967221 |
| PAAF1      | 0.44784441 | -0.4351394 | 0.73962227 |
| WDFY1      | 0.43337119 | -0.4352115 | 0.73958533 |
| LRRC42     | 0.18191664 | -0.4352925 | 0.73954378 |
| GRAP       | 0.18290231 | -0.4355745 | 0.73939926 |
| SNX2       | 0.22626842 | -0.4356013 | 0.73938554 |
| SLC41A3    | 0.49204927 | -0.4358389 | 0.73926377 |
| ZNF140     | 0.18128831 | -0.4359289 | 0.73921763 |
| DUS4L      | 0.2971357  | -0.4363025 | 0.73902623 |
| CENPBD1    | 0.3671078  | -0.4364493 | 0.73895104 |
| MYL5       | 0.11325799 | -0.4368445 | 0.73874865 |
| AL390728.4 | 0.38733843 | -0.4374057 | 0.73846132 |
| UBA3       | 0.29451685 | -0.4375989 | 0.73836243 |
| EIF2D      | 0.16076385 | -0.4376937 | 0.73831395 |
| NABP2      | -0.1343687 | -0.4377296 | 0.73829558 |
| ITPR1      | 0.36786296 | -0.4377432 | 0.73828861 |

| SLC39A3                | -0.1465408 | -0.4378631 | 0.73822727 |
|------------------------|------------|------------|------------|
| SSX2IP                 | 0.1057979  | -0.4384573 | 0.73792324 |
| EMC4                   | 0.35783248 | -0.4387226 | 0.73778758 |
| HMGB2                  | 0.19085077 | -0.4393146 | 0.73748491 |
| SRP9                   | 0.27841821 | -0.4393523 | 0.73746561 |
| CRELD1                 | 0.17473338 | -0.4393575 | 0.73746298 |
| APOL6                  | 0.31455745 | -0.4394865 | 0.73739703 |
| SLC25A17               | 0.19387159 | -0.4395122 | 0.73738387 |
| DCPS                   | 0.30333337 | -0.4396539 | 0.73731149 |
| UTP23                  | 0.0600036  | -0.4399    | 0.73718573 |
| MIR320D1               | 0.23752292 | -0.4399344 | 0.73716812 |
| LM07                   | 0.18835961 | -0.4399375 | 0.73716656 |
| AL035071.1             | 0.20115654 | -0.4399912 | 0.73713913 |
| ZNF638                 | 0.41240655 | -0.4399961 | 0.73713663 |
| SAMSN1                 | 0.25981004 | -0.4400297 | 0.73711944 |
| FAM109A                | 0.18408959 | -0.4401797 | 0.73704281 |
| CCL4                   | 0.3083286  | -0.4402747 | 0.73699426 |
| STXBP4                 | 0.02260167 | -0.4404769 | 0.73689099 |
| SP4                    | 0.21549562 | -0.4407453 | 0.73675389 |
| METAP1                 | 0.31934219 | -0.4408156 | 0.73671799 |
| ZNF623                 | 0.54348167 | -0.4410159 | 0.73661573 |
| NAXE                   | 0.53534733 | -0.4410442 | 0.73660125 |
| СКВ                    | 0.19880999 | -0.4415167 | 0.73636007 |
| ZNF519                 | 0.09954123 | -0.441984  | 0.73612158 |
| STAG3L5P-PVRIG2P-PILRB | 0.27210251 | -0.4419935 | 0.73611677 |
| NDUFB1                 | 0.27676247 | -0.4423233 | 0.73594849 |
| KRIT1                  | 0.55897706 | -0.4426638 | 0.73577483 |
| OSTC                   | 0.23200566 | -0.442873  | 0.73566811 |
| C5orf56                | 0.23761366 | -0.4429748 | 0.73561623 |
| C1orf109               | 0.19573949 | -0.4429854 | 0.73561084 |
| AC073869.1             | 0.30605084 | -0.4430163 | 0.73559506 |
| BEX3                   | 0.38046128 | -0.4431687 | 0.73551736 |
| RPL41                  | 0.17697356 | -0.4433129 | 0.73544385 |
| DEGS1                  | 0.09026962 | -0.4433884 | 0.73540538 |
| TMEM150A               | -0.1782082 | -0.4435525 | 0.73532174 |
| C18orf32               | 0.10810211 | -0.443709  | 0.73524197 |
| ISCA2                  | -0.0213302 | -0.4437629 | 0.73521448 |
| CWF19L1                | 0.50739179 | -0.4438627 | 0.73516365 |
| ARFGAP3                | 0.26489159 | -0.444092  | 0.73504679 |
| AC018628.1             | 0.12981299 | -0.4447969 | 0.73468774 |

| SGK494          | 0.14489019 | -0.4448556 | 0.73465784 |
|-----------------|------------|------------|------------|
| UNKL            | 0.12316868 | -0.4450564 | 0.73455558 |
| SMARCD3         | 0.03503493 | -0.4456162 | 0.73427063 |
| FMN1            | 0.11283446 | -0.4457279 | 0.7342138  |
| DTWD1           | 0.03992111 | -0.4459457 | 0.73410297 |
| PPCS            | 0.28358499 | -0.4461176 | 0.73401549 |
| GPR18           | 0.22329951 | -0.4461849 | 0.73398126 |
| PRIMPOL         | 0.23156364 | -0.4465028 | 0.73381952 |
| BNIP3           | 0.09377927 | -0.4470149 | 0.73355909 |
| RRNAD1          | 0.01955797 | -0.4470973 | 0.7335172  |
| ENSG00000271997 | 0.43259582 | -0.4472585 | 0.73343526 |
| AL158212.3      | 0.24029918 | -0.4472747 | 0.73342701 |
| FAM111A         | 0.26217516 | -0.4473727 | 0.73337719 |
| NDUFAF8         | 0.29683144 | -0.4476759 | 0.73322309 |
| FAM129B         | 0.20873869 | -0.4477951 | 0.73316248 |
| RTL8A           | 0.19340302 | -0.4478917 | 0.73311343 |
| COQ10B          | 0.02369316 | -0.4486657 | 0.73272021 |
| CD300C          | 0.20312285 | -0.4488393 | 0.73263202 |
| TMEM50B         | 0.14696442 | -0.4489432 | 0.7325793  |
| SEC11A          | 0.43106266 | -0.4489562 | 0.7325727  |
| SLF1            | 0.26366636 | -0.4490608 | 0.73251957 |
| KIAA1143        | 0.18843309 | -0.4495188 | 0.73228706 |
| ZC3HC1          | 0.25584326 | -0.4496897 | 0.73220034 |
| PTP4A1          | 0.1801324  | -0.4497046 | 0.73219277 |
| IQCG            | 0.04163051 | -0.4497136 | 0.73218818 |
| C11orf58        | 0.27333244 | -0.4498179 | 0.73213524 |
| AC027020.2      | -0.0449452 | -0.450485  | 0.7317968  |
| ZNF200          | 0.0800228  | -0.4508051 | 0.73163447 |
| FASTKD2         | 0.50899709 | -0.4512053 | 0.73143154 |
| LCORL           | 0.17976349 | -0.4514409 | 0.73131208 |
| KIF5C           | 0.13685791 | -0.4515327 | 0.73126555 |
| TEX10           | 0.27634735 | -0.4517569 | 0.73115194 |
| PPP3CC          | 0.21150238 | -0.4522874 | 0.73088313 |
| RAB11B-AS1      | 0.04335586 | -0.4528691 | 0.73058849 |
| RNF8            | 0.26694583 | -0.4529962 | 0.73052412 |
| SMC4            | 0.26300106 | -0.4535327 | 0.73025248 |
| SUMF2           | 0.24382745 | -0.4535947 | 0.73022111 |
| MED10           | 0.56822121 | -0.4537608 | 0.73013706 |
| CMC2            | 0.16900824 | -0.4540412 | 0.72999517 |
| CTDSPL          | 0.12182942 | -0.4544983 | 0.72976389 |

| CASP3       | 0.22693385 | -0.4545758 | 0.72972468 |
|-------------|------------|------------|------------|
| ATP5O       | 0.12880127 | -0.4551771 | 0.72942062 |
| TMEM238     | 0.2063181  | -0.4552297 | 0.72939405 |
| AC008764.10 | 0.25288026 | -0.4557252 | 0.72914358 |
| FCRL3       | 0.31975892 | -0.4557737 | 0.72911906 |
| KCTD5       | 0.21972804 | -0.4561928 | 0.72890728 |
| TENM1       | 0.16404083 | -0.456234  | 0.72888645 |
| TMEM56      | 0.06756473 | -0.4563213 | 0.72884236 |
| MED19       | 0.35773654 | -0.4567013 | 0.72865039 |
| SLC25A32    | 0.46852885 | -0.456785  | 0.72860815 |
| POM121      | 0.34640899 | -0.4568426 | 0.72857904 |
| RCHY1       | 0.22151803 | -0.4569866 | 0.72850632 |
| SLC39A13    | 0.41997941 | -0.4575264 | 0.72823378 |
| ATL3        | -0.0609238 | -0.4576764 | 0.7281581  |
| MFSD5       | 0.16394523 | -0.4579781 | 0.72800584 |
| MAD2L2      | 0.27400055 | -0.45806   | 0.72796451 |
| PDCD10      | 0.27019693 | -0.4583291 | 0.72782872 |
| RAP2B       | 0.05089878 | -0.4584118 | 0.72778703 |
| PATL2       | 0.26502384 | -0.4587677 | 0.7276075  |
| CCND2       | 0.24992529 | -0.459431  | 0.72727305 |
| LRRC75A     | 0.33576194 | -0.4595243 | 0.72722601 |
| B3GNTL1     | 0.13108871 | -0.4606069 | 0.72668048 |
| ERO1B       | 0.25703133 | -0.4611209 | 0.72642166 |
| RNF6        | 0.31373685 | -0.4612796 | 0.72634174 |
| AC136475.9  | 0.19821774 | -0.4613368 | 0.72631296 |
| KATNB1      | 0.07132421 | -0.4615146 | 0.72622343 |
| MANBAL      | -0.006695  | -0.4616249 | 0.72616794 |
| NFX1        | 0.49576308 | -0.4617582 | 0.72610084 |
| DCP2        | 0.32196695 | -0.4618118 | 0.72607384 |
| CD59        | 0.25031023 | -0.4618211 | 0.72606919 |
| BLOC1S2     | -0.1176534 | -0.461869  | 0.72604506 |
| NDUFS5      | 0.47686557 | -0.4619293 | 0.7260147  |
| DDOST       | 0.25515345 | -0.4620169 | 0.72597062 |
| ZNF384      | 0.24700896 | -0.4621055 | 0.72592603 |
| ALDH6A1     | 0.2707458  | -0.4622033 | 0.72587684 |
| MPP5        | 0.2849041  | -0.4625    | 0.72572757 |
| FAM169A     | 0.27717948 | -0.4625493 | 0.72570277 |
| PQLC3       | 0.22793868 | -0.4629194 | 0.72551664 |
| HKDC1       | 0.26918577 | -0.4629792 | 0.72548657 |
| KAT14       | 0.25931343 | -0.46299   | 0.72548116 |

| NFKBIL1      | 0.32847483 | -0.4630631 | 0.72544438 |
|--------------|------------|------------|------------|
| RANBP9       | 0.30224636 | -0.4632123 | 0.72536934 |
| NAA20        | 0.1197608  | -0.4632621 | 0.72534432 |
| PDE4DIP      | 0.3061694  | -0.4634365 | 0.72525662 |
| TAF1C        | 0.18191752 | -0.4641628 | 0.72489163 |
| PTPN2        | 0.21660584 | -0.4643749 | 0.72478507 |
| AC073957.3   | 0.30504112 | -0.4644444 | 0.72475014 |
| REEP4        | 0.29770531 | -0.4646143 | 0.72466481 |
| ACAD8        | 0.04132302 | -0.4656184 | 0.72416059 |
| FAM162A      | 0.25074311 | -0.465944  | 0.72399719 |
| FGD2         | 0.38051654 | -0.4659999 | 0.72396911 |
| IFT80        | 0.36854821 | -0.4660309 | 0.72395357 |
| AK3          | 0.4136225  | -0.4660686 | 0.72393466 |
| AC117382.1   | 0.13625774 | -0.4662058 | 0.7238658  |
| OGFOD3       | 0.41211923 | -0.4667281 | 0.7236038  |
| RAD1         | 0.18416123 | -0.4667806 | 0.72357747 |
| NDUFA5       | 0.13541567 | -0.4669498 | 0.72349262 |
| FUOM         | 0.1744848  | -0.4669815 | 0.72347675 |
| TRIM22       | 0.23634823 | -0.4669963 | 0.7234693  |
| PTRHD1       | -0.1020098 | -0.4671548 | 0.7233898  |
| NR6A1        | 0.22443343 | -0.4672616 | 0.72333627 |
| GPR65        | 0.38199208 | -0.4675632 | 0.72318506 |
| RHOU         | 0.13730135 | -0.467631  | 0.7231511  |
| VRK2         | 0.34419709 | -0.467648  | 0.72314257 |
| LNX2         | 0.36849159 | -0.4677757 | 0.72307856 |
| SLC27A1      | 0.52843506 | -0.4681421 | 0.72289494 |
| MAP3K7       | 0.27050636 | -0.4682585 | 0.72283663 |
| NIPSNAP2     | 0.30905982 | -0.4682881 | 0.72282179 |
| WDR18        | 0.46922596 | -0.4687105 | 0.72261019 |
| SCRN1        | 0.10799368 | -0.4687677 | 0.72258154 |
| CIAPIN1      | 0.41326626 | -0.4690493 | 0.72244049 |
| SUFU         | 0.45216825 | -0.469531  | 0.72219933 |
| SLC25A25-AS1 | 0.2314522  | -0.4695686 | 0.72218053 |
| SKA2         | 0.31728169 | -0.469692  | 0.72211872 |
| SCIMP        | 0.28824579 | -0.4698532 | 0.72203808 |
| BEX2         | 0.23572195 | -0.4701538 | 0.72188762 |
| AC138409.2   | 0.04623071 | -0.4702741 | 0.72182742 |
| REV1         | 0.47364026 | -0.4705202 | 0.72170432 |
| COMMD9       | 0.13116832 | -0.470944  | 0.72149237 |
| CNIH1        | 0.33133924 | -0.4711421 | 0.72139329 |

| ZNF761     | 0.3103     | -0.471305  | 0.72131182 |
|------------|------------|------------|------------|
| KBTBD3     | 0.26234166 | -0.471309  | 0.72130984 |
| PAICS      | 0.23635216 | -0.4714046 | 0.72126204 |
| PFDN5      | 0.12517472 | -0.4721652 | 0.72088189 |
| FAM210A    | 0.10713171 | -0.4722964 | 0.72081632 |
| MYCL       | 0.27250248 | -0.4723415 | 0.72079378 |
| IKZF4      | 0.47752663 | -0.472739  | 0.72059523 |
| FAM3C      | 0.12003152 | -0.4728465 | 0.72054154 |
| CYP4V2     | 0.22632343 | -0.4731256 | 0.72040216 |
| MRPL22     | 0.18217746 | -0.4736961 | 0.72011731 |
| MIER2      | 0.30737344 | -0.4737035 | 0.72011363 |
| DCAF4      | 0.16693087 | -0.4738207 | 0.72005513 |
| LATS2      | 0.36569634 | -0.4744224 | 0.71975491 |
| ZNF706     | 0.21468989 | -0.4749776 | 0.71947796 |
| SRC        | 0.0048908  | -0.4751136 | 0.71941014 |
| ANAPC4     | 0.16327228 | -0.4754366 | 0.71924912 |
| USP30      | 0.21205578 | -0.4756491 | 0.71914318 |
| CLK2       | 0.31339442 | -0.4758283 | 0.71905384 |
| CTSH       | 0.39811845 | -0.4761006 | 0.71891816 |
| CROCCP3    | 0.23195301 | -0.476332  | 0.71880285 |
| TRMT10C    | -0.0203989 | -0.4770425 | 0.71844891 |
| PLCB3      | -0.0576885 | -0.4773856 | 0.7182781  |
| AC131009.4 | -0.0705998 | -0.4775222 | 0.71821006 |
| ZNF720     | 0.28154491 | -0.4779691 | 0.71798762 |
| CUTC       | 0.13059801 | -0.4780476 | 0.71794856 |
| CCNK       | 0.24372544 | -0.4781045 | 0.71792025 |
| MIF4GD     | 0.25326895 | -0.4788174 | 0.71756558 |
| PGAM5      | 0.25457317 | -0.4791732 | 0.71738866 |
| KLRC1      | 0.27337779 | -0.4791904 | 0.7173801  |
| ZNF252P    | 0.09192304 | -0.4796734 | 0.71713997 |
| TMEM106C   | 0.27085045 | -0.4797207 | 0.71711645 |
| IKBIP      | 0.11849893 | -0.4800045 | 0.71697537 |
| ZNF264     | 0.16510241 | -0.4801746 | 0.71689084 |
| MAP3K12    | 0.33796796 | -0.4804243 | 0.71676679 |
| ZXDC       | 0.33692633 | -0.4804926 | 0.71673288 |
| DNAAF5     | 0.15664465 | -0.4815823 | 0.71619171 |
| CXorf21    | 0.311953   | -0.4824997 | 0.71573643 |
| EZH2       | 0.19274783 | -0.4825188 | 0.71572694 |
| AC079630.1 | 0.1655604  | -0.4834496 | 0.71526535 |
| AC090948.1 | 0.27414189 | -0.4834812 | 0.71524964 |

| FAM76A     | 0.30287668 | -0.4836453 | 0.7151683  |
|------------|------------|------------|------------|
| FANCD2     | 0.17463318 | -0.4836891 | 0.71514659 |
| RPL23      | 0.27927256 | -0.4838331 | 0.7150752  |
| PLA2G6     | 0.12365616 | -0.4838658 | 0.71505901 |
| PKD1       | 0.30379667 | -0.4843178 | 0.71483502 |
| ATP1B1     | 0.35920712 | -0.4845066 | 0.71474147 |
| LINC00869  | 0.40592628 | -0.4857498 | 0.71412583 |
| FLAD1      | 0.11928346 | -0.485839  | 0.71408169 |
| DCTPP1     | 0.22681231 | -0.4862594 | 0.71387361 |
| IFI44      | 0.2956611  | -0.4865564 | 0.71372666 |
| EPHA4      | 0.43000921 | -0.4867794 | 0.71361635 |
| HIST1H2BC  | 0.0729906  | -0.4869475 | 0.71353324 |
| YAF2       | 0.30069476 | -0.4870087 | 0.71350295 |
| SCLT1      | 0.22832532 | -0.48702   | 0.71349736 |
| NIPA2      | 0.2073633  | -0.4871887 | 0.71341391 |
| EXOSC3     | 0.27083485 | -0.4872318 | 0.71339262 |
| MRPL34     | -0.0933727 | -0.4874162 | 0.71330145 |
| NKAP       | 0.32026515 | -0.4882709 | 0.71287899 |
| AP003486.2 | 0.0113402  | -0.4885484 | 0.71274189 |
| SMCO4      | 0.37916519 | -0.4886427 | 0.7126953  |
| UBE2D4     | 0.41286655 | -0.4887843 | 0.71262535 |
| DCUN1D1    | 0.10940058 | -0.4894481 | 0.71229755 |
| PARP8      | 0.26255714 | -0.4896751 | 0.71218547 |
| МАРК8      | 0.35212246 | -0.4899512 | 0.71204919 |
| RAD18      | 0.03198495 | -0.4900762 | 0.71198748 |
| MARCO      | 0.10504734 | -0.4901777 | 0.71193743 |
| HEXDC      | 0.36913225 | -0.4905125 | 0.71177222 |
| SMYD2      | 0.3615202  | -0.4906529 | 0.71170296 |
| API5       | 0.24898672 | -0.4910914 | 0.71148665 |
| FBXO46     | 0.30380171 | -0.4913743 | 0.71134715 |
| UBFD1      | -0.0746536 | -0.4914606 | 0.71130462 |
| POLA2      | 0.36737666 | -0.4915931 | 0.71123926 |
| SF3B6      | 0.47690701 | -0.4921732 | 0.71095334 |
| STAT2      | 0.32716329 | -0.492216  | 0.71093227 |
| SRP54      | 0.11376053 | -0.492256  | 0.71091257 |
| ANXA3      | 0.341318   | -0.4922797 | 0.71090087 |
| ACVR1B     | 0.71308821 | -0.4928369 | 0.71062638 |
| COPS7A     | 0.25201662 | -0.4931016 | 0.71049597 |
| ZNRF2      | 0.2419997  | -0.4931401 | 0.71047701 |
| ILF2       | 0.31197691 | -0.4932648 | 0.71041564 |

| LRRK1      | 0.37801502 | -0.4934014 | 0.71034837 |
|------------|------------|------------|------------|
| PABPC1P3   | 0.28370802 | -0.4934929 | 0.7103033  |
| KCMF1      | 0.26328608 | -0.4936122 | 0.71024455 |
| NCDN       | 0.2376791  | -0.4938482 | 0.71012839 |
| REEP3      | 0.41503554 | -0.4939274 | 0.71008941 |
| INSIG2     | -0.0120828 | -0.4939571 | 0.71007481 |
| YIF1A      | 0.38738079 | -0.4939875 | 0.71005984 |
| MUS81      | 0.26083188 | -0.4940477 | 0.7100302  |
| AC027097.1 | 0.25178175 | -0.4941163 | 0.70999645 |
| APOL1      | 0.27831503 | -0.4947905 | 0.70966475 |
| SUN1       | 0.23358508 | -0.4950832 | 0.70952075 |
| SZT2       | 0.24907752 | -0.4952915 | 0.70941834 |
| PMVK       | 0.33688849 | -0.4953404 | 0.70939428 |
| HPF1       | -0.0020332 | -0.4953467 | 0.70939119 |
| RNF4       | 0.20485729 | -0.4955043 | 0.70931371 |
| RBM19      | 0.07477179 | -0.4957539 | 0.709191   |
| CLCN7      | 0.08822398 | -0.4957605 | 0.70918772 |
| BRIX1      | 0.29748582 | -0.4963421 | 0.70890191 |
| ANKZF1     | 0.15321837 | -0.4964162 | 0.70886548 |
| PGM1       | 0.29725544 | -0.4964969 | 0.70882586 |
| ZC3H10     | 0.41685889 | -0.4965859 | 0.7087821  |
| PAOX       | 0.3239905  | -0.4966577 | 0.70874685 |
| YPEL2      | 0.14498665 | -0.496688  | 0.70873194 |
| HIST1H2BD  | 0.22034284 | -0.4970684 | 0.70854508 |
| PDCL3      | 0.27816175 | -0.4973424 | 0.70841056 |
| DUSP23     | 0.14490495 | -0.4981307 | 0.70802356 |
| AL079342.1 | 0.31453782 | -0.4981753 | 0.70800167 |
| AC064805.1 | 0.15679553 | -0.4981803 | 0.70799924 |
| RRAS       | 0.48527442 | -0.4982466 | 0.70796667 |
| TUBB6      | 0.30704152 | -0.4986678 | 0.70776001 |
| FAM189B    | 0.36598804 | -0.4988264 | 0.70768224 |
| GBP1       | 0.30909687 | -0.4991747 | 0.70751141 |
| POLR3C     | 0.1106285  | -0.4993937 | 0.707404   |
| APEX1      | 0.32948442 | -0.499537  | 0.70733377 |
| NOM1       | 0.26496549 | -0.4996772 | 0.70726503 |
| FAM13B     | 0.20143445 | -0.4997242 | 0.70724196 |
| AGK        | 0.30168435 | -0.5003358 | 0.70694224 |
| FBXO3      | 0.33787454 | -0.500526  | 0.70684903 |
| SERINC1    | 0.36484354 | -0.5009466 | 0.70664298 |
| PCSK5      | 0.23227621 | -0.5012839 | 0.70647779 |

| HLA-F-AS1  | 0.34185198 | -0.5016486 | 0.70629921 |
|------------|------------|------------|------------|
| ERH        | 0.41244631 | -0.5024452 | 0.70590933 |
| C21orf58   | 0.1269842  | -0.5024553 | 0.70590439 |
| EIF4E      | 0.47047711 | -0.5026444 | 0.70581188 |
| IL2RB      | 0.44940525 | -0.5028177 | 0.70572708 |
| EIF3E      | 0.35616985 | -0.5029492 | 0.70566277 |
| RABL2B     | 0.14263806 | -0.5029674 | 0.70565386 |
| NXT1       | 0.44047595 | -0.5038898 | 0.70520283 |
| HCAR3      | 0.13164043 | -0.5039464 | 0.70517519 |
| ATP1B3     | 0.18424155 | -0.503949  | 0.70517391 |
| AC048341.2 | 0.47958877 | -0.5046069 | 0.70485241 |
| CCDC174    | 0.32934011 | -0.5047704 | 0.70477255 |
| C15orf57   | 0.39921614 | -0.5048233 | 0.70474671 |
| MED30      | 0.11054003 | -0.5049237 | 0.70469767 |
| NAA16      | -0.0846635 | -0.5051541 | 0.70458513 |
| ZNF783     | 0.22619824 | -0.5053471 | 0.70449085 |
| НЕХВ       | 0.40601618 | -0.5053889 | 0.70447047 |
| RFXAP      | 0.29067375 | -0.5059656 | 0.70418889 |
| C12orf43   | 0.26719763 | -0.5063232 | 0.70401437 |
| ATG12      | 0.34052801 | -0.5064251 | 0.70396463 |
| RASGRF2    | 0.30966822 | -0.5066458 | 0.70385696 |
| HTATSF1    | 0.23085639 | -0.5067321 | 0.70381488 |
| ZFP62      | 0.49788731 | -0.5070671 | 0.70365147 |
| LPCAT2     | 0.34154865 | -0.5071837 | 0.70359457 |
| ZMYM6      | 0.40241705 | -0.5072634 | 0.70355573 |
| TNNI2      | 0.33172981 | -0.5074403 | 0.70346946 |
| ZNF224     | 0.29183639 | -0.5076231 | 0.70338035 |
| BNC2       | 0.24130693 | -0.5076282 | 0.70337785 |
| HAUS6      | 0.31635775 | -0.5076861 | 0.70334963 |
| CEP95      | 0.32950289 | -0.5081772 | 0.70311023 |
| DBI        | 0.21302719 | -0.5081947 | 0.70310169 |
| HLA-DQA2   | 0.05635635 | -0.5083914 | 0.70300583 |
| HSPE1      | 0.40537714 | -0.5086151 | 0.70289683 |
| GYPA       | 0.3377087  | -0.5087627 | 0.70282496 |
| C1orf162   | 0.27971326 | -0.5091203 | 0.70265075 |
| PPP1R16A   | 0.29681282 | -0.5096313 | 0.70240191 |
| KIAA1191   | 0.26270855 | -0.509666  | 0.70238501 |
| GFPT1      | 0.00748512 | -0.5096874 | 0.7023746  |
| VASH1      | 0.18340474 | -0.509916  | 0.70226331 |
| ATP10A     | 0.18044634 | -0.5099359 | 0.70225365 |

| OSGIN2     | 0.54988399 | -0.5106142 | 0.70192355 |
|------------|------------|------------|------------|
| ZZZ3       | 0.49943319 | -0.5122195 | 0.70114296 |
| SNHG7      | 0.38830795 | -0.5126505 | 0.70093353 |
| TIMM17A    | 0.3170955  | -0.5128059 | 0.70085802 |
| RAB20      | 0.16903857 | -0.5130011 | 0.70076317 |
| ZNF776     | 0.39376122 | -0.5134185 | 0.70056049 |
| RIT1       | -0.034273  | -0.5134348 | 0.70055254 |
| СРМ        | 0.23089745 | -0.5140542 | 0.70025185 |
| IFIT5      | 0.53575819 | -0.5141225 | 0.7002187  |
| CCDC28B    | 0.20934838 | -0.514145  | 0.70020777 |
| AC147067.1 | -0.109573  | -0.5151593 | 0.69971565 |
| МАРК9      | 0.50514331 | -0.515432  | 0.6995834  |
| MRE11      | 0.30737145 | -0.5156901 | 0.69945826 |
| AP003068.2 | 0.13129916 | -0.515988  | 0.69931385 |
| ERMP1      | 0.07746774 | -0.5168524 | 0.69889497 |
| IFIT3      | 0.436477   | -0.516883  | 0.69888014 |
| DVL2       | 0.30552842 | -0.517131  | 0.69876003 |
| CTNS       | 0.05529016 | -0.5174707 | 0.69859552 |
| FBXO21     | 0.21172247 | -0.5177332 | 0.69846841 |
| WDR47      | 0.36810201 | -0.5177891 | 0.69844138 |
| DDX10      | 0.42993599 | -0.5180798 | 0.69830063 |
| CAPN10     | 0.55950292 | -0.5183174 | 0.69818565 |
| NOMO1      | 0.42057602 | -0.5185701 | 0.69806338 |
| ADCY7      | 0.49993947 | -0.5187271 | 0.69798742 |
| CEBPE      | 0.08096707 | -0.5190073 | 0.69785186 |
| CDPF1      | 0.22732031 | -0.5193292 | 0.69769616 |
| GTPBP10    | 0.37859277 | -0.5197326 | 0.69750109 |
| TP53I13    | 0.2012278  | -0.5197895 | 0.69747362 |
| ANXA2R     | 0.23062341 | -0.5198595 | 0.69743975 |
| DCUN1D5    | 0.26416487 | -0.5203682 | 0.69719388 |
| ZCCHC9     | 0.25631649 | -0.5205113 | 0.69712474 |
| TRAV6      | 0.07456909 | -0.5205785 | 0.69709225 |
| ELOC       | 0.01068259 | -0.5208313 | 0.69697013 |
| SEPSECS    | 0.42445587 | -0.5208623 | 0.69695515 |
| POLG2      | 0.23865392 | -0.5214257 | 0.69668304 |
| C18orf21   | 0.37346303 | -0.5217497 | 0.6965266  |
| SCOC       | 0.2851498  | -0.5222429 | 0.6962885  |
| MRPL35     | 0.07323783 | -0.5229521 | 0.69594629 |
| AC004846.2 | 0.25432959 | -0.5230104 | 0.6959182  |
| MED11      | 0.21790482 | -0.5231475 | 0.69585206 |

| SLC43A3    | 0.28413997 | -0.5232598 | 0.69579787 |
|------------|------------|------------|------------|
| SEC24A     | 0.12330836 | -0.5240715 | 0.69540653 |
| AC008467.1 | 0.45064391 | -0.5240811 | 0.69540187 |
| ZNF768     | 0.45959204 | -0.5240858 | 0.69539961 |
| UBE4A      | 0.20385608 | -0.5244791 | 0.69521006 |
| BZW2       | 0.4167312  | -0.5247019 | 0.69510272 |
| COPRS      | 0.24848193 | -0.5253737 | 0.6947791  |
| JAK2       | 0.19148597 | -0.5256863 | 0.69462859 |
| SH3BGRL2   | 0.10601825 | -0.5259398 | 0.69450656 |
| OAS1       | 0.25195281 | -0.5261317 | 0.69441416 |
| HAVCR2     | 0.15161684 | -0.5263368 | 0.69431544 |
| ΑΡΤΧ       | 0.28579738 | -0.5269076 | 0.69404083 |
| CKS1B      | 0.31153139 | -0.5269275 | 0.69403123 |
| ANKRD36BP2 | 0.33972347 | -0.5275204 | 0.69374608 |
| UMPS       | 0.42620504 | -0.5275753 | 0.69371965 |
| POMGNT2    | 0.25723241 | -0.5281726 | 0.69343253 |
| VDAC3      | 0.31721547 | -0.5285101 | 0.6932703  |
| ELL2       | 0.39913096 | -0.5285943 | 0.69322984 |
| SORT1      | 0.25987241 | -0.5302382 | 0.69244039 |
| STK35      | 0.54447833 | -0.5313634 | 0.69190058 |
| OTUD6B     | 0.35243726 | -0.5313833 | 0.69189101 |
| NEIL2      | 0.64008911 | -0.5314798 | 0.69184471 |
| FEM1B      | 0.44811698 | -0.5320253 | 0.69158319 |
| GTPBP3     | 0.18855608 | -0.5323475 | 0.69142877 |
| NMD3       | 0.3581546  | -0.5323656 | 0.6914201  |
| PLCH2      | -0.0767174 | -0.5325064 | 0.6913526  |
| SLC25A28   | 0.34963505 | -0.532909  | 0.69115971 |
| RCAN1      | 0.35323076 | -0.5334845 | 0.69088405 |
| KNOP1      | 0.44920653 | -0.5336726 | 0.69079397 |
| KCNQ5-IT1  | 0.3407492  | -0.5337566 | 0.69075374 |
| N4BP2L1    | 0.32054967 | -0.5341157 | 0.69058183 |
| SLC15A2    | 0.45689141 | -0.5345424 | 0.69037761 |
| BTBD10     | 0.56972175 | -0.5350401 | 0.69013951 |
| CEP162     | 0.22844998 | -0.5351226 | 0.69010002 |
| APOBEC3D   | 0.36980302 | -0.5354596 | 0.68993886 |
| CDC42-IT1  | 0.30039937 | -0.5354721 | 0.68993286 |
| GBP5       | 0.26612713 | -0.5369115 | 0.68924484 |
| SUB1       | 0.20049282 | -0.5376172 | 0.68890779 |
| CYB561     | 0.19739173 | -0.5379575 | 0.68874533 |
| IDH3A      | 0.20020652 | -0.5381749 | 0.68864151 |

| AP000560.1 | 0.28537449 | -0.5383831 | 0.68854216 |
|------------|------------|------------|------------|
| POLR2M     | 0.16744376 | -0.5384033 | 0.68853254 |
| COG7       | 0.04535491 | -0.539178  | 0.68816287 |
| COMMD5     | 0.06117082 | -0.5402475 | 0.68765291 |
| DHRS9      | 0.17530463 | -0.5410519 | 0.68726961 |
| C16orf87   | 0.09649566 | -0.5411181 | 0.68723807 |
| VAV2       | 0.32573069 | -0.5412898 | 0.68715628 |
| CSE1L      | 0.24749541 | -0.5414454 | 0.6870822  |
| RPP14      | 0.10927296 | -0.5416943 | 0.68696367 |
| NAGA       | 0.41346988 | -0.5421406 | 0.68675118 |
| PPP1CC     | 0.24197462 | -0.5424926 | 0.68658364 |
| PRDX1      | 0.24382701 | -0.54253   | 0.68656584 |
| HINFP      | 0.30688752 | -0.5432049 | 0.68624474 |
| RFC5       | 0.4419482  | -0.5438292 | 0.68594786 |
| TYW5       | 0.25459406 | -0.5439608 | 0.68588528 |
| CYBRD1     | 0.26132325 | -0.544596  | 0.68558337 |
| SNAPIN     | 0.29904276 | -0.5449396 | 0.68542011 |
| LRRC37B    | 0.38325704 | -0.5452157 | 0.68528892 |
| LINC00476  | 0.07716242 | -0.5455432 | 0.6851334  |
| ETNK1      | 0.34864189 | -0.545949  | 0.6849407  |
| MRPS6      | 0.22798522 | -0.5460868 | 0.68487526 |
| TOR1AIP1   | 0.32401109 | -0.5461546 | 0.68484309 |
| TGFBR1     | 0.18428456 | -0.5466845 | 0.68459162 |
| VRK1       | 0.40306034 | -0.5471227 | 0.68438368 |
| BNIP2      | 0.23894521 | -0.5471616 | 0.68436526 |
| EHBP1      | 0.63211649 | -0.547391  | 0.68425644 |
| VAV3       | 0.55517554 | -0.5475957 | 0.68415935 |
| TOR3A      | 0.58607304 | -0.5476338 | 0.68414131 |
| C21orf91   | 0.34339147 | -0.547988  | 0.68397333 |
| FAM168B    | 0.41552142 | -0.5482539 | 0.68384727 |
| RNF121     | 0.25943759 | -0.548557  | 0.68370363 |
| REPS2      | 0.28640374 | -0.5488917 | 0.68354505 |
| SIGLEC7    | 0.24267091 | -0.5493071 | 0.68334824 |
| CEACAM1    | 0.18078107 | -0.5497726 | 0.68312779 |
| STK36      | 0.21077662 | -0.5498844 | 0.68307486 |
| SACS       | 0.38387805 | -0.5501722 | 0.6829386  |
| DUSP7      | 0.53712116 | -0.5507946 | 0.68264404 |
| ZNF175     | 0.39572242 | -0.550998  | 0.68254782 |
| BTRC       | 0.10124267 | -0.5511888 | 0.68245755 |
| CASP8AP2   | 0.35242655 | -0.5512179 | 0.68244379 |

| SS18       | 0.2175692  | -0.5512249 | 0.68244045 |
|------------|------------|------------|------------|
| MT1E       | 0.24183071 | -0.551371  | 0.68237138 |
| CSTF3      | -0.0760332 | -0.5513927 | 0.6823611  |
| POLR2H     | 0.4828162  | -0.55166   | 0.68223469 |
| RPL9       | 0.30479109 | -0.5519788 | 0.68208392 |
| R3HCC1L    | 0.28212255 | -0.5527678 | 0.681711   |
| UBE2E1     | 0.14449946 | -0.5533878 | 0.6814181  |
| ZNF555     | 0.2976875  | -0.5538038 | 0.68122166 |
| LRRC37A4P  | 0.50284259 | -0.5541064 | 0.6810788  |
| GINM1      | 0.39037238 | -0.5542179 | 0.68102617 |
| FKBP3      | 0.34616079 | -0.554346  | 0.68096569 |
| LRSAM1     | 0.49683188 | -0.5543784 | 0.68095041 |
| CTSL       | 0.14332503 | -0.5550357 | 0.68064022 |
| SH2B3      | 0.35622885 | -0.5558327 | 0.68026433 |
| LILRB1     | 0.45425952 | -0.5560084 | 0.68018145 |
| ATG3       | 0.46718784 | -0.5564985 | 0.67995042 |
| AC069366.2 | 0.36330965 | -0.556568  | 0.67991767 |
| NAPG       | 0.38020846 | -0.5567444 | 0.67983456 |
| SYNJ2BP    | 0.24951434 | -0.5570892 | 0.67967208 |
| SRSF7      | 0.3944804  | -0.5572211 | 0.67960994 |
| MRPL46     | 0.22636181 | -0.5574802 | 0.67948794 |
| INTS6L     | 0.25636243 | -0.5578826 | 0.67929841 |
| SP3        | 0.24780015 | -0.5579806 | 0.67925229 |
| WDR36      | 0.19772271 | -0.5583479 | 0.67907935 |
| AC007292.2 | 0.15442147 | -0.5585167 | 0.67899991 |
| DNASE1L1   | 0.25193462 | -0.5586309 | 0.67894615 |
| ZC3H12D    | 0.47418919 | -0.559438  | 0.67856647 |
| KLF4       | 0.47882113 | -0.5594624 | 0.67855499 |
| TMED4      | 0.4528178  | -0.5601307 | 0.67824072 |
| PIGB       | 0.38031806 | -0.5606026 | 0.67801891 |
| ZBP1       | 0.4209725  | -0.5607245 | 0.6779616  |
| AC004918.1 | 0.32030017 | -0.5613332 | 0.67767564 |
| ZNF506     | 0.41668561 | -0.5614565 | 0.67761771 |
| IL18RAP    | 0.24487164 | -0.5617942 | 0.67745914 |
| REXO2      | 0.3745028  | -0.5623667 | 0.67719033 |
| PHLDB2     | 0.38392746 | -0.562687  | 0.67704002 |
| ACOX3      | 0.62060697 | -0.5628414 | 0.67696756 |
| ARRDC4     | 0.40098764 | -0.5628862 | 0.67694655 |
| DERA       | 0.4376798  | -0.5629106 | 0.67693507 |
| ZNF587B    | 0.3288217  | -0.5632363 | 0.67678229 |

| ITGAE        | 0.18221559 | -0.5633471 | 0.6767303  |
|--------------|------------|------------|------------|
| AKR7A2       | 0.22677002 | -0.5635193 | 0.67664954 |
| MFSD8        | 0.22520456 | -0.5635951 | 0.67661397 |
| SLC25A24     | 0.34197327 | -0.5636636 | 0.67658185 |
| AC024075.1   | 0.3610122  | -0.5640617 | 0.6763952  |
| PPARD        | 0.51203405 | -0.5655798 | 0.67568382 |
| RPAIN        | 0.26239334 | -0.5661443 | 0.67541948 |
| ZNF426       | 0.4375588  | -0.5663532 | 0.67532171 |
| NSMCE3       | 0.48689987 | -0.5664338 | 0.67528398 |
| ANKRD52      | 0.63633168 | -0.5664402 | 0.67528098 |
| ETHE1        | 0.2726024  | -0.5664459 | 0.6752783  |
| ST3GAL5      | 0.30762644 | -0.5665751 | 0.67521784 |
| TSNAX        | 0.34318213 | -0.5672945 | 0.6748812  |
| BUB3         | 0.1498339  | -0.5674447 | 0.67481094 |
| TAPT1        | 0.3938171  | -0.5677979 | 0.67464578 |
| CDCA4        | 0.32089026 | -0.56782   | 0.67463544 |
| RNF125       | 0.31819361 | -0.5683152 | 0.67440392 |
| AL121839.2   | 0.29895045 | -0.5685526 | 0.67429292 |
| LRIG1        | 0.3075266  | -0.5688711 | 0.67414408 |
| SMIM24       | 0.20784533 | -0.5699294 | 0.67364973 |
| FUCA1        | 0.40335879 | -0.5704828 | 0.67339139 |
| TTC37        | 0.36006279 | -0.5710417 | 0.67313057 |
| TRIB2        | 0.42610764 | -0.5712906 | 0.67301447 |
| MCUB         | 0.34885098 | -0.5714659 | 0.67293267 |
| MOV10        | 0.37625687 | -0.5718121 | 0.67277121 |
| RCC1L        | 0.15339665 | -0.5718284 | 0.67276363 |
| MPHOSPH10    | 0.67739412 | -0.572187  | 0.67259642 |
| C21orf62-AS1 | 0.0807822  | -0.572512  | 0.6724449  |
| ZBED5-AS1    | 0.42952121 | -0.5730451 | 0.6721965  |
| TMEM14C      | 0.31255082 | -0.5731243 | 0.67215957 |
| TIMM21       | 0.28477728 | -0.5735288 | 0.67197115 |
| SNRPA1       | 0.13467213 | -0.5737524 | 0.67186703 |
| C2orf49      | 0.39973113 | -0.5740071 | 0.67174842 |
| MIA3         | 0.49068961 | -0.5740204 | 0.67174223 |
| CWC15        | 0.37130509 | -0.574085  | 0.67171213 |
| LACTB        | 0.24465619 | -0.5745456 | 0.67149773 |
| SDF2L1       | 0.375582   | -0.5745632 | 0.67148954 |
| TRMT12       | 0.25683595 | -0.5747168 | 0.67141806 |
| SLC25A46     | 0.37603537 | -0.5751936 | 0.67119616 |
| MRPS7        | 0.31776684 | -0.5763622 | 0.67065272 |
| EXOSC2     | 0.43416838 | -0.5765167 | 0.67058088 |
|------------|------------|------------|------------|
| MEAF6      | 0.22524402 | -0.5765454 | 0.67056758 |
| DNAJC27    | 0.36274287 | -0.5765611 | 0.67056025 |
| HS2ST1     | 0.12717139 | -0.5774231 | 0.67015974 |
| TM9SF2     | 0.27108696 | -0.5778195 | 0.6699756  |
| GM2A       | 0.25527905 | -0.5783423 | 0.66973286 |
| GCLM       | 0.19351929 | -0.5784328 | 0.66969087 |
| HS6ST1     | 0.48572125 | -0.578759  | 0.66953949 |
| IGFBP7     | 0.57502794 | -0.5791244 | 0.66936991 |
| STAMBP     | 0.24647058 | -0.5793082 | 0.66928464 |
| RAB9A      | 0.25769777 | -0.5796769 | 0.66911363 |
| CD28       | 0.1197685  | -0.5802018 | 0.6688702  |
| HENMT1     | 0.0305696  | -0.5806168 | 0.66867781 |
| ADAP2      | 0.08271462 | -0.580942  | 0.6685271  |
| ATRAID     | 0.37988799 | -0.5811475 | 0.66843192 |
| СРОХ       | 0.17844495 | -0.5811868 | 0.66841369 |
| ADGRL1     | 0.42911323 | -0.5813731 | 0.66832738 |
| CTBP1-AS2  | 0.50787123 | -0.581535  | 0.6682524  |
| ALG2       | 0.310622   | -0.5818883 | 0.66808877 |
| SLC35A1    | 0.34660475 | -0.5823312 | 0.6678837  |
| POP4       | 0.35712816 | -0.5824886 | 0.66781082 |
| TRIT1      | 0.22496698 | -0.5825759 | 0.66777043 |
| EIF4ENIF1  | 0.54972147 | -0.5832766 | 0.66744619 |
| DIS3L2     | 0.32244481 | -0.5832959 | 0.66743723 |
| ZNF92      | 0.37700274 | -0.5837533 | 0.66722565 |
| EYA3       | 0.20230016 | -0.5842243 | 0.66700786 |
| SRFBP1     | 0.18657489 | -0.5847715 | 0.66675495 |
| ZNF780B    | 0.28411456 | -0.5848826 | 0.66670361 |
| LMAN2L     | 0.21597964 | -0.5859553 | 0.66620803 |
| DHX40      | 0.36822548 | -0.586004  | 0.66618559 |
| AC007342.2 | 0.4764585  | -0.5863035 | 0.6660473  |
| ITGB3      | 0.26258765 | -0.5867549 | 0.66583893 |
| TNFAIP6    | 0.24465924 | -0.5868261 | 0.66580604 |
| CCDC117    | 0.16055438 | -0.587052  | 0.6657018  |
| DHRS4-AS1  | 0.28993711 | -0.5870939 | 0.66568248 |
| CLTA       | 0.19619904 | -0.5874209 | 0.66553163 |
| DNAJC19    | 0.3263287  | -0.5879153 | 0.66530356 |
| ABCC13     | 0.74951404 | -0.5892952 | 0.66466753 |
| LINC00937  | 0.49068181 | -0.5894321 | 0.66460446 |
| G3BP2      | 0.22767234 | -0.5897318 | 0.66446642 |

| PYM1       | 0.29528397 | -0.5902329 | 0.66423569 |
|------------|------------|------------|------------|
| RSPH3      | 0.47104657 | -0.5903633 | 0.66417561 |
| AC093726.1 | 0.41747707 | -0.5912356 | 0.66377419 |
| PRELID3B   | 0.32457978 | -0.5922033 | 0.66332908 |
| AC125257.1 | 0.21582165 | -0.5930497 | 0.66294002 |
| TMEM170B   | 0.18066244 | -0.5932044 | 0.66286895 |
| RABGGTA    | 0.48538053 | -0.5939876 | 0.6625092  |
| ASH2L      | 0.35573953 | -0.5942729 | 0.66237819 |
| ARL1       | 0.34996559 | -0.5945762 | 0.66223898 |
| COASY      | 0.51457313 | -0.5947763 | 0.66214711 |
| PAPD7      | 0.4658788  | -0.594828  | 0.66212339 |
| CEBPG      | 0.38872228 | -0.5950129 | 0.66203854 |
| AL355816.2 | 0.19397258 | -0.595394  | 0.66186368 |
| LIG1       | 0.36352806 | -0.5954996 | 0.66181522 |
| ARMC1      | 0.37989193 | -0.5955223 | 0.66180482 |
| YARS2      | 0.63072166 | -0.596498  | 0.6613574  |
| ACTR5      | 0.28077353 | -0.5967832 | 0.66122667 |
| LPAR6      | 0.39009009 | -0.5970064 | 0.66112438 |
| SLA2       | 0.62283007 | -0.5971227 | 0.66107106 |
| NPEPL1     | 0.38180197 | -0.597783  | 0.66076858 |
| METTL17    | 0.49275936 | -0.5981831 | 0.66058534 |
| OTUD6B-AS1 | 0.09935679 | -0.59832   | 0.66052267 |
| AC096733.2 | 0.24256687 | -0.5985983 | 0.66039527 |
| BDH1       | 0.23875439 | -0.5991338 | 0.66015018 |
| ZSCAN30    | 0.22994223 | -0.5992306 | 0.66010588 |
| FAM157A    | 0.28820034 | -0.5995536 | 0.65995812 |
| DDX19A     | 0.3746681  | -0.6003431 | 0.65959706 |
| EXOSC7     | 0.56727384 | -0.6006299 | 0.65946594 |
| NFU1       | 0.32001014 | -0.602152  | 0.65877059 |
| CLPX       | 0.45802972 | -0.6022572 | 0.65872252 |
| COPS8      | 0.45213509 | -0.6024318 | 0.6586428  |
| SUCO       | 0.34925665 | -0.6030708 | 0.65835117 |
| ZNF589     | 0.22873686 | -0.6031025 | 0.65833668 |
| HIGD1A     | 0.27038195 | -0.6032688 | 0.6582608  |
| CCDC82     | 0.31581846 | -0.6033537 | 0.65822205 |
| SLC25A12   | 0.36639639 | -0.6034197 | 0.65819196 |
| TPT1-AS1   | 0.38372687 | -0.6044603 | 0.65771737 |
| DLD        | 0.38666015 | -0.6048756 | 0.65752805 |
| TOB1       | 0.19771933 | -0.6060954 | 0.65697236 |
| WWP1       | 0.29364808 | -0.6070459 | 0.65653966 |

| RYK        | 0.38120918 | -0.6076026 | 0.65628636 |
|------------|------------|------------|------------|
| LDAH       | 0.65253797 | -0.6080247 | 0.65609441 |
| TUBE1      | 0.19029744 | -0.6082422 | 0.6559955  |
| MRPL33     | 0.28415064 | -0.6087801 | 0.65575094 |
| CLEC2B     | 0.6054436  | -0.6100798 | 0.65516045 |
| AUTS2      | 0.16268594 | -0.6103144 | 0.65505393 |
| EED        | 0.41348899 | -0.6114876 | 0.65452145 |
| PSMA4      | 0.53271951 | -0.6121488 | 0.65422154 |
| PPID       | 0.53771149 | -0.6122513 | 0.65417508 |
| AIG1       | 0.23451166 | -0.6130079 | 0.65383209 |
| TULP4      | 0.33087381 | -0.6132468 | 0.65372385 |
| USP44      | 0.37205584 | -0.6135845 | 0.65357084 |
| MGLL       | 0.33993067 | -0.6137911 | 0.65347726 |
| AC098679.1 | 0.46761006 | -0.6139001 | 0.65342788 |
| TBC1D2     | 0.41945465 | -0.6149463 | 0.65295422 |
| NDUFB3     | 0.29421763 | -0.6152436 | 0.65281965 |
| AC007066.2 | 0.13767262 | -0.6152559 | 0.65281409 |
| CCDC127    | 0.28436167 | -0.6170503 | 0.65200264 |
| LINC01215  | 0.28921013 | -0.617446  | 0.65182384 |
| PHTF2      | 0.54408768 | -0.6178684 | 0.651633   |
| MICA       | -0.0452541 | -0.6179363 | 0.65160236 |
| REPS1      | 0.41772596 | -0.6181979 | 0.65148421 |
| AC093323.1 | 0.2848851  | -0.618253  | 0.65145932 |
| ELAVL1     | 0.19125857 | -0.6183643 | 0.65140906 |
| ATP6V1G1   | 0.29985219 | -0.6185096 | 0.65134345 |
| GPRASP1    | 0.23249846 | -0.618861  | 0.65118482 |
| MGMT       | 0.00873528 | -0.6193016 | 0.65098599 |
| HMGN3      | 0.52925394 | -0.6193366 | 0.65097018 |
| IGIP       | 0.26443859 | -0.6193516 | 0.65096341 |
| RNU7-41P   | 0.30117361 | -0.6197624 | 0.65077809 |
| DDX51      | 0.25840853 | -0.6205085 | 0.65044165 |
| TIMM44     | 0.32465391 | -0.6215507 | 0.64997194 |
| CLASP2     | 0.07883851 | -0.6220518 | 0.64974621 |
| MORC2      | 0.5205878  | -0.622603  | 0.649498   |
| TSTD2      | 0.21397427 | -0.6231728 | 0.64924155 |
| AACS       | 0.2139599  | -0.6235623 | 0.64906628 |
| PHF10      | 0.27319912 | -0.6235683 | 0.64906358 |
| GTPBP8     | 0.37035892 | -0.6236931 | 0.64900744 |
| OPN3       | 0.43734987 | -0.6239718 | 0.64888207 |
| TRIAP1     | 0.46229163 | -0.6245284 | 0.64863177 |

| САМКМТ     | 0.33865432            | -0.6248707 | 0.64847788 |
|------------|-----------------------|------------|------------|
| GMPPB      | 0.32514183 -0.6256407 |            | 0.64813189 |
| UTP4       | 0.65612392            | -0.625646  | 0.64812951 |
| MTA2       | 0.43248222            | -0.6264714 | 0.64775881 |
| HDHD5      | 0.27319034            | -0.6268372 | 0.64759457 |
| STX6       | 0.26606473            | -0.6274502 | 0.64731946 |
| TERF2      | 0.46721027            | -0.6279452 | 0.64709739 |
| PGGT1B     | 0.36659484            | -0.6280465 | 0.64705199 |
| ANKRD10    | 0.44307329            | -0.6281094 | 0.64702377 |
| SERGEF     | 0.25169874            | -0.6284942 | 0.6468512  |
| WDR89      | 0.57231473            | -0.6285056 | 0.64684608 |
| AC007342.4 | 0.24889933            | -0.6286221 | 0.64679388 |
| ZDHHC20    | 0.44549818            | -0.6294618 | 0.6464175  |
| TSPOAP1    | 0.35037685            | -0.629755  | 0.64628615 |
| METTL12    | 0.55457331            | -0.6298757 | 0.64623208 |
| PTER       | 0.17467689            | -0.6300902 | 0.64613603 |
| PDP2       | 0.62445806            | -0.6303698 | 0.6460108  |
| NAA30      | 0.27862553            | -0.6308753 | 0.64578451 |
| EID2       | 0.4021904             | -0.6314439 | 0.64553004 |
| DRG1       | 0.18807819            | -0.6325726 | 0.64502519 |
| C18orf25   | 0.12302748            | -0.6343495 | 0.64423124 |
| ACTA2      | 0.56850337            | -0.6355724 | 0.64368536 |
| POLR3E     | 0.30159791            | -0.6372841 | 0.64292212 |
| DRAM2      | 0.50671939            | -0.6377389 | 0.64271946 |
| TOGARAM1   | 0.34197438            | -0.6378807 | 0.64265631 |
| ASF1A      | 0.34405122            | -0.6379259 | 0.64263619 |
| EHD4       | 0.19381227            | -0.6388315 | 0.64223289 |
| TTC26      | 0.37904948            | -0.6401126 | 0.64166285 |
| MCM2       | 0.34358344            | -0.6411976 | 0.64118046 |
| CHIC1      | 0.4226668             | -0.641294  | 0.64113765 |
| FBXO45     | 0.07576634            | -0.6420157 | 0.64081699 |
| NLRP3      | 0.26792019            | -0.6420501 | 0.64080173 |
| ASNSD1     | 0.51455094            | -0.6427813 | 0.64047702 |
| SPATA5     | 0.40580301            | -0.6432652 | 0.64026224 |
| MICU2      | 0.60510523            | -0.6449818 | 0.63950084 |
| RIPK2      | 0.57915099            | -0.6453327 | 0.63934532 |
| RIOK1      | 0.57192841            | -0.6453472 | 0.63933892 |
| DOHH       | 0.2863982             | -0.6456693 | 0.63919616 |
| ISY1       | 0.71138492            | -0.6457006 | 0.63918232 |
| FCGR1A     | 0.1511084             | -0.646132  | 0.63899121 |

| VIM-AS1    | 0.24381816 | -0.6466187 | 0.63877569 |
|------------|------------|------------|------------|
| THAP5      | 0.30779649 | -0.6475021 | 0.63838466 |
| MAN1C1     | 0.52603156 | -0.6479659 | 0.63817949 |
| CYSLTR2    | 0.05174081 | -0.6483334 | 0.63801693 |
| ALG10B     | 0.45745988 | -0.6487929 | 0.63781377 |
| AC110769.2 | 0.14147817 | -0.6490654 | 0.63769328 |
| CSTF2T     | 0.35272811 | -0.6496537 | 0.63743329 |
| SEC24D     | 0.54023754 | -0.6516363 | 0.63655794 |
| NEPRO      | 0.23385526 | -0.6521151 | 0.6363467  |
| PRKCI      | 0.20532297 | -0.6523502 | 0.63624301 |
| HNMT       | 0.30698192 | -0.6524503 | 0.63619888 |
| SETDB2     | 0.23044233 | -0.6525192 | 0.63616847 |
| FBXO8      | 0.18758995 | -0.6528041 | 0.63604286 |
| GTF2H5     | 0.30271918 | -0.6539692 | 0.63552941 |
| SEC23IP    | 0.16832564 | -0.654319  | 0.63537536 |
| EMC2       | 0.47420209 | -0.6552245 | 0.63497669 |
| TMEM42     | 0.42576945 | -0.6558248 | 0.63471251 |
| MTHFD2     | 0.16831495 | -0.6558259 | 0.63471204 |
| AC004951.1 | 0.47310857 | -0.6565383 | 0.63439871 |
| TANGO6     | 0.32122883 | -0.6575326 | 0.63396164 |
| TMEM123    | 0.26874455 | -0.6592102 | 0.63322488 |
| IMPAD1     | 0.33491893 | -0.6597623 | 0.63298257 |
| ARHGAP19   | 0.23056323 | -0.6626502 | 0.63171677 |
| TRIM5      | 0.33060853 | -0.6643601 | 0.63096849 |
| ZNHIT3     | 0.6880678  | -0.6650312 | 0.63067505 |
| UBE2N      | 0.43013319 | -0.6651349 | 0.63062973 |
| CEBPZ      | 0.40137135 | -0.6660423 | 0.63023323 |
| TSHZ1      | 0.46105552 | -0.666637  | 0.62997346 |
| C3orf38    | 0.45501645 | -0.6677288 | 0.62949691 |
| TOP1MT     | 0.16423452 | -0.668235  | 0.62927607 |
| IFI44L     | 0.53753961 | -0.6715076 | 0.62785025 |
| COPS3      | 0.24259899 | -0.6722308 | 0.62753561 |
| COA3       | 0.26433507 | -0.6740733 | 0.62673468 |
| CAND1      | 0.40615412 | -0.6759598 | 0.62591565 |
| XPNPEP3    | 0.2904909  | -0.6761266 | 0.6258433  |
| ACADS      | 0.33206502 | -0.6766329 | 0.62562372 |
| RPL22L1    | 0.36279309 | -0.6774987 | 0.62524836 |
| СНИК       | 0.47131066 | -0.6779616 | 0.62504777 |
| RTL6       | 0.56652108 | -0.6781334 | 0.62497334 |
| AL021707.6 | 0.40480124 | -0.6785982 | 0.62477206 |

| HACL1      | 0.60067252            | -0.6796417 | 0.62432032 |
|------------|-----------------------|------------|------------|
| UBP1       | 0.23681497            | -0.6800293 | 0.62415261 |
| KIAA0100   | 0.21452431 -0.6803577 |            | 0.62401053 |
| EME2       | 0.29307962            | -0.681758  | 0.62340517 |
| STX11      | 0.37389423            | -0.6818086 | 0.62338328 |
| ТВК1       | 0.51396741            | -0.6820271 | 0.6232889  |
| XAF1       | 0.35868211            | -0.6823789 | 0.62313691 |
| НОРХ       | 0.36278675            | -0.6832517 | 0.62276006 |
| HEATR1     | 0.27469993            | -0.6836659 | 0.62258126 |
| SPG20      | 0.38327512            | -0.6838657 | 0.62249507 |
| ZNF337     | 0.55347425            | -0.6839658 | 0.62245187 |
| ZDHHC12    | 0.26629529            | -0.6846674 | 0.62214925 |
| LINC00909  | 0.38872564            | -0.6847554 | 0.62211128 |
| NDUFB5     | 0.11559163            | -0.6856903 | 0.62170827 |
| BCOR       | 0.40614023            | -0.6866822 | 0.62128099 |
| TFPT       | 0.2487434             | -0.6874322 | 0.62095811 |
| METTL25    | 0.17997373            | -0.6885275 | 0.62048685 |
| RPARP-AS1  | 0.21111883            | -0.6886346 | 0.62044077 |
| GCFC2      | 0.06193899            | -0.6897091 | 0.61997887 |
| RBM27      | 0.41196276            | -0.6898268 | 0.61992826 |
| ZNF551     | 0.34446227            | -0.6898568 | 0.61991536 |
| WDR5       | 0.43223076            | -0.6902369 | 0.61975207 |
| MUT        | 0.56098705            | -0.6919383 | 0.61902164 |
| RSAD2      | 0.47718184            | -0.6922944 | 0.61886886 |
| GPALPP1    | 0.48770144            | -0.6947095 | 0.61783373 |
| SOCS2      | 0.44645497            | -0.6969387 | 0.61687981 |
| NSUN5P2    | 0.3085176             | -0.6971769 | 0.61677795 |
| DNAJA3     | 0.42033062            | -0.6972964 | 0.61672688 |
| ZNF12      | 0.29130002            | -0.6979019 | 0.61646808 |
| TRIM52-AS1 | 0.33719391            | -0.6981069 | 0.61638051 |
| KLRF1      | 0.53565664            | -0.7013684 | 0.61498863 |
| ANKRD36B   | 0.26271798            | -0.7017282 | 0.61483525 |
| LSM6       | 0.20827894            | -0.7019493 | 0.61474104 |
| TAMM41     | 0.1249127             | -0.7027764 | 0.61438869 |
| PCNP       | 0.36543286            | -0.703237  | 0.61419258 |
| SLC38A6    | 0.50117759            | -0.7057952 | 0.61310444 |
| PURB       | 0.33864419            | -0.7060952 | 0.612977   |
| RNF185     | 0.69285692            | -0.7063878 | 0.61285266 |
| PIGK       | 0.53186248            | -0.7085614 | 0.61193004 |
| PNOC       | 0.27340947            | -0.7089064 | 0.6117837  |

| TRIM37     | 0.72484646 | -0.7098384 | 0.61138863 |
|------------|------------|------------|------------|
| ABHD15     | 0.22967023 | -0.7108756 | 0.61094923 |
| MY019      | 0.39473693 | -0.710911  | 0.61093423 |
| LINC00847  | 0.62901603 | -0.711478  | 0.61069416 |
| РНАХ       | 0.51029318 | -0.7122145 | 0.61038249 |
| AC005674.2 | 0.32085342 | -0.7125435 | 0.61024331 |
| PRR4       | 0.44347322 | -0.7126001 | 0.61021939 |
| MRPS21     | 0.51273489 | -0.7141537 | 0.6095626  |
| HMGN2      | 0.38895856 | -0.7146105 | 0.60936965 |
| PMS1       | 0.30176727 | -0.7150763 | 0.6091729  |
| IFIH1      | 0.47350336 | -0.7158202 | 0.60885889 |
| GLMP       | 0.41847798 | -0.7160721 | 0.60875258 |
| PCYOX1     | 0.38849522 | -0.7175359 | 0.60813523 |
| LINC00342  | 0.08875924 | -0.7179473 | 0.60796183 |
| ECI2       | 0.1704326  | -0.7184963 | 0.60773056 |
| COQ5       | 0.45994799 | -0.7187226 | 0.6076352  |
| TSEN15     | 0.61608425 | -0.7198774 | 0.60714903 |
| LINC00106  | 0.50766377 | -0.720425  | 0.60691864 |
| RAPGEF6    | 0.26144382 | -0.7214468 | 0.60648892 |
| HERC5      | 0.5500807  | -0.7216829 | 0.60638966 |
| SNAPC2     | 0.32452912 | -0.7222438 | 0.60615397 |
| HNRNPH2    | 0.38027    | -0.7224319 | 0.60607495 |
| EIF4B      | 0.25691819 | -0.7237282 | 0.6055306  |
| ARAP2      | 0.54018184 | -0.7241376 | 0.60535882 |
| SAP30      | 0.35553362 | -0.7247085 | 0.60511929 |
| SLC30A6    | 0.31407636 | -0.7267344 | 0.60427016 |
| NPHP3      | 0.30207004 | -0.7290153 | 0.60331557 |
| ZDHHC8     | 0.48980464 | -0.7294129 | 0.6031493  |
| SLC39A8    | 0.33971355 | -0.7300894 | 0.60286654 |
| MRPS9      | 0.18463673 | -0.7306279 | 0.60264157 |
| FARP2      | 0.6075814  | -0.7340335 | 0.60122067 |
| RABEP2     | 0.41991911 | -0.7346168 | 0.60097762 |
| FUNDC1     | 0.37749198 | -0.7360859 | 0.60036597 |
| STT3A      | 0.38084183 | -0.7367379 | 0.60009472 |
| ALKBH3     | 0.32381501 | -0.7368252 | 0.60005839 |
| TATDN1     | 0.36058326 | -0.7371272 | 0.59993278 |
| TWNK       | 0.15090349 | -0.737303  | 0.59985968 |
| AC126474.2 | 0.4237729  | -0.7377252 | 0.59968418 |
| FOPNL      | 0.46180653 | -0.7378365 | 0.59963791 |
| PRKAG2     | 0.65511854 | -0.7390349 | 0.59914002 |

| ACSL3      | 0.6138204  | -0.7405506 | 0.59851088 |
|------------|------------|------------|------------|
| TMEM261    | 0.6660953  | -0.7405737 | 0.5985013  |
| TTC21B     | 0.16607896 | -0.7416772 | 0.5980437  |
| SACM1L     | 0.3547082  | -0.7419484 | 0.59793129 |
| FAM160B2   | 0.27791081 | -0.7430068 | 0.59749279 |
| MTM1       | 0.38854459 | -0.7457783 | 0.59634607 |
| PAXIP1-AS2 | 0.15559803 | -0.7465902 | 0.59601057 |
| HINT2      | 0.17641131 | -0.746926  | 0.59587187 |
| STK26      | 0.39671861 | -0.7513877 | 0.5940319  |
| BORCS7     | 0.38584505 | -0.752541  | 0.59355722 |
| CDC37L1    | 0.61299382 | -0.7529727 | 0.59337964 |
| TERF1      | 0.4295469  | -0.7562717 | 0.59202429 |
| NXPE3      | 0.38821601 | -0.757872  | 0.59136796 |
| ICMT       | 0.18717468 | -0.7589029 | 0.59094556 |
| DPH3       | 0.48299479 | -0.7606723 | 0.59022121 |
| ZHX2       | 0.41692908 | -0.7608314 | 0.59015614 |
| NMRK1      | 0.57558821 | -0.7613364 | 0.58994959 |
| DENND1B    | 0.31978163 | -0.7643329 | 0.58872552 |
| LINC-PINT  | 0.56614117 | -0.7662082 | 0.58796076 |
| TGFBR3     | 0.34016682 | -0.7665316 | 0.587829   |
| AL139317.3 | 0.3773741  | -0.7671616 | 0.58757236 |
| BAG4       | 0.21456842 | -0.7673217 | 0.58750715 |
| ABHD13     | 0.44501871 | -0.7766461 | 0.58372224 |
| TBC1D7     | 0.38698684 | -0.7781668 | 0.58310727 |
| ACLY       | 0.32686842 | -0.7789768 | 0.58277997 |
| SMPD1      | 0.64551982 | -0.7800691 | 0.58233891 |
| TNF        | 0.62814665 | -0.7802054 | 0.5822839  |
| CCNG1      | 0.27419765 | -0.7820665 | 0.58153321 |
| ТТВК2      | 0.59190952 | -0.7821702 | 0.58149143 |
| CHMP5      | 0.4192272  | -0.7850124 | 0.58034695 |
| RABGGTB    | 0.33448594 | -0.7864085 | 0.57978563 |
| BCL2A1     | 0.51791453 | -0.7866522 | 0.5796877  |
| DCAF1      | 0.4067458  | -0.7896976 | 0.57846533 |
| SASH3      | 0.37410722 | -0.7939937 | 0.57674533 |
| CASZ1      | 0.57519267 | -0.7977674 | 0.5752387  |
| GABPA      | 0.52776665 | -0.7992251 | 0.57465776 |
| CAAP1      | 0.37959998 | -0.7993815 | 0.57459546 |
| AP002807.1 | 0.46042755 | -0.8003675 | 0.57420289 |
| LAMTOR3    | 0.2110276  | -0.8062366 | 0.5718717  |
| FBXW4P1    | 0.51459154 | -0.814339  | 0.56866897 |

| TBC1D8    | 0.46314392          | -0.8149069 | 0.56844515 |
|-----------|---------------------|------------|------------|
| FAM228B   | 0.69770894          | -0.8162421 | 0.56791932 |
| ASCC3     | 0.32792581 -0.81648 |            | 0.56782401 |
| ZCCHC3    | 0.35090018          | -0.8174676 | 0.56743712 |
| AUH       | 0.6748279           | -0.8282834 | 0.56319896 |
| INPP1     | 0.47272785          | -0.8318421 | 0.56181143 |
| SPCS2     | 0.43581477          | -0.8326532 | 0.56149568 |
| LARP4     | 0.614324            | -0.8374876 | 0.55961726 |
| RBM48     | 0.50431628          | -0.8405551 | 0.55842868 |
| EXOSC8    | 0.40959721          | -0.841446  | 0.55808392 |
| ITPRIPL2  | 0.35932106          | -0.8423234 | 0.55774461 |
| SPRTN     | 0.63937445          | -0.8429861 | 0.55748848 |
| ANXA4     | 0.4040994           | -0.8478668 | 0.55560566 |
| HIST1H1D  | 0.49308917          | -0.8521192 | 0.55397039 |
| PRDX3     | 0.50816714          | -0.8540047 | 0.55324686 |
| S1PR1     | 0.34904898          | -0.8590901 | 0.55130013 |
| MIB2      | 0.54967584          | -0.8596429 | 0.55108896 |
| TIFA      | 0.39029922          | -0.8629608 | 0.54982301 |
| NEDD1     | 0.77937265          | -0.8652615 | 0.54894689 |
| C2orf69   | 0.55594837          | -0.8758478 | 0.54493356 |
| ZNF721    | 0.44979948          | -0.8816068 | 0.54276261 |
| LINC00467 | 0.37088467          | -0.8891567 | 0.53992963 |
| PDSS2     | 0.42236348          | -0.8892627 | 0.53988997 |
| WDR92     | 0.4803565           | -0.8895374 | 0.53978716 |
| VEZT      | 0.46325508          | -0.8913678 | 0.53910274 |
| MLH1      | 0.59378846          | -0.8961707 | 0.537311   |
| COA5      | 0.57012382          | -0.9050896 | 0.53399953 |
| GTF2B     | 0.41302292          | -0.9054514 | 0.53386563 |
| NCAPG2    | 0.51953865          | -0.9080439 | 0.53290715 |
| PRR11     | 0.64098019          | -0.9099551 | 0.53220166 |
| ALAD      | 0.68081784          | -0.9109087 | 0.53185    |
| MPP6      | 0.8280456           | -0.9189691 | 0.5288868  |
| MPC1      | 0.58578116          | -0.9199784 | 0.52851693 |
| NOL6      | 0.66332978          | -0.92354   | 0.5272138  |
| PPA2      | 0.46133653          | -0.9321429 | 0.52407934 |
| POLE      | 1.00898157          | -0.9365726 | 0.52247263 |
| SLC35D2   | 0.33614511          | -0.9415693 | 0.52066623 |
| STYX      | 0.56882509          | -0.9463232 | 0.51895336 |
| VPS26A    | 0.69096991          | -0.9469412 | 0.51873111 |
| MRPL14    | 0.64881938          | -0.9574389 | 0.5149703  |

| ABL2    | 0.60588384 | -0.9700431 | 0.51049082 |
|---------|------------|------------|------------|
| SNHG8   | 0.53611476 | -0.9760422 | 0.50837248 |
| MOB4    | 0.7955774  | -0.9913664 | 0.50300116 |
| OAF     | 0.76143337 | -0.99139   | 0.50299292 |
| VWA8    | 0.59256699 | -0.9969772 | 0.50104871 |
| MED27   | 0.57234929 | -1.0031718 | 0.49890195 |
| ZNF136  | 0.48531187 | -1.0129802 | 0.49552159 |
| RNGTT   | 0.38236088 | -1.0264231 | 0.49092579 |
| DNAJC15 | 0.67101698 | -1.0292873 | 0.48995211 |
| NOG     | 0.67577579 | -1.0547855 | 0.48136877 |
| POFUT2  | 0.57708345 | -1.090505  | 0.46959696 |
| GIMAP2  | 0.46251612 | -1.0967864 | 0.46755682 |
| TMX1    | 0.44286519 | -1.1166881 | 0.46115125 |
| ХРОТ    | 0.65340427 | -1.1358213 | 0.45507579 |
| DESI2   | 0.61411435 | -1.1417261 | 0.453217   |
| POLE4   | 0.39893314 | -1.1544675 | 0.44923198 |
| PGRMC1  | 0.4348273  | -1.1721843 | 0.44374896 |

### Appendix C



| Title:         | The Effects of High Intensity Interval Training on Gene Expression                                                                        |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Description:   | Effects of a 3 times per week, 4-week, 10X1 HIIT protocol on gene expression. Functional Enrichment analysis cutoff threshold >1.2 or <.8 |
| Organism:      | Homo sapiens (9606)                                                                                                                       |
| Contrast       | Condition vs. Control - mRNA (RNA-seq)                                                                                                    |
| Creation time: | 10-23-2022 06:42 PM                                                                                                                       |

# 1. Introduction

In this experiment, **2,653** differentially expressed (DE) genes were identified out of a total of **54,683** genes in Advaita Knowledge Base (AKB). These data were analyzed in the context of pathways obtained from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (Release 100.0+/11-12, Nov 21) (Kanehisa et al., 2000; Kanehisa et al., 2002), gene ontologies from the Gene Ontology Consortium database (2021-Nov4) (Ashburner et al., 2000; Gene Ontology Consortium, 2001), miRNAs from the miRBase (MIRBASE Version:Version22.1,10/18) and TARGETSCAN (Targetscan version: Mouse:8.0, Human:8.0) databases (Agarwal et al., 2015; Nam et al., 2014; Griffiths-Jones et al., 2008; Kozomara and Griffiths-Jones, 2014; Friedman et al., 2009; Grimson et al., 2007), network of regulatory relations from BioGRID: Biological General Repository for Interaction Datasets v4.4.203. Oct. 25th, 2021 (Szklarczyk et al., 2017), chemicals/drugs/toxicants from the Comparative Toxicogenomics Database Nov 2021 (Davis et al., 2019), and diseases from the KEGG database (Release 100.0+/11-12, Nov 21) (Kanehisa et al., 2000; Kanehisa et al., 2000; Kanehisa et al., 2000; Impacted. In addition, **1,365** Gene Ontology (GO) terms, **0** miRNAs , **477** gene upstream regulators, **231** chemical upstream regulators and **259** diseases were found to be significantly enriched before the correction for multiple comparisons.



Fig. 1.1: a) Violin plot: All 2653 significantly differentially expressed (DE) genes are represented in terms of their measured expression change (x-axis) and frequency of genes measured at a given expression change (y-axis) b) Pathways perturbation vs over-representation: The top 5 pathways are plotted in terms of the two types of evidence computed by iPathwayGuide: over-representation on the x-axis (pORA) and the total pathway accumulation on the y-axis (pAcc). Each pathway is represented by a single dot, with significant pathways shown in red, non-significant in black, and the size of each dot is proportional to the size of the pathway it represents. Both p-values are shown in terms of their negative log (base 10) values.

143

# 2. Pathway Analysis

# 2.1. Methods

iPathwayGuide scores pathways using the Impact Analysis method (Draghici et al., 2007; Tarca et al., 2009, Khatri et al., 2007). Impact analysis uses two types of evidence: i) the over-representation of differentially expressed (DE) genes in a given pathway and ii) the perturbation of that pathway computed by propagating the measured expression changes across the pathway topology. These aspects are captured by two independent probability values, pORA and pAcc, that are then combined in a unique pathway-specific p-value. The underlying pathway topologies, comprised of genes and their directional interactions, are obtained from the KEGG database (Kanehisa et al., 2000; Kanehisa et al., 2010; Kanehisa et al., 2012; Kanehisa et al., 2014).

The first probability, pORA, expresses the probability of observing the number of DE genes in a given pathway that is greater than or equal to the number observed, by random chance (Draghici et al., 2003; Draghici 2011). Let us consider there are *N* genes measured in the experiment, with *M* of these on the given pathway. Based on the user-defined a priori selection of DE genes, *K* out of *M* genes were found to be differentially expressed. The probability of observing exactly *x* differentially expressed genes on the given pathway is computed based on the hypergeometric distribution:

(1) 
$$P(X=x|N,M,K) = \frac{\binom{M}{x}\binom{N-M}{K-x}}{\binom{N}{K}}$$

Because the hypergeometric distribution is discrete, the probability of observing fewer than x genes on the given pathway just by chance can be calculated by summing the probabilities of randomly observing 0, 1, 2, ..., up to x-1 DE genes on the pathway:

(2) 
$$p_u(x-1) = P(X=1) + P(X=2) + \dots + P(X=x-1) = \sum_{i=0}^{x-1} \frac{\binom{M}{i}\binom{N-M}{K-i}}{\binom{N}{K}}$$

iPathwayGuide calculates the probability of randomly observing a number of DE genes on the given pathway that is greater than or equal to the number of DE genes obtained from data, by computing the over-representation p-value:  $pORA = p_o(x) = 1 - p_u(x-1)$ :

(3) 
$$p_o(x) = 1 - \sum_{i=0}^{x-1} \frac{\binom{M}{i}\binom{N-M}{K-i}}{\binom{N}{K}}$$

The second probability, pAcc, is calculated based on the amount of total accumulation measured in each pathway. A perturbation factor is computed for each gene on the pathway using:



In Equation 4, PF(g) is the perturbation factor for gene g, the term  $\Delta E(g)$  represents the signed normalized measured expression change of gene g, and a(g) is a priori weight based on the type of the gene. The last term is the sum of the perturbation factors of all genes u, directly upstream of the target gene g, normalized by the number of downstream genes of each such gene  $N_{ds}(u)$ . The value of  $\beta_{ug}$  quantifies the strength of the interaction between genes g and u. The sign of  $\beta$  represents the type of interaction: positive for activation-like signals, and negative for inhibition-like signals. Subsequently, iPathwayGuide calculates the accumulation at the level of each gene, Acc(g), as the difference between the perturbation factor PF(g) and the observed log fold-change:

(5) 
$$Acc(g_i) = PF(g_i) - \triangle E(g_i)$$

All perturbation accumulations are computed at the same time by solving the system of linear equations resulting from combining Equation 4 for all genes on a given pathway. Once all gene perturbation accumulations are computed, iPathwayGuide computes the total accumulation of the pathway as the sum of all absolute accumulations of the genes in a given pathway. The significance of obtaining a total accumulation (pAcc) at least as large as observed, just by chance, is assessed through bootstrap analysis.

The two types of evidence, pORA and pAcc, are combined into an overall pathway score by calculating a p-value using Fisher's method. This p-value is then corrected for multiple comparisons using false dicovery rate (FDR) and Bonferroni corrections. Bonferroni is simpler and more conservative of the two (Bonferroni, 1935; Bonferroni, 1936). It reduces the false discovery rate by imposing a stringent threshold on each comparison adjusted for the total 144

#### Report Summary | iPathwayGuide

number of comparisons. The FDR correction has more power, but only controls the family-wise false positives rate (Benjamini and Hochberg, 1995; Benjamini and Yekutieli, 2001).

# 2.2. Results

Table 2.2.1: Top pathways and their associated p-values

| Pathway name                            | Pathway Id | p-value  | p-value (FDR) | p-value (Bonferroni) |
|-----------------------------------------|------------|----------|---------------|----------------------|
| Human T-cell leukemia virus 1 infection | 05166      | 2.033e-7 | 3.888e-5      | 6.851e-5             |
| Pathways in cancer                      | 05200      | 2.308e-7 | 3.888e-5      | 7.776e-5             |
| Neurotrophin signaling pathway          | 04722      | 4.670e-7 | 5.246e-5      | 1.574e-4             |
| RNA degradation                         | 03018      | 1.140e-6 | 5.939e-5      | 3.842e-4             |
| Autophagy - animal                      | 04140      | 1.190e-6 | 5.939e-5      | 4.009e-4             |

\* the p-value corresponding to the pathway was computed using only over-representation analysis.

# Human T-cell leukemia virus 1 infection (KEGG: 05166)

Human T-cell leukemia virus type 1 (HTLV-1) is a pathogenic retrovirus that is associated with adult T-cell leukemia/lymphoma (ATL). It is also strongly implicated in non-neoplastic chronic inflammatory diseases such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Expression of Tax, a viral regulatory protein is critical to the pathogenesis. Tax is a transcriptional co-factor that interfere several signaling pathways related to anti-apoptosis or cell proliferation. The modulation of the signaling by Tax involve its binding to transcription factors like CREB/ATF, NF-kappa B, and SRF.



Fig. 2.2.1: Human T-cell leukemia virus 1 infection (KEGG: 05166): The pathway diagram is overlayed with the computed perturbation of each gene. The perturbation accounts both for the gene's measured fold change and for the accumulated perturbation propagated from any upstream genes (accumulation). The highest negative perturbation is shown in dark blue, while the highest positive perturbation in dark red. The legend describes the values on the gradient. Note: For legibility, one gene may be represented in multiple places in the diagram and one box may represent multiple genes in the same gene family. A gene is highlighted in all locations it occurs in the diagram. For each gene family, the color corresponding to the gene with the highest absolute perturbation is displayed.

145



Fig. 2.2.2: Gene measured expression bar plot: All the differentially expressed genes in Human T-cell leukemia virus 1 infection (KEGG: 05166) are ranked based on their absolute value of log fold change. The plot is limited to the top 20 genes out of a total of 35 differentially expressed genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the differentially expressed genes in this pathway. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.



Fig. 2.2.3: a) Perturbation vs over-representation: Human T-cell leukemia virus 1 infection (KEGG: 05166) (yellow) is shown, using negative log of the accumulation and over-representation pvalues, along with the other most significant pathways. Pathways in red are significant based on the combined uncorrected p-values, whereas the ones in black are non-significant (where applicable). b) Gene measured expression vs accumulation: All the genes from this pathway are represented in terms of their measured fold change (y-axis) and accumulation (x-axis). Accumulation is the perturbation received by the gene from any upstream genes. Genes displayed in red had both accumulation and measured fold change. Genes in blue had only measured fold change. Genes in green had only accumulation. The remaining genes that were not measured and had no accumulation total accumulation at least as extreme as the computed one is computed using bootstrap analysis. Bootstrapping assesses the probability of observing a sum of all absolute gene accumulation total accumulation at least as extreme as the computed one just by chance. A null distribution (gray bars) is computed through an iterative process that is repeated 2000 times. At each iteration, a number of genes equal to the number of differentially expressed genes in this pathway is randomly assigned anywhere in the pathway and the total accumulation is recomputed. The red line indicates the observed total accumulation of genes in the given pathway in relation to the distribution of expected values. The perturbation p-value is more significant the further away from the mean it is.

### Pathways in cancer (KEGG: 05200)



Fig. 2.2.4: Pathways in cancer (KEGG: 05200): The pathway diagram is overlayed with the computed perturbation of each gene. The perturbation accounts both for the gene's measured fold change and for the accumulated perturbation propagated from any upstream genes (accumulation). The highest negative perturbation is shown in dark blue, while the highest positive perturbation in dark red. The legend describes the values on the gradient. Note: For legibility, one gene may be represented in multiple places in the diagram and one box may represent multiple genes in the same gene family. A gene is highlighted in all locations it occurs in the diagram. For each gene family, the color corresponding to the gene with the highest absolute perturbation is displayed.



#### (c) Advaita Corporation 2022

Fig. 2.2.5: Gene measured expression bar plot: All the differentially expressed genes in Pathways in cancer (KEGG: 05200) are ranked based on their absolute value of log fold change. The plot is limited to the top 20 genes out of a total of 57 differentially expressed genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the differentially expressed genes in this pathway. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.

Report Summary | iPathwayGuide



Fig. 2.2.6: a) Perturbation vs over-representation: Pathways in cancer (KEGG: 05200) (yellow) is shown, using negative log of the accumulation and over-representation p-values, along with the other most significant pathways. Pathways in red are significant based on the combined uncorrected p-values, whereas the ones in black are non-significant (where applicable). b) Gene measured expression vs accumulation: All the genes from this pathway are represented in terms of their measured fold change (y-axis) and accumulation (x-axis). Accumulation is the perturbation received by the gene from any upstream genes. Genes displayed in red had both accumulation and measured fold change.Genes in blue had only measured fold change.Genes in bloetstrap analysis. Bootstrapping assesses the probability of observing a sum of all absolute gene accumulation total accumulation at least as extreme as the computed one just by chance. A null distribution (gray bars) is computed through an iterative process that is repeated 2000 times. At each iteration, a number of genes equal to the number of differentially expressed genes in this pathway is randomly assigned anywhere in the pathway and the total accumulation is recomputed. The red line indicates the observed total accumulation of genes in the given pathway in relation to the distribution of expected values. The perturbation p-value is more significant the further away from the mean it is.

### Neurotrophin signaling pathway (KEGG: 04722)

Neurotrophins are a family of trophic factors involved in differentiation and survival of neural cells. The neurotrophin family consists of nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3), and neurotrophin 4 (NT-4). Neurotrophins exert their functions through engagement of Trk tyrosine kinase receptors or p75 neurotrophin receptor (p75NTR). Neurotrophin/Trk signaling is regulated by connecting a variety of intracellular signaling cascades, which include MAPK pathway, PI-3 kinase pathway, and PLC pathway, transmitting positive signals like enhanced survival and growth. On the other hand, p75NTR transmits both positive and nagative signals. These signals play an important role for neural development and additional higher-order activities such as learning and memory.



Fig. 2.2.7: Neurotrophin signaling pathway (KEGG: 04722): The pathway diagram is overlayed with the computed perturbation of each gene. The perturbation accounts both for the gene's measured fold change and for the accumulated perturbation propagated from any upstream genes (accumulation). The highest negative perturbation is shown in dark blue, while the highest positive perturbation in dark red. The legend describes the values on the gradient. Note: For legibility, one gene may be represented in multiple places in the diagram and one box may represent multiple genes in the same gene family. A gene is highlighted in all locations it occurs in the diagram. For each gene family, the color corresponding to the gene with the highest absolute perturbation is displayed.



(c) Advaita Corporation 2022

Fig. 2.2.8: Gene measured expression bar plot: All the differentially expressed genes in Neurotrophin signaling pathway (KEGG: 04722) are ranked based on their absolute value of log fold change. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the differentially expressed genes in this pathway. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.

Report Summary | iPathwayGuide



Fig. 2.2.9: a) Perturbation vs over-representation: Neurotrophin signaling pathway (KEGG: 04722) (vellow) is shown, using negative log of the accumulation and over-representation p-values, along with the other most significant pathways. Pathways in red are significant based on the combined uncorrected p-values, whereas the ones in black are non-significant (where applicable). b) Gene measured expression vs accumulation: All the genes from this pathway are represented in terms of their measured fold change (y-axis) and accumulation (x-axis). Accumulation is the perturbation received by the gene from any upstream genes. Genes displayed in red had both accumulation and measured fold change.Genes in bluck are non-significant (where applicable) b) Gene measured and noly accumulation. The remaining genes that were not measured and had no accumulation are shown in black. c) Bootstrap diagram: The perturbation p-value is computed using bootstrap analysis. Bootstrapping assesses the probability of observing a sum of all absolute gene accumulation total accumulation at least as extreme as the computed one just by chance. A null distribution (gray bars) is computed through an iterative process that is repeated 2000 times. At each iteration, a number of genes equal to the number of differentially expressed genes in this pathway is randomly assigned anywhere in the pathway and the total accumulation is recomputed. The red line indicates the observed total accumulation of genes in the given pathway in relation to the distribution of expected values. The perturbation p-value is more significant the further away from the mean it is.

### RNA degradation (KEGG: 03018)

The correct processing, quality control and turnover of cellular RNA molecules are critical to many aspects in the expression of genetic information. In eukaryotes, two major pathways of mRNA decay exist and both pathways are initiated by poly(A) shortening of the mRNA. In the 5' to 3' pathway, this is followed by decapping which then permits the 5' to 3' exonucleolytic degradation of transcripts. In the 3' to 5' pathway, the exosome, a large multisubunit complex, plays a key role. The exosome exists in archaeal cells, too. In bacteria, endoribonuclease E, a key enzyme involved in RNA decay and processing, organizes a protein complex called degradosome. RNase E or R interacts with the phosphate-dependent exoribonuclease polynucleotide phosphorylase, DEAD-box helicases, and additional factors in the RNA-degrading complex.



Fig. 2.2.10: RNA degradation (KEGG: 03018): The pathway diagram is overlayed with the computed perturbation of each gene. The perturbation accounts both for the gene's measured fold change and for the accumulated perturbation propagated from any upstream genes (accumulation). The highest negative perturbation is shown in dark blue, while the highest positive perturbation in dark red. The legend describes the values on the gradient. Note: For legibility, one gene may be represented in multiple places in the diagram and one box may represent multiple genes in the same gene family. A gene is highlighted in all locations it occurs in the diagram. For each gene family, the color corresponding to the gene with the highest absolute perturbation is displayed.



#### (c) Advaita Corporation 2022

Fig. 2.2.11: Gene measured expression bar plot: All the differentially expressed genes in RNA degradation (KEGG: 03018) are ranked based on their absolute value of log fold change. The plot is limited to the top 20 genes out of a total of 21 differentially expressed genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the differentially expressed genes in this pathway. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.

#### Report Summary | iPathwayGuide



Fig. 2.2.12: a) Perturbation vs over-representation: RNA degradation (KEGG: 03018) (yellow) is shown, using negative log of the accumulation and over-representation p-values, along with the other most significant pathways. Pathways in red are significant based on the combined uncorrected p-values, whereas the ones in black are non-significant (where applicable). b) Gene measured expression vs accumulation: All the genes from this pathway are represented in terms of their measured fold change (y-axis) and accumulation (x-axis). Accumulation is the perturbation received by the gene from any upstream genes. Genes in blue had only measured fold change. The remaining genes that were not measured and had no accumulation are shown in black. c) Bootstrap diagram: The perturbation p-value is computed using bootstrap analysis. Bootstrapping assesses the probability of observing a sum of all absolute gene accumulation total accumulation at least as extreme as the computed one just by chance. A null distribution (gray bars) is computed through an iterative process that is repeated 2000 times. At each iteration, a number of genes equal to the number of differentially expressed genes in this pathway is randomly assigned anywhere in the pathway and the total accumulation is recomputed. The red line indicates the observed total accumulation of genes in the given pathway in relation to the distribution of expected values. The perturbation p-value is more significant the further away from the mean it is.

## Autophagy - animal (KEGG: 04140)

Autophagy (or macroautophagy) is a cellular catabolic pathway involving in protein degradation, organelle turnover, and non-selective breakdown of cytoplasmic components, which is evolutionarily conserved among eukaryotes and exquisitely regulated. This progress initiates with production of the autophagosome, a double-membrane intracellular structure of reticular origin that engulfs cytoplasmic contents and ultimately fuses with lysosomes for cargo degradation. Autophagy is regulated in response to extra- or intracellular stress and signals such as starvation, growth factor deprivation and ER stress. Constitutive level of autophagy plays an important role in cellular homeostasis and maintains quality control of essential cellular components.



Fig. 2.2.13: Autophagy - animal (KEGG: 04140): The pathway diagram is overlayed with the computed perturbation of each gene. The perturbation accounts both for the gene's measured fold change and for the accumulated perturbation propagated from any upstream genes (accumulation). The highest negative perturbation is shown in dark blue, while the highest positive perturbation in dark red. The legend describes the values on the gradient. Note: For legibility, one gene may be represented in multiple places in the diagram and one box may represent multiple genes in the same gene family. A gene is highlighted in all locations it occurs in the diagram. For each gene family, the color corresponding to the gene with the highest absolute perturbation is displayed.



#### (c) Advaita Corporation 2022

Fig. 2.2.14: Gene measured expression bar plot: All the differentially expressed genes in Autophagy - animal (KEGG: 04140) are ranked based on their absolute value of log fold change. The plot is limited to the top 20 genes out of a total of 31 differentially expressed genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the differentially expressed genes in this pathway. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.



Fig. 2.2.15: a) Perturbation vs over-representation: Autophagy - animal (KEGG: 04140) (yellow) is shown, using negative log of the accumulation and over-representation p-values, along with the other most significant pathways. Pathways in red are significant based on the combined uncorrected p-values, whereas the ones in black are non-significant (where applicable). b) Gene measured expression vs accumulation: All the genes from this pathway are represented in terms of their measured fold change (y-axis) and accumulation (x-axis). Accumulation is the perturbation received by the gene from any upstream genes. Genes displayed in red had both accumulation and measured fold change.Genes in blue had only measured fold change.Genes in green had only accumulation. The remaining genes that were not measured and had no accumulation are shown in black. c) Bootstrap diagram: The perturbation p-value is computed using bootstrap analysis. Bootstrapping assesses the probability of observing a sum of all absolute gene accumulation total accumulation at least as extreme as the computed one just by chance. A null distribution (gray bars) is computed through an iterative process that is repeated 2000 times. At each iteration, a number of genes equal to the number of differentially expressed genes in this pathway is randomly assigned anywhere in the pathway and the total accumulation is recomputed. The red line indicates the observed total accumulation of genes in the given pathway in relation to the distribution of expected values. The perturbation p-value is more significant the further away from the mean it is.

# 3. Gene Ontology Analysis

# 3.1. Methods

For each Gene Ontology (GO) term (Ashburner et al., 2002; Gene Ontology Consortium, 2004), the number of differentially expressed (DE) genes annotated to the term is compared to the number of DE genes expected just by chance. iPathwayGuide uses an over-representation approach to compute the statistical significance of observing at least the given number of DE genes. The p-value is computed using the hypergeometric distribution as described for pORA in the Pathway Analysis section. This p-value is corrected for multiple comparisons using FDR and Bonferroni.

The classical enrichment method used above considers all GO terms to be independent. By definition, all genes annotated to a GO term are also annotated to its ancestors. Because of this, the enrichment approach counts each gene multiple times by propagating it through the GO hierarchy from the most specific term the gene is associated with, all the way to the root of the ontology. This introduces redundancy in the analysis and reports many general and non-informative terms as significant. To overcome this limitation, iPathwayGuide allows users to use two more sophisticated pruning methods: *high-specificity pruning* and *smallest common denominator pruning*. The **high-specificity** pruning method *identifies the most specific GO terms* that are significantly associated with the set of DE genes. Let us consider, BP1 = "induction of apoptosis by intracellular signals" and BP2 = "induction of apoptosis by extracellular signals," which are two of the children of BP3 = "induction of apoptosis." If enough DE genes are associated with BP1 and BP2, the high-specificity pruning will report them as significant. The **smallest common denominator** pruning method *identifies the GO terms that best encapsulate the set of DE genes*, at times consolidating significance of two or more specific terms into their common parent. In the example above, this pruning method might report BP3 as significant because it is the most specific biological term that would include all DE genes that make both BP1 and BP2 significant.

# 3.2. Biological Processes results Table 3.2.1: Top identified biological processes. Only the top scoring biological process for each pruning type is described below the table.

|                                                 | Pruning Type: | None             |                         | Pruning Type: High-spe                                                        | ecificity | Pruning Type: Smallest Comm<br>Denominator                                 |          |  |
|-------------------------------------------------|---------------|------------------|-------------------------|-------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------|----------|--|
| GO Term                                         | p-value       | p-value<br>(FDR) | p-value<br>(Bonferroni) | GO Term                                                                       | p-value   | GO Term                                                                    | p-value  |  |
| cellular metabolic<br>process                   | 4.100e-19     | 3.769e-15        | 3.769e-15               | exonucleolytic catabolism<br>of deadenylated mRNA                             | 5.883e-5  | exonucleolytic<br>catabolism of<br>deadenylated mRNA                       | 5.883e-5 |  |
| organonitrogen<br>compound metabolic<br>process | 3.600e-15     | 1.655e-11        | 3.309e-11               | nuclear-transcribed 0.029<br>mRNA catabolic process,<br>exonucleolytic, 3'-5' |           | tRNA processing                                                            | 0.004    |  |
| nitrogen compound<br>metabolic process          | 1.400e-14     | 4.290e-11        | 1.287e-10               | U4 snRNA 3'-end<br>processing                                                 | 0.248     | RNA methylation                                                            | 0.006    |  |
| cellular<br>macromolecule<br>metabolic process  | 2.100e-14     | 4.826e-11        | 1.930e-10               | nuclear polyadenylation-<br>dependent rRNA<br>catabolic process               | 0.294     | nuclear-transcribed<br>mRNA catabolic<br>process,<br>exonucleolytic, 3'-5' | 0.015    |  |
| macromolecule<br>modification                   | 2.300e-13     | 3.677e-10        | 2.114e-9                | nuclear polyadenylation-<br>dependent tRNA<br>catabolic process               | 0.294     | ribosome biogenesis                                                        | 0.034    |  |

### cellular metabolic process (GO:0044237)

The chemical reactions and pathways by which individual cells transform chemical substances. In this experiment, the algorithm identified **1,540** differentially expressed gene(s) out of ALL **10,861** gene(s).



#### (c) Advaita Corporation 2022

Fig. 3.2.1: Gene measured expression bar plot: All the differentially expressed genes that are annotated to cellular metabolic process are ranked based on their absolute value of log fold change. The plot is limited to the top 20 genes out of a total of 1540 differentially expressed genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the differentially expressed genes that are annotated to this GO term. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.

### exonucleolytic catabolism of deadenylated mRNA (GO:0043928)

The chemical reactions and pathways resulting in the breakdown of the transcript body of a nuclear-transcribed mRNA that occurs when the ends are not protected by the 3'-poly(A) tail. In this experiment, the algorithm identified **11** differentially expressed gene(s) out of ALL **13** gene(s).



#### Report Summary | iPathwayGuide

Fig. 3.2.2: Gene measured expression bar plot: All the differentially expressed genes that are annotated to exonucleolytic catabolism of deadenylated mRNA are ranked based on their absolute value of log fold change. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the differentially expressed genes that are annotated to this GO term. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.

# 3.3. Molecular Functions results

Table 3.3.1: Top identified molecular functions. Only the top scoring molecular function for each pruning type is described below the table.

| F                                            | Pruning Type: | None             |                         | Pruning Type: High-sp                         | oecificity | Pruning Type: Smalle<br>Denominat                | st Common<br>or |
|----------------------------------------------|---------------|------------------|-------------------------|-----------------------------------------------|------------|--------------------------------------------------|-----------------|
| GO Term                                      | p-value       | p-value<br>(FDR) | p-value<br>(Bonferroni) | GO Term                                       | p-value    | GO Term                                          | p-value         |
| catalytic activity                           | 1.500e-18     | 2.183e-15        | 3.447e-15               | protein binding                               | 1.907e-9   | protein binding                                  | 1.769e-12       |
| protein binding                              | 1.900e-18     | 2.183e-15        | 4.366e-15               | guanyl-nucleotide<br>exchange factor activity | 0.010      | 3'-5' exonuclease<br>activity                    | 0.003           |
| catalytic activity, acting on a nucleic acid | 3.100e-10     | 2.375e-7         | 7.124e-7                | RNA binding                                   | 0.041      | guanyl-nucleotide<br>exchange factor<br>activity | 0.007           |
| transferase activity                         | 2.700e-9      | 1.551e-6         | 6.205e-6                | 3'-5'-exoribonuclease activity                | 0.155      | exoribonuclease<br>activity                      | 0.007           |
| catalytic activity, acting on RNA            | 1.900e-8      | 8.732e-6         | 4.366e-5                | GTP binding                                   | 0.234      | RNA binding                                      | 0.011           |

### catalytic activity (GO:0003824)

Catalysis of a biochemical reaction at physiological temperatures. In biologically catalyzed reactions, the reactants are known as substrates, and the catalysts are naturally occurring macromolecular substances known as enzymes. Enzymes possess specific binding sites for substrates, and are usually composed wholly or largely of protein, but RNA that has catalytic activity (ribozyme) is often also regarded as enzymatic. In this experiment, the algorithm identified **911** differentially expressed gene(s) out of ALL **5,574** gene(s).



(c) Advaita Corporation 2022

Fig. 3.3.3: Gene measured expression bar plot: All the differentially expressed genes that are annotated to catalytic activity are ranked based on their absolute value of log fold change. The plot is limited to the top 20 genes out of a total of 911 differentially expressed genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the differentially expressed genes that are annotated to this GO term. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.

### protein binding (GO:0005515)

Binding to a protein. In this experiment, the algorithm identified 1,963 differentially expressed gene(s) out of ALL 13,830 gene(s).



#### Report Summary | iPathwayGuide

Fig. 3.3.4: Gene measured expression bar plot: All the differentially expressed genes that are annotated to protein binding are ranked based on their absolute value of log fold change. The plot is limited to the top 20 genes out of a total of 1963 differentially expressed genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the differentially expressed genes that are annotated to this GO term. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.

# 3.4. Cellular Components results

Table 3.4.1: Top identified cellular components. Only the top scoring cellular component for each pruning type is described below the table.

| Pr                                           | uning Type: No | one              | Pruning Typ<br>specifi  | ee: High-<br>city       | Pruning Type: Smallest Common<br>Denominator |                                                |           |  |
|----------------------------------------------|----------------|------------------|-------------------------|-------------------------|----------------------------------------------|------------------------------------------------|-----------|--|
| GO Term                                      | p-value        | p-value<br>(FDR) | p-value<br>(Bonferroni) | GO Term                 | p-value                                      | GO Term                                        | p-value   |  |
| intracellular anatomical structure           | 1.000e-24      | 1.000e-24        | 1.000e-24               | nucleoplasm             | 4.388e-21                                    | cytoplasm                                      | 1.000e-24 |  |
| intracellular membrane-<br>bounded organelle | 1.000e-24      | 1.000e-24        | 1.000e-24               | cytosol                 | 5.546e-20                                    | nucleoplasm                                    | 7.314e-23 |  |
| cytoplasm                                    | 1.000e-24      | 1.000e-24        | 1.000e-24               | mitochondrion           | 3.169e-6                                     | organelle envelope                             | 6.095e-12 |  |
| intracellular organelle                      | 1.000e-24      | 1.000e-24        | 1.000e-24               | mitochondrial<br>matrix | 1.219e-5                                     | intracellular<br>membrane-bounded<br>organelle | 6.400e-6  |  |
| membrane-bounded<br>organelle                | 1.000e-24      | 1.000e-24        | 1.000e-24               | cytoplasm               | 1.463e-5                                     | transferase complex                            | 4.876e-4  |  |

### intracellular anatomical structure (GO:0005622)

A component of a cell contained within (but not including) the plasma membrane. In eukaryotes it includes the nucleus and cytoplasm. In this experiment, the algorithm identified **2,189** differentially expressed gene(s) out of ALL **15,336** gene(s).



(c) Advaita Corporation 2022

Fig. 3.4.5: Gene measured expression bar plot: All the differentially expressed genes that are annotated to intracellular anatomical structure are ranked based on their absolute value of log fold change. The plot is limited to the top 20 genes out of a total of 2189 differentially expressed genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the differentially expressed genes that are annotated to this GO term. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.

# nucleoplasm (GO:0005654)

That part of the nuclear content other than the chromosomes or the nucleolus. In this experiment, the algorithm identified **720** differentially expressed gene(s) out of ALL **4,085** gene(s).



#### 10/24/22, 10:21 AM

#### Report Summary | iPathwayGuide

Fig. 3.4.6: Gene measured expression bar plot: All the differentially expressed genes that are annotated to nucleoplasm are ranked based on their absolute value of log fold change. The plot is limited to the top 20 genes out of a total of 720 differentially expressed genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the differentially expressed genes that are annotated to this GO term. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.

### cytoplasm (GO:0005737)

The contents of a cell excluding the plasma membrane and nucleus, but including other subcellular structures. In this experiment, the algorithm identified **1,814** differentially expressed gene(s) out of ALL **11,909** gene(s).



#### (c) Advaita Corporation 2022

Fig. 3.4.7: Gene measured expression bar plot: All the differentially expressed genes that are annotated to cytoplasm are ranked based on their absolute value of log fold change. The plot is limited to the top 20 genes out of a total of 1814 differentially expressed genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the differentially expressed genes that are annotated to this GO term. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.

# 4. Predicted Upstream Regulator Analysis - miRNAs

# 4.1. Methods

The prediction of active miRNAs (Friedman et al., 2009; Lewis et al., 2005) is based on enrichment of differentially downregulated target genes of the miRNAs. In general, miRNAs have an inhibitory effect on their targets. Therefore, for any given miRNA the method computes the ratio between the number of differentially downregulated targets and all differentially expressed targets, and compares it to the ratio of all downwardly expressed targets to all targets. Overall, iPathwayGuide calculates the probability of observing at least the number of differentially downregulated target genes for a given miRNA just by chance. This p-value is computed using the hypergeometric distribution as described for pORA in the Pathway Analysis section.

# 4.2. Results

| miRNA Name      | p-value | p-value (FDR) | p-value (Bonferroni) |
|-----------------|---------|---------------|----------------------|
| hsa-miR-34c-5p  | 1.000   | 1.000         | 1.000                |
| hsa-miR-892c-3p | 1.000   | 1.000         | 1.000                |
| hsa-miR-330-3p  | 1.000   | 1.000         | 1.000                |
| hsa-let-7g-5p   | 1.000   | 1.000         | 1.000                |
| hsa-miR-299-3p  | 1.000   | 1.000         | 1.000                |

#### Table 4.2.1: Top identified miRNAs

# hsa-miR-34c-5p (MIMAT0000686)



Fig. 4.2.1: Gene measured expression bar plot: All the differentially expressed genes that are targeted by hsa-miR-34c-5p are ranked based on their measured expression change (most downregulated to upregulated). The downregulated genes are shown in blue, and the upregulated ones are shown in red (where applicable). The plot is limited to the top 20 genes out of a total of 103 differentially expressed target genes. Out of all the differentially expressed target genes, 0 were found to be downregulated. The box and whisker plot on the left summarizes the distribution of all the differentially expressed genes targeted by this miRNA. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.

# hsa-miR-892c-3p (MIMAT0025858)



### (c) Advaita Corporation 2022

**Fig. 4.2.2: Gene measured expression bar plot:** All the differentially expressed genes that are targeted by hsa-miR-892c-3p are ranked based on their measured expression change (most downregulated to upregulated). The downregulated genes are shown in blue, and the upregulated ones are shown in red (where applicable). The plot is limited to the top 20 genes out of a total of 41 differentially expressed target genes. Out of all the differentially expressed target genes, 0 were found to be downregulated. The box and whisker plot on the left summarizes the distribution of all the differentially expressed genes targeted by this miRNA. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.

# hsa-miR-330-3p (MIMAT0000751)



#### (c) Advaita Corporation 2022

Fig. 4.2.3: Gene measured expression bar plot: All the differentially expressed genes that are targeted by hsa-miR-330-3p are ranked based on their measured expression change (most downregulated to upregulated). The downregulated genes are shown in blue, and the upregulated ones are shown in red (where applicable). The plot is limited to the top 20 genes out of a total of 153 differentially expressed target genes. Out of all the differentially expressed target genes, 0 were found to be downregulated. The box and whisker plot on the left summarizes the distribution of all the differentially expressed genes targeted by this miRNA. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.



#### (c) Advaita Corporation 2022

Fig. 4.2.4: Gene measured expression bar plot: All the differentially expressed genes that are targeted by hsa-let-7g-5p are ranked based on their measured expression change (most downregulated to upregulated). The downregulated genes are shown in blue, and the upregulated ones are shown in red (where applicable). The plot is limited to the top 20 genes out of a total of 193 differentially expressed target genes. Out of all the differentially expressed target genes, 0 were found to be downregulated. The box and whisker plot on the left summarizes the distribution of all the differentially expressed genes targeted by this miRNA. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.

159





Fig. 4.2.5: Gene measured expression bar plot: All the differentially expressed genes that are targeted by hsa-miR-299-3p are ranked based on their measured expression change (most downregulated to upregulated). The downregulated genes are shown in blue, and the upregulated ones are shown in red (where applicable). The plot is limited to the top 20 genes out of a total of 51 differentially expressed target genes. Out of all the differentially expressed target genes, 0 were found to be downregulated. The box and whisker plot on the left summarizes the distribution of all the differentially expressed targeted by this miRNA. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.

# 5. Predicted Upstream Regulator Analysis - Genes 5.1. Methods

The prediction of upstream regulators is based on two types of information: i) the enrichment of differentially expressed genes from the experiment and ii) a network of regulatory interactions from our proprietary knowledge base (see the report information for details). The network is a directed graph in which the nodes represent genes, and the edges represent regulatory interactions between two genes. A signed edge in this graph consists of a source gene, a target gene, and a sign to indicate the type of signal: activation (+) or inhibition (-). To create the network, the analysis selects only those edges observed in the literature with at least a medium confidence (evidence score greater than or equal to 400). The analysis considers two hypotheses:

- HA. The upstream regulator is activated in the condition studied.
- HI. The upstream regulator is inhibited in the condition studied.

The analysis divides the set of all the genes obtained from NCBI Gene database into several subsets based on the measurements in the experiment and the definitions shown in **Figure 5.1.1** and **Figure 5.1.2**. Let the sign of a measured DE gene be the sign of the log fold change value: (+) for up-regulated genes and (-) for down-regulated genes. A gene is a target gene if it corresponds to a node in the network that has at least one incoming edge. We define a *consistent gene* as a target DE gene such that the sign of the gene is consistent both with the type of the signal **and** with the hypothesis considered. Formally, by definition, a target DE gene g is consistent with Hypothesis HA if and only if an incoming edge e exists such that *sign(g) = sign(e)*. In other words, this describes the situation when the upstream regulator is predicted as activated, the signal is activation and the target DE gene is up-regulated, or the signal is inhibition and the target DE gene is down-regulated (see panel A in **Figure 5.1.1**). A target DE gene g is consistent with Hypothesis HI if and only if an incoming edge e exists such that *sign(g) ≠ sign(e)*. This second case captures the situation in which the upstream regulator is inhibited, the signal is inhibition and the target DE gene is up-regulated, or the signal is inhibition and the target DE gene is up-regulated, or the signal is inhibition and the target DE gene is up-regulated, or the signal is inhibition and the target DE gene is up-regulated, or the signal is inhibition and the target DE gene is up-regulated, or the signal is inhibition and the target DE gene is up-regulated, or the signal is inhibition and the target DE gene is up-regulated, or the signal is inhibition and the target DE gene is up-regulated, or the signal is activation and the target DE gene is up-regulated, or the signal is activation and the target DE gene is up-regulated, or the signal is activation and the target DE gene is up-regulated, or the signal is activation and the target DE gene B in **F** 







Fig. 5.1.2: The set of all genes includes the set of measured genes that are also targets in the network, or Measured Targets (MT). We define the subset of "DE Targets consistent with the first hypothesis that the upstream regulators are Activated", DTA. For a selected upstream regulator u, we have the set of "Measured Targets of u" MT(u), "Differentially expressed Targets downstream of u" DT(u), and the set of "DE targets consistent with the hypothesis HA that u is Activated" DTA(u). The equivalent graphic for the hypothesis HI associated with DTI and DTI(u) is

https://ipathwayguide.advaitabio.com/report/56822/contrast/73693/summary/print

not shown.

### Upstream regulators Z-score

For both research hypotheses, the analysis computes a Z-score for each upstream regulator z(u) by iterating over the genes in DT(u) and their incoming edges *in(g)*. We can then compute the p-value corresponding to the z-score  $P_z$  as the one-tailed area under the probability density function for a normal distribution, N(0,1).

### Upstream regulators predicted as activated

Here, the research hypothesis considers the upstream regulator as activated. For each upstream regulator u, the number of consistent DE genes downstream of u, DTA(u) is compared to the number of measured target genes expected to be both consistent and DE just by chance. iPathwayGuide uses an over-representation approach to compute the statistical significance of observing at least the given number of consistent DE genes. The p-value  $P_{act}$  is computed using the hypergeometric distribution (Draghici et al., 2003, Draghici 2011).

After computing a p-value for both types of evidence,  $P_z$  and  $P_{act}$ , we need to combine these two probabilities into one global probability value,  $P_G$  that is used to rank the upstream regulators and test the research hypothesis that the upstream regulators are predicted as activated in the condition studied. Since only a positive z-score indicates that the upstream regulator is predicted as activated, we only combine p-values for a positive z-score. Moreover, to avoid introducing false positives, only  $P_z$  for significant z-scores ( $z \ge 2$ ) are combined. The analysis uses the standard Fisher's method to combine p-values into one test statistic (Fisher 1925).

### Upstream regulators predicted as inhibited

In parallel with upstream regulators predicted as activated, we use  $P_{inh}$  and  $P_z$  to predict upstream regulators that are inhibited. Here, the research hypothesis states that the upstream regulators are inhibited in the conditions studied. For each upstream regulator *u*, the number of consistent DE genes downstream of *u*, DTI(u) is compared to the number of measured target genes expected to be both consistent and DE just by chance. Using the Fisher's method as above, the analysis combines  $P_{inh}$  and  $P_z$ , where  $P_z$  is considered only for significant negative z-scores ( $z \le -2$ ).

| Upstream Regulator (u) | DTA(u) | DT(u) | p-value   | p-value<br>(FDR) | p-value<br>(Bonferroni) |            |   |      |                    |  |
|------------------------|--------|-------|-----------|------------------|-------------------------|------------|---|------|--------------------|--|
| RANBP2                 | 38     | 38    | 9.188e-14 | 1.664e-10        | 1.664e-10               | 4<br>act)  | _ |      |                    |  |
| NUP160                 | 36     | 36    | 6.001e-13 | 4.112e-10        | 1.087e-9                | 10(pv_     |   |      |                    |  |
| NUP107                 | 36     | 36    | 6.811e-13 | 4.112e-10        | 1.233e-9                | <b>9</b> 2 | _ |      |                    |  |
| NUP43                  | 35     | 35    | 1.624e-12 | 6.657e-10        | 2.941e-9                | 0          |   |      |                    |  |
| NUP37                  | 35     | 35    | 1.838e-12 | 6.657e-10        | 3.328e-9                |            | 0 | -log | 5<br>10(pv_zscore) |  |

# 5.2. Results: upstream regulators predicted as activated

Table 5.2.1: Top upstream regulators predicted as activated. For each upstream regulator u, the table shows the number of DE targets supporting the hypothesis that the regulator is activated DTA(u) the total number of DE genes downstream of u DT(u), the combined raw p-value, and the p-value corrected for multiple comparisons. Fig. 5.2.1: A two-way plot showing the top five upstream regulators predicted as activated. Dots representing upstream regulators are positioned using P<sub>zscore</sub> on the horizontal axis, and using P<sub>act</sub> on the vertical axis. P<sub>act</sub> is the p-value based on the number of DE targets consistent with the typeof the incoming signal and with the selected hypothesis type. Upstream regulators with a significant combined p-value are shown in red. The size of each dot represents the number of consistent DE genes for that regulator.

# RANBP2 (RAN binding protein 2)



(c) Advaita Corporation 2022

Fig. 5.2.3: Gene measured expression bar plot: All the consistent differentially expressed genes that are targeted by RANBP2 are ranked based on their absolute value of log fold change. The plot is limited to the top 20 genes out of a total of 38 consistent differentially expressed target genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator. The box shows the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.



Fig. 5.2.4: Activation p-value vs zscore p-value: RANBP2, RAN binding protein 2, (yellow) is shown, using negative log of the activation and zscore p-values, along with the other most significant upstream regulators. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 38.



# NUP160 (nucleoporin 160)

Fig. 5.2.5: Gene measured expression bar plot: All the consistent differentially expressed genes that are targeted by NUP160 are ranked based on their absolute value of log fold change. The plot is limited to the top 20 genes out of a total of 36 consistent differentially expressed target genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator. The box shows the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.

(c) Advaita Corporation 2022



Fig. 5.2.6: Activation p-value vs zscore p-value: NUP160, nucleoporin 160, (yellow) is shown, using negative log of the activation and zscore p-values, along with the other most significant upstream regulators. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 36.





#### (c) Advaita Corporation 2022

Fig. 5.2.7: Gene measured expression bar plot: All the consistent differentially expressed genes that are targeted by NUP107 are ranked based on their absolute value of log fold change. The plot is limited to the top 20 genes out of a total of 36 consistent differentially expressed target genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator. The box shows the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.



Fig. 5.2.8: Activation p-value vs zscore p-value: NUP107, nucleoporin 107, (yellow) is shown, using negative log of the activation and zscore p-values, along with the other most significant upstream regulators. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 36.





#### (c) Advaita Corporation 2022

Fig. 5.2.9: Gene measured expression bar plot: All the consistent differentially expressed genes that are targeted by NUP43 are ranked based on their absolute value of log fold change. The plot is limited to the top 20 genes out of a total of 35 consistent differentially expressed target genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator. The box shows the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.



Fig. 5.2.10: Activation p-value vs zscore p-value: NUP43, nucleoporin 43, (yellow) is shown, using negative log of the activation and zscore p-values, along with the other most significant upstream regulators. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 35.



# NUP37 (nucleoporin 37)

Fig. 5.2.11: Gene measured expression bar plot: All the consistent differentially expressed genes that are targeted by NUP37 are ranked based on their absolute value of log fold change. The plot is limited to the top 20 genes out of a total of 35 consistent differentially expressed target genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator. The box shows the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.

(c) Advaita Corporation 2022



Fig. 5.2.12: Activation p-value vs zscore p-value: NUP37, nucleoporin 37, (yellow) is shown, using negative log of the activation and zscore p-values, along with the other most significant upstream regulators. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 35.

# 5.3. Results: upstream regulators predicted as inhibited

| Upstream Regulator (u) | DTI(u) | DT(u) | p-value   | p-value<br>(FDR) | p-value<br>(Bonferroni) | 8 -     |   |               |                | $\mathbf{\hat{b}}$ |
|------------------------|--------|-------|-----------|------------------|-------------------------|---------|---|---------------|----------------|--------------------|
| RBX1                   | 19     | 19    | 1.077e-11 | 4.952e-9         | 1.950e-8                | 6-      |   |               |                |                    |
| SKP2                   | 17     | 17    | 2.189e-11 | 4.952e-9         | 3.965e-8                | nd)019c |   |               |                |                    |
| СОММДЗ                 | 18     | 18    | 2.415e-11 | 4.952e-9         | 4.374e-8                | ₽<br>2- |   |               |                |                    |
| CCDC22                 | 18     | 18    | 2.415e-11 | 4.952e-9         | 4.374e-8                | 0 -     |   |               |                |                    |
| COMMD2                 | 18     | 18    | 2.415e-11 | 4.952e-9         | 4.374e-8                |         | 0 | 2<br>-log10(p | 4<br>v_zscore) | 1                  |
|                        |        |       |           |                  |                         |         |   |               | (c) Advaita Co | prooration 2022    |

Table 5.3.1: Top upstream regulators predicted as inhibited. For each upstream regulator u, the table shows the number of DE targets supporting the hypothesis that the regulator is inhibited DTI(u) the total number of DE genes downstream of u DT(u), the combined raw p-value, and the p-value corrected for multiple comparisons. Fig. 5.3.1: A two-way plot showing the top five upstream regulators predicted as inhibited. Dots representing upstream regulators are positioned using P<sub>zscore</sub> on the horizontal axis, and using P<sub>inh</sub> on the vertical axis. P<sub>inh</sub> is the p-value based on the number of DE targets consistent with the typeof the incoming signal and with the selected hypothesis type. Upstream regulators with a significant combined p-value are shown in red. The size of each dot represents the number of consistent DE genes for that regulator.

### RBX1 (ring-box 1)







Fig. 5.3.14: Inhibition p-value vs zscore p-value: RBX1, ring-box 1, (vellow) is shown, using negative log of the inhibition and zscore p-values, along with the other most significant upstream regulators. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 19.

### SKP2 (S-phase kinase associated protein 2)



Fig. 5.3.15: Gene measured expression bar plot: All the consistent differentially expressed genes that are targeted by SKP2 are ranked based on their absolute value of log fold change. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator. The box shows the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.



Fig. 5.3.16: Inhibition p-value vs zscore p-value: SKP2, S-phase kinase associated protein 2, (yellow) is shown, using negative log of the inhibition and zscore p-values, along with the other most significant upstream regulators. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 17.



# COMMD3 (COMM domain containing 3)

Fig. 5.3.17: Gene measured expression bar plot: All the consistent differentially expressed genes that are targeted by COMMD3 are ranked based on their absolute value of log fold change. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator. The box shows the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.



Fig. 5.3.18: Inhibition p-value vs zscore p-value: COMMD3, COMM domain containing 3, (yellow) is shown, using negative log of the inhibition and zscore p-values, along with the other most significant upstream regulators. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 18.

### CCDC22 (coiled-coil domain containing 22)



Fig. 5.3.19: Gene measured expression bar plot: All the consistent differentially expressed genes that are targeted by CCDC22 are ranked based on their absolute value of log fold change. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator. The box shows the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.



Fig. 5.3.20: Inhibition p-value vs zscore p-value: CCDC22, coiled-coil domain containing 22, (yellow) is shown, using negative log of the inhibition and zscore p-values, along with the other most significant upstream regulators. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 18.

### COMMD2 (COMM domain containing 2)



### Fig. 5.3.21: Gene measured expression bar plot: All the consistent differentially expressed genes that are targeted by COMMD2 are ranked based on their absolute value of log fold change. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator. The box shows the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.



Fig. 5.3.22: Inhibition p-value vs zscore p-value: COMMD2, COMM domain containing 2, (yellow) is shown, using negative log of the inhibition and zscore p-values, along with the other most significant upstream regulators. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 18.

# 6. Predicted Upstream Regulator Analysis – Chemicals, Drugs, Toxicants (CDTs)

# 6.1. Methods

The prediction of upstream Chemicals, Drugs, Toxicants (CDTs) is based on two types of information: i) the enrichment of differentially expressed genes from the experiment and ii) a network of interactions from the Advaita Knowledge Base (AKB v2201). The network is a directed graph in which the source node represents either a chemical substance or compound (e.g. zinc), a drug (e.g. aspirin), or a toxicant (e.g. tobacco smoke). The generic abbreviation CDT will be used henceforth to designate any of these. The edges represent known effects that these CDTs have on various genes. A signed edge in this graph consists of a source CDT, a target gene, and a sign to indicate the type of effect: activation (+) or inhibition (-). The analysis considers two hypotheses:

- HP. The upstream chemical, drug or toxicant is present (or overly abundant) in the condition studied.
- HA. The upstream chemical, drug or toxicant is absent (or insufficient) in the condition studied.

The analysis divides the set of all the genes from AKB into several subsets based on the measurements in the experiment and the definitions shown in **Figure 6.1.1** and **Figure 6.1.2**. Let the sign of a measured DE gene be the sign of the log fold change value: (+) for up-regulated genes and (-) for down-regulated genes. A gene is a target gene if it corresponds to a node in the network that has at least one incoming edge. We define a *consistent gene* as a target DE gene such that the sign of the gene is consistent both with the type of the signal **and** with the hypothesis considered. Formally, by definition, a target DE gene *g* is consistent with Hypothesis HP if and only if an incoming edge *e* exists such that *sign(g) = sign(e)*. In other words, this describes the situation when the CDT is predicted as present, the signal is activation and the target DE gene is up-regulated, or the signal is inhibition and the target DE gene *g* is consistent corresponded (see panel A in **Figure 6.1.1**). A target DE gene *g* is consistent (or insufficient), the signal is inhibition and the target DE gene is up-regulated, or the signal is activation and the CDT is absent (or insufficient), the signal is inhibition and the target DE gene is up-regulated, or the signal is inhibition and the target DE gene is up-regulated, or the signal is inhibition and the target DE gene is up-regulated, or the signal is inhibition and the target DE gene is up-regulated, or the signal is inhibition and the target DE gene is up-regulated, or the signal is inhibition and the target DE gene is up-regulated, or the signal is inhibition and the target DE gene is up-regulated, or the signal is inhibition and the target DE gene is up-regulated, or the signal is activation and the target DE gene is up-regulated, or the signal is inhibition and the target DE gene is up-regulated, or the signal is activation and the target DE gene is up-regulated, or the signal is activation and the target DE gene is up-regulated (see panel B in **Figure 6.1.1**).


Fig. 6.1.1: Target genes consistent with the hypothesis considered: In panel A, the signs of the DE genes match the signs of their respective incoming edges, increasing the likelihood that the CDT u is present. In panel B, the signs of the DE genes are opposite to the signs of their edges, increasing the likelihood that the CDT u is absent.



Fig. 6.1.2: The set of all genes includes the set of measured genes that are also targets in the network, or Measured Targets (MT). We define the subset of "DE Targets consistent with the first hypothesis that the CDTs are Present (or overly abundant)", DTA. For a selected upstream CDT u, we have the set of "Measured Targets of u" MT(u), "Differentially expressed Targets downstream of u" DT(u), and the set of "DE targets consistent with the hypothesis HP that u is Present" DTA(u). The equivalent graphic for the hypothesis HA associated with DTI and DTI(u) is not shown.

#### Z-score

For both research hypotheses, the analysis computes a Z-score for each CDT z(u) by iterating over the genes in DT(u) and their incoming edges in(g). We can then compute the p-value corresponding to the z-score  $P_z$  as the one-tailed area under the probability density function for a normal distribution, N(0,1).

#### Upstream CDTs predicted as present (or overly abundant)

Here, the research hypothesis considers presence of the CDT. This hypothesis is useful when investigating whether the given phenotype has been impacted by the presence of a given chemical, drug or toxicant (e.g. tobacco smoke, dioxin, etc.). For each CDT u, the number of consistent DE genes downstream of u, DTA(u) is compared to the number of measured target genes expected to be both consistent and DE just by chance. iPathwayGuide uses an over-representation approach to compute the statistical significance of observing at least the given number of consistent DE genes. The p-value  $P_{Dres}$  is computed using the hypergeometric distribution (Draghici et al., 2003, Draghici 2011).

After computing a p-value for both types of evidence,  $P_z$  and  $P_{pres}$ , we combine these two probabilities into one global probability value,  $P_G$  that is used to rank the upstream regulators and test the research hypothesis that the upstream CDTs are predicted as present in the condition studied. The analysis uses the standard Fisher's method to combine p-values into one test statistic (Fisher 1925).

#### Upstream CDTs predicted as absent (or insufficient)

In parallel with upstream CDTs predicted as present, we use  $P_{abs}$  and  $P_z$  to predict upstream CDTs that are absent. This hypothesis is relevant when investigating whether the given phenotype has been impacted by the lack of a given chemical that is necessary for the well-functioning of the organism or cell (e.g. a vitamin deficiency, iron deficiency, etc.). Here, the research hypothesis states that the upstream CDT are insufficient in the condition studied. For each upstream CDT *u*, the number of consistent DE genes downstream of *u*, DTI(*u*) is compared to the number of measured target genes expected to be both consistent and DE just by chance. Using the Fisher's method as above, the analysis combines  $P_{abs}$  and  $P_z$ , where  $P_z$  is considered only for significant negative z-scores ( $z \le -2$ ).

## 6.2. Results: upstream CDTs predicted as present (or overly abundant)

| CDT (u)             | DTA(u) | DT(u) | p-value   | p-value<br>(FDR) | p-value<br>(Bonferroni) | _           |   | •              |                 |   |
|---------------------|--------|-------|-----------|------------------|-------------------------|-------------|---|----------------|-----------------|---|
| Naphthoquinones     | 62     | 63    | 1.957e-16 | 2.972e-13        | 4.323e-13               | - 4<br>Jues |   | •              | )               |   |
| geldanamycin        | 59     | 61    | 2.437e-15 | 1.794e-12        | 5.383e-12               | g10(pv_l    |   |                |                 |   |
| Dihydrotestosterone | 131    | 135   | 2.691e-16 | 2.972e-13        | 5.944e-13               | <u></u>     |   |                |                 |   |
| cylindrospermopsin  | 77     | 85    | 1.435e-14 | 7.922e-12        | 3.169e-11               | 0 -         |   |                |                 |   |
| Sodium Selenite     | 167    | 224   | 7.077e-13 | 3.127e-10        | 1.563e-9                |             | 0 | 10<br>-log10(p | 20<br>v_zscore) | 1 |

Table 6.2.1: Top upstream CDTs predicted as present (or overly abundant). For each upstream CDT u, the table shows the number of DE targets supporting the hypothesis that the CDT is present DTA(u) the total number of DE genes downstream of u DT(u), the combined raw p-value, and the p-value corrected for multiple comparisons. Fig. 6.2.1: A two-way plot showing the top five upstream CDTs predicted as present (or overly abundant). Dots representing upstream CDTs are positioned using  $P_{zscore}$  on the horizontal axis, and using  $P_{pres}$  on the vertical axis.  $P_{pres}$  is the p-value based on the number of DE targets consistent with the type of the incoming signal and with the selected hypothesis type. Upstream CDTs with a significant combined p-value are shown in red. The size of each dot represents the relative number of consistent DE genes for that CDT.

#### Naphthoquinones



#### (c) Advaita Corporation 2022

Fig. 6.2.3: Consistent DE target genes measured expression bar plot: All the consistent differentially expressed genes that are targeted by Naphthoquinones are ranked based on their absolute value of log fold change. The plot is limited to the top 20 genes out of a total of 62 consistent differentially expressed target genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator. The box shows the 1st quartile, the median and the 3rd quartile, while any outliers are represented by circles.



**Fig. 6.2.4:** a) **Present (overly abundant) p-value vs zscore p-value:** The significance of Naphthoquinones is plotted on two axes, with negative log of  $P_z$  on x-axis and negative log of  $P_{pres}$  on y-axis. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 62. b) Volcano plot: There are **62** DE genes that are targets of Naphthoquinones consistent with the hypothesis that Naphthoquinones is present (overly abundant) The target genes are represented in terms of their measured expression change (x-axis) and the significance of the change (y-axis). The significance is represented in terms of the negative log (base 10) of the p-value, so that more significant genes are plotted higher on the y-axis.

#### geldanamycin



(c) Advaita Corporation 2022

Fig. 6.2.5: Consistent DE target genes measured expression bar plot: All the consistent differentially expressed genes that are targeted by geldanamycin are ranked based on their absolute value of log fold change. The plot is limited to the top 20 genes out of a total of 59 consistent differentially expressed target genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator. The box shows the 1st quartile, the median and the 3rd quartile, while any outliers are represented by circles.





#### Dihydrotestosterone



#### (c) Advaita Corporation 2022

Fig. 6.2.7: Consistent DE target genes measured expression bar plot: All the consistent differentially expressed genes that are targeted by Dihydrotestosterone are ranked based on their absolute value of log fold change. The plot is limited to the top 20 genes out of a total of 131 consistent differentially expressed target genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator. The box shows the 1st quartile, the median and the 3rd quartile, while any outliers are represented by circles.



**Fig. 6.2.8:** a) **Present (overly abundant)** p-value vs zscore p-value: The significance of Dihydrotestosterone is plotted on two axes, with negative log of  $P_z$  on x-axis and negative log of  $P_{pres}$  on y-axis. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 131. b) **Volcano plot:** There are **131** DE genes that are targets of Dihydrotestosterone consistent with the hypothesis that Dihydrotestosterone is present (overly abundant) The target genes are represented in terms of their measured expression change (x-axis) and the significance of the change (y-axis). The significance is represented in terms of the negative log (base 10) of the p-value, so that more significant genes are plotted higher on the y-axis.

#### cylindrospermopsin



(c) Advaita Corporation 2022

Fig. 6.2.9: Consistent DE target genes measured expression bar plot: All the consistent differentially expressed genes that are targeted by cylindrospermopsin are ranked based on their absolute value of log fold change. The plot is limited to the top 20 genes out of a total of 77 consistent differentially expressed target genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator. The box shows the 1st quartile, the median and the 3rd quartile, while any outliers are represented by circles.



**Fig. 6.2.10:** a) **Present (overly abundant) p-value vs zscore p-value:** The significance of cylindrospermopsin is plotted on two axes, with negative log of  $P_z$  on x-axis and negative log of  $P_{pres}$  on y-axis. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 77. b) Volcano plot: There are **77** DE genes that are targets of cylindrospermopsin consistent with the hypothesis that cylindrospermopsin is present (overly abundant). The target genes are represented in terms of their measured expression change (x-axis) and the significance of the change (y-axis). The significance is represented in terms of the negative log (base 10) of the p-value, so that more significant genes are plotted higher on the y-axis.

#### Sodium Selenite



#### (c) Advaita Corporation 2022

Fig. 6.2.11: Consistent DE target genes measured expression bar plot: All the consistent differentially expressed genes that are targeted by Sodium Selenite are ranked based on their absolute value of log fold change. The plot is limited to the top 20 genes out of a total of 167 consistent differentially expressed target genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator. The box shows the 1st quartile, the median and the 3rd quartile, while any outliers are represented by circles.



**Fig. 6.2.12:** a) **Present (overly abundant) p-value vs zscore p-value:** The significance of Sodium Selenite is plotted on two axes, with negative log of  $P_z$  on x-axis and negative log of  $P_{pres}$  on y-axis. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 167. b) Volcano plot: There are **167** DE genes that are targets of Sodium Selenite consistent with the hypothesis that Sodium Selenite is present (overly abundant) The target genes are represented in terms of their measured expression change (x-axis) and the significance of the change (y-axis). The significance is represented in terms of the negative log (base 10) of the p-value, so that more significant genes are plotted higher on the y-axis.

## 6.3. Results: upstream CDTs predicted as absent (or insufficient)

| CDT (u)                                                                           | DTI(u) | DT(u) | p-value   | p-value<br>(FDR) | p-value<br>(Bonferroni) |          | 80 - |   |   |              |                                   |                            |
|-----------------------------------------------------------------------------------|--------|-------|-----------|------------------|-------------------------|----------|------|---|---|--------------|-----------------------------------|----------------------------|
| Doxorubicin                                                                       | 932    | 1131  | 5.626e-23 | 3.355e-20        | 1.243e-19               | abs)     | 60 - |   |   |              |                                   |                            |
| Ivermectin                                                                        | 833    | 848   | 5.626e-23 | 3.355e-20        | 1.243e-19               | og10(pv_ | 40 - |   |   |              |                                   |                            |
| dicrotophos                                                                       | 499    | 696   | 5.626e-23 | 3.355e-20        | 1.243e-19               | ę        | 20 - |   |   |              |                                   |                            |
| 3-((6-(2-<br>methoxyphenyl)pyrimidin-4-<br>yl)amino)phenyl)methane<br>sulfonamide | 162    | 167   | 6.075e-23 | 3.355e-20        | 1.342e-19               |          | 0 -  | 0 | 8 | 50<br>-log10 | 100<br>I(pv_zscore<br>(c) Advaita | 150<br>)<br>Corporation 20 |
| 7,8-Dihydro-7,8-<br>dihydroxybenzo(a)pyrene 9,10-<br>oxide                        | 440    | 563   | 7.519e-19 | 3.322e-16        | 1.661e-15               |          |      |   |   |              | .,                                |                            |

Table 6.3.1: Top upstream CDTs predicted as absent (or insufficient). For each upstream CDT u, the table shows the number of DE targets supporting the hypothesis that the CDT is absent DTI(u) the total number of DE genes downstream of u DT(u), the combined raw p-value, and the p-value corrected for multiple comparisons. Fig. 6.3.1: A two-way plot showing the top five upstream CDTs predicted as absent (or insufficient). Dots representing upstream CDTs are positioned using P<sub>zscore</sub> on the horizontal axis, and using P<sub>abs</sub> on the vertical axis. P<sub>abs</sub> is the p-value based on the number of DE targets consistent with the typeof the incoming signal and with the selected hypothesis type. Upstream CDTs with a significant combined p-value are shown in red. The size of each dot represents the relative number of consistent DE genes for that CDT.

#### Doxorubicin



#### (c) Advaita Corporation 2022

Fig. 6.3.13: Consistent DE target genes measured expression bar plot: All the consistent differentially expressed genes that are targeted by Doxorubicin are ranked based on their absolute value of log fold change. The plot is limited to the top 20 genes out of a total of 932 consistent differentially expressed target genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator. The box shows the 1st quartile, the median and the 3rd quartile, while any outliers are represented by circles.



Fig. 6.3.14: a) Absent (or insufficient) p-value vs zscore p-value: The significance of Doxorubicin is plotted on two axes, with negative log of  $P_z$  on x-axis and negative log of  $P_{abs}$  on y-axis. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 932. b) Volcano plot: There are 932 DE genes that are targets of Doxorubicin consistent with the hypothesis that Doxorubicin is absent (or insufficient) The target genes are represented in terms of their measured expression change (x-axis) and the significance of the change (y-axis). The significance is represented in terms of the negative log (base 10) of the p-value, so that more significant genes are plotted higher on the y-axis.

#### Ivermectin



(c) Advaita Corporation 2022

Fig. 6.3.15: Consistent DE target genes measured expression bar plot: All the consistent differentially expressed genes that are targeted by lvermectin are ranked based on their absolute value of log fold change. The plot is limited to the top 20 genes out of a total of 833 consistent differentially expressed target genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator. The box shows the 1st quartile, the median and the 3rd quartile, while any outliers are represented by circles.



**Fig. 6.3.16:** a) **Absent (or insufficient) p-value vs zscore p-value:** The significance of lvermectin is plotted on two axes, with negative log of  $P_z$  on x-axis and negative log of  $P_{abs}$  on y-axis. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 833. b) Volcano plot: There are **833** DE genes that are targets of lvermectin consistent with the hypothesis that lvermectin is absent (or insufficient). The target genes are represented in terms of their measured expression change (x-axis) and the significance of the change (y-axis). The significance is represented in terms of the negative log (base 10) of the p-value, so that more significant genes are plotted higher on the y-axis.

#### dicrotophos



(c) Advaita Corporation 2022

(c) Advaita Corporation 2022

Fig. 6.3.17: Consistent DE target genes measured expression bar plot: All the consistent differentially expressed genes that are targeted by dicrotophos are ranked based on their absolute value of log fold change. The plot is limited to the top 20 genes out of a total of 499 consistent differentially expressed target genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator. The box shows the 1st quartile, the median and the 3rd quartile, while any outliers are represented by circles.



Fig. 6.3.18: a) Absent (or insufficient) p-value vs zscore p-value: The significance of dicrotophos is plotted on two axes, with negative log of P<sub>z</sub> on x-axis and negative log of P<sub>abs</sub> on y-axis. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 499. b) Volcano plot: There are 499 DE genes that are targets of dicrotophos consistent with the hypothesis that dicrotophos is absent (or insufficient) The target genes are represented in terms of their measured expression change (x-axis) and the significance of the change (y-axis). The significance is represented in terms of the negative log (base 10) of the p-value, so that more significant genes are plotted higher on the y-axis.



#### 3-((6-(2-methoxyphenyl)pyrimidin-4-yl)amino)phenyl)methane sulfonamide

Fig. 6.3.19: Consistent DE target genes measured expression bar plot: All the consistent differentially expressed genes that are targeted by 3-((6-(2-methoxyphenyl)pyrimidin-4yl)amino)phenyl)methane sulfonamide are ranked based on their absolute value of log fold change. The plot is limited to the top 20 genes out of a total of 162 consistent differentially expressed target genes. Upregulated genes are shown in red, downregulated genes are shown in blue. The box and whisker plot on the left summarizes the distribution of all the consistent differentially expressed genes targeted by this upstream regulator. The box shows the 1st quartile, the median and the 3rd quartile, while any outliers are represented by circles.



Fig. 6.3.20: a) Absent (or insufficient) p-value vs zscore p-value: The significance of  $3 - ((6 - (2 - methoxyphenyl)pyrimidin-4-yl)amino)phenyl)methane sulfonamide is plotted on two axes, with negative log of <math>P_z$  on x-axis and negative log of  $P_{abs}$  on y-axis. The size of the dot represents the relative number of consistent DE genes, which for selected upstream regulator is 162. b) Volcano plot: There are 162 DE genes that are targets of 3 - ((6 - (2 - methoxyphenyl)pyrimidin-4-yl)amino)phenyl)methane sulfonamide consistent with the hypothesis that <math>3 - ((6 - (2 - methoxyphenyl)pyrimidin-4-yl)amino)phenyl)methane sulfonamide consistent with the hypothesis that <math>3 - ((6 - (2 - methoxyphenyl)pyrimidin-4-yl)amino)phenyl)methane sulfonamide consistent with the hypothesis that <math>3 - ((6 - (2 - methoxyphenyl)pyrimidin-4-yl)amino)phenyl)methane sulfonamide is absent (or insufficient). The target genes are represented in terms of their measured expression change (x-axis) and the significance of the change (y-axis). The significance is represented in terms of the negative log (base 10) of the p-value, so that more significant genes are plotted higher on the y-axis.





(c) Advaita Corporation 2022

Fig. 6.3.21: Consistent DE target genes measured expression bar plot: All the consistent differentially expressed genes that are targeted by 7,8-Dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihydro-7,8-dihyd





## 7. Disease Analysis

https://ipathwayguide.advaitabio.com/report/56822/contrast/73693/summary/print

## 7.1. Methods

For each disease, the number of differentially expressed (DE) genes annotated to a disease term is compared to the number of DE genes expected just by chance. iPathwayGuide uses an over-representation approach to compute the statistical significance of observing at least the given number of DE genes. The p-value is computed using the hypergeometric distribution as described for pORA in the Pathway Analysis section. This p-value is corrected for multiple comparisons using FDR and Bonferroni.

## 7.2. Results

#### Table 7.2.1: Top identified diseases

| Disease Name                                                                        | p-value  | p-value<br>(FDR) | p-value<br>(Bonferroni) |
|-------------------------------------------------------------------------------------|----------|------------------|-------------------------|
| Congenital disorders of glycosylation type I                                        | 5.272e-8 | 1.763e-5         | 2.673e-5                |
| Autosomal recessive mental retardation                                              | 6.954e-8 | 1.763e-5         | 3.526e-5                |
| Joubert syndrome                                                                    | 9.091e-7 | 1.536e-4         | 4.609e-4                |
| Pontocerebellar hypoplasia                                                          | 2.861e-6 | 2.901e-4         | 0.001                   |
| Cytochrome c oxidase (COX) deficiency; Mitochondrial complex IV deficiency (MT-C4D) | 2.861e-6 | 2.901e-4         | 0.001                   |

#### Congenital disorders of glycosylation type I (H00118)

Congenital disorders of glycosylation (CDG) are a group of disorders caused by defects in various genes for N-glycan biosynthesis. CDG type I is defined by mutations in genes encoding enzymes which involves disrupted synthesis of the lipid linked oligosaccharide precursor and its transfer to polypeptide chain of protein, affecting N-glycan assembly in cytosol and endoplasmic reticulum. An increasing number of disorders have been discovered, with many subtypes identified. PMM2-CDG is the most common form, with over 800 patients diagnosed mostly in Europe. Almost all type present in infancy. These diseases demonstrate a broad range of clinical manifestation, associated with developmental delay, psychomotor retardation, hypotonia, seizures, hepatomegaly, microcephaly, and pericardial effusion. In this experiment, the algorithm identified **11** differentially expressed genes out of **29** genes associated with the disease.



#### (c) Advaita Corporation 2022

Fig. 7.2.1: Gene measured expression bar plot: All the differentially expressed genes that are annotated to Congenital disorders of glycosylation type I are ranked based on their absolute value of log fold change. Upregulated genes are shown in red, downregulated genes are shown in blue. The box plot on the left summarizes the distribution of all the differentially expressed genes that are annotated to this disease. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.

#### Autosomal recessive mental retardation (H00768)

Mental retardation (MR) is a neurodevelopmental disorder characterized by low intelligence quotient (IQ) and deficits in adaptive behaviors. Although Xlinked MR has been extensively studied, and over 80 causal genes have been cloned, little is known about the genetic basis of autosomal recessive mental retardation (MRT). To date, several genes have been identified. These genes have a variety of functions and participate in multiple biochemical pathways. In addition, there are several known disease loci for which genes have not yet been identified. In this experiment, the algorithm identified **14** differentially expressed genes out of **50** genes associated with the disease.



Fig. 7.2.2: Gene measured expression bar plot: All the differentially expressed genes that are annotated to Autosomal recessive mental retardation are ranked based on their absolute value of log fold change. Upregulated genes are shown in red, downregulated genes are shown in blue. The box plot on the left summarizes the distribution of all the differentially expressed genes that are annotated to this disease. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.

#### Joubert syndrome (H00530)

Joubert syndrome and related disorders are a group of multiple congenital anomaly syndromes characterized by 'molar tooth sign', a specific midbrainhindbrain malformation seen in brain images. Joubert syndrome is associated with retinal dystrophy, nephronophthisis, liver fibrosis and polydactyly. Most of the causative genes encode cilium-related proteins. In this experiment, the algorithm identified **11** differentially expressed genes out of **37** genes associated with the disease.



(c) Advaita Corporation 2022

Fig. 7.2.3: Gene measured expression bar plot: All the differentially expressed genes that are annotated to Joubert syndrome are ranked based on their absolute value of log fold change. Upregulated genes are shown in red, downregulated genes are shown in blue. The box plot on the left summarizes the distribution of all the differentially expressed genes that are annotated to this disease. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.

#### Pontocerebellar hypoplasia (H00897)

Pontocerebellar hypoplasia (PCH) is a group of inherited progressive neurodegenerative disorders with prenatal onset. Up to now ten different subtypes have been reported. All subtypes share common characteristics, including hypoplasia/atrophy of cerebellum and pons, progressive microcephaly, and variable cerebral involvement. Mutations in three tRNA splicing endonuclease subunit genes were found to be responsible for PCH2, PCH4 and PCH5. Mutations in the nuclear encoded mitochondrial arginyl- tRNA synthetase gene underlie PCH6. PCH1 is caused by homozygous mutation in the VRK1 gene. In this experiment, the algorithm identified **7** differentially expressed genes out of **15** genes associated with the disease.



#### (c) Advaita Corporation 2022

Fig. 7.2.4: Gene measured expression bar plot: All the differentially expressed genes that are annotated to Pontocerebellar hypoplasia are ranked based on their absolute value of log fold change. Upregulated genes are shown in red, downregulated genes are shown in blue. The box plot on the left summarizes the distribution of all the differentially expressed genes that are annotated to this disease. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.

#### Cytochrome c oxidase (COX) deficiency; Mitochondrial complex IV deficiency (MT-C4D) (H01368)

Cytochrome c oxidase (COX) deficiency is a mitochondrial disease that is caused by the lack of the COX. Cytochrome c oxidase (COX) is the terminal enzyme of the mitochondrial respiratory chain (complex IV). Since COX is encoded by nuclear and mitochondrial genes, COX deficiency can be inherited in either an autosomal recessive or a maternal pattern. Patients can present with a number of different clinical phenotypes, including Leigh syndrome, Fatal infantile cardioencephalomyopathy, and Leber hereditary optic neuropathy. In this experiment, the algorithm identified **7** differentially expressed genes out of **15** genes associated with the disease.



Fig. 7.2.5: Gene measured expression bar plot: All the differentially expressed genes that are annotated to Cytochrome c oxidase (COX) deficiency; Mitochondrial complex IV deficiency (MT-C4D) are ranked based on their absolute value of log fold change. Upregulated genes are shown in red, downregulated genes are shown in blue. The box plot on the left summarizes the distribution of all the differentially expressed genes that are annotated to this disease. The box represents the 1st quartile, the median and the 3rd quartile, while the outliers are represented by circles.

## 8. References

- Agarwal V, Bell GW, Nam J, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. eLife, 4:e05005 (2015).
- Alexa, A., Rahnenfuehrer, J., Lengauer, T.: Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22(13): 1600-1607 (2006).
- Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., Sherlock, G.: The Gene Ontology Consortium. Gene ontology: Tool for the unification of biology. Nature Genetics 25(1): 25-9 (2000).
- Ashburner, M., Lewis, S.: On Ontologies for Biologists: The Gene Ontology Untangling the web: 'In Silico' simulation of biological processes: Novartis Found Symp, 247:66-80; discussion 80-3, 84-90: 244-52 (2002).
- Benjamini, Y. and Hochberg, Y.: Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society B, 57(1):289-300, (1995).
- Benjamini, Y. and Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. Annals of Statistics, 29(4):1165-1188, (2001).
- Bonferroni, C. E.: Il calcolo delle assicurazioni su gruppi di teste, chapter "Studi in Onore del Professore Salvatore Ortu Carboni", pages 13-60, Rome, (1935).
- Bonferroni, C. E.: Teoria statistica delle classi e calcolo delle probabilita. Pubblicazioni del Istituto Superiore di Scienze Economiche e Commerciali di Firenze, 8:3-62, (1936).
- Camon, E., Magrane, M., Barrell, D., Lee, V., Dimmer, E., Maslen, J., Binns, D., Harte, N., Lopez, R., Apweiler, R.: The Gene Ontology Annotation (GOA) database: sharing knowledge in Uniprot with Gene Ontology. Nucleic Acids Research, 32(Database issue), D262-D266 (2004).
- Davis AP, Grondin CJ, Johnson RJ, Sciaky D, McMorran R, Wiegers J, Wiegers TC, Mattingly CJ, The Comparative Toxicogenomics Database: update 2019, Nucleic Acids Research, 47(D1): D948-D954 (2019).
- Draghici, S., Khatri, P., Martins, R.P., Ostermeier, G.C. and Krawetz, S.A.: Global functional profiling of gene expression. Genomics, 81(2), pp.98-104 (2003).
- Draghici, S., Khatri, P., Bhavsar, P., Shah, A., Krawetz, S., Tainsky, M.A.: Onto-Tools, The toolkit of the modern biologist: Onto-Express, Onto-Compare, Onto-Design and Onto-Translate. Nucleic Acids Research, 31(13): 3775-81 (2003).
- Draghici, S., Khatri, P., Tarca, A.L., Amin, K., Done, A., Voichita, C., Georgescu, C., Romero, R.: A systems biology approach for pathway level analysis. Genome Research, 17(10): 1537-45 (2007).
- Draghici, S.: Statistics and Data Analysis for Microarrays Using R and Bioconductor, second edition. Chapman and Hall/CRC (2011).
- Friedman, R.C., Farh, K.K., Burge, C.B., Bartel, D.P.: Most mammalian mRNAs are conserved targets of microRNAs. Genome Research, 19: 92-105 (2009).

- Garcia, D.M., Baek, D., Shin, C., Bell, G.W., Grimson, A., Bartel, D.P.: Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other miRNAs. Nature Structural & Molecular Biology, 18: 1139-1146 (2011).
- Gene Ontology Consortium. Creating the Gene Ontology Resource: Design and Implementation. Genome Research 11: 1425-1433 (2001).
- Gene Ontology Consortium. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Research 32 (suppl 1): D258-D261 (2004).
- Griffiths-Jones S.: The microRNA Registry. Nucleic Acids Research 32:D109-D111 (2004).
- Griffiths-Jones S., Grocock R.J., van Dongen S., Bateman A., Enright A.J.: miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Research 34:D140-D144 (2006).
- Griffiths-Jones S., Saini H.K., van Dongen S., Enright A.J.: miRBase: tools for microRNA genomics. Nucleic Acids Research 36:D154-D158 (2008).
- Grimson, A., Farh, K.K., Johnston, W.K., Garrett-Engele, P., Lim, L.P., Bartel, D.P.: MicroRNA targeting specificity in mammals: Determinants beyond seed pairing. Molecular Cell, 27: 91-105 (2007).
- Fisher R. A.: Statistical methods for research workers. Oliver & Boyd, Edinburgh, (1925).
- Kanehisa, M., Goto, S.: KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research 28: 27-30 (2000).
- Kanehisa, M., Goto, S., Kawashima, S., and Nakaya, A.: The KEGG databases at GenomeNet. Nucleic Acids Research 30: 42-46 (2002).
- Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y., and Hattori, M.; The KEGG resources for deciphering the genome. Nucleic Acids Research 32: D277-D280 (2004).
- Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., Katayama, T., Kawashima, S., Okuda, S., Tokimatsu, T., and Yamanishi, Y.: KEGG for linking genomes to life and the environment. Nucleic Acids Research 36: D480-D484 (2008).
- Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M., Hirakawa, M.: KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Research 38: D355-D360 (2010).
- Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M.: KEGG for integration and interpretation of large-scale molecular datasets. Nucleic Acids Research 40: D109-D114 (2012).
- Kanehisa, M., Goto, S., Sato, Y., Kawashima, M., Furumichi, M., and Tanabe, M.; Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Research 42: D199-D205 (2014).
- Khatri, P., Draghici, S., Tarca, A.D., Hassan, S.S., Romero, R.: A system biology approach for the steady-state analysis of gene signaling networks. Lecture Notes in Computer Science (LNCS) 4756, pp 32-41 (2007).
- Kozomara A., Griffiths-Jones S.: miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Research 39:D152-D157 (2011).
- Kozomara A., Griffiths-Jones S.: miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Research 42:D68-D73 (2014).
- Lewis, B.P., Burge, C.B., Bartel, D.P.: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120(1):15-20 (2005).
- Nam J, Rissland OS, Koppstein D, Abreu-Goodger C, Jan CH, Agarwal V, Yildirim MA, Rodriguez A, Bartel DP. Global analyses of the effect of different cellular contexts on microRNA targeting. Molecular Cell, 53:1031-43 (2014).
- Rhee, S.Y., Wood, V., Dolinski, K., Draghici, S.: Use and misuse of the gene ontology annotations. Nature Reviews Genetics 9(4):509-515 (2008).
- Szklarczyk, D., Morris, J.H., Cook, H., et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Research 45(D1):D362-D368 (2017).
- Tarca, A.L., Draghici, S., Khatri, P., Hassan, S., Mittal, P., Kim, J.S., Kim, C.J., Kusanovic, J.P., Romero, R.: A novel Signaling Pathway Impact Analysis (SPIA). Bioinformatics 25(1), 75-82 (2009).





LOMA LINDA UNIVERSITY

School of Allied Health Professions

### INFORMED CONSENT

TITLE:

# THE EFFECTS OF HIGH INTENSITY EXERCISE ON BIOLOGICAL AGE

Loma Linda University Department of Physical Therapy

SPONSOR: PRINCIPAL INVESTIGATOR:

Gurinder Bains PhD. Associate Professor School of Allied Health Professions

Key Information for You to Consider

**Voluntary Consent.** You are being asked to volunteer for a research study. It is up to you whether you choose to participate or not. There will be no penalty or loss of benefits to which you are otherwise entitled if you choose not to participate or discontinue participation.

**Purpose.** The purpose of this graduate student research study is to determine if a high-intensity exercise program can slow or reverse biological aging and shed light on the underlying pathways involved.

**Duration.** It is expected that your participation will last one month. You are asked to visit the Physical Therapy laboratory a total of 14 times: twelve 1-hour exercise visits 3-times per week, and two 1-hour data collection visits.

**Procedures and Activities.** If you are eligible to participate, you will be randomized to 1 of 2 groups: Control group or Exercise group. Control group participants will make no modifications to regular diet or exercise habits. Exercise group participants will perform supervised high intensity exercise three times per week at the LLU department of physical therapy laboratory utilizing treadmills, stationary bicycles, and rowing machines. You will have your body composition and vital signs

measured. You will complete 5 questionnaires (on stress, sleep, depression, activity level, and fitness) taking you approximately 25 minutes. You will provide

approximately 1.5 teaspoons of blood drawn by a certified phlebotomist to measure gene expression levels on visit 1 and the final day.

**Risks.** Some of the foreseeable risks or discomforts of your participation include exercise induced fatigue, falls, and breach of confidentiality.

**Benefits.** No direct benefit to you. However, the knowledge we gain may help researchers better understand the effects of high intensity exercise on gene expression and mortality risk. This information may help pinpoint the specific mechanism behind exercise's effect on health and lifespan.

Alternatives. Participation is voluntary and the only alternative is to not participate.

A Seventh-day Adventist Institution

Page 1 of 5 DEPARTMENT OF PHYSICAL THERAPY 182Nichol Hall, Loma Linda, California 92350 (909) 558-4632 · (800) 422-4558 · fax (909) 558-0459 · www.llu.edu/llu/sahp/pt

#### WHY IS THIS STUDY BEING DONE?

The purpose of this graduate student research study is to determine if a high-intensity exercise program can slow or reverse biological aging and shed light on the underlying pathways involved. Biological aging is a method for predicting remaining lifespan based on your health status.

You are invited to be in this study because you are a 45 to 60-year-old male or female of below average fitness and low activity levels. You will be excluded from the study if you have a prior (within the last 5 years) or current history of cardiovascular disease, stroke, unexplained weight loss, clinical depression, congestive heart failure, cancer, irregular heartbeat, respiratory disease, or other serious medical conditions that would make exercise unsafe or prevent full participation in the exercise protocol. Additional reasons for exclusion include any significant increase or decrease in activity levels within the past thirty days, or the current use of the following medications: antibiotics, glucocorticoids, anticoagulants, narcotics, antiepileptic medications, antipsychotics, antidepressants, or hypoglycemic agents.

Approximately 48 subjects (24 males and 24 females) will participate at LLU.

You will be asked to visit the Physical Therapy laboratory a total of 14 times: twelve 1-hour exercise visits 3-times per week, and two 1-hour data collection visits over the course of approximately 1 month.

#### HOW WILL I BE INVOLVED?

Participation in this study involves the following:

On visit 1 you will:

- Complete a Covid-19 screening form
- Complete the Informed Consent Document and PHI form
- Be randomly assigned (through a random block assignment) to either a non-exercise control group or a 3-times per week, approximately 20-minute duration, high intensity exercise group for 1-month

If you are in the non-exercise control group, you will

- Avoid modification of your usual diet and activity level
- Complete a compliance log on diet and activity level changes

If you are in the exercise group, you will

- Perform high-intensity exercise including warmups and cool downs on a treadmill, stationary bike, and a rower
- Complete a compliance log on diet and activity level changes

On visit 1 and the final visit you will:

- Provide approximately 1.5 teaspoons of blood drawn by a certified phlebotomist in order to measure gene expression levels
- Complete five questionnaires on stress, sleep, depression, activity level, and fitness (approximately 25 minutes)
- Have your Body composition assessed utilizing the InBody 770 bioelectrical impedance machine
- Have your vital signs (heart rate, blood pressure) and waist to hip ratio assessed

### WHAT ARE THE REASONABLY FORESEEABLE RISKS OR DISCOMFORTS I MIGHT HAVE?

This study poses no greater risk to you than what you routinely encounter in day-to-day life. Participating in this study will involve the following risks: exercise induced fatigue, potential to fall while using a treadmill, and breach of confidentiality.

All records and research materials that identify you will be held confidential. Any published document resulting from this study will not disclose your identity without your permission. Information identifying you will only be available to the study personnel.

The use of your Protected Health Information is explained in the separate authorization form.

### WILL THERE BE ANY BENEFIT TO ME OR OTHERS?

Although you may not personally benefit from this study, your participation may help practitioners better identify/provide insights into the effects of high intensity exercise on gene expression and mortality risk. This information may help pinpoint the specific mechanism behind exercise's effect on health and lifespan.

### WHAT ARE MY RIGHTS AS A SUBJECT?

Your participation in this study is entirely voluntary. You may refuse to participate or withdraw once the study has started. Your decision whether or not to participate or terminate at any time will not affect your standing with the researchers. You do not give up any legal rights by participating in this study.

Regarding the questionnaires in this study: If at any time you feel uncomfortable, you may skip a question, stop the questionnaire, or refuse to submit the questionnaire.

#### WHAT COSTS ARE INVOLVED?

There is no cost to you for participating in this study. Inbody 770 body composition exam and biological age predictions are provided free of charge.



## WILL I BE PAID TO PARTICIPATE IN THIS STUDY?

Upon completion of all your responsibilities you will be paid \$100 gift card for completing this study.

In order to receive such payments, you may be asked to provide your home address and/or your Social Security number. If you receive \$600 or more from Loma Linda University for taking part in this research study or a combination of studies in one tax year, you will be sent a 1099 form as required by IRS.

### WHO DO I CALL IF I AM INJURED AS A RESULT OF BEING IN THIS STUDY?

If you feel you have been injured by taking part in this study, consult with a physician or call 911 if the situation is a medical emergency. No funds have been set aside nor any plans made to compensate you for time lost for work, disability, pain, or other discomforts resulting from your participation in this research.

### WHO DO I CALL IF I HAVE QUESTIONS?

Call 909-558-4647 or e-mail <u>patientrelations@llu.edu</u> for information and assistance with complaints or concerns about your rights in this study.

### SUBJECT'S STATEMENT OF CONSENT

• I have read the contents of the consent form and have listened to the verbal explanation given by the investigator.

- My questions concerning this study have been answered to my satisfaction.
- Signing this consent document does not waive my rights nor does it release the investigators, institution or sponsors from their responsibilities.
- I may call the principal investigator Gurinder Bains PhD at 909-558-7274 during routine office hours if I have additional questions or concerns.
- I hereby give voluntary consent to participate in this study.

I understand I will be given a copy of this consent form after signing it.

Signature of Subject

Printed Name of Subject

APPROVED By LLUH IRB: 5210437 - 11/22/2021 at 4:13 pm, Nov 22, 2021

Date

## INVESTIGATOR'S STATEMENT

I have reviewed the contents of this consent form with the person signing above. I have explained potential risks and benefits of the study.

Signature of Investigator

Printed Name of Investigator

Date

