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ABSTRACT OF THE DISSERTATION 

 

Synthesis and Characterization of Hemocompatible Antimicrobial Nanoparticles 

by 

Elvin Muhindo Walemba 

Doctor of Philosophy, Graduate Program in Biology 

Loma Linda University, March 2020 

Dr. Danilo Boskovic, Chairperson 

 

Porphyromonas gingivalis is a causative agent of periodontal disease and a risk 

factor for cardiovascular disease. Novel treatment of periodontal disease using 

nanomaterials can supplement or replace the use of antibiotics and mechanical 

debridement. Nanomaterials can be optimized for effectiveness and specificity and 

minimum toxicity. Synthesized Ag nanoparticles stabilized in Pluronic F127 were used to 

produce bimetallic core/shell Ag/Au nanoparticles with optimized Ag+ release and 

reduced toxicity. We tested the F127-stabilized nanoparticles for their antimicrobial 

activity and hemocompatibility in planktonic bacteria and citrated whole blood, 

respectively. Both Ag and Ag/Au bimetallic nanoparticles inhibited P. gingivalis W83 

growth. We then evaluated the hemocompatibility of the nanoparticles and the stabilizer 

F127 by probing their impact on platelet activation. Pluronic F127, over a range from 1 – 

10-11 % w/v, on its own activated platelets above baseline (p-value 0.05). In contrast, 

Pluronic 127-stabilized Ag and Ag/Au bimetallic nanoparticles did not induce platelet 

activation above baseline (p-value 0.05). Our results suggest the Ag and Ag/Au 

bimetallic nanoparticles are effective inhibitors of bacterial growth, and stabilizer 

Pluronic F127 can activate platelets. More careful characterization of the role of Pluronic 

F127 in the context of thrombosis/hemostasis is needed.



 

1 

CHAPTER ONE 

INTRODUCTION TO NANOTECHNOLOGY 

 

1.0.1  A Short History 

The study of nanomaterials, which were termed “colloids” by Michael Faraday, 

can be traced back to his interest in understanding the color of colloidal gold. Faraday 

studied the interaction of light with gold particles in solution, focusing on how the 

particles were made, and the nature and properties of ruby gold. On February 5, 1857, 

Michael Faraday presented the findings in a paper entitled “Experimental relations of 

gold (and other metals) to light” to the Royal Society in London (Thompson, 2007). This 

may be considered the birth of modern colloidal chemistry and an essential step in the 

development of nanoscience. Still, others consider the speech given by Richard Feynman 

in 1959 entitled, “There’s Plenty of Room at the Bottom,” to be the first systematic 

presentation of nanotechnology. Nevertheless, the term “nanotechnology” was first used 

by Norio Taniguchi in a paper at the 1974 International Conference of Production 

Engineering entitled, “On the Basic Concept of ‘Nano-Technology” (History of 

Nanotechnology, 2016).  

1.0.2  Terms and Definitions 

Since then, intense interest in materials at the nanometer scale has driven 

developments in nanoscience and nanotechnology. Nanoscience is the study of objects 

and systems where at least one dimension is 1–100 nm. The term nanotechnology, as 

defined by National Aeronautics and Space Administration (NASA), refers to the 

“creation of functional materials, devices, and systems through control of matter on the 
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nanometer scale (1-100 nm), and exploitation of novel phenomena and properties 

(physical, chemical, biological)” (NASA - NASA Ames Research Center Public Affairs 

Office, 2008). The European Commission's definition of nanoparticles is given below and 

is the definition followed in the following discussions.    

A natural, incidental or manufactured material containing particles, in an 

unbound state or as an aggregate or as an agglomerate and where, for 50% or 

more of the particles in the number size distribution, one or more external 

dimensions is in the size range 1 nm – 100 nm. In specific cases and where 

warranted by concerns for the environment, health, safety or competitiveness the 

number size distribution threshold of 50% may be replaced by a threshold 

between 1 and 50%  (European Commission, 2011)  

 

Various terms are used to describe nanomaterials. The terms are defined below to 

remove ambiguity. They include nanoparticle, nanocluster, nanopowder, colloid, 

nanocrystal, and quantum dots. Amorphous/semi-crystalline nanostructures smaller in 

size (i.e., 1–10 nm), with narrow size distribution, are termed nanoclusters. In contrast, 

colloidal materials are more polydisperse and less well characterized. The agglomeration 

of non-crystalline nanostructure subunits should best be termed a nanopowder. Any 

crystalline nanomaterial is referred to as a nanocrystal, and nanocrystals composed of 

semiconductor material are called quantum dots (Fahlman, 2011). Nanoparticles are the 

focus of this dissertation and the material referred to in the definition by the European 

Commission.  

1.0.3  Source and Origin 

Nanoparticles form naturally or can be manufactured. They are present in the soil, 

water, air, and food (Griffin et al., 2017; Rogers, 2016). Natural nanoparticles include 

organic substances such as liposomes in living organisms (Bozzuto & Molinari, 2015; 
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Gao et al., 2013) and inorganics, such as silicates (Park et al., 2016), aluminosilicates 

(Heiligtag & Niederberger, 2013), and clay and other soil components (Dybowska et al., 

2015).  

1.0.4  Applications and Uses 

Biochemistry, organic chemistry, molecular biology, physics, and surface science 

all employ nanotechnology. It is currently one of the fastest-growing fields in technology 

and continues to impact the development and design of a host of novel products, some of 

which may prove revolutionary or paradigm-shifting in their applications. According to 

StatNano, there are over 8,000 products and about 200 policy documents on 

nanotechnology (“STATNANO : Nano Science, Technology and Industry Information,” 

2017). Some manufactured products which have nanoparticles include clothing (Rivero et 

al., 2015) and topical applications (Gupta et al., 2013). Nanomaterials are also used in 

medicine and pharmacy for tissue engineering, drug delivery systems, cancer treatments 

and diagnoses, biodiagnostics, and imaging (Pelaz et al., 2017; Sutariya & Pathak, 2015). 

Thus, consistent guidelines for users are needed to classify nanomaterials according to 

properties, fate, and transport.  

1.0.5  Regulation of Nanotechnology 

The Environmental Protection Agency (EPA) lists four main types of synthetic 

nanomaterials. These are (1) carbon-based materials, (2) metal-based materials, (3) 

dendrimers, and (4) composites (U.S. Environmental Protection Agency, 2007). 

Nanomaterials are manufactured by controlled nucleation, self-assembly, templating, 

molecular assembly, and engineering, among other methods (Dhand et al., 2015; Ealias & 

Saravanakumar, 2017). Manufactured products that have nanoparticles include clothing 
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(Rivero et al., 2015) and topical applications (Gupta et al., 2013). Nanomaterials are also 

used in medicine and pharmacy for tissue engineering, diagnoses, drug delivery systems, 

treatments, and imaging (Pelaz et al., 2017; Sutariya & Pathak, 2015). 

The EPA regulates nanomaterial-containing products under Toxic Substances 

Control Act (94th United States Congress, 1976) and Federal Insecticide, Fungicide, and 

Rodenticide Act (61st United States Congress, 1910). Food, drugs, or cosmetics 

containing nanomaterials are regulated under the Federal Food, Drug, and Cosmetic Act 

(75th United States Congress, 1938). Even with all these regulatory bodies, 

nanotechnology regulation in the United States is an area of concern because 

manufacturers have not been required to label products containing nanomaterials 

(Kessler, 2011). As of August 14, 2017, the EPA provides guidance for all nanomaterials 

under the Toxic Substances Control Act section 8(a). In doing this, the government hopes 

to manage the proliferation of nanoproducts and understand how this will affect health 

and the environment.  

1.0.6  Nanopollution 

Nanopollution, defined as “all waste generated by nanodevices or during the 

nanomaterials manufacturing process” (Prasad, 2008), will only increase as new 

nanoproducts are developed and released to the market (Nanotechnology Workgroup, 

2007). Flora and fauna have no natural mechanisms to process environmentally released 

inorganic nanomaterials. With development of nanotechnology and the accumulation of 

nanomaterials in nature, it is crucial to understand the effects of nanomaterials on flora 

and fauna. Any adverse effects must be reported so that regulatory agencies may make 

proper decisions about the use and application of nanotechnology. 
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1.1  Characteristics of Nanomaterials 

1.1.1  Scaling 

Nanotechnology is based on properties that scale with size (Guo et al., 2014). For 

example, the high surface-to-volume ratio of nanomaterials imparts high reactivity 

potential for catalysis or sensor applications. The volume of an object V  L3, (where L 

is the characteristic atomic length) decreases with scale more rapidly than does the 

surface area, S  L2, so that S/V  L-1. This scaling dependence is reflected in changes in 

material properties, like melting point (Roduner, 2006; Singh et al., 2017). As a result, 

changes in material properties (e.g., magnetization, optical properties (color), melting 

point, hardness, etc.) relative to bulk characteristics can be modified without a change in 

chemical composition (Chiradze et al., 2016; Hasan, 2016; Roduner, 2006).  

1.1.2  Chemical and Physical Properties of Nanoparticles 

Physicochemical properties are defined as “physical properties, solvation 

properties related to interactions with different media, and properties or molecular 

attributes that define intrinsic chemical reactivity” (National Research Council, 2014). 

There are four main characteristics of nanoparticles that determine their effect on 

biological systems. These are material composition, size, shape, and surface chemistry 

(Albanese et al., 2012; Beddoes et al., 2015; Benetti et al., 2013; Janát-Amsbury et al., 

2011; Lundqvist et al., 2008; Tiedemann et al., 2014). An in-depth analysis of different 

ways each characteristic of the metal can affect the function and use of the nanoparticle is 

beyond the scope of this dissertation. A brief explanation is given instead. 

Nanoparticle physicochemical properties of composition, size, shape, and surface 

chemistry potentially affect nanoparticle-cell interactions, including interactions with the 
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immune system. These physicochemical properties also determine the efficiency of 

nanoparticle elimination from the body (Longmire et al., 2008). Biocompatibility, 

therefore, can be an essential consideration when synthesizing nanoparticles. 

1.1.2.1  Material 

The material from which a nanoparticle is synthesized determines its 

compatibility with living systems. For example, metals used to synthesize nanoparticles 

are chosen for their tunable mechanical, electrical, magnetic, optical, and chemical 

properties.  Organic nanomaterials are synthesized and occur naturally (Sytar et al., 

2017). Some natural organic nanoparticles include the viral capsid, horny materials on 

animals, and foraminifera. The chosen metal and its corresponding metal oxide can have 

varying reactivity. Figure 1 shows the reactivity of some metals that are commonly used 

to synthesize nanoparticles.  

 

 

Figure 1. Reactivity of some metals commonly used in the synthesis of nanomaterials, from 

least to most reactive, with Hydrogen (H) and Carbon (C) included for reference. Redox 

potential is an essential characteristic of nanoproducts.  

 

The desired use for the nanomaterial significantly affects the choice of the metal. 

For example gold and silver, silver-gold alloy nanoparticles are used in diagnostic 

imaging and drug delivery (Chen & Schluesener, 2008; Liu et al., 2012); carbon 

nanomaterials are used in electronics and optics (Jariwala et al., 2013); titanium dioxide 

is used in photocatalysis (Mayer et al., 2014); gold in cancer treatment (Cai et al., 2008); 

and silver as an antibiotic (Holden et al., 2016; Kundu, 2017; Yan et al., 2012).  
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1.1.2.2  Surface Charging Effects 

Currently, the approaches to model charge, potential, and the force of the 

interface between the aqueous medium and nanoparticle surface, range from density 

functional theory and molecular dynamics calculations to empirical surface complexation 

models. The central concept that links these approaches is the electric double layer (EDL) 

model. When a surface is immersed in an electrolyte solution, there will be an 

equilibrium distribution of ions, with a decreasing population of ions of opposite charge 

away from the interface. A surface charge will give rise to an EDL that consists of an 

inner (compact) part, characterized by the chemical properties of the surface material, and 

a diffuse part built up of the mobile ions in the solution. These two parts, the compact 

(called Stern layer) and the diffuse layer, are typically described by Helmholtz, Gouy-

Chapman, and Stern models. The interface between the compact and diffuse layers where 

the solvated ions move the nanoparticle is called the shear plane. The electrical potential 

at this point (1/e) relative to the surface is called the zeta potential (ζ) and is defined as 

the potential difference between the dispersion medium and the stationary layer of fluid 

attached to the particle.  

 An extension of the EDL model is the Derjaguin, Landau, Verwey, Overbeek 

(DLVO) theory, which models the aggregation of aqueous dispersions and describes the 

interaction energy, WT, between charged surfaces interacting through a liquid medium. 

This model has three contributing parts, the van der Waals (VDW) attraction, and 

repulsion from the EDL, and steric repulsion due to bulky surface groups. The EDL size 

around the particle is pH, temperature, electrolytic type, and concentration-dependent.  

(1) WT = Wvdw + Wedl + Ws 

https://en.wikipedia.org/wiki/Van_der_Waals_force
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Wvdw is the VDW attractive energy  

(2) Wvdw = -A/(12 π D2),  

where A is the Hamaker constant, and D is the particle separation. 

Wedl = 2 π ε a ζ2 exp(-κD), where a is the particle radius, π is the solvent permeability, κ is 

a function of the ionic composition and ζ is the zeta potential. Note κ-1 is the double layer 

thickness or Debye length, where 𝜅−1 =
0.304nm 

√I(mol/L)
 at 25°C for monovalent ions, and I is 

the ionic charge (concentration of ions in solution). The Debye length is the distance 

where the EDL potential is 1/e of its initial value.  Thus, increasing the ionic strength of 

the solution from 10-3 to 10-2 M will reduce the screening length from 10 to 3 nm.  The 

EDL is proportional to both size and zeta potential. The steric repulsion Ws energy is 

short-acting and will be dependent on temperature, length, and branching of the surface 

polymeric coating. According to this model, repulsive EDL or steric forces dominate 

attractive VDW interactions in colloidally stable suspensions.  

The zeta potential can be measured experimentally against pH. The pH point 

where the zeta potential is zero is the parameter pH0. In electrokinetic measurements 

(light scattering), pH0 is called the isoelectric point (IEP). At this pH, there is zero 

velocity for particles subjected to an external electric field. Analogous to proteins, the 

positive and negative charges around the nanoparticles are balanced. For metal oxides, if 

there are no other electrolytes apart from H+/OH-, zero velocity usually means zero net 

charge.  In such a context, the term point of zero charge (PZC) is more appropriate. 

However, it is crucial to note IEP does not provide information about the location of 

charges.  A nanoparticle is charged positive below and negative above its IEP. 

Nanoparticle charge impacts adsorption, is inversely related to size (Bakshi et al., 2015), 



 

9 

and is material-specific (Wagner et al., 2014). Moreover, nanoparticle reactivity and 

interactions, such as the formation of corona in human plasma, are significantly reduced, 

at IEP. Non-coated nanoparticles also show greater aggregation close to the IEP (Wagner 

et al., 2014; Zhang et al., 2016). 

1.1.2.3  Size and Shape 

Chemical reactivity of nanoparticles is inversely proportional to their size. 

Smaller nanoparticles have greater reactivity because of their higher surface area to 

volume ratios (Gatoo et al., 2014; Luo et al., 2015; Shameli et al., 2012). Smaller 

nanoparticles are also more likely to enter cells (Barar, 2015; Gatoo et al., 2014) and 

disrupt internal biochemical pathways, as well as cell-surface events (Durán et al., 

2016a). Smaller nanoparticles can accumulate in the liver, lungs, kidneys, and even the 

brain (Recordati et al., 2016), leading to adverse health effects.  

In addition to size, the shape of nanoparticles can directly impact its 

characteristics, because very different shapes can lead to similar volumes but different 

surface areas (Table 1). By altering the shape, it is possible to place nearly all the atoms 

on the surface, making nanoparticle shape a fundamental determinant of the reactivity of 

the nanoparticle (Bastús et al., 2012; Gilbertson et al., 2016). Atoms on a flat plane are 

less reactive because they have higher coordination than those at vertices (Bastús et al., 

2012). The shape also determines how easily and readily cells take up the nanoparticles 

(Albanese et al., 2012; Buchman et al., 2016; Ahmed et al., 2016). For example, 

endocytosis occurs much faster for anisotropically-shaped nanomaterials than spherical 

nanomaterials (Gatoo et al., 2014). Nanoparticle shape also determines solvation (Jin et 

al., 2012), transport, and diffusion rate around the body (Uhl et al., 2018). Nanoparticle 
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shape determines the physical interactions within biological media and with cells and 

tissues, with some preferential interaction between the nanomaterial and specific protein 

(Albanese et al., 2012b; Ankamwar, 2012; Buchman et al., 2016; Toy et al., 2014). Sharp 

edges may cause cell and tissue injury, such as in blood vessels, and prevent cellular 

uptake by endocytosis (Vácha et al., 2011).  

Noble metal nanoparticles (Au, Ag, Cu) exhibit localized surface plasmon 

resonance (LSPR) because of the oscillations of conduction electrons induced by light 

(Langer et al., 2017). Gold nanoparticles are used in sensors, probes, catalysis, and 

diagnostics because of their LSPR (Murphy, 2010). LSPR is shape-dependent (Rycenga 

et al., 2011), where corners induce more LSPR on a broader energy range than flat 

regions (Noguez, 2007).  This would allow specific applications of nanoparticles based 

on their shape.  
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Table 1. Possible physicochemical characteristics of nanoparticles (adapted from 

Sun et al., 2014). 

 

Nanoparticle Characteristic Variation 

Material Protein-drug conjugate 

Liposome 

Solid lipid hybrid particle 

Hydrogel particle 

Polymer Particle 

Dendrimer 

Carbon nanotube 

Metal nanoparticle 

Size 1 – 100 nm 

Shape Sphere 

Rod 

Cube 

Plate 

Star 

Surface Targeting ligand 

Surface charge 

Surface functional group 

PEGylation or other coating 

 

1.1.2.4  Surface Chemistry 

Surface atoms have higher energy than interior atoms, implying that surface 

modifications may be used to tune nanoparticles (Bastús et al., 2012).  Moreover, coating 

nanoparticles, or addition of specialized functional groups, can alter their reactive 

properties Table 1. Surface modifications include: alloying (Alissawi et al., 2013; 

Navarro & Werts, 2013; Tao et al., 2014), covalent protein/drug conjugation (Di Pasqua 

et al., 2009; Huang et al., 2016; Shiang et al., 2010), polymer coating (Sahdev et al., 

2014; Stevenson et al., 2012) or addition of surface functional group(s) (Di Pasqua et al., 

2009; Giljohann et al., 2010; X. Li et al., 2014). Surface modifications may reduce 

toxicity (Sasidharan et al., 2016), enhance nanoparticle stabilization (Sahdev et al., 2014; 
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Stevenson et al., 2012) or bring about specific ligand targeting (Banerjee et al., 2016; 

Ding et al., 2012; Shiang et al., 2010). 

1.2  Silver, Gold and Silver-Gold Bimetallic Nanoparticles 

1.2.1  Silver Nanoparticles  

Silver nanoparticles are the most widely used metallic nanomaterial in medicine; 

at least 75% of medical nanoparticle products contain silver (StatNano, 2017). 

Biomedical uses of silver nanoparticles include drug delivery (dos Santos et al., 2014; 

Mahl et al., 2012), diagnostics (Heera & Shanmugam, 2015; Wei et al., 2015), antiviral 

therapy (Lara et al., 2011; Slavin, 2006), anticancer therapy (Azam et al., 2012; 

Buttacavoli et al., 2018; Venugopal et al., 2017; Wei et al., 2015), as well 

asphotosensitizing and radiosensitizing agents (Wei et al., 2015).  

The antibacterial activity of silver nanoparticles is well documented (Assar & 

Hamouda, 2010; Durán et al., 2016; Gurunathan et al., 2014; Helmlinger et al., 2016; 

Panáček et al., 2006; Rajeshkumar & Malarkodi, 2014; Rawashdeh & Haik, 2009; 

Smekalova et al., 2016; Swathy et al., 2014; Theivasanthi & Alagar, 2011; Thirumurugan 

& Dhanaraju, 2010; Vimbela et al., 2017; Xinping et al., 2011). Antibacterial silver is 

synthesized by both chemical and physical methods (Prabhu & Poulose, 2012; Wei et al., 

2015).  New “green synthesis” methods utilizing plant extracts have been used to produce 

silver nanoparticles with enhanced antibacterial and biocompatible characteristics 

(Gurunathan, 2015; Kuppurangan et al., 2015; Okafor et al., 2013; Rafique et al., 2017; 

Shameli et al., 2012; Siemieniec, 2013; Vadlapudi & Kaladhar, 2014).  
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1.2.2  Gold Nanoparticles  

Gold nanoparticles have a number of well-established uses. Non-biomedical 

applications include optics (Carrillo-Cazares et al., 2017; Huang & El-Sayed, 2010; 

Huang et al., 2007), electronics (Lee et al., 2002; Homberger & Simon, 2010; Sousa et 

al., 2017), and in water purification systems (Kamala et al., 2015). The use of gold 

nanoparticles in biomedicine is also widespread (Alaqad & Saleh, 2016; Panahi et al., 

2016) and includes photodynamic therapy, delivery of therapeutic agents (Dobrovolskaia 

et al., 2009), and in antibacterial treatments (Cui et al., 2012; Zhang et al., 2015; Zhao & 

Jiang, 2013; Zhao et al., 2010).  

1.2.3  Silver-Gold Bimetallic Nanoparticles 

Bimetallic nanoparticles are synthesized to harness the benefits of both 

incorporated metals. They can be synthesized as either core-shell or alloyed particles. For 

silver-gold bimetallic nanoparticles, the ratio of gold to silver and/or diameter of core vs. 

the thickness of the shell determines the activity of the nanoparticles. The additive or 

complementary effects of bimetallic nanomaterials broaden the applications compared to 

single metal nanoparticles. 

1.2.3.1  Uses of Silver-Gold Nanoparticles 

Pluronic-stabilized silver-gold bimetallic nanoparticles were reported to have 

higher catalytic activity in the reduction of 4-nitrophenol than either silver or gold 

nanoparticles individually (Holden et al., 2014), enhanced aluminum ion sensing 

capability (Zhou et al., 2013) and improved optical mercury detection (Tao et al., 2014). 

These enhancements are useful in the field of environmental monitoring. Moreover, gold 

alloying was found to lower nanoparticle toxicity towards oocytes (Tiedemann et al., 
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2014), probably due to lower levels of free silver ions (Li et al., 2010). This is important 

for nanoparticles that contaminate water bodies because reduced nanoparticle toxicity 

reduces the environmental impact on fauna. In the context of health improvement, it was 

also reported that core-shell (Ag core, Au shell) nanoparticles significantly inhibited 

Lewis lung carcinoma growth (Shmarakov et al., 2017). Also, it was found that silver-

gold alloys have tunable localized surface plasmon resonances (Hubenthal et al., 2005), 

indicating they can be synthesized for use in sensors, probes, catalysis and diagnostic 

applications (Alkilany & Murphy, 2010).   

1.2.3.1.1  Antibacterial bimetallic nanoparticles 

Although there are numerous uses for bimetallic silver-gold nanoparticles, their 

use in infection control has present and immediate urgency. Ag nanoparticles have an 

established antibacterial function (Vimbela et al., 2017; Smekalova et al., 2016; Durán et 

al., 2016). Table 2 outlines numerous studies that report the antibacterial efficacy of 

bimetallic silver-gold nanoparticles. Ag nanoparticles have higher antibacterial activity 

than Au nanoparticles, which have very low antibacterial activity. Some studies have 

reported that Au nanoparticles on their own do not have antibacterial activity (Tao, 

2018). Yet, complexes of Au (I and III) have shown some antibacterial activity, as 

reported by Zhang et al. (2015). In this context, silver-gold bimetallic nanoparticles have 

an intermediate activity that is not directly proportional to the amount of Ag in the 

nanoparticle or the ratio of Ag to Au. Rather, the Au in the alloy disproportionally affects 

the antibacterial activity and toxicity of the nanoparticle. This effect is proportional to the 

Au content in the nanoparticle (Grade et al., 2014; Padmos et al., 2015; Ristig et al., 

2015).  
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Table 2. Antibacterial activity of bimetallic silver-gold nanoparticles 

Nanoparticle Description Action Reference 

Au-Ag (core-shell) High efficacy against Gram-negative 

bacteria at low [Ag]. NP attach to 

bacterial cell and damage membrane 

Banerjee et al., 

2011 

Ag-Au alloy Antibacterial activity is proportional to Ag 

content and placement. Cytotoxicity is 

dependent on [Au] but activity was lower 

than for pure Ag 

Padmos et al., 

2015 

Biosynthesized Au-Ag alloy Highest antitubercular activity compared 

to AgNP 

Singh et al., 2016 

Dextran-coated Ag-Au alloy Antibacterial activity against numerous 

bacteria 

Bankura et al., 

2014 

Commelina nudiflora-

synthesized  Au-Ag alloy 

High minimum inhibitory and bactericidal 

activity against oral pathogens 

Kuppusamy et al., 

2017 

Ag-Au alloy Toxicity to Daphinia reduces as [Au] 

increases 

Li et al., 2010 

Ag-Au alloy Ag-Au NP had no significant effect on 

hMSC compared to Ag and Au NP 

Mahl et al., 2012 

Ag-Au alloy NP more biocompatible; 20% Au reduced 

antibacterial activity. To achieve similar 

MIC as pure Ag, 2x [AgAu] was needed 

Grade et al., 2014 

P. zeylanica-synthesized 

Ag-Au alloy 

Inhibited single-culture biofilms 93-98% 

compared to control 

Press et al., 2014 

Ag-Au alloy  Toxicity is not proportional to [Ag]; 

Ag:Au of 80:20 showed the highest 

toxicity towards hMSC and HeLa cells 

Ristig et al., 2015 

Ag = silver, Au = gold; NP = nanoparticle; hMSC = human mesenchymal stem cells;  
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1.2.4  Nanomaterials in the Human Body 

There are several ways that nanomaterials can enter the body: through dermal, 

respiratory, or gastrointestinal interfaces, with different responses from each site. The 

circumstances may include unexpected workplace or environmental exposure. Therefore, 

we need to understand the physiological effects of nanomaterials in the body.  

1.2.4.1  Nanoparticles at the Epithelium 

The skin has a large surface area and can be used to deliver local and systemic 

drugs (Desai et al., 2010; Vogt et al., 2016). The 10 m thick keratin layer on the skin 

can prevent the absorption and unintended entry of nanomaterials across the skin when 

there are no tears, cuts, or abrasions. Neither free nanoparticles nor microparticles can 

cross intact skin (Prow et al., 2011). Nanoparticles, such as zinc oxide and titanium 

dioxide used in topical skin products do not penetrate intact skin (Cross et al., 2007; 

Kimura et al., 2012; Zvyagin et al., 2008).  In contrast, polymeric nanoparticles can 

penetrate deep into the dermis in photo-damaged skin (Hung et al., 2015).  

Nanoparticles experience a different type of barrier at the mucosal membrane. For 

example, at the mucosal membrane of the lungs, some nanoparticles translocate across 

the epithelial layer into the circulatory system (Todoroff & Vanbever, 2011), where 

macrophages may remove them through phagocytosis (Geiser et al., 2013; Semmler-

Behnke et al., 2007). Microparticles are removed by mucociliary clearance along the 

bronchi (Todoroff & Vanbever, 2011).   

The oral intake of nanoparticles by an average person is 1012 to 1014 nano- and 

microparticles daily (Simkó et al., 2010).  Nevertheless, there is no consensus on the fate 

of nanoparticles in the gastrointestinal tract (Bergin & Witzmann, 2013; Date et al., 
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2016).  The alimentary canal lining also functions as a barrier to nanoparticle entry into 

the body. This makes it difficult to predict a general fate to nanoparticles in the 

gastrointestinal tract.  More studies are required in this area because of the presence of 

nanoparticles in food, air, and water.  

1.2.4.2  Nanoparticles in Tissue 

For any nanomaterial to enter tissue, it must cross an epithelium. Once in the 

body, nanomaterials are distributed widely by fluids of the vascular and lymphatic 

systems to places where they interact with tissue cells and organs (Anjum et al., 2016). 

Organic nanoparticles may undergo physicochemical modifications such as encapsulation 

or formation of corona; however, inorganic nanoparticles persist and accumulate in the 

body (Mahapatro & Singh, 2011; Schaumann et al., 2015) mainly in the spleen, kidneys, 

and liver (De Jong et al., 2008; Recordati et al., 2016) and less in the lungs and heart 

(Sutariya & Pathak, 2015).  Previously it was believed that the blood-brain barrier 

provided a very capable physical barrier to most substances. However, nanoparticles may 

accumulate in the brain due to “leaky regions” (ventricular and circumventricular areas) 

in the brain, lacking the protective shield of the blood-brain barrier (Saraiva et al., 2016). 

Recent studies on drug delivery to the brain show that nanoparticles cross the blood-brain 

barrier to deliver drugs into the brain (Yiqun et al., 2018).  

1.2.4.3  Nanoparticles in Blood 

Regardless of the method of entry, many nanoparticles end up in the blood, where 

they may have toxic effects on cells and tissues. Nanoparticles may also adsorb proteins 

to form a corona with accompanying increase in the hydrodynamic size, thus influencing 

biocompatibility, distribution, and clearance from the body (Liu & Peng, 2017; Lynch & 
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Dawson, 2008; Sasidharan et al., 2016). Nanoparticle-protein coronas differ because 

different surfaces attract/adsorb specific plasma proteins (Ge et al., 2015; Lundqvist et 

al., 2008; Lynch & Dawson, 2008). The corona influences cellular uptake, the host 

inflammatory response, and nanoparticle accumulation, degradation and clearance (Ge et 

al., 2015; Saptarshi et al., 2013). Interactions with vascular proteins such as fibrinogen 

may lead to structural and/or functional changes that can impact hemostasis (De Paoli 

Lacerda et al., 2010; Deng et al., 2011). Nanoparticle-induced changes in other proteins 

in the blood can adversely affect the inflammatory reactions (Borm, 2005; Khanna et al., 

2015), the immune responses (Dobrovolskaia et al., 2008; Dobrovolskaia & McNeil, 

2007), or hemostasis, through activation or inhibition of platelet action (Deb et al., 2011; 

Ilinskaya & Dobrovolskaia, 2013b; Jun et al., 2011; Ragaseema et al., 2012; Stevens et 

al., 2009).  

Post-synthesis surface modification of the nanoparticles with biocompatible 

substances, such as polyethylene glycol or other polymers, facilitates better distribution, 

more efficient targeting, and reduced immune cell uptake (Anselmo et al., 2015).  Surface 

modifications make nanoparticles suitable for medical and/or dental applications.  

1.3  Nanotechnology Summary 

Nanotechnology is a recent innovation on products that have been around for 

centuries, and are found in all aspects of daily life. As the use of nanotechnology 

becomes more widespread, government regulation to protect the health of all flora and 

fauna will need to become more standardized. Nanosilver has antibacterial activity and 

can play a role in infection control.  However, its toxicity may limit its usefulness in 

clinical practice. Because nanoparticle activity is determined by size, shape, composition, 
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and surface chemistry, silver nanoparticles may be modified to enhance infection control 

while limiting toxicity. Alloys of silver and gold have been shown to have reduced 

toxicity and enhanced biocompatibility. Combined with surface capping using polymers 

or other biocompatible substances can broaden the use of silver nanoparticles into many 

different applications. 

1.4  Periodontal Disease 

Periodontal disease comprises a chronic inflammatory condition characterized by 

destruction of the periodontal tissues and resulting in loss of connective tissue attachment 

and alveolar bone, and development of pathologic pockets around the diseased teeth 

(Loe, 1993). It is a ubiquitous disease but not commonly associated with adverse health 

outcomes. According to the World Health Organization (WHO), gingival bleeding and 

periodontal disease are common across all age groups worldwide (Table 3), and both are 

signs of poor oral health (Petersen & Ogawa, 2012). Although there are regional and 

geographical differences in oral health, there is an observable trend that prevalence of 

severe periodontitis increases with age for all regions represented. As of 2010, 3.9 billion 

people globally have had some form of oral disease or complications associated with 

untreated caries in their permanent teeth. As 35% of the world’s population is affected, 

periodontal disease represents the most prevalent oral health problem worldwide 

(Marcenes et al., 2013). In the United States, the National Health and Nutrition 

Examination Survey of 2010 reported that of adults 30 years and older, more than 47% 

had some form of periodontitis, with severity ranging from mild (8.7%), and moderate 

(30.0%), to severe (8.5%) (Eke et al., 2015; Eke et al., 2012). These findings indicate the 

periodontal disease is a significant health burden nationally.  
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Disease severity is determined by physical examination of teeth and gums. 

Although gum disease is present in all populations, its severity is not uniform. The 

assessment involves measuring the pocket depth from six sites of all teeth except the 

molars (Eke et al., 2015). Pocket depths can range from ≤ 3 mm (i.e., healthy) through  

6 (i.e., advanced periodontitis) (Sweeting et al., 2008) (Table 4). Additionally, the 

chronic inflammation associated with periodontitis may also cause bleeding on probing.  

The 65–74-year-old group has the highest prevalence of periodontitis.  Many 

adults have little or no dental insurance and do not have regular dental check-ups.  As a 

result, oral disease can progress from gingivitis to advanced periodontitis before they 

seek treatment from a dentist.  

Table 3. Prevalence of mild to severe forms of periodontal disease in different age 

groups around the world. Data in this table is adapted from Petersen & Ogawa (2012). 

 

Age Group 

(years) 

Percentage of Population Presenting with 

Gingival Bleeding and Calculus Severe Periodontitis 

15–19 40–80 10–15 

35–44 30–60 10–20 

65–74 20–80 5–25 
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Table 4. Periodontal disease severity in relation to pocket depth. (Data compiled 

using Eke et al., 2015). 

 

Pocket Depth (mm) Disease Severity 

3 Healthy 

≤4 Gingivitis 

4–5 Slight periodontitis 

5–6 Moderate periodontitis 

≥6 Advanced periodontitis 

 
 

1.4.1  Risk Factors 

 Large epidemiological and clinical studies identified risk factors associated with 

development of periodontal disease. Various risk factors are listed in Table 5, showing 

that periodontal disease is a complex process.  
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Table 5. Risk factors for periodontal disease 

Risk Factor Effect on Periodontal Disease Reference 

Age 64% of people aged ≥65 have either 

moderate or severe periodontitis 

Eke et al., 2012; Shiau & 

Reynolds, 2010; Genco & 

Borgnakke, 2013 

Gender Risk in men > risk in women. 

Men have poorer oral hygiene. 

Pregnancy is also a factor.  

Shiau & Reynolds, 2010; 

Shulze & Busse, 2016; Genco 

& Borgnakke, 2013 

Race Order of prevalence is Hispanic > 

non-Hispanic blacks, non-Hispanic 

Asian Americans > non-Hispanic 

Whites. 

Eke et al., 2012; Eke et al., 

2015; Genco & Borgnakke, 

2013 

Socioeconomic Status Higher prevalence in poorer, less 

educated than in higher earning more 

educated. 

Eke et al., 2012; Eke et al., 

2015; Genco & Borgnakke, 

2013 

Smoking More prevalent in smokers; more 

aggressive infection; higher 

incidence of tooth loss; smoking-

induced damage to the vasculature, 

and supportive periodontal structures 

Eke et al., 2012; Eke et al., 

2015; Arcavi & Bnowitz, 

2004; Bagaitkar et al., 2008; 

Naderi et al., 2015; Mai et al., 

2013 

Alcohol Consumption promotes development 

and progression 

Lages et al., 2015; Shepherd, 

2011; Tezal et al., 2001;  

Diabetes Diabetics are at higher risk. Diabetes 

disrupts glycemic control. 

Keller et al., 2015; Preshaw et 

al., 2012 

Metablic Syndrome Positive correlation Bharti & Khurana, 2009; 

Gurav, 2014; Kaye et al., 

2016  

Osteoporosis More aggressive Esfahanian et al., 2012; 

Koduganti et al., 2009; 

Garcia et al., 2000 

Stress General health risk Goyal et al. 2013; Mannem & 

Chava, 2012; Warren et al., 

2014 

Genes Polymorphisms in interleukins 1A, 

1B, 6, 10, MMP-3, and MMP-9 are 

associated with significant risk 

da Silva et al., 2017; 

Michalowicz, 1994 

Diet Foods rich in antioxidants are 

protective against periodontitis 

Woelber et al., 2017 

Immunodeficiency or 

immune-suppressed 

Immunodeficient people are more 

likely to develop periodontitis with 

progresses faster 

 

Gracia et al., 2000 
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Periodontal disease is due to a bacterial infection with a number of bacteria 

routinely recovered from periodontitis patients. The most prevalent are Gram-negative 

anaerobic bacteria including: A. actinomycetemcomitans, P. gingivalis, P. intermedia, B. 

forsythus, C. rectus, E. nodatum, P. micros, S. intermedius and Treponema sp. 

(Lovegrove, 2004). Of these, the “red complex” bacteria, P. gingivalis, Treponema 

denticola, and Tannerella forsythia are the most important pathogens in adult periodontal 

disease (Contreras et al., 2015; Suzuki et al., 2013).  

1.4.2  Porphyromonas gingivalis Infection 

P. gingivalis is important in the development of periodontal disease and is 

associated with various systemic diseases including atherosclerosis (Hayashi et al., 2011; 

Hussain et al., 2015; Lei et al., 2011; Li et al., 2002; Rodrigues et al., 2012), rheumatoid 

arthritis (Maresz et al., 2013; Zaric et al., 2010), oral and oro-digestive cancers 

(Atanasova & Yilmaz, 2014; Ha et al., 2015; Nagy et al., 1998) and cardiovascular 

disease (Olsen & Yilmaz, 2016; Velsko et al., 2014). Control and management of P. 

gingivalis infection and maintenance of good oral health is, therefore, helpful in 

preventing periodontitis and minimizing the development of systemic disorders.  

1.4.2.1  Porphyromonas gingivalis Natural History and Virulence Factors 

P. gingivalis is a Gram-negative, rod-shaped, asaccharolytic, anaerobic, 

pathogenic bacterium of the red complex, predominantly found in the oral cavity as part 

of a biofilm (Lanza et al., 2016; Rôças et al., 2001; Suzuki et al., 2013). In lab cultures, 

P. gingivalis forms black colonies on blood agar due to the accumulation of hemin on cell 

surface. As a “keystone pathogen”, P. gingivalis affects the growth and development of 

the biofilm and disrupts the normally balanced host-microbial interaction, thus leading to 
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disease (Hajishengallis et al., 2012a). P. gingivalis can also evade or counter the host 

immune system establishing itself in the periodontal pocket (Hajishengallis, 2014; 

Hajishengallis et al., 2012; Olsen & Hajishengallis, 2016; Zenobia & Hajishengallis, 

2015). P. gingivalis disrupts normal leukocyte migration and immune defense function, 

thereby causing inflammation, through which it can obtain nutrients from tissue (Bostanci 

& Belibasakis, 2012; Darveau et al., 1998; Maekawa et al., 2014; Zenobia & 

Hajishengallis, 2015). Immune system disruption contributes to tissue destruction. 

 Numerous P. gingivalis virulence factors are involved in tissue destruction and 

evasion of the host immune system.  Holt et al. (1999) listed over 30 virulence factors 

that function to establish the bacterium in the host. However, the major virulence factors 

of P. gingivalis are a capsular polysaccharide, lipopolysaccharide (LPS), the major 

fimbriae, and gingipains (Bostanci & Belibasakis, 2012).  

1.4.2.1.1  Capsule 

The capsule is a heterogeneous polysaccharide polymer exterior to the LPS that 

protects against phagocytosis and enzymatic destruction (Bostanci & Belibasakis, 2012; 

Singh et al., 2011). For example, dendritic cells and macrophages phagocytose non-

encapsulated P. gingivalis at 4 and 30 times the rate of encapsulated P. gingivalis, 

respectively (Singh et al. 2011). Capsulated P. gingivalis survived phagocytosis by 

dendritic cells and macrophages in a study comparing a capsule-deficient mutant and a 

capsulated parental strain (Singh et al., 2011). Capsulated P. gingivalis was also shown to 

dampen the immune response and disperse from gingival tissue to infect and colonize 

distant areas of the body (Hajishengallis, 2014; Irshad et al., 2012; Iwai et al., 2011; 

Nakayama & Ohara, 2017). Further, encapsulated P. gingivalis disrupts the leukocyte 
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response (Brunner et al., 2010), invades human gingival fibroblasts and potentially 

survives even in the presence of antibiotics (Amornchat et al., 2003; Brunner et al., 2010; 

Irshad et al., 2012). In mouse models, encapsulated P. gingivalis produced a spreading 

type of infection with exudate, compared to a localized infection of non-encapsulated P. 

gingivalis (Laine & Winkelhoff, 1998), and enhanced cellular invasion associated with 

co-aggregation in mixed infection models (Polak et al., 2017). The capsule acts as a 

physical barrier shielding microbial surface components from the immune system (Lenz 

et al., 2016; Singh et al., 2011). It greatly enhances the virulence and survival of P. 

gingivalis (Sing et al., 2011). Similar processes may occur with P. gingivalis infections in 

humans, enhancing virulence and evading immune clearance.   

1.4.2.1.2  Lipopolysaccharide 

P. gingivalis LPS is different from that of other Gram-negative bacteria (Laheij et 

al., 2015; Rangarajan et al., 2008). While LPS, in general, is a potent activator of host 

defense response and highly inflammatory (Pulendran et al., 2001), P. gingivalis LPS 

elicits only a weak immune response.  Heterogeneous lipid A molecule of P. gingivalis 

LPS is responsible for reduced immune response (Jain & Darveau, 2010) and enhanced 

virulence and pathogenicity. The modified lipid A molecule also allows the bacterium to 

manipulate the Toll-like receptor (TLR) response and promote chronic inflammation 

(Sochalska & Potempa, 2017). High levels of LPS promote inflammation associated with 

P. gingivalis infection through the delay of neutrophil apoptosis, increased production of 

interleukin-1 beta, tumor necrosis factor-alpha, and interleukin-8, all of which are pro-

inflammatory cytokines (Murray & Wilton, 2003). LPS also increases oxidative stress in 

the cell model of infection with ligament fibroblasts (Gölz et al., 2014). Additionally, P. 



 

26 

gingivalis produces outer membrane vesicles containing gingipains and LPS, which 

facilitate bacterial aggregation, colonization, and interaction with host tissues and cells 

(Nakayama & Ohara, 2017). 

1.4.2.1.3  Fimbriae 

Enersen et al. (2013) provided an extensive review of P. gingivalis fimbriae, 

which are proteinaceous surface structures 3–25 µm in length present on most strains. 

Fimbriae are grouped into short and long,with long fimbriae further subdivided into six 

genotypes (I, Ib, II-V), withextensive heterogeneity (Lenz et al., 2016).  Short fimbriae 

appear to play a role in the auto-aggregation of bacteria (Lin, Wu, & Xie, 2006), without 

which accumulation and subsequent colonization would prove more difficult. 

In contrast, the long type II fimbriae are reported to enhance P. gingivalis 

virulence through improved adhesive and invasive interactions of bacteria with epithelial 

cells (Kuboniwa et al., 2009; Amano et al., 2004; Weinberg et al., 1997; Inaba et al., 

2007; Nakagawa et al., 2006). In addition, type II fimbriae are also more efficient 

inducers of severe inflammatory response (Inaba et al., 2007).  Moreover, type II 

fimbriae also inhibit migration and proliferation of host cells (Nakagawa et al., 2006). 

Since most P. gingivalis possess both short and long fimbriae, these have a 

combined virulence promoting effect on bacterial aggregation and colonization, 

inflammation, and dysregulation of host cellular migration.  

1.4.2.1.4  Gingipains 

Gingipains are cysteine proteases that are believed to be most significant and the 

most studied P. gingivalis virulence factors (Uehara et al., 2008). These proteases are 

found either on cell surface, in secreted vesicles or as soluble proteins. Gingipains are 
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encoded by genes rgpA, rgpB, and kgp, and are divided into two main groups, namely 

arginine gingipains (RgpA and RgpB) and lysine gingipains (Kgp). Rgp catalyzes the 

hydrolysis of proteins and small molecule substrates with a preference for Arg in position 

one. The Kgp gingipain has strict specificity for lysyl bonds.  

Gingipains are likely responsible for almost all P. gingivalis mediated tissue 

destruction through their proteolytic activity (Sheets et al.,  2006).  They are central to 

periodontal disease progression and cardiovascular disease development (Kurita-Ochiai 

& Yamamoto, 2014; Marschall, 2016; Osbourne et al., 2012; Uehara et al., 2008). 

Gingipains modulate adherence to and colonization of host cells (Chen et al., 2001), 

neutralize host defenses (Guo et al., 2010), manipulate host inflammatory response 

(Hajishengallis, 2014), promote tissue destruction for nutrient acquisition (Suzuki et al., 

2013), and lead to cell death during invasion and dissemination both in the periodontium 

and other tissues (Velsko et al., 2014; Yilmaz et al., 2006; Yousefi et al., 2008). 

Gingipains also have important “housekeeping” functions for P. gingivalis. In this 

context, they control enzyme processing for various cell surface proteins, and participate 

in the maturation of the hemoglobin-binding receptor protein domain, hemagglutinin 

(Imamura, 2003). Gingipains also modulate coinfection with other bacteria (Jung et al., 

2017), which contribute to biofilm formation. Finaly, gingipains are crucial for the 

establishment, persistence, and progression of P. gingivalis infection and for periodontal 

disease.  
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1.4.3  Summary of Periodontal Disease 

Periodontal disease is a significant health problem worldwide with the highest 

incidence rate of severe periodontitis in older age group (i.e., 65–74). A number of 

studies indicate a strong correlation between periodontal disease and systemic diseases, 

including atherosclerosis and other cardiovascular diseases. It appears that a small 

number of bacteria, the red complex, appear to be responsible for periodontal disease. Of 

these, the keystone pathogen, P. gingivalis, plays an important role in the establishment 

and progression of periodontitis, through the action of its various virulence factors, which 

affect growth and development of the oral biofilm and disrupt the normal host-microbial 

interaction. These virulence factors enhance the pathogenicity of P. gingivalis and make 

it an important target for control of periodontitis.  

1.5  Scope of the Dissertation 

There is a need for new types of effective antibiotics because of microbial 

development of resistance to well established antibiotics and because of new emerging 

infections. Nanotechnology represents a new approach to infection control and treatment. 

Nanoparticles made of silver were shown to have antibiotic activity against numerous 

bacteria. Properties of nanoparticles can be specifically designed by changing their size, 

shape, and surface chemistry, In order to enhance biocompatibility and reduce toxicity to 

host cells. A way to modifysilver nanoparticles is to alloy them with gold, reducing silver 

toxicity and enhancing the overall nanoparticle biocompatibility. Additional 

modifications using surface capping agents such as polymers can further improve 

biocompatibility.  Biocompatible antimicrobial silver-gold bimetallic nanoparticles may 

prove to be an effective tool for control and/or elimination of P. gingivalis infection, and 
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thus provide an additional or alternative treatment for periodontal disease and elimination 

of the associated systemic complications.  

In Chapter Two, a more detailed look at the use of nanoparticles for the 

management of P. gingivalis infection is presented. The synthesis and characterization of 

monodisperse nanoparticles are discussed with an emphasis on size determination.  

In Chapter Three, synthesized nanoparticles are evaluated for their ability to 

inhibit the planktonic growth of P. gingivalis. By managing P. gingivalis infection and 

reducing or preventing the development of oral biofilm, and subsequent progression from 

gingivitis to periodontitis, antibacterial nanoparticles can be a contributing factor in the 

improvement of oral and systemic health.  

In Chapter Four, synthesized nanoparticles are tested for their effect on 

hemostasis. The effects of synthesized nanoparticles on platelet activation are examined 

in a whole human blood model. The objective is to develop efficacious antimicrobial 

nanoparticles which are also biocompatible.  

In Chapter Five, we present a summary of the main elements and results of the 

study, their implications, and also offer suggestions for future studies to enhance the 

understanding of the role of nanoparticles as hemocompatible antibiotics.  
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CHAPTER TWO 

SYNTHESIS OF SILVER AND SILVER-GOLD BIMETALLIC 

NANOPARTICLES 

Walemba, E. M., Perry, C. C., and Boskovic, D. S. 

2.1  Abstract  

Silver nanoparticles, as broad-spectrum antimicrobial agents, also exhibit cellular 

toxicity.  Surface modifications, however, can improve biocompatibility and reduce toxic 

side effects. Alloying of silver nanoparticles with gold, for example, modulates their 

reactivity and toxicity. Moreover, due to the predominant impact of surface effects, 

smaller nanoparticles tend to have higher cytotoxicity. Thus, in addition to surface 

modifications, control of nanoparticle size distribution is also needed for adequate 

toxicity control.  Using a modified Tollens’ reaction where the solution pH and silver 

nitrate to maltose ratios were varied, we synthesized ≈ 20 nm silver (Ag) and silver-gold 

bimetallic alloy nanoparticles with ≈3 or ≈16% gold (BM1 or BM2 respectively). The 

nanoparticle sizes produced, with the same chemical composition, was technique-

dependent, and monitored using dynamic light scattering (DLS), atomic force microscopy 

(AFM), and transmission electron microscopy (TEM) (p ≤ 0.05). With increasing gold 

content nanoparticle sizes tended to be smaller, so that Ag>BM1>BM2, independent of 

the sizing method (p ≤ 0.05). These results reveal that size determination is sensitive to 

the characterization method, which in turn is a function of the hydration shell for DLS, 

surface coating for TEM, and indentation forces for AFM.   
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2.2  Introduction 

Antibiotic resistance has greatly increased over the last 60 years (Brooks & 

Brooks, 2014). This is a global problem and covers widely used antibiotics against 

common infectious organisms such as Staphylococcus, which exhibited resistance to 

penicillin in 1940, methicillin in 1962, linezolid in 2001, vancomycin in 2002 and 

ceftaroline in 2011.  Moreover, extensively drug-resistant organisms such as tuberculosis 

have emerged since 2000 (Ventola, 2015a; Brooks & Brooks, 2014). To combat 

antibiotic resistance in bacteria, the Centers for Disease Control (CDC) and others 

recommended improved diagnoses, antibiotic stewardship, tracking of antibiotics and 

their prescriptions, along with optimized therapeutic regimens and infection control 

(Ventola, 2015b; Brooks & Brooks, 2014). While antibiotic resistance is likely 

contributed to by overuse, inappropriate prescribing, and extensive agricultural use, an 

often overlooked but important cause is the relative lack of new effective antibiotics 

(Ventola, 2015a; Brooks & Brooks, 2014).  

Important progress against antibiotic resistant infections includes development of 

new treatment agents. Some new antibiotics, based on conventional 

chemistry/biochemistry, have recently been approved and deployed. These include 

dalbavancin, oritavancin, tedizolid, and avibactam. Other next-generation 

aminoglycosides, beta-lactamase inhibitors, quinolones, ketolides, tetracyclines, and 

oxazolidinones, are also in development (Ventola, 2015b). Local drug delivery may also 

help to reduce the development of drug resistance (Brooks & Brooks, 2014). Compared 

to conventional drugs, nanoparticle delivery systems have enhanced or increased cellular 

penetration, and can be modified for targeted drug delivery and  other functional 
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advantages (Palez et al., 2017). Silver nanoparticles have been used to control microbes 

for some time (Wang et al., 2017; Dhanalakshmi et al., 2013; Gurunathan et al., 2014). 

With developing nanotechnology new products with lower host toxicity and improved 

biocompatibility will likely become an important addition to infection control strategies.  

2.2.1  Nanoparticles 

Nanomaterials are characterized by sizes ranging from 1 to 100 nm in at least one 

dimension. Because of the heightened surface attributes, their physicochemical properties 

differ from the bulk. Nanoparticles are used to treat infections and as drug carriers in 

biomedicine (Faraji & Wipf, 2009; Pelaz et al., 2017). In dentistry, nanomaterials are 

used to treat caries, in tooth whitening and surface polishing, for dental fillings and 

implants, and as ingredients in toothpaste (Priyadarsini et al., 2018; Noronha et al., 2017).  

Some of the current research is aimed at developing nanomaterials suitable to replace 

conventional dental composites (Bapat et al., 2019; Van Landuyt et al., 2014).  

2.2.2  Antibiotic Nanoparticles 

Antimicrobial nanoparticles are of particular interest because they can prevent 

bacterial infections when used in composites or as constituents of other biomaterials. 

Additionally, antimicrobial nanoparticles can be used to treat and control established 

bacterial infections (Wang et al., 2017; Pelaz et al., 2017)).  This is important because 

oral infections are known to contain bacteria that can develop resistance to conventional 

treatments (Feres et al., 2002; Rams et al., 2014; van Winkelhoff et al., 2000). Silver 

nanoparticles possess known antibacterial properties, but they have overlapping 

therapeutic and toxicity windows. However, silver nanoparticles can be modified for 
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biocompatibility through surface functionalization that includes capping/coating and 

alloying with other metals (Grade et al., 2014; Irwin et al., 2010; Ravindran et al., 2013).  

2.2.3  Nanoparticle Synthesis 

Numerous methods used to synthesize nanoparticles can be categorized into “top-

down” or “bottom-up” approaches. The “top-down” approach involves the breakdown of 

bulk materials to nanosized particles, while the “bottom-up” approach starts with atoms 

and molecules that are then assembled within the phase they are in (gas or liquid) to form 

nanomaterials (Horikoshi and Serpone, 2013). Figure 1 presents a schematic of the 

various methods used to synthesize nanoparticles. The “wet” method is popular because 

it uses inexpensive analytical equipment. A disadvantage of this method is that the 

reducing agent can add impurities to nanoparticle colloidal suspensions.  

Impurities, known or unknown, are undesired substances present with the 

products of a reaction. For nanoparticle synthesis protocols considered here, impurities 

are largely unidentified substances. Generally, impurities tend to reduce the efficacy of 

the product. However, under certain circumstances impurities may also enhance the 

product efficacy, as is the case for the production of some phytonanoparticles 

(synthesized from plant extracts) (Tahir et al., 2016). The reducing agent, therefore, may 

enhance or reduce the efficacy of synthesized nanoparticles.   
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The chemical reduction of metal ions is a typical liquid/liquid method that allows 

the synthesis of particles of different shapes, including nanorods, nanowires, nanoplates, 

and hollow or solid nanoparticles. In addition to low-cost reagents and basic equipment, a 

further benefit of this method is that the nanoparticles can be optimized for shape and 

size with careful adjustment of the reducing agent, the dispersing agent, temperature and 

reaction time (Horikoshi & Serpone, 2013).  

 

 

 

 
 

Figure 1. Bottom-up synthesis of nanoparticles. Chemical reduction method* 

includes the use of polyols, organic acids, sodium borohydride, and sugars. Indirect 

reduction** includes photoreaction, gamma ray, ultrasonic wave, and liquid plasma 

use. In the sedimentation method,*** the processes include co-precipitation, sol-

gel/gel-sol, alkaline precipitation, and colloidal chemistry. Figure adapted from 

Horikoshi & Serpone, 2013. 
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In the chemical reduction method, for example with silver, metal ions are 

reduced. 

 𝑛𝑒− +  𝑀𝑛+ → 𝑀0        (1a) 

𝑒− +  𝐴𝑔+ → 𝐴𝑔0         (1b) 

The Ag seeds can agglomerate into oligomer clusters which eventually form 

colloidal Ag nanoparticles (El-Nour, et al., 2010). Two common liquid/liquid methods of 

nanoparticle synthesis use organic acids (Turkevich method) and sugars (Tollens’ 

reaction) as reducing agents.  

In the Turkevich method, AgNO3 is reduced in the presence of sodium citrate, 

where the citrate ions act as both a reducing agent and a stabilizer. While this helps limit 

the number of reagents required, it also makes it difficult to control the shape and size of 

the synthesized nanoparticles (Turkevich et al., 1951). 

We used alkaline pH to open up the glucose ring in maltose and present a free 

aldehyde group, RCHO, to reduce aqueous silver. Silver, formed in Tollens’ reaction, 

gives a clear solution of diamminesilver(I) complex ([Ag(NH3)2]
+) (Equation 2). The 

ratio of ammonia to silver nitrate controls the size and yield of silver nanoparticles 

(Panáček et al., 2006). An excess of ammonia leads to the synthesis of smaller 

nanoparticles because of the abundance of nuclei, whereas an excess of silver ions would 

lead to the reduction of the ions on already formed silver nuclei and an increase in 

nanoparticle size (Equation 3).  

𝐴𝑔+ +  2𝑁𝐻3 → [𝐴𝑔(𝑁𝐻3)2]+      (2) 

2[Ag(NH3)2]+  +  RCHO +𝐻2𝑂 → 2Ag(s)  +  RCOOH + 4𝑁𝐻3 + 2𝐻+ (3)  
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Because the ammonia traps all the free silver ions, the initial nucleation step 

determines both nanoparticle size and its distribution (Gorup, et al., 2011). The bimetallic 

nanoparticles were synthesized via the galvanic replacement reaction between HAuCl4 

and silver nanoparticle, so that silver nanoparticle is oxidized and AuCl4
- is reduced 

(Young, 2006; Holden et al., 2014; Park et al., 2014; Maschmeyer, 2017), as shown in 

equation (4).  

3𝐴𝑔 + 𝐴𝑢𝐶𝑙4
− → 3𝐴𝑔+ + 4𝐶𝑙− + 𝐴𝑢                                                 (4) 

The amount of alloying depends on the amount of gold salt added where a molar 

excess results in the complete dissolution of silver (Purbia & Paria, 2015). The deposition 

of gold on the silver to form an alloy results from the difference in the standard reduction 

potential of AuCl4
-/Au (0.99 V, against standard hydrogen electrode) and that of Ag+/Ag 

(0.80 V, against standard hydrogen electrode) (Young, 2006). We synthesized bimetallic 

nanoparticles with differing gold content by varying the final [HAuCl4]. 

2.2.4  Nanoparticle Characterization  

Following synthesis, the characterization of nanoparticles is necessary to 

determine their physicochemical characteristics. Unfortunately, contradictory reports of 

nanoparticle functional features, in spite of similar sizes, may be due to inadequate 

nanoparticle characterization. Some of the most commonly used methods to characterize 

nanoparticles include Ultraviolet-visible (UV-vis) spectrometry, Dynamic Light 

Scattering (DLS), Nanoparticle Tracking Analysis (NTA), Energy Dispersive X-ray 

Spectroscopy (EDS), Atomic Force Microscopy (AFM), and Transmission Electron 
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Microscopy (TEM). Based on these techniques structural benchmarks can be established 

to rationalize nanoparticle functional activity.   

2.2.4.1  UV-Vis Spectroscopy 

UV-vis spectroscopy is a technique based on light absorbance in the ultraviolet 

and visible spectral ranges by dissolved material in a suitable solvent. This technique is 

used for quantitative and qualitative analysis of solutions. Quantitative results are 

obtained from the application of Beer-Lambert law that states that the absorbance of a 

solution is directly proportional to the concentration of the absorbing species in the 

solution for a predetermined fixed path length of light. The proportionality constant is 

referred to as the molar extinction coefficient, calculated from a calibration curve, for the 

absorbing substance under specified pH and solvent conditions. Qualitative 

measurements are obtained by characterizing the observed absorbance peaks for a 

substance under specific pH and solvent conditions.  The strongest absorption along the 

absorption spectrum, is termed the substances’ lambda maximum (λmax) and is 

characteristic of each substance.  UV-vis spectroscopy can be used for determination of 

colloidal stability of metallic nanoparticles based on their physical changes in suspension 

(Ray et al., 2015). Thus, UV-vis spectroscopy is a quick, simple to use and economical 

tool for determining important characteristics of colloidal suspensions such as silver or 

gold nanoparticle solutions (Paramelle et al., 2014; Haiss et al., 2007). 

2.2.4.2  Dynamic light scattering 

Dynamic light scattering (DLS) is employed to determine the size distribution of 

particles in suspension. Laser light is directed through a solution containing dispersed 

particles. Particles in the solution scatter light proportionally to the sixth-power of 
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particle radius r, (Intensity  r6). The intensity of the scattering fluctuates as the particles 

undergo Brownian motion, causing constructive and destructive interferences. For DLS, 

the intensity fluctuations of the scattered light are captured and correlated against short 

decay times to obtain an intensity autocorrelation function. The hydrodynamic radius of 

solid spherical particles is derived using the Stokes-Einstein equation. 

𝐷𝑡 =  
𝑘Β𝑇

6𝜋𝜂𝑅𝐻
           (5) 

Where kB = Boltzmann constant (1.38064852 x 10-23 J/K), T = temperature,  = 

absolute viscosity (1 Pa s = 1 N s/m2 = 1 kg/(m s)) and RH = hydrodynamic radius (nm). 

The derivations for the autocorrelation function are beyond the scope of this work, but 

indicate that DLS measurement results depend on the viscosity of the solvent used, the 

temperature of the solution, the refractive index of the nanoparticle, and the instrument 

settings (Bhattacharjee, 2016). DLS analysis was done with a Nicomp ZLS3000 (Particle 

Sizing Systems, FL, USA) instrument. This system uses a unique algorithm to describe 

sizing results in either a Gaussian or a multi-modal distribution. It can separate close 

bimodal populations. The measured size is the hydrodynamic size of the nanoparticle 

including the hydration shell. Moreover, DLS can be used to evaluate the colloidal 

stability by tracking the size of the nanoparticles over time or by measuring the Zeta 

potential. An increase in the mean size of the nanoparticles over time indicates 

nanoparticle aggregation. The Zeta potential of nanoparticle solutions is used as an 

indicator of the electrostatic stability of nanoparticles (Battacharjee, 2016). Based on 

numerous studies, Zeta potential values of ± 0–10 mV, ± 10–20 mV, ± 20–30 mV, and ± 

30 mV are electrostatically unstable, relatively stable, moderately stable, and highly 

stable, respectively (Salopek et al., 1992; Battacharjee, 2016).  Overall, colloidal stability 
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of nanoparticles in solution is determined by the collective effects of Van der Waals’ 

attractive forces, electrostatic repulsion and steric hindrance.  

2.2.4.3  Nanoparticle Tracking Analysis 

NTA, first commercialized in 2006, is used to size nanoparticles between 30–

1000 nm. The lower sizing limit is dependent on the refractive index of nanoparticles 

(Filipe et al., 2010), and can measure down to 10 nm for some substances (Contado, 

2015). For NTA, like DLS, the size is derived from the rate of movement through the 

solution (Brownian motion) using the Stokes-Einstein equation (Equation 5). Equation 6 

measures the mean squared displacement, (x, y)2̅̅ ̅̅ ̅̅ ̅̅  of the nanoparticle in two dimensions 

(Filipe et al., 2010; Hole et al., 2013). 

       (𝑥, 𝑦)2̅̅ ̅̅ ̅̅ ̅̅ ̅ =
2𝑘𝐵𝑇

3𝑅𝐻𝜋𝜂
           (6) 

Rate of nanoparticle movement is dependent on the temperature of the solution T, 

solution viscosity 𝜂, and hydrodynamic radius, RH. The NTA technique combines laser 

light scattering with a charge-coupled camera to capture the Brownian motion of 

individual nanoparticles.  In contrast to the DLS technique, the hydrodynamic size is 

calculated and collected for optically and digitally captured nanoparticles, particle by 

particle. Therefore, the NanoSight NS300 can provide size and concentration information 

with clearer representation of varying nanoparticle sizes in polydisperse solutions (Filipe, 

Hawe, & Jiskoot, 2010). The advantage of the NTA technique is that it represents a form 

of particle census taking and so is not biased towards larger nanoparticles or aggregates 

(Hole et al., 2013).  Additionally, because it measures a large number of particles 

simultaneously, this increases statistical confidence (Contado, 2015). 
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2.2.4.4  Energy dispersive X-ray spectroscopy 

Energy dispersive spectroscopy (EDS) is used for elemental analysis. In brief, a 

beam of high energy particles (electrons, protons) is directed onto the sample to excite 

electrons and eject them from affected elements. The displaced electrons leave behind 

unoccupied ‘holes’ that become filled by nearby electrons from higher energy shells. The 

energy difference between the two energy levels results in photon emission in the X-ray 

part of the spectrum. The wavelength of emitted X-ray is characteristic of the atomic 

structure of the sample and is used to determine sample composition (Slater, Lewis & 

Haigh, 2016).  

2.2.4.5  Atomic force microscopy 

Atomic force microscopy (AFM) can form images of objects that are fractions of 

a nanometer in size, without using either light from sample or focusing lenses. This 

reduces errors from diffraction and aberration during measurement. 

 

 

 
 

Figure 2. Schematic of AFM. The basic parts of the AFM include a laser, cantilever 

with a probe, photodetector, and sample holder. The photodetector is connected to 

electronic equipment that converts the cantilever deflection, measured in volts, to 

nanometers in motion.  
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The basic mechanism uses a probe that is attached to a cantilever (Figure 2). The 

probe moves over a sample via a raster scanning motion, either by constant contact or by 

tapping. As the contact changes due to the shape and size of the object, deflection in the 

cantilever is detected by the recording mechanism. The deflection of the cantilever is 

calibrated to relate voltage to nanometers of motion. The electrical signal can be 

converted to image outputs in both 2- and 3-D formats. AFM can be used to image most 

surfaces and for particles in ambient air, in liquids, or in their native tissue. AFM can 

resolve images down to 0.1 and 1 nm in the vertical and horizontal planes, respectively 

(Contador, 2015).  

2.2.4.6  Transmission electron microscopy 

Transmission electron microscopy (TEM) is a relatively fast high-resolution 

imaging tool that uses electrons transmitted through a specimen under high vacuum to 

form an image. In brief, electrons emitted from a cathode, and accelerated by high 

voltage, pass through a thin specimen. As electrons pass through the specimen, they are 

scattered elastically or inelastically. These electrons pass onto a fluorescent screen, thus 

generating an image that is seen as contrasts in electron densities. A 3-D image can be 

produced using TEM by taking multiple images of the sample from different angles. 

TEM imaging can resolve objects of less than 50 picometers (0.05 nanometers). Sample 

preparation for TEM can be quite complex, but nanoparticles are essentially electron 

transparent and are easily imaged using TEM. Although TEM is the preferred method for 

the determination of nanoparticle mean size, size distribution, and nanoparticle shape, the 

expense of TEM and the needed technical skills keeps it out of reach for many. 
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2.2.5  Scope of this Study 

In this study, we contrast the Turkevich and modified Tollens’ approaches to 

making monodisperse silver-containing nanoparticles.  Modified Tollens reaction is used 

to make size-specific nanoparticle seeds of silver, by varying the pH of Tollens reagent 

and the ratio of 0.02 M silver nitrate to 0.01 M D-maltose. Then the nanoparticle seeds 

were used to synthesize silver-gold bimetallic nanoparticles of varying gold compositions 

(≈3% and ≈16% gold), by varying the volume of 0.1 M chloroauric acid. We report the 

use of Pluronic F127 as a stabilizer of silver-gold bimetallic alloy nanoparticles. 

Pluronic F127, a Food and Drug Administration (FDA) approved polymer, was 

used as a stabilizing agent of silver nanoparticles.  Gold is used to synthesize silver-gold 

bimetallic alloys because of a number of advantages such as:  a) gold is resistant to 

oxidation, b) precursor Au(III) is water-soluble and c) reduced gold surfaces conjugate 

readily with other compounds to make versatile nanoparticles.  Further, gold in bimetallic 

nanoparticles modulates the release of silver ions from nanoparticle surfaces (Alissawi et 

al., 2013; Sotiriou et al., 2014). As a result, bimetallic silver-gold nanoparticles retain 

antibacterial activity while reducing toxicity toward eukaryotic cells (Grade et al., 2014; 

Mahl et al., 2012; Padmos et al., 2015; Ristig et al., 2015). 

All nanoparticle preparations were characterized with respect to particle sizes, 

shapes, and colloidal stabilities. Furthermore, the size measurements were validated by 

using three different sizing methods and comparing their  observations.  Size differences 

(if present) were noted among the synthesized species of nanoparticles. 
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2.3  Materials and Methods 

2.3.1  Materials  

Ammonium hydroxide (28-30%), sodium hydroxide (98%), D-maltose (99%), 

silver nitrate (99%), gold (III) chloride hydrate (HAuCl4.3H2O; 99.999% trace metals 

basis), Pluronic F-127 (EO100PO65EO100, MW  12500; batch number 038K0113), 

phosphate buffered saline tablets, bovine serum albumin, and reduced glutathione 

reagents were used as received (Sigma-Aldrich, USA). Milli-Q water (Millipore) was 

used in all experiments. 

2.3.2  Maltose Method of Nanoparticle Synthesis  

Glutathione-capped nanoparticles were synthesized at room temperature using the 

reduction of AgNO3 by maltose in an alkaline medium, as described previously (Holden 

et al., 2014). Then the solution of synthesized silver nanoparticles was adjusted to an 

absorbance of 10, measured at 400 nm, using  2% Pluronic F-127.  Then a galvanic 

replacement reaction was employed between HAuCl4 (0.1 M stock; 0 - 25L) and the 

silver nanoparticle seeds (10 mL) to make 3% (BM1) or 16% gold (BM2) bimetallic 

nanoparticles.  The stock 0.1 M HAuCl4 was added to silver nanoparticles for a final 

concentration of 0.025 mM or 0.15 mM, to make BM1 or BM2, respectively, and 

incubated at 25 C for 30 minutes.  Then samples were washed by centrifugation at 

10,000g for 10 minutes.  Solutions of Ag, BM1 or BM2 nanoparticles, were all 

normalized to an absorbance of 10 at 400 nm using UV-vis spectrometry by adjustment 

with 2% Pluronic F127. Nanoparticles were stored in black vials at 25 C until use. 

 



 

71 

2.3.3  Sodium Citrate Method of Nanoparticle Synthesis  

Sodium citrate-capped silver nanoparticles were synthesized using a mixture of 

freshly prepared sodium citrate and tannic acid. Solution A (100 mL) contained 0.0075 

mM tannic acid and 0.025 mM sodium citrate.  Solution B (49.5 mL) contained 0.04 mM 

tannic acid and 0.10 mM sodium citrate.  Solution B was refluxed at 80ºC when 500 µL 

of 25 mM AgNO3 was injected into it.  Then the temperature of solution B was reduced 

to 65 ºC, and the reaction allowed to run for 10 minutes. At that time, 10 mL of silver 

nanoparticle seeds were removed by syringe and injected into a 15 mL Falcon tube, 

which was placed on ice.  Immediately, 10 mL solution A was injected into this solution 

containing silver nanoparticle seeds, followed by addition of 100 µL of 25 mM AgNO3 to 

form solution R. The reaction was allowed to run for 30 minutes at 65 ºC.  Then, 10 mL 

of solution R was collected by syringe and placed on ice. The removed volume was 

replaced with 10 mL of solution A and incubated for 30 min at 65 ºC. This 30–minute 

cycle was repeated seven times.  

2.3.4  Characterization of Nanoparticles  

UV-vis spectroscopy can be employed to determine both concentration and size 

of synthesized nanoparticles (Sikder et al., 2018; Haiss et al., 2007; Ray et al., 2015), and 

can also be used to monitor particle aggregation over time (Ray et al., 2015). UV-vis 

spectral measurements were taken at room temperature, using Varian Cary 300 

spectrophotometer (Agilent), in a quartz cell with a path length of 1 cm. Silver 

nanoparticles ranging in size ≈ 10 – 20 nm have a maximum absorbance peak, λmax, 

between 390–410 nm (Paramelle et al., 2014).  Because λmax is characteristic of 

nanoparticles with specific composition and size, it can also be used to identify the 
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approximate size and composition of the synthesized particles.  Given nanoparticles of 

known size and composition, absorbance at λmax is also a function of relative 

concentration.  Absorbance is proportional to concentration (Beer-Lambert Law: A = lc, 

where A = absorbance (no units),  = molar extinction coefficient (M-1 cm-1), and l = path 

length of light through solution (cm), c = concentration (mol L-1)) (Sikder et al., 2018). 

DLS was also used to assess particle size. In brief, DLS analysis was carried out 

with Nicomp ZLS3000 (Particle Sizing Systems, FL, USA) equipped with a He-Ne laser 

of wavelength 658 nm and having a maximum power output of 100 mW. DLS measures 

the changes incident light undergoes when it encounters dissolved or dispersed particles 

and is scattered by them. The hydrodynamic size is calculated from light scattering 

intensity based on autocorrelation function using equation (5). 

Nanoparticles were imaged using AFM and TEM techniques. AFM was 

performed using a multimode–8 scanning probe microscope (Bruker, Santa Barbra CA) 

in the peak force tapping (k = 0.4 Nm-1, f – 70 kHz) mode. The prepared sample for AFM 

imaging was placed on 18 mm mica AFM discs (Ted Pella, Redding CA), which was 

silanized using 0.5 mM (3-aminopropyl) triethoxysilane (APTES) (Sigma-Aldrich, USA) 

as follows. The mica surface was stripped with sellotape, then rinsed with 70% ethanol 

and allowed to air dry. Forty µL of 0.5 mM APTES made up in ethanol was pipetted onto 

a clean parafilm strip. The pre-cleaned mica was placed clean surface down on the 

APTES solution and left for 30 - 60 minutes. After silanization, the excess APTES was 

washed off with water. A diluted (at least 1:2 dilution) 20 µL nanoparticle sample was 

pipetted onto a clean parafilm surface, and the mica disk was placed silanized side down, 

on the sample for 45 – 60 min at 25 C. Then, the mica was rinsed with filtered deionized 
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water and air-dried. The sample AFM images were processed using the Gwyddion 

analysis tool (http://gwyddion.net). For TEM, the sample was washed by centrifugation 

(8,000g, 5 minutes), the supernatant discarded, and the sample diluted 100-fold in water. 

A 5L volume was pipetted onto a 200-mesh carbon-coated Cu grid (Ted Pella, Redding 

CA) and allowed to air dry. Images were taken on an FEI brand Tecnai-12 at 120 kV (UC 

Riverside). Images were processed using the Gwyddion analysis tool. 

The synthesized nanoparticles need to be stable for storage and in a medium 

suitable for later use. Nanoparticle stability was assessed by the Zeta potential and UV-

vis measurements. For Zeta potential determination, nanoparticles were diluted 1000-fold 

in 1 mM KCl solution and assessed using the Nicomp ZLS 3000. For UV-vis analysis, 

silver nanoparticle samples were diluted 1/20 in 2% Pluronic F127, 1.5% BSA, or water. 

The UV-vis spectrum was then obtained for a 360–800 nm range, with readings every 3 

hours for 24 hours. The silver-gold bimetallic nanoparticles were diluted 1/5 with 2% 

Pluronic F127, 1.5% BSA, or with water followed by UV-vis spectral analysis as 

described above for silver.  Silver nanoparticle solutions were diluted more because the 

yield of silver nanoparticles was higher. Readings were taken at 0, 3, 6, 18, and 24 hours.  

The concentration of nanoparticles was determined using Microwave Plasma-

Atomic Emission Spectrometer (MP-AES) following the size determination (Table 1). 

Samples (1 mL) for analysis by MP-AES were adjusted to OD 1.0, 0.75, 0.50, 0.25 in 

water. A volume of 100 L of each sample concentration was dissolved in 1 mL of 5% 

Nitric Acid overnight. Then the samples were diluted to a final concentration of 3% nitric 

acid, and a final volume of 5 mL. Samples were loaded into 50 mL Agilent tubes and 

brought up to 50 mL by further addition of 3% nitric acid.  These tubes were then placed 

http://gwyddion.net)/
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in the automatic sampling rack to be analyzed on Agilent MP-AES. Each nanoparticle 

solution was sampled three times, according to the settings. The original sample 

underwent a 50-fold dilution.  The nanoparticle concentration was determined from the 

equation of a standard curve obtained by using a silver standard (Sigma Aldrich). 

 

Table 1. Calculation of Ag solution (ppm) concentration from the UV-vis 

spectrum. One mL of OD = 10 of the ≈ 20 nm glutathione-capped Ag nanoparticles 

was washed and concentrated by centrifugation. The pellet was digested in 3 mL of 5% 

nitric acid at 25 C overnight. The solution was diluted to 5 mL of 3% nitric acid. The 

sample was analyzed by MP-AES. Ag (Sigma Aldrich) was used for the standard curve. 

Sample concentration was calculated from equation y = 0.1225x + 0.0025 and corrected 

for 50-fold dilution. 

 

 

Nanoparticle Concentration 

OD ppm  mg/mL (x10-4) 

0.1 0.738 7.38 

0.5 3.188 31.9 

1.0 6.250 62.5 

2.5 15.438 154.0 

5.0 30.750 308.0 

10.0 61.375 614.0 

  

 

The NanoSight NS300, using nanoparticle tracking, provided nanoparticle size 

and concentration information and distinguished between nanoparticle populations 

(Filipe, Hawe, & Jiskoot, 2010).  Excess surfactant might potentially affect nanoparticle 

size determination.  Because of this, prior to NTA, samples were washed by 

centrifugation (8,000 rcf, 10 minutes), to remove excess surfactant, and diluted in water 
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to yield 30–100 particles/frame under the green laser at 532 nm. A 1 mL aliquot of 

sample was taken up into a 1mL syringe, loaded onto syringe-pump, and injected into the 

viewing unit.  Samples were analyzed using the following NanoSight NS300 machine 

settings: detection threshold was set to 12, sample pump speed was set to 20 on 

automatic, temperature was 26.8 to 27°C and was viscosity 0.888 to 0.892. The blur size 

and maximum jump distance were set to auto. 

Samples (1 mL) for energy dispersive spectroscopy (EDS) analysis were washed 

twice by centrifugation at 8,000 rcf for 10 minutes, and the pellet suspended to the 

original volume in water. A 10 µL aliquot was pipetted onto carbon tape on the SEM 

grid. The sample was analyzed on the Thermo NNS Energy-dispersive X-ray analyzer 

(EDX) attached to a Vega LSH SEM to determine the Ag:Au ratio. In addition, the 

sample was again washed twice by centrifugation at 10,000g for 10 minutes and 

resuspended in water. A 10 µL sample was laid on the carbon tape on an 18 mm mica 

disk (Ted Pella, Redding CA) and allow to air dry. At least three different regions on 

each prepared nanoparticle sample were assessed for gold content. For each nanoparticle 

species, two different samples were probed to determine Ag:Au ratios. The mean gold 

content was determined from the elemental percentage calculated by the Vega LSH SEM 

software.  

2.3.5  Statistical Analysis  

The measured size of the synthesized nanoparticles was presented as mean  SE 

when comparing different measurement methods, or mean  SD when determining the 

size of a nanoparticle species from measurements of many particles. SE can also be used 

when there is uncertainty about the sample used to measure the diameter of nanoparticles 
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representing the larger total population, or for samples with large variation (Altman & 

Bland, 2005). The least-squares mean (LS means)  SE was computed for nanoparticle 

sizes determined by several methods using SAS software. The LS mean test was used 

because the number of samples between tests varied greatly. DLS size determinations 

were based on hundreds of thousands of particles, while using either AFM or TEM, 

several tens to a few hundred nanoparticles were examined. The least-squares means 

statistic is also less sensitive to missing data and offers a better estimate of the true 

population mean. Therefore, the best method to compare the mean sizes of nanoparticles 

determined by these methods was using the least squares means. Significance was set at 

p=0.05. 

2.4  Results 

 UV-vis analysis of nanoparticles (Ag, BM1 and BM2), synthesized by 

maltose method or the sodium-citrate method, revealed that the yield of nanoparticles 

produced using the citrate method was apparently higher.  The observed absorbance 

at max was higher than that for nanoparticles produced by the maltose method at the 

same dilution.  A decrease in the mean nanoparticle diameter was observed, as gold 

salt was added, resulting from the etching during galvanic replacement (Figure 3). 

Moreover, Figure 3 shows that there is a red-shift in the max for glutathione (GSH)-

capped and citrate-capped nanoparticles of 398–405 nm and 403–419 nm, 

respectively.  Both TEM and AFM analysis of the GSH-capped nanoparticles 

revealed that nanoparticles had a uniform shape and a narrow size distribution (Figure 

4).  
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Figure 3. UV-vis spectra for ≈ 20 nm (a) glutathione-capped and (b) citrate-capped 

nanoparticle. Glutathione capped nanoparticles were synthesized by the maltose method. 

The silver nanoparticle seeds were used to make BM1 and BM2 (3% and 16% gold, 

respectively) bimetallic nanoparticles. The spectra show absorbance and λmax for Ag, BM1, 

and BM2. The spectra present a 10-fold dilution of synthesized nanoparticles in 2% 

Pluronic F127. Citrate-capped nanoparticles were synthesized using the tannic acid/sodium 

citrate buffer method. The silver nanoparticle seed solution was used to synthesize 

bimetallic nanoparticles with 84% and 97% silver (BM2 and BM1, respectively). There is 

a redshift seen in nanoparticles from Ag to BM1 to BM2 indicative of gold incorporation. 
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Figure 4. AFM images of synthesized glutathione-capped nanoparticles. (a) 

Representative AFM of synthesized bimetallic nanoparticles. The image shows a uniform 

distribution of size and shape. The nanoparticles represented are BM1; mean nanoparticle 

diameter = 18.9 ± 0.8 nm. Representative TEM of synthesized nanoparticles of (b) Ag, (c) 

BM1, and (d) BM2. The mean diameter (nm) ± standard deviation (SD) of Ag, BM1 and 

BM2 was 16.78 ± 2.18 (N = 52), 16.12  0.33 (N = 13), and 15.79 ± 1.90 (N=51), 

respectively. 

 

 

In Figure 5, the three measurement methods (DLS, AFM, and TEM) are compared 

for the three nanoparticle species: Ag, BM1, and BM2. For all nanoparticles, the mean 

sizes were lowest when measured by TEM. Interestingly, when AFM was used, the 

measured size of BM1 was larger than that obtained by DLS. This may be due to the sample 

preparation method used for AFM analysis, which may favor larger nanoparticles. As 

 

 

(a)  

 

 

(b)  

 

(c)  

 

 

(d)  
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expected, the mean sizes obtained by DLS for Ag and BM2 nanoparticles was larger than 

those observed by TEM. This may be because DLS size measurements are affected by 

hydrodynamic effects. All measurement methods demonstrated a progressive reduction in 

mean size with increasing gold content, so that Ag  BM1 > BM2.  

 

 

 
 

Figure 5. Sizing of maltose-synthesized nanoparticles using DLS, AFM, and TEM. 

The mean  SEM diameter of the nanoparticles measured by different techniques presents 

a general trend Ag > BM1 > BM2.  The mean sizes of Ag nanoparticles were 22.460.88, 

25.572.55, 16.780.27 nm; BM1 19.400.88, 20.111.31, 16.120.33; and BM2 

16.880.88, 18.031.15, 15.790.27 for DLS, AFM and TEM respectively.  

 

 

The differences in sizes of Ag, BM1, and BM2 nanoparticles were significant for 

DLS (p=0.003), AFM (p=0.035), and TEM (p=0.027). In all cases (DLS, AFM, TEM) 

mean sizes of Ag nanoparticles were significantly larger than the mean sizes of BM2.  

However, mean sizes of BM1 nanoparticles were not significantly different to Ag or 
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BM2. The mean sizes for Ag measured by DLS and AFM were significantly larger than 

those measured by TEM.  

Two investigations were undertaken regarding the sizes of synthesized 

nanoparticles. First, to examine whether there is a difference in measured sizes of the 

different nanoparticle species (Table 2).  It was observed that there were significant 

differences between the three nanoparticle species (p = 0.05).  Second, to examine the 

effects of different sizing methods on the measured sizes of particular nanoparticle 

species (Table 3). The LS mean statistic was employed because of the large variation in 

the number of nanoparticles used to determine the mean diameter for different measuring 

approaches.  Determinations of mean sizes of Ag and BM1 were significantly different as 

measured by different methods (p < 0.001 and p = 0.027, respectively).  In contrast, for 

BM2, the varying methodologies did not result in significantly different measured sizes. 
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Nanoparticle yield was higher when citrate method of synhesis was used, 

compared to the maltose method, as previously described and shown in Figure 3. 

However, the citrate method produced multiple nanoparticle populations, as 

demonstrated by the large size ranges measured by DLS, with six replicates (Table 4). 

Both Ag and BM2 nanoparticles had broad size ranges, i.e., 15.1–33.3 nm and 12.9–57.5 

nm, respectively.  Consequently, the citrate method proved unsuitable for synthesizing 

monodisperse nanoparticles, which are needed for studies of size-specific activities.  

 

Table 4. DLS size determination of nanoparticles synthesized using the tannic 

acid/sodium citrate method. However, because of large variation it was difficult to 

consistently reproduce the particle size. 

 

 
 

Glutathione-capped nanoparticle stability was assessed in both water, and in 1.5% 

BSA in PBS, by measuring the Zeta potential. Zeta potential values in Table 5 suggested 

that Ag nanoparticles were moderately stable, but that BM1 and BM2 may aggregate.  

Nevertheless, Table 4 and Figure 6 revealed that nanoparticles remained stable and did 

not aggregate in water or 1.5% BSA over 24 hours. 

 

 
Silver Nanoparticles BM2 Nanoparticles 

Rep. Size (nm) ST.DEV. % Size (nm) ST.DEV. % 

1 18.5 0.8 63.23 57.5 9.3 94.65 

2 24.6 5.1 88.11 15.3 1.4 74.96 

3 19.5 3.1 96.43 12.9 1.6 95.33 

4 14.4 1.7 96.34 28.2 4.3 92.68 

5 33.3 4.1 93.90 21.3 3.8 92.25 

6 15.1 2.0 86.96 16.3 1.8 86.21 

 Mean = 20.9 nm ± 7.1 nm Mean = 18.8 ± 6.1 nm 
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Table 5. Zeta potential of synthesized ≈20 nm silver (Ag), BM1 and BM2 alloy 

nanoparticles. Nanoparticle solution was appropriately diluted in 1.4% potassium chloride 

solution and Zeta potential measured on Nicomp ZLS3000. The mean represents three 

separate solutions analyzed. Zeta potential of ≈20 nm nanoparticles suggests that the silver 

nanoparticles have moderate stability, while the bimetallic silver-gold alloy nanoparticles 

may have weaker stability. 

  
Mean ST.DEV. Min Max 

 mV 

Ag -26.66 -0.67 -25.83 -27.51 

BM1 -8.74 -1.55 -7.15 -10.80 

BM2 -11.13 -1.42 -10.19 -13.58 

 

 

Colloids with Zeta potential ±20–29 mv are moderately stable and those with ±30 

mV are highly stable (Battacharjee, 2016). BM1 and BM2 have Zeta potentials outside of 

the expected range for colloidal stability however, colloidal stability may also be 

supported by steric hindrance of nanoparticles (Fang et al., 2009). Steric hindrance can be 

inferred from time-course observations of UV-vis spectra (Figure 6). If the synthesized 

nanoparticles were to be delivered intravenously, they would interact with blood. Blood 

is a complex fluid that can be separated by volume into plasma (≈55%), and cellular 

components (≈45%) comprising various blood cells and cell fragments. The normal 

concentration of serum total protein is 60–80g/L which is ≈6–8% of plasma. The protein 

in plasma has two main fractions, albumin (≈60%) and globulins (≈36%) with a small 

amount of fibrinogen (≈4%) (Mathew and Varacallo, 2019). The normal range for 

albumin in adult human blood corresponds to 3.5–5 g/dL.  In this study, we chose 1.5% 

BSA in PBS as representative of the lower limit, but within the normal range, of serum 

albumin. 
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Figure 6. Stability of ≈20 nm glutathione-capped nanoparticles over 24 hours.  (a) 

Silver nanoparticles in water and in 1.5% BSA.  (b) Bimetallic nanoparticles in 1.5% 

BSA.  Stock solutions of bimetallic nanoparticles, BM1 and BM2, were diluted to 10% 

in 1.5% BSA solution.  UV-vis analysis was carried out with readings taken at to and 

every 3 hours for 24 hours.  No significant change in absorbance or λmax of either 

nanoparticle population was observed.  Each nanoparticle species was tested twice.  

 

Table 6 shows the absorbance at max measured by UV-vis over 24 hours for 20 

nm glutathione-capped silver and silver-gold bimetallic nanoparticles.  Data show that 

neither Ag, BM1 nor BM2 absorbance spectra changed substantially over 24 hours, in 

either amplitude or max position.  This implies that progressive aggregation of 

nanoparticles is not observed.  
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Table 6. UV-vis analysis of nanoparticle stability.  Synthesized ≈20 nm glutathione-

capped silver and bimetallic silver-gold nanoparticle stability was tested in 1.5% BSA over 

24 hours. Each nanoparticle species was evaluated once. 

  
Time 0 hr 3 hr 6 hr 18 hr 24 hr Mean St.Dev. 

Ag 

λmax 398 398 397 397 397 397.4 0.55 

Abs 0.643 0.615 0.626 0.648 0.645 0.635 0.014 

BM1 

λmax 409 410 411 410 409 409.8 0.84 

Abs 0.862 0.847 0.856 0.864 0.874 0.861 0.010 

BM2 

λmax 417 419 418 419 419 418.4 0.89 

Abs 0.769 0.777 0.776 0.790 0.790 0.780 0.009 

 

 

Average fraction of gold was determined to range from 3–20% and 2–55% for 

the glutathione-capped and citrate-capped bimetallic nanoparticles, respectively (Figure 

7).  Representative data set obtained using SEM-EDS is shown in Figure 7.  For each 

nanoparticle sample (Ag, BM1, and BM2), at least three different samples were analyzed.  
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Figure 7. Representative SEM-EDS output of glutathione-capped bimetallic 

nanoparticles synthesized by the maltose method. A sample of synthesized 

nanoparticles was washed by centrifugation in MiliQ® water before placing on carbon tape 

on the SEM grid and analyzed by EDS. At least three regions of the sample were analyzed, 

and five separate Ag, BM1, or BM2 samples were used for each value reported. 

 

 

Results of EDS analysis of the synthesized GSH-capped and citrate-capped 

nanoparticles are shown in Table 7.  It appears that citrate-capped nanoparticles required 

more gold salt to achieve similar proportion of gold in the alloy, compared to the smaller 

20 nm glutathione-capped nanoparticles. The citrate-capped nanoparticles tended to have 

bimodal size distributions with wide ranging particle sizes. Thus, these nanoparticles 

were not used for composition and size-dependent studies. 
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Table 7. The ratio of silver to gold in bimetallic nanoparticles based on [HAuCl4] 

added. HAuCl4 (0.25–25 x10-4M) was added to a solution of synthesized silver 

nanoparticle seeds. The resulting bimetallic nanoparticle formed was analyzed for the ratio 

of silver and gold using SEM-EDS.  

 

 Mean Percentage of Gold 

Final  

[HAuCl4] (x10-4 

M) 

GSH-capped 

Nanoparticle 

Citrate-capped 

Nanoparticle 

0.25 2.80 - 

0.50 7.13 - 

0.75 10.10 - 

1.00 10.60 - 

1.50 15.90 - 

2.50 - 0.55 

5.00 - 2.60 

7.50 - 11.60 

10.00 - 19.30 

25.00 - 53.90 

 
 

 

At 2.5 x 10-4 M HAuCl4 GSH-capped silver nanoparticles were completely etched 

away. Alternatively, for citrate-capped nanoparticles, when less than 2 x 10-4 M HAuCl4 

was added, no bimetallic nanoparticles were formed. More gold is required to achieve a 

similar ratio of gold for the citrate-capped than for GSH-capped nanoparticles.   

2.5  Discussion 

Reproducibility is can be difficult for wet synthesis of nanoparticles.  Numerous 

factors may affect size, shape, and concentration.  Furthermore, the complexity of 

nanoparticle characterization can also lead to difficulties in reproducibility, as discussed 
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by Ozin (2013).  Despite this, GSH-capped nanoparticles synthesized using the maltose 

method tended to be monodisperse and below 20 nm.  

UV-vis analysis was helpful for comparison of the relative sizes of nanoparticles 

synthesized by the citrate or maltose methods. For nanoparticles of similar material, such 

as the Ag, larger particles tend to be red-shifted compared to smaller nanoparticles. This 

was observed in Figure 3, where the ≈ 20 nm GSH-capped nanoparticle had λmax for Ag, 

BM1, and BM2 of 398, 403, and 405 nm, respectively.  The citrate-capped nanoparticles 

had λmax of 403, 409, and 419 nm for Ag, BM1 and BM2, respectively. This would 

suggest that initially, there is a dominant sub-population  of < 20 nm citrate-coated Ag 

nanoparticles.  The respective λmax of 398 vs. 403, 403 vs. 409, and 405 vs. 419 nm for 

glutathione-capped vs. citrate-capped Ag, BM1 and BM2 nanoparticles, respectively, are 

consistent indicators of size differences. The change in λmax from Ag to BM1 and then to 

BM2 was also consistent with the addition of gold to nanoparticle alloy. The λmax of gold 

nanoparticles is red shifted relative to that of silver for similar sizes.  The smoothness of 

the spectra in Figure 3 is consistent with the formation of silver-gold alloy, rather than 

separate nucleation and formation of gold nanoparticles.  Simultaneous presence of silver 

and gold nanoparticles would be demonstrated by observation of a secondary peak to the 

right of the peak characteristic for silver.  

Formation of the bimetallic nanoparticles BM1 from Ag, and BM2 from BM1, 

leads to a reduction in size because of the galvanic replacement of silver by gold. This 

was consistently demonstrated by all size determination methods employed.  The mean 

size of nanoparticles generally follow a downward progression:  Ag > BM1 > BM2 

(Figure 5 and Tables 2, 3).  Comparison of these sizes for glutathione-capped 
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nanoparticles revealed significant differences via each measuring method:  p = 0.003, 

0.035 and 0.027 for DLS, AFM and TEM, respectively.  Nevertheless, significant 

differences in mean size measurements for the same nanoparticles, Ag and BM1, were 

obtained by different techniques, with p ≤ 0.001 and p = 0.027, respectively.  The 

differences in the mean size measurements of BM2, obtained by the three techniques, 

was not significant, p = 0.127. 

Nanoparticle sizes were dependent on the synthesis method and not due to growth 

from aggregation during storage.  The samples were sonicated before dilution for the 

purpose of Zeta potential measurements. Sonication was shown to possibly affect Zeta 

potential by increasing the metal release and oxide formation on particle surfaces 

(Skoglund et al., 2017).  The Zeta potential readings, observed in present study, do not 

suggest that this happened to a significant degree. The inferred electrostatic stability 

suggests that only Ag nanoparticles are expected to be moderately stable, with a Zeta 

potential of -26.7  0.7 mV.  In contrast, Zeta potential measurements for both BM1 and 

BM2 suggest that these particles are likely to aggregate over time.  However, electrostatic 

stability is not the only factor that affects colloidal stability.  Steric effects may also play 

a role.  In this context, UV-vis spectrometry can be used to assess steric stability.  The 

GSH-capped nanoparticles, coated with Pluronic surfactants, were stable in both water 

and 1.5% BSA solution over 24 hours (Figure 6, Table 6).  The combined effects of the 

electrostatic forces and steric hindrance from the Pluronic polymer tails prevented 

aggregation and the nanoparticles remained stable in storage solution. 

Well-described monodisperse nanoparticles are of value because size is a 

significant contributing factor to function.  Because of this, successful synthesis of 
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monodisperse nanoparticles is an important step in the study of specific effects of 

nanoparticles, and the role of size and composition in determining nanoparticle activity.  

Bimetallic nanoparticles were synthesized utilizing silver seeds, in order to study the 

effects of the addition of varying amounts of gold, for the preparation of bimetallic silver-

gold alloy nanoparticles.  Gold is known to passivate silver toxicity in silver-gold alloys 

(Grade et al., 2014; Padmos et al., 2015, Ristig, et al., 2015) through the control of silver 

ion release (Alissawi et al., 2013; Sotiriou et al., 2014).  With conflicting results, this 

effect does not appear to be directly proportional to gold concentration in the bimetallic 

alloy, for the full range of 0–100% gold, or even for 0–50% gold.  Because of this, both 

nanoparticle size and mean gold content were measured.  Since, significant differences in 

measured sizes of the Ag, BM1 and BM2 nanoparticles were observed by DLS (p = 

0.003), AFM (p = 0.035) and TEM (p = 0.027) (Table 2), it is not obvious that the 

functional effects are strictly due to gold content rather than due to changes in 

nanoparticle sizes. 

Size determinations are affected by the sizing technique employed, as shown in 

Table 3. This may explain the functional differences reported for nanoparticles of 

presumably the same apparent size, as determined by different techniques, such as DLS 

or TEM.  Varying the measurement technique can be expected to yield significantly 

different mean sizes for the same nanoparticles.  Moreover, both intra- and inter-

laboratory differences in size determination were reported, even when using the same 

method.  Teulon et al. (2018) found that, for a unimodal population of polystyrene or 

SiO2 Ludox® beads, the sizing techniques DLS, AFM and TEM were relatively close 

and within 25% of each other.  However, when multimodal nanoparticles were evaluated 
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then the observed differences between techniques tended to be as much as 300%.  These 

observations emphasize the importance of reporting size distributions and also the need 

for using multiple sizing techniques.  Other possible causes of functional differences may 

include differences in the: a) nanoparticle concentrations, b) nanoparticle shapes, or c) 

nanoparticle-medium interactions.  

Nanoparticle size is an important determinant of nanoparticle activity, but it is not 

clear to what degree is the size the principal factor.  One of the most important 

applications of silver nanoparticles is based on their antibiotic properties, but this is 

limited by the toxicity of silver.  Silver-gold bimetallic nanoparticles offer a possible 

solution to the problem of toxicity while maintaining the antibacterial activity of silver. 

Conflicting reports still need to be resolved on the role of gold in the bimetallic 

nanoparticles and on the amount of gold required to achieve an effect. To understand the 

roles of size and composition (gold content) on nanoparticle antibiotic activity, the 

potential of nanoparticles to inhibit bacterial growth will be analyzed.  Biocompatibility 

will also be evaluated by assessing platelet activation in whole human blood in 

subsequent chapters.  

2.6  Summary and Conclusions 

Synthesis of monodispersed silver nanoparticles with uniform shape can be 

challenging.  This is especially true when using commonly sourced materials and 

equipment in a resource-poor setting. The problem is compounded when bimetallic 

nanoparticles are subsequently made from silver seeds.  

GSH-capped silver nanoparticles were synthesized and used as seeds for synthesis 

of silver-gold bimetallic alloy nanoparticles containing either 3% or 16% gold.  The mean 
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sizes (meanSEM) of nanoparticles were: 22.460.88, 25.572.55, 16.780.27 nm for 

Ag, 19.40.88, 20.111.31, 16.120.33 nm for BM1, and 16.880.88, 18.031.15, 

15.790.27 for BM2, using DLS, AFM and TEM methods, respectively. The 

nanoparticles were stable in water, 2% Pluronic F127, and 1.5% BSA solutions. 

Significant differences in the measured sizes of the Ag, BM1 and BM2 nanoparticles, 

were observed by DLS (p = 0.003), AFM (p = 0.035) and TEM (p = 0.027).  Measured 

sizes of the nanoparticles were significantly different, for each species of nanoparticles, 

using different measuring methods, such as DLS, AFM, or TEM.  This suggests that size 

determinations of the same stock of nanoparticles using different methods can lead to 

different infered sizes. When these nanoparticles are subsequently used to investigate 

activity, similar activity may be reported for apparently differently sized nanoparticles, 

and vice versa.  This tends to confuse studies of the relationship between nanoparticle 

size and its physiological effects in biological systems.   

Nanoparticles need to be adequately characterized, with respect to their 

physicochemical properties, in order to correctly attribute to them the appropriate 

activities. Differences in activity between silver and silver-gold bimetallic alloy 

nanoparticles may result from differences in size as well as in the gold content.  
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CHAPTER THREE 

NOVEL ANTIBIOTIC SILVER-GOLD BIMETALLIC NANOPARTICLES 

 

Walemba, E. M., Boskovic, D. S., and Perry, C. C. 

 

 

3.1  Abstract 

 Antimicrobial activities of silver and silver-gold bimetallic nanoparticles (NPs) 

against Porphyromonas gingivalis (W83 strain) were compared under oxidative stress 

conditions. Glutathione-capped 15–20 nm silver and silver-gold bimetallic NPs (3 or 16% 

gold), stabilized in 2% w/v Pluronic F127, were incubated with planktonic W83 in the 

presence of H2O2 (sub-inhibitory 0.1 mM, or inhibitory 0.25 mM). Bacterial inhibition 

was determined by measuring optical densities (ODs) of bacterial cultures at 18 and 24 

hours. Cell viability was evaluated by a combination of colony-forming unit (CFU) 

determinations and by flow cytometry. Silver and bimetallic NPs (14 ng/mL) were 

bacteriostatic in the presence of 0.1 mM H2O2.  Bimetallic silver-gold NPs, with16% gold 

content, were most effective.  Flow cytometry analysis using standard dyes were 

inconclusive for determination of W83 viability following nanoparticle treatment.  

3.2  Introduction 

Oral diseases are the most common non-communicable diseases worldwide, of 

which, periodontal disease afflicts 3.58 billion people (WHO, 2018).  Over 60% of 

Americans (Rozier et. Al., 2017), and up to 15% of adults worldwide, suffer from 

advanced periodontal disease (Petersen & Ogawa, 2005), which comprises a range of 

chronic inflammatory diseases affecting tissue that supports the teeth.  If untreated, 

periodontitis can lead to irreversible periodontal attachment loss, alveolar bone 
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destruction, increased tooth mobility, and subsequent tooth loss (Pihlstrom et al., 2005; 

Gerits, Verstraeten, & Michiels, 2017; Hajishengallis, 2014). Increased interest in 

periodontal diseases is motivated by evidence linking them to various vascular disorders 

(Hajishengallis et al., 2012; Olsen & Yilmaz, 2016; Velsko et al., 2014; Bartold & 

Narayanan, 2006).  

Because much degradation of the tooth, gum, and mandibular bone health can be 

attributed to bacterial infections (Wade, 2013), oral treatments aim at preventing or 

controlling such infections. However, oral microflora comprise more than 700 bacterial 

species (Aas et al., 2005). Three of these organisms, Porphyromonas gingivalis, 

Treponema denticola, and Tannerella forsythia, are implicated in adult periodontal 

disease. These organisms, named the red complex, have significant control over the 

bacterial communities and biofilm formation (Suzuki et al., 2013; Parahitiyawa et al., 

2010; Darveau, 2010). 

The oral bacterium, P. gingivalis, is a major cause of periodontal disease 

(Imamura, 2003; Imamura et al., 2001; Watanabe & Frommel, 1993). As a keystone 

pathogen, P. gingivalis enhances the establishment and persistence of microbial colonies 

while also modulating the inflammatory response even when in low abundance 

(Hajishengallis et al., 2012).  Established colonies can form biofilm, are difficult to 

control, and may lead to periodontitis if untreated (Donlan, 2002). Although microbial 

colonies develop on periodontal surfaces, an access to the vascular system and entry into 

distant tissues can occur. This spread of infection may occur during routine dental 

checkups that incorporate probing of the gums, fillings, cleanings, or oral surgery. 

Routine flossing and tooth brushing can also lead to tissue and vessel microdamage, 
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permitting entry of P. gingivalis into circulatory system, which then can transport the 

bacteria to distant tissues and organs where cells can be infected (Radwan-Oczko et al., 

2014).  Several reports describe intercellular spread among gingival epithelial cells, 

vascular endothelial cells, and smooth muscle cells (Atanasova & Yilmaz, 2014; Bostanci 

& Belibasakis, 2012; Li et al., 2008; Velsko et al., 2014).  P. gingivalis bacteria and their 

DNA was found in sclerotic plaques (Figuero et al., 2011; McNicol & Israels, 2010) and 

linked periodontitis to rheumatoid arthritis (Koziel et al., 2014).  It was also suggested 

that P. gingivalis plays a role in development and progression of orodigestive cancers 

(Atanasova & Yilmaz, 2014) in general and in oral squamous cell carcinoma (Katz et al., 

2011; Nagy et al., 1998) in particular.  These studies suggest that control of P. gingivalis 

infection may improve oral health and is likely to prevent a variety of other regional and 

systemic diseases.  

Current treatment approaches for periodontal disease include surgical and non-

surgical scaling and root planning, antibiotic use and mechanical debridement, which are 

accomplished via regular maintenance dental care (Axelsson & Lindhe, 1981; Slots & 

Ting, 2002; Sweeting et al., 2008). Scaling and root planing can significantly disrupt the 

microbiota in the periodontal pocket and, combined with regular maintenance and good 

oral hygiene, may significantly reduce periodontal pocket formation (Mousques et al, 

1980; Axelsson & Lindhe, 1981).  While such care can reduce the presence of P. 

gingivalis and improve gum health (Sbordone, et al., 1990; Deas, & Mealey, 2010) it 

does not necessarily eradicate the microorganism, because P. gingivalis may “hide” in 

deep pockets, invade adjacent periodontal tissue and establish itself on root cementum 

(Deas & Mealey, 2010).  Antibiotics can inhibit or kill some microorganisms that 
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combined treatment of scaling, root planing, and mechanical debridement cannot, 

especially because the chemicals can reach places where dental instruments do not.  

Indiscriminate use of antibiotics, however, may be more harmful than beneficial, even for 

newer antibiotics (Franci et al., 2015).  

Microbial antibiotic resistance is becoming an increasing health problem.  

Bacterial isolates, even from children who did not receive regular oral/dental health 

check-ups and preventive care, had some antibiotic-resistant genes (Sanai et al., 2002).  

Apparently, all periodontal patients do not benefit from antibiotic therapy, and some adult 

patients with stable periodontitis and/or gingivitis get little to no benefit from it (Kapoor 

et al., 2012). However, when antibiotics are effective, they can reach regions that 

physical treatments cannot, including oral mucosa and vasculature (Slots & Ting, 2002). 

Local antibiotic application has also been proposed for better targeting and higher dosage 

delivery (Aljateeli et al., 2013; Nair & Anoop, 2012). Systemically administered 

antibiotics penetrate cells and distant tissues (Gerits et al., 2017).  

Antibiotic resistance is a growing concern for P. gingivalis infections. On 

average, 20% of P. gingivalis isolates from patients with periodontitis are resistant to 

amoxicillin, clindamycin, metronidazole, penicillin and tetracycline (Ardila et al., 2010; 

van Winkelhoff et al., 2000).  Antibacterial resistance, along with a variety of bacterial 

adaptive mechanisms, make biofilm removal difficult.  As a result, new treatment options 

are needed to address oral infections and prevent biofilm formation (Stewart, 2002; 

Sweeny et al., 2004).  

 A variety of non-conventional treatments for P. gingivalis oral infections have 

been proposed including: inhibitors of bacterial quorum sensing, antimicrobial peptides, 
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plant-derived antibacterial agents, sugar alcohols and antibacterial coatings (Gerits, et al., 

2017).  Local drug delivery systems include examples such as: tetracycline-HCl with an 

ethylene/vinyl acetate copolymer periodontal fiber, doxycycline hyclate with a gel 

delivery system, and minocycline-HCl microspheres (Walker & Karpinia, 2002). 

Application of nanomaterials as therapeutic delivery agents may provide additional 

alternatives for prevention and control of periodontal disease.  These materials include 

polymeric nanoparticles, nanofibers, quantum dots, liposomes, and 

nanocomposites/nanogels (Garg et al., 2018; Narang & Narang, 2015).   

Compared to traditional antibiotics, nanomaterials offer numerous advantages 

such as: reduced toxicity, broad-spectrum application, low cost, and reduced likelihood of 

bacterial resistance (Cheng et al., 2015; Gurunathan et al., 2014; Lara et al., 2011; Pal, 

Tak, & Song, 2015; Vadlapudi & Kaladhar, 2014).  Current efforts are focused on drug 

delivery to the site of persistent infection in periodontal pocket.  Drug delivery 

improvements include: prolonged drug release using bioadhesive polymers, increased 

intrapocket drug penetration, and multiple drug loading via delivery systems using 

nanoparticles or hydrogels (Aminu & Toh, 2017).  Several formulations of hydrogels and 

nanoparticles are already used (Hamidi et al., 2008).  

When used together, debridement, topical chemical therapies, and antibiotics have 

the potential to control periodontal pathogens, including P. gingivalis, which is resistant 

to some antimicrobials (Slots & Ting, 2002).  However, the best approach to control P. 

gingivalis is a combination of respective periodontal surgery, systemic antibiotic therapy, 

and good oral hygiene (Slots & Ting, 2002).  Additionally, new and improved 
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nanomaterials, such as metallic nanoparticles, may provide the infection control that 

overcomes oral bacterial infections.  

Metallic nanoparticles are potentially useful as dental materials in fillings and 

restorations, or in toothpaste or hydrogels to control infection, and for endodontics, 

implant dentistry and periodontology (Bapat et al., 2018).  Use of silver has a long 

history, being the most widely used and studied antibacterial nanometal.  Silver metal has 

broad antibacterial properties (Dhanalakshmi et al., 2013; Maillard & Hartemann, 2013; 

Sotiriou & Pratsinis, 2010; Swathy et al., 2014), and silver nanoparticles are effective 

antibiotics (Franci et al., 2015; Rai et al., 2014; Rai et al., 2009). They are active against 

drug-resistant bacteria (Smekalova et al., 2016; Amirulhusni et al., 2012), non-drug-

resistant microbes (Amirulhusni et al., 2012; Markowska et al., 2013; Radzig et al., 2013; 

Xinping et al., 2011), Gram-positive and Gram-negative bacteria (Amato et al., 2011; 

Bondarenko et al., 2013; Gurunathan et al., 2014; Mohanty et al., 2012; Panáček et al., 

2006; Taglietti et al., 2012), and free-living or biofilm integrated bacteria (Gurunathan et 

al., 2014; Markowska et al., 2013; Ouay et al., 2015; Qin et al., 2014; Velázquez-

Velázquez et al., 2015). Silver nanoparticles also have anti-inflammatory (Kemp et al., 

2009; Murphy et al., 2015) and wound healing properties (Orlowski et al., 2018; Ahmadi 

& Adibhesami, 2017; Akila & Nanda, 2012; Gunasekaran et al., 2012; You et al., 2017).  

 Silver ion (Ag+) release is suggested as the major reason for the broad 

antimicrobial activity of silver, especially for nanoparticles smaller than 10 nm 

(Bartłomiejczyk et al., 2013; Dakal et al., 2016; Durán et al., 2016; Franci et al., 2015; 

Swathy et al., 2014).  For nanoparticles larger than 10 nm, Ag+ release and physical 

contact play comparable roles (Bondarenko et al., 2013; Sotiriou & Pratsinis, 2010). 
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Although it is not clear how Ag+ works to kill bacteria, suggested mechanisms of action 

include destruction of the bacterial cell wall, disruption of cellular processes, and 

oxidative stress (Bapat et al., 2018; Garcia-Contreras et al., 2011). Ag+ release and 

availability depend on the pH, oxidative environment, presence of sequestering ligands, 

agitation, temperature, and on the size and composition of nanoparticles (Alqadi et al., 

2014; Amirjani et al., 2015; Anigol et al., 2017; Fleitas-Salazar et al., 2017; Jiang et al., 

2011; Liu et al., 2017). This suggests that the environment into which the nanoparticles 

are placed has a significant contributing role toward nanoparticle efficacy and needs to be 

taken into account.  

 Despite the interest in silver nanoparticles, their toxicity towards eukaryotic cells 

is still poorly characterized. This will need to be corrected if they are to have medical use 

as antibiotics in humans. There are ways to control the toxicity of silver nanoparticles, 

including post-synthesis surface modifications. This approach can enhance antibiotic 

efficacy, improve biocompatibility and minimize undesirable outcomes (Kora & Rastogi, 

2013; Liu et al., 2014; Yang et al., 2012; Chung et al., 2008; Shawcross et al., 2017). In 

this study, the nanoparticle surface was modified by alloying the silver seeds with gold. 

We chose this method because previous studies demonstrated that the antibacterial and 

anti-inflammatory characteristics of nanoparticles can be tuned by varying the ratio of 

silver nanoparticles to gold nanoparticles, or by varying the composition of silver-gold 

bimetallic nanoparticles (Bilous et al., 2018).  Additionally, some silver-gold alloy 

nanoparticles exhibited better ion release control, providing improved antibacterial 

activity (Li et al, 2010; Grade et al., 2014; Padmos et al., 2015; Ristig et al., 2015). 
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Nanoparticles can be delivered in various forms, but colloidal suspensions have 

advantages over gels or polymers because suspended nanoparticles provide a larger 

surface area for microbes and Ag+ to interact. Colloidal suspensions can also enter into 

crevices and irregular spaces where microbes may hide.  Some silver-gold dental 

products have entered the market, for example the biocompatible Nanocare Gold®, a 

disinfectant for the periodontal cavity/tooth before restoration (Mackiewicz et al., 2015). 

As this nanotechnology approach is further developed, the number of products for 

medicine and dentistry will likely increase.  

While bacterial infections on tooth surfaces generally form biofilms, effectiveness 

of antibiotics is tested using primarily planktonic cultures for minimal inhibitory and 

bactericidal studies (Larsen, 2002).  Antibiotics are promising against P. gingivalis, but 

questions remain about continued effectiveness of these treatments (Japoni et al., 2011; 

Jaffin, 2011; Larsen, 2002; Herrera et al., 2010).  Novel treatment methods are needed, 

that can clear oral biofilm and systemic infections, but these methods need adequate 

characterization so they can be correctly applied. The requirements include 

control/eradication of infection without (i) increasing the burden of antibiotic resistance, 

(ii) having serious but common side effects that outweigh the benefits, or (iii) toxicity to 

host cells.  Nanomaterial based antimicrobials used alone, or in combination with 

conventional antimicrobials, are promising for hard to treat microbial infections.  

However, their use is contingent on fuller characterization of the mechanisms of action 

and the bacteriostatic and bactericidal levels.  

In this study, the working hypothesis is that 20 nm silver-gold bimetallic 

nanoparticles have improved antibacterial activity over silver nanoparticles.  It was 
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previously demonstrated that silver-gold bimetallic nanoparticles had controlled release 

of Ag+ that sequestered on the nanoparticle surface because of the difference in the redox 

potentials between Ag (~0.8 V) and Au3+ (~1.5V) (Ramos et al., 2011; Xia et al., 2013; 

Zhang et al., 2007).  Furthermore, adjusting the Ag/Au bimetallic nanoparticle alloy 

composition ratio provided further control of the rate of Ag+ release for antimicrobial 

activity (Reidy et al., 2013).  Adding a capping agent can also enhance biocompatibility 

and stability in physiological media (Mao et al., 2009; Yildirim et al., 2013).  

Pluronic polymers are common capping agents (Pitto-Barry & Barry, 2014).  We 

used Pluronic® F127 (typical composition PEO99-PPO67-PEO99), a hydrophilic non-ionic 

surfactant polyol.  Its thermo-responsive properties are derived from its chemical 

structure (Fakhari et al., 2017; Giuliano et al., 2018) and make it a suitable capping agent 

for nanomaterials in manufacture of medical equipment (Mao et al., 2009), and in drug 

synthesis and delivery (Basak & Bandyopadhyay, 2013; Bodratti & Alexandridis, 2018; 

Callan et al., 2017; Soni & Yadav, 2014).  Moreover, Pluronic F127 is approved by the 

FDA for use in various forms (U.S. Food & Drug Administration, 2011) in clinical 

applications and to enhance biocompatibility.  In spite of this, there is little information 

about Pluronic F127 toxicity studies (Cosmetic Ingredient Review Expert Panel, 2008).  

3.2.1  The Rationale for this Study 

The microenvironment of an active infection is one of oxidative stress ranging 

from sub-inhibitory to inhibitory against planktonic bacteria. In this study, an oxidative 

stress environment is examined, from sub-inhibitory (0.1 mM H2O2) to inhibitory (0.25 

mM H2O2) conditions, to determine the effectiveness of the silver and bimetallic 

nanoparticles in this environment.  Bimetallic nanoparticles with higher gold content are 
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expected to be more effective inhibitors of bacterial growth, presumably due to better 

control of Ag+ release.  Furthermore, the nanoparticles would be activated under 

oxidative conditions.  Smaller bimetallic nanoparticle are expected to have higher H2O2 

induced activation, due to their higher surface to volume ratio. 

3.2.2  Scope of this study 

In order to determine the antibacterial effects of single size silver and silver-gold 

bimetallic nanoparticles with varying gold content, 20 nm silver and silver-gold 

nanoparticles were prepared with gold composition ranging 0–20%.  The antimicrobial 

activity of these nanoparticles was evaluated on planktonic P. gingivalis by measuring 

the reduction in the growth of treated bacterial culture, measuring the optical density of 

the culture at 600 nm (OD600), following growth time course over 0–28 hours, under 

inhibitory (0.25 mM H2O2) or sub-inhibitory (0.10 mM H2O2) oxidative environments. 

Flow cytometrywas also used as an alternative method for P. gingivalis bacterial 

quantification, and to evaluate viabilities of nanoparticle-treated cultures.  
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3.2.3  Objective(s) of this Study 

Objective: To determine the effectiveness of nanoparticles to enhance the 

antimicrobial effect of hydrogen peroxide against P. gingivalis.  Aim one:  To determine 

the reduction in bacterial growth, by measuring optical densities (600 nm) of bacterial 

cultures following incubation with specific nanoparticle concentrations under varying 

oxidizing conditions of 0.0–0.25 mM H2O2.  Aim two:  To assess flow cytometry as a 

tool in determining P. gingivalis viability following treatment with nanoparticles. 

3.3  Materials and Methods 

3.3.1  Reagents 

Ammonium hydroxide (28-30%), sodium hydroxide (98%), D-maltose (99%), 

silver nitrate (99%), gold (III) chloride hydrate (HAuCl4.3H2O; 99.999% trace metals 

basis), Pluronic F-127 (EO100PO65EO100, MW  12500; batch number 038K0113) and 

reduced glutathione reagents were used as received (Sigma-Aldrich, USA). Milli-Q water 

(Millipore) was used in all experiments. 

3.3.2  Bacterial Cultures 

  The laboratory of Dr. Hansel Fletcher of Loma Linda University generously 

provided all P. gingivalis W83 used in this study. P. gingivalis will be referred to as W83 

from this point in this chapter.  

3.3.3  Maltose Method of Nanoparticle Synthesis 

Glutathione-capped nanoparticles were synthesized at room temperature by the 

reduction of AgNO3 using maltose in an alkaline medium, as described previously 

(Holden et al., 2014).  A suspension of silver nanoparticles was adjusted to an absorbance 
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of 10, at 400 nm, using 2% Pluronic F-127. Bimetallic nanoparticles were synthesized 

from silver nanoparticle seeds, by the galvanic replacement reaction between HAuCl4 

(0.1 M; 0 - 25L) and silver nanoparticle seeds (10 mL), to make 3% gold (BM1) and 

16% gold (BM2) bimetallic nanoparticles.  The solution of 0.1 M HAuCl4, which was 

added to the silver nanoparticle seeds, was brought up to a final concentration of 0.025 

mM or 0.15 mM to make BM1 or BM2, respectively.  Upon addition, the solution was 

mixed and incubated for 30 minutes at room temperature.  Then, the samples were 

washed by centrifugation (10,000g, 10 minutes).  Ag, BM1 and BM2 solutions were 

adjusted to an ultraviolet-visible (UV-vis) absorbance of 10, at 400 nm, by diluting with 

2% Pluronic F127.  Nanoparticles were characterized using UV-vis spectrometry, 

dynamic light scattering (DLS), atomic force microscopy (AFM), scanning electron 

microscopy with energy dispersive spectroscopy (EDS), transmission electron 

microscopy (TEM) and microwave plasma-atomic emission spectroscopy (MP-AES).  

All preparations were stored in black microcentrifuge tubes before use.  

3.3.4  Culture Media and Agar Plates 

   W83 growth media was prepared as follows.  Brain heart infusion (BHI) media 

was supplemented with yeast extract (0.5%), vitamin K (0.5 g/mL), hemin (5g/mL), 

and cysteine (0.1%).  BHI agar plates were made by adding agar (2% w/v) during the 

preparation of BHI media, autoclaved, cooled in a water bath to 55°C, and poured near a 

flame to prevent agar contamination. BHI broth and agar plates were stored at 37°C in an 

anaerobic chamber (10% H2, 10% CO2 and 80% N2) until use. 
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3.3.5  W83 Growth Inhibition Assay 

  To determine inhibitory effects of nanoparticles on W83 growth, pre-warmed BHI 

broth was inoculated with W83 (final concentration 0.1% v/v), which then was allowed to 

grow to OD600 of approximately 0.2.  Then, this W83 culture was incubated with 14.8 

ng/mL of nanoparticles (either Ag, BM1 or BM2) with or without sub-inhibitory 

hydrogen peroxide (Table 1), in an anaerobic chamber in 10% H2, 10% CO2 and 80% N2 

at 37°C for 18 hours.  Then, the growth was assessed by measuring the scattering of the 

planktonic culture at OD600.  

 

Table 1.  Treatment Plan for W83 Cultures. BHI media was inoculated with W83 and 

treated with either Ag, BM1, or BM2 in the absence or presence of 0.10 mM H2O2. 

Untreated W83, and W83 treated with 0.20 mM H2O2, served as controls.  

 

 
Culture Sample 

 
A B C D E F G H I 

W83 + + + + + + + + + 

Ag - + - - - - + - - 

BM1 - - + - - - - + - 

BM2 - - - + - - - - + 

0.10 mM H2O2 - - - - + - + + + 

0.25 mM H2O2 - - - - - + - - - 

 
 

 

  All cultures in media and on agar plates were grown in an anaerobic chamber in 

10% H2, 10% CO2 and 80% N2 at 37°C.  A culture of W83 was grown overnight by 

inoculating 10 mL of fresh BHI broth with 200 µL of growing, exponential phase W83. 
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Fresh BHI (20 mL) was added to a 40 mL Falcon tube and inoculated with an overnight 

culture of W83 to a final concentration of 1% (i.e., 200 µL of W83). The OD600 of the 

culture was determined, and the culture incubated at 37ºC. Subsequent OD measurements 

were made at 6 hours, and every 2 hours thereafter, until OD600 reached 0.2.  Then culture 

was divided into eight 2 mL aliquots.  One aliquot was untreated, one was treated with 

0.25 mM H2O2, one each treated with either 0.148 ng/mL Ag, BM1 or BM2, and one 

each treated with 0.10 mM H2O2 and either Ag, BM1 or BM2 (Table 1). Total volume of 

treated W83 was 2.5 mL. The samples were incubated overnight at 38C for 16–18 hours, 

and the OD600 was measured to determine the difference in growth between the 

nanoparticle-treated and untreated cultures.  A minimum of three replicates were  

made, for each treatment, and the whole experiment was repeated at least four times.  The 

results are presented as mean absorbance and standard deviation for each treatment.  The 

treatment efficacy was evaluated with 95% confidence intervals (CI).  

3.3.6  CFU Determination of W83 Viability 

  CFU analysis was performed by separately pipetting 100 L of treated or 

untreated W83 culture onto an agar plate. Then, the culture was spread evenly on the 

plate and the plates incubated at 37-38C in an anaerobic chamber at 10% H2, 10% CO2 

and 80% N2 for 7 days, or until CFU were visible.  The CFU were counted and cell 

viability determined by calculating the Log10 reduction in bacteria.  A one-way ANOVA 

was employed to test the significance of differences in mean absorbance for the cultures 

or CFUs for treated versus untreated W83. Where appropriate, Tukey’s post-hoc multiple 

comparisons analysis was used to compare the group means of absorbance measurements 
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or CFU counts and to determine which specific treatments were significantly different. 

The Log reduction in bacterial growth was also calculated for CFU counts. 

3.3.7  W83 Viability by Atomic Force Microscopy 

  Treated and untreated W83 was imaged using AFM to validate CFU results and 

determine the physical/morphological effects of nanoparticles on bacteria.  The work was 

carried out on a multimode 8 scanning probe microscope (Bruker, Santa Barbra CA) in 

the peak force tapping (k = 0.4 Nm-1, f – 70 kHz) mode.  The samples were prepared as 

described earlier (Chapter 2).  Briefly, the surface of an 18 mm mica disk (Ted Pella, 

Redding CA) was stripped with sellotape, then rinsed with 70% ethanol and allowed to 

air dry.  The mica was silanized as follows:  a) 40 µL volume of 0.5 mM (3-

aminopropyl)triethoxysilane (APTES) (Sigma-Aldrich, USA), made up in ethanol, was 

pipetted onto a clean parafilm strip, b) the pre-cleaned mica was placed clean-surface-

down on this APTES solution, and c) left to sit for 30-60 minutes. After silanization, the 

excess APTES was washed off with filtered deionized water.  Treated or untreated W83 

was prepared for AFM imaging as follows: 0.5 mL of each sample was washed at 5000 

rcf for 8 minutes, after which the supernatant was discarded, and the pellet re-suspended 

in 1 mL of filtered Milli-Q® water.  A further ten-fold dilution of each sample was 

carried out in Milli-Q®.  For imaging, 20 µL of diluted W83 sample was pipetted onto a 

clean parafilm surface and the mica disk was placed silanized side down, on the sample 

for 45 – 60 min at room temperature.  Then, the mica was rinsed with filtered Milli-Q® 

water and air-dried. The sample was imaged by AFM and the images processed using 

Gwyddion analysis tool (http://gwyddion.net). 

 

http://gwyddion.net/
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3.3.8  W83 Viability by Flow Cytometry 

 Flow cytometry was used as a rapid and specific tool to evaluate the viability of 

nanoparticle-treated W83.  Pre-warmed BHI broth was inoculated with overnight grown 

W83 (final concentration: 0.1% v/v).  Then the culture was allowed to grow to OD600 of 

approximately 0.2. This W83 culture was then incubated with 14.8 ng/mL nanoparticles 

(either Ag, BM1 or BM2), with or without sub-inhibitory [H2O2] (Table 1), in an 

anaerobic chamber under 10% H2, 10% CO2 and 80% N2 at 37°C for at least 18 hours.  

To test the efficacy of the flow cytometry for distinguishing between live and 

killed bacteria, four volumes of 1 mL each of bacterial culture was washed at 5000 rcf for 

8 minutes, and the supernatant was discarded. Then, the pellet was suspended either in 1 

mL of 0.85% NaCl or in 70% isopropyl alcohol (live or dead culture, respectively) and 

incubated for 30 minutes. The samples were washed at 5000 rcf for 8 minutes to remove 

NaCl or isopropyl alcohol and the pellets re-suspended in 0.85% NaCl.  Volumes (1 mL) 

of live, dead, and a 1:1 mixture of live and dead bacteria were prepared for flow 

cytometric analysis.  

Two methods incorporating different fluorescent dyes were used to distinguish 

between live and dead W83.  For the first method, propidium iodide (PI) and SYTO9 

were used. The W83 culture samples were diluted 1:99 in 1 x PBS and either unstained or 

stained alternatively with SYTO9, PI, or SYTO9 and PI. Forward scatter (FSC) and side 

scatter (SSC) properties were used to acquire 20,000 – 30,000 events and to gate for 

events of interest.  W83 was differentiated from other cells and debris and sellected using 

FSC vs SSC.  Viable cells were distinguished from killed cells by gating for SYTO9 vs 

PI.  For the second method, Violet Annexin V/Dead Cell Apoptosis Kit was used with 
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Pacific Blue Annexin V/SYTOX AADvanced Apoptosis Kit for Flow Cytometry, 

(Invitrogen Molecular Probes from ThermoFisher) to stain live, dead or a mixture of live 

and dead W83 suspensions.  All assays were done in triplicate and the experiment 

repeated at least three times.  Flow cytometry results are presented as dot plots of mean 

fluorescent intensity (MFI). 

Nanoparticles were synthesized and characterized by UV-vis spectrometry, DLS, 

AFM, and TEM.  Studied nanoparticles were composed from silver (Ag), bimetallic 

silver and gold alloy (BM1) with 3% gold, and bimetallic silver and gold alloy (BM2) 

with 16% gold.  Pluronic F127 from Sigma Aldrich was used to prepare 0–5% w/v 

solutions in filtered Milli-Q® water, and pH was adjusted to physiological range with 1M 

NaOH.  Since Pluronic F127 contained 100 ppm Butylated hydroxytoluene (BHT) as a 

preservative, a control solution of BHT in filtered Milli-Q® water was also prepared in 

the same concentrations contained in the 0–5% w/v Pluronic F127. 

3.4  Results 

During active infection, host cells release reactive oxygen species, including 

H2O2, as part of their antimicrobial defense mechanism. This study looked at the 

effectiveness of silver and silver-gold bimetallic nanoparticles as enhancers of this 

antimicrobial defense against planktonic W83.  Viability of W83 was determined by 

conventional microbiological methods using OD measurements and CFU counts.  

Usefulness of flow cytometry in determining W83 viability was also assessed following 

treatment with nanoparticles in an oxidatively stressed environment.   

The synergistic effects of H2O2 and nanoparticles are shown in Figure 1.  
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Growth of W83 was measured by spectrophotometry using overnight culture treated 

either with nanoparticles (panel (a)) or with nanoparticles in an oxidative stress 

environment due to added 0.10 mM H2O2 (panel (b)).   The top panel (a) shows that 15 

ng/mL NPs or 0.1 mM H2O2 do not inhibit W83 growth.  In contrast, panel (b) shows the 

conditions needed for growth inhibition of W83.  The inhibitory effect is progressively 

increased in the presence of 0.1 mM H2O2 with Ag  BM1 < BM2.  BM2, in the presence 

of subinhibitory 0.1 mM H2O2, had equivalent inhibitory activity to 0.25 mM H2O2.  

Without nanoparticles, sub-inhibitory concentrations 0.1 mM H2O2 did not impair W83 

growth.  However, one-way ANOVA analysis of the OD600, following incubation of W83 

with nanoparticles with 0.1 mM H2O2, demonstrated significant inhibition of W83 growth 

by all nanoparticles, F(4, 14) = 74, p < 0.01.  Post-hoc Tukey’s multiple comparisons 

were used to determine which specific treatment groups had significant differences 

(Table 2).  BM2 antibacterial activity was (1) as potent as 0.25 mM H2O2, while (2) Ag 

and BM1 were similarly effective. 
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Table 2. Tukey's multiple comparisons test of nanoparticle treated W83 in 0.1 mM 

H2O2. All nanoparticles significantly inhibit W83 growth compared to untreated W83 

culture. There is no significant difference between activities of  Ag and BM1, BM2 and 

0.25 mM H2O2, suggesting similar inhibitory action against W83.  BM2 were the most 

potent nanoparticles. 

 

 
Compared Samples Mean 

Diff. 

95.0% CI of 

diff. 

Significant? Summary Adjusted 

P-Value 

W83 vs. Ag+W83 0.36 0.24 to 0.47 Yes **** <0.0001 

W83 vs. BM1+W83 0.48 0.36 to 0.61 Yes **** <0.0001 

W83 vs. BM2+W83 0.77 0.66 to 0.89 Yes **** <0.0001 

W83 vs. 0.25 mM H2O2+W83 0.78 0.66 to 0.89 Yes **** <0.0001 

Ag+W83 vs. BM1+W83 0.12 0.00 to 0.25 No ns 0.0583 

Ag+W83 vs. BM2+W83 0.41 0.30 to 0.53 Yes **** <0.0001 

Ag+W83 vs. 0.25 mM H2O2+W83 0.42 0.30 to 0.53 Yes **** <0.0001 

BM1+W83 vs. BM2+W83 0.29 0.17 to 0.42 Yes **** <0.0001 

BM1+W83 vs. 0.25 mM H2O2+W83 0.30 0.17 to 0.42 Yes **** <0.0001 

BM2+W83 vs. 0.25 mM H2O2+W83 0.00 -0.11 to 0.12 No ns 0.9996 
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Figure 1. Synergistic effects of nanoparticles and H2O2 on inhibition of W83 growth 

under anaerobic conditions. W83 cultures, at OD600 of 0.2, were treated with (a) nothing, 

(b) nanoparticles with subinhibitory 0.10 mM H2O2, or (c) inhibitory 0.25 mM H2O2, while 

grown for 18 hrs at 38°C.  Nanoparticle concentrations were 14.8 ng/mL of 20 nm silver 

(Ag), BM1, or BM2.  OD600 was measured at 18hrs and corrected for scattering of 

nanoparticles. No inhibition occurred in the absence of 0.1 mM H2O2 (panel (a)).  

Significant growth inhibition occurred once 0.1 mM H2O2 was added to the culture exposed 

to Ag, BM1 or BM2 nanoparticles. BM2 inhibited growth comparable to that of 0.25 mM 

H2O2 suggesting it is a potent antimicrobial if in oxidative environment. 
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CFUs were measured to determine if W83 inhibition, by NPs in the presence of 

0.1 mM H2O2, was bactericidal or bacteriostatic.  This was done by plating 100 L of 

nanoparticle-treated culture on BHI agar plates, followed by incubation for 7 days at 38 

ºC until CFU were observed.  All treated samples had a reduction in CFUs of at least 

50%, but BM2 achieved a reduction of 70% (Table 3). The comparable effects of Ag and 

BM1 may be attributed to the low amount of gold in BM1.  Growth inhibition by 

nanoparticles was significant for Ag and BM1 (p < 0.05), and more highly significant for 

BM2 (p < 0.001). There was also significant inhibitory capacity of BM2 compared to 

BM1 (p < 0.05).  

 

W83 0.25 mM H2O2 Ag BM1 BM2
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Figure 2. Colony-forming units (CFU) from nanoparticle-treated or untreated W83. 

Overnight culture of W83 was grown to an OD600 of 0.2 and treated with 14.8 ng/mL of 20 

nm silver (Ag), BM1, or BM2 nanoparticles and 0.1 mM H2O2, followed by incubation at 

38 °C for 18 hours. Growth inhibition of treated W83 compared to untreated W83 was 

significant for Ag and BM1 (p < 0.05) and highly significant for BM2 (p < 0.001), based 

on a one-way analysis of variance.   
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There was no inhibition of nanoparticle treated W83 in the absence of 0.10 mM H2O2 as 

the oxidizer.  CFU analysis of these cultures showed no difference in viability when 

nanoparticle-treated cultures were compared to non-treated W83.  

 

Table 3. Colony-forming units (CFU) from treated and untreated W83.  W83 was 

untreated, or treated with 0.25 mM H2O2, or 14.8 ng/mL silver (Ag), BM1, or BM2 for 18 

hours.  Then, 100 L of the cultures were plated and incubated at 37°C until CFUs were 

observed.  BM2 caused at least a 10-fold reduction in CFU. Growth inhibition was 47, 42 

and 70 % for Ag, BM1, and BM2, respectively. 

 

Treatment Mean CFU (SD) Growth (+/- %) 

W83 244 (7) - 

0.25 mM H2O2 0 -100 

14.8 ng/mL silver 131 (10) -47 

14.8 ng/mL BM1 143 (2) -42 

14.8 ng/mL BM2 75 (11) -70 

 

 
The CFU assay results were validated using AFM, which provided information of 

structural changes that may result from incubating W83 with nanoparticles in the 

presence of 0.10 mM H2O2.  Extensive W83 membrane damage was observed, consistent 

with reduced viability.  Furthermore, treated W83 tended to clump together (Figure 3b 

and 3c), while untreated W83 (Figure 3a) did not.  The cause of this clumping is unclear, 

but it could be a protective response. 
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Figure 3. AFM analysis of nanoparticle-treated W83.  The W83 was (a) untreated or 

treated with 0.1 mM H2O2 and (b) Ag or (c) BM2 over 18 hrs.  Samples were washed, 

diluted and imaged by AFM.  Images show that untreated W83 are uniform and intact 

whereas Ag and BM2 treated W83 had ruptured cell membranes.  

  

 

a)    

b)    

c)    
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 Validation of the CFU and AFM data was attempted by determining bacterial cell 

viability using flow cytometry analysis.  Flow cytometry was first evaluated to see if it 

could distinguish between live and dead W83 by comparing an overnight culture of the 

bacteria with isopropanol-killed culture. First, a comparison of observed events when 

PBS was run alone, versus when W83 suspended in PBS was run, allowed distinguishing 

between noise in the test and the real population of W83.  A gate was set to encompass all 

the recognized W83.  Both live and killed bacteria samples were labeled with membrane-

permeable SYTO9 as well ash membrane-impermeable propidium iodide (PI).  The 

results are shown in Figure 4.   Following incubation with 70% isopropyl alcohol the 

bacterial cellular membrane is damaged allowing propidium iodide to enter the cell.  

Propidium iodide is expected to displace SYTO9 from the nucleic acid due to its higher 

affinity.  Using forward and side scatter, the dead cells could hardly be distinguished 

from the live cells (Figure 4(c)), when the cells were mixed in a 50:50 ratio (Figure 4(b)). 

Although there was an observable change in shape between Figure 4 (a) and (c), this was 

not sufficient to clearly correlate with either live or dead W83.  However, using the 

differential nucleic acid dyes, the live cells (Figure 4(d)) were distinguishable from dead 

cells (Figure 4(f)) even when combined in a 50:50 mixture (Figure 4(e)).  The two 

populations can readily be distinguished with the live population above the dead 

population (Figure 4(d)).  In conclusion, viable and non-viable W83 can be distinguished 

using flow cytometry when bacteria were killed using 70% isopropyl alcohol.  
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Figure 4. Live/Dead assay of alcohol-treated W83. The W83 culture, in exponential 

growth phase, was washed to remove BHI and suspended either in 0.85% NaCl (live cells) 

or 70% isopropyl alcohol (dead cells) and incubated for 30 min at room temperature.  W83 

was then centrifuged at 5000 rcf for 8 min and re-suspended in 0.85% NaCl.  A 1:1 mixture 

of live and dead cells was prepared.  Live, live/dead, or dead cells were incubated with 

SYTO9 and Propidium Iodide for 15 minutes in the dark at 25 C.  Samples were diluted 

and assessed by flow cytometry analysis. Forward and side scatter were uninformative (a) 

to (c).  SYTO9-propidium iodide gating distinguished between (d) live and (f) killed cells.  

The 1:1 (live:dead) mixture had two clearly distinguishable populations (e).  

 

  After determining that the flow cytometry method using Syto9 and PI could 

distinguish between populations of live cells and killed (dead) cells, the method was 

employed to distinguish between nanoparticle-treated and untreated W83.  The result, 

presented in Figure 5, suggests that the method was not suitable to distinguish between 
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the live and dead bacteria when W83 culture was treated by nanoparticles or 0.25 mM 

H2O2  The untreated W83 bacterial population had similar fluorescence and scatter 

distribution patterns with those of nanoparticle treated or H2O2 killed cultures. This 

analysis was attempted three different times with different cultures each time, yielding 

similar comparable results.  

 

 

Figure 5. Live/dead assay of nanoparticle-treated W83.  (a) Untreated W83, (b) 

Nanoparticle-treated W83, and (c) 0.25 mM H2O2-treated W83 cultures were grown for 18 

hours then centrifuged at 5000 rcf for 8 min and suspended in 0.85% NaCl.  Samples were 

stained with SYTO9 and propidium iodide (PI) and incubated for 15 minutes in the dark at 

25 °C.  No clear distinction was observed between different treatments.  Two populations 

(i) and (ii) were observed and gated off but there was no clear distinction between the three 

samples to help differentiate dead cells from cells that were alive. 

 

3.5  Discussion 

Antibacterial activity of silver nanoparticles was reported before (Swathy et al., 

2014).  However, their use for antibiotic purposes has been limited because of risks of 

cytotoxicity.  Silver-gold bimetallic nanoparticles retain antibacterial activity, but can be 

tuned to reduce cytotoxicity and enhance biocompatibility (Padmos et al., 2015). 
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Synthesized nanoparticles, whether Ag, BM1 (3% gold) or BM2 (16% gold), had no 

observable antibacterial function of their own toward W83.  In the presence of sub-

inhibitory 0.10 mM H2O2, however, all nanoparticles had significant antibacterial 

activity.  This increased activity was mediated by Ag+ release, which was caused by the 

oxidizing agent H2O2.  In turn, the released Ag+ caused bacterial growth inhibition by 

several mechanisms including:  a) blocking DNA transcription, b) interruption of 

bacterial cell respiration, c) inactivation of proteins and d) disruption of adenosine 

triphosphate synthesis (Ju-nam, & Lead, 2008).  The presence of gold in bimetallic 

nanoparticles modulates Ag+ release from these nanoparticles (Alissawi et al., 2013; 

Sotiriou et al., 2014).  Previous studies reported that addition of gold to silver 

nanoparticles can improve biocompatibility of the bimetallic alloy, but at the expense of 

reduced antibacterial activity (Padmos et al., 2015).  In contrast, our results demonstrated 

enhanced antibacterial activity with increasing gold content from 3% in BM1 to 16% in 

BM2.  BM2 had significantly higher antibacterial activity than BM1, and was as effective 

for inhibition of bacterial growth as 0.25 mM H2O2.   

An active bacterial infection is associated with an oxidizing environment due to a 

number of immune responses.  During an inflammatory response, in the periodontal 

pocket, host cells produce and release hydrogen peroxide and other reactive oxygen 

species in an attempt to control the infection (Henry, McKenzie et al., 2012).  If 

nanoparticles are administered as a local antibiotic, they would be activated under these 

circumstances.  This suggests that nanoparticles work in a unique self-modulating manner 

with maximum efficacy where most needed.  Additionally, the level of available H2O2 on 

its own may not be sufficient to kill the bacteria.  The nanoparticles, however, can 
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enhance bacterial killing, in the presence of subinhibitory levels of H2O2, by mechanisms 

not yet fully described. 

BM2 nanoparticles were somewhat smaller than BM1 or Ag (Chapter 2, Figure 

5).  Smaller nanoparticles tend to have higher antibacterial activity for several reasons 

including higher likelihood of entering bacterial cells (Barar, 2015) and disrupting cell 

surface events as well as internal biochemical pathways (Duran et al., 2016). 

Due to size differences, the concentration of solutions in terms of 

nanoparticles/mL is BM2 > BM1 > Ag.  While Ag+ release is an important factor, 

nanoparticles themselves are in contact with and can adsorb to the bacterial cell.  If the 

mechanism of action is contact based, a higher concentration of nanoparticles would tend 

to deliver more antibacterial activity.  Since the observed antibacterial activity in the 

presence of hydrogen peroxide is BM2 > BM1 > Ag (Figure 1), this is consistent with 

particles/volume functional dependence, supporting a likely contact-based mechanism of 

action.  Together, the smaller size, combined with higher nanoparticle concentration of 

BM2, may provide further explanation for the higher antibacterial activity.  Imaging 

methods used for assessment of the nanoparticle activity focused on the bacteria and not 

on the localization of nanoparticles or their interactions with bacteria.  Such information 

could provide a better understanding of the mechanism of nanoparticle based bacterial 

growth inhibition, and should be added in future studies.   

The OD600 based estimates of bacterial cell viability were confirmed using CFU 

counts, which determined the numbers of viable cells in cell culture.  CFU counts, 

however, may not distinguish between cell cytotoxicity and cell growth inhibition.  Cells 

may still be viable even if they do not grow on agar plates.  This inability to distinguish 
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between stasis and cell death is a shortcoming of the CFU method.  Furthermore, the 

results in Figure 2, Table 3 suggest that nanoparticles may be bacteriostatic and not 

necessarily bactericidal.  The AFM imaging, however, demonstrated significant 

morphological disruptions (Figure 3b and 3c).  Such observations are more consistent 

with bacteria undergoing oxidative stress-related destruction, a suggested mechanism of 

nanotoxicity (Khanna et al., 2015; Wang et al., 2017).  Therefore, AFM imaging provides 

direct evidence of bacterial destruction, while CFU analysis represents an indirect 

measure of viability.  

Flow cytometry is a well established technique in immunology, but more recently 

has been applied also in microbiology.  Flow cytometry can provide fairly rapid results 

for antibiotic studies with cell cultures.  In contrast, the CFU method is labor-intensive, 

routinely takes a long time to complete, and is prone to contamination.  Early reports of 

flow cytometry use in microbiology are from the 1970s (Hutter & Eipel, 1979).  

Development of a monoclonal antibody (mAb) OMR-Bg1E against P. gingivalis 

lipopolysaccharide was helpful to identify W83 in co-culture with other bacteria (Kamiya 

et al., 1994).  Later studies reported the use of flow cytometry to determine the adherence 

of FITC-labeled P. gingivalis to oral epithelial cells (Pathirana et al., 2007).  Despite 

these attempts at using flow cytometry with W83, however, there are still no reports using 

flow cytometry to determine the viability of W83 in response to various treatments.  The 

manufacturer of a kit, for discriminating between live and dead bacteria by flow 

cytometry, reported the use of this LIVE/DEAD BacLight kit (L34856) on Gram-positive 

Staphylococcus aureus and Gram-negative Escherichia coli (Thermo Fisher Scientific, 

2019).  Similarly, Berney et al. (2007) reported that they were able to discriminate 
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between live and dead E. coli, S. enterica serovar Typhimurim, and S. flexneri using this 

kit.  However, our attempts to use flow cytometry to confirm the results from OD 

measurement, AFM imaging and CFU for P. gingivalis W83 were unsuccessful.  We 

found that the Live/DeadTM BacLightTM Bacterial Viability and Counting Kit could not 

distinguish between live and dead treated W83 (Figure 5).  This was in spite of earlier 

successful W83 viability tests, using the kit and protocol per manufacturer’s 

recommendations, by killing W83 with 70% isopropyl alcohol (Figure 4).   

One explanation for this observed difficulty in distinguishing between live and 

dead W83 could be that NPs interfere with the fluorescence-based test.  Zucker, et al. 

(2013) reported interference by silver nanoparticles in their study of PVP or citrate-

coated silver nanoparticle uptake into cells of a human-derived retinal pigment epithelial 

cell line.  Of the three sizes they used (10, 50, and 70 nm), both the 50 and 70 nm 

nanoparticles caused increased far-red fluorescence in flow cytometric analysis in a dose-

dependent manner, but 10 nm nanoparticles did not.  While the reported far-red 

fluorescence was in the range > 670 nm, the maximum emission fluorescence used here 

for SYTO9 and propidium iodide were 503 and 617 nm, respectively.  Therefore, the 

expected spillover or overlap in the emission spectra of nanoparticles and fluorescent 

dyes is likely minimal, necessitating a different explanation for the inability to distinguish 

between live and dead W83.  

Fluorescent dyes, SYTOX advanced Dead Cell Stain and Pacific Blue Annexin V 

kit were considered. These tools have been used to assess cellular apoptosis and necrosis. 

Although, apoptosis is normally not used to describe bacterial cell death, and there are 

arguments against its use for bacteria (Hacker, 2013). Tanouchi et al. (2013) reviewed 
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numerous studies indicating that programmed cell death does occur in bacteria, and that 

such deaths may even be benefitial to a multispecies biofilm (Allocati, et.al., 2015).  In 

view of such reports, it becomes reasonable to wonder if these tests for apoptosis may be 

useful in testing bacterial cell death mechanisms.  Pacific Blue is a fluorophore 

conjugated to annexin V, a human vascular anticoagulant with a high affinity for 

phosphatidylserine, which difuses from the inner to the outer leaflet of the plasma 

membrane in apoptotic cells.  The red fluorescent dye SYTOX advanced Dead Cell Stain 

is a high-affinity nucleic acid binding stain that easily penetrates cells with compromised 

plasma membranes but not healthy ones.  Repeated attempts to evaluate apoptosis (via 

Annexin-V) and/or necrosis (via SYTOX) for W83 proved unsuccessful.  No cell 

viability discrimination was observed between W83 populations stained with Annexin-V 

and SYTOX9.  Following two attempted techniques to use flow cytometry to distinguish 

between viable and dead cells without success, it was concluded that, unfortunately, the 

current assays were unsuitable for W83.  In this context, it is likely that further 

developments will be needed before flow cytometry can be used to rapidly distinguish 

between viable and dead P. gingivalis. 

3.6  Summary, Conclusions and Future Studies 

No prior reports were found about potentiation of antibiotic effects by 

nanoparticles in an oxidative stress environment.  Present study demonstrated that silver 

and silver-gold bimetallic alloy nanoparticles can serve as potentiated antibiotics in an 

oxidative stress environment, and that higher gold content increased the antibacterial 

efficacy.  Furthermore, these results differ from studies reporting that antibacterial 

activity is negatively correlated with increasing gold content in a silver-gold bimetallic 
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alloys due to incresed resistance to oxidation (Alissawi et al., 2013; Ristig et al., 2015). 

Current results suggest a potential application of nanoparticles against active 

inflammation with a developing oxidative stress environment.  While the study 

demonstrates antibacterial efficacy of silver and silver-gold bimetallic nanoparticles, it 

does not explain the mechanisms of nanoparticle action.  Nanoparticles may have a self-

regulating mechanism, which is triggered by oxidative stress in the infection 

environment.  Future studies should focus on a) the kinetics of Ag+ release in the 

presence and absence of hydrogen peroxide, and b) the characterization of the 

interactions between nanoparticles and bacteria and how these impact bacterial viability.  

Additional studies may further extend gold composition to find the optimal gold content 

for antimicrobial effect against P. gingivalis.  

Flow cytometry analysis proved unworkable at this time for validation of bacterial 

viability assays using optical density spectrometry and colony-forming unit counts.  

However, flow cytometry remains an important tool in distinguishing viable from non-

viable cells for many other eukaryotic and prokaryotic cells.  The availability of P. 

gingivalis-specific antibodies suggests the possibility of using antibody-dependent 

techniques in microbial viability assessment.  Challenges may include overlapping 

fluorescence from metallic nanoparticles and labeled bacteria.  Such an overlap may 

prevent the distinction between populations of live versus dead bacteria.  It will be 

important to develop techniques that can differentiate between nanoparticle fluorescence 

from fluorescently labeled antibodies targeting physiological or biochemical changes in 

cells in consequence to their interactions with nanoparticles. 



 

131 

Future studies may include more detailed time-course studies for nanoparticle 

treated bacterial populations over 24–48 hours, with bacterial samples assessed at 2 to 4-

hour intervals.  Furthermore, such studies could also involve avariety of imaging 

techniques over 24 to 48 hours, with the samples assessed at 2 to 4-hour intervals, to 

observe the specific interactions between nanoparticles and bacteria, with resulting 

changes in bacterial morphology and physiology.  The elucidation of the specific role of 

the oxidative environment on nanoparticle activation and surface modification, with 

particular emphasis on the Ag+ ions in solution, would be helpful as part of a time course 

study.  Imaging of nanoparticles and analysis of their physicochemical characteristics, as 

well as the changes that take place as a result of interactions with bacteria, are also of 

interest.  Such information will help to better understand the antibacterial mechanisms of 

silver-gold bimetallic alloy nanoparticles and therefore help to design better antibiotic 

nanoparticles.  
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CHAPTER FOUR 

NOVEL HEMOCOMPATIBLE SILVER-GOLD BIMETALLIC 

NANOPARTICLES 

 

Walemba, E. M., Boskovic, D. S., and Perry, C. C. 

 

 

4.1  Abstract 

 Hemocompatibility of anaerobically synthesized silver and silver-gold alloy (3 or 

16% gold) nanoparticles is assessed by determining their effect on platelet activation in 

fresh citrated human whole blood using flow cytometry.  Using nanoparticle 

concentrations ranging from 0.00167 – 16.7 ng/mL suspended in 2% (w/v) Pluronic F127 

we determined that platelet activation has a negative relationship to the concentration of 

nanoparticles.  Antibody labeling was done with anti-human peridim-chlorophyll protein 

(PerCP)-conjugated anti-CD61 specific for platelet-specific glycoproteins to isolate 

platelets and phycoerythrin (PE)-conjugated anti-CD62P to identify activated platelets. 

Nanoparticles with up to 16% gold (16.7ng/mL) did not activate platelets.  In contrast, 

Pluronic F127 activated platelets in a concentration-dependent manner between 0-5% w/v 

above baseline at values comparable to 3.0 M ADP, a known activator of platelets. 

Pluronic F127 without nanoparticles has approximately 2.5-fold the platelet activating 

function compared to Pluronic F127 with nanoparticles.  Future investigations are needed 

to fully characterize the effects of F127 on the hemostatic response.  
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4.2  Introduction 

Periodontal disease affects over 3.6 billion people making this the most common 

communicable disease worldwide (WHO, 2018). Up to 15% of adults worldwide and 

60% of Americans have periodontal disease (Rozier et al., 2017; Petersen & Ogawa, 

2005).  Periodontal disease leads to irreversible periodontal attachment loss, alveolar 

bone destruction, increased tooth mobility, and subsequent tooth loss if left untreated 

(Pihlstrom et al., 2005; Gerits et al, 2017; Hajishengalis, 2014).  Periodontal disease has 

also recently been linked to some vascular disorders (Hajishengalis et al., 2012; Olsen & 

Yilmaz, 2016; Velsko et al., 2014; Bartold & Narayanan, 2006). 

Current treatment methods for periodontal disease include surgical and non-

surgical scaling, root planning, mechanical debridement, and antibiotic use (Sweeting et 

al., 2008).  While antibiotics remain an important part of treatment, indiscriminate use of 

antibiotics may exacerbate development of antibiotic resistance which is encountered 

with increasing frequency in western nations including the United States (Franci et al., 

2015; Rams et al., 2014).  However, when effective, antibiotics can reach regions 

inaccessible by physical treatments, including oral mucosa and the vascular system (Slots 

& Ting, 2002).  Systemically administered antibiotics can access numerous physiological 

compartments including the penetration of cell membranes (Gerits et al., 2017).  Locally 

applied antibiotics may improve targeting. However, effectiveness is dependent on the 

application of correct dosage by clinicians (Aljateeli et al., 2013; Nair & Anoop, 2012).  

Together, debridement, topical chemical therapies, antibiotics, and the practice of good 

oral hygiene can potentially control even the resistant periodontal pathogens (Slots & 
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Ting, 2000). Developing new antibiotics remains a vital part of the overall objective of 

improving oral and systemic health.  

As a keystone oral pathogen, Porphyromonas gingivalis (P. gingivalis) can 

significantly influence microbial colonization and inflammation, which are important 

components of periodontal disease development (Hajishengallis, 2012).  Newer non-

conventional approaches to oral infections include quorum sensing inhibitors, 

antimicrobial peptides, plant-derived antibacterial agents, sugar alcohols and antibacterial 

coatings (Gerits, et al., 2017).  A recent addition to this field is the development of 

nanotech antimicrobials.  

Nanomaterials offer numerous advantages over traditional antibiotics including: 

reduced toxicity, broad-spectrum application, low cost, and reduced bacterial resistance 

(Gurunathan et al, 2014; Lara et al., 2011; Pal et al., 2015; Vadlapudi & Kaladhar, 2014).  

Current efforts toward infection control is focused on delivery of drugs to the periodontal 

pocket, where infection often persists.  Improvements in drug delivery may be achieved 

by a variety of strategies including: prolonged drug release using bioadhesive polymers, 

increased intrapocket drug penetration, and loading of multiple drugs into delivery 

systems made of nanoparticles and hydrogels (Aminu et al., 2017).  Hydrogel 

nanoparticle formulations are already in use and were reviewed by Hamidi et al., (2008).  

Drugs targeting bacteria at primary infection site, the periodontal pocket, are the goal for 

effective control of dental infections.  

Metallic nanoparticles offer some potential as dental materials for fillings and 

restorations, toothpaste and hydrogels, endodontics, implant dentistry, and periodontal 

care (Bapatet al., 2018).  Silver has a long history as an antibiotic.  It was the most 
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important antimicrobial agent before development of antibiotics (Alexander, 2009; 

Ebrahiminiezhad et al., 2016).  Silver metal characteristically has broad antibacterial 

properties (Dhanalakshmi et al., 2013; Maillard & Hartemann, 2013).  In this context, 

silver nanoparticles can be effective antibiotics (Franci et al., 2015; Rai et al., 2014; Rai 

et al., 2009) with activities against drug-resistant bacteria (Smekalova et al., 2016; 

Amirulhusni et al., 2012), non-resistant microbes (Amirulhusni et al., 2012; Markowska 

et al., 2013; Radzig et al., 2013; Xinping et al., 2011), Gram-positive and Gram-negative 

bacteria (Amato et al., 2011; Bondarenko et al., 2013; Gurunathan et al., 2014; Mohanty 

et al., 2012; Panáček et al., 2006; Taglietti et al., 2012), and biofilm integrated or free-

living bacteria (Gurunathan et al., 2014; Markowska et al., 2013; Ouay et al., 2015; 

Velázquez-Velázquez et al., 2015).  Silver nanoparticles also have some anti-

inflammatory (Kemp et al., 2009; Murphy et al., 2015) and wound healing properties 

(Orlowski et al., 2018; Ahmadi & Adibhesami, 2017; Akila & Nanda, 2012; Gunasekaran 

et al, 2012; Orlowski et al., 2018; You et al., 2017).  

 The major impact of silver’s broad antimicrobial activity, is due to release of Ag+ 

ions.  This is especially true for nanoparticles smaller than 10 nm (Bartłomiejczyk et al., 

2013; Dakal et al., 2016; Durán et al., 2016; Franci et al., 2015; Swathy et al., 2014).  For 

nanoparticles larger than 10 nm, Ag+ release and physical contact are equally important 

(Bondarenko et al., 2013; Sotiriou & Pratsinis, 2010).  Suggested mechanisms of Ag+ 

action include: disruption of cellular processes, destruction of the bacterial cell wall, and 

oxidative stress (Bapat et al., 2018; Garcia-Contreras et al., 2011; Bapat et al., 2018).  

The release and availability of Ag+ depends on pH, oxidative environment, presence of 

sequestering ligands, agitation, temperature, and the composition and size of 
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nanoparticles (Alqadi et al., 2014; Amirjani et al., 2015; Anigol et al., 2017; Fleitas-

Salazar et al., 2017; Jiang et al., 2011; Liu et al., 2017).  

Environmental factors can affect the Ag+ release, leading to varying amounts of 

active Ag+ ions, and to differences in scope of activity and results, produced by similar 

silver nanoparticles in particular tests.  For example, it was reported that silver 

nanoparticles activated platelets, shortening coagulation time leading to the development 

of hemostatic blood clots (Fröhlich, 2016; Guidetti et al., 2012; Jun et al., 2011; Laloy et 

al., 2014), yet other reports claimed that silver nanoparticles cause increased coagulation 

time (Bandyopadhyay et al., 2012; Fröhlich, 2016; Major et al., 2016).  Such conflicting 

reports reveal the need for precise characterization of nanoparticles and for adequate 

description of the environment they are used in. 

 Silver nanoparticles are toxic to eukaryotic cells and this poses a problem for use 

in humans (Prabhu & Poulose, 2012; Reidy et al., 2013).  However, toxicity can be 

reduced by post-synthetic surface modifications to silver nanoparticles, which can 

enhance antibiotic efficacy, improve biocompatibility and minimize undesirable 

outcomes (Kora & Rastogi, 2013; Liu et al., 2014; Yang et al., 2012; Chung et al., 2008; 

Shawcross et al., 2017).  While reducing toxicity toward animal or human host cells, the 

modifications should not significantly reduce the antibiotic effectiveness.  Two examples 

of such modifications are: a) alloying with other metals, such as gold, and b) 

coating/capping of nanoparticle surfaces with surfactant. 

 Alloying silver nanoparticles with gold can enhance their antibacterial and anti-

inflammatory characteristics.  At the same time, silver-gold bimetallic nanoparticle 

toxicity can be tuned by varying the silver to gold ratio (Bilous et al., 2018; Li et al., 
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2010).  It was reported that an exposure to 10 - 12 nm 50:50 silver-gold nanoparticles, at 

5-20 g/mL for 24 hours, or at 15-60 g/mL for 7 days, had no significant impact on the 

viability of human mesenchymal stem cells (Mahl et al., 2012).  Padmos et al. (2015) 

synthesized 7 nm silver-gold alloy nanoparticles with silver:gold ratios ranging from 

100:0 to 30:70.  Bimetallic alloy nanoparticles had lower antibacterial activity, and much 

lower cytotoxicity.  The antibacterial activity was dependent on the location of silver in 

the alloy, and the cytotoxicity was dependent on the overall gold concentration.  Grade et 

al. (2014) and Ristig et al. (2015) confirm that bimetallic silver-gold alloys can maintain 

antibacterial activity, though it may be reduced, while exhibiting higher host 

biocompatibility.  

 Coating or capping nanoparticle surfaces can also enhance their biocompatibility. 

Pluronic polymers are common capping agents used for this reason (Pitto-Barry & Barry, 

2014). Capping with Pluronic F127 did not restrict or reduce the antibacterial activity of 

silver-gold alloy nanoparticles (Holden et al., 2016). 

 

 

Figure 1. The general structure of Pluronic block copolymers. The Pluronic F127 

(Sigma Aldrich) are typically x, z 100 and y 70, respectively.  

 

Pluronic® F127 (PEOx-PPOy-PEOz) where x, z 100 and y 70, is a triblock 

copolymer comprised of a central block of hydrophobic polypropylene oxide (PPO) 

flanked by two hydrophilic polyethylene oxide (PEO) chains.  F127 is a non-ionic 

surfactant polyol with a molecular weight of 12.6 kDa.  The surfactant and thermo-
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responsive properties of Pluronic F127 are derived from its chemical structure (Fakhari et 

al., 2017; Giuliano et al., 2018) and make it a suitable capping agent in the synthesis of 

nanomaterials and manufacture of medical equipment (Mao et al., 2009), and in drug 

synthesis and delivery (Basak & Bandyopadhyay, 2013; Bodratti & Alexandridis, 2018; 

Callan et al., 2017; Soni & Yadav, 2014).  

Pluronic F127 is approved by the Food and Drug Administration (FDA) for use in 

various formulations (U.S. Food & Drug Administration, 2019).  The Cosmetic 

Ingredient Review Expert Panel (2008) reported a total of 31 uses for Pluronic F127 at 

concentrations ranging from 0–30% w/v in a range of products.  The biocompatibility of 

Pluronic F127 makes it useful for dispersion of drugs (Yildirim et al., 2013), for 

reduction of the inflammatory potential of microspheres (Jackson et al., 2000), for 

reduced platelet adhesion to biomaterial device surfaces (Mao et al., 2009), and in 

medical treatments for embolism (Ohta et al., 2006).  Pluronic F127 is approved for 

intratympanic, ophthalmic, oral, periodontal, and topical applications (Giuliano et al, 

2018).  It has been used as a temporary vascular occlusion tool following accidental 

vessel damage or surgery (Gucu et al., 2013; Raymond et al., 2004).  A gel formulation 

was used to control temporary intra-arterial occlusion during surgery (Decrouy-Duruz et 

al., 2013; San Norberto et al., 2012).  Polypropylene film coated with Pluronic 127 was 

found to prevent platelet adhesion (Hakani et al., 2018).  Similarly, pluronic F127 

reduced platelet adhesion when coating biomaterial device surfaces (Mao et al., 2009). 

Moreover, treating or conjugating Pluronic F127 with other substances, enhanced control 

of their physical properties and biocompatibility (Shachaf et al., 2010).  In conclusion, it 

is well established that pluronic F127 is a versatile and widely used reagent. 
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In spite of its numerous biomedical uses, physiological effects of Pluronic F127 

on its own is not reported.  This lack of information about the concentration dependent 

effects of Pluronic F127 on platelet activation, and hence blood coagulation is of 

significant concern and warrants study.  The current study reports the effects of addition 

of Pluronic F127, over the range of 0–5% w/v, to human citrated whole blood.  Thus, 

these results will help to determine whether or not Pluronic F127 is hemocompatible at 

these low concentrations. 

4.2.1  Rationale for this Study 

 The blood coagulation system is sensitive and responsive to foreign surfaces.  In 

this context, nanoparticle applications for medical purposes may lead to their access to 

circulation.  Because of this, adequate characterization of potential hemostatic impact for 

such nanoparticles is needed.  

4.2.2  Scope of Study 

 In this study, ≈20 nm nanoparticles stabilized in 2% w/v Pluronic F127 were 

incubated with citrated human whole blood obtained from consenting donors. 

Hemocompatibility was determined by assessing platelet activation by flow cytometry. 

The biocompatibility of Pluronic F127 is also explored in the range of 0–5% w/v.  

4.2.3  Study Objectives 

A. To assess the effects of Pluronic F127-stabilized nanoparticles on platelet 

activation in citrated human whole blood.  Platelet activation was evaluated with flow 

cytometry using platelet specific fluorescently labelled monoclonal antibodies.  The 
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nanoparticles used were 20 nm in size, composed either of silver or silver-gold alloy with 

varying ratio of silver:gold and varying nanoparticle concentrations. 

B. To assess the effects of the stabilizer, Pluronic F127, on platelet activation in 

citrated human whole blood.  Platelet activation was evaluated with flow cytometry while 

varying the concentration of added Pluronic F127 from 0 to 5% w/v. 

4.3  Materials and Methods 

4.3.1  Reagents 

Ammonium hydroxide (28-30%), sodium hydroxide (98%), D-maltose (99%), 

silver nitrate (99%), gold (III) chloride hydrate (HAuCl4.3H2O; 99.999% trace metals 

basis), Pluronic F-127 (EO100PO65EO100, MW  12500; batch number 038K0113) and 

reduced glutathione, paraformaldehyde, and Tyrode HEPES buffer reagents were used as 

received (Sigma-Aldrich, USA). Milli-Q water (Millipore) was used in all experiments. 

Monoclonal antibodies, phycoerythrin (PE)-labeled anti-human CD62P and peridinin-

chlorophyll protein (PerCP)-labeled anti-human CD61, were obtained from BioLegend, 

USA.  A stock of 100 µM ADP (Sigma-Aldrich, USA) was made up with Milli-Q water.  

Diluted 10 µM ADP was made from the 100 µM ADP using Tyrode HEPES buffer. 

4.3.2  Nanoparticle Synthesis 

Glutathione-capped nanoparticles were synthesized and characterized as 

described previously in Chapter 2.  Briefly, nanoparticle solutions of Ag, 3% gold (BM1) 

or 16% gold (BM2) were adjusted to an absorbance at 400 nm of 10 by addition of 2% 

w/v Pluronic F-127 solution.  The concentrations of these stock solutions were 

determined by MP-AES (Chapter 2).  Dilutions of nanoparticles for use in platelet 

activation tests were made as needed in 2% Pluronic F127.  All reactions were carried out 
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at room temperature.  Solutions were stored in black microcentrifuge tubes and used 

within 10 days of preparation.  

4.3.3  Blood Sampling 

Ethical approval was obtained from the Loma Linda University Health 

Institutional Review Board (IRB# 5150095).  A total of 13 participants, that included 4 

females and 9 males, were recruited to donate blood. Informed consent was sought and 

obtained from each participant before recruitment.  The donor selection criteria were: 

non-smokers, no medications affecting coagulation or platelet functions, good hydration, 

age of 20–60 years, absence of illness and generally good health.  Briefly, blood was 

drawn by venepuncture into VACUETTE Blood Collection Blue Cap Tube containing 

3.2% sodium citrate, mixed by gently inverting the tube a few times, then placed in a 

heating rack set to 37C, and left for at least 30 minutes for platelet activity to normalize. 

Drawn blood samples were not pooled but tested separately. 

4.3.4  Flow Cytometry of Nanoparticle-Treated Citrated Human Whole Blood 

Percent platelet activation (PPA) was determined based on a protocol modified 

from the method of Frelinger et al. (2015).  Nanoparticle species of choice (either silver, 

3% gold or 16% gold bimetallic), or Pluronic F127 of varying concentration (0–5% w/v), 

was added to whole blood, followed by the addition of ADP or Tyrode HEPES buffer.  A 

cocktail of fluorescently labeled monoclonal anti-human antibodies were used:  PerCP-

conjugated anti-CD61 targets platelet surface-specific glycoproteins and PE-conjugated 

anti-CD62P targets activated platelets (BioLegend, San Diego, CA).  The reaction was 

allowed to run for 15 minutes in the dark, folloed by addition of 4% paraformaldehyde 
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(PFA) (one-part PFA to two-parts blood solution) fixative and incubation for 20 minutes 

in the dark.  Then, the samples were diluted 75-fold in 0.1M PBS, pH 7.4, to a volume of 

≈3 mL.  PPA was obtained on a Miltenyi MacsQuant flow cytometer equipped with a 488 

nm laser.  For platelets, side-angle and forward angle scatter as well as fluorescence of 

PE (578 nm) and PerCP (675 nm) dyes were measured.  CD62P PE fluorescence was 

used to determine relative PPA.  Data were analyzed using FlowJo v9 (BD) software. 

Flow cytometry results are presented as mean fluorescent intensity (MFI), which is 

calculated by dividing the fluorescence of stained samples by the fluorescence of the 

negative control.  Representative data are presented as dot plots. 

4.3.5  Statistical Analysis 

 One-way ANOVA was carried out to determine the significance of PPA 

measurements.  Regression analysis was performed to demonstrate the association of 

Pluronic F127 concentration with PPA.  Where appropriate, Welch’s t-test was used to 

determine differences between mean PPA of treatment groups.  

4.4  Results 

Nanoparticles in Pluronic F127 aqueous solution did not significantly activate 

platelets in citrated human whole blood.  Figure 2 shows the mean PPA ( SD) for 

nanoparticle-treated citrated fresh human whole blood.  Platelet activation over the 

concentration range of nanoparticles tested (0.00167–16.7 ng/mL) was not significantly 

different from baseline (Figure 2, Table 1).  In contrast, 0.33% w/v Pluronic F127 

induced significant platelet activation (p < 0.01).  In this context, there was a weak, 

though not significant, inverse relationship between percent platelet activation and 
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nanoparticle concentration. As nanoparticle concentration increased, percent platelet 

activation decreased, and vice versa.  
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Figure 2. PPA by Pluronic F127-stabilized bimetallic nanoparticles. Citrated blood was 

incubated with 3.33 mM ADP, HEPES buffer, 0.33% w/v Pluronic F127, BM1 or BM2. 

PPA activation was determined by measuring the expression of CD62P, a platelet 

activation marker.  PPA is presented as mean  SD for all treatments.  A one-way ANOVA 

showed that both ADP and Pluronic F127 had a significant effect on PPA compared to 

baseline activation under HEPES, F(6,17) = 6.94, p < 0.01.  There was no difference 

between baseline activation and nanoparticle-induced activation (N  3 for all treatments). 

 

Welch’s t-test was used to determine the difference between ADP and Pluronic 

F127 induced platelet activation. There was no significant difference in platelet activation 

by these two agonists, t(4.9) = 1, p = 0.35 indicating that Pluronic F127 is a potent 

activator of platelets at the concentration tested. We did not observe a gold ratio-

dependent change in platelet activation levels for the different ratios of gold to silver in 

BM1 versus BM2. There was also no difference in mean platelet activation between 

silver and bimetallic nanoparticles.  
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Table 1. Bimetallic silver-gold nanoparticle-induced platelet activation in citrated 

human whole blood.  BM1 and BM2 were incubated with citrated human whole blood, in 

the presence of fluorescently labeled antibodies targeting platelet, and activated platelet 

surfaces, for subsequent flow cytometry analysis.  The results are represented as mean 

fluorescent intensities.  Data were analyzed by one-way ANOVA.  Percent platelet 

activation was lower for nanoparticles than for ADP agonist, but significantly higher than 

the HEPES buffer (p < 0.05).  There is also a significant concentration-dependent effect of 

nanoparticles on platelet activation for both BM1 and BM2, F(5, 10) = 29.45, p < 0.05.   

Platelet activation was generally inversely related to nanoparticle concentrations for both 

BM1 and BM2. 

 

 Blood Treatment Platelet Activation  

(Mean ± SD) 

N 

C
o
n

tr
o
ls

 HEPES Buffer 10.7 ± 0.2 2 

0.33% w/v Pluronic F127 26.6 ± 6.6 3 

3.33 mM ADP 28.4 ± 3.0 3 

N
a
n

o
p

a
rt

ic
le

 S
o
lu

ti
o
n

s 0.167 ng/mL Ag 13.4 ± 401 4 

0.00167 ng/mL BM1 19.9 ± 0.9 3 

0.167 ng/mL BM1 11.4 ± 7.4 3 

16.7 ng/mL BM1 10.9 ± 0.7 2 

0.00167 ng/mL BM2 19.1 ± 1.1 3 

0.167 ng/mL BM2 11.7 ± 3.4 4 

16.7 ng/mL BM2 12.0 ± 0.2 2 

 
 

 

This further supports the hypothesis that the gold in the bimetallic silver-gold 

nanoparticle increases biocompatibility, which in this case is manifest as reduced platelet 

activation.  
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Figure 3. Representative flow cytometry analysis of nanoparticle-induced platelet 

activation in fresh citrated human whole blood.  The blood was incubated with a) 

HEPES buffer, b) 3.33 mM ADP, c) 16.7 ng/mL BM1, d) 0.00167 ng/mL BM1, e) 16.7 

ng/mL BM2, and f) 0.00167 ng/mL BM2.  Following incubation, platelet activation levels 

were determined by flow cytometry.  The result is the mean fluorescent intensity.  Q1 

represents PE-CD62P+/PerCP-CD61-; Q2, PE-CD62P+/PerCP-CD61+; Q3, PE-CD62P-

/PerCP-CD61+; Q4, PE-CD62P-/PerCP-CD61- cells.  Nanoparticle-induced platelet 

activation was lower than activation by 3.33 mM ADP for both BM1 and BM2 at all 

concentrations tested.  

 

 

Results summarized in Figure 3 and Table 1 suggest that nanoparticles may have 

an attenuating effect on platelet activation and that Pluronic F127 on its own may activate 

platelets. To further probe the effect of Pluronic F127, it was incubated at varying 

C
D

6
2

P
 P

E
 

 

 

 
         a. HEPES 

 

 
             b. 3.33 mM ADP  

 

 
        c. 16.7 ng/mL BM1 

 

 
         d. 0.00167 ng/mL BM1 

 

 
       e. 16.7 ng/mL BM2 

 

 
         f. 0.00167 ng/mL BM2 

 

CD61 PerCP 
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concentrations (0–5% w/v) in citrated human whole blood.  Pluronic F127-treated blood 

was analyzed by flow cytometry and the data are given in Table 2 and Figure 4.  The 

regression analysis of the effect of 0–5% w/v Pluronic F127 on platelets demonstrated 

that PPA was concentration-dependent up to 5% w/v.  Above 5% w/v, further increase in 

Pluronic concentration did not produce a proportional increase in PPA (Table 2). 

Between Log([F127]) -2 and -8, PPA is directly proportional to Pluronic F127 

concentration.  

 

Table 2. The effect of Pluronic F127 over 0–5% w/v (final concentration) on the 

activation of platelets in citrated human whole blood. Pluronic F127 over a 

concentration range of 0–5% induces platelet activation in a concentration-dependent 

manner.  

 

Log([F127]) % Act Pcalc resid resid2 (y-yav)2 

-1.00 21.30 21.50 -0.20 0.04 22.56 

-2.48 21.50 20.90 0.60 0.36 24.50 

-4.78 16.70 17.18 -0.48 0.23 0.02 

-6.78 14.80 14.19 0.61 0.37 3.06 

-8.78 12.30 12.83 -0.53 0.28 18.06 

-10.78 12.90 12.27 0.63 0.40 13.32 

-12.78 11.60 12.02 -0.42 0.18 24.50 

      

% Act(avg) = 16.55  Sum(resid2) 1.90 128.60 

   R2 0.9853  

 
 

The effect of Pluronic F127 on platelet activation is dependent on 

concentration.  Pluronic F127 at the highest concentration tested produced similar 

levels of platelet activation as the potent platelet activator ADP (Table 1).  In Table 2 

the percent platelet activation peaked at 21.3% for Log([F127]).  This level is similar 

to ADP-induced platelet activation and significantly higher than that for BM1 and 

BM2 at 16.7 ng/mL (Table 1).  
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Figure 4. Concentration dependent platelet activation by Pluronic F127.  A graph 

predicting PPA using logistic regression as determined by flow cytometry of citrated 

human whole blood incubated with 0–3% w/v Pluronic F127 at 25°C.  Pluronic F127 

causes concentration-dependent platelet activation over the tested range.  EC50(F127) 

= 8.4 x10-6 w/v; df = 4; SEM = 0.6886; tcritical = 2.7764; CI = 1.9119.  Percent platelet 

activation linear predictor = 
𝒊𝒏𝒊𝒕𝒊𝒂𝒍+(𝒇𝒊𝒏𝒂𝒍−𝒊𝒏𝒊𝒕𝒊𝒂𝒍)

(𝟏+(
𝑳𝒐𝒈([𝑭𝟏𝟐𝟕])

𝒊𝒏𝒇𝒍𝒆𝒄𝒕𝒊𝒐𝒏
)

𝒑
)

, where initial = 11.724, final = 21.518, 

inflection = -5.076, and p = 3.761. 
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Flow cytometry analysis was also performed for the potential effects of 

butylated hydroxytoluene (BHT), used as a Pluronic F127 preservative at 100 ppm, 

corresponding to the concentrations of BHT contained in 0-5% Pluronic F127.  BHT 

does not induce platelet activation above baseline (Table 3).     

 

Table 3. Percent platelet activation by BHT.  BHT-induced platelet activation was 

determined by assessing concentrations of BHT by itself in the amounts found in the 

Pluronic F127 sample from Sigma.  BHT was 100 ppm in the Pluronic F127.  The 

graph shows the mean (±SD) for N=5.  

Log [BHT]g/µL Mean SD 

-2.48 0.52 1.02 

-2.78 0.04 0.07 

-4.78 -0.26 0.53 

-6.78 1.77 3.52 

-8.78 -0.59 1.19 

-10.78 -0.33 0.82 

 

This implies that the platelet activation effects are due to Pluronic F127 rather than 

due to its preservative BHT.  Therefore, as a component of the surfactant, BHT is not 

responsible for the platelet activity seen when citrated whole blood was incubated 

with 0-5% Pluronic F127, as shown in Figure 5. 

4.5  Discussion 

The use of nanoparticles is limited by our understanding of the physiological 

effects nanoparticles have inside the body, including their potential impact on the 

hemostatic system (Fröhlich, 2016).  Silver nanoparticles, in particular, have broad 
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applications as antibiotics.  However, they have known eukaryotic cellular toxicities 

(Prabhu & Poulose, 2012).  Developing biocompatible silver nanoparticles is important 

for full integration of nanoparticles into clinical treatments of systemic infections.  It was 

reported that silver nanoparticles alloyed with gold have reduced cytotoxicities while 

maintaining antibacterial activity (Mahl et al., 2012; Padmos et al., 2015).  Silver-gold 

nanoparticles with ≈3% (BM1) and ≈16% (BM2) gold, in this study, were tested over a 

concentration range of 0.00167–16.7 ng/mL, representing the concentration range shown 

to have antibacterial activity (Chapter 3).  Ag, BM1 and BM2 produced similar platelet 

activation to control in citrated human whole blood, without inducing significant platelet 

activation above baseline (p<0.01) (Figure 2, Table 1).  The percentage of activated 

platelets was negatively related to the concentration of nanoparticles applied and the 

amount of gold in the bimetallic. This suggested that there is a platelet activating effect 

due to the solution containing the triblock copolymer F127.  Pluronic F127 was tested 

over the range of 0–5% with citrated human whole blood, demonstrating concentration-

dependent platelet activation (Figure 4).  

Previous studies reported that Pluronic F127 is a suitable biocompatible surfactant 

and it was approved for use by the FDA (2019).  It has been used in numerous 

applications, including studies with platelets to reduce platelet adhesion (Hakani et al., 

2018; Mao et al., 2009).  Our results contrast with some reported effects of Pluronic F127 

on platelets.  This may result from several differences in the previous studies.  First, the 

studies report using Pluronic F127 as a coating which we can assume is a thin corona for 

nanoparticles or thin layer for other surfaces (Mao et al., 2009).  This differs from our 

study where Pluronic F127 is in solution in which nanoparticles are suspended.  



 

164 

Secondly, the concentration range reported in those studies is much higher than used in 

this study.  For example, in Hakani et al. (2018) at 3% w/v Pluronic F127 showed platelet 

activation but at higher concentrations activation decreased until it was almost non-

existent at 20% w/v.  Ahmed et al. (1999) suggest that for Pluronics, the ability to inhibit 

platelet aggregation depends on their tendency to self-assemble into micelles and on their 

relative binding rate to platelet surfaces.  

Based on previously reported studies about the effects of Pluronic on platelet 

aggregation, and from current results of platelet activation, several possible mechanisms 

are suggested.  First, nanoparticles may compete with Pluronic F127 for platelet surface 

binding sites and once bound, they prevent Pluronic F127 from binding.  Second, 

nanoparticles bind to platelet surface and directly attenuate platelet activation.  Both of 

these scennarios are consistent with the observation that solutions with low nanoparticle 

concentrations tended to induce higher platelet activation.  Third, nanoparticles may be 

endocytosed by platelets and then may prevent platelet activation by disrupting internal 

cellular pathways.  According to this mechanism, platelets are not activated even when 

Pluronic F127 binds to platelet surfaces. 

Testing these hypotheses could be achieved using high-resolution microscopy 

such as TEM to identify nanoparticles at surface receptors and phase-contrast microscopy 

to determine receptor abundance (Hajtuch et al., 2019).  Alternatively, blocking platelets’ 

surface receptors before incubation with nanoparticles or Pluronic F127 could be used to 

determine if surface receptors are involved with activation.  Using specific receptor 

antagonists, we could determine which specific receptors were involved in the 

nanoparticle- or Pluronic F127-mediated platelet interactions.  A number surface receptor 
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ligands are currently available for specific surface receptors, such as the P2Y12 receptor 

for ADP, and others are being developed (Laine et al., 2016; Wijeyeratne & Heptinstall, 

2011).  Microscopy could also be used to determine whether nanoparticles in this study 

are endocytosed and how this process takes place.  Confocal microscopy has been used to 

study the internalization of nanoparticles (Chung et al., 2008). 

4.5.1  Implications of this study 

Nanoparticles, when carefully synthesized, can be made to be biocompatible. 

Furthermore, nanoparticles can be tuned to achieve desired functionality.  These 

functions include biocompatibility and possible platelet antagonists.  In our studies, we 

observed that Ag, BM1 and BM2 nanoparticles reduced platelet activation to baseline 

levels compared to a solution of Pluronic F127 without nanoparticles.  The amount of 

gold in the bimetallic did not impact the hemocompatibility of nanoparticles with respect 

to platelet activation.  Alternatively, our results indicate that Pluronic F127, at 

concentrations 0–5%, activated platelets in a concentration-dependent manner (threshold 

>10-5% w/v), thus posing a potential physiological threat of thrombosis associated with 

its use.  Pluronic F127 was not reported before to  cause platelet activation in the 0–5% 

w/v concentration range.  Therefore, further studies are needed to determine the 

mechanisms of this effect.  Presented results tend to suggest that nanoparticles are 

antagonizing platelet activation.  This also needs further mechanistic investigation.  

 

4.5.2  Limitations of this study 

The nanoparticles studied were of one size, and the composition was limited to 

three options of relative gold:silver ratios.  In this sense, this work represents a pilot 
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study.  A more comprehensive study should include a more thorough examination of 

varying the nanoparticle size and composition, and its impact on platelets in citrated 

human whole blood.  Further concern is the potential concentration effect of 

nanoparticles.  While the concentration of the nanoparticles incubated with the blood was 

calculated, it also would be helpful to monitor the number of nanoparticles interacting 

with platelets.  Furthermore, the working assumption is that platelets are relatively 

uniform and that, therefore, nanoparticle interactions with them will be comparable.  

Current understanding is that platelets comprise different functional subgroups, 

potentially impacting the observed nanoparticle effects.  Moreover,  the physical 

interactions between platelets and nanoparticles still remain to be characterized.  

Finally, nanoparticles can be altered following incubation with the blood.  

Further, nanoparticles in the blood are known to develop a corona, which potentially 

affects their activity.  As a result, upon addition to blood, the effective nanoparticle 

concentration and surface properties may be changing over time. 

4.6  Summary, Conclusions and Future Studies 

 There may be some gold-dependent reduction in platelet activation, ordinarily 

observed with silver nanoparticles, when they are alloyed with gold.  As a result, 

improved biocompatibility is anticipated, particularly with respect to hemostasis.  Then, 

because of improved biocompatibility with gold alloy formulations, and because of the 

antimicrobial properties of silver, the silver-gold bimetallic nanoparticles can be used 

more broadly in medical applications.  In contrast, Pluronic 127 may not be suitable for 

use at low concentrations for the delivery of nanoparticles due to its potential to impact 

hemostasis through activation of platelets.  
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The mechanism of nanoparticle-induced platelet activation is not well described, 

and this would be helped through studies of (1) the action of uncoated nanoparticles on 

blood cells in general and platelets in particular, (2) the effect of varying silver:gold ratio 

of bimetallic nanoparticles on platelet activation, and (3) the nanoparticle size-

dependence for platelet effects, (4) detailed time course morphologic/structural 

investigations of Pluronic F127 impact on platelets, (5) biochemical changes in platelets 

as a result of interaction with Pluronic F127, and (6) the relationship between 

micellization of Pluronic F127 and its effects on blood cells including platelets. 

Additionally, in vitro detailed concentration tests are needed between 0–5% w/v Pluronic 

F127 to more fully characterize the surfactant effects on platelet function, clot formation, 

and stability, in the context of whole blood. 
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CHAPTER FIVE 

THESIS SUMMARY, CONCLUSIONS AND FUTURE DIRECTIONS 

 

Walemba, E. M., Boskovic, D. S., and Perry, C. C. 

 

 

 

Nanotechnology applications in biomedicine include treatments, which may help 

to address specific problems such as drug resistant microbes or specific targeting of 

cancer cells.  Silver nanoparticles offer potential for treatment of some bacterial 

infections, but toxicity issues are concerning.  Various approaches during and post-

synthesis have been attempted to improve their biocompatibility.  Current work presents 

efforts to improve biocompatibility via synthesis of 20 nm glutathione-capped silver-gold 

alloy bimetallic nanoparticles.  These nanoparticles were tested for their antibacterial 

efficacy against the oral pathogen, Porphyromonas gingivalis W83, and for 

hemocompatibility in citrated human whole blood.  Observations are presented, 

demonstrating antibiotic efficacy as well as enhanced biocompatibility.   

Chapter two describes nanoparticle measurements, demonstrating that measured 

mean diameter is dependent on the method used.  Characterizing the same nanoparticles, 

using three methods (DLS, AFM, and TEM), it was observed that the measured sizes 

were significantly different.  It was also found that silver nanoparticles tended to be 

larger than the bimetallics BM1 and BM2, so that Ag > BM1 > BM2.  This suggests that 

conflicting results from various labs may in part be due to nanoparticle size differences as 

well as their composition.  Higher activities of smaller nanoparticles could in part be due 

to their higher surface/volume ratios.  Some groups report different rates of activity for 

similar sized nanoparticles with different silver-gold composition.  However, if the 
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physical dimensions are not fully described, then it is not certain that functional 

differences are necessarily attributable to the metal composition rather than size 

differences, as shown in chapter three. 

A suitable stabilizing and storing agent is needed to preserve physicochemical 

characteristics of nanoparticles.  Pluronic F127, at 2% w/v, stabilized nanoparticles and 

did not significantly alter their physicochemical properties. 

Chapter three reports that oxidation from subinhibitory 0.10 mM hydrogen 

peroxide mediated antibiotic effectiveness of sub-20 nm silver-gold bimetallic 

nanoparticles.  This antibacterial function was positively correlated with gold content.  

Some of the increased activity may also be due to nanoparticle size differences.  The 

surface/volume ratio decreases with increased gold content, so that Ag < BM1 < BM2.  

The antibacterial activity, stimulated by subinhibitory hydrogen peroxide, followed 

similar trend.  Since the concentration of nanoparticles was based on OD measurements, 

it follows that smaller nanoparticles will require larger numbers to achieve similar OD.  

This implies that smaller nanoparticles, having higher surface/volume ratio and larger 

numbers, will release more Ag+ ions.  Antibacterial activity was limited in the absence of 

an oxidizing agent.  During infection, the host cellular reactions include production and 

release of reactive oxygen species, including hydrogen peroxide, as part of their immune 

response.  The hydrogen peroxide induced oxidation of silver, resulting in a release of 

Ag+, which have antibacterial activity.  The bimetallic nanoparticles in this size range 

may be physiologically self-regulating, so that the most potent antibacterial activity 

occurs during active infection that produces reactive oxygen species. 
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Chapter four examines the hemocompatibility of the silver containing 

nanoparticles.  The glutathione-capped 20 nm silver-gold bimetallic nanoparticles were 

hemocompatible to citrated human whole blood without significant platelet activation.  

The stabilizing agent, Pluronic F127, however, activated platelets in a concentration-

dependent manner at concentrations below 5% w/v.  This may challenge the suitability of 

its use in clinical applications.  Further characterization of this effect is needed to 

determine its mechanism of action.  

Finally, the bimetallic nanoparticles are demonstrably countering the platelet 

activating effects of the triblock copolymer Pluronic F127.  Further in vitro experiments 

are needed to fully characterize this unexpected observation. 
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