In this dissertation, I investigated yield, regeneration, and composition of centipede venom. In the first of three empirical studies, I investigated how size influenced venom volume yield and protein concentration in Scolopendra polymorpha and S. subspinipes. I also examined additional potential influences on yield in S. polymorpha, including relative forcipule size, relative mass, geographic origin, sex, time in captivity, and milking history. Volume yield was positively linearly related to body length in both species; however, body length and protein concentration were uncorrelated. In S. polymorpha, yield was most influenced by body length, but was also positively associated with relative forcipule length and relative body mass. In the second study, I investigated venom volume and total protein regeneration during the 14-day period subsequent to venom extraction in S. polymorpha. I further tested the hypothesis that venom protein components, separated by RP-FPLC, undergo asynchronous synthesis. During the first 48 hours, volume and protein mass increased linearly. However, protein regeneration lagged behind volume regeneration, with only 65–86% of venom volume and 29–47% of protein mass regenerated during the first 2 days. No significant additional regeneration occurred over the subsequent 12 days. Analysis of chromatograms of individual venom samples revealed that five of 10 chromatographic regions and 12 of 28 peaks demonstrated changes in percent of total peak area among milking intervals, indicating that venom proteins are regenerated asynchronously. In the third study, I characterized the venom composition of S. polymorpha using proteomic methods. I demonstrated that the venom of S. polymorpha is complex, generating 23 bands by SDS-PAGE and 56 peaks by RP-FPLC. MALDI TOF MS revealed hundreds of components with masses ranging from 1014.5 to 82863.9 Da. The distribution of molecular masses was skewed toward smaller peptides and proteins, with 72% of components found below 12 kDa. BLASTp sequence similarity searching of MS/MSderived amino acid sequences demonstrated 20 different sequences with similarity to known venom components, including serine proteases, ion-channel activators/inhibitors, and neurotoxins. In Appendix A, I reviewed how animals strategically deploy various emissions, including venom, highlighting how the metabolic and ecological value of these emissions leads to their judicious use.

LLU Discipline



Basic Sciences


School of Medicine

First Advisor

Hayes, William K.

Second Advisor

Brand, Leonard R.

Third Advisor

Dunbar, Stephen G.

Fourth Advisor

Nick, Kevin E.

Fifth Advisor

Nisani, Zia

Degree Name

Doctor of Philosophy (PhD)

Degree Level


Year Degree Awarded


Date (Title Page)




Library of Congress/MESH Subject Headings

Invertebrates; Venom

Subject - Local

Centipedes; Scolopendra Polymorpha; S. Polymorpha; Venom Yield; Venom Regeneration; Venom Composition



Page Count


Digital Format


Digital Publisher

Loma Linda University Libraries

Usage Rights

This title appears here courtesy of the author, who has granted Loma Linda University a limited, non-exclusive right to make this publication available to the public. The author retains all other copyrights.


Loma Linda University Electronic Theses and Dissertations

Collection Website



Loma Linda University. Del E. Webb Memorial Library. University Archives

Included in

Biology Commons