Abstract
Introduction: This study was designed to evaluate, via tensile and bend testing, the mechanical properties of a newly-developed monocrystalline orthodontic archwire comprised of a blend of copper, aluminum, and nickel (CuAlNi). Methods: The sample was comprised of three shape memory alloys; CuAlNi, copper nickel titanium (CuNiTi), and nickel titanium (NiTi); from various orthodontic manufacturers in both 0.018” round and 0.019” x 0.025” rectangular dimensions. Additional data was gathered for similarly sized stainless steel and beta-titanium archwires as a point of reference for drawing conclusions about the relative properties of the archwires. Measurements of loading and unloading forces were recorded in both tension and deflection testing. Repeated-measure ANOVA (α= 0.05) was used to compare loading and unloading forces across wires and one-way ANOVA (α= 0.05) was used to compare elastic moduli and hysteresis. To identify significant differences, Tukey post-hoc comparisons were performed. Results: The modulus of elasticity, deflection forces, and hysteresis profiles of CuAlNi were significantly different than the other superelastic wires tested. In all tests, CuAlNi had a statistically significant lower modulus of elasticity compared to the CuNiTi and NiTi wires (P <0.0001). The CuAlNi wire exhibited significantly lower loading and unloading forces than any other wire tested. In round wire tensile tests, loading force at all deflections was significantly lower for CuAlNi than CuNiTi or NiTi (P <0.0001). In tensile testing, the CuAlNi alloy was able to recover from a 7 mm extension (10% elongation) without permanent deformation and with little to no loss in force output. In large-deflection bend tests at 4, 5, and 6 mm deflection, CuAlNi showed the significantly lowest loading forces across the three wire materials (P <0.0001). The NiTi wires showed up to 12 times the amount of energy loss due to hysteresis compared to CuAlNi. CuAlNi showed a hysteresis loss that was significantly less than any other wire tested in this study (P <0.0001). Conclusions: The relatively constant force delivered for a long period of time during the deactivation of this wire, the minimal hysteresis loss, the low force output in deflection, and the relatively low modulus of elasticity suggest that CuAlNi wires should be considered an important material addition to orthodontic metallurgy.
LLU Discipline
Orthodontics and Dentofacial Orthopedics
Department
Orthodontics and Dentofacial Orthopedics
School
School of Dentistry
First Advisor
Leggitt, V. Leroy
Second Advisor
Olson, Gregory
Third Advisor
Rungcharassaeng, Kitichai
Degree Name
Master of Science in Orthodontics and Dentofacial Orthopedics (MSODO)
Degree Level
M.S.
Year Degree Awarded
2014
Date (Title Page)
9-2014
Language
English
Library of Congress/MESH Subject Headings
Orthodontic Wires
Subject - Local
Orthodontic alloys; Monocrystalline orthodontic alloys; tensile strength; archwires
Type
Thesis
Page Count
50
Digital Format
Digital Publisher
Loma Linda University Libraries
Copyright
Author
Usage Rights
This title appears here courtesy of the author, who has granted Loma Linda University a limited, non-exclusive right to make this publication available to the public. The author retains all other copyrights.
Recommended Citation
Wierenga, Mark, "Copper, Aluminum and Nickel: A New Monocrystalline Orthodontic Alloy" (2014). Loma Linda University Electronic Theses, Dissertations & Projects. 195.
https://scholarsrepository.llu.edu/etd/195
Collection
Loma Linda University Electronic Theses and Dissertations
Collection Website
http://scholarsrepository.llu.edu/etd/
Repository
Loma Linda University. Del E. Webb Memorial Library. University Archives