Abstract
Intrauterine hypoxia resulting from decreased maternal oxygen uptake, insufficient oxygen carrying capacity, or compromised oxygen delivery to the fetus jeopardizes fetal oxygen delivery, detrimentally affecting growth and development of the immature vasculature. Hypoxia transiently increases Hypoxia Inducible Factor-1α (HIF- 1α), which complexes with HIF-1β to form the active HIF-1 dimer that can affect transcription. This temporary rise in HIF-1 can promote gene transcription of ligands such as Vascular Endothelial Growth Factor (VEGF) and Endothelin-1 (ET-1), which rises and falls with HIF levels. The absence of chronic elevation of these ligands prompted the question of how long-term effects of hypoxia is sustained. Results suggest that in addition to stimulating transient rises in ligand levels, hypoxia alters receptor expression and coupling of these ligands to the intracellular kinases. Endothelin-1 (ET-1) is an established vasoconstrictor that can activate ETA or ETB receptors, respectively stimulating vasoconstriction and vasodilation. ET-1 activates pathways such as Protein Kinase C (PKC), Ca2+/Calmodulin-Dependent Protein Kinase (CaMK), p38, and MEK/ERK, which are involved in cellular growth, proliferation, and differentiation. Our results demonstrate that chronic hypoxia altered ovine fetal cerebrovascular reactivity to ET-1 but not plasma ET-1 levels or ETA receptor cerebrovascular
expression. However, chronic hypoxia enhances ET-1-induced contractility in an ETAdependent manner in Middle Cerebral Arteries (MCAs). ET-1 also exerts trophic effects on ovine fetal cerebrovasculature in organ culture in a PKC-dependent manner by inducing hypertrophy and increasing medial thicknesses, more in normoxic than hypoxic MCAs. ET-1-induced increase in arterial wall thickness is mediated by CaMKII and p38 dependent pathways in normoxic but not hypoxic arteries. Additionally, Myosin Light Chain Kinase (MLCK) and Smooth Muscle Alpha Actin (SMαA) colocalization data shows that ET-1 promotes contractile dedifferentiation in normoxic but not hypoxic MCAs in a PKC, CaMKII, and p38 dependent manner. These results support the notion that chronic hypoxia has long term effects mediated by altered receptor expression levels and intracellular coupling. A better understanding of how chronic hypoxia affects ET-1- induced intracellular coupling will help identify potential targets for future therapies to prevent and potentially treat remodeling of cerebral arteries in infants exposed to intrauterine hypoxia.
LLU Discipline
Physiology
Department
Basic Sciences
School
School of Medicine
First Advisor
Pearce, William J.
Second Advisor
Kirsch, Wolff
Third Advisor
Nauli, Surya M.
Fourth Advisor
Oberg, Kerby
Fifth Advisor
Zhang, Lubo
Degree Name
Doctor of Philosophy (PhD)
Degree Level
Ph.D.
Year Degree Awarded
2017
Date (Title Page)
12-2017
Language
English
Library of Congress/MESH Subject Headings
Fetal Hypoxia; Cardiovascular system; Vascular Remodeling; Endothelium; Vascular; Sheep
Subject - Local
Cerebral Arteries; Intrauterine hypoxia; Hypoxia Inducible Factor; Vascular endothelial Growth Factor
Type
Dissertation
Page Count
162
Digital Format
Digital Publisher
Loma Linda University Libraries
Copyright
Author
Usage Rights
This title appears here courtesy of the author, who has granted Loma Linda University a limited, non-exclusive right to make this publication available to the public. The author retains all other copyrights.
Recommended Citation
Silpanisong, Jinjutha, "Endothelin-1 and Hypoxic Vascular Remodeling in Ovine Fetal Cerebral Arteries" (2017). Loma Linda University Electronic Theses, Dissertations & Projects. 523.
https://scholarsrepository.llu.edu/etd/523
Collection
Loma Linda University Electronic Theses and Dissertations
Collection Website
http://scholarsrepository.llu.edu/etd/
Repository
Loma Linda University. Del E. Webb Memorial Library. University Archives