Amphetamine Promotes Cortical Up State in Part Via Dopamine Receptors

Document Type

Article

Publication Date

1-1-2021

Publication Title

Frontiers in pharmacology

ISSN

1663-9812

Abstract

Cortical neurons oscillate between Up and Down states during slow wave sleep and general anesthesia. Recent studies show that Up/Down oscillations also occur during quiet wakefulness. Arousal eliminates Down states and transforms Up/Down oscillations to a persistent Up state. Further evidence suggests that Up/Down oscillations are crucial to memory consolidation, whereas their transition to a persistent Up state is essential for arousal and attention. We have shown that D-amphetamine promotes cortical Up state, and the effect depends on activation of central α adrenergic receptors. Here, we report that dopamine also plays a role in D-amphetamine's effect. Thus, using local-field-potential recording in the prefrontal cortex in chloral hydrate-anesthetized rats, we showed that the Up-state promoting effect of D-amphetamine was attenuated by antagonists at either D1 or D2-like dopamine receptors. The effect was also partially mimicked by co-activation of D1 and D2-like receptors. These results are consistent with the fact that D-amphetamine increases the release of both norepinephrine and dopamine. They are also in agreement with studies showing that dopamine promotes wakefulness and mediates D-amphetamine-induced emergence from general anesthesia. The effect of D-amphetamine was not mimicked, however, by activation of either D1 or D2-like receptors alone, indicating an interdependence between D1 and D2-like receptors. The dopamine/norepinephrine precursor L-DOPA also failed to promote the Up state. While more studies are needed to understand the difference between L-DOPA and D-amphetamine, our finding may provide an explanation for why L-DOPA lacks significant psychostimulant properties and is ineffective in treating attention-deficit/hyperactivity disorder.

Volume

12

First Page

728729

DOI

10.3389/fphar.2021.728729

PubMed ID

34489713

Share

COinS